|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2009 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
|
30 |
|
31 #include <linux/module.h> |
|
32 #include <linux/types.h> |
|
33 #include <linux/init.h> |
|
34 #include <linux/pci.h> |
|
35 #include <linux/vmalloc.h> |
|
36 #include <linux/pagemap.h> |
|
37 #include <linux/delay.h> |
|
38 #include <linux/netdevice.h> |
|
39 #include <linux/tcp.h> |
|
40 #include <linux/ipv6.h> |
|
41 #include <linux/slab.h> |
|
42 #include <net/checksum.h> |
|
43 #include <net/ip6_checksum.h> |
|
44 #include <linux/mii.h> |
|
45 #include <linux/ethtool.h> |
|
46 #include <linux/if_vlan.h> |
|
47 #include <linux/cpu.h> |
|
48 #include <linux/smp.h> |
|
49 #include <linux/pm_qos_params.h> |
|
50 #include <linux/pm_runtime.h> |
|
51 #include <linux/aer.h> |
|
52 |
|
53 #include "e1000-2.6.35-ethercat.h" |
|
54 |
|
55 #define DRV_VERSION "1.0.2-k4 (EtherCAT)" |
|
56 char e1000e_driver_name[] = "ec_e1000e"; |
|
57 const char e1000e_driver_version[] = DRV_VERSION; |
|
58 |
|
59 static const struct e1000_info *e1000_info_tbl[] = { |
|
60 [board_82571] = &e1000_82571_info, |
|
61 [board_82572] = &e1000_82572_info, |
|
62 [board_82573] = &e1000_82573_info, |
|
63 [board_82574] = &e1000_82574_info, |
|
64 [board_82583] = &e1000_82583_info, |
|
65 [board_80003es2lan] = &e1000_es2_info, |
|
66 [board_ich8lan] = &e1000_ich8_info, |
|
67 [board_ich9lan] = &e1000_ich9_info, |
|
68 [board_ich10lan] = &e1000_ich10_info, |
|
69 [board_pchlan] = &e1000_pch_info, |
|
70 }; |
|
71 |
|
72 struct e1000_reg_info { |
|
73 u32 ofs; |
|
74 char *name; |
|
75 }; |
|
76 |
|
77 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ |
|
78 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ |
|
79 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ |
|
80 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ |
|
81 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ |
|
82 |
|
83 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ |
|
84 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ |
|
85 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ |
|
86 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ |
|
87 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ |
|
88 |
|
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = { |
|
90 |
|
91 /* General Registers */ |
|
92 {E1000_CTRL, "CTRL"}, |
|
93 {E1000_STATUS, "STATUS"}, |
|
94 {E1000_CTRL_EXT, "CTRL_EXT"}, |
|
95 |
|
96 /* Interrupt Registers */ |
|
97 {E1000_ICR, "ICR"}, |
|
98 |
|
99 /* RX Registers */ |
|
100 {E1000_RCTL, "RCTL"}, |
|
101 {E1000_RDLEN, "RDLEN"}, |
|
102 {E1000_RDH, "RDH"}, |
|
103 {E1000_RDT, "RDT"}, |
|
104 {E1000_RDTR, "RDTR"}, |
|
105 {E1000_RXDCTL(0), "RXDCTL"}, |
|
106 {E1000_ERT, "ERT"}, |
|
107 {E1000_RDBAL, "RDBAL"}, |
|
108 {E1000_RDBAH, "RDBAH"}, |
|
109 {E1000_RDFH, "RDFH"}, |
|
110 {E1000_RDFT, "RDFT"}, |
|
111 {E1000_RDFHS, "RDFHS"}, |
|
112 {E1000_RDFTS, "RDFTS"}, |
|
113 {E1000_RDFPC, "RDFPC"}, |
|
114 |
|
115 /* TX Registers */ |
|
116 {E1000_TCTL, "TCTL"}, |
|
117 {E1000_TDBAL, "TDBAL"}, |
|
118 {E1000_TDBAH, "TDBAH"}, |
|
119 {E1000_TDLEN, "TDLEN"}, |
|
120 {E1000_TDH, "TDH"}, |
|
121 {E1000_TDT, "TDT"}, |
|
122 {E1000_TIDV, "TIDV"}, |
|
123 {E1000_TXDCTL(0), "TXDCTL"}, |
|
124 {E1000_TADV, "TADV"}, |
|
125 {E1000_TARC(0), "TARC"}, |
|
126 {E1000_TDFH, "TDFH"}, |
|
127 {E1000_TDFT, "TDFT"}, |
|
128 {E1000_TDFHS, "TDFHS"}, |
|
129 {E1000_TDFTS, "TDFTS"}, |
|
130 {E1000_TDFPC, "TDFPC"}, |
|
131 |
|
132 /* List Terminator */ |
|
133 {} |
|
134 }; |
|
135 |
|
136 /* |
|
137 * e1000_regdump - register printout routine |
|
138 */ |
|
139 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) |
|
140 { |
|
141 int n = 0; |
|
142 char rname[16]; |
|
143 u32 regs[8]; |
|
144 |
|
145 switch (reginfo->ofs) { |
|
146 case E1000_RXDCTL(0): |
|
147 for (n = 0; n < 2; n++) |
|
148 regs[n] = __er32(hw, E1000_RXDCTL(n)); |
|
149 break; |
|
150 case E1000_TXDCTL(0): |
|
151 for (n = 0; n < 2; n++) |
|
152 regs[n] = __er32(hw, E1000_TXDCTL(n)); |
|
153 break; |
|
154 case E1000_TARC(0): |
|
155 for (n = 0; n < 2; n++) |
|
156 regs[n] = __er32(hw, E1000_TARC(n)); |
|
157 break; |
|
158 default: |
|
159 printk(KERN_INFO "%-15s %08x\n", |
|
160 reginfo->name, __er32(hw, reginfo->ofs)); |
|
161 return; |
|
162 } |
|
163 |
|
164 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); |
|
165 printk(KERN_INFO "%-15s ", rname); |
|
166 for (n = 0; n < 2; n++) |
|
167 printk(KERN_CONT "%08x ", regs[n]); |
|
168 printk(KERN_CONT "\n"); |
|
169 } |
|
170 |
|
171 |
|
172 /* |
|
173 * e1000e_dump - Print registers, tx-ring and rx-ring |
|
174 */ |
|
175 static void e1000e_dump(struct e1000_adapter *adapter) |
|
176 { |
|
177 struct net_device *netdev = adapter->netdev; |
|
178 struct e1000_hw *hw = &adapter->hw; |
|
179 struct e1000_reg_info *reginfo; |
|
180 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
181 struct e1000_tx_desc *tx_desc; |
|
182 struct my_u0 { u64 a; u64 b; } *u0; |
|
183 struct e1000_buffer *buffer_info; |
|
184 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
185 union e1000_rx_desc_packet_split *rx_desc_ps; |
|
186 struct e1000_rx_desc *rx_desc; |
|
187 struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1; |
|
188 u32 staterr; |
|
189 int i = 0; |
|
190 |
|
191 if (!netif_msg_hw(adapter)) |
|
192 return; |
|
193 |
|
194 /* Print netdevice Info */ |
|
195 if (netdev) { |
|
196 dev_info(&adapter->pdev->dev, "Net device Info\n"); |
|
197 printk(KERN_INFO "Device Name state " |
|
198 "trans_start last_rx\n"); |
|
199 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", |
|
200 netdev->name, |
|
201 netdev->state, |
|
202 netdev->trans_start, |
|
203 netdev->last_rx); |
|
204 } |
|
205 |
|
206 /* Print Registers */ |
|
207 dev_info(&adapter->pdev->dev, "Register Dump\n"); |
|
208 printk(KERN_INFO " Register Name Value\n"); |
|
209 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; |
|
210 reginfo->name; reginfo++) { |
|
211 e1000_regdump(hw, reginfo); |
|
212 } |
|
213 |
|
214 /* Print TX Ring Summary */ |
|
215 if (!netdev || !netif_running(netdev)) |
|
216 goto exit; |
|
217 |
|
218 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); |
|
219 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" |
|
220 " leng ntw timestamp\n"); |
|
221 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; |
|
222 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", |
|
223 0, tx_ring->next_to_use, tx_ring->next_to_clean, |
|
224 (u64)buffer_info->dma, |
|
225 buffer_info->length, |
|
226 buffer_info->next_to_watch, |
|
227 (u64)buffer_info->time_stamp); |
|
228 |
|
229 /* Print TX Rings */ |
|
230 if (!netif_msg_tx_done(adapter)) |
|
231 goto rx_ring_summary; |
|
232 |
|
233 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); |
|
234 |
|
235 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) |
|
236 * |
|
237 * Legacy Transmit Descriptor |
|
238 * +--------------------------------------------------------------+ |
|
239 * 0 | Buffer Address [63:0] (Reserved on Write Back) | |
|
240 * +--------------------------------------------------------------+ |
|
241 * 8 | Special | CSS | Status | CMD | CSO | Length | |
|
242 * +--------------------------------------------------------------+ |
|
243 * 63 48 47 36 35 32 31 24 23 16 15 0 |
|
244 * |
|
245 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload |
|
246 * 63 48 47 40 39 32 31 16 15 8 7 0 |
|
247 * +----------------------------------------------------------------+ |
|
248 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | |
|
249 * +----------------------------------------------------------------+ |
|
250 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | |
|
251 * +----------------------------------------------------------------+ |
|
252 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
|
253 * |
|
254 * Extended Data Descriptor (DTYP=0x1) |
|
255 * +----------------------------------------------------------------+ |
|
256 * 0 | Buffer Address [63:0] | |
|
257 * +----------------------------------------------------------------+ |
|
258 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | |
|
259 * +----------------------------------------------------------------+ |
|
260 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
|
261 */ |
|
262 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]" |
|
263 " [bi->dma ] leng ntw timestamp bi->skb " |
|
264 "<-- Legacy format\n"); |
|
265 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]" |
|
266 " [bi->dma ] leng ntw timestamp bi->skb " |
|
267 "<-- Ext Context format\n"); |
|
268 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]" |
|
269 " [bi->dma ] leng ntw timestamp bi->skb " |
|
270 "<-- Ext Data format\n"); |
|
271 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { |
|
272 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
273 buffer_info = &tx_ring->buffer_info[i]; |
|
274 u0 = (struct my_u0 *)tx_desc; |
|
275 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX " |
|
276 "%04X %3X %016llX %p", |
|
277 (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' : |
|
278 ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i, |
|
279 le64_to_cpu(u0->a), le64_to_cpu(u0->b), |
|
280 (u64)buffer_info->dma, buffer_info->length, |
|
281 buffer_info->next_to_watch, (u64)buffer_info->time_stamp, |
|
282 buffer_info->skb); |
|
283 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) |
|
284 printk(KERN_CONT " NTC/U\n"); |
|
285 else if (i == tx_ring->next_to_use) |
|
286 printk(KERN_CONT " NTU\n"); |
|
287 else if (i == tx_ring->next_to_clean) |
|
288 printk(KERN_CONT " NTC\n"); |
|
289 else |
|
290 printk(KERN_CONT "\n"); |
|
291 |
|
292 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) |
|
293 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, |
|
294 16, 1, phys_to_virt(buffer_info->dma), |
|
295 buffer_info->length, true); |
|
296 } |
|
297 |
|
298 /* Print RX Rings Summary */ |
|
299 rx_ring_summary: |
|
300 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); |
|
301 printk(KERN_INFO "Queue [NTU] [NTC]\n"); |
|
302 printk(KERN_INFO " %5d %5X %5X\n", 0, |
|
303 rx_ring->next_to_use, rx_ring->next_to_clean); |
|
304 |
|
305 /* Print RX Rings */ |
|
306 if (!netif_msg_rx_status(adapter)) |
|
307 goto exit; |
|
308 |
|
309 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); |
|
310 switch (adapter->rx_ps_pages) { |
|
311 case 1: |
|
312 case 2: |
|
313 case 3: |
|
314 /* [Extended] Packet Split Receive Descriptor Format |
|
315 * |
|
316 * +-----------------------------------------------------+ |
|
317 * 0 | Buffer Address 0 [63:0] | |
|
318 * +-----------------------------------------------------+ |
|
319 * 8 | Buffer Address 1 [63:0] | |
|
320 * +-----------------------------------------------------+ |
|
321 * 16 | Buffer Address 2 [63:0] | |
|
322 * +-----------------------------------------------------+ |
|
323 * 24 | Buffer Address 3 [63:0] | |
|
324 * +-----------------------------------------------------+ |
|
325 */ |
|
326 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] " |
|
327 "[buffer 1 63:0 ] " |
|
328 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] " |
|
329 "[bi->skb] <-- Ext Pkt Split format\n"); |
|
330 /* [Extended] Receive Descriptor (Write-Back) Format |
|
331 * |
|
332 * 63 48 47 32 31 13 12 8 7 4 3 0 |
|
333 * +------------------------------------------------------+ |
|
334 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | |
|
335 * | Checksum | Ident | | Queue | | Type | |
|
336 * +------------------------------------------------------+ |
|
337 * 8 | VLAN Tag | Length | Extended Error | Extended Status | |
|
338 * +------------------------------------------------------+ |
|
339 * 63 48 47 32 31 20 19 0 |
|
340 */ |
|
341 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] " |
|
342 "[vl l0 ee es] " |
|
343 "[ l3 l2 l1 hs] [reserved ] ---------------- " |
|
344 "[bi->skb] <-- Ext Rx Write-Back format\n"); |
|
345 for (i = 0; i < rx_ring->count; i++) { |
|
346 buffer_info = &rx_ring->buffer_info[i]; |
|
347 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); |
|
348 u1 = (struct my_u1 *)rx_desc_ps; |
|
349 staterr = |
|
350 le32_to_cpu(rx_desc_ps->wb.middle.status_error); |
|
351 if (staterr & E1000_RXD_STAT_DD) { |
|
352 /* Descriptor Done */ |
|
353 printk(KERN_INFO "RWB[0x%03X] %016llX " |
|
354 "%016llX %016llX %016llX " |
|
355 "---------------- %p", i, |
|
356 le64_to_cpu(u1->a), |
|
357 le64_to_cpu(u1->b), |
|
358 le64_to_cpu(u1->c), |
|
359 le64_to_cpu(u1->d), |
|
360 buffer_info->skb); |
|
361 } else { |
|
362 printk(KERN_INFO "R [0x%03X] %016llX " |
|
363 "%016llX %016llX %016llX %016llX %p", i, |
|
364 le64_to_cpu(u1->a), |
|
365 le64_to_cpu(u1->b), |
|
366 le64_to_cpu(u1->c), |
|
367 le64_to_cpu(u1->d), |
|
368 (u64)buffer_info->dma, |
|
369 buffer_info->skb); |
|
370 |
|
371 if (netif_msg_pktdata(adapter)) |
|
372 print_hex_dump(KERN_INFO, "", |
|
373 DUMP_PREFIX_ADDRESS, 16, 1, |
|
374 phys_to_virt(buffer_info->dma), |
|
375 adapter->rx_ps_bsize0, true); |
|
376 } |
|
377 |
|
378 if (i == rx_ring->next_to_use) |
|
379 printk(KERN_CONT " NTU\n"); |
|
380 else if (i == rx_ring->next_to_clean) |
|
381 printk(KERN_CONT " NTC\n"); |
|
382 else |
|
383 printk(KERN_CONT "\n"); |
|
384 } |
|
385 break; |
|
386 default: |
|
387 case 0: |
|
388 /* Legacy Receive Descriptor Format |
|
389 * |
|
390 * +-----------------------------------------------------+ |
|
391 * | Buffer Address [63:0] | |
|
392 * +-----------------------------------------------------+ |
|
393 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | |
|
394 * +-----------------------------------------------------+ |
|
395 * 63 48 47 40 39 32 31 16 15 0 |
|
396 */ |
|
397 printk(KERN_INFO "Rl[desc] [address 63:0 ] " |
|
398 "[vl er S cks ln] [bi->dma ] [bi->skb] " |
|
399 "<-- Legacy format\n"); |
|
400 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { |
|
401 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
402 buffer_info = &rx_ring->buffer_info[i]; |
|
403 u0 = (struct my_u0 *)rx_desc; |
|
404 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX " |
|
405 "%016llX %p", |
|
406 i, le64_to_cpu(u0->a), le64_to_cpu(u0->b), |
|
407 (u64)buffer_info->dma, buffer_info->skb); |
|
408 if (i == rx_ring->next_to_use) |
|
409 printk(KERN_CONT " NTU\n"); |
|
410 else if (i == rx_ring->next_to_clean) |
|
411 printk(KERN_CONT " NTC\n"); |
|
412 else |
|
413 printk(KERN_CONT "\n"); |
|
414 |
|
415 if (netif_msg_pktdata(adapter)) |
|
416 print_hex_dump(KERN_INFO, "", |
|
417 DUMP_PREFIX_ADDRESS, |
|
418 16, 1, phys_to_virt(buffer_info->dma), |
|
419 adapter->rx_buffer_len, true); |
|
420 } |
|
421 } |
|
422 |
|
423 exit: |
|
424 return; |
|
425 } |
|
426 |
|
427 /** |
|
428 * e1000_desc_unused - calculate if we have unused descriptors |
|
429 **/ |
|
430 static int e1000_desc_unused(struct e1000_ring *ring) |
|
431 { |
|
432 if (ring->next_to_clean > ring->next_to_use) |
|
433 return ring->next_to_clean - ring->next_to_use - 1; |
|
434 |
|
435 return ring->count + ring->next_to_clean - ring->next_to_use - 1; |
|
436 } |
|
437 |
|
438 /** |
|
439 * e1000_receive_skb - helper function to handle Rx indications |
|
440 * @adapter: board private structure |
|
441 * @status: descriptor status field as written by hardware |
|
442 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
|
443 * @skb: pointer to sk_buff to be indicated to stack |
|
444 **/ |
|
445 static void e1000_receive_skb(struct e1000_adapter *adapter, |
|
446 struct net_device *netdev, |
|
447 struct sk_buff *skb, |
|
448 u8 status, __le16 vlan) |
|
449 { |
|
450 skb->protocol = eth_type_trans(skb, netdev); |
|
451 |
|
452 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) |
|
453 vlan_gro_receive(&adapter->napi, adapter->vlgrp, |
|
454 le16_to_cpu(vlan), skb); |
|
455 else |
|
456 napi_gro_receive(&adapter->napi, skb); |
|
457 } |
|
458 |
|
459 /** |
|
460 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
461 * @adapter: board private structure |
|
462 * @status_err: receive descriptor status and error fields |
|
463 * @csum: receive descriptor csum field |
|
464 * @sk_buff: socket buffer with received data |
|
465 **/ |
|
466 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
467 u32 csum, struct sk_buff *skb) |
|
468 { |
|
469 u16 status = (u16)status_err; |
|
470 u8 errors = (u8)(status_err >> 24); |
|
471 skb->ip_summed = CHECKSUM_NONE; |
|
472 |
|
473 /* Ignore Checksum bit is set */ |
|
474 if (status & E1000_RXD_STAT_IXSM) |
|
475 return; |
|
476 /* TCP/UDP checksum error bit is set */ |
|
477 if (errors & E1000_RXD_ERR_TCPE) { |
|
478 /* let the stack verify checksum errors */ |
|
479 adapter->hw_csum_err++; |
|
480 return; |
|
481 } |
|
482 |
|
483 /* TCP/UDP Checksum has not been calculated */ |
|
484 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
|
485 return; |
|
486 |
|
487 /* It must be a TCP or UDP packet with a valid checksum */ |
|
488 if (status & E1000_RXD_STAT_TCPCS) { |
|
489 /* TCP checksum is good */ |
|
490 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
491 } else { |
|
492 /* |
|
493 * IP fragment with UDP payload |
|
494 * Hardware complements the payload checksum, so we undo it |
|
495 * and then put the value in host order for further stack use. |
|
496 */ |
|
497 __sum16 sum = (__force __sum16)htons(csum); |
|
498 skb->csum = csum_unfold(~sum); |
|
499 skb->ip_summed = CHECKSUM_COMPLETE; |
|
500 } |
|
501 adapter->hw_csum_good++; |
|
502 } |
|
503 |
|
504 /** |
|
505 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
506 * @adapter: address of board private structure |
|
507 **/ |
|
508 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
509 int cleaned_count) |
|
510 { |
|
511 struct net_device *netdev = adapter->netdev; |
|
512 struct pci_dev *pdev = adapter->pdev; |
|
513 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
514 struct e1000_rx_desc *rx_desc; |
|
515 struct e1000_buffer *buffer_info; |
|
516 struct sk_buff *skb; |
|
517 unsigned int i; |
|
518 unsigned int bufsz = adapter->rx_buffer_len; |
|
519 |
|
520 i = rx_ring->next_to_use; |
|
521 buffer_info = &rx_ring->buffer_info[i]; |
|
522 |
|
523 while (cleaned_count--) { |
|
524 skb = buffer_info->skb; |
|
525 if (skb) { |
|
526 skb_trim(skb, 0); |
|
527 goto map_skb; |
|
528 } |
|
529 |
|
530 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
531 if (!skb) { |
|
532 /* Better luck next round */ |
|
533 adapter->alloc_rx_buff_failed++; |
|
534 break; |
|
535 } |
|
536 |
|
537 buffer_info->skb = skb; |
|
538 map_skb: |
|
539 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
|
540 adapter->rx_buffer_len, |
|
541 DMA_FROM_DEVICE); |
|
542 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
543 dev_err(&pdev->dev, "RX DMA map failed\n"); |
|
544 adapter->rx_dma_failed++; |
|
545 break; |
|
546 } |
|
547 |
|
548 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
549 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
550 |
|
551 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
|
552 /* |
|
553 * Force memory writes to complete before letting h/w |
|
554 * know there are new descriptors to fetch. (Only |
|
555 * applicable for weak-ordered memory model archs, |
|
556 * such as IA-64). |
|
557 */ |
|
558 wmb(); |
|
559 writel(i, adapter->hw.hw_addr + rx_ring->tail); |
|
560 } |
|
561 i++; |
|
562 if (i == rx_ring->count) |
|
563 i = 0; |
|
564 buffer_info = &rx_ring->buffer_info[i]; |
|
565 } |
|
566 |
|
567 rx_ring->next_to_use = i; |
|
568 } |
|
569 |
|
570 /** |
|
571 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
|
572 * @adapter: address of board private structure |
|
573 **/ |
|
574 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
|
575 int cleaned_count) |
|
576 { |
|
577 struct net_device *netdev = adapter->netdev; |
|
578 struct pci_dev *pdev = adapter->pdev; |
|
579 union e1000_rx_desc_packet_split *rx_desc; |
|
580 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
581 struct e1000_buffer *buffer_info; |
|
582 struct e1000_ps_page *ps_page; |
|
583 struct sk_buff *skb; |
|
584 unsigned int i, j; |
|
585 |
|
586 i = rx_ring->next_to_use; |
|
587 buffer_info = &rx_ring->buffer_info[i]; |
|
588 |
|
589 while (cleaned_count--) { |
|
590 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
591 |
|
592 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
593 ps_page = &buffer_info->ps_pages[j]; |
|
594 if (j >= adapter->rx_ps_pages) { |
|
595 /* all unused desc entries get hw null ptr */ |
|
596 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
|
597 continue; |
|
598 } |
|
599 if (!ps_page->page) { |
|
600 ps_page->page = alloc_page(GFP_ATOMIC); |
|
601 if (!ps_page->page) { |
|
602 adapter->alloc_rx_buff_failed++; |
|
603 goto no_buffers; |
|
604 } |
|
605 ps_page->dma = dma_map_page(&pdev->dev, |
|
606 ps_page->page, |
|
607 0, PAGE_SIZE, |
|
608 DMA_FROM_DEVICE); |
|
609 if (dma_mapping_error(&pdev->dev, |
|
610 ps_page->dma)) { |
|
611 dev_err(&adapter->pdev->dev, |
|
612 "RX DMA page map failed\n"); |
|
613 adapter->rx_dma_failed++; |
|
614 goto no_buffers; |
|
615 } |
|
616 } |
|
617 /* |
|
618 * Refresh the desc even if buffer_addrs |
|
619 * didn't change because each write-back |
|
620 * erases this info. |
|
621 */ |
|
622 rx_desc->read.buffer_addr[j+1] = |
|
623 cpu_to_le64(ps_page->dma); |
|
624 } |
|
625 |
|
626 skb = netdev_alloc_skb_ip_align(netdev, |
|
627 adapter->rx_ps_bsize0); |
|
628 |
|
629 if (!skb) { |
|
630 adapter->alloc_rx_buff_failed++; |
|
631 break; |
|
632 } |
|
633 |
|
634 buffer_info->skb = skb; |
|
635 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
|
636 adapter->rx_ps_bsize0, |
|
637 DMA_FROM_DEVICE); |
|
638 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
639 dev_err(&pdev->dev, "RX DMA map failed\n"); |
|
640 adapter->rx_dma_failed++; |
|
641 /* cleanup skb */ |
|
642 dev_kfree_skb_any(skb); |
|
643 buffer_info->skb = NULL; |
|
644 break; |
|
645 } |
|
646 |
|
647 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
|
648 |
|
649 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
|
650 /* |
|
651 * Force memory writes to complete before letting h/w |
|
652 * know there are new descriptors to fetch. (Only |
|
653 * applicable for weak-ordered memory model archs, |
|
654 * such as IA-64). |
|
655 */ |
|
656 wmb(); |
|
657 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); |
|
658 } |
|
659 |
|
660 i++; |
|
661 if (i == rx_ring->count) |
|
662 i = 0; |
|
663 buffer_info = &rx_ring->buffer_info[i]; |
|
664 } |
|
665 |
|
666 no_buffers: |
|
667 rx_ring->next_to_use = i; |
|
668 } |
|
669 |
|
670 /** |
|
671 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
|
672 * @adapter: address of board private structure |
|
673 * @cleaned_count: number of buffers to allocate this pass |
|
674 **/ |
|
675 |
|
676 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
677 int cleaned_count) |
|
678 { |
|
679 struct net_device *netdev = adapter->netdev; |
|
680 struct pci_dev *pdev = adapter->pdev; |
|
681 struct e1000_rx_desc *rx_desc; |
|
682 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
683 struct e1000_buffer *buffer_info; |
|
684 struct sk_buff *skb; |
|
685 unsigned int i; |
|
686 unsigned int bufsz = 256 - 16 /* for skb_reserve */; |
|
687 |
|
688 i = rx_ring->next_to_use; |
|
689 buffer_info = &rx_ring->buffer_info[i]; |
|
690 |
|
691 while (cleaned_count--) { |
|
692 skb = buffer_info->skb; |
|
693 if (skb) { |
|
694 skb_trim(skb, 0); |
|
695 goto check_page; |
|
696 } |
|
697 |
|
698 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
699 if (unlikely(!skb)) { |
|
700 /* Better luck next round */ |
|
701 adapter->alloc_rx_buff_failed++; |
|
702 break; |
|
703 } |
|
704 |
|
705 buffer_info->skb = skb; |
|
706 check_page: |
|
707 /* allocate a new page if necessary */ |
|
708 if (!buffer_info->page) { |
|
709 buffer_info->page = alloc_page(GFP_ATOMIC); |
|
710 if (unlikely(!buffer_info->page)) { |
|
711 adapter->alloc_rx_buff_failed++; |
|
712 break; |
|
713 } |
|
714 } |
|
715 |
|
716 if (!buffer_info->dma) |
|
717 buffer_info->dma = dma_map_page(&pdev->dev, |
|
718 buffer_info->page, 0, |
|
719 PAGE_SIZE, |
|
720 DMA_FROM_DEVICE); |
|
721 |
|
722 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
723 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
724 |
|
725 if (unlikely(++i == rx_ring->count)) |
|
726 i = 0; |
|
727 buffer_info = &rx_ring->buffer_info[i]; |
|
728 } |
|
729 |
|
730 if (likely(rx_ring->next_to_use != i)) { |
|
731 rx_ring->next_to_use = i; |
|
732 if (unlikely(i-- == 0)) |
|
733 i = (rx_ring->count - 1); |
|
734 |
|
735 /* Force memory writes to complete before letting h/w |
|
736 * know there are new descriptors to fetch. (Only |
|
737 * applicable for weak-ordered memory model archs, |
|
738 * such as IA-64). */ |
|
739 wmb(); |
|
740 writel(i, adapter->hw.hw_addr + rx_ring->tail); |
|
741 } |
|
742 } |
|
743 |
|
744 /** |
|
745 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
746 * @adapter: board private structure |
|
747 * |
|
748 * the return value indicates whether actual cleaning was done, there |
|
749 * is no guarantee that everything was cleaned |
|
750 **/ |
|
751 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
752 int *work_done, int work_to_do) |
|
753 { |
|
754 struct net_device *netdev = adapter->netdev; |
|
755 struct pci_dev *pdev = adapter->pdev; |
|
756 struct e1000_hw *hw = &adapter->hw; |
|
757 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
758 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
759 struct e1000_buffer *buffer_info, *next_buffer; |
|
760 u32 length; |
|
761 unsigned int i; |
|
762 int cleaned_count = 0; |
|
763 bool cleaned = 0; |
|
764 unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
|
765 |
|
766 i = rx_ring->next_to_clean; |
|
767 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
768 buffer_info = &rx_ring->buffer_info[i]; |
|
769 |
|
770 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
771 struct sk_buff *skb; |
|
772 u8 status; |
|
773 |
|
774 if (*work_done >= work_to_do) |
|
775 break; |
|
776 (*work_done)++; |
|
777 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
778 |
|
779 status = rx_desc->status; |
|
780 skb = buffer_info->skb; |
|
781 |
|
782 if (!adapter->ecdev) |
|
783 buffer_info->skb = NULL; |
|
784 |
|
785 prefetch(skb->data - NET_IP_ALIGN); |
|
786 |
|
787 i++; |
|
788 if (i == rx_ring->count) |
|
789 i = 0; |
|
790 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
791 prefetch(next_rxd); |
|
792 |
|
793 next_buffer = &rx_ring->buffer_info[i]; |
|
794 |
|
795 cleaned = 1; |
|
796 cleaned_count++; |
|
797 dma_unmap_single(&pdev->dev, |
|
798 buffer_info->dma, |
|
799 adapter->rx_buffer_len, |
|
800 DMA_FROM_DEVICE); |
|
801 buffer_info->dma = 0; |
|
802 |
|
803 length = le16_to_cpu(rx_desc->length); |
|
804 |
|
805 /* |
|
806 * !EOP means multiple descriptors were used to store a single |
|
807 * packet, if that's the case we need to toss it. In fact, we |
|
808 * need to toss every packet with the EOP bit clear and the |
|
809 * next frame that _does_ have the EOP bit set, as it is by |
|
810 * definition only a frame fragment |
|
811 */ |
|
812 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
813 adapter->flags2 |= FLAG2_IS_DISCARDING; |
|
814 |
|
815 if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
|
816 /* All receives must fit into a single buffer */ |
|
817 e_dbg("Receive packet consumed multiple buffers\n"); |
|
818 /* recycle */ |
|
819 buffer_info->skb = skb; |
|
820 if (status & E1000_RXD_STAT_EOP) |
|
821 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
822 goto next_desc; |
|
823 } |
|
824 |
|
825 if (!adapter->ecdev && (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
826 /* recycle */ |
|
827 buffer_info->skb = skb; |
|
828 goto next_desc; |
|
829 } |
|
830 |
|
831 /* adjust length to remove Ethernet CRC */ |
|
832 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
833 length -= 4; |
|
834 |
|
835 total_rx_bytes += length; |
|
836 total_rx_packets++; |
|
837 |
|
838 /* |
|
839 * code added for copybreak, this should improve |
|
840 * performance for small packets with large amounts |
|
841 * of reassembly being done in the stack |
|
842 */ |
|
843 if (!adapter->ecdev && length < copybreak) { |
|
844 struct sk_buff *new_skb = |
|
845 netdev_alloc_skb_ip_align(netdev, length); |
|
846 if (new_skb) { |
|
847 skb_copy_to_linear_data_offset(new_skb, |
|
848 -NET_IP_ALIGN, |
|
849 (skb->data - |
|
850 NET_IP_ALIGN), |
|
851 (length + |
|
852 NET_IP_ALIGN)); |
|
853 /* save the skb in buffer_info as good */ |
|
854 buffer_info->skb = skb; |
|
855 skb = new_skb; |
|
856 } |
|
857 /* else just continue with the old one */ |
|
858 } |
|
859 /* end copybreak code */ |
|
860 skb_put(skb, length); |
|
861 |
|
862 /* Receive Checksum Offload */ |
|
863 e1000_rx_checksum(adapter, |
|
864 (u32)(status) | |
|
865 ((u32)(rx_desc->errors) << 24), |
|
866 le16_to_cpu(rx_desc->csum), skb); |
|
867 |
|
868 if (adapter->ecdev) { |
|
869 ecdev_receive(adapter->ecdev, skb->data, length); |
|
870 adapter->ec_watchdog_jiffies = jiffies; |
|
871 } else { |
|
872 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); |
|
873 } |
|
874 |
|
875 next_desc: |
|
876 rx_desc->status = 0; |
|
877 |
|
878 /* return some buffers to hardware, one at a time is too slow */ |
|
879 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
|
880 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
881 cleaned_count = 0; |
|
882 } |
|
883 |
|
884 /* use prefetched values */ |
|
885 rx_desc = next_rxd; |
|
886 buffer_info = next_buffer; |
|
887 } |
|
888 rx_ring->next_to_clean = i; |
|
889 |
|
890 cleaned_count = e1000_desc_unused(rx_ring); |
|
891 if (cleaned_count) |
|
892 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
893 |
|
894 adapter->total_rx_bytes += total_rx_bytes; |
|
895 adapter->total_rx_packets += total_rx_packets; |
|
896 netdev->stats.rx_bytes += total_rx_bytes; |
|
897 netdev->stats.rx_packets += total_rx_packets; |
|
898 return cleaned; |
|
899 } |
|
900 |
|
901 static void e1000_put_txbuf(struct e1000_adapter *adapter, |
|
902 struct e1000_buffer *buffer_info) |
|
903 { |
|
904 if (adapter->ecdev) |
|
905 return; |
|
906 |
|
907 if (buffer_info->dma) { |
|
908 if (buffer_info->mapped_as_page) |
|
909 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
|
910 buffer_info->length, DMA_TO_DEVICE); |
|
911 else |
|
912 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
|
913 buffer_info->length, DMA_TO_DEVICE); |
|
914 buffer_info->dma = 0; |
|
915 } |
|
916 if (buffer_info->skb) { |
|
917 dev_kfree_skb_any(buffer_info->skb); |
|
918 buffer_info->skb = NULL; |
|
919 } |
|
920 buffer_info->time_stamp = 0; |
|
921 } |
|
922 |
|
923 static void e1000_print_hw_hang(struct work_struct *work) |
|
924 { |
|
925 struct e1000_adapter *adapter = container_of(work, |
|
926 struct e1000_adapter, |
|
927 print_hang_task); |
|
928 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
929 unsigned int i = tx_ring->next_to_clean; |
|
930 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; |
|
931 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
932 struct e1000_hw *hw = &adapter->hw; |
|
933 u16 phy_status, phy_1000t_status, phy_ext_status; |
|
934 u16 pci_status; |
|
935 |
|
936 e1e_rphy(hw, PHY_STATUS, &phy_status); |
|
937 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); |
|
938 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); |
|
939 |
|
940 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); |
|
941 |
|
942 /* detected Hardware unit hang */ |
|
943 e_err("Detected Hardware Unit Hang:\n" |
|
944 " TDH <%x>\n" |
|
945 " TDT <%x>\n" |
|
946 " next_to_use <%x>\n" |
|
947 " next_to_clean <%x>\n" |
|
948 "buffer_info[next_to_clean]:\n" |
|
949 " time_stamp <%lx>\n" |
|
950 " next_to_watch <%x>\n" |
|
951 " jiffies <%lx>\n" |
|
952 " next_to_watch.status <%x>\n" |
|
953 "MAC Status <%x>\n" |
|
954 "PHY Status <%x>\n" |
|
955 "PHY 1000BASE-T Status <%x>\n" |
|
956 "PHY Extended Status <%x>\n" |
|
957 "PCI Status <%x>\n", |
|
958 readl(adapter->hw.hw_addr + tx_ring->head), |
|
959 readl(adapter->hw.hw_addr + tx_ring->tail), |
|
960 tx_ring->next_to_use, |
|
961 tx_ring->next_to_clean, |
|
962 tx_ring->buffer_info[eop].time_stamp, |
|
963 eop, |
|
964 jiffies, |
|
965 eop_desc->upper.fields.status, |
|
966 er32(STATUS), |
|
967 phy_status, |
|
968 phy_1000t_status, |
|
969 phy_ext_status, |
|
970 pci_status); |
|
971 } |
|
972 |
|
973 /** |
|
974 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
975 * @adapter: board private structure |
|
976 * |
|
977 * the return value indicates whether actual cleaning was done, there |
|
978 * is no guarantee that everything was cleaned |
|
979 **/ |
|
980 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) |
|
981 { |
|
982 struct net_device *netdev = adapter->netdev; |
|
983 struct e1000_hw *hw = &adapter->hw; |
|
984 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
985 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
986 struct e1000_buffer *buffer_info; |
|
987 unsigned int i, eop; |
|
988 unsigned int count = 0; |
|
989 unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
|
990 |
|
991 i = tx_ring->next_to_clean; |
|
992 eop = tx_ring->buffer_info[i].next_to_watch; |
|
993 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
994 |
|
995 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
|
996 (count < tx_ring->count)) { |
|
997 bool cleaned = false; |
|
998 rmb(); /* read buffer_info after eop_desc */ |
|
999 for (; !cleaned; count++) { |
|
1000 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
1001 buffer_info = &tx_ring->buffer_info[i]; |
|
1002 cleaned = (i == eop); |
|
1003 |
|
1004 if (cleaned) { |
|
1005 total_tx_packets += buffer_info->segs; |
|
1006 total_tx_bytes += buffer_info->bytecount; |
|
1007 } |
|
1008 |
|
1009 e1000_put_txbuf(adapter, buffer_info); |
|
1010 tx_desc->upper.data = 0; |
|
1011 |
|
1012 i++; |
|
1013 if (i == tx_ring->count) |
|
1014 i = 0; |
|
1015 } |
|
1016 |
|
1017 if (i == tx_ring->next_to_use) |
|
1018 break; |
|
1019 eop = tx_ring->buffer_info[i].next_to_watch; |
|
1020 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
1021 } |
|
1022 |
|
1023 tx_ring->next_to_clean = i; |
|
1024 |
|
1025 #define TX_WAKE_THRESHOLD 32 |
|
1026 if (!adapter->ecdev && count && netif_carrier_ok(netdev) && |
|
1027 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { |
|
1028 /* Make sure that anybody stopping the queue after this |
|
1029 * sees the new next_to_clean. |
|
1030 */ |
|
1031 smp_mb(); |
|
1032 |
|
1033 if (netif_queue_stopped(netdev) && |
|
1034 !(test_bit(__E1000_DOWN, &adapter->state))) { |
|
1035 netif_wake_queue(netdev); |
|
1036 ++adapter->restart_queue; |
|
1037 } |
|
1038 } |
|
1039 |
|
1040 if (!adapter->ecdev && adapter->detect_tx_hung) { |
|
1041 /* |
|
1042 * Detect a transmit hang in hardware, this serializes the |
|
1043 * check with the clearing of time_stamp and movement of i |
|
1044 */ |
|
1045 adapter->detect_tx_hung = 0; |
|
1046 if (tx_ring->buffer_info[i].time_stamp && |
|
1047 time_after(jiffies, tx_ring->buffer_info[i].time_stamp |
|
1048 + (adapter->tx_timeout_factor * HZ)) && |
|
1049 !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
1050 schedule_work(&adapter->print_hang_task); |
|
1051 netif_stop_queue(netdev); |
|
1052 } |
|
1053 } |
|
1054 adapter->total_tx_bytes += total_tx_bytes; |
|
1055 adapter->total_tx_packets += total_tx_packets; |
|
1056 netdev->stats.tx_bytes += total_tx_bytes; |
|
1057 netdev->stats.tx_packets += total_tx_packets; |
|
1058 return (count < tx_ring->count); |
|
1059 } |
|
1060 |
|
1061 /** |
|
1062 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
|
1063 * @adapter: board private structure |
|
1064 * |
|
1065 * the return value indicates whether actual cleaning was done, there |
|
1066 * is no guarantee that everything was cleaned |
|
1067 **/ |
|
1068 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
|
1069 int *work_done, int work_to_do) |
|
1070 { |
|
1071 struct e1000_hw *hw = &adapter->hw; |
|
1072 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
|
1073 struct net_device *netdev = adapter->netdev; |
|
1074 struct pci_dev *pdev = adapter->pdev; |
|
1075 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1076 struct e1000_buffer *buffer_info, *next_buffer; |
|
1077 struct e1000_ps_page *ps_page; |
|
1078 struct sk_buff *skb; |
|
1079 unsigned int i, j; |
|
1080 u32 length, staterr; |
|
1081 int cleaned_count = 0; |
|
1082 bool cleaned = 0; |
|
1083 unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
|
1084 |
|
1085 i = rx_ring->next_to_clean; |
|
1086 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
1087 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
1088 buffer_info = &rx_ring->buffer_info[i]; |
|
1089 |
|
1090 while (staterr & E1000_RXD_STAT_DD) { |
|
1091 if (*work_done >= work_to_do) |
|
1092 break; |
|
1093 (*work_done)++; |
|
1094 skb = buffer_info->skb; |
|
1095 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
1096 |
|
1097 /* in the packet split case this is header only */ |
|
1098 prefetch(skb->data - NET_IP_ALIGN); |
|
1099 |
|
1100 i++; |
|
1101 if (i == rx_ring->count) |
|
1102 i = 0; |
|
1103 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
|
1104 prefetch(next_rxd); |
|
1105 |
|
1106 next_buffer = &rx_ring->buffer_info[i]; |
|
1107 |
|
1108 cleaned = 1; |
|
1109 cleaned_count++; |
|
1110 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
1111 adapter->rx_ps_bsize0, |
|
1112 DMA_FROM_DEVICE); |
|
1113 buffer_info->dma = 0; |
|
1114 |
|
1115 /* see !EOP comment in other rx routine */ |
|
1116 if (!(staterr & E1000_RXD_STAT_EOP)) |
|
1117 adapter->flags2 |= FLAG2_IS_DISCARDING; |
|
1118 |
|
1119 if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
|
1120 e_dbg("Packet Split buffers didn't pick up the full " |
|
1121 "packet\n"); |
|
1122 if (!adapter->ecdev) dev_kfree_skb_irq(skb); |
|
1123 if (staterr & E1000_RXD_STAT_EOP) |
|
1124 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
1125 goto next_desc; |
|
1126 } |
|
1127 |
|
1128 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { |
|
1129 if (!adapter->ecdev) |
|
1130 dev_kfree_skb_irq(skb); |
|
1131 goto next_desc; |
|
1132 } |
|
1133 |
|
1134 length = le16_to_cpu(rx_desc->wb.middle.length0); |
|
1135 |
|
1136 if (!length) { |
|
1137 e_dbg("Last part of the packet spanning multiple " |
|
1138 "descriptors\n"); |
|
1139 if (!adapter->ecdev) |
|
1140 dev_kfree_skb_irq(skb); |
|
1141 goto next_desc; |
|
1142 } |
|
1143 |
|
1144 /* Good Receive */ |
|
1145 skb_put(skb, length); |
|
1146 |
|
1147 { |
|
1148 /* |
|
1149 * this looks ugly, but it seems compiler issues make it |
|
1150 * more efficient than reusing j |
|
1151 */ |
|
1152 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
|
1153 |
|
1154 /* |
|
1155 * page alloc/put takes too long and effects small packet |
|
1156 * throughput, so unsplit small packets and save the alloc/put |
|
1157 * only valid in softirq (napi) context to call kmap_* |
|
1158 */ |
|
1159 if (l1 && (l1 <= copybreak) && |
|
1160 ((length + l1) <= adapter->rx_ps_bsize0)) { |
|
1161 u8 *vaddr; |
|
1162 |
|
1163 ps_page = &buffer_info->ps_pages[0]; |
|
1164 |
|
1165 /* |
|
1166 * there is no documentation about how to call |
|
1167 * kmap_atomic, so we can't hold the mapping |
|
1168 * very long |
|
1169 */ |
|
1170 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma, |
|
1171 PAGE_SIZE, DMA_FROM_DEVICE); |
|
1172 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); |
|
1173 memcpy(skb_tail_pointer(skb), vaddr, l1); |
|
1174 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); |
|
1175 dma_sync_single_for_device(&pdev->dev, ps_page->dma, |
|
1176 PAGE_SIZE, DMA_FROM_DEVICE); |
|
1177 |
|
1178 /* remove the CRC */ |
|
1179 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
1180 l1 -= 4; |
|
1181 |
|
1182 skb_put(skb, l1); |
|
1183 goto copydone; |
|
1184 } /* if */ |
|
1185 } |
|
1186 |
|
1187 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
1188 length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
|
1189 if (!length) |
|
1190 break; |
|
1191 |
|
1192 ps_page = &buffer_info->ps_pages[j]; |
|
1193 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
|
1194 DMA_FROM_DEVICE); |
|
1195 ps_page->dma = 0; |
|
1196 skb_fill_page_desc(skb, j, ps_page->page, 0, length); |
|
1197 ps_page->page = NULL; |
|
1198 skb->len += length; |
|
1199 skb->data_len += length; |
|
1200 skb->truesize += length; |
|
1201 } |
|
1202 |
|
1203 /* strip the ethernet crc, problem is we're using pages now so |
|
1204 * this whole operation can get a little cpu intensive |
|
1205 */ |
|
1206 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
1207 pskb_trim(skb, skb->len - 4); |
|
1208 |
|
1209 copydone: |
|
1210 total_rx_bytes += skb->len; |
|
1211 total_rx_packets++; |
|
1212 |
|
1213 e1000_rx_checksum(adapter, staterr, le16_to_cpu( |
|
1214 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
|
1215 |
|
1216 if (rx_desc->wb.upper.header_status & |
|
1217 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) |
|
1218 adapter->rx_hdr_split++; |
|
1219 |
|
1220 if (adapter->ecdev) { |
|
1221 ecdev_receive(adapter->ecdev, skb->data, length); |
|
1222 adapter->ec_watchdog_jiffies = jiffies; |
|
1223 } else { |
|
1224 e1000_receive_skb(adapter, netdev, skb, |
|
1225 staterr, rx_desc->wb.middle.vlan); |
|
1226 } |
|
1227 |
|
1228 next_desc: |
|
1229 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
|
1230 if (!adapter->ecdev) buffer_info->skb = NULL; |
|
1231 |
|
1232 /* return some buffers to hardware, one at a time is too slow */ |
|
1233 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
|
1234 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1235 cleaned_count = 0; |
|
1236 } |
|
1237 |
|
1238 /* use prefetched values */ |
|
1239 rx_desc = next_rxd; |
|
1240 buffer_info = next_buffer; |
|
1241 |
|
1242 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
1243 } |
|
1244 rx_ring->next_to_clean = i; |
|
1245 |
|
1246 cleaned_count = e1000_desc_unused(rx_ring); |
|
1247 if (cleaned_count) |
|
1248 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1249 |
|
1250 adapter->total_rx_bytes += total_rx_bytes; |
|
1251 adapter->total_rx_packets += total_rx_packets; |
|
1252 netdev->stats.rx_bytes += total_rx_bytes; |
|
1253 netdev->stats.rx_packets += total_rx_packets; |
|
1254 return cleaned; |
|
1255 } |
|
1256 |
|
1257 /** |
|
1258 * e1000_consume_page - helper function |
|
1259 **/ |
|
1260 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
|
1261 u16 length) |
|
1262 { |
|
1263 bi->page = NULL; |
|
1264 skb->len += length; |
|
1265 skb->data_len += length; |
|
1266 skb->truesize += length; |
|
1267 } |
|
1268 |
|
1269 /** |
|
1270 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
|
1271 * @adapter: board private structure |
|
1272 * |
|
1273 * the return value indicates whether actual cleaning was done, there |
|
1274 * is no guarantee that everything was cleaned |
|
1275 **/ |
|
1276 |
|
1277 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
1278 int *work_done, int work_to_do) |
|
1279 { |
|
1280 struct net_device *netdev = adapter->netdev; |
|
1281 struct pci_dev *pdev = adapter->pdev; |
|
1282 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1283 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
1284 struct e1000_buffer *buffer_info, *next_buffer; |
|
1285 u32 length; |
|
1286 unsigned int i; |
|
1287 int cleaned_count = 0; |
|
1288 bool cleaned = false; |
|
1289 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
1290 |
|
1291 i = rx_ring->next_to_clean; |
|
1292 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
1293 buffer_info = &rx_ring->buffer_info[i]; |
|
1294 |
|
1295 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
1296 struct sk_buff *skb; |
|
1297 u8 status; |
|
1298 |
|
1299 if (*work_done >= work_to_do) |
|
1300 break; |
|
1301 (*work_done)++; |
|
1302 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
1303 |
|
1304 status = rx_desc->status; |
|
1305 skb = buffer_info->skb; |
|
1306 |
|
1307 if (!adapter->ecdev) |
|
1308 buffer_info->skb = NULL; |
|
1309 |
|
1310 ++i; |
|
1311 if (i == rx_ring->count) |
|
1312 i = 0; |
|
1313 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
1314 prefetch(next_rxd); |
|
1315 |
|
1316 next_buffer = &rx_ring->buffer_info[i]; |
|
1317 |
|
1318 cleaned = true; |
|
1319 cleaned_count++; |
|
1320 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, |
|
1321 DMA_FROM_DEVICE); |
|
1322 buffer_info->dma = 0; |
|
1323 |
|
1324 length = le16_to_cpu(rx_desc->length); |
|
1325 |
|
1326 /* errors is only valid for DD + EOP descriptors */ |
|
1327 if (!adapter->ecdev && unlikely((status & E1000_RXD_STAT_EOP) && |
|
1328 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
|
1329 /* recycle both page and skb */ |
|
1330 buffer_info->skb = skb; |
|
1331 /* an error means any chain goes out the window |
|
1332 * too */ |
|
1333 if (rx_ring->rx_skb_top) |
|
1334 dev_kfree_skb(rx_ring->rx_skb_top); |
|
1335 rx_ring->rx_skb_top = NULL; |
|
1336 goto next_desc; |
|
1337 } |
|
1338 |
|
1339 #define rxtop rx_ring->rx_skb_top |
|
1340 if (!(status & E1000_RXD_STAT_EOP)) { |
|
1341 /* this descriptor is only the beginning (or middle) */ |
|
1342 if (!rxtop) { |
|
1343 /* this is the beginning of a chain */ |
|
1344 rxtop = skb; |
|
1345 skb_fill_page_desc(rxtop, 0, buffer_info->page, |
|
1346 0, length); |
|
1347 } else { |
|
1348 /* this is the middle of a chain */ |
|
1349 skb_fill_page_desc(rxtop, |
|
1350 skb_shinfo(rxtop)->nr_frags, |
|
1351 buffer_info->page, 0, length); |
|
1352 /* re-use the skb, only consumed the page */ |
|
1353 buffer_info->skb = skb; |
|
1354 } |
|
1355 e1000_consume_page(buffer_info, rxtop, length); |
|
1356 goto next_desc; |
|
1357 } else { |
|
1358 if (rxtop) { |
|
1359 /* end of the chain */ |
|
1360 skb_fill_page_desc(rxtop, |
|
1361 skb_shinfo(rxtop)->nr_frags, |
|
1362 buffer_info->page, 0, length); |
|
1363 /* re-use the current skb, we only consumed the |
|
1364 * page */ |
|
1365 buffer_info->skb = skb; |
|
1366 skb = rxtop; |
|
1367 rxtop = NULL; |
|
1368 e1000_consume_page(buffer_info, skb, length); |
|
1369 } else { |
|
1370 /* no chain, got EOP, this buf is the packet |
|
1371 * copybreak to save the put_page/alloc_page */ |
|
1372 if (length <= copybreak && |
|
1373 skb_tailroom(skb) >= length) { |
|
1374 u8 *vaddr; |
|
1375 vaddr = kmap_atomic(buffer_info->page, |
|
1376 KM_SKB_DATA_SOFTIRQ); |
|
1377 memcpy(skb_tail_pointer(skb), vaddr, |
|
1378 length); |
|
1379 kunmap_atomic(vaddr, |
|
1380 KM_SKB_DATA_SOFTIRQ); |
|
1381 /* re-use the page, so don't erase |
|
1382 * buffer_info->page */ |
|
1383 skb_put(skb, length); |
|
1384 } else { |
|
1385 skb_fill_page_desc(skb, 0, |
|
1386 buffer_info->page, 0, |
|
1387 length); |
|
1388 e1000_consume_page(buffer_info, skb, |
|
1389 length); |
|
1390 } |
|
1391 } |
|
1392 } |
|
1393 |
|
1394 /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
|
1395 e1000_rx_checksum(adapter, |
|
1396 (u32)(status) | |
|
1397 ((u32)(rx_desc->errors) << 24), |
|
1398 le16_to_cpu(rx_desc->csum), skb); |
|
1399 |
|
1400 /* probably a little skewed due to removing CRC */ |
|
1401 total_rx_bytes += skb->len; |
|
1402 total_rx_packets++; |
|
1403 |
|
1404 /* eth type trans needs skb->data to point to something */ |
|
1405 if (!adapter->ecdev && !pskb_may_pull(skb, ETH_HLEN)) { |
|
1406 e_err("pskb_may_pull failed.\n"); |
|
1407 dev_kfree_skb(skb); |
|
1408 goto next_desc; |
|
1409 } |
|
1410 |
|
1411 if (adapter->ecdev) { |
|
1412 ecdev_receive(adapter->ecdev, skb->data, length); |
|
1413 adapter->ec_watchdog_jiffies = jiffies; |
|
1414 } else { |
|
1415 e1000_receive_skb(adapter, netdev, skb, status, |
|
1416 rx_desc->special); |
|
1417 } |
|
1418 |
|
1419 next_desc: |
|
1420 rx_desc->status = 0; |
|
1421 |
|
1422 /* return some buffers to hardware, one at a time is too slow */ |
|
1423 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
1424 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1425 cleaned_count = 0; |
|
1426 } |
|
1427 |
|
1428 /* use prefetched values */ |
|
1429 rx_desc = next_rxd; |
|
1430 buffer_info = next_buffer; |
|
1431 } |
|
1432 rx_ring->next_to_clean = i; |
|
1433 |
|
1434 cleaned_count = e1000_desc_unused(rx_ring); |
|
1435 if (cleaned_count) |
|
1436 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1437 |
|
1438 adapter->total_rx_bytes += total_rx_bytes; |
|
1439 adapter->total_rx_packets += total_rx_packets; |
|
1440 netdev->stats.rx_bytes += total_rx_bytes; |
|
1441 netdev->stats.rx_packets += total_rx_packets; |
|
1442 return cleaned; |
|
1443 } |
|
1444 |
|
1445 /** |
|
1446 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
1447 * @adapter: board private structure |
|
1448 **/ |
|
1449 static void e1000_clean_rx_ring(struct e1000_adapter *adapter) |
|
1450 { |
|
1451 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1452 struct e1000_buffer *buffer_info; |
|
1453 struct e1000_ps_page *ps_page; |
|
1454 struct pci_dev *pdev = adapter->pdev; |
|
1455 unsigned int i, j; |
|
1456 |
|
1457 /* Free all the Rx ring sk_buffs */ |
|
1458 for (i = 0; i < rx_ring->count; i++) { |
|
1459 buffer_info = &rx_ring->buffer_info[i]; |
|
1460 if (buffer_info->dma) { |
|
1461 if (adapter->clean_rx == e1000_clean_rx_irq) |
|
1462 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
1463 adapter->rx_buffer_len, |
|
1464 DMA_FROM_DEVICE); |
|
1465 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
|
1466 dma_unmap_page(&pdev->dev, buffer_info->dma, |
|
1467 PAGE_SIZE, |
|
1468 DMA_FROM_DEVICE); |
|
1469 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
|
1470 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
1471 adapter->rx_ps_bsize0, |
|
1472 DMA_FROM_DEVICE); |
|
1473 buffer_info->dma = 0; |
|
1474 } |
|
1475 |
|
1476 if (buffer_info->page) { |
|
1477 put_page(buffer_info->page); |
|
1478 buffer_info->page = NULL; |
|
1479 } |
|
1480 |
|
1481 if (buffer_info->skb) { |
|
1482 dev_kfree_skb(buffer_info->skb); |
|
1483 buffer_info->skb = NULL; |
|
1484 } |
|
1485 |
|
1486 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
1487 ps_page = &buffer_info->ps_pages[j]; |
|
1488 if (!ps_page->page) |
|
1489 break; |
|
1490 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
|
1491 DMA_FROM_DEVICE); |
|
1492 ps_page->dma = 0; |
|
1493 put_page(ps_page->page); |
|
1494 ps_page->page = NULL; |
|
1495 } |
|
1496 } |
|
1497 |
|
1498 /* there also may be some cached data from a chained receive */ |
|
1499 if (rx_ring->rx_skb_top) { |
|
1500 dev_kfree_skb(rx_ring->rx_skb_top); |
|
1501 rx_ring->rx_skb_top = NULL; |
|
1502 } |
|
1503 |
|
1504 /* Zero out the descriptor ring */ |
|
1505 memset(rx_ring->desc, 0, rx_ring->size); |
|
1506 |
|
1507 rx_ring->next_to_clean = 0; |
|
1508 rx_ring->next_to_use = 0; |
|
1509 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
1510 |
|
1511 writel(0, adapter->hw.hw_addr + rx_ring->head); |
|
1512 writel(0, adapter->hw.hw_addr + rx_ring->tail); |
|
1513 } |
|
1514 |
|
1515 static void e1000e_downshift_workaround(struct work_struct *work) |
|
1516 { |
|
1517 struct e1000_adapter *adapter = container_of(work, |
|
1518 struct e1000_adapter, downshift_task); |
|
1519 |
|
1520 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); |
|
1521 } |
|
1522 |
|
1523 /** |
|
1524 * e1000_intr_msi - Interrupt Handler |
|
1525 * @irq: interrupt number |
|
1526 * @data: pointer to a network interface device structure |
|
1527 **/ |
|
1528 static irqreturn_t e1000_intr_msi(int irq, void *data) |
|
1529 { |
|
1530 struct net_device *netdev = data; |
|
1531 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1532 struct e1000_hw *hw = &adapter->hw; |
|
1533 u32 icr = er32(ICR); |
|
1534 |
|
1535 if (adapter->ecdev) { |
|
1536 int ec_work_done = 0; |
|
1537 adapter->clean_rx(adapter, &ec_work_done, 100); |
|
1538 e1000_clean_tx_irq(adapter); |
|
1539 return IRQ_HANDLED; |
|
1540 } |
|
1541 /* |
|
1542 * read ICR disables interrupts using IAM |
|
1543 */ |
|
1544 |
|
1545 if (icr & E1000_ICR_LSC) { |
|
1546 hw->mac.get_link_status = 1; |
|
1547 /* |
|
1548 * ICH8 workaround-- Call gig speed drop workaround on cable |
|
1549 * disconnect (LSC) before accessing any PHY registers |
|
1550 */ |
|
1551 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
|
1552 (!(er32(STATUS) & E1000_STATUS_LU))) |
|
1553 schedule_work(&adapter->downshift_task); |
|
1554 |
|
1555 /* |
|
1556 * 80003ES2LAN workaround-- For packet buffer work-around on |
|
1557 * link down event; disable receives here in the ISR and reset |
|
1558 * adapter in watchdog |
|
1559 */ |
|
1560 if (netif_carrier_ok(netdev) && |
|
1561 adapter->flags & FLAG_RX_NEEDS_RESTART) { |
|
1562 /* disable receives */ |
|
1563 u32 rctl = er32(RCTL); |
|
1564 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1565 adapter->flags |= FLAG_RX_RESTART_NOW; |
|
1566 } |
|
1567 /* guard against interrupt when we're going down */ |
|
1568 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1569 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1570 } |
|
1571 |
|
1572 if (napi_schedule_prep(&adapter->napi)) { |
|
1573 adapter->total_tx_bytes = 0; |
|
1574 adapter->total_tx_packets = 0; |
|
1575 adapter->total_rx_bytes = 0; |
|
1576 adapter->total_rx_packets = 0; |
|
1577 __napi_schedule(&adapter->napi); |
|
1578 } |
|
1579 |
|
1580 return IRQ_HANDLED; |
|
1581 } |
|
1582 |
|
1583 /** |
|
1584 * e1000_intr - Interrupt Handler |
|
1585 * @irq: interrupt number |
|
1586 * @data: pointer to a network interface device structure |
|
1587 **/ |
|
1588 static irqreturn_t e1000_intr(int irq, void *data) |
|
1589 { |
|
1590 struct net_device *netdev = data; |
|
1591 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1592 struct e1000_hw *hw = &adapter->hw; |
|
1593 u32 rctl, icr = er32(ICR); |
|
1594 |
|
1595 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) |
|
1596 return IRQ_NONE; /* Not our interrupt */ |
|
1597 |
|
1598 /* |
|
1599 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
|
1600 * not set, then the adapter didn't send an interrupt |
|
1601 */ |
|
1602 if (!adapter->ecdev && !(icr & E1000_ICR_INT_ASSERTED)) |
|
1603 return IRQ_NONE; |
|
1604 |
|
1605 /* |
|
1606 * Interrupt Auto-Mask...upon reading ICR, |
|
1607 * interrupts are masked. No need for the |
|
1608 * IMC write |
|
1609 */ |
|
1610 |
|
1611 if (!adapter->ecdev && (icr & E1000_ICR_LSC)) { |
|
1612 hw->mac.get_link_status = 1; |
|
1613 /* |
|
1614 * ICH8 workaround-- Call gig speed drop workaround on cable |
|
1615 * disconnect (LSC) before accessing any PHY registers |
|
1616 */ |
|
1617 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
|
1618 (!(er32(STATUS) & E1000_STATUS_LU))) |
|
1619 schedule_work(&adapter->downshift_task); |
|
1620 |
|
1621 /* |
|
1622 * 80003ES2LAN workaround-- |
|
1623 * For packet buffer work-around on link down event; |
|
1624 * disable receives here in the ISR and |
|
1625 * reset adapter in watchdog |
|
1626 */ |
|
1627 if (netif_carrier_ok(netdev) && |
|
1628 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { |
|
1629 /* disable receives */ |
|
1630 rctl = er32(RCTL); |
|
1631 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1632 adapter->flags |= FLAG_RX_RESTART_NOW; |
|
1633 } |
|
1634 /* guard against interrupt when we're going down */ |
|
1635 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1636 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1637 } |
|
1638 |
|
1639 if (adapter->ecdev) { |
|
1640 int ec_work_done = 0; |
|
1641 adapter->clean_rx(adapter, &ec_work_done, 100); |
|
1642 e1000_clean_tx_irq(adapter); |
|
1643 return IRQ_HANDLED; |
|
1644 } |
|
1645 |
|
1646 if (napi_schedule_prep(&adapter->napi)) { |
|
1647 adapter->total_tx_bytes = 0; |
|
1648 adapter->total_tx_packets = 0; |
|
1649 adapter->total_rx_bytes = 0; |
|
1650 adapter->total_rx_packets = 0; |
|
1651 __napi_schedule(&adapter->napi); |
|
1652 } |
|
1653 |
|
1654 return IRQ_HANDLED; |
|
1655 } |
|
1656 |
|
1657 static irqreturn_t e1000_msix_other(int irq, void *data) |
|
1658 { |
|
1659 struct net_device *netdev = data; |
|
1660 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1661 struct e1000_hw *hw = &adapter->hw; |
|
1662 u32 icr = er32(ICR); |
|
1663 |
|
1664 if (!(icr & E1000_ICR_INT_ASSERTED)) { |
|
1665 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1666 ew32(IMS, E1000_IMS_OTHER); |
|
1667 return IRQ_NONE; |
|
1668 } |
|
1669 |
|
1670 if (icr & adapter->eiac_mask) |
|
1671 ew32(ICS, (icr & adapter->eiac_mask)); |
|
1672 |
|
1673 if (icr & E1000_ICR_OTHER) { |
|
1674 if (!(icr & E1000_ICR_LSC)) |
|
1675 goto no_link_interrupt; |
|
1676 hw->mac.get_link_status = 1; |
|
1677 /* guard against interrupt when we're going down */ |
|
1678 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
1679 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1680 } |
|
1681 |
|
1682 no_link_interrupt: |
|
1683 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1684 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); |
|
1685 |
|
1686 return IRQ_HANDLED; |
|
1687 } |
|
1688 |
|
1689 |
|
1690 static irqreturn_t e1000_intr_msix_tx(int irq, void *data) |
|
1691 { |
|
1692 struct net_device *netdev = data; |
|
1693 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1694 struct e1000_hw *hw = &adapter->hw; |
|
1695 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1696 |
|
1697 |
|
1698 adapter->total_tx_bytes = 0; |
|
1699 adapter->total_tx_packets = 0; |
|
1700 |
|
1701 if (!e1000_clean_tx_irq(adapter)) |
|
1702 /* Ring was not completely cleaned, so fire another interrupt */ |
|
1703 ew32(ICS, tx_ring->ims_val); |
|
1704 |
|
1705 return IRQ_HANDLED; |
|
1706 } |
|
1707 |
|
1708 static irqreturn_t e1000_intr_msix_rx(int irq, void *data) |
|
1709 { |
|
1710 struct net_device *netdev = data; |
|
1711 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1712 |
|
1713 /* Write the ITR value calculated at the end of the |
|
1714 * previous interrupt. |
|
1715 */ |
|
1716 if (adapter->rx_ring->set_itr) { |
|
1717 writel(1000000000 / (adapter->rx_ring->itr_val * 256), |
|
1718 adapter->hw.hw_addr + adapter->rx_ring->itr_register); |
|
1719 adapter->rx_ring->set_itr = 0; |
|
1720 } |
|
1721 |
|
1722 if (adapter->ecdev) { |
|
1723 int ec_work_done = 0; |
|
1724 adapter->clean_rx(adapter, &ec_work_done, 100); |
|
1725 } else { |
|
1726 if (napi_schedule_prep(&adapter->napi)) { |
|
1727 adapter->total_rx_bytes = 0; |
|
1728 adapter->total_rx_packets = 0; |
|
1729 __napi_schedule(&adapter->napi); |
|
1730 } |
|
1731 } |
|
1732 return IRQ_HANDLED; |
|
1733 } |
|
1734 |
|
1735 /** |
|
1736 * e1000_configure_msix - Configure MSI-X hardware |
|
1737 * |
|
1738 * e1000_configure_msix sets up the hardware to properly |
|
1739 * generate MSI-X interrupts. |
|
1740 **/ |
|
1741 static void e1000_configure_msix(struct e1000_adapter *adapter) |
|
1742 { |
|
1743 struct e1000_hw *hw = &adapter->hw; |
|
1744 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1745 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1746 int vector = 0; |
|
1747 u32 ctrl_ext, ivar = 0; |
|
1748 |
|
1749 adapter->eiac_mask = 0; |
|
1750 |
|
1751 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ |
|
1752 if (hw->mac.type == e1000_82574) { |
|
1753 u32 rfctl = er32(RFCTL); |
|
1754 rfctl |= E1000_RFCTL_ACK_DIS; |
|
1755 ew32(RFCTL, rfctl); |
|
1756 } |
|
1757 |
|
1758 #define E1000_IVAR_INT_ALLOC_VALID 0x8 |
|
1759 /* Configure Rx vector */ |
|
1760 rx_ring->ims_val = E1000_IMS_RXQ0; |
|
1761 adapter->eiac_mask |= rx_ring->ims_val; |
|
1762 if (rx_ring->itr_val) |
|
1763 writel(1000000000 / (rx_ring->itr_val * 256), |
|
1764 hw->hw_addr + rx_ring->itr_register); |
|
1765 else |
|
1766 writel(1, hw->hw_addr + rx_ring->itr_register); |
|
1767 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; |
|
1768 |
|
1769 /* Configure Tx vector */ |
|
1770 tx_ring->ims_val = E1000_IMS_TXQ0; |
|
1771 vector++; |
|
1772 if (tx_ring->itr_val) |
|
1773 writel(1000000000 / (tx_ring->itr_val * 256), |
|
1774 hw->hw_addr + tx_ring->itr_register); |
|
1775 else |
|
1776 writel(1, hw->hw_addr + tx_ring->itr_register); |
|
1777 adapter->eiac_mask |= tx_ring->ims_val; |
|
1778 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); |
|
1779 |
|
1780 /* set vector for Other Causes, e.g. link changes */ |
|
1781 vector++; |
|
1782 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); |
|
1783 if (rx_ring->itr_val) |
|
1784 writel(1000000000 / (rx_ring->itr_val * 256), |
|
1785 hw->hw_addr + E1000_EITR_82574(vector)); |
|
1786 else |
|
1787 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); |
|
1788 |
|
1789 /* Cause Tx interrupts on every write back */ |
|
1790 ivar |= (1 << 31); |
|
1791 |
|
1792 ew32(IVAR, ivar); |
|
1793 |
|
1794 /* enable MSI-X PBA support */ |
|
1795 ctrl_ext = er32(CTRL_EXT); |
|
1796 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; |
|
1797 |
|
1798 /* Auto-Mask Other interrupts upon ICR read */ |
|
1799 #define E1000_EIAC_MASK_82574 0x01F00000 |
|
1800 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); |
|
1801 ctrl_ext |= E1000_CTRL_EXT_EIAME; |
|
1802 ew32(CTRL_EXT, ctrl_ext); |
|
1803 e1e_flush(); |
|
1804 } |
|
1805 |
|
1806 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) |
|
1807 { |
|
1808 if (adapter->msix_entries) { |
|
1809 pci_disable_msix(adapter->pdev); |
|
1810 kfree(adapter->msix_entries); |
|
1811 adapter->msix_entries = NULL; |
|
1812 } else if (adapter->flags & FLAG_MSI_ENABLED) { |
|
1813 pci_disable_msi(adapter->pdev); |
|
1814 adapter->flags &= ~FLAG_MSI_ENABLED; |
|
1815 } |
|
1816 } |
|
1817 |
|
1818 /** |
|
1819 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported |
|
1820 * |
|
1821 * Attempt to configure interrupts using the best available |
|
1822 * capabilities of the hardware and kernel. |
|
1823 **/ |
|
1824 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) |
|
1825 { |
|
1826 int err; |
|
1827 int numvecs, i; |
|
1828 |
|
1829 |
|
1830 switch (adapter->int_mode) { |
|
1831 case E1000E_INT_MODE_MSIX: |
|
1832 if (adapter->flags & FLAG_HAS_MSIX) { |
|
1833 numvecs = 3; /* RxQ0, TxQ0 and other */ |
|
1834 adapter->msix_entries = kcalloc(numvecs, |
|
1835 sizeof(struct msix_entry), |
|
1836 GFP_KERNEL); |
|
1837 if (adapter->msix_entries) { |
|
1838 for (i = 0; i < numvecs; i++) |
|
1839 adapter->msix_entries[i].entry = i; |
|
1840 |
|
1841 err = pci_enable_msix(adapter->pdev, |
|
1842 adapter->msix_entries, |
|
1843 numvecs); |
|
1844 if (err == 0) |
|
1845 return; |
|
1846 } |
|
1847 /* MSI-X failed, so fall through and try MSI */ |
|
1848 e_err("Failed to initialize MSI-X interrupts. " |
|
1849 "Falling back to MSI interrupts.\n"); |
|
1850 e1000e_reset_interrupt_capability(adapter); |
|
1851 } |
|
1852 adapter->int_mode = E1000E_INT_MODE_MSI; |
|
1853 /* Fall through */ |
|
1854 case E1000E_INT_MODE_MSI: |
|
1855 if (!pci_enable_msi(adapter->pdev)) { |
|
1856 adapter->flags |= FLAG_MSI_ENABLED; |
|
1857 } else { |
|
1858 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
1859 e_err("Failed to initialize MSI interrupts. Falling " |
|
1860 "back to legacy interrupts.\n"); |
|
1861 } |
|
1862 /* Fall through */ |
|
1863 case E1000E_INT_MODE_LEGACY: |
|
1864 /* Don't do anything; this is the system default */ |
|
1865 break; |
|
1866 } |
|
1867 } |
|
1868 |
|
1869 /** |
|
1870 * e1000_request_msix - Initialize MSI-X interrupts |
|
1871 * |
|
1872 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the |
|
1873 * kernel. |
|
1874 **/ |
|
1875 static int e1000_request_msix(struct e1000_adapter *adapter) |
|
1876 { |
|
1877 struct net_device *netdev = adapter->netdev; |
|
1878 int err = 0, vector = 0; |
|
1879 |
|
1880 if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
|
1881 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); |
|
1882 else |
|
1883 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); |
|
1884 err = request_irq(adapter->msix_entries[vector].vector, |
|
1885 e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
|
1886 netdev); |
|
1887 if (err) |
|
1888 goto out; |
|
1889 adapter->rx_ring->itr_register = E1000_EITR_82574(vector); |
|
1890 adapter->rx_ring->itr_val = adapter->itr; |
|
1891 vector++; |
|
1892 |
|
1893 if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
|
1894 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); |
|
1895 else |
|
1896 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); |
|
1897 err = request_irq(adapter->msix_entries[vector].vector, |
|
1898 e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
|
1899 netdev); |
|
1900 if (err) |
|
1901 goto out; |
|
1902 adapter->tx_ring->itr_register = E1000_EITR_82574(vector); |
|
1903 adapter->tx_ring->itr_val = adapter->itr; |
|
1904 vector++; |
|
1905 |
|
1906 err = request_irq(adapter->msix_entries[vector].vector, |
|
1907 e1000_msix_other, 0, netdev->name, netdev); |
|
1908 if (err) |
|
1909 goto out; |
|
1910 |
|
1911 e1000_configure_msix(adapter); |
|
1912 return 0; |
|
1913 out: |
|
1914 return err; |
|
1915 } |
|
1916 |
|
1917 /** |
|
1918 * e1000_request_irq - initialize interrupts |
|
1919 * |
|
1920 * Attempts to configure interrupts using the best available |
|
1921 * capabilities of the hardware and kernel. |
|
1922 **/ |
|
1923 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
1924 { |
|
1925 struct net_device *netdev = adapter->netdev; |
|
1926 int err; |
|
1927 |
|
1928 if (adapter->ecdev) |
|
1929 return 0; |
|
1930 |
|
1931 if (adapter->msix_entries) { |
|
1932 err = e1000_request_msix(adapter); |
|
1933 if (!err) |
|
1934 return err; |
|
1935 /* fall back to MSI */ |
|
1936 e1000e_reset_interrupt_capability(adapter); |
|
1937 adapter->int_mode = E1000E_INT_MODE_MSI; |
|
1938 e1000e_set_interrupt_capability(adapter); |
|
1939 } |
|
1940 if (adapter->flags & FLAG_MSI_ENABLED) { |
|
1941 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, |
|
1942 netdev->name, netdev); |
|
1943 if (!err) |
|
1944 return err; |
|
1945 |
|
1946 /* fall back to legacy interrupt */ |
|
1947 e1000e_reset_interrupt_capability(adapter); |
|
1948 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
1949 } |
|
1950 |
|
1951 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, |
|
1952 netdev->name, netdev); |
|
1953 if (err) |
|
1954 e_err("Unable to allocate interrupt, Error: %d\n", err); |
|
1955 |
|
1956 return err; |
|
1957 } |
|
1958 |
|
1959 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
1960 { |
|
1961 struct net_device *netdev = adapter->netdev; |
|
1962 |
|
1963 if (adapter->ecdev) |
|
1964 return; |
|
1965 |
|
1966 if (adapter->msix_entries) { |
|
1967 int vector = 0; |
|
1968 |
|
1969 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1970 vector++; |
|
1971 |
|
1972 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1973 vector++; |
|
1974 |
|
1975 /* Other Causes interrupt vector */ |
|
1976 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1977 return; |
|
1978 } |
|
1979 |
|
1980 free_irq(adapter->pdev->irq, netdev); |
|
1981 } |
|
1982 |
|
1983 /** |
|
1984 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
1985 **/ |
|
1986 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
1987 { |
|
1988 struct e1000_hw *hw = &adapter->hw; |
|
1989 |
|
1990 if (adapter->ecdev) |
|
1991 return; |
|
1992 |
|
1993 ew32(IMC, ~0); |
|
1994 if (adapter->msix_entries) |
|
1995 ew32(EIAC_82574, 0); |
|
1996 e1e_flush(); |
|
1997 synchronize_irq(adapter->pdev->irq); |
|
1998 } |
|
1999 |
|
2000 /** |
|
2001 * e1000_irq_enable - Enable default interrupt generation settings |
|
2002 **/ |
|
2003 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
2004 { |
|
2005 struct e1000_hw *hw = &adapter->hw; |
|
2006 |
|
2007 if (adapter->ecdev) |
|
2008 return; |
|
2009 |
|
2010 if (adapter->msix_entries) { |
|
2011 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); |
|
2012 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); |
|
2013 } else { |
|
2014 ew32(IMS, IMS_ENABLE_MASK); |
|
2015 } |
|
2016 e1e_flush(); |
|
2017 } |
|
2018 |
|
2019 /** |
|
2020 * e1000_get_hw_control - get control of the h/w from f/w |
|
2021 * @adapter: address of board private structure |
|
2022 * |
|
2023 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
|
2024 * For ASF and Pass Through versions of f/w this means that |
|
2025 * the driver is loaded. For AMT version (only with 82573) |
|
2026 * of the f/w this means that the network i/f is open. |
|
2027 **/ |
|
2028 static void e1000_get_hw_control(struct e1000_adapter *adapter) |
|
2029 { |
|
2030 struct e1000_hw *hw = &adapter->hw; |
|
2031 u32 ctrl_ext; |
|
2032 u32 swsm; |
|
2033 |
|
2034 /* Let firmware know the driver has taken over */ |
|
2035 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
|
2036 swsm = er32(SWSM); |
|
2037 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
|
2038 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
|
2039 ctrl_ext = er32(CTRL_EXT); |
|
2040 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
|
2041 } |
|
2042 } |
|
2043 |
|
2044 /** |
|
2045 * e1000_release_hw_control - release control of the h/w to f/w |
|
2046 * @adapter: address of board private structure |
|
2047 * |
|
2048 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
|
2049 * For ASF and Pass Through versions of f/w this means that the |
|
2050 * driver is no longer loaded. For AMT version (only with 82573) i |
|
2051 * of the f/w this means that the network i/f is closed. |
|
2052 * |
|
2053 **/ |
|
2054 static void e1000_release_hw_control(struct e1000_adapter *adapter) |
|
2055 { |
|
2056 struct e1000_hw *hw = &adapter->hw; |
|
2057 u32 ctrl_ext; |
|
2058 u32 swsm; |
|
2059 |
|
2060 /* Let firmware taken over control of h/w */ |
|
2061 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
|
2062 swsm = er32(SWSM); |
|
2063 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
|
2064 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
|
2065 ctrl_ext = er32(CTRL_EXT); |
|
2066 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
|
2067 } |
|
2068 } |
|
2069 |
|
2070 /** |
|
2071 * @e1000_alloc_ring - allocate memory for a ring structure |
|
2072 **/ |
|
2073 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, |
|
2074 struct e1000_ring *ring) |
|
2075 { |
|
2076 struct pci_dev *pdev = adapter->pdev; |
|
2077 |
|
2078 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, |
|
2079 GFP_KERNEL); |
|
2080 if (!ring->desc) |
|
2081 return -ENOMEM; |
|
2082 |
|
2083 return 0; |
|
2084 } |
|
2085 |
|
2086 /** |
|
2087 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) |
|
2088 * @adapter: board private structure |
|
2089 * |
|
2090 * Return 0 on success, negative on failure |
|
2091 **/ |
|
2092 int e1000e_setup_tx_resources(struct e1000_adapter *adapter) |
|
2093 { |
|
2094 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
2095 int err = -ENOMEM, size; |
|
2096 |
|
2097 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
2098 tx_ring->buffer_info = vmalloc(size); |
|
2099 if (!tx_ring->buffer_info) |
|
2100 goto err; |
|
2101 memset(tx_ring->buffer_info, 0, size); |
|
2102 |
|
2103 /* round up to nearest 4K */ |
|
2104 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
|
2105 tx_ring->size = ALIGN(tx_ring->size, 4096); |
|
2106 |
|
2107 err = e1000_alloc_ring_dma(adapter, tx_ring); |
|
2108 if (err) |
|
2109 goto err; |
|
2110 |
|
2111 tx_ring->next_to_use = 0; |
|
2112 tx_ring->next_to_clean = 0; |
|
2113 |
|
2114 return 0; |
|
2115 err: |
|
2116 vfree(tx_ring->buffer_info); |
|
2117 e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
|
2118 return err; |
|
2119 } |
|
2120 |
|
2121 /** |
|
2122 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) |
|
2123 * @adapter: board private structure |
|
2124 * |
|
2125 * Returns 0 on success, negative on failure |
|
2126 **/ |
|
2127 int e1000e_setup_rx_resources(struct e1000_adapter *adapter) |
|
2128 { |
|
2129 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
2130 struct e1000_buffer *buffer_info; |
|
2131 int i, size, desc_len, err = -ENOMEM; |
|
2132 |
|
2133 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
2134 rx_ring->buffer_info = vmalloc(size); |
|
2135 if (!rx_ring->buffer_info) |
|
2136 goto err; |
|
2137 memset(rx_ring->buffer_info, 0, size); |
|
2138 |
|
2139 for (i = 0; i < rx_ring->count; i++) { |
|
2140 buffer_info = &rx_ring->buffer_info[i]; |
|
2141 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, |
|
2142 sizeof(struct e1000_ps_page), |
|
2143 GFP_KERNEL); |
|
2144 if (!buffer_info->ps_pages) |
|
2145 goto err_pages; |
|
2146 } |
|
2147 |
|
2148 desc_len = sizeof(union e1000_rx_desc_packet_split); |
|
2149 |
|
2150 /* Round up to nearest 4K */ |
|
2151 rx_ring->size = rx_ring->count * desc_len; |
|
2152 rx_ring->size = ALIGN(rx_ring->size, 4096); |
|
2153 |
|
2154 err = e1000_alloc_ring_dma(adapter, rx_ring); |
|
2155 if (err) |
|
2156 goto err_pages; |
|
2157 |
|
2158 rx_ring->next_to_clean = 0; |
|
2159 rx_ring->next_to_use = 0; |
|
2160 rx_ring->rx_skb_top = NULL; |
|
2161 |
|
2162 return 0; |
|
2163 |
|
2164 err_pages: |
|
2165 for (i = 0; i < rx_ring->count; i++) { |
|
2166 buffer_info = &rx_ring->buffer_info[i]; |
|
2167 kfree(buffer_info->ps_pages); |
|
2168 } |
|
2169 err: |
|
2170 vfree(rx_ring->buffer_info); |
|
2171 e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
|
2172 return err; |
|
2173 } |
|
2174 |
|
2175 /** |
|
2176 * e1000_clean_tx_ring - Free Tx Buffers |
|
2177 * @adapter: board private structure |
|
2178 **/ |
|
2179 static void e1000_clean_tx_ring(struct e1000_adapter *adapter) |
|
2180 { |
|
2181 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
2182 struct e1000_buffer *buffer_info; |
|
2183 unsigned long size; |
|
2184 unsigned int i; |
|
2185 |
|
2186 for (i = 0; i < tx_ring->count; i++) { |
|
2187 buffer_info = &tx_ring->buffer_info[i]; |
|
2188 e1000_put_txbuf(adapter, buffer_info); |
|
2189 } |
|
2190 |
|
2191 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
2192 memset(tx_ring->buffer_info, 0, size); |
|
2193 |
|
2194 memset(tx_ring->desc, 0, tx_ring->size); |
|
2195 |
|
2196 tx_ring->next_to_use = 0; |
|
2197 tx_ring->next_to_clean = 0; |
|
2198 |
|
2199 writel(0, adapter->hw.hw_addr + tx_ring->head); |
|
2200 writel(0, adapter->hw.hw_addr + tx_ring->tail); |
|
2201 } |
|
2202 |
|
2203 /** |
|
2204 * e1000e_free_tx_resources - Free Tx Resources per Queue |
|
2205 * @adapter: board private structure |
|
2206 * |
|
2207 * Free all transmit software resources |
|
2208 **/ |
|
2209 void e1000e_free_tx_resources(struct e1000_adapter *adapter) |
|
2210 { |
|
2211 struct pci_dev *pdev = adapter->pdev; |
|
2212 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
2213 |
|
2214 e1000_clean_tx_ring(adapter); |
|
2215 |
|
2216 vfree(tx_ring->buffer_info); |
|
2217 tx_ring->buffer_info = NULL; |
|
2218 |
|
2219 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
|
2220 tx_ring->dma); |
|
2221 tx_ring->desc = NULL; |
|
2222 } |
|
2223 |
|
2224 /** |
|
2225 * e1000e_free_rx_resources - Free Rx Resources |
|
2226 * @adapter: board private structure |
|
2227 * |
|
2228 * Free all receive software resources |
|
2229 **/ |
|
2230 |
|
2231 void e1000e_free_rx_resources(struct e1000_adapter *adapter) |
|
2232 { |
|
2233 struct pci_dev *pdev = adapter->pdev; |
|
2234 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
2235 int i; |
|
2236 |
|
2237 e1000_clean_rx_ring(adapter); |
|
2238 |
|
2239 for (i = 0; i < rx_ring->count; i++) { |
|
2240 kfree(rx_ring->buffer_info[i].ps_pages); |
|
2241 } |
|
2242 |
|
2243 vfree(rx_ring->buffer_info); |
|
2244 rx_ring->buffer_info = NULL; |
|
2245 |
|
2246 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
|
2247 rx_ring->dma); |
|
2248 rx_ring->desc = NULL; |
|
2249 } |
|
2250 |
|
2251 /** |
|
2252 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2253 * @adapter: pointer to adapter |
|
2254 * @itr_setting: current adapter->itr |
|
2255 * @packets: the number of packets during this measurement interval |
|
2256 * @bytes: the number of bytes during this measurement interval |
|
2257 * |
|
2258 * Stores a new ITR value based on packets and byte |
|
2259 * counts during the last interrupt. The advantage of per interrupt |
|
2260 * computation is faster updates and more accurate ITR for the current |
|
2261 * traffic pattern. Constants in this function were computed |
|
2262 * based on theoretical maximum wire speed and thresholds were set based |
|
2263 * on testing data as well as attempting to minimize response time |
|
2264 * while increasing bulk throughput. This functionality is controlled |
|
2265 * by the InterruptThrottleRate module parameter. |
|
2266 **/ |
|
2267 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2268 u16 itr_setting, int packets, |
|
2269 int bytes) |
|
2270 { |
|
2271 unsigned int retval = itr_setting; |
|
2272 |
|
2273 if (packets == 0) |
|
2274 goto update_itr_done; |
|
2275 |
|
2276 switch (itr_setting) { |
|
2277 case lowest_latency: |
|
2278 /* handle TSO and jumbo frames */ |
|
2279 if (bytes/packets > 8000) |
|
2280 retval = bulk_latency; |
|
2281 else if ((packets < 5) && (bytes > 512)) { |
|
2282 retval = low_latency; |
|
2283 } |
|
2284 break; |
|
2285 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2286 if (bytes > 10000) { |
|
2287 /* this if handles the TSO accounting */ |
|
2288 if (bytes/packets > 8000) { |
|
2289 retval = bulk_latency; |
|
2290 } else if ((packets < 10) || ((bytes/packets) > 1200)) { |
|
2291 retval = bulk_latency; |
|
2292 } else if ((packets > 35)) { |
|
2293 retval = lowest_latency; |
|
2294 } |
|
2295 } else if (bytes/packets > 2000) { |
|
2296 retval = bulk_latency; |
|
2297 } else if (packets <= 2 && bytes < 512) { |
|
2298 retval = lowest_latency; |
|
2299 } |
|
2300 break; |
|
2301 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2302 if (bytes > 25000) { |
|
2303 if (packets > 35) { |
|
2304 retval = low_latency; |
|
2305 } |
|
2306 } else if (bytes < 6000) { |
|
2307 retval = low_latency; |
|
2308 } |
|
2309 break; |
|
2310 } |
|
2311 |
|
2312 update_itr_done: |
|
2313 return retval; |
|
2314 } |
|
2315 |
|
2316 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2317 { |
|
2318 struct e1000_hw *hw = &adapter->hw; |
|
2319 u16 current_itr; |
|
2320 u32 new_itr = adapter->itr; |
|
2321 |
|
2322 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2323 if (adapter->link_speed != SPEED_1000) { |
|
2324 current_itr = 0; |
|
2325 new_itr = 4000; |
|
2326 goto set_itr_now; |
|
2327 } |
|
2328 |
|
2329 adapter->tx_itr = e1000_update_itr(adapter, |
|
2330 adapter->tx_itr, |
|
2331 adapter->total_tx_packets, |
|
2332 adapter->total_tx_bytes); |
|
2333 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2334 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2335 adapter->tx_itr = low_latency; |
|
2336 |
|
2337 adapter->rx_itr = e1000_update_itr(adapter, |
|
2338 adapter->rx_itr, |
|
2339 adapter->total_rx_packets, |
|
2340 adapter->total_rx_bytes); |
|
2341 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2342 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2343 adapter->rx_itr = low_latency; |
|
2344 |
|
2345 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2346 |
|
2347 switch (current_itr) { |
|
2348 /* counts and packets in update_itr are dependent on these numbers */ |
|
2349 case lowest_latency: |
|
2350 new_itr = 70000; |
|
2351 break; |
|
2352 case low_latency: |
|
2353 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2354 break; |
|
2355 case bulk_latency: |
|
2356 new_itr = 4000; |
|
2357 break; |
|
2358 default: |
|
2359 break; |
|
2360 } |
|
2361 |
|
2362 set_itr_now: |
|
2363 if (new_itr != adapter->itr) { |
|
2364 /* |
|
2365 * this attempts to bias the interrupt rate towards Bulk |
|
2366 * by adding intermediate steps when interrupt rate is |
|
2367 * increasing |
|
2368 */ |
|
2369 new_itr = new_itr > adapter->itr ? |
|
2370 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2371 new_itr; |
|
2372 adapter->itr = new_itr; |
|
2373 adapter->rx_ring->itr_val = new_itr; |
|
2374 if (adapter->msix_entries) |
|
2375 adapter->rx_ring->set_itr = 1; |
|
2376 else |
|
2377 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2378 } |
|
2379 } |
|
2380 |
|
2381 /** |
|
2382 * e1000_alloc_queues - Allocate memory for all rings |
|
2383 * @adapter: board private structure to initialize |
|
2384 **/ |
|
2385 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
2386 { |
|
2387 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
|
2388 if (!adapter->tx_ring) |
|
2389 goto err; |
|
2390 |
|
2391 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
|
2392 if (!adapter->rx_ring) |
|
2393 goto err; |
|
2394 |
|
2395 return 0; |
|
2396 err: |
|
2397 e_err("Unable to allocate memory for queues\n"); |
|
2398 kfree(adapter->rx_ring); |
|
2399 kfree(adapter->tx_ring); |
|
2400 return -ENOMEM; |
|
2401 } |
|
2402 |
|
2403 /** |
|
2404 * e1000_clean - NAPI Rx polling callback |
|
2405 * @napi: struct associated with this polling callback |
|
2406 * @budget: amount of packets driver is allowed to process this poll |
|
2407 **/ |
|
2408 static int e1000_clean(struct napi_struct *napi, int budget) |
|
2409 { |
|
2410 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
2411 struct e1000_hw *hw = &adapter->hw; |
|
2412 struct net_device *poll_dev = adapter->netdev; |
|
2413 int tx_cleaned = 1, work_done = 0; |
|
2414 |
|
2415 adapter = netdev_priv(poll_dev); |
|
2416 |
|
2417 if (adapter->msix_entries && |
|
2418 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) |
|
2419 goto clean_rx; |
|
2420 |
|
2421 tx_cleaned = e1000_clean_tx_irq(adapter); |
|
2422 |
|
2423 clean_rx: |
|
2424 adapter->clean_rx(adapter, &work_done, budget); |
|
2425 |
|
2426 if (!tx_cleaned) |
|
2427 work_done = budget; |
|
2428 |
|
2429 /* If budget not fully consumed, exit the polling mode */ |
|
2430 if (work_done < budget) { |
|
2431 if (adapter->itr_setting & 3) |
|
2432 e1000_set_itr(adapter); |
|
2433 napi_complete(napi); |
|
2434 if (!test_bit(__E1000_DOWN, &adapter->state)) { |
|
2435 if (adapter->msix_entries) |
|
2436 ew32(IMS, adapter->rx_ring->ims_val); |
|
2437 else |
|
2438 e1000_irq_enable(adapter); |
|
2439 } |
|
2440 } |
|
2441 |
|
2442 return work_done; |
|
2443 } |
|
2444 |
|
2445 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
2446 { |
|
2447 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2448 struct e1000_hw *hw = &adapter->hw; |
|
2449 u32 vfta, index; |
|
2450 |
|
2451 /* don't update vlan cookie if already programmed */ |
|
2452 if ((adapter->hw.mng_cookie.status & |
|
2453 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
2454 (vid == adapter->mng_vlan_id)) |
|
2455 return; |
|
2456 |
|
2457 /* add VID to filter table */ |
|
2458 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2459 index = (vid >> 5) & 0x7F; |
|
2460 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
|
2461 vfta |= (1 << (vid & 0x1F)); |
|
2462 hw->mac.ops.write_vfta(hw, index, vfta); |
|
2463 } |
|
2464 } |
|
2465 |
|
2466 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
2467 { |
|
2468 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2469 struct e1000_hw *hw = &adapter->hw; |
|
2470 u32 vfta, index; |
|
2471 |
|
2472 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2473 e1000_irq_disable(adapter); |
|
2474 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
2475 |
|
2476 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2477 e1000_irq_enable(adapter); |
|
2478 |
|
2479 if ((adapter->hw.mng_cookie.status & |
|
2480 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
2481 (vid == adapter->mng_vlan_id)) { |
|
2482 /* release control to f/w */ |
|
2483 e1000_release_hw_control(adapter); |
|
2484 return; |
|
2485 } |
|
2486 |
|
2487 /* remove VID from filter table */ |
|
2488 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2489 index = (vid >> 5) & 0x7F; |
|
2490 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
|
2491 vfta &= ~(1 << (vid & 0x1F)); |
|
2492 hw->mac.ops.write_vfta(hw, index, vfta); |
|
2493 } |
|
2494 } |
|
2495 |
|
2496 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
2497 { |
|
2498 struct net_device *netdev = adapter->netdev; |
|
2499 u16 vid = adapter->hw.mng_cookie.vlan_id; |
|
2500 u16 old_vid = adapter->mng_vlan_id; |
|
2501 |
|
2502 if (!adapter->vlgrp) |
|
2503 return; |
|
2504 |
|
2505 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
2506 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
2507 if (adapter->hw.mng_cookie.status & |
|
2508 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
|
2509 e1000_vlan_rx_add_vid(netdev, vid); |
|
2510 adapter->mng_vlan_id = vid; |
|
2511 } |
|
2512 |
|
2513 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
2514 (vid != old_vid) && |
|
2515 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
2516 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
2517 } else { |
|
2518 adapter->mng_vlan_id = vid; |
|
2519 } |
|
2520 } |
|
2521 |
|
2522 |
|
2523 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
2524 struct vlan_group *grp) |
|
2525 { |
|
2526 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2527 struct e1000_hw *hw = &adapter->hw; |
|
2528 u32 ctrl, rctl; |
|
2529 |
|
2530 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2531 e1000_irq_disable(adapter); |
|
2532 adapter->vlgrp = grp; |
|
2533 |
|
2534 if (grp) { |
|
2535 /* enable VLAN tag insert/strip */ |
|
2536 ctrl = er32(CTRL); |
|
2537 ctrl |= E1000_CTRL_VME; |
|
2538 ew32(CTRL, ctrl); |
|
2539 |
|
2540 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2541 /* enable VLAN receive filtering */ |
|
2542 rctl = er32(RCTL); |
|
2543 rctl &= ~E1000_RCTL_CFIEN; |
|
2544 ew32(RCTL, rctl); |
|
2545 e1000_update_mng_vlan(adapter); |
|
2546 } |
|
2547 } else { |
|
2548 /* disable VLAN tag insert/strip */ |
|
2549 ctrl = er32(CTRL); |
|
2550 ctrl &= ~E1000_CTRL_VME; |
|
2551 ew32(CTRL, ctrl); |
|
2552 |
|
2553 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2554 if (adapter->mng_vlan_id != |
|
2555 (u16)E1000_MNG_VLAN_NONE) { |
|
2556 e1000_vlan_rx_kill_vid(netdev, |
|
2557 adapter->mng_vlan_id); |
|
2558 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
2559 } |
|
2560 } |
|
2561 } |
|
2562 |
|
2563 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2564 e1000_irq_enable(adapter); |
|
2565 } |
|
2566 |
|
2567 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
2568 { |
|
2569 u16 vid; |
|
2570 |
|
2571 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
2572 |
|
2573 if (!adapter->vlgrp) |
|
2574 return; |
|
2575 |
|
2576 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
2577 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
2578 continue; |
|
2579 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
2580 } |
|
2581 } |
|
2582 |
|
2583 static void e1000_init_manageability_pt(struct e1000_adapter *adapter) |
|
2584 { |
|
2585 struct e1000_hw *hw = &adapter->hw; |
|
2586 u32 manc, manc2h, mdef, i, j; |
|
2587 |
|
2588 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) |
|
2589 return; |
|
2590 |
|
2591 manc = er32(MANC); |
|
2592 |
|
2593 /* |
|
2594 * enable receiving management packets to the host. this will probably |
|
2595 * generate destination unreachable messages from the host OS, but |
|
2596 * the packets will be handled on SMBUS |
|
2597 */ |
|
2598 manc |= E1000_MANC_EN_MNG2HOST; |
|
2599 manc2h = er32(MANC2H); |
|
2600 |
|
2601 switch (hw->mac.type) { |
|
2602 default: |
|
2603 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); |
|
2604 break; |
|
2605 case e1000_82574: |
|
2606 case e1000_82583: |
|
2607 /* |
|
2608 * Check if IPMI pass-through decision filter already exists; |
|
2609 * if so, enable it. |
|
2610 */ |
|
2611 for (i = 0, j = 0; i < 8; i++) { |
|
2612 mdef = er32(MDEF(i)); |
|
2613 |
|
2614 /* Ignore filters with anything other than IPMI ports */ |
|
2615 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) |
|
2616 continue; |
|
2617 |
|
2618 /* Enable this decision filter in MANC2H */ |
|
2619 if (mdef) |
|
2620 manc2h |= (1 << i); |
|
2621 |
|
2622 j |= mdef; |
|
2623 } |
|
2624 |
|
2625 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) |
|
2626 break; |
|
2627 |
|
2628 /* Create new decision filter in an empty filter */ |
|
2629 for (i = 0, j = 0; i < 8; i++) |
|
2630 if (er32(MDEF(i)) == 0) { |
|
2631 ew32(MDEF(i), (E1000_MDEF_PORT_623 | |
|
2632 E1000_MDEF_PORT_664)); |
|
2633 manc2h |= (1 << 1); |
|
2634 j++; |
|
2635 break; |
|
2636 } |
|
2637 |
|
2638 if (!j) |
|
2639 e_warn("Unable to create IPMI pass-through filter\n"); |
|
2640 break; |
|
2641 } |
|
2642 |
|
2643 ew32(MANC2H, manc2h); |
|
2644 ew32(MANC, manc); |
|
2645 } |
|
2646 |
|
2647 /** |
|
2648 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
2649 * @adapter: board private structure |
|
2650 * |
|
2651 * Configure the Tx unit of the MAC after a reset. |
|
2652 **/ |
|
2653 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
2654 { |
|
2655 struct e1000_hw *hw = &adapter->hw; |
|
2656 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
2657 u64 tdba; |
|
2658 u32 tdlen, tctl, tipg, tarc; |
|
2659 u32 ipgr1, ipgr2; |
|
2660 |
|
2661 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
2662 tdba = tx_ring->dma; |
|
2663 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); |
|
2664 ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); |
|
2665 ew32(TDBAH, (tdba >> 32)); |
|
2666 ew32(TDLEN, tdlen); |
|
2667 ew32(TDH, 0); |
|
2668 ew32(TDT, 0); |
|
2669 tx_ring->head = E1000_TDH; |
|
2670 tx_ring->tail = E1000_TDT; |
|
2671 |
|
2672 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
2673 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ |
|
2674 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ |
|
2675 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ |
|
2676 |
|
2677 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) |
|
2678 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ |
|
2679 |
|
2680 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
2681 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
2682 ew32(TIPG, tipg); |
|
2683 |
|
2684 /* Set the Tx Interrupt Delay register */ |
|
2685 ew32(TIDV, adapter->tx_int_delay); |
|
2686 /* Tx irq moderation */ |
|
2687 ew32(TADV, adapter->tx_abs_int_delay); |
|
2688 |
|
2689 /* Program the Transmit Control Register */ |
|
2690 tctl = er32(TCTL); |
|
2691 tctl &= ~E1000_TCTL_CT; |
|
2692 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
2693 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
2694 |
|
2695 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { |
|
2696 tarc = er32(TARC(0)); |
|
2697 /* |
|
2698 * set the speed mode bit, we'll clear it if we're not at |
|
2699 * gigabit link later |
|
2700 */ |
|
2701 #define SPEED_MODE_BIT (1 << 21) |
|
2702 tarc |= SPEED_MODE_BIT; |
|
2703 ew32(TARC(0), tarc); |
|
2704 } |
|
2705 |
|
2706 /* errata: program both queues to unweighted RR */ |
|
2707 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { |
|
2708 tarc = er32(TARC(0)); |
|
2709 tarc |= 1; |
|
2710 ew32(TARC(0), tarc); |
|
2711 tarc = er32(TARC(1)); |
|
2712 tarc |= 1; |
|
2713 ew32(TARC(1), tarc); |
|
2714 } |
|
2715 |
|
2716 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
2717 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
2718 |
|
2719 /* only set IDE if we are delaying interrupts using the timers */ |
|
2720 if (adapter->tx_int_delay) |
|
2721 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
2722 |
|
2723 /* enable Report Status bit */ |
|
2724 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
2725 |
|
2726 ew32(TCTL, tctl); |
|
2727 |
|
2728 e1000e_config_collision_dist(hw); |
|
2729 } |
|
2730 |
|
2731 /** |
|
2732 * e1000_setup_rctl - configure the receive control registers |
|
2733 * @adapter: Board private structure |
|
2734 **/ |
|
2735 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
|
2736 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
|
2737 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
2738 { |
|
2739 struct e1000_hw *hw = &adapter->hw; |
|
2740 u32 rctl, rfctl; |
|
2741 u32 psrctl = 0; |
|
2742 u32 pages = 0; |
|
2743 |
|
2744 /* Program MC offset vector base */ |
|
2745 rctl = er32(RCTL); |
|
2746 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
2747 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
2748 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
2749 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
2750 |
|
2751 /* Do not Store bad packets */ |
|
2752 rctl &= ~E1000_RCTL_SBP; |
|
2753 |
|
2754 /* Enable Long Packet receive */ |
|
2755 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
2756 rctl &= ~E1000_RCTL_LPE; |
|
2757 else |
|
2758 rctl |= E1000_RCTL_LPE; |
|
2759 |
|
2760 /* Some systems expect that the CRC is included in SMBUS traffic. The |
|
2761 * hardware strips the CRC before sending to both SMBUS (BMC) and to |
|
2762 * host memory when this is enabled |
|
2763 */ |
|
2764 if (adapter->flags2 & FLAG2_CRC_STRIPPING) |
|
2765 rctl |= E1000_RCTL_SECRC; |
|
2766 |
|
2767 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ |
|
2768 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { |
|
2769 u16 phy_data; |
|
2770 |
|
2771 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); |
|
2772 phy_data &= 0xfff8; |
|
2773 phy_data |= (1 << 2); |
|
2774 e1e_wphy(hw, PHY_REG(770, 26), phy_data); |
|
2775 |
|
2776 e1e_rphy(hw, 22, &phy_data); |
|
2777 phy_data &= 0x0fff; |
|
2778 phy_data |= (1 << 14); |
|
2779 e1e_wphy(hw, 0x10, 0x2823); |
|
2780 e1e_wphy(hw, 0x11, 0x0003); |
|
2781 e1e_wphy(hw, 22, phy_data); |
|
2782 } |
|
2783 |
|
2784 /* Setup buffer sizes */ |
|
2785 rctl &= ~E1000_RCTL_SZ_4096; |
|
2786 rctl |= E1000_RCTL_BSEX; |
|
2787 switch (adapter->rx_buffer_len) { |
|
2788 case 2048: |
|
2789 default: |
|
2790 rctl |= E1000_RCTL_SZ_2048; |
|
2791 rctl &= ~E1000_RCTL_BSEX; |
|
2792 break; |
|
2793 case 4096: |
|
2794 rctl |= E1000_RCTL_SZ_4096; |
|
2795 break; |
|
2796 case 8192: |
|
2797 rctl |= E1000_RCTL_SZ_8192; |
|
2798 break; |
|
2799 case 16384: |
|
2800 rctl |= E1000_RCTL_SZ_16384; |
|
2801 break; |
|
2802 } |
|
2803 |
|
2804 /* |
|
2805 * 82571 and greater support packet-split where the protocol |
|
2806 * header is placed in skb->data and the packet data is |
|
2807 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
|
2808 * In the case of a non-split, skb->data is linearly filled, |
|
2809 * followed by the page buffers. Therefore, skb->data is |
|
2810 * sized to hold the largest protocol header. |
|
2811 * |
|
2812 * allocations using alloc_page take too long for regular MTU |
|
2813 * so only enable packet split for jumbo frames |
|
2814 * |
|
2815 * Using pages when the page size is greater than 16k wastes |
|
2816 * a lot of memory, since we allocate 3 pages at all times |
|
2817 * per packet. |
|
2818 */ |
|
2819 pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
|
2820 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && |
|
2821 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) |
|
2822 adapter->rx_ps_pages = pages; |
|
2823 else |
|
2824 adapter->rx_ps_pages = 0; |
|
2825 |
|
2826 if (adapter->rx_ps_pages) { |
|
2827 /* Configure extra packet-split registers */ |
|
2828 rfctl = er32(RFCTL); |
|
2829 rfctl |= E1000_RFCTL_EXTEN; |
|
2830 /* |
|
2831 * disable packet split support for IPv6 extension headers, |
|
2832 * because some malformed IPv6 headers can hang the Rx |
|
2833 */ |
|
2834 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
|
2835 E1000_RFCTL_NEW_IPV6_EXT_DIS); |
|
2836 |
|
2837 ew32(RFCTL, rfctl); |
|
2838 |
|
2839 /* Enable Packet split descriptors */ |
|
2840 rctl |= E1000_RCTL_DTYP_PS; |
|
2841 |
|
2842 psrctl |= adapter->rx_ps_bsize0 >> |
|
2843 E1000_PSRCTL_BSIZE0_SHIFT; |
|
2844 |
|
2845 switch (adapter->rx_ps_pages) { |
|
2846 case 3: |
|
2847 psrctl |= PAGE_SIZE << |
|
2848 E1000_PSRCTL_BSIZE3_SHIFT; |
|
2849 case 2: |
|
2850 psrctl |= PAGE_SIZE << |
|
2851 E1000_PSRCTL_BSIZE2_SHIFT; |
|
2852 case 1: |
|
2853 psrctl |= PAGE_SIZE >> |
|
2854 E1000_PSRCTL_BSIZE1_SHIFT; |
|
2855 break; |
|
2856 } |
|
2857 |
|
2858 ew32(PSRCTL, psrctl); |
|
2859 } |
|
2860 |
|
2861 ew32(RCTL, rctl); |
|
2862 /* just started the receive unit, no need to restart */ |
|
2863 adapter->flags &= ~FLAG_RX_RESTART_NOW; |
|
2864 } |
|
2865 |
|
2866 /** |
|
2867 * e1000_configure_rx - Configure Receive Unit after Reset |
|
2868 * @adapter: board private structure |
|
2869 * |
|
2870 * Configure the Rx unit of the MAC after a reset. |
|
2871 **/ |
|
2872 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
2873 { |
|
2874 struct e1000_hw *hw = &adapter->hw; |
|
2875 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
2876 u64 rdba; |
|
2877 u32 rdlen, rctl, rxcsum, ctrl_ext; |
|
2878 |
|
2879 if (adapter->rx_ps_pages) { |
|
2880 /* this is a 32 byte descriptor */ |
|
2881 rdlen = rx_ring->count * |
|
2882 sizeof(union e1000_rx_desc_packet_split); |
|
2883 adapter->clean_rx = e1000_clean_rx_irq_ps; |
|
2884 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
|
2885 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
2886 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
|
2887 adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
|
2888 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
|
2889 } else { |
|
2890 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
|
2891 adapter->clean_rx = e1000_clean_rx_irq; |
|
2892 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
2893 } |
|
2894 |
|
2895 /* disable receives while setting up the descriptors */ |
|
2896 rctl = er32(RCTL); |
|
2897 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
2898 e1e_flush(); |
|
2899 msleep(10); |
|
2900 |
|
2901 /* set the Receive Delay Timer Register */ |
|
2902 ew32(RDTR, adapter->rx_int_delay); |
|
2903 |
|
2904 /* irq moderation */ |
|
2905 ew32(RADV, adapter->rx_abs_int_delay); |
|
2906 if (adapter->itr_setting != 0) |
|
2907 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
2908 |
|
2909 ctrl_ext = er32(CTRL_EXT); |
|
2910 /* Auto-Mask interrupts upon ICR access */ |
|
2911 ctrl_ext |= E1000_CTRL_EXT_IAME; |
|
2912 ew32(IAM, 0xffffffff); |
|
2913 ew32(CTRL_EXT, ctrl_ext); |
|
2914 e1e_flush(); |
|
2915 |
|
2916 /* |
|
2917 * Setup the HW Rx Head and Tail Descriptor Pointers and |
|
2918 * the Base and Length of the Rx Descriptor Ring |
|
2919 */ |
|
2920 rdba = rx_ring->dma; |
|
2921 ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); |
|
2922 ew32(RDBAH, (rdba >> 32)); |
|
2923 ew32(RDLEN, rdlen); |
|
2924 ew32(RDH, 0); |
|
2925 ew32(RDT, 0); |
|
2926 rx_ring->head = E1000_RDH; |
|
2927 rx_ring->tail = E1000_RDT; |
|
2928 |
|
2929 /* Enable Receive Checksum Offload for TCP and UDP */ |
|
2930 rxcsum = er32(RXCSUM); |
|
2931 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { |
|
2932 rxcsum |= E1000_RXCSUM_TUOFL; |
|
2933 |
|
2934 /* |
|
2935 * IPv4 payload checksum for UDP fragments must be |
|
2936 * used in conjunction with packet-split. |
|
2937 */ |
|
2938 if (adapter->rx_ps_pages) |
|
2939 rxcsum |= E1000_RXCSUM_IPPCSE; |
|
2940 } else { |
|
2941 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
2942 /* no need to clear IPPCSE as it defaults to 0 */ |
|
2943 } |
|
2944 ew32(RXCSUM, rxcsum); |
|
2945 |
|
2946 /* |
|
2947 * Enable early receives on supported devices, only takes effect when |
|
2948 * packet size is equal or larger than the specified value (in 8 byte |
|
2949 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 |
|
2950 */ |
|
2951 if (adapter->flags & FLAG_HAS_ERT) { |
|
2952 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
2953 u32 rxdctl = er32(RXDCTL(0)); |
|
2954 ew32(RXDCTL(0), rxdctl | 0x3); |
|
2955 ew32(ERT, E1000_ERT_2048 | (1 << 13)); |
|
2956 /* |
|
2957 * With jumbo frames and early-receive enabled, |
|
2958 * excessive C-state transition latencies result in |
|
2959 * dropped transactions. |
|
2960 */ |
|
2961 pm_qos_update_request( |
|
2962 adapter->netdev->pm_qos_req, 55); |
|
2963 } else { |
|
2964 pm_qos_update_request( |
|
2965 adapter->netdev->pm_qos_req, |
|
2966 PM_QOS_DEFAULT_VALUE); |
|
2967 } |
|
2968 } |
|
2969 |
|
2970 /* Enable Receives */ |
|
2971 ew32(RCTL, rctl); |
|
2972 } |
|
2973 |
|
2974 /** |
|
2975 * e1000_update_mc_addr_list - Update Multicast addresses |
|
2976 * @hw: pointer to the HW structure |
|
2977 * @mc_addr_list: array of multicast addresses to program |
|
2978 * @mc_addr_count: number of multicast addresses to program |
|
2979 * |
|
2980 * Updates the Multicast Table Array. |
|
2981 * The caller must have a packed mc_addr_list of multicast addresses. |
|
2982 **/ |
|
2983 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, |
|
2984 u32 mc_addr_count) |
|
2985 { |
|
2986 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); |
|
2987 } |
|
2988 |
|
2989 /** |
|
2990 * e1000_set_multi - Multicast and Promiscuous mode set |
|
2991 * @netdev: network interface device structure |
|
2992 * |
|
2993 * The set_multi entry point is called whenever the multicast address |
|
2994 * list or the network interface flags are updated. This routine is |
|
2995 * responsible for configuring the hardware for proper multicast, |
|
2996 * promiscuous mode, and all-multi behavior. |
|
2997 **/ |
|
2998 static void e1000_set_multi(struct net_device *netdev) |
|
2999 { |
|
3000 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3001 struct e1000_hw *hw = &adapter->hw; |
|
3002 struct netdev_hw_addr *ha; |
|
3003 u8 *mta_list; |
|
3004 u32 rctl; |
|
3005 int i; |
|
3006 |
|
3007 /* Check for Promiscuous and All Multicast modes */ |
|
3008 |
|
3009 rctl = er32(RCTL); |
|
3010 |
|
3011 if (netdev->flags & IFF_PROMISC) { |
|
3012 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
3013 rctl &= ~E1000_RCTL_VFE; |
|
3014 } else { |
|
3015 if (netdev->flags & IFF_ALLMULTI) { |
|
3016 rctl |= E1000_RCTL_MPE; |
|
3017 rctl &= ~E1000_RCTL_UPE; |
|
3018 } else { |
|
3019 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
3020 } |
|
3021 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
|
3022 rctl |= E1000_RCTL_VFE; |
|
3023 } |
|
3024 |
|
3025 ew32(RCTL, rctl); |
|
3026 |
|
3027 if (!netdev_mc_empty(netdev)) { |
|
3028 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); |
|
3029 if (!mta_list) |
|
3030 return; |
|
3031 |
|
3032 /* prepare a packed array of only addresses. */ |
|
3033 i = 0; |
|
3034 netdev_for_each_mc_addr(ha, netdev) |
|
3035 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); |
|
3036 |
|
3037 e1000_update_mc_addr_list(hw, mta_list, i); |
|
3038 kfree(mta_list); |
|
3039 } else { |
|
3040 /* |
|
3041 * if we're called from probe, we might not have |
|
3042 * anything to do here, so clear out the list |
|
3043 */ |
|
3044 e1000_update_mc_addr_list(hw, NULL, 0); |
|
3045 } |
|
3046 } |
|
3047 |
|
3048 /** |
|
3049 * e1000_configure - configure the hardware for Rx and Tx |
|
3050 * @adapter: private board structure |
|
3051 **/ |
|
3052 static void e1000_configure(struct e1000_adapter *adapter) |
|
3053 { |
|
3054 e1000_set_multi(adapter->netdev); |
|
3055 |
|
3056 e1000_restore_vlan(adapter); |
|
3057 e1000_init_manageability_pt(adapter); |
|
3058 |
|
3059 e1000_configure_tx(adapter); |
|
3060 e1000_setup_rctl(adapter); |
|
3061 e1000_configure_rx(adapter); |
|
3062 |
|
3063 if (adapter->ecdev) { |
|
3064 adapter->alloc_rx_buf(adapter, adapter->rx_ring->count); |
|
3065 } else { |
|
3066 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); |
|
3067 } |
|
3068 } |
|
3069 |
|
3070 /** |
|
3071 * e1000e_power_up_phy - restore link in case the phy was powered down |
|
3072 * @adapter: address of board private structure |
|
3073 * |
|
3074 * The phy may be powered down to save power and turn off link when the |
|
3075 * driver is unloaded and wake on lan is not enabled (among others) |
|
3076 * *** this routine MUST be followed by a call to e1000e_reset *** |
|
3077 **/ |
|
3078 void e1000e_power_up_phy(struct e1000_adapter *adapter) |
|
3079 { |
|
3080 if (adapter->hw.phy.ops.power_up) |
|
3081 adapter->hw.phy.ops.power_up(&adapter->hw); |
|
3082 |
|
3083 adapter->hw.mac.ops.setup_link(&adapter->hw); |
|
3084 } |
|
3085 |
|
3086 /** |
|
3087 * e1000_power_down_phy - Power down the PHY |
|
3088 * |
|
3089 * Power down the PHY so no link is implied when interface is down. |
|
3090 * The PHY cannot be powered down if management or WoL is active. |
|
3091 */ |
|
3092 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
3093 { |
|
3094 /* WoL is enabled */ |
|
3095 if (adapter->wol) |
|
3096 return; |
|
3097 |
|
3098 if (adapter->hw.phy.ops.power_down) |
|
3099 adapter->hw.phy.ops.power_down(&adapter->hw); |
|
3100 } |
|
3101 |
|
3102 /** |
|
3103 * e1000e_reset - bring the hardware into a known good state |
|
3104 * |
|
3105 * This function boots the hardware and enables some settings that |
|
3106 * require a configuration cycle of the hardware - those cannot be |
|
3107 * set/changed during runtime. After reset the device needs to be |
|
3108 * properly configured for Rx, Tx etc. |
|
3109 */ |
|
3110 void e1000e_reset(struct e1000_adapter *adapter) |
|
3111 { |
|
3112 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
3113 struct e1000_fc_info *fc = &adapter->hw.fc; |
|
3114 struct e1000_hw *hw = &adapter->hw; |
|
3115 u32 tx_space, min_tx_space, min_rx_space; |
|
3116 u32 pba = adapter->pba; |
|
3117 u16 hwm; |
|
3118 |
|
3119 /* reset Packet Buffer Allocation to default */ |
|
3120 ew32(PBA, pba); |
|
3121 |
|
3122 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
3123 /* |
|
3124 * To maintain wire speed transmits, the Tx FIFO should be |
|
3125 * large enough to accommodate two full transmit packets, |
|
3126 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
3127 * the Rx FIFO should be large enough to accommodate at least |
|
3128 * one full receive packet and is similarly rounded up and |
|
3129 * expressed in KB. |
|
3130 */ |
|
3131 pba = er32(PBA); |
|
3132 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
3133 tx_space = pba >> 16; |
|
3134 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
3135 pba &= 0xffff; |
|
3136 /* |
|
3137 * the Tx fifo also stores 16 bytes of information about the tx |
|
3138 * but don't include ethernet FCS because hardware appends it |
|
3139 */ |
|
3140 min_tx_space = (adapter->max_frame_size + |
|
3141 sizeof(struct e1000_tx_desc) - |
|
3142 ETH_FCS_LEN) * 2; |
|
3143 min_tx_space = ALIGN(min_tx_space, 1024); |
|
3144 min_tx_space >>= 10; |
|
3145 /* software strips receive CRC, so leave room for it */ |
|
3146 min_rx_space = adapter->max_frame_size; |
|
3147 min_rx_space = ALIGN(min_rx_space, 1024); |
|
3148 min_rx_space >>= 10; |
|
3149 |
|
3150 /* |
|
3151 * If current Tx allocation is less than the min Tx FIFO size, |
|
3152 * and the min Tx FIFO size is less than the current Rx FIFO |
|
3153 * allocation, take space away from current Rx allocation |
|
3154 */ |
|
3155 if ((tx_space < min_tx_space) && |
|
3156 ((min_tx_space - tx_space) < pba)) { |
|
3157 pba -= min_tx_space - tx_space; |
|
3158 |
|
3159 /* |
|
3160 * if short on Rx space, Rx wins and must trump tx |
|
3161 * adjustment or use Early Receive if available |
|
3162 */ |
|
3163 if ((pba < min_rx_space) && |
|
3164 (!(adapter->flags & FLAG_HAS_ERT))) |
|
3165 /* ERT enabled in e1000_configure_rx */ |
|
3166 pba = min_rx_space; |
|
3167 } |
|
3168 |
|
3169 ew32(PBA, pba); |
|
3170 } |
|
3171 |
|
3172 |
|
3173 /* |
|
3174 * flow control settings |
|
3175 * |
|
3176 * The high water mark must be low enough to fit one full frame |
|
3177 * (or the size used for early receive) above it in the Rx FIFO. |
|
3178 * Set it to the lower of: |
|
3179 * - 90% of the Rx FIFO size, and |
|
3180 * - the full Rx FIFO size minus the early receive size (for parts |
|
3181 * with ERT support assuming ERT set to E1000_ERT_2048), or |
|
3182 * - the full Rx FIFO size minus one full frame |
|
3183 */ |
|
3184 if (hw->mac.type == e1000_pchlan) { |
|
3185 /* |
|
3186 * Workaround PCH LOM adapter hangs with certain network |
|
3187 * loads. If hangs persist, try disabling Tx flow control. |
|
3188 */ |
|
3189 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
3190 fc->high_water = 0x3500; |
|
3191 fc->low_water = 0x1500; |
|
3192 } else { |
|
3193 fc->high_water = 0x5000; |
|
3194 fc->low_water = 0x3000; |
|
3195 } |
|
3196 fc->refresh_time = 0x1000; |
|
3197 } else { |
|
3198 if ((adapter->flags & FLAG_HAS_ERT) && |
|
3199 (adapter->netdev->mtu > ETH_DATA_LEN)) |
|
3200 hwm = min(((pba << 10) * 9 / 10), |
|
3201 ((pba << 10) - (E1000_ERT_2048 << 3))); |
|
3202 else |
|
3203 hwm = min(((pba << 10) * 9 / 10), |
|
3204 ((pba << 10) - adapter->max_frame_size)); |
|
3205 |
|
3206 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ |
|
3207 fc->low_water = fc->high_water - 8; |
|
3208 } |
|
3209 |
|
3210 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) |
|
3211 fc->pause_time = 0xFFFF; |
|
3212 else |
|
3213 fc->pause_time = E1000_FC_PAUSE_TIME; |
|
3214 fc->send_xon = 1; |
|
3215 fc->current_mode = fc->requested_mode; |
|
3216 |
|
3217 /* Allow time for pending master requests to run */ |
|
3218 mac->ops.reset_hw(hw); |
|
3219 |
|
3220 /* |
|
3221 * For parts with AMT enabled, let the firmware know |
|
3222 * that the network interface is in control |
|
3223 */ |
|
3224 if (adapter->flags & FLAG_HAS_AMT) |
|
3225 e1000_get_hw_control(adapter); |
|
3226 |
|
3227 ew32(WUC, 0); |
|
3228 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) |
|
3229 e1e_wphy(&adapter->hw, BM_WUC, 0); |
|
3230 |
|
3231 if (mac->ops.init_hw(hw)) |
|
3232 e_err("Hardware Error\n"); |
|
3233 |
|
3234 e1000_update_mng_vlan(adapter); |
|
3235 |
|
3236 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
3237 ew32(VET, ETH_P_8021Q); |
|
3238 |
|
3239 e1000e_reset_adaptive(hw); |
|
3240 e1000_get_phy_info(hw); |
|
3241 |
|
3242 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && |
|
3243 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { |
|
3244 u16 phy_data = 0; |
|
3245 /* |
|
3246 * speed up time to link by disabling smart power down, ignore |
|
3247 * the return value of this function because there is nothing |
|
3248 * different we would do if it failed |
|
3249 */ |
|
3250 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
|
3251 phy_data &= ~IGP02E1000_PM_SPD; |
|
3252 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
|
3253 } |
|
3254 } |
|
3255 |
|
3256 int e1000e_up(struct e1000_adapter *adapter) |
|
3257 { |
|
3258 struct e1000_hw *hw = &adapter->hw; |
|
3259 |
|
3260 /* DMA latency requirement to workaround early-receive/jumbo issue */ |
|
3261 if (adapter->flags & FLAG_HAS_ERT) |
|
3262 adapter->netdev->pm_qos_req = |
|
3263 pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY, |
|
3264 PM_QOS_DEFAULT_VALUE); |
|
3265 |
|
3266 /* hardware has been reset, we need to reload some things */ |
|
3267 e1000_configure(adapter); |
|
3268 |
|
3269 clear_bit(__E1000_DOWN, &adapter->state); |
|
3270 |
|
3271 if (!adapter->ecdev) { |
|
3272 napi_enable(&adapter->napi); |
|
3273 } |
|
3274 |
|
3275 if (adapter->msix_entries) |
|
3276 e1000_configure_msix(adapter); |
|
3277 if (!adapter->ecdev) { |
|
3278 e1000_irq_enable(adapter); |
|
3279 |
|
3280 netif_wake_queue(adapter->netdev); |
|
3281 |
|
3282 /* fire a link change interrupt to start the watchdog */ |
|
3283 if (adapter->msix_entries) |
|
3284 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); |
|
3285 else |
|
3286 ew32(ICS, E1000_ICS_LSC); |
|
3287 } |
|
3288 |
|
3289 return 0; |
|
3290 } |
|
3291 |
|
3292 void e1000e_down(struct e1000_adapter *adapter) |
|
3293 { |
|
3294 struct net_device *netdev = adapter->netdev; |
|
3295 struct e1000_hw *hw = &adapter->hw; |
|
3296 u32 tctl, rctl; |
|
3297 |
|
3298 /* |
|
3299 * signal that we're down so the interrupt handler does not |
|
3300 * reschedule our watchdog timer |
|
3301 */ |
|
3302 set_bit(__E1000_DOWN, &adapter->state); |
|
3303 |
|
3304 /* disable receives in the hardware */ |
|
3305 rctl = er32(RCTL); |
|
3306 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3307 /* flush and sleep below */ |
|
3308 |
|
3309 if (!adapter->ecdev) |
|
3310 netif_stop_queue(netdev); |
|
3311 |
|
3312 /* disable transmits in the hardware */ |
|
3313 tctl = er32(TCTL); |
|
3314 tctl &= ~E1000_TCTL_EN; |
|
3315 ew32(TCTL, tctl); |
|
3316 /* flush both disables and wait for them to finish */ |
|
3317 e1e_flush(); |
|
3318 msleep(10); |
|
3319 |
|
3320 if (!adapter->ecdev) { |
|
3321 napi_disable(&adapter->napi); |
|
3322 e1000_irq_disable(adapter); |
|
3323 del_timer_sync(&adapter->watchdog_timer); |
|
3324 del_timer_sync(&adapter->phy_info_timer); |
|
3325 } |
|
3326 |
|
3327 if (adapter->ecdev) { |
|
3328 ecdev_set_link(adapter->ecdev, 0); |
|
3329 } else { |
|
3330 netif_carrier_off(netdev); |
|
3331 } |
|
3332 adapter->link_speed = 0; |
|
3333 adapter->link_duplex = 0; |
|
3334 |
|
3335 if (!pci_channel_offline(adapter->pdev)) |
|
3336 e1000e_reset(adapter); |
|
3337 e1000_clean_tx_ring(adapter); |
|
3338 e1000_clean_rx_ring(adapter); |
|
3339 |
|
3340 if (adapter->flags & FLAG_HAS_ERT) { |
|
3341 pm_qos_remove_request( |
|
3342 adapter->netdev->pm_qos_req); |
|
3343 adapter->netdev->pm_qos_req = NULL; |
|
3344 } |
|
3345 |
|
3346 /* |
|
3347 * TODO: for power management, we could drop the link and |
|
3348 * pci_disable_device here. |
|
3349 */ |
|
3350 } |
|
3351 |
|
3352 void e1000e_reinit_locked(struct e1000_adapter *adapter) |
|
3353 { |
|
3354 might_sleep(); |
|
3355 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
3356 msleep(1); |
|
3357 e1000e_down(adapter); |
|
3358 e1000e_up(adapter); |
|
3359 clear_bit(__E1000_RESETTING, &adapter->state); |
|
3360 } |
|
3361 |
|
3362 /** |
|
3363 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
3364 * @adapter: board private structure to initialize |
|
3365 * |
|
3366 * e1000_sw_init initializes the Adapter private data structure. |
|
3367 * Fields are initialized based on PCI device information and |
|
3368 * OS network device settings (MTU size). |
|
3369 **/ |
|
3370 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
3371 { |
|
3372 struct net_device *netdev = adapter->netdev; |
|
3373 |
|
3374 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; |
|
3375 adapter->rx_ps_bsize0 = 128; |
|
3376 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
|
3377 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
|
3378 |
|
3379 e1000e_set_interrupt_capability(adapter); |
|
3380 |
|
3381 if (e1000_alloc_queues(adapter)) |
|
3382 return -ENOMEM; |
|
3383 |
|
3384 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
3385 e1000_irq_disable(adapter); |
|
3386 |
|
3387 set_bit(__E1000_DOWN, &adapter->state); |
|
3388 return 0; |
|
3389 } |
|
3390 |
|
3391 /** |
|
3392 * e1000_intr_msi_test - Interrupt Handler |
|
3393 * @irq: interrupt number |
|
3394 * @data: pointer to a network interface device structure |
|
3395 **/ |
|
3396 static irqreturn_t e1000_intr_msi_test(int irq, void *data) |
|
3397 { |
|
3398 struct net_device *netdev = data; |
|
3399 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3400 struct e1000_hw *hw = &adapter->hw; |
|
3401 u32 icr = er32(ICR); |
|
3402 |
|
3403 e_dbg("icr is %08X\n", icr); |
|
3404 if (icr & E1000_ICR_RXSEQ) { |
|
3405 adapter->flags &= ~FLAG_MSI_TEST_FAILED; |
|
3406 wmb(); |
|
3407 } |
|
3408 |
|
3409 return IRQ_HANDLED; |
|
3410 } |
|
3411 |
|
3412 /** |
|
3413 * e1000_test_msi_interrupt - Returns 0 for successful test |
|
3414 * @adapter: board private struct |
|
3415 * |
|
3416 * code flow taken from tg3.c |
|
3417 **/ |
|
3418 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) |
|
3419 { |
|
3420 struct net_device *netdev = adapter->netdev; |
|
3421 struct e1000_hw *hw = &adapter->hw; |
|
3422 int err; |
|
3423 |
|
3424 /* poll_enable hasn't been called yet, so don't need disable */ |
|
3425 /* clear any pending events */ |
|
3426 er32(ICR); |
|
3427 |
|
3428 /* free the real vector and request a test handler */ |
|
3429 e1000_free_irq(adapter); |
|
3430 e1000e_reset_interrupt_capability(adapter); |
|
3431 |
|
3432 /* Assume that the test fails, if it succeeds then the test |
|
3433 * MSI irq handler will unset this flag */ |
|
3434 adapter->flags |= FLAG_MSI_TEST_FAILED; |
|
3435 |
|
3436 err = pci_enable_msi(adapter->pdev); |
|
3437 if (err) |
|
3438 goto msi_test_failed; |
|
3439 |
|
3440 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, |
|
3441 netdev->name, netdev); |
|
3442 if (err) { |
|
3443 pci_disable_msi(adapter->pdev); |
|
3444 goto msi_test_failed; |
|
3445 } |
|
3446 |
|
3447 wmb(); |
|
3448 |
|
3449 e1000_irq_enable(adapter); |
|
3450 |
|
3451 /* fire an unusual interrupt on the test handler */ |
|
3452 ew32(ICS, E1000_ICS_RXSEQ); |
|
3453 e1e_flush(); |
|
3454 msleep(50); |
|
3455 |
|
3456 e1000_irq_disable(adapter); |
|
3457 |
|
3458 rmb(); |
|
3459 |
|
3460 if (adapter->flags & FLAG_MSI_TEST_FAILED) { |
|
3461 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
3462 err = -EIO; |
|
3463 e_info("MSI interrupt test failed!\n"); |
|
3464 } |
|
3465 |
|
3466 free_irq(adapter->pdev->irq, netdev); |
|
3467 pci_disable_msi(adapter->pdev); |
|
3468 |
|
3469 if (err == -EIO) |
|
3470 goto msi_test_failed; |
|
3471 |
|
3472 /* okay so the test worked, restore settings */ |
|
3473 e_dbg("MSI interrupt test succeeded!\n"); |
|
3474 msi_test_failed: |
|
3475 e1000e_set_interrupt_capability(adapter); |
|
3476 e1000_request_irq(adapter); |
|
3477 return err; |
|
3478 } |
|
3479 |
|
3480 /** |
|
3481 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored |
|
3482 * @adapter: board private struct |
|
3483 * |
|
3484 * code flow taken from tg3.c, called with e1000 interrupts disabled. |
|
3485 **/ |
|
3486 static int e1000_test_msi(struct e1000_adapter *adapter) |
|
3487 { |
|
3488 int err; |
|
3489 u16 pci_cmd; |
|
3490 |
|
3491 if (!(adapter->flags & FLAG_MSI_ENABLED)) |
|
3492 return 0; |
|
3493 |
|
3494 /* disable SERR in case the MSI write causes a master abort */ |
|
3495 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
|
3496 if (pci_cmd & PCI_COMMAND_SERR) |
|
3497 pci_write_config_word(adapter->pdev, PCI_COMMAND, |
|
3498 pci_cmd & ~PCI_COMMAND_SERR); |
|
3499 |
|
3500 err = e1000_test_msi_interrupt(adapter); |
|
3501 |
|
3502 /* re-enable SERR */ |
|
3503 if (pci_cmd & PCI_COMMAND_SERR) { |
|
3504 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
|
3505 pci_cmd |= PCI_COMMAND_SERR; |
|
3506 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); |
|
3507 } |
|
3508 |
|
3509 /* success ! */ |
|
3510 if (!err) |
|
3511 return 0; |
|
3512 |
|
3513 /* EIO means MSI test failed */ |
|
3514 if (err != -EIO) |
|
3515 return err; |
|
3516 |
|
3517 /* back to INTx mode */ |
|
3518 e_warn("MSI interrupt test failed, using legacy interrupt.\n"); |
|
3519 |
|
3520 e1000_free_irq(adapter); |
|
3521 |
|
3522 err = e1000_request_irq(adapter); |
|
3523 |
|
3524 return err; |
|
3525 } |
|
3526 |
|
3527 /** |
|
3528 * e1000_open - Called when a network interface is made active |
|
3529 * @netdev: network interface device structure |
|
3530 * |
|
3531 * Returns 0 on success, negative value on failure |
|
3532 * |
|
3533 * The open entry point is called when a network interface is made |
|
3534 * active by the system (IFF_UP). At this point all resources needed |
|
3535 * for transmit and receive operations are allocated, the interrupt |
|
3536 * handler is registered with the OS, the watchdog timer is started, |
|
3537 * and the stack is notified that the interface is ready. |
|
3538 **/ |
|
3539 static int e1000_open(struct net_device *netdev) |
|
3540 { |
|
3541 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3542 struct e1000_hw *hw = &adapter->hw; |
|
3543 struct pci_dev *pdev = adapter->pdev; |
|
3544 int err; |
|
3545 |
|
3546 /* disallow open during test */ |
|
3547 if (test_bit(__E1000_TESTING, &adapter->state)) |
|
3548 return -EBUSY; |
|
3549 |
|
3550 pm_runtime_get_sync(&pdev->dev); |
|
3551 |
|
3552 if (adapter->ecdev) { |
|
3553 ecdev_set_link(adapter->ecdev, 0); |
|
3554 } else { |
|
3555 netif_carrier_off(netdev); |
|
3556 } |
|
3557 |
|
3558 /* allocate transmit descriptors */ |
|
3559 err = e1000e_setup_tx_resources(adapter); |
|
3560 if (err) |
|
3561 goto err_setup_tx; |
|
3562 |
|
3563 /* allocate receive descriptors */ |
|
3564 err = e1000e_setup_rx_resources(adapter); |
|
3565 if (err) |
|
3566 goto err_setup_rx; |
|
3567 |
|
3568 /* |
|
3569 * If AMT is enabled, let the firmware know that the network |
|
3570 * interface is now open and reset the part to a known state. |
|
3571 */ |
|
3572 if (adapter->flags & FLAG_HAS_AMT) { |
|
3573 e1000_get_hw_control(adapter); |
|
3574 e1000e_reset(adapter); |
|
3575 } |
|
3576 |
|
3577 e1000e_power_up_phy(adapter); |
|
3578 |
|
3579 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
3580 if ((adapter->hw.mng_cookie.status & |
|
3581 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) |
|
3582 e1000_update_mng_vlan(adapter); |
|
3583 |
|
3584 /* |
|
3585 * before we allocate an interrupt, we must be ready to handle it. |
|
3586 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
3587 * as soon as we call pci_request_irq, so we have to setup our |
|
3588 * clean_rx handler before we do so. |
|
3589 */ |
|
3590 e1000_configure(adapter); |
|
3591 |
|
3592 err = e1000_request_irq(adapter); |
|
3593 if (err) |
|
3594 goto err_req_irq; |
|
3595 |
|
3596 /* |
|
3597 * Work around PCIe errata with MSI interrupts causing some chipsets to |
|
3598 * ignore e1000e MSI messages, which means we need to test our MSI |
|
3599 * interrupt now |
|
3600 */ |
|
3601 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
|
3602 err = e1000_test_msi(adapter); |
|
3603 if (err) { |
|
3604 e_err("Interrupt allocation failed\n"); |
|
3605 goto err_req_irq; |
|
3606 } |
|
3607 } |
|
3608 |
|
3609 /* From here on the code is the same as e1000e_up() */ |
|
3610 clear_bit(__E1000_DOWN, &adapter->state); |
|
3611 |
|
3612 napi_enable(&adapter->napi); |
|
3613 |
|
3614 e1000_irq_enable(adapter); |
|
3615 |
|
3616 netif_start_queue(netdev); |
|
3617 |
|
3618 adapter->idle_check = true; |
|
3619 pm_runtime_put(&pdev->dev); |
|
3620 |
|
3621 /* fire a link status change interrupt to start the watchdog */ |
|
3622 if (adapter->msix_entries) |
|
3623 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); |
|
3624 else |
|
3625 ew32(ICS, E1000_ICS_LSC); |
|
3626 |
|
3627 return 0; |
|
3628 |
|
3629 err_req_irq: |
|
3630 e1000_release_hw_control(adapter); |
|
3631 e1000_power_down_phy(adapter); |
|
3632 e1000e_free_rx_resources(adapter); |
|
3633 err_setup_rx: |
|
3634 e1000e_free_tx_resources(adapter); |
|
3635 err_setup_tx: |
|
3636 e1000e_reset(adapter); |
|
3637 pm_runtime_put_sync(&pdev->dev); |
|
3638 |
|
3639 return err; |
|
3640 } |
|
3641 |
|
3642 /** |
|
3643 * e1000_close - Disables a network interface |
|
3644 * @netdev: network interface device structure |
|
3645 * |
|
3646 * Returns 0, this is not allowed to fail |
|
3647 * |
|
3648 * The close entry point is called when an interface is de-activated |
|
3649 * by the OS. The hardware is still under the drivers control, but |
|
3650 * needs to be disabled. A global MAC reset is issued to stop the |
|
3651 * hardware, and all transmit and receive resources are freed. |
|
3652 **/ |
|
3653 static int e1000_close(struct net_device *netdev) |
|
3654 { |
|
3655 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3656 struct pci_dev *pdev = adapter->pdev; |
|
3657 |
|
3658 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
|
3659 |
|
3660 pm_runtime_get_sync(&pdev->dev); |
|
3661 |
|
3662 if (!test_bit(__E1000_DOWN, &adapter->state)) { |
|
3663 e1000e_down(adapter); |
|
3664 e1000_free_irq(adapter); |
|
3665 } |
|
3666 e1000_power_down_phy(adapter); |
|
3667 |
|
3668 e1000e_free_tx_resources(adapter); |
|
3669 e1000e_free_rx_resources(adapter); |
|
3670 |
|
3671 /* |
|
3672 * kill manageability vlan ID if supported, but not if a vlan with |
|
3673 * the same ID is registered on the host OS (let 8021q kill it) |
|
3674 */ |
|
3675 if ((adapter->hw.mng_cookie.status & |
|
3676 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
3677 !(adapter->vlgrp && |
|
3678 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) |
|
3679 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
3680 |
|
3681 /* |
|
3682 * If AMT is enabled, let the firmware know that the network |
|
3683 * interface is now closed |
|
3684 */ |
|
3685 if (adapter->flags & FLAG_HAS_AMT) |
|
3686 e1000_release_hw_control(adapter); |
|
3687 |
|
3688 pm_runtime_put_sync(&pdev->dev); |
|
3689 |
|
3690 return 0; |
|
3691 } |
|
3692 /** |
|
3693 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
3694 * @netdev: network interface device structure |
|
3695 * @p: pointer to an address structure |
|
3696 * |
|
3697 * Returns 0 on success, negative on failure |
|
3698 **/ |
|
3699 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
3700 { |
|
3701 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3702 struct sockaddr *addr = p; |
|
3703 |
|
3704 if (!is_valid_ether_addr(addr->sa_data)) |
|
3705 return -EADDRNOTAVAIL; |
|
3706 |
|
3707 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
3708 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); |
|
3709 |
|
3710 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); |
|
3711 |
|
3712 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { |
|
3713 /* activate the work around */ |
|
3714 e1000e_set_laa_state_82571(&adapter->hw, 1); |
|
3715 |
|
3716 /* |
|
3717 * Hold a copy of the LAA in RAR[14] This is done so that |
|
3718 * between the time RAR[0] gets clobbered and the time it |
|
3719 * gets fixed (in e1000_watchdog), the actual LAA is in one |
|
3720 * of the RARs and no incoming packets directed to this port |
|
3721 * are dropped. Eventually the LAA will be in RAR[0] and |
|
3722 * RAR[14] |
|
3723 */ |
|
3724 e1000e_rar_set(&adapter->hw, |
|
3725 adapter->hw.mac.addr, |
|
3726 adapter->hw.mac.rar_entry_count - 1); |
|
3727 } |
|
3728 |
|
3729 return 0; |
|
3730 } |
|
3731 |
|
3732 /** |
|
3733 * e1000e_update_phy_task - work thread to update phy |
|
3734 * @work: pointer to our work struct |
|
3735 * |
|
3736 * this worker thread exists because we must acquire a |
|
3737 * semaphore to read the phy, which we could msleep while |
|
3738 * waiting for it, and we can't msleep in a timer. |
|
3739 **/ |
|
3740 static void e1000e_update_phy_task(struct work_struct *work) |
|
3741 { |
|
3742 struct e1000_adapter *adapter = container_of(work, |
|
3743 struct e1000_adapter, update_phy_task); |
|
3744 e1000_get_phy_info(&adapter->hw); |
|
3745 } |
|
3746 |
|
3747 /* |
|
3748 * Need to wait a few seconds after link up to get diagnostic information from |
|
3749 * the phy |
|
3750 */ |
|
3751 static void e1000_update_phy_info(unsigned long data) |
|
3752 { |
|
3753 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
3754 schedule_work(&adapter->update_phy_task); |
|
3755 } |
|
3756 |
|
3757 /** |
|
3758 * e1000e_update_stats - Update the board statistics counters |
|
3759 * @adapter: board private structure |
|
3760 **/ |
|
3761 void e1000e_update_stats(struct e1000_adapter *adapter) |
|
3762 { |
|
3763 struct net_device *netdev = adapter->netdev; |
|
3764 struct e1000_hw *hw = &adapter->hw; |
|
3765 struct pci_dev *pdev = adapter->pdev; |
|
3766 u16 phy_data; |
|
3767 |
|
3768 /* |
|
3769 * Prevent stats update while adapter is being reset, or if the pci |
|
3770 * connection is down. |
|
3771 */ |
|
3772 if (adapter->link_speed == 0) |
|
3773 return; |
|
3774 if (pci_channel_offline(pdev)) |
|
3775 return; |
|
3776 |
|
3777 adapter->stats.crcerrs += er32(CRCERRS); |
|
3778 adapter->stats.gprc += er32(GPRC); |
|
3779 adapter->stats.gorc += er32(GORCL); |
|
3780 er32(GORCH); /* Clear gorc */ |
|
3781 adapter->stats.bprc += er32(BPRC); |
|
3782 adapter->stats.mprc += er32(MPRC); |
|
3783 adapter->stats.roc += er32(ROC); |
|
3784 |
|
3785 adapter->stats.mpc += er32(MPC); |
|
3786 if ((hw->phy.type == e1000_phy_82578) || |
|
3787 (hw->phy.type == e1000_phy_82577)) { |
|
3788 e1e_rphy(hw, HV_SCC_UPPER, &phy_data); |
|
3789 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data)) |
|
3790 adapter->stats.scc += phy_data; |
|
3791 |
|
3792 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data); |
|
3793 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data)) |
|
3794 adapter->stats.ecol += phy_data; |
|
3795 |
|
3796 e1e_rphy(hw, HV_MCC_UPPER, &phy_data); |
|
3797 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data)) |
|
3798 adapter->stats.mcc += phy_data; |
|
3799 |
|
3800 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data); |
|
3801 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data)) |
|
3802 adapter->stats.latecol += phy_data; |
|
3803 |
|
3804 e1e_rphy(hw, HV_DC_UPPER, &phy_data); |
|
3805 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data)) |
|
3806 adapter->stats.dc += phy_data; |
|
3807 } else { |
|
3808 adapter->stats.scc += er32(SCC); |
|
3809 adapter->stats.ecol += er32(ECOL); |
|
3810 adapter->stats.mcc += er32(MCC); |
|
3811 adapter->stats.latecol += er32(LATECOL); |
|
3812 adapter->stats.dc += er32(DC); |
|
3813 } |
|
3814 adapter->stats.xonrxc += er32(XONRXC); |
|
3815 adapter->stats.xontxc += er32(XONTXC); |
|
3816 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3817 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3818 adapter->stats.gptc += er32(GPTC); |
|
3819 adapter->stats.gotc += er32(GOTCL); |
|
3820 er32(GOTCH); /* Clear gotc */ |
|
3821 adapter->stats.rnbc += er32(RNBC); |
|
3822 adapter->stats.ruc += er32(RUC); |
|
3823 |
|
3824 adapter->stats.mptc += er32(MPTC); |
|
3825 adapter->stats.bptc += er32(BPTC); |
|
3826 |
|
3827 /* used for adaptive IFS */ |
|
3828 |
|
3829 hw->mac.tx_packet_delta = er32(TPT); |
|
3830 adapter->stats.tpt += hw->mac.tx_packet_delta; |
|
3831 if ((hw->phy.type == e1000_phy_82578) || |
|
3832 (hw->phy.type == e1000_phy_82577)) { |
|
3833 e1e_rphy(hw, HV_COLC_UPPER, &phy_data); |
|
3834 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data)) |
|
3835 hw->mac.collision_delta = phy_data; |
|
3836 } else { |
|
3837 hw->mac.collision_delta = er32(COLC); |
|
3838 } |
|
3839 adapter->stats.colc += hw->mac.collision_delta; |
|
3840 |
|
3841 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3842 adapter->stats.rxerrc += er32(RXERRC); |
|
3843 if ((hw->phy.type == e1000_phy_82578) || |
|
3844 (hw->phy.type == e1000_phy_82577)) { |
|
3845 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data); |
|
3846 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data)) |
|
3847 adapter->stats.tncrs += phy_data; |
|
3848 } else { |
|
3849 if ((hw->mac.type != e1000_82574) && |
|
3850 (hw->mac.type != e1000_82583)) |
|
3851 adapter->stats.tncrs += er32(TNCRS); |
|
3852 } |
|
3853 adapter->stats.cexterr += er32(CEXTERR); |
|
3854 adapter->stats.tsctc += er32(TSCTC); |
|
3855 adapter->stats.tsctfc += er32(TSCTFC); |
|
3856 |
|
3857 /* Fill out the OS statistics structure */ |
|
3858 netdev->stats.multicast = adapter->stats.mprc; |
|
3859 netdev->stats.collisions = adapter->stats.colc; |
|
3860 |
|
3861 /* Rx Errors */ |
|
3862 |
|
3863 /* |
|
3864 * RLEC on some newer hardware can be incorrect so build |
|
3865 * our own version based on RUC and ROC |
|
3866 */ |
|
3867 netdev->stats.rx_errors = adapter->stats.rxerrc + |
|
3868 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3869 adapter->stats.ruc + adapter->stats.roc + |
|
3870 adapter->stats.cexterr; |
|
3871 netdev->stats.rx_length_errors = adapter->stats.ruc + |
|
3872 adapter->stats.roc; |
|
3873 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3874 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3875 netdev->stats.rx_missed_errors = adapter->stats.mpc; |
|
3876 |
|
3877 /* Tx Errors */ |
|
3878 netdev->stats.tx_errors = adapter->stats.ecol + |
|
3879 adapter->stats.latecol; |
|
3880 netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
|
3881 netdev->stats.tx_window_errors = adapter->stats.latecol; |
|
3882 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3883 |
|
3884 /* Tx Dropped needs to be maintained elsewhere */ |
|
3885 |
|
3886 /* Management Stats */ |
|
3887 adapter->stats.mgptc += er32(MGTPTC); |
|
3888 adapter->stats.mgprc += er32(MGTPRC); |
|
3889 adapter->stats.mgpdc += er32(MGTPDC); |
|
3890 } |
|
3891 |
|
3892 /** |
|
3893 * e1000_phy_read_status - Update the PHY register status snapshot |
|
3894 * @adapter: board private structure |
|
3895 **/ |
|
3896 static void e1000_phy_read_status(struct e1000_adapter *adapter) |
|
3897 { |
|
3898 struct e1000_hw *hw = &adapter->hw; |
|
3899 struct e1000_phy_regs *phy = &adapter->phy_regs; |
|
3900 int ret_val; |
|
3901 |
|
3902 if ((er32(STATUS) & E1000_STATUS_LU) && |
|
3903 (adapter->hw.phy.media_type == e1000_media_type_copper)) { |
|
3904 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); |
|
3905 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); |
|
3906 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); |
|
3907 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); |
|
3908 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); |
|
3909 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); |
|
3910 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); |
|
3911 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); |
|
3912 if (ret_val) |
|
3913 e_warn("Error reading PHY register\n"); |
|
3914 } else { |
|
3915 /* |
|
3916 * Do not read PHY registers if link is not up |
|
3917 * Set values to typical power-on defaults |
|
3918 */ |
|
3919 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); |
|
3920 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | |
|
3921 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | |
|
3922 BMSR_ERCAP); |
|
3923 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | |
|
3924 ADVERTISE_ALL | ADVERTISE_CSMA); |
|
3925 phy->lpa = 0; |
|
3926 phy->expansion = EXPANSION_ENABLENPAGE; |
|
3927 phy->ctrl1000 = ADVERTISE_1000FULL; |
|
3928 phy->stat1000 = 0; |
|
3929 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); |
|
3930 } |
|
3931 } |
|
3932 |
|
3933 static void e1000_print_link_info(struct e1000_adapter *adapter) |
|
3934 { |
|
3935 struct e1000_hw *hw = &adapter->hw; |
|
3936 u32 ctrl = er32(CTRL); |
|
3937 |
|
3938 /* Link status message must follow this format for user tools */ |
|
3939 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " |
|
3940 "Flow Control: %s\n", |
|
3941 adapter->netdev->name, |
|
3942 adapter->link_speed, |
|
3943 (adapter->link_duplex == FULL_DUPLEX) ? |
|
3944 "Full Duplex" : "Half Duplex", |
|
3945 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? |
|
3946 "RX/TX" : |
|
3947 ((ctrl & E1000_CTRL_RFCE) ? "RX" : |
|
3948 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); |
|
3949 } |
|
3950 |
|
3951 bool e1000e_has_link(struct e1000_adapter *adapter) |
|
3952 { |
|
3953 struct e1000_hw *hw = &adapter->hw; |
|
3954 bool link_active = 0; |
|
3955 s32 ret_val = 0; |
|
3956 |
|
3957 /* |
|
3958 * get_link_status is set on LSC (link status) interrupt or |
|
3959 * Rx sequence error interrupt. get_link_status will stay |
|
3960 * false until the check_for_link establishes link |
|
3961 * for copper adapters ONLY |
|
3962 */ |
|
3963 switch (hw->phy.media_type) { |
|
3964 case e1000_media_type_copper: |
|
3965 if (hw->mac.get_link_status) { |
|
3966 ret_val = hw->mac.ops.check_for_link(hw); |
|
3967 link_active = !hw->mac.get_link_status; |
|
3968 } else { |
|
3969 link_active = 1; |
|
3970 } |
|
3971 break; |
|
3972 case e1000_media_type_fiber: |
|
3973 ret_val = hw->mac.ops.check_for_link(hw); |
|
3974 link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
|
3975 break; |
|
3976 case e1000_media_type_internal_serdes: |
|
3977 ret_val = hw->mac.ops.check_for_link(hw); |
|
3978 link_active = adapter->hw.mac.serdes_has_link; |
|
3979 break; |
|
3980 default: |
|
3981 case e1000_media_type_unknown: |
|
3982 break; |
|
3983 } |
|
3984 |
|
3985 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && |
|
3986 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
|
3987 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ |
|
3988 e_info("Gigabit has been disabled, downgrading speed\n"); |
|
3989 } |
|
3990 |
|
3991 return link_active; |
|
3992 } |
|
3993 |
|
3994 static void e1000e_enable_receives(struct e1000_adapter *adapter) |
|
3995 { |
|
3996 /* make sure the receive unit is started */ |
|
3997 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && |
|
3998 (adapter->flags & FLAG_RX_RESTART_NOW)) { |
|
3999 struct e1000_hw *hw = &adapter->hw; |
|
4000 u32 rctl = er32(RCTL); |
|
4001 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
4002 adapter->flags &= ~FLAG_RX_RESTART_NOW; |
|
4003 } |
|
4004 } |
|
4005 |
|
4006 /** |
|
4007 * e1000_watchdog - Timer Call-back |
|
4008 * @data: pointer to adapter cast into an unsigned long |
|
4009 **/ |
|
4010 static void e1000_watchdog(unsigned long data) |
|
4011 { |
|
4012 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
4013 |
|
4014 /* Do the rest outside of interrupt context */ |
|
4015 schedule_work(&adapter->watchdog_task); |
|
4016 |
|
4017 /* TODO: make this use queue_delayed_work() */ |
|
4018 } |
|
4019 |
|
4020 static void e1000_watchdog_task(struct work_struct *work) |
|
4021 { |
|
4022 struct e1000_adapter *adapter = container_of(work, |
|
4023 struct e1000_adapter, watchdog_task); |
|
4024 struct net_device *netdev = adapter->netdev; |
|
4025 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
4026 struct e1000_phy_info *phy = &adapter->hw.phy; |
|
4027 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4028 struct e1000_hw *hw = &adapter->hw; |
|
4029 u32 link, tctl; |
|
4030 int tx_pending = 0; |
|
4031 |
|
4032 link = e1000e_has_link(adapter); |
|
4033 if ((adapter->ecdev && (ecdev_get_link(adapter->ecdev)) && link) |
|
4034 || (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)) { |
|
4035 /* Cancel scheduled suspend requests. */ |
|
4036 pm_runtime_resume(netdev->dev.parent); |
|
4037 |
|
4038 e1000e_enable_receives(adapter); |
|
4039 goto link_up; |
|
4040 } |
|
4041 |
|
4042 if ((e1000e_enable_tx_pkt_filtering(hw)) && |
|
4043 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) |
|
4044 e1000_update_mng_vlan(adapter); |
|
4045 |
|
4046 if (link) { |
|
4047 if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) |
|
4048 || (!adapter->ecdev && !netif_carrier_ok(netdev))) { |
|
4049 bool txb2b = 1; |
|
4050 |
|
4051 /* Cancel scheduled suspend requests. */ |
|
4052 pm_runtime_resume(netdev->dev.parent); |
|
4053 |
|
4054 /* update snapshot of PHY registers on LSC */ |
|
4055 e1000_phy_read_status(adapter); |
|
4056 mac->ops.get_link_up_info(&adapter->hw, |
|
4057 &adapter->link_speed, |
|
4058 &adapter->link_duplex); |
|
4059 e1000_print_link_info(adapter); |
|
4060 /* |
|
4061 * On supported PHYs, check for duplex mismatch only |
|
4062 * if link has autonegotiated at 10/100 half |
|
4063 */ |
|
4064 if ((hw->phy.type == e1000_phy_igp_3 || |
|
4065 hw->phy.type == e1000_phy_bm) && |
|
4066 (hw->mac.autoneg == true) && |
|
4067 (adapter->link_speed == SPEED_10 || |
|
4068 adapter->link_speed == SPEED_100) && |
|
4069 (adapter->link_duplex == HALF_DUPLEX)) { |
|
4070 u16 autoneg_exp; |
|
4071 |
|
4072 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); |
|
4073 |
|
4074 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) |
|
4075 e_info("Autonegotiated half duplex but" |
|
4076 " link partner cannot autoneg. " |
|
4077 " Try forcing full duplex if " |
|
4078 "link gets many collisions.\n"); |
|
4079 } |
|
4080 |
|
4081 /* adjust timeout factor according to speed/duplex */ |
|
4082 adapter->tx_timeout_factor = 1; |
|
4083 switch (adapter->link_speed) { |
|
4084 case SPEED_10: |
|
4085 txb2b = 0; |
|
4086 adapter->tx_timeout_factor = 16; |
|
4087 break; |
|
4088 case SPEED_100: |
|
4089 txb2b = 0; |
|
4090 adapter->tx_timeout_factor = 10; |
|
4091 break; |
|
4092 } |
|
4093 |
|
4094 /* |
|
4095 * workaround: re-program speed mode bit after |
|
4096 * link-up event |
|
4097 */ |
|
4098 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
|
4099 !txb2b) { |
|
4100 u32 tarc0; |
|
4101 tarc0 = er32(TARC(0)); |
|
4102 tarc0 &= ~SPEED_MODE_BIT; |
|
4103 ew32(TARC(0), tarc0); |
|
4104 } |
|
4105 |
|
4106 /* |
|
4107 * disable TSO for pcie and 10/100 speeds, to avoid |
|
4108 * some hardware issues |
|
4109 */ |
|
4110 if (!(adapter->flags & FLAG_TSO_FORCE)) { |
|
4111 switch (adapter->link_speed) { |
|
4112 case SPEED_10: |
|
4113 case SPEED_100: |
|
4114 e_info("10/100 speed: disabling TSO\n"); |
|
4115 netdev->features &= ~NETIF_F_TSO; |
|
4116 netdev->features &= ~NETIF_F_TSO6; |
|
4117 break; |
|
4118 case SPEED_1000: |
|
4119 netdev->features |= NETIF_F_TSO; |
|
4120 netdev->features |= NETIF_F_TSO6; |
|
4121 break; |
|
4122 default: |
|
4123 /* oops */ |
|
4124 break; |
|
4125 } |
|
4126 } |
|
4127 |
|
4128 /* |
|
4129 * enable transmits in the hardware, need to do this |
|
4130 * after setting TARC(0) |
|
4131 */ |
|
4132 tctl = er32(TCTL); |
|
4133 tctl |= E1000_TCTL_EN; |
|
4134 ew32(TCTL, tctl); |
|
4135 |
|
4136 /* |
|
4137 * Perform any post-link-up configuration before |
|
4138 * reporting link up. |
|
4139 */ |
|
4140 if (phy->ops.cfg_on_link_up) |
|
4141 phy->ops.cfg_on_link_up(hw); |
|
4142 |
|
4143 if (adapter->ecdev) |
|
4144 ecdev_set_link(adapter->ecdev, 1); |
|
4145 else |
|
4146 netif_carrier_on(netdev); |
|
4147 |
|
4148 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
4149 mod_timer(&adapter->phy_info_timer, |
|
4150 round_jiffies(jiffies + 2 * HZ)); |
|
4151 } |
|
4152 } else { |
|
4153 if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) |
|
4154 || (!adapter->ecdev && netif_carrier_ok(netdev))) { |
|
4155 adapter->link_speed = 0; |
|
4156 adapter->link_duplex = 0; |
|
4157 /* Link status message must follow this format */ |
|
4158 printk(KERN_INFO "e1000e: %s NIC Link is Down\n", |
|
4159 adapter->netdev->name); |
|
4160 if (adapter->ecdev) |
|
4161 ecdev_set_link(adapter->ecdev, 0); |
|
4162 else |
|
4163 netif_carrier_off(netdev); |
|
4164 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
4165 mod_timer(&adapter->phy_info_timer, |
|
4166 round_jiffies(jiffies + 2 * HZ)); |
|
4167 |
|
4168 if (adapter->flags & FLAG_RX_NEEDS_RESTART) |
|
4169 schedule_work(&adapter->reset_task); |
|
4170 else |
|
4171 pm_schedule_suspend(netdev->dev.parent, |
|
4172 LINK_TIMEOUT); |
|
4173 } |
|
4174 } |
|
4175 |
|
4176 link_up: |
|
4177 e1000e_update_stats(adapter); |
|
4178 |
|
4179 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
4180 adapter->tpt_old = adapter->stats.tpt; |
|
4181 mac->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
4182 adapter->colc_old = adapter->stats.colc; |
|
4183 |
|
4184 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
|
4185 adapter->gorc_old = adapter->stats.gorc; |
|
4186 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; |
|
4187 adapter->gotc_old = adapter->stats.gotc; |
|
4188 |
|
4189 e1000e_update_adaptive(&adapter->hw); |
|
4190 |
|
4191 if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) |
|
4192 || (!adapter->ecdev && !netif_carrier_ok(netdev))) { |
|
4193 tx_pending = (e1000_desc_unused(tx_ring) + 1 < |
|
4194 tx_ring->count); |
|
4195 if (tx_pending) { |
|
4196 /* |
|
4197 * We've lost link, so the controller stops DMA, |
|
4198 * but we've got queued Tx work that's never going |
|
4199 * to get done, so reset controller to flush Tx. |
|
4200 * (Do the reset outside of interrupt context). |
|
4201 */ |
|
4202 adapter->tx_timeout_count++; |
|
4203 schedule_work(&adapter->reset_task); |
|
4204 /* return immediately since reset is imminent */ |
|
4205 return; |
|
4206 } |
|
4207 } |
|
4208 |
|
4209 /* Simple mode for Interrupt Throttle Rate (ITR) */ |
|
4210 if (adapter->itr_setting == 4) { |
|
4211 /* |
|
4212 * Symmetric Tx/Rx gets a reduced ITR=2000; |
|
4213 * Total asymmetrical Tx or Rx gets ITR=8000; |
|
4214 * everyone else is between 2000-8000. |
|
4215 */ |
|
4216 u32 goc = (adapter->gotc + adapter->gorc) / 10000; |
|
4217 u32 dif = (adapter->gotc > adapter->gorc ? |
|
4218 adapter->gotc - adapter->gorc : |
|
4219 adapter->gorc - adapter->gotc) / 10000; |
|
4220 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
|
4221 |
|
4222 ew32(ITR, 1000000000 / (itr * 256)); |
|
4223 } |
|
4224 |
|
4225 /* Cause software interrupt to ensure Rx ring is cleaned */ |
|
4226 if (adapter->msix_entries) |
|
4227 ew32(ICS, adapter->rx_ring->ims_val); |
|
4228 else |
|
4229 ew32(ICS, E1000_ICS_RXDMT0); |
|
4230 |
|
4231 /* Force detection of hung controller every watchdog period */ |
|
4232 adapter->detect_tx_hung = 1; |
|
4233 |
|
4234 /* |
|
4235 * With 82571 controllers, LAA may be overwritten due to controller |
|
4236 * reset from the other port. Set the appropriate LAA in RAR[0] |
|
4237 */ |
|
4238 if (e1000e_get_laa_state_82571(hw)) |
|
4239 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); |
|
4240 |
|
4241 /* Reset the timer */ |
|
4242 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
4243 mod_timer(&adapter->watchdog_timer, |
|
4244 round_jiffies(jiffies + 2 * HZ)); |
|
4245 } |
|
4246 |
|
4247 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
4248 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
4249 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
4250 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
4251 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
4252 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
4253 |
|
4254 static int e1000_tso(struct e1000_adapter *adapter, |
|
4255 struct sk_buff *skb) |
|
4256 { |
|
4257 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4258 struct e1000_context_desc *context_desc; |
|
4259 struct e1000_buffer *buffer_info; |
|
4260 unsigned int i; |
|
4261 u32 cmd_length = 0; |
|
4262 u16 ipcse = 0, tucse, mss; |
|
4263 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
4264 int err; |
|
4265 |
|
4266 if (!skb_is_gso(skb)) |
|
4267 return 0; |
|
4268 |
|
4269 if (skb_header_cloned(skb)) { |
|
4270 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
4271 if (err) |
|
4272 return err; |
|
4273 } |
|
4274 |
|
4275 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
4276 mss = skb_shinfo(skb)->gso_size; |
|
4277 if (skb->protocol == htons(ETH_P_IP)) { |
|
4278 struct iphdr *iph = ip_hdr(skb); |
|
4279 iph->tot_len = 0; |
|
4280 iph->check = 0; |
|
4281 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, |
|
4282 0, IPPROTO_TCP, 0); |
|
4283 cmd_length = E1000_TXD_CMD_IP; |
|
4284 ipcse = skb_transport_offset(skb) - 1; |
|
4285 } else if (skb_is_gso_v6(skb)) { |
|
4286 ipv6_hdr(skb)->payload_len = 0; |
|
4287 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
4288 &ipv6_hdr(skb)->daddr, |
|
4289 0, IPPROTO_TCP, 0); |
|
4290 ipcse = 0; |
|
4291 } |
|
4292 ipcss = skb_network_offset(skb); |
|
4293 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
4294 tucss = skb_transport_offset(skb); |
|
4295 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
4296 tucse = 0; |
|
4297 |
|
4298 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
4299 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
4300 |
|
4301 i = tx_ring->next_to_use; |
|
4302 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
4303 buffer_info = &tx_ring->buffer_info[i]; |
|
4304 |
|
4305 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
4306 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
4307 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
4308 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
4309 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
4310 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
4311 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
4312 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
4313 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
4314 |
|
4315 buffer_info->time_stamp = jiffies; |
|
4316 buffer_info->next_to_watch = i; |
|
4317 |
|
4318 i++; |
|
4319 if (i == tx_ring->count) |
|
4320 i = 0; |
|
4321 tx_ring->next_to_use = i; |
|
4322 |
|
4323 return 1; |
|
4324 } |
|
4325 |
|
4326 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) |
|
4327 { |
|
4328 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4329 struct e1000_context_desc *context_desc; |
|
4330 struct e1000_buffer *buffer_info; |
|
4331 unsigned int i; |
|
4332 u8 css; |
|
4333 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
4334 __be16 protocol; |
|
4335 |
|
4336 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
4337 return 0; |
|
4338 |
|
4339 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) |
|
4340 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; |
|
4341 else |
|
4342 protocol = skb->protocol; |
|
4343 |
|
4344 switch (protocol) { |
|
4345 case cpu_to_be16(ETH_P_IP): |
|
4346 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
4347 cmd_len |= E1000_TXD_CMD_TCP; |
|
4348 break; |
|
4349 case cpu_to_be16(ETH_P_IPV6): |
|
4350 /* XXX not handling all IPV6 headers */ |
|
4351 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
4352 cmd_len |= E1000_TXD_CMD_TCP; |
|
4353 break; |
|
4354 default: |
|
4355 if (unlikely(net_ratelimit())) |
|
4356 e_warn("checksum_partial proto=%x!\n", |
|
4357 be16_to_cpu(protocol)); |
|
4358 break; |
|
4359 } |
|
4360 |
|
4361 css = skb_transport_offset(skb); |
|
4362 |
|
4363 i = tx_ring->next_to_use; |
|
4364 buffer_info = &tx_ring->buffer_info[i]; |
|
4365 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
4366 |
|
4367 context_desc->lower_setup.ip_config = 0; |
|
4368 context_desc->upper_setup.tcp_fields.tucss = css; |
|
4369 context_desc->upper_setup.tcp_fields.tucso = |
|
4370 css + skb->csum_offset; |
|
4371 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
4372 context_desc->tcp_seg_setup.data = 0; |
|
4373 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
4374 |
|
4375 buffer_info->time_stamp = jiffies; |
|
4376 buffer_info->next_to_watch = i; |
|
4377 |
|
4378 i++; |
|
4379 if (i == tx_ring->count) |
|
4380 i = 0; |
|
4381 tx_ring->next_to_use = i; |
|
4382 |
|
4383 return 1; |
|
4384 } |
|
4385 |
|
4386 #define E1000_MAX_PER_TXD 8192 |
|
4387 #define E1000_MAX_TXD_PWR 12 |
|
4388 |
|
4389 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
4390 struct sk_buff *skb, unsigned int first, |
|
4391 unsigned int max_per_txd, unsigned int nr_frags, |
|
4392 unsigned int mss) |
|
4393 { |
|
4394 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4395 struct pci_dev *pdev = adapter->pdev; |
|
4396 struct e1000_buffer *buffer_info; |
|
4397 unsigned int len = skb_headlen(skb); |
|
4398 unsigned int offset = 0, size, count = 0, i; |
|
4399 unsigned int f, bytecount, segs; |
|
4400 |
|
4401 i = tx_ring->next_to_use; |
|
4402 |
|
4403 while (len) { |
|
4404 buffer_info = &tx_ring->buffer_info[i]; |
|
4405 size = min(len, max_per_txd); |
|
4406 |
|
4407 buffer_info->length = size; |
|
4408 buffer_info->time_stamp = jiffies; |
|
4409 buffer_info->next_to_watch = i; |
|
4410 buffer_info->dma = dma_map_single(&pdev->dev, |
|
4411 skb->data + offset, |
|
4412 size, DMA_TO_DEVICE); |
|
4413 buffer_info->mapped_as_page = false; |
|
4414 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
4415 goto dma_error; |
|
4416 |
|
4417 len -= size; |
|
4418 offset += size; |
|
4419 count++; |
|
4420 |
|
4421 if (len) { |
|
4422 i++; |
|
4423 if (i == tx_ring->count) |
|
4424 i = 0; |
|
4425 } |
|
4426 } |
|
4427 |
|
4428 for (f = 0; f < nr_frags; f++) { |
|
4429 struct skb_frag_struct *frag; |
|
4430 |
|
4431 frag = &skb_shinfo(skb)->frags[f]; |
|
4432 len = frag->size; |
|
4433 offset = frag->page_offset; |
|
4434 |
|
4435 while (len) { |
|
4436 i++; |
|
4437 if (i == tx_ring->count) |
|
4438 i = 0; |
|
4439 |
|
4440 buffer_info = &tx_ring->buffer_info[i]; |
|
4441 size = min(len, max_per_txd); |
|
4442 |
|
4443 buffer_info->length = size; |
|
4444 buffer_info->time_stamp = jiffies; |
|
4445 buffer_info->next_to_watch = i; |
|
4446 buffer_info->dma = dma_map_page(&pdev->dev, frag->page, |
|
4447 offset, size, |
|
4448 DMA_TO_DEVICE); |
|
4449 buffer_info->mapped_as_page = true; |
|
4450 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
4451 goto dma_error; |
|
4452 |
|
4453 len -= size; |
|
4454 offset += size; |
|
4455 count++; |
|
4456 } |
|
4457 } |
|
4458 |
|
4459 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
4460 /* multiply data chunks by size of headers */ |
|
4461 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; |
|
4462 |
|
4463 tx_ring->buffer_info[i].skb = skb; |
|
4464 tx_ring->buffer_info[i].segs = segs; |
|
4465 tx_ring->buffer_info[i].bytecount = bytecount; |
|
4466 tx_ring->buffer_info[first].next_to_watch = i; |
|
4467 |
|
4468 return count; |
|
4469 |
|
4470 dma_error: |
|
4471 dev_err(&pdev->dev, "TX DMA map failed\n"); |
|
4472 buffer_info->dma = 0; |
|
4473 if (count) |
|
4474 count--; |
|
4475 |
|
4476 while (count--) { |
|
4477 if (i==0) |
|
4478 i += tx_ring->count; |
|
4479 i--; |
|
4480 buffer_info = &tx_ring->buffer_info[i]; |
|
4481 e1000_put_txbuf(adapter, buffer_info);; |
|
4482 } |
|
4483 |
|
4484 return 0; |
|
4485 } |
|
4486 |
|
4487 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
4488 int tx_flags, int count) |
|
4489 { |
|
4490 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4491 struct e1000_tx_desc *tx_desc = NULL; |
|
4492 struct e1000_buffer *buffer_info; |
|
4493 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
4494 unsigned int i; |
|
4495 |
|
4496 if (tx_flags & E1000_TX_FLAGS_TSO) { |
|
4497 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
4498 E1000_TXD_CMD_TSE; |
|
4499 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
4500 |
|
4501 if (tx_flags & E1000_TX_FLAGS_IPV4) |
|
4502 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
4503 } |
|
4504 |
|
4505 if (tx_flags & E1000_TX_FLAGS_CSUM) { |
|
4506 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
4507 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
4508 } |
|
4509 |
|
4510 if (tx_flags & E1000_TX_FLAGS_VLAN) { |
|
4511 txd_lower |= E1000_TXD_CMD_VLE; |
|
4512 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
4513 } |
|
4514 |
|
4515 i = tx_ring->next_to_use; |
|
4516 |
|
4517 while (count--) { |
|
4518 buffer_info = &tx_ring->buffer_info[i]; |
|
4519 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
4520 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4521 tx_desc->lower.data = |
|
4522 cpu_to_le32(txd_lower | buffer_info->length); |
|
4523 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
4524 |
|
4525 i++; |
|
4526 if (i == tx_ring->count) |
|
4527 i = 0; |
|
4528 } |
|
4529 |
|
4530 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
4531 |
|
4532 /* |
|
4533 * Force memory writes to complete before letting h/w |
|
4534 * know there are new descriptors to fetch. (Only |
|
4535 * applicable for weak-ordered memory model archs, |
|
4536 * such as IA-64). |
|
4537 */ |
|
4538 wmb(); |
|
4539 |
|
4540 tx_ring->next_to_use = i; |
|
4541 writel(i, adapter->hw.hw_addr + tx_ring->tail); |
|
4542 /* |
|
4543 * we need this if more than one processor can write to our tail |
|
4544 * at a time, it synchronizes IO on IA64/Altix systems |
|
4545 */ |
|
4546 mmiowb(); |
|
4547 } |
|
4548 |
|
4549 #define MINIMUM_DHCP_PACKET_SIZE 282 |
|
4550 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
|
4551 struct sk_buff *skb) |
|
4552 { |
|
4553 struct e1000_hw *hw = &adapter->hw; |
|
4554 u16 length, offset; |
|
4555 |
|
4556 if (vlan_tx_tag_present(skb)) { |
|
4557 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && |
|
4558 (adapter->hw.mng_cookie.status & |
|
4559 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
|
4560 return 0; |
|
4561 } |
|
4562 |
|
4563 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) |
|
4564 return 0; |
|
4565 |
|
4566 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) |
|
4567 return 0; |
|
4568 |
|
4569 { |
|
4570 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); |
|
4571 struct udphdr *udp; |
|
4572 |
|
4573 if (ip->protocol != IPPROTO_UDP) |
|
4574 return 0; |
|
4575 |
|
4576 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); |
|
4577 if (ntohs(udp->dest) != 67) |
|
4578 return 0; |
|
4579 |
|
4580 offset = (u8 *)udp + 8 - skb->data; |
|
4581 length = skb->len - offset; |
|
4582 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); |
|
4583 } |
|
4584 |
|
4585 return 0; |
|
4586 } |
|
4587 |
|
4588 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
4589 { |
|
4590 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4591 |
|
4592 netif_stop_queue(netdev); |
|
4593 /* |
|
4594 * Herbert's original patch had: |
|
4595 * smp_mb__after_netif_stop_queue(); |
|
4596 * but since that doesn't exist yet, just open code it. |
|
4597 */ |
|
4598 smp_mb(); |
|
4599 |
|
4600 /* |
|
4601 * We need to check again in a case another CPU has just |
|
4602 * made room available. |
|
4603 */ |
|
4604 if (e1000_desc_unused(adapter->tx_ring) < size) |
|
4605 return -EBUSY; |
|
4606 |
|
4607 /* A reprieve! */ |
|
4608 netif_start_queue(netdev); |
|
4609 ++adapter->restart_queue; |
|
4610 return 0; |
|
4611 } |
|
4612 |
|
4613 static int e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
4614 { |
|
4615 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4616 |
|
4617 if (e1000_desc_unused(adapter->tx_ring) >= size) |
|
4618 return 0; |
|
4619 return __e1000_maybe_stop_tx(netdev, size); |
|
4620 } |
|
4621 |
|
4622 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
4623 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
4624 struct net_device *netdev) |
|
4625 { |
|
4626 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4627 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4628 unsigned int first; |
|
4629 unsigned int max_per_txd = E1000_MAX_PER_TXD; |
|
4630 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
4631 unsigned int tx_flags = 0; |
|
4632 unsigned int len = skb_headlen(skb); |
|
4633 unsigned int nr_frags; |
|
4634 unsigned int mss; |
|
4635 int count = 0; |
|
4636 int tso; |
|
4637 unsigned int f; |
|
4638 |
|
4639 if (test_bit(__E1000_DOWN, &adapter->state)) { |
|
4640 if (!adapter->ecdev) |
|
4641 dev_kfree_skb_any(skb); |
|
4642 return NETDEV_TX_OK; |
|
4643 } |
|
4644 |
|
4645 if (skb->len <= 0) { |
|
4646 if (!adapter->ecdev) |
|
4647 dev_kfree_skb_any(skb); |
|
4648 return NETDEV_TX_OK; |
|
4649 } |
|
4650 |
|
4651 mss = skb_shinfo(skb)->gso_size; |
|
4652 /* |
|
4653 * The controller does a simple calculation to |
|
4654 * make sure there is enough room in the FIFO before |
|
4655 * initiating the DMA for each buffer. The calc is: |
|
4656 * 4 = ceil(buffer len/mss). To make sure we don't |
|
4657 * overrun the FIFO, adjust the max buffer len if mss |
|
4658 * drops. |
|
4659 */ |
|
4660 if (mss) { |
|
4661 u8 hdr_len; |
|
4662 max_per_txd = min(mss << 2, max_per_txd); |
|
4663 max_txd_pwr = fls(max_per_txd) - 1; |
|
4664 |
|
4665 /* |
|
4666 * TSO Workaround for 82571/2/3 Controllers -- if skb->data |
|
4667 * points to just header, pull a few bytes of payload from |
|
4668 * frags into skb->data |
|
4669 */ |
|
4670 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
4671 /* |
|
4672 * we do this workaround for ES2LAN, but it is un-necessary, |
|
4673 * avoiding it could save a lot of cycles |
|
4674 */ |
|
4675 if (skb->data_len && (hdr_len == len)) { |
|
4676 unsigned int pull_size; |
|
4677 |
|
4678 pull_size = min((unsigned int)4, skb->data_len); |
|
4679 if (!__pskb_pull_tail(skb, pull_size)) { |
|
4680 e_err("__pskb_pull_tail failed.\n"); |
|
4681 if (!adapter->ecdev) |
|
4682 dev_kfree_skb_any(skb); |
|
4683 return NETDEV_TX_OK; |
|
4684 } |
|
4685 len = skb_headlen(skb); |
|
4686 } |
|
4687 } |
|
4688 |
|
4689 /* reserve a descriptor for the offload context */ |
|
4690 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
4691 count++; |
|
4692 count++; |
|
4693 |
|
4694 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
4695 |
|
4696 nr_frags = skb_shinfo(skb)->nr_frags; |
|
4697 for (f = 0; f < nr_frags; f++) |
|
4698 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
4699 max_txd_pwr); |
|
4700 |
|
4701 if (adapter->hw.mac.tx_pkt_filtering) |
|
4702 e1000_transfer_dhcp_info(adapter, skb); |
|
4703 |
|
4704 /* |
|
4705 * need: count + 2 desc gap to keep tail from touching |
|
4706 * head, otherwise try next time |
|
4707 */ |
|
4708 if (!adapter->ecdev && e1000_maybe_stop_tx(netdev, count + 2)) |
|
4709 return NETDEV_TX_BUSY; |
|
4710 |
|
4711 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { |
|
4712 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
4713 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
4714 } |
|
4715 |
|
4716 first = tx_ring->next_to_use; |
|
4717 |
|
4718 tso = e1000_tso(adapter, skb); |
|
4719 if (tso < 0) { |
|
4720 if (!adapter->ecdev) |
|
4721 dev_kfree_skb_any(skb); |
|
4722 return NETDEV_TX_OK; |
|
4723 } |
|
4724 |
|
4725 if (tso) |
|
4726 tx_flags |= E1000_TX_FLAGS_TSO; |
|
4727 else if (e1000_tx_csum(adapter, skb)) |
|
4728 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
4729 |
|
4730 /* |
|
4731 * Old method was to assume IPv4 packet by default if TSO was enabled. |
|
4732 * 82571 hardware supports TSO capabilities for IPv6 as well... |
|
4733 * no longer assume, we must. |
|
4734 */ |
|
4735 if (skb->protocol == htons(ETH_P_IP)) |
|
4736 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
4737 |
|
4738 /* if count is 0 then mapping error has occured */ |
|
4739 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); |
|
4740 if (count) { |
|
4741 e1000_tx_queue(adapter, tx_flags, count); |
|
4742 /* Make sure there is space in the ring for the next send. */ |
|
4743 if (!adapter->ecdev) |
|
4744 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); |
|
4745 |
|
4746 } else { |
|
4747 if (!adapter->ecdev) |
|
4748 dev_kfree_skb_any(skb); |
|
4749 tx_ring->buffer_info[first].time_stamp = 0; |
|
4750 tx_ring->next_to_use = first; |
|
4751 } |
|
4752 |
|
4753 return NETDEV_TX_OK; |
|
4754 } |
|
4755 |
|
4756 /** |
|
4757 * e1000_tx_timeout - Respond to a Tx Hang |
|
4758 * @netdev: network interface device structure |
|
4759 **/ |
|
4760 static void e1000_tx_timeout(struct net_device *netdev) |
|
4761 { |
|
4762 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4763 |
|
4764 /* Do the reset outside of interrupt context */ |
|
4765 adapter->tx_timeout_count++; |
|
4766 schedule_work(&adapter->reset_task); |
|
4767 } |
|
4768 |
|
4769 static void e1000_reset_task(struct work_struct *work) |
|
4770 { |
|
4771 struct e1000_adapter *adapter; |
|
4772 adapter = container_of(work, struct e1000_adapter, reset_task); |
|
4773 |
|
4774 e1000e_dump(adapter); |
|
4775 e_err("Reset adapter\n"); |
|
4776 e1000e_reinit_locked(adapter); |
|
4777 } |
|
4778 |
|
4779 /** |
|
4780 * e1000_get_stats - Get System Network Statistics |
|
4781 * @netdev: network interface device structure |
|
4782 * |
|
4783 * Returns the address of the device statistics structure. |
|
4784 * The statistics are actually updated from the timer callback. |
|
4785 **/ |
|
4786 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
4787 { |
|
4788 /* only return the current stats */ |
|
4789 return &netdev->stats; |
|
4790 } |
|
4791 |
|
4792 /** |
|
4793 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
4794 * @netdev: network interface device structure |
|
4795 * @new_mtu: new value for maximum frame size |
|
4796 * |
|
4797 * Returns 0 on success, negative on failure |
|
4798 **/ |
|
4799 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
4800 { |
|
4801 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4802 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; |
|
4803 |
|
4804 if (adapter->ecdev) |
|
4805 return -EBUSY; |
|
4806 |
|
4807 /* Jumbo frame support */ |
|
4808 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && |
|
4809 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { |
|
4810 e_err("Jumbo Frames not supported.\n"); |
|
4811 return -EINVAL; |
|
4812 } |
|
4813 |
|
4814 /* Supported frame sizes */ |
|
4815 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || |
|
4816 (max_frame > adapter->max_hw_frame_size)) { |
|
4817 e_err("Unsupported MTU setting\n"); |
|
4818 return -EINVAL; |
|
4819 } |
|
4820 |
|
4821 /* 82573 Errata 17 */ |
|
4822 if (((adapter->hw.mac.type == e1000_82573) || |
|
4823 (adapter->hw.mac.type == e1000_82574)) && |
|
4824 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) { |
|
4825 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1; |
|
4826 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1); |
|
4827 } |
|
4828 |
|
4829 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
4830 msleep(1); |
|
4831 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ |
|
4832 adapter->max_frame_size = max_frame; |
|
4833 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); |
|
4834 netdev->mtu = new_mtu; |
|
4835 if (netif_running(netdev)) |
|
4836 e1000e_down(adapter); |
|
4837 |
|
4838 /* |
|
4839 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
4840 * means we reserve 2 more, this pushes us to allocate from the next |
|
4841 * larger slab size. |
|
4842 * i.e. RXBUFFER_2048 --> size-4096 slab |
|
4843 * However with the new *_jumbo_rx* routines, jumbo receives will use |
|
4844 * fragmented skbs |
|
4845 */ |
|
4846 |
|
4847 if (max_frame <= 2048) |
|
4848 adapter->rx_buffer_len = 2048; |
|
4849 else |
|
4850 adapter->rx_buffer_len = 4096; |
|
4851 |
|
4852 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
4853 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || |
|
4854 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) |
|
4855 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN |
|
4856 + ETH_FCS_LEN; |
|
4857 |
|
4858 if (netif_running(netdev)) |
|
4859 e1000e_up(adapter); |
|
4860 else |
|
4861 e1000e_reset(adapter); |
|
4862 |
|
4863 clear_bit(__E1000_RESETTING, &adapter->state); |
|
4864 |
|
4865 return 0; |
|
4866 } |
|
4867 |
|
4868 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4869 int cmd) |
|
4870 { |
|
4871 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4872 struct mii_ioctl_data *data = if_mii(ifr); |
|
4873 |
|
4874 if (adapter->hw.phy.media_type != e1000_media_type_copper) |
|
4875 return -EOPNOTSUPP; |
|
4876 |
|
4877 switch (cmd) { |
|
4878 case SIOCGMIIPHY: |
|
4879 data->phy_id = adapter->hw.phy.addr; |
|
4880 break; |
|
4881 case SIOCGMIIREG: |
|
4882 e1000_phy_read_status(adapter); |
|
4883 |
|
4884 switch (data->reg_num & 0x1F) { |
|
4885 case MII_BMCR: |
|
4886 data->val_out = adapter->phy_regs.bmcr; |
|
4887 break; |
|
4888 case MII_BMSR: |
|
4889 data->val_out = adapter->phy_regs.bmsr; |
|
4890 break; |
|
4891 case MII_PHYSID1: |
|
4892 data->val_out = (adapter->hw.phy.id >> 16); |
|
4893 break; |
|
4894 case MII_PHYSID2: |
|
4895 data->val_out = (adapter->hw.phy.id & 0xFFFF); |
|
4896 break; |
|
4897 case MII_ADVERTISE: |
|
4898 data->val_out = adapter->phy_regs.advertise; |
|
4899 break; |
|
4900 case MII_LPA: |
|
4901 data->val_out = adapter->phy_regs.lpa; |
|
4902 break; |
|
4903 case MII_EXPANSION: |
|
4904 data->val_out = adapter->phy_regs.expansion; |
|
4905 break; |
|
4906 case MII_CTRL1000: |
|
4907 data->val_out = adapter->phy_regs.ctrl1000; |
|
4908 break; |
|
4909 case MII_STAT1000: |
|
4910 data->val_out = adapter->phy_regs.stat1000; |
|
4911 break; |
|
4912 case MII_ESTATUS: |
|
4913 data->val_out = adapter->phy_regs.estatus; |
|
4914 break; |
|
4915 default: |
|
4916 return -EIO; |
|
4917 } |
|
4918 break; |
|
4919 case SIOCSMIIREG: |
|
4920 default: |
|
4921 return -EOPNOTSUPP; |
|
4922 } |
|
4923 return 0; |
|
4924 } |
|
4925 |
|
4926 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4927 { |
|
4928 switch (cmd) { |
|
4929 case SIOCGMIIPHY: |
|
4930 case SIOCGMIIREG: |
|
4931 case SIOCSMIIREG: |
|
4932 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4933 default: |
|
4934 return -EOPNOTSUPP; |
|
4935 } |
|
4936 } |
|
4937 |
|
4938 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) |
|
4939 { |
|
4940 struct e1000_hw *hw = &adapter->hw; |
|
4941 u32 i, mac_reg; |
|
4942 u16 phy_reg; |
|
4943 int retval = 0; |
|
4944 |
|
4945 /* copy MAC RARs to PHY RARs */ |
|
4946 for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) { |
|
4947 mac_reg = er32(RAL(i)); |
|
4948 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); |
|
4949 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4950 mac_reg = er32(RAH(i)); |
|
4951 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); |
|
4952 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4953 } |
|
4954 |
|
4955 /* copy MAC MTA to PHY MTA */ |
|
4956 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { |
|
4957 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); |
|
4958 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF)); |
|
4959 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4960 } |
|
4961 |
|
4962 /* configure PHY Rx Control register */ |
|
4963 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg); |
|
4964 mac_reg = er32(RCTL); |
|
4965 if (mac_reg & E1000_RCTL_UPE) |
|
4966 phy_reg |= BM_RCTL_UPE; |
|
4967 if (mac_reg & E1000_RCTL_MPE) |
|
4968 phy_reg |= BM_RCTL_MPE; |
|
4969 phy_reg &= ~(BM_RCTL_MO_MASK); |
|
4970 if (mac_reg & E1000_RCTL_MO_3) |
|
4971 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) |
|
4972 << BM_RCTL_MO_SHIFT); |
|
4973 if (mac_reg & E1000_RCTL_BAM) |
|
4974 phy_reg |= BM_RCTL_BAM; |
|
4975 if (mac_reg & E1000_RCTL_PMCF) |
|
4976 phy_reg |= BM_RCTL_PMCF; |
|
4977 mac_reg = er32(CTRL); |
|
4978 if (mac_reg & E1000_CTRL_RFCE) |
|
4979 phy_reg |= BM_RCTL_RFCE; |
|
4980 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg); |
|
4981 |
|
4982 /* enable PHY wakeup in MAC register */ |
|
4983 ew32(WUFC, wufc); |
|
4984 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); |
|
4985 |
|
4986 /* configure and enable PHY wakeup in PHY registers */ |
|
4987 e1e_wphy(&adapter->hw, BM_WUFC, wufc); |
|
4988 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); |
|
4989 |
|
4990 /* activate PHY wakeup */ |
|
4991 retval = hw->phy.ops.acquire(hw); |
|
4992 if (retval) { |
|
4993 e_err("Could not acquire PHY\n"); |
|
4994 return retval; |
|
4995 } |
|
4996 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
4997 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); |
|
4998 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); |
|
4999 if (retval) { |
|
5000 e_err("Could not read PHY page 769\n"); |
|
5001 goto out; |
|
5002 } |
|
5003 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; |
|
5004 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); |
|
5005 if (retval) |
|
5006 e_err("Could not set PHY Host Wakeup bit\n"); |
|
5007 out: |
|
5008 hw->phy.ops.release(hw); |
|
5009 |
|
5010 return retval; |
|
5011 } |
|
5012 |
|
5013 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake, |
|
5014 bool runtime) |
|
5015 { |
|
5016 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5017 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5018 struct e1000_hw *hw = &adapter->hw; |
|
5019 u32 ctrl, ctrl_ext, rctl, status; |
|
5020 /* Runtime suspend should only enable wakeup for link changes */ |
|
5021 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; |
|
5022 int retval = 0; |
|
5023 |
|
5024 netif_device_detach(netdev); |
|
5025 |
|
5026 if (netif_running(netdev)) { |
|
5027 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
|
5028 e1000e_down(adapter); |
|
5029 e1000_free_irq(adapter); |
|
5030 } |
|
5031 e1000e_reset_interrupt_capability(adapter); |
|
5032 |
|
5033 retval = pci_save_state(pdev); |
|
5034 if (retval) |
|
5035 return retval; |
|
5036 |
|
5037 status = er32(STATUS); |
|
5038 if (status & E1000_STATUS_LU) |
|
5039 wufc &= ~E1000_WUFC_LNKC; |
|
5040 |
|
5041 if (wufc) { |
|
5042 e1000_setup_rctl(adapter); |
|
5043 e1000_set_multi(netdev); |
|
5044 |
|
5045 /* turn on all-multi mode if wake on multicast is enabled */ |
|
5046 if (wufc & E1000_WUFC_MC) { |
|
5047 rctl = er32(RCTL); |
|
5048 rctl |= E1000_RCTL_MPE; |
|
5049 ew32(RCTL, rctl); |
|
5050 } |
|
5051 |
|
5052 ctrl = er32(CTRL); |
|
5053 /* advertise wake from D3Cold */ |
|
5054 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
5055 /* phy power management enable */ |
|
5056 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
5057 ctrl |= E1000_CTRL_ADVD3WUC; |
|
5058 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) |
|
5059 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; |
|
5060 ew32(CTRL, ctrl); |
|
5061 |
|
5062 if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
|
5063 adapter->hw.phy.media_type == |
|
5064 e1000_media_type_internal_serdes) { |
|
5065 /* keep the laser running in D3 */ |
|
5066 ctrl_ext = er32(CTRL_EXT); |
|
5067 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; |
|
5068 ew32(CTRL_EXT, ctrl_ext); |
|
5069 } |
|
5070 |
|
5071 if (adapter->flags & FLAG_IS_ICH) |
|
5072 e1000e_disable_gig_wol_ich8lan(&adapter->hw); |
|
5073 |
|
5074 /* Allow time for pending master requests to run */ |
|
5075 e1000e_disable_pcie_master(&adapter->hw); |
|
5076 |
|
5077 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
|
5078 /* enable wakeup by the PHY */ |
|
5079 retval = e1000_init_phy_wakeup(adapter, wufc); |
|
5080 if (retval) |
|
5081 return retval; |
|
5082 } else { |
|
5083 /* enable wakeup by the MAC */ |
|
5084 ew32(WUFC, wufc); |
|
5085 ew32(WUC, E1000_WUC_PME_EN); |
|
5086 } |
|
5087 } else { |
|
5088 ew32(WUC, 0); |
|
5089 ew32(WUFC, 0); |
|
5090 } |
|
5091 |
|
5092 *enable_wake = !!wufc; |
|
5093 |
|
5094 /* make sure adapter isn't asleep if manageability is enabled */ |
|
5095 if ((adapter->flags & FLAG_MNG_PT_ENABLED) || |
|
5096 (hw->mac.ops.check_mng_mode(hw))) |
|
5097 *enable_wake = true; |
|
5098 |
|
5099 if (adapter->hw.phy.type == e1000_phy_igp_3) |
|
5100 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); |
|
5101 |
|
5102 /* |
|
5103 * Release control of h/w to f/w. If f/w is AMT enabled, this |
|
5104 * would have already happened in close and is redundant. |
|
5105 */ |
|
5106 e1000_release_hw_control(adapter); |
|
5107 |
|
5108 pci_disable_device(pdev); |
|
5109 |
|
5110 return 0; |
|
5111 } |
|
5112 |
|
5113 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) |
|
5114 { |
|
5115 if (sleep && wake) { |
|
5116 pci_prepare_to_sleep(pdev); |
|
5117 return; |
|
5118 } |
|
5119 |
|
5120 pci_wake_from_d3(pdev, wake); |
|
5121 pci_set_power_state(pdev, PCI_D3hot); |
|
5122 } |
|
5123 |
|
5124 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, |
|
5125 bool wake) |
|
5126 { |
|
5127 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5128 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5129 |
|
5130 /* |
|
5131 * The pci-e switch on some quad port adapters will report a |
|
5132 * correctable error when the MAC transitions from D0 to D3. To |
|
5133 * prevent this we need to mask off the correctable errors on the |
|
5134 * downstream port of the pci-e switch. |
|
5135 */ |
|
5136 if (adapter->flags & FLAG_IS_QUAD_PORT) { |
|
5137 struct pci_dev *us_dev = pdev->bus->self; |
|
5138 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); |
|
5139 u16 devctl; |
|
5140 |
|
5141 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); |
|
5142 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, |
|
5143 (devctl & ~PCI_EXP_DEVCTL_CERE)); |
|
5144 |
|
5145 e1000_power_off(pdev, sleep, wake); |
|
5146 |
|
5147 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); |
|
5148 } else { |
|
5149 e1000_power_off(pdev, sleep, wake); |
|
5150 } |
|
5151 } |
|
5152 |
|
5153 #ifdef CONFIG_PCIEASPM |
|
5154 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) |
|
5155 { |
|
5156 pci_disable_link_state(pdev, state); |
|
5157 } |
|
5158 #else |
|
5159 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) |
|
5160 { |
|
5161 int pos; |
|
5162 u16 reg16; |
|
5163 |
|
5164 /* |
|
5165 * Both device and parent should have the same ASPM setting. |
|
5166 * Disable ASPM in downstream component first and then upstream. |
|
5167 */ |
|
5168 pos = pci_pcie_cap(pdev); |
|
5169 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16); |
|
5170 reg16 &= ~state; |
|
5171 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16); |
|
5172 |
|
5173 if (!pdev->bus->self) |
|
5174 return; |
|
5175 |
|
5176 pos = pci_pcie_cap(pdev->bus->self); |
|
5177 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16); |
|
5178 reg16 &= ~state; |
|
5179 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16); |
|
5180 } |
|
5181 #endif |
|
5182 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) |
|
5183 { |
|
5184 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", |
|
5185 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "", |
|
5186 (state & PCIE_LINK_STATE_L1) ? "L1" : ""); |
|
5187 |
|
5188 __e1000e_disable_aspm(pdev, state); |
|
5189 } |
|
5190 |
|
5191 #ifdef CONFIG_PM_OPS |
|
5192 static bool e1000e_pm_ready(struct e1000_adapter *adapter) |
|
5193 { |
|
5194 return !!adapter->tx_ring->buffer_info; |
|
5195 } |
|
5196 |
|
5197 static int __e1000_resume(struct pci_dev *pdev) |
|
5198 { |
|
5199 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5200 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5201 struct e1000_hw *hw = &adapter->hw; |
|
5202 u32 err; |
|
5203 |
|
5204 if (adapter->ecdev) |
|
5205 return -EBUSY; |
|
5206 |
|
5207 pci_set_power_state(pdev, PCI_D0); |
|
5208 pci_restore_state(pdev); |
|
5209 pci_save_state(pdev); |
|
5210 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
|
5211 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); |
|
5212 |
|
5213 e1000e_set_interrupt_capability(adapter); |
|
5214 if (netif_running(netdev)) { |
|
5215 err = e1000_request_irq(adapter); |
|
5216 if (err) |
|
5217 return err; |
|
5218 } |
|
5219 |
|
5220 e1000e_power_up_phy(adapter); |
|
5221 |
|
5222 /* report the system wakeup cause from S3/S4 */ |
|
5223 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
|
5224 u16 phy_data; |
|
5225 |
|
5226 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); |
|
5227 if (phy_data) { |
|
5228 e_info("PHY Wakeup cause - %s\n", |
|
5229 phy_data & E1000_WUS_EX ? "Unicast Packet" : |
|
5230 phy_data & E1000_WUS_MC ? "Multicast Packet" : |
|
5231 phy_data & E1000_WUS_BC ? "Broadcast Packet" : |
|
5232 phy_data & E1000_WUS_MAG ? "Magic Packet" : |
|
5233 phy_data & E1000_WUS_LNKC ? "Link Status " |
|
5234 " Change" : "other"); |
|
5235 } |
|
5236 e1e_wphy(&adapter->hw, BM_WUS, ~0); |
|
5237 } else { |
|
5238 u32 wus = er32(WUS); |
|
5239 if (wus) { |
|
5240 e_info("MAC Wakeup cause - %s\n", |
|
5241 wus & E1000_WUS_EX ? "Unicast Packet" : |
|
5242 wus & E1000_WUS_MC ? "Multicast Packet" : |
|
5243 wus & E1000_WUS_BC ? "Broadcast Packet" : |
|
5244 wus & E1000_WUS_MAG ? "Magic Packet" : |
|
5245 wus & E1000_WUS_LNKC ? "Link Status Change" : |
|
5246 "other"); |
|
5247 } |
|
5248 ew32(WUS, ~0); |
|
5249 } |
|
5250 |
|
5251 e1000e_reset(adapter); |
|
5252 |
|
5253 e1000_init_manageability_pt(adapter); |
|
5254 |
|
5255 if (netif_running(netdev)) |
|
5256 e1000e_up(adapter); |
|
5257 |
|
5258 netif_device_attach(netdev); |
|
5259 |
|
5260 /* |
|
5261 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
5262 * is up. For all other cases, let the f/w know that the h/w is now |
|
5263 * under the control of the driver. |
|
5264 */ |
|
5265 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5266 e1000_get_hw_control(adapter); |
|
5267 |
|
5268 return 0; |
|
5269 } |
|
5270 |
|
5271 #ifdef CONFIG_PM_SLEEP |
|
5272 static int e1000_suspend(struct device *dev) |
|
5273 { |
|
5274 struct pci_dev *pdev = to_pci_dev(dev); |
|
5275 int retval; |
|
5276 bool wake; |
|
5277 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5278 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5279 |
|
5280 if (adapter->ecdev) { |
|
5281 return -EBUSY; |
|
5282 } |
|
5283 |
|
5284 retval = __e1000_shutdown(pdev, &wake, false); |
|
5285 if (!retval) |
|
5286 e1000_complete_shutdown(pdev, true, wake); |
|
5287 |
|
5288 return retval; |
|
5289 } |
|
5290 |
|
5291 static int e1000_resume(struct device *dev) |
|
5292 { |
|
5293 struct pci_dev *pdev = to_pci_dev(dev); |
|
5294 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5295 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5296 |
|
5297 if (adapter->ecdev) { |
|
5298 return -EBUSY; |
|
5299 } |
|
5300 |
|
5301 if (e1000e_pm_ready(adapter)) |
|
5302 adapter->idle_check = true; |
|
5303 |
|
5304 return __e1000_resume(pdev); |
|
5305 } |
|
5306 #endif /* CONFIG_PM_SLEEP */ |
|
5307 |
|
5308 #ifdef CONFIG_PM_RUNTIME |
|
5309 static int e1000_runtime_suspend(struct device *dev) |
|
5310 { |
|
5311 struct pci_dev *pdev = to_pci_dev(dev); |
|
5312 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5313 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5314 |
|
5315 if (e1000e_pm_ready(adapter)) { |
|
5316 bool wake; |
|
5317 |
|
5318 __e1000_shutdown(pdev, &wake, true); |
|
5319 } |
|
5320 |
|
5321 return 0; |
|
5322 } |
|
5323 |
|
5324 static int e1000_idle(struct device *dev) |
|
5325 { |
|
5326 struct pci_dev *pdev = to_pci_dev(dev); |
|
5327 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5328 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5329 |
|
5330 if (!e1000e_pm_ready(adapter)) |
|
5331 return 0; |
|
5332 |
|
5333 if (adapter->idle_check) { |
|
5334 adapter->idle_check = false; |
|
5335 if (!e1000e_has_link(adapter)) |
|
5336 pm_schedule_suspend(dev, MSEC_PER_SEC); |
|
5337 } |
|
5338 |
|
5339 return -EBUSY; |
|
5340 } |
|
5341 |
|
5342 static int e1000_runtime_resume(struct device *dev) |
|
5343 { |
|
5344 struct pci_dev *pdev = to_pci_dev(dev); |
|
5345 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5346 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5347 |
|
5348 if (!e1000e_pm_ready(adapter)) |
|
5349 return 0; |
|
5350 |
|
5351 adapter->idle_check = !dev->power.runtime_auto; |
|
5352 return __e1000_resume(pdev); |
|
5353 } |
|
5354 #endif /* CONFIG_PM_RUNTIME */ |
|
5355 #endif /* CONFIG_PM_OPS */ |
|
5356 |
|
5357 static void e1000_shutdown(struct pci_dev *pdev) |
|
5358 { |
|
5359 bool wake = false; |
|
5360 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5361 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5362 |
|
5363 if (adapter->ecdev) |
|
5364 return; |
|
5365 |
|
5366 __e1000_shutdown(pdev, &wake, false); |
|
5367 |
|
5368 if (system_state == SYSTEM_POWER_OFF) |
|
5369 e1000_complete_shutdown(pdev, false, wake); |
|
5370 } |
|
5371 |
|
5372 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
5373 /* |
|
5374 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
5375 * without having to re-enable interrupts. It's not called while |
|
5376 * the interrupt routine is executing. |
|
5377 */ |
|
5378 static void e1000_netpoll(struct net_device *netdev) |
|
5379 { |
|
5380 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5381 |
|
5382 disable_irq(adapter->pdev->irq); |
|
5383 e1000_intr(adapter->pdev->irq, netdev); |
|
5384 |
|
5385 enable_irq(adapter->pdev->irq); |
|
5386 } |
|
5387 #endif |
|
5388 |
|
5389 /** |
|
5390 * e1000_io_error_detected - called when PCI error is detected |
|
5391 * @pdev: Pointer to PCI device |
|
5392 * @state: The current pci connection state |
|
5393 * |
|
5394 * This function is called after a PCI bus error affecting |
|
5395 * this device has been detected. |
|
5396 */ |
|
5397 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
5398 pci_channel_state_t state) |
|
5399 { |
|
5400 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5401 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5402 |
|
5403 netif_device_detach(netdev); |
|
5404 |
|
5405 if (state == pci_channel_io_perm_failure) |
|
5406 return PCI_ERS_RESULT_DISCONNECT; |
|
5407 |
|
5408 if (netif_running(netdev)) |
|
5409 e1000e_down(adapter); |
|
5410 pci_disable_device(pdev); |
|
5411 |
|
5412 /* Request a slot slot reset. */ |
|
5413 return PCI_ERS_RESULT_NEED_RESET; |
|
5414 } |
|
5415 |
|
5416 /** |
|
5417 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
5418 * @pdev: Pointer to PCI device |
|
5419 * |
|
5420 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
5421 * resembles the first-half of the e1000_resume routine. |
|
5422 */ |
|
5423 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
5424 { |
|
5425 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5426 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5427 struct e1000_hw *hw = &adapter->hw; |
|
5428 int err; |
|
5429 pci_ers_result_t result; |
|
5430 |
|
5431 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
|
5432 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); |
|
5433 err = pci_enable_device_mem(pdev); |
|
5434 if (err) { |
|
5435 dev_err(&pdev->dev, |
|
5436 "Cannot re-enable PCI device after reset.\n"); |
|
5437 result = PCI_ERS_RESULT_DISCONNECT; |
|
5438 } else { |
|
5439 pci_set_master(pdev); |
|
5440 pdev->state_saved = true; |
|
5441 pci_restore_state(pdev); |
|
5442 |
|
5443 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5444 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5445 |
|
5446 e1000e_reset(adapter); |
|
5447 ew32(WUS, ~0); |
|
5448 result = PCI_ERS_RESULT_RECOVERED; |
|
5449 } |
|
5450 |
|
5451 pci_cleanup_aer_uncorrect_error_status(pdev); |
|
5452 |
|
5453 return result; |
|
5454 } |
|
5455 |
|
5456 /** |
|
5457 * e1000_io_resume - called when traffic can start flowing again. |
|
5458 * @pdev: Pointer to PCI device |
|
5459 * |
|
5460 * This callback is called when the error recovery driver tells us that |
|
5461 * its OK to resume normal operation. Implementation resembles the |
|
5462 * second-half of the e1000_resume routine. |
|
5463 */ |
|
5464 static void e1000_io_resume(struct pci_dev *pdev) |
|
5465 { |
|
5466 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5467 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5468 |
|
5469 e1000_init_manageability_pt(adapter); |
|
5470 |
|
5471 if (netif_running(netdev)) { |
|
5472 if (e1000e_up(adapter)) { |
|
5473 dev_err(&pdev->dev, |
|
5474 "can't bring device back up after reset\n"); |
|
5475 return; |
|
5476 } |
|
5477 } |
|
5478 |
|
5479 netif_device_attach(netdev); |
|
5480 |
|
5481 /* |
|
5482 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
5483 * is up. For all other cases, let the f/w know that the h/w is now |
|
5484 * under the control of the driver. |
|
5485 */ |
|
5486 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5487 e1000_get_hw_control(adapter); |
|
5488 |
|
5489 } |
|
5490 |
|
5491 static void e1000_print_device_info(struct e1000_adapter *adapter) |
|
5492 { |
|
5493 struct e1000_hw *hw = &adapter->hw; |
|
5494 struct net_device *netdev = adapter->netdev; |
|
5495 u32 pba_num; |
|
5496 |
|
5497 /* print bus type/speed/width info */ |
|
5498 e_info("(PCI Express:2.5GB/s:%s) %pM\n", |
|
5499 /* bus width */ |
|
5500 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
|
5501 "Width x1"), |
|
5502 /* MAC address */ |
|
5503 netdev->dev_addr); |
|
5504 e_info("Intel(R) PRO/%s Network Connection\n", |
|
5505 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); |
|
5506 e1000e_read_pba_num(hw, &pba_num); |
|
5507 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", |
|
5508 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); |
|
5509 } |
|
5510 |
|
5511 static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
|
5512 { |
|
5513 struct e1000_hw *hw = &adapter->hw; |
|
5514 int ret_val; |
|
5515 u16 buf = 0; |
|
5516 |
|
5517 if (hw->mac.type != e1000_82573) |
|
5518 return; |
|
5519 |
|
5520 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); |
|
5521 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { |
|
5522 /* Deep Smart Power Down (DSPD) */ |
|
5523 dev_warn(&adapter->pdev->dev, |
|
5524 "Warning: detected DSPD enabled in EEPROM\n"); |
|
5525 } |
|
5526 } |
|
5527 |
|
5528 static const struct net_device_ops e1000e_netdev_ops = { |
|
5529 .ndo_open = e1000_open, |
|
5530 .ndo_stop = e1000_close, |
|
5531 .ndo_start_xmit = e1000_xmit_frame, |
|
5532 .ndo_get_stats = e1000_get_stats, |
|
5533 .ndo_set_multicast_list = e1000_set_multi, |
|
5534 .ndo_set_mac_address = e1000_set_mac, |
|
5535 .ndo_change_mtu = e1000_change_mtu, |
|
5536 .ndo_do_ioctl = e1000_ioctl, |
|
5537 .ndo_tx_timeout = e1000_tx_timeout, |
|
5538 .ndo_validate_addr = eth_validate_addr, |
|
5539 |
|
5540 .ndo_vlan_rx_register = e1000_vlan_rx_register, |
|
5541 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
5542 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
5543 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
5544 .ndo_poll_controller = e1000_netpoll, |
|
5545 #endif |
|
5546 }; |
|
5547 |
|
5548 /** |
|
5549 * ec_poll - Ethercat poll Routine |
|
5550 * @netdev: net device structure |
|
5551 * |
|
5552 * This function can never fail. |
|
5553 * |
|
5554 **/ |
|
5555 void ec_poll(struct net_device *netdev) |
|
5556 { |
|
5557 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5558 |
|
5559 if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) { |
|
5560 e1000_watchdog((unsigned long) adapter); |
|
5561 adapter->ec_watchdog_jiffies = jiffies; |
|
5562 } |
|
5563 |
|
5564 #ifdef CONFIG_PCI_MSI |
|
5565 e1000_intr_msi(0,netdev); |
|
5566 #else |
|
5567 e1000_intr(0,netdev); |
|
5568 #endif |
|
5569 } |
|
5570 |
|
5571 /** |
|
5572 * e1000_probe - Device Initialization Routine |
|
5573 * @pdev: PCI device information struct |
|
5574 * @ent: entry in e1000_pci_tbl |
|
5575 * |
|
5576 * Returns 0 on success, negative on failure |
|
5577 * |
|
5578 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
5579 * The OS initialization, configuring of the adapter private structure, |
|
5580 * and a hardware reset occur. |
|
5581 **/ |
|
5582 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
5583 const struct pci_device_id *ent) |
|
5584 { |
|
5585 struct net_device *netdev; |
|
5586 struct e1000_adapter *adapter; |
|
5587 struct e1000_hw *hw; |
|
5588 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; |
|
5589 resource_size_t mmio_start, mmio_len; |
|
5590 resource_size_t flash_start, flash_len; |
|
5591 |
|
5592 static int cards_found; |
|
5593 int i, err, pci_using_dac; |
|
5594 u16 eeprom_data = 0; |
|
5595 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
5596 |
|
5597 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) |
|
5598 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); |
|
5599 |
|
5600 err = pci_enable_device_mem(pdev); |
|
5601 if (err) |
|
5602 return err; |
|
5603 |
|
5604 pci_using_dac = 0; |
|
5605 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
|
5606 if (!err) { |
|
5607 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); |
|
5608 if (!err) |
|
5609 pci_using_dac = 1; |
|
5610 } else { |
|
5611 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
|
5612 if (err) { |
|
5613 err = dma_set_coherent_mask(&pdev->dev, |
|
5614 DMA_BIT_MASK(32)); |
|
5615 if (err) { |
|
5616 dev_err(&pdev->dev, "No usable DMA " |
|
5617 "configuration, aborting\n"); |
|
5618 goto err_dma; |
|
5619 } |
|
5620 } |
|
5621 } |
|
5622 |
|
5623 err = pci_request_selected_regions_exclusive(pdev, |
|
5624 pci_select_bars(pdev, IORESOURCE_MEM), |
|
5625 e1000e_driver_name); |
|
5626 if (err) |
|
5627 goto err_pci_reg; |
|
5628 |
|
5629 /* AER (Advanced Error Reporting) hooks */ |
|
5630 pci_enable_pcie_error_reporting(pdev); |
|
5631 |
|
5632 pci_set_master(pdev); |
|
5633 /* PCI config space info */ |
|
5634 err = pci_save_state(pdev); |
|
5635 if (err) |
|
5636 goto err_alloc_etherdev; |
|
5637 |
|
5638 err = -ENOMEM; |
|
5639 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
5640 if (!netdev) |
|
5641 goto err_alloc_etherdev; |
|
5642 |
|
5643 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
5644 |
|
5645 netdev->irq = pdev->irq; |
|
5646 |
|
5647 pci_set_drvdata(pdev, netdev); |
|
5648 adapter = netdev_priv(netdev); |
|
5649 hw = &adapter->hw; |
|
5650 adapter->netdev = netdev; |
|
5651 adapter->pdev = pdev; |
|
5652 adapter->ei = ei; |
|
5653 adapter->pba = ei->pba; |
|
5654 adapter->flags = ei->flags; |
|
5655 adapter->flags2 = ei->flags2; |
|
5656 adapter->hw.adapter = adapter; |
|
5657 adapter->hw.mac.type = ei->mac; |
|
5658 adapter->max_hw_frame_size = ei->max_hw_frame_size; |
|
5659 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; |
|
5660 |
|
5661 mmio_start = pci_resource_start(pdev, 0); |
|
5662 mmio_len = pci_resource_len(pdev, 0); |
|
5663 |
|
5664 err = -EIO; |
|
5665 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
|
5666 if (!adapter->hw.hw_addr) |
|
5667 goto err_ioremap; |
|
5668 |
|
5669 if ((adapter->flags & FLAG_HAS_FLASH) && |
|
5670 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
|
5671 flash_start = pci_resource_start(pdev, 1); |
|
5672 flash_len = pci_resource_len(pdev, 1); |
|
5673 adapter->hw.flash_address = ioremap(flash_start, flash_len); |
|
5674 if (!adapter->hw.flash_address) |
|
5675 goto err_flashmap; |
|
5676 } |
|
5677 |
|
5678 /* construct the net_device struct */ |
|
5679 netdev->netdev_ops = &e1000e_netdev_ops; |
|
5680 e1000e_set_ethtool_ops(netdev); |
|
5681 netdev->watchdog_timeo = 5 * HZ; |
|
5682 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
5683 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
5684 |
|
5685 netdev->mem_start = mmio_start; |
|
5686 netdev->mem_end = mmio_start + mmio_len; |
|
5687 |
|
5688 adapter->bd_number = cards_found++; |
|
5689 |
|
5690 e1000e_check_options(adapter); |
|
5691 |
|
5692 /* setup adapter struct */ |
|
5693 err = e1000_sw_init(adapter); |
|
5694 if (err) |
|
5695 goto err_sw_init; |
|
5696 |
|
5697 err = -EIO; |
|
5698 |
|
5699 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
|
5700 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
|
5701 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
|
5702 |
|
5703 err = ei->get_variants(adapter); |
|
5704 if (err) |
|
5705 goto err_hw_init; |
|
5706 |
|
5707 if ((adapter->flags & FLAG_IS_ICH) && |
|
5708 (adapter->flags & FLAG_READ_ONLY_NVM)) |
|
5709 e1000e_write_protect_nvm_ich8lan(&adapter->hw); |
|
5710 |
|
5711 hw->mac.ops.get_bus_info(&adapter->hw); |
|
5712 |
|
5713 adapter->hw.phy.autoneg_wait_to_complete = 0; |
|
5714 |
|
5715 /* Copper options */ |
|
5716 if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
|
5717 adapter->hw.phy.mdix = AUTO_ALL_MODES; |
|
5718 adapter->hw.phy.disable_polarity_correction = 0; |
|
5719 adapter->hw.phy.ms_type = e1000_ms_hw_default; |
|
5720 } |
|
5721 |
|
5722 if (e1000_check_reset_block(&adapter->hw)) |
|
5723 e_info("PHY reset is blocked due to SOL/IDER session.\n"); |
|
5724 |
|
5725 netdev->features = NETIF_F_SG | |
|
5726 NETIF_F_HW_CSUM | |
|
5727 NETIF_F_HW_VLAN_TX | |
|
5728 NETIF_F_HW_VLAN_RX; |
|
5729 |
|
5730 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
|
5731 netdev->features |= NETIF_F_HW_VLAN_FILTER; |
|
5732 |
|
5733 netdev->features |= NETIF_F_TSO; |
|
5734 netdev->features |= NETIF_F_TSO6; |
|
5735 |
|
5736 netdev->vlan_features |= NETIF_F_TSO; |
|
5737 netdev->vlan_features |= NETIF_F_TSO6; |
|
5738 netdev->vlan_features |= NETIF_F_HW_CSUM; |
|
5739 netdev->vlan_features |= NETIF_F_SG; |
|
5740 |
|
5741 if (pci_using_dac) |
|
5742 netdev->features |= NETIF_F_HIGHDMA; |
|
5743 |
|
5744 if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
|
5745 adapter->flags |= FLAG_MNG_PT_ENABLED; |
|
5746 |
|
5747 /* |
|
5748 * before reading the NVM, reset the controller to |
|
5749 * put the device in a known good starting state |
|
5750 */ |
|
5751 adapter->hw.mac.ops.reset_hw(&adapter->hw); |
|
5752 |
|
5753 /* |
|
5754 * systems with ASPM and others may see the checksum fail on the first |
|
5755 * attempt. Let's give it a few tries |
|
5756 */ |
|
5757 for (i = 0;; i++) { |
|
5758 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) |
|
5759 break; |
|
5760 if (i == 2) { |
|
5761 e_err("The NVM Checksum Is Not Valid\n"); |
|
5762 err = -EIO; |
|
5763 goto err_eeprom; |
|
5764 } |
|
5765 } |
|
5766 |
|
5767 e1000_eeprom_checks(adapter); |
|
5768 |
|
5769 /* copy the MAC address */ |
|
5770 if (e1000e_read_mac_addr(&adapter->hw)) |
|
5771 e_err("NVM Read Error while reading MAC address\n"); |
|
5772 |
|
5773 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); |
|
5774 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); |
|
5775 |
|
5776 if (!is_valid_ether_addr(netdev->perm_addr)) { |
|
5777 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); |
|
5778 err = -EIO; |
|
5779 goto err_eeprom; |
|
5780 } |
|
5781 |
|
5782 init_timer(&adapter->watchdog_timer); |
|
5783 adapter->watchdog_timer.function = &e1000_watchdog; |
|
5784 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
5785 |
|
5786 init_timer(&adapter->phy_info_timer); |
|
5787 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
5788 adapter->phy_info_timer.data = (unsigned long) adapter; |
|
5789 |
|
5790 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
5791 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); |
|
5792 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
|
5793 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); |
|
5794 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); |
|
5795 |
|
5796 /* Initialize link parameters. User can change them with ethtool */ |
|
5797 adapter->hw.mac.autoneg = 1; |
|
5798 adapter->fc_autoneg = 1; |
|
5799 adapter->hw.fc.requested_mode = e1000_fc_default; |
|
5800 adapter->hw.fc.current_mode = e1000_fc_default; |
|
5801 adapter->hw.phy.autoneg_advertised = 0x2f; |
|
5802 |
|
5803 /* ring size defaults */ |
|
5804 adapter->rx_ring->count = 256; |
|
5805 adapter->tx_ring->count = 256; |
|
5806 |
|
5807 /* |
|
5808 * Initial Wake on LAN setting - If APM wake is enabled in |
|
5809 * the EEPROM, enable the ACPI Magic Packet filter |
|
5810 */ |
|
5811 if (adapter->flags & FLAG_APME_IN_WUC) { |
|
5812 /* APME bit in EEPROM is mapped to WUC.APME */ |
|
5813 eeprom_data = er32(WUC); |
|
5814 eeprom_apme_mask = E1000_WUC_APME; |
|
5815 if (eeprom_data & E1000_WUC_PHY_WAKE) |
|
5816 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; |
|
5817 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
|
5818 if (adapter->flags & FLAG_APME_CHECK_PORT_B && |
|
5819 (adapter->hw.bus.func == 1)) |
|
5820 e1000_read_nvm(&adapter->hw, |
|
5821 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
5822 else |
|
5823 e1000_read_nvm(&adapter->hw, |
|
5824 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
5825 } |
|
5826 |
|
5827 /* fetch WoL from EEPROM */ |
|
5828 if (eeprom_data & eeprom_apme_mask) |
|
5829 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
5830 |
|
5831 /* |
|
5832 * now that we have the eeprom settings, apply the special cases |
|
5833 * where the eeprom may be wrong or the board simply won't support |
|
5834 * wake on lan on a particular port |
|
5835 */ |
|
5836 if (!(adapter->flags & FLAG_HAS_WOL)) |
|
5837 adapter->eeprom_wol = 0; |
|
5838 |
|
5839 /* initialize the wol settings based on the eeprom settings */ |
|
5840 adapter->wol = adapter->eeprom_wol; |
|
5841 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
5842 |
|
5843 /* save off EEPROM version number */ |
|
5844 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); |
|
5845 |
|
5846 /* reset the hardware with the new settings */ |
|
5847 e1000e_reset(adapter); |
|
5848 |
|
5849 /* |
|
5850 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
5851 * is up. For all other cases, let the f/w know that the h/w is now |
|
5852 * under the control of the driver. |
|
5853 */ |
|
5854 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5855 e1000_get_hw_control(adapter); |
|
5856 |
|
5857 adapter->ecdev = ecdev_offer(netdev,ec_poll,THIS_MODULE); |
|
5858 if (adapter->ecdev) { |
|
5859 if (ecdev_open(adapter->ecdev)) { |
|
5860 ecdev_withdraw(adapter->ecdev); |
|
5861 goto err_register; |
|
5862 } |
|
5863 } else { |
|
5864 strcpy(netdev->name, "eth%d"); |
|
5865 err = register_netdev(netdev); |
|
5866 if (err) |
|
5867 goto err_register; |
|
5868 |
|
5869 /* carrier off reporting is important to ethtool even BEFORE open */ |
|
5870 netif_carrier_off(netdev); |
|
5871 } |
|
5872 |
|
5873 e1000_print_device_info(adapter); |
|
5874 |
|
5875 if (pci_dev_run_wake(pdev)) { |
|
5876 pm_runtime_set_active(&pdev->dev); |
|
5877 pm_runtime_enable(&pdev->dev); |
|
5878 } |
|
5879 pm_schedule_suspend(&pdev->dev, MSEC_PER_SEC); |
|
5880 |
|
5881 return 0; |
|
5882 |
|
5883 err_register: |
|
5884 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5885 e1000_release_hw_control(adapter); |
|
5886 err_eeprom: |
|
5887 if (!e1000_check_reset_block(&adapter->hw)) |
|
5888 e1000_phy_hw_reset(&adapter->hw); |
|
5889 err_hw_init: |
|
5890 |
|
5891 kfree(adapter->tx_ring); |
|
5892 kfree(adapter->rx_ring); |
|
5893 err_sw_init: |
|
5894 if (adapter->hw.flash_address) |
|
5895 iounmap(adapter->hw.flash_address); |
|
5896 e1000e_reset_interrupt_capability(adapter); |
|
5897 err_flashmap: |
|
5898 iounmap(adapter->hw.hw_addr); |
|
5899 err_ioremap: |
|
5900 free_netdev(netdev); |
|
5901 err_alloc_etherdev: |
|
5902 pci_release_selected_regions(pdev, |
|
5903 pci_select_bars(pdev, IORESOURCE_MEM)); |
|
5904 err_pci_reg: |
|
5905 err_dma: |
|
5906 pci_disable_device(pdev); |
|
5907 return err; |
|
5908 } |
|
5909 |
|
5910 /** |
|
5911 * e1000_remove - Device Removal Routine |
|
5912 * @pdev: PCI device information struct |
|
5913 * |
|
5914 * e1000_remove is called by the PCI subsystem to alert the driver |
|
5915 * that it should release a PCI device. The could be caused by a |
|
5916 * Hot-Plug event, or because the driver is going to be removed from |
|
5917 * memory. |
|
5918 **/ |
|
5919 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
5920 { |
|
5921 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5922 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5923 bool down = test_bit(__E1000_DOWN, &adapter->state); |
|
5924 |
|
5925 pm_runtime_get_sync(&pdev->dev); |
|
5926 |
|
5927 /* |
|
5928 * flush_scheduled work may reschedule our watchdog task, so |
|
5929 * explicitly disable watchdog tasks from being rescheduled |
|
5930 */ |
|
5931 if (!down) |
|
5932 set_bit(__E1000_DOWN, &adapter->state); |
|
5933 del_timer_sync(&adapter->watchdog_timer); |
|
5934 del_timer_sync(&adapter->phy_info_timer); |
|
5935 |
|
5936 cancel_work_sync(&adapter->reset_task); |
|
5937 cancel_work_sync(&adapter->watchdog_task); |
|
5938 cancel_work_sync(&adapter->downshift_task); |
|
5939 cancel_work_sync(&adapter->update_phy_task); |
|
5940 cancel_work_sync(&adapter->print_hang_task); |
|
5941 flush_scheduled_work(); |
|
5942 |
|
5943 if (!(netdev->flags & IFF_UP)) |
|
5944 e1000_power_down_phy(adapter); |
|
5945 |
|
5946 /* Don't lie to e1000_close() down the road. */ |
|
5947 if (!down) |
|
5948 clear_bit(__E1000_DOWN, &adapter->state); |
|
5949 |
|
5950 if (adapter->ecdev) { |
|
5951 ecdev_close(adapter->ecdev); |
|
5952 ecdev_withdraw(adapter->ecdev); |
|
5953 } else { |
|
5954 unregister_netdev(netdev); |
|
5955 } |
|
5956 |
|
5957 if (pci_dev_run_wake(pdev)) { |
|
5958 pm_runtime_disable(&pdev->dev); |
|
5959 pm_runtime_set_suspended(&pdev->dev); |
|
5960 } |
|
5961 pm_runtime_put_noidle(&pdev->dev); |
|
5962 |
|
5963 /* |
|
5964 * Release control of h/w to f/w. If f/w is AMT enabled, this |
|
5965 * would have already happened in close and is redundant. |
|
5966 */ |
|
5967 e1000_release_hw_control(adapter); |
|
5968 |
|
5969 e1000e_reset_interrupt_capability(adapter); |
|
5970 kfree(adapter->tx_ring); |
|
5971 kfree(adapter->rx_ring); |
|
5972 |
|
5973 iounmap(adapter->hw.hw_addr); |
|
5974 if (adapter->hw.flash_address) |
|
5975 iounmap(adapter->hw.flash_address); |
|
5976 pci_release_selected_regions(pdev, |
|
5977 pci_select_bars(pdev, IORESOURCE_MEM)); |
|
5978 |
|
5979 free_netdev(netdev); |
|
5980 |
|
5981 /* AER disable */ |
|
5982 pci_disable_pcie_error_reporting(pdev); |
|
5983 |
|
5984 pci_disable_device(pdev); |
|
5985 } |
|
5986 |
|
5987 /* PCI Error Recovery (ERS) */ |
|
5988 static struct pci_error_handlers e1000_err_handler = { |
|
5989 .error_detected = e1000_io_error_detected, |
|
5990 .slot_reset = e1000_io_slot_reset, |
|
5991 .resume = e1000_io_resume, |
|
5992 }; |
|
5993 |
|
5994 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { |
|
5995 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
|
5996 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, |
|
5997 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, |
|
5998 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, |
|
5999 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, |
|
6000 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, |
|
6001 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
|
6002 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, |
|
6003 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, |
|
6004 |
|
6005 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
|
6006 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, |
|
6007 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, |
|
6008 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, |
|
6009 |
|
6010 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
|
6011 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, |
|
6012 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, |
|
6013 |
|
6014 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
|
6015 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, |
|
6016 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, |
|
6017 |
|
6018 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
|
6019 board_80003es2lan }, |
|
6020 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), |
|
6021 board_80003es2lan }, |
|
6022 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), |
|
6023 board_80003es2lan }, |
|
6024 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), |
|
6025 board_80003es2lan }, |
|
6026 |
|
6027 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
|
6028 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, |
|
6029 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, |
|
6030 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, |
|
6031 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, |
|
6032 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, |
|
6033 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, |
|
6034 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, |
|
6035 |
|
6036 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
|
6037 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, |
|
6038 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, |
|
6039 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, |
|
6040 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, |
|
6041 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
|
6042 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
|
6043 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, |
|
6044 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, |
|
6045 |
|
6046 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, |
|
6047 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, |
|
6048 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, |
|
6049 |
|
6050 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
|
6051 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, |
|
6052 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, |
|
6053 |
|
6054 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, |
|
6055 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, |
|
6056 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, |
|
6057 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, |
|
6058 |
|
6059 { } /* terminate list */ |
|
6060 }; |
|
6061 //MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
6062 |
|
6063 #ifdef CONFIG_PM_OPS |
|
6064 static const struct dev_pm_ops e1000_pm_ops = { |
|
6065 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume) |
|
6066 SET_RUNTIME_PM_OPS(e1000_runtime_suspend, |
|
6067 e1000_runtime_resume, e1000_idle) |
|
6068 }; |
|
6069 #endif |
|
6070 |
|
6071 /* PCI Device API Driver */ |
|
6072 static struct pci_driver e1000_driver = { |
|
6073 .name = e1000e_driver_name, |
|
6074 .id_table = e1000_pci_tbl, |
|
6075 .probe = e1000_probe, |
|
6076 .remove = __devexit_p(e1000_remove), |
|
6077 #ifdef CONFIG_PM_OPS |
|
6078 .driver.pm = &e1000_pm_ops, |
|
6079 #endif |
|
6080 .shutdown = e1000_shutdown, |
|
6081 .err_handler = &e1000_err_handler |
|
6082 }; |
|
6083 |
|
6084 /** |
|
6085 * e1000_init_module - Driver Registration Routine |
|
6086 * |
|
6087 * e1000_init_module is the first routine called when the driver is |
|
6088 * loaded. All it does is register with the PCI subsystem. |
|
6089 **/ |
|
6090 static int __init e1000_init_module(void) |
|
6091 { |
|
6092 int ret; |
|
6093 pr_info("EtherCAT-capable Intel(R) PRO/1000 Network Driver - %s\n", |
|
6094 e1000e_driver_version); |
|
6095 pr_info("Copyright (c) 1999 - 2009 Intel Corporation.\n"); |
|
6096 ret = pci_register_driver(&e1000_driver); |
|
6097 |
|
6098 return ret; |
|
6099 } |
|
6100 module_init(e1000_init_module); |
|
6101 |
|
6102 /** |
|
6103 * e1000_exit_module - Driver Exit Cleanup Routine |
|
6104 * |
|
6105 * e1000_exit_module is called just before the driver is removed |
|
6106 * from memory. |
|
6107 **/ |
|
6108 static void __exit e1000_exit_module(void) |
|
6109 { |
|
6110 pci_unregister_driver(&e1000_driver); |
|
6111 } |
|
6112 module_exit(e1000_exit_module); |
|
6113 |
|
6114 |
|
6115 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
6116 MODULE_DESCRIPTION("Ethercat-capable Intel(R) PRO/1000 Network Driver"); |
|
6117 MODULE_LICENSE("GPL"); |
|
6118 MODULE_VERSION(DRV_VERSION); |
|
6119 |
|
6120 /* e1000_main.c */ |