merge. stable-1.5
authorFlorian Pose <fp@igh-essen.com>
Tue, 10 Apr 2012 19:10:56 +0200
branchstable-1.5
changeset 2378 ca345abf0565
parent 2377 aa0f6f939cb3 (current diff)
parent 2292 0f7a243b03e4 (diff)
child 2382 2565cb4d9e31
merge.
NEWS
configure.ac
devices/Makefile.am
devices/e1000/e1000_ethtool-2.6.29-org.c
devices/e1000/e1000_main-2.6.29-org.c
--- a/NEWS	Tue Apr 10 19:09:51 2012 +0200
+++ b/NEWS	Tue Apr 10 19:10:56 2012 +0200
@@ -6,7 +6,14 @@
 
 -------------------------------------------------------------------------------
 
-Changes in 1.5:
+Changes in 1.5.1:
+
+* Fixed reset of allow_scanning flag if ecrt_master_activate() was not called.
+* Fixed missing distribution for r8169 for 2.6.32 and e1000 driver for 2.6.31.
+* Added r8169, e100, e1000 and e1000e drivers for 2.6.35.
+* Added fix for ESC port order (DC delay calculation).
+
+Changes in 1.5.0:
 
 * Added a userspace library for accessing the application interface. This
   library is licensed under LGPLv2.
@@ -35,11 +42,11 @@
   2.6.33 (J. Kunz), 2.6.34 (Malcolm Lewis), 2.6.35 (B. Benner),
   2.6.36 (F. Pose) and 2.6.37 (F. Pose).
 * Added e1000 driver for 2.6.26 (M. Luescher), 2.6.27, 2.6.28, 2.6.29, 2.6.32,
-  2.6.33 (J. Kunz), 2.6.37.
+  2.6.33 (J. Kunz), 2.6.35, 2.6.37.
 * Added r8169 driver for 2.6.24, 2.6.27, 2.6.28, 2.6.29, 2.6.31, 2.6.32
-  (Robbie K), 2.6.33 (J. Kunz), 2.6.37.
+  (Robbie K), 2.6.33 (J. Kunz), 2.6.35, 2.6.37.
 * Added e1000e driver for 2.6.32, 2.6.33, 2.6.34 (thanks to Siwei Zhuang),
-  2.6.37.
+  2.6.35, 2.6.37.
 * Debug interfaces are created with the Ethernet addresses of the attached
   physical device.
 * Improved error case return codes of many functions.
--- a/TODO	Tue Apr 10 19:09:51 2012 +0200
+++ b/TODO	Tue Apr 10 19:10:56 2012 +0200
@@ -8,11 +8,6 @@
 
 -------------------------------------------------------------------------------
 
-Version 1.5.0:
-
-* Add native drivers e100 and r8169 for 2.6.37.
-* Add systemd unit files and scripts.
-
 Future issues:
 
 * Fix link detection in generic driver.
--- a/configure.ac	Tue Apr 10 19:09:51 2012 +0200
+++ b/configure.ac	Tue Apr 10 19:10:56 2012 +0200
@@ -2,7 +2,7 @@
 #
 #  $Id$
 #
-#  Copyright (C) 2006-2009  Florian Pose, Ingenieurgemeinschaft IgH
+#  Copyright (C) 2006-2012  Florian Pose, Ingenieurgemeinschaft IgH
 #
 #  This file is part of the IgH EtherCAT Master.
 #
@@ -28,7 +28,7 @@
 #------------------------------------------------------------------------------
 
 AC_PREREQ(2.59)
-AC_INIT([ethercat],[1.5-pre],[fp@igh-essen.com])
+AC_INIT([ethercat],[1.5.1],[fp@igh-essen.com])
 AC_CONFIG_AUX_DIR([autoconf])
 AM_INIT_AUTOMAKE([-Wall -Werror dist-bzip2])
 AC_PREFIX_DEFAULT([/opt/etherlab])
--- a/devices/8139too-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/8139too-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -795,8 +795,10 @@
 	u8 tmp8;
 	int rc, disable_dev_on_err = 0;
 	unsigned int i;
-	unsigned long pio_start, pio_end, pio_flags, pio_len;
-	unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
+	unsigned long pio_start, pio_end __attribute__ ((unused)), pio_flags,
+                  pio_len;
+	unsigned long mmio_start __attribute__ ((unused)),
+                  mmio_end __attribute__ ((unused)), mmio_flags, mmio_len;
 	u32 version;
 
 	assert (pdev != NULL);
--- a/devices/Makefile.am	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/Makefile.am	Tue Apr 10 19:10:56 2012 +0200
@@ -93,6 +93,8 @@
 	e100-2.6.32-orig.c \
 	e100-2.6.33-ethercat.c \
 	e100-2.6.33-orig.c \
+	e100-2.6.35-ethercat.c \
+	e100-2.6.35-orig.c \
 	e100-2.6.37-ethercat.c \
 	e100-2.6.37-orig.c \
 	e100-3.0-ethercat.c \
@@ -109,8 +111,12 @@
 	r8169-2.6.29-orig.c \
 	r8169-2.6.31-ethercat.c \
 	r8169-2.6.31-orig.c \
+	r8169-2.6.32-ethercat.c \
+	r8169-2.6.32-orig.c \
 	r8169-2.6.33-ethercat.c \
 	r8169-2.6.33-orig.c \
+	r8169-2.6.35-ethercat.c \
+	r8169-2.6.35-orig.c \
 	r8169-2.6.37-ethercat.c \
 	r8169-2.6.37-orig.c
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e100-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3289 @@
+/******************************************************************************
+ *
+ *  $Id$
+ *
+ *  Copyright (C) 2007-2012  Florian Pose, Ingenieurgemeinschaft IgH
+ *
+ *  This file is part of the IgH EtherCAT Master.
+ *
+ *  The IgH EtherCAT Master is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU General Public License version 2, as
+ *  published by the Free Software Foundation.
+ *
+ *  The IgH EtherCAT Master is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
+ *  Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License along
+ *  with the IgH EtherCAT Master; if not, write to the Free Software
+ *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ *  ---
+ *
+ *  The license mentioned above concerns the source code only. Using the
+ *  EtherCAT technology and brand is only permitted in compliance with the
+ *  industrial property and similar rights of Beckhoff Automation GmbH.
+ *
+ *  ---
+ *
+ *  vim: noexpandtab
+ *
+ *****************************************************************************/
+
+/**
+   \file
+   EtherCAT driver for e100-compatible NICs.
+*/
+
+/* Former documentation: */
+
+/*******************************************************************************
+
+  Intel PRO/100 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ *	e100.c: Intel(R) PRO/100 ethernet driver
+ *
+ *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
+ *	original e100 driver, but better described as a munging of
+ *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
+ *
+ *	References:
+ *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
+ *		Open Source Software Developers Manual,
+ *		http://sourceforge.net/projects/e1000
+ *
+ *
+ *	                      Theory of Operation
+ *
+ *	I.   General
+ *
+ *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
+ *	controller family, which includes the 82557, 82558, 82559, 82550,
+ *	82551, and 82562 devices.  82558 and greater controllers
+ *	integrate the Intel 82555 PHY.  The controllers are used in
+ *	server and client network interface cards, as well as in
+ *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
+ *	configurations.  8255x supports a 32-bit linear addressing
+ *	mode and operates at 33Mhz PCI clock rate.
+ *
+ *	II.  Driver Operation
+ *
+ *	Memory-mapped mode is used exclusively to access the device's
+ *	shared-memory structure, the Control/Status Registers (CSR). All
+ *	setup, configuration, and control of the device, including queuing
+ *	of Tx, Rx, and configuration commands is through the CSR.
+ *	cmd_lock serializes accesses to the CSR command register.  cb_lock
+ *	protects the shared Command Block List (CBL).
+ *
+ *	8255x is highly MII-compliant and all access to the PHY go
+ *	through the Management Data Interface (MDI).  Consequently, the
+ *	driver leverages the mii.c library shared with other MII-compliant
+ *	devices.
+ *
+ *	Big- and Little-Endian byte order as well as 32- and 64-bit
+ *	archs are supported.  Weak-ordered memory and non-cache-coherent
+ *	archs are supported.
+ *
+ *	III. Transmit
+ *
+ *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
+ *	together in a fixed-size ring (CBL) thus forming the flexible mode
+ *	memory structure.  A TCB marked with the suspend-bit indicates
+ *	the end of the ring.  The last TCB processed suspends the
+ *	controller, and the controller can be restarted by issue a CU
+ *	resume command to continue from the suspend point, or a CU start
+ *	command to start at a given position in the ring.
+ *
+ *	Non-Tx commands (config, multicast setup, etc) are linked
+ *	into the CBL ring along with Tx commands.  The common structure
+ *	used for both Tx and non-Tx commands is the Command Block (CB).
+ *
+ *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
+ *	is the next CB to check for completion; cb_to_send is the first
+ *	CB to start on in case of a previous failure to resume.  CB clean
+ *	up happens in interrupt context in response to a CU interrupt.
+ *	cbs_avail keeps track of number of free CB resources available.
+ *
+ * 	Hardware padding of short packets to minimum packet size is
+ * 	enabled.  82557 pads with 7Eh, while the later controllers pad
+ * 	with 00h.
+ *
+ *	IV.  Receive
+ *
+ *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
+ *	Descriptors (RFD) + data buffer, thus forming the simplified mode
+ *	memory structure.  Rx skbs are allocated to contain both the RFD
+ *	and the data buffer, but the RFD is pulled off before the skb is
+ *	indicated.  The data buffer is aligned such that encapsulated
+ *	protocol headers are u32-aligned.  Since the RFD is part of the
+ *	mapped shared memory, and completion status is contained within
+ *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
+ *	view from software and hardware.
+ *
+ *	In order to keep updates to the RFD link field from colliding with
+ *	hardware writes to mark packets complete, we use the feature that
+ *	hardware will not write to a size 0 descriptor and mark the previous
+ *	packet as end-of-list (EL).   After updating the link, we remove EL
+ *	and only then restore the size such that hardware may use the
+ *	previous-to-end RFD.
+ *
+ *	Under typical operation, the  receive unit (RU) is start once,
+ *	and the controller happily fills RFDs as frames arrive.  If
+ *	replacement RFDs cannot be allocated, or the RU goes non-active,
+ *	the RU must be restarted.  Frame arrival generates an interrupt,
+ *	and Rx indication and re-allocation happen in the same context,
+ *	therefore no locking is required.  A software-generated interrupt
+ *	is generated from the watchdog to recover from a failed allocation
+ *	scenario where all Rx resources have been indicated and none re-
+ *	placed.
+ *
+ *	V.   Miscellaneous
+ *
+ * 	VLAN offloading of tagging, stripping and filtering is not
+ * 	supported, but driver will accommodate the extra 4-byte VLAN tag
+ * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
+ * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
+ * 	not supported (hardware limitation).
+ *
+ * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
+ *
+ * 	Thanks to JC (jchapman@katalix.com) for helping with
+ * 	testing/troubleshooting the development driver.
+ *
+ * 	TODO:
+ * 	o several entry points race with dev->close
+ * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
+ *
+ *	FIXES:
+ * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
+ *	- Stratus87247: protect MDI control register manipulations
+ * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
+ *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmapool.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/mii.h>
+#include <linux/if_vlan.h>
+#include <linux/skbuff.h>
+#include <linux/ethtool.h>
+#include <linux/string.h>
+#include <linux/firmware.h>
+#include <linux/rtnetlink.h>
+#include <asm/unaligned.h>
+
+// EtherCAT includes
+#include "../globals.h"
+#include "ecdev.h"
+
+#define DRV_NAME		"ec_e100"
+#define DRV_EXT			"-NAPI"
+#define DRV_VERSION		"3.5.24-k2"DRV_EXT
+#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
+#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
+
+#define E100_WATCHDOG_PERIOD	(2 * HZ)
+#define E100_NAPI_WEIGHT	16
+
+#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
+#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
+#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
+
+MODULE_DESCRIPTION(DRV_DESCRIPTION);
+MODULE_AUTHOR(DRV_COPYRIGHT);
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+MODULE_FIRMWARE(FIRMWARE_D101M);
+MODULE_FIRMWARE(FIRMWARE_D101S);
+MODULE_FIRMWARE(FIRMWARE_D102E);
+
+MODULE_DESCRIPTION(DRV_DESCRIPTION);
+MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION ", master " EC_MASTER_VERSION);
+
+void e100_ec_poll(struct net_device *);
+
+static int debug = 3;
+static int eeprom_bad_csum_allow = 0;
+static int use_io = 0;
+module_param(debug, int, 0);
+module_param(eeprom_bad_csum_allow, int, 0);
+module_param(use_io, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
+MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
+
+#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
+	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
+	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
+static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
+	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
+	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
+	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
+	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
+	{ 0, }
+};
+
+// prevent from being loaded automatically
+//MODULE_DEVICE_TABLE(pci, e100_id_table);
+
+enum mac {
+	mac_82557_D100_A  = 0,
+	mac_82557_D100_B  = 1,
+	mac_82557_D100_C  = 2,
+	mac_82558_D101_A4 = 4,
+	mac_82558_D101_B0 = 5,
+	mac_82559_D101M   = 8,
+	mac_82559_D101S   = 9,
+	mac_82550_D102    = 12,
+	mac_82550_D102_C  = 13,
+	mac_82551_E       = 14,
+	mac_82551_F       = 15,
+	mac_82551_10      = 16,
+	mac_unknown       = 0xFF,
+};
+
+enum phy {
+	phy_100a     = 0x000003E0,
+	phy_100c     = 0x035002A8,
+	phy_82555_tx = 0x015002A8,
+	phy_nsc_tx   = 0x5C002000,
+	phy_82562_et = 0x033002A8,
+	phy_82562_em = 0x032002A8,
+	phy_82562_ek = 0x031002A8,
+	phy_82562_eh = 0x017002A8,
+	phy_82552_v  = 0xd061004d,
+	phy_unknown  = 0xFFFFFFFF,
+};
+
+/* CSR (Control/Status Registers) */
+struct csr {
+	struct {
+		u8 status;
+		u8 stat_ack;
+		u8 cmd_lo;
+		u8 cmd_hi;
+		u32 gen_ptr;
+	} scb;
+	u32 port;
+	u16 flash_ctrl;
+	u8 eeprom_ctrl_lo;
+	u8 eeprom_ctrl_hi;
+	u32 mdi_ctrl;
+	u32 rx_dma_count;
+};
+
+enum scb_status {
+	rus_no_res       = 0x08,
+	rus_ready        = 0x10,
+	rus_mask         = 0x3C,
+};
+
+enum ru_state  {
+	RU_SUSPENDED = 0,
+	RU_RUNNING	 = 1,
+	RU_UNINITIALIZED = -1,
+};
+
+enum scb_stat_ack {
+	stat_ack_not_ours    = 0x00,
+	stat_ack_sw_gen      = 0x04,
+	stat_ack_rnr         = 0x10,
+	stat_ack_cu_idle     = 0x20,
+	stat_ack_frame_rx    = 0x40,
+	stat_ack_cu_cmd_done = 0x80,
+	stat_ack_not_present = 0xFF,
+	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
+	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
+};
+
+enum scb_cmd_hi {
+	irq_mask_none = 0x00,
+	irq_mask_all  = 0x01,
+	irq_sw_gen    = 0x02,
+};
+
+enum scb_cmd_lo {
+	cuc_nop        = 0x00,
+	ruc_start      = 0x01,
+	ruc_load_base  = 0x06,
+	cuc_start      = 0x10,
+	cuc_resume     = 0x20,
+	cuc_dump_addr  = 0x40,
+	cuc_dump_stats = 0x50,
+	cuc_load_base  = 0x60,
+	cuc_dump_reset = 0x70,
+};
+
+enum cuc_dump {
+	cuc_dump_complete       = 0x0000A005,
+	cuc_dump_reset_complete = 0x0000A007,
+};
+
+enum port {
+	software_reset  = 0x0000,
+	selftest        = 0x0001,
+	selective_reset = 0x0002,
+};
+
+enum eeprom_ctrl_lo {
+	eesk = 0x01,
+	eecs = 0x02,
+	eedi = 0x04,
+	eedo = 0x08,
+};
+
+enum mdi_ctrl {
+	mdi_write = 0x04000000,
+	mdi_read  = 0x08000000,
+	mdi_ready = 0x10000000,
+};
+
+enum eeprom_op {
+	op_write = 0x05,
+	op_read  = 0x06,
+	op_ewds  = 0x10,
+	op_ewen  = 0x13,
+};
+
+enum eeprom_offsets {
+	eeprom_cnfg_mdix  = 0x03,
+	eeprom_phy_iface  = 0x06,
+	eeprom_id         = 0x0A,
+	eeprom_config_asf = 0x0D,
+	eeprom_smbus_addr = 0x90,
+};
+
+enum eeprom_cnfg_mdix {
+	eeprom_mdix_enabled = 0x0080,
+};
+
+enum eeprom_phy_iface {
+	NoSuchPhy = 0,
+	I82553AB,
+	I82553C,
+	I82503,
+	DP83840,
+	S80C240,
+	S80C24,
+	I82555,
+	DP83840A = 10,
+};
+
+enum eeprom_id {
+	eeprom_id_wol = 0x0020,
+};
+
+enum eeprom_config_asf {
+	eeprom_asf = 0x8000,
+	eeprom_gcl = 0x4000,
+};
+
+enum cb_status {
+	cb_complete = 0x8000,
+	cb_ok       = 0x2000,
+};
+
+enum cb_command {
+	cb_nop    = 0x0000,
+	cb_iaaddr = 0x0001,
+	cb_config = 0x0002,
+	cb_multi  = 0x0003,
+	cb_tx     = 0x0004,
+	cb_ucode  = 0x0005,
+	cb_dump   = 0x0006,
+	cb_tx_sf  = 0x0008,
+	cb_cid    = 0x1f00,
+	cb_i      = 0x2000,
+	cb_s      = 0x4000,
+	cb_el     = 0x8000,
+};
+
+struct rfd {
+	__le16 status;
+	__le16 command;
+	__le32 link;
+	__le32 rbd;
+	__le16 actual_size;
+	__le16 size;
+};
+
+struct rx {
+	struct rx *next, *prev;
+	struct sk_buff *skb;
+	dma_addr_t dma_addr;
+};
+
+#if defined(__BIG_ENDIAN_BITFIELD)
+#define X(a,b)	b,a
+#else
+#define X(a,b)	a,b
+#endif
+struct config {
+/*0*/	u8 X(byte_count:6, pad0:2);
+/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
+/*2*/	u8 adaptive_ifs;
+/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
+	   term_write_cache_line:1), pad3:4);
+/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
+/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
+/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
+	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
+	   rx_discard_overruns:1), rx_save_bad_frames:1);
+/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
+	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
+	   tx_dynamic_tbd:1);
+/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
+/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
+	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
+/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
+	   loopback:2);
+/*11*/	u8 X(linear_priority:3, pad11:5);
+/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
+/*13*/	u8 ip_addr_lo;
+/*14*/	u8 ip_addr_hi;
+/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
+	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
+	   pad15_2:1), crs_or_cdt:1);
+/*16*/	u8 fc_delay_lo;
+/*17*/	u8 fc_delay_hi;
+/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
+	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
+/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
+	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
+	   full_duplex_force:1), full_duplex_pin:1);
+/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
+/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
+/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
+	u8 pad_d102[9];
+};
+
+#define E100_MAX_MULTICAST_ADDRS	64
+struct multi {
+	__le16 count;
+	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
+};
+
+/* Important: keep total struct u32-aligned */
+#define UCODE_SIZE			134
+struct cb {
+	__le16 status;
+	__le16 command;
+	__le32 link;
+	union {
+		u8 iaaddr[ETH_ALEN];
+		__le32 ucode[UCODE_SIZE];
+		struct config config;
+		struct multi multi;
+		struct {
+			u32 tbd_array;
+			u16 tcb_byte_count;
+			u8 threshold;
+			u8 tbd_count;
+			struct {
+				__le32 buf_addr;
+				__le16 size;
+				u16 eol;
+			} tbd;
+		} tcb;
+		__le32 dump_buffer_addr;
+	} u;
+	struct cb *next, *prev;
+	dma_addr_t dma_addr;
+	struct sk_buff *skb;
+};
+
+enum loopback {
+	lb_none = 0, lb_mac = 1, lb_phy = 3,
+};
+
+struct stats {
+	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
+		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
+		tx_multiple_collisions, tx_total_collisions;
+	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
+		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
+		rx_short_frame_errors;
+	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
+	__le16 xmt_tco_frames, rcv_tco_frames;
+	__le32 complete;
+};
+
+struct mem {
+	struct {
+		u32 signature;
+		u32 result;
+	} selftest;
+	struct stats stats;
+	u8 dump_buf[596];
+};
+
+struct param_range {
+	u32 min;
+	u32 max;
+	u32 count;
+};
+
+struct params {
+	struct param_range rfds;
+	struct param_range cbs;
+};
+
+struct nic {
+	/* Begin: frequently used values: keep adjacent for cache effect */
+	u32 msg_enable				____cacheline_aligned;
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
+
+	struct rx *rxs				____cacheline_aligned;
+	struct rx *rx_to_use;
+	struct rx *rx_to_clean;
+	struct rfd blank_rfd;
+	enum ru_state ru_running;
+
+	spinlock_t cb_lock			____cacheline_aligned;
+	spinlock_t cmd_lock;
+	struct csr __iomem *csr;
+	enum scb_cmd_lo cuc_cmd;
+	unsigned int cbs_avail;
+	struct napi_struct napi;
+	struct cb *cbs;
+	struct cb *cb_to_use;
+	struct cb *cb_to_send;
+	struct cb *cb_to_clean;
+	__le16 tx_command;
+	/* End: frequently used values: keep adjacent for cache effect */
+
+	enum {
+		ich                = (1 << 0),
+		promiscuous        = (1 << 1),
+		multicast_all      = (1 << 2),
+		wol_magic          = (1 << 3),
+		ich_10h_workaround = (1 << 4),
+	} flags					____cacheline_aligned;
+
+	enum mac mac;
+	enum phy phy;
+	struct params params;
+	struct timer_list watchdog;
+	struct timer_list blink_timer;
+	struct mii_if_info mii;
+	struct work_struct tx_timeout_task;
+	enum loopback loopback;
+
+	struct mem *mem;
+	dma_addr_t dma_addr;
+
+	struct pci_pool *cbs_pool;
+	dma_addr_t cbs_dma_addr;
+	u8 adaptive_ifs;
+	u8 tx_threshold;
+	u32 tx_frames;
+	u32 tx_collisions;
+
+	u32 tx_deferred;
+	u32 tx_single_collisions;
+	u32 tx_multiple_collisions;
+	u32 tx_fc_pause;
+	u32 tx_tco_frames;
+
+	u32 rx_fc_pause;
+	u32 rx_fc_unsupported;
+	u32 rx_tco_frames;
+	u32 rx_over_length_errors;
+
+	u16 leds;
+	u16 eeprom_wc;
+
+	__le16 eeprom[256];
+	spinlock_t mdio_lock;
+	const struct firmware *fw;
+	ec_device_t *ecdev;
+	unsigned long ec_watchdog_jiffies;
+};
+
+static inline void e100_write_flush(struct nic *nic)
+{
+	/* Flush previous PCI writes through intermediate bridges
+	 * by doing a benign read */
+	(void)ioread8(&nic->csr->scb.status);
+}
+
+static void e100_enable_irq(struct nic *nic)
+{
+	unsigned long flags;
+
+	if (nic->ecdev)
+		return;
+
+	spin_lock_irqsave(&nic->cmd_lock, flags);
+	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
+	e100_write_flush(nic);
+	spin_unlock_irqrestore(&nic->cmd_lock, flags);
+}
+
+static void e100_disable_irq(struct nic *nic)
+{
+	unsigned long flags = 0;
+
+	if (!nic->ecdev)
+		spin_lock_irqsave(&nic->cmd_lock, flags);
+	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
+	e100_write_flush(nic);
+	if (!nic->ecdev)
+		spin_unlock_irqrestore(&nic->cmd_lock, flags);
+}
+
+static void e100_hw_reset(struct nic *nic)
+{
+	/* Put CU and RU into idle with a selective reset to get
+	 * device off of PCI bus */
+	iowrite32(selective_reset, &nic->csr->port);
+	e100_write_flush(nic); udelay(20);
+
+	/* Now fully reset device */
+	iowrite32(software_reset, &nic->csr->port);
+	e100_write_flush(nic); udelay(20);
+
+	/* Mask off our interrupt line - it's unmasked after reset */
+	e100_disable_irq(nic);
+}
+
+static int e100_self_test(struct nic *nic)
+{
+	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
+
+	/* Passing the self-test is a pretty good indication
+	 * that the device can DMA to/from host memory */
+
+	nic->mem->selftest.signature = 0;
+	nic->mem->selftest.result = 0xFFFFFFFF;
+
+	iowrite32(selftest | dma_addr, &nic->csr->port);
+	e100_write_flush(nic);
+	/* Wait 10 msec for self-test to complete */
+	msleep(10);
+
+	/* Interrupts are enabled after self-test */
+	e100_disable_irq(nic);
+
+	/* Check results of self-test */
+	if (nic->mem->selftest.result != 0) {
+		netif_err(nic, hw, nic->netdev,
+			  "Self-test failed: result=0x%08X\n",
+			  nic->mem->selftest.result);
+		return -ETIMEDOUT;
+	}
+	if (nic->mem->selftest.signature == 0) {
+		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
+{
+	u32 cmd_addr_data[3];
+	u8 ctrl;
+	int i, j;
+
+	/* Three cmds: write/erase enable, write data, write/erase disable */
+	cmd_addr_data[0] = op_ewen << (addr_len - 2);
+	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
+		le16_to_cpu(data);
+	cmd_addr_data[2] = op_ewds << (addr_len - 2);
+
+	/* Bit-bang cmds to write word to eeprom */
+	for (j = 0; j < 3; j++) {
+
+		/* Chip select */
+		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+
+		for (i = 31; i >= 0; i--) {
+			ctrl = (cmd_addr_data[j] & (1 << i)) ?
+				eecs | eedi : eecs;
+			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
+			e100_write_flush(nic); udelay(4);
+
+			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
+			e100_write_flush(nic); udelay(4);
+		}
+		/* Wait 10 msec for cmd to complete */
+		msleep(10);
+
+		/* Chip deselect */
+		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+	}
+};
+
+/* General technique stolen from the eepro100 driver - very clever */
+static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
+{
+	u32 cmd_addr_data;
+	u16 data = 0;
+	u8 ctrl;
+	int i;
+
+	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
+
+	/* Chip select */
+	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
+	e100_write_flush(nic); udelay(4);
+
+	/* Bit-bang to read word from eeprom */
+	for (i = 31; i >= 0; i--) {
+		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
+		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+
+		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+
+		/* Eeprom drives a dummy zero to EEDO after receiving
+		 * complete address.  Use this to adjust addr_len. */
+		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
+		if (!(ctrl & eedo) && i > 16) {
+			*addr_len -= (i - 16);
+			i = 17;
+		}
+
+		data = (data << 1) | (ctrl & eedo ? 1 : 0);
+	}
+
+	/* Chip deselect */
+	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
+	e100_write_flush(nic); udelay(4);
+
+	return cpu_to_le16(data);
+};
+
+/* Load entire EEPROM image into driver cache and validate checksum */
+static int e100_eeprom_load(struct nic *nic)
+{
+	u16 addr, addr_len = 8, checksum = 0;
+
+	/* Try reading with an 8-bit addr len to discover actual addr len */
+	e100_eeprom_read(nic, &addr_len, 0);
+	nic->eeprom_wc = 1 << addr_len;
+
+	for (addr = 0; addr < nic->eeprom_wc; addr++) {
+		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
+		if (addr < nic->eeprom_wc - 1)
+			checksum += le16_to_cpu(nic->eeprom[addr]);
+	}
+
+	/* The checksum, stored in the last word, is calculated such that
+	 * the sum of words should be 0xBABA */
+	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
+		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
+		if (!eeprom_bad_csum_allow)
+			return -EAGAIN;
+	}
+
+	return 0;
+}
+
+/* Save (portion of) driver EEPROM cache to device and update checksum */
+static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
+{
+	u16 addr, addr_len = 8, checksum = 0;
+
+	/* Try reading with an 8-bit addr len to discover actual addr len */
+	e100_eeprom_read(nic, &addr_len, 0);
+	nic->eeprom_wc = 1 << addr_len;
+
+	if (start + count >= nic->eeprom_wc)
+		return -EINVAL;
+
+	for (addr = start; addr < start + count; addr++)
+		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
+
+	/* The checksum, stored in the last word, is calculated such that
+	 * the sum of words should be 0xBABA */
+	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
+		checksum += le16_to_cpu(nic->eeprom[addr]);
+	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
+	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
+		nic->eeprom[nic->eeprom_wc - 1]);
+
+	return 0;
+}
+
+#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
+#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
+static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
+{
+	unsigned long flags = 0;
+	unsigned int i;
+	int err = 0;
+
+	if (!nic->ecdev)
+		spin_lock_irqsave(&nic->cmd_lock, flags);
+
+	/* Previous command is accepted when SCB clears */
+	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
+		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
+			break;
+		cpu_relax();
+		if (unlikely(i > E100_WAIT_SCB_FAST))
+			udelay(5);
+	}
+	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
+		err = -EAGAIN;
+		goto err_unlock;
+	}
+
+	if (unlikely(cmd != cuc_resume))
+		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
+	iowrite8(cmd, &nic->csr->scb.cmd_lo);
+
+err_unlock:
+	if (!nic->ecdev)
+		spin_unlock_irqrestore(&nic->cmd_lock, flags);
+
+	return err;
+}
+
+static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
+	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
+{
+	struct cb *cb;
+	unsigned long flags = 0;
+	int err = 0;
+
+	if (!nic->ecdev)
+		spin_lock_irqsave(&nic->cb_lock, flags);
+
+	if (unlikely(!nic->cbs_avail)) {
+		err = -ENOMEM;
+		goto err_unlock;
+	}
+
+	cb = nic->cb_to_use;
+	nic->cb_to_use = cb->next;
+	nic->cbs_avail--;
+	cb->skb = skb;
+
+	if (unlikely(!nic->cbs_avail))
+		err = -ENOSPC;
+
+	cb_prepare(nic, cb, skb);
+
+	/* Order is important otherwise we'll be in a race with h/w:
+	 * set S-bit in current first, then clear S-bit in previous. */
+	cb->command |= cpu_to_le16(cb_s);
+	wmb();
+	cb->prev->command &= cpu_to_le16(~cb_s);
+
+	while (nic->cb_to_send != nic->cb_to_use) {
+		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
+			nic->cb_to_send->dma_addr))) {
+			/* Ok, here's where things get sticky.  It's
+			 * possible that we can't schedule the command
+			 * because the controller is too busy, so
+			 * let's just queue the command and try again
+			 * when another command is scheduled. */
+			if (err == -ENOSPC) {
+				//request a reset
+				schedule_work(&nic->tx_timeout_task);
+			}
+			break;
+		} else {
+			nic->cuc_cmd = cuc_resume;
+			nic->cb_to_send = nic->cb_to_send->next;
+		}
+	}
+
+err_unlock:
+	if (!nic->ecdev)
+		spin_unlock_irqrestore(&nic->cb_lock, flags);
+
+	return err;
+}
+
+static int mdio_read(struct net_device *netdev, int addr, int reg)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
+}
+
+static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
+}
+
+/* the standard mdio_ctrl() function for usual MII-compliant hardware */
+static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
+{
+	u32 data_out = 0;
+	unsigned int i;
+	unsigned long flags = 0;
+
+
+	/*
+	 * Stratus87247: we shouldn't be writing the MDI control
+	 * register until the Ready bit shows True.  Also, since
+	 * manipulation of the MDI control registers is a multi-step
+	 * procedure it should be done under lock.
+	 */
+	if (!nic->ecdev)
+		spin_lock_irqsave(&nic->mdio_lock, flags);
+	for (i = 100; i; --i) {
+		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
+			break;
+		udelay(20);
+	}
+	if (unlikely(!i)) {
+		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
+		if (!nic->ecdev)
+			spin_unlock_irqrestore(&nic->mdio_lock, flags);
+		return 0;		/* No way to indicate timeout error */
+	}
+	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
+
+	for (i = 0; i < 100; i++) {
+		udelay(20);
+		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
+			break;
+	}
+	if (!nic->ecdev)
+		spin_unlock_irqrestore(&nic->mdio_lock, flags);
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
+		     dir == mdi_read ? "READ" : "WRITE",
+		     addr, reg, data, data_out);
+	return (u16)data_out;
+}
+
+/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
+static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
+				 u32 addr,
+				 u32 dir,
+				 u32 reg,
+				 u16 data)
+{
+	if ((reg == MII_BMCR) && (dir == mdi_write)) {
+		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
+			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
+							MII_ADVERTISE);
+
+			/*
+			 * Workaround Si issue where sometimes the part will not
+			 * autoneg to 100Mbps even when advertised.
+			 */
+			if (advert & ADVERTISE_100FULL)
+				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
+			else if (advert & ADVERTISE_100HALF)
+				data |= BMCR_SPEED100;
+		}
+	}
+	return mdio_ctrl_hw(nic, addr, dir, reg, data);
+}
+
+/* Fully software-emulated mdio_ctrl() function for cards without
+ * MII-compliant PHYs.
+ * For now, this is mainly geared towards 80c24 support; in case of further
+ * requirements for other types (i82503, ...?) either extend this mechanism
+ * or split it, whichever is cleaner.
+ */
+static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
+				      u32 addr,
+				      u32 dir,
+				      u32 reg,
+				      u16 data)
+{
+	/* might need to allocate a netdev_priv'ed register array eventually
+	 * to be able to record state changes, but for now
+	 * some fully hardcoded register handling ought to be ok I guess. */
+
+	if (dir == mdi_read) {
+		switch (reg) {
+		case MII_BMCR:
+			/* Auto-negotiation, right? */
+			return  BMCR_ANENABLE |
+				BMCR_FULLDPLX;
+		case MII_BMSR:
+			return	BMSR_LSTATUS /* for mii_link_ok() */ |
+				BMSR_ANEGCAPABLE |
+				BMSR_10FULL;
+		case MII_ADVERTISE:
+			/* 80c24 is a "combo card" PHY, right? */
+			return	ADVERTISE_10HALF |
+				ADVERTISE_10FULL;
+		default:
+			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
+				     dir == mdi_read ? "READ" : "WRITE",
+				     addr, reg, data);
+			return 0xFFFF;
+		}
+	} else {
+		switch (reg) {
+		default:
+			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
+				     dir == mdi_read ? "READ" : "WRITE",
+				     addr, reg, data);
+			return 0xFFFF;
+		}
+	}
+}
+static inline int e100_phy_supports_mii(struct nic *nic)
+{
+	/* for now, just check it by comparing whether we
+	   are using MII software emulation.
+	*/
+	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
+}
+
+static void e100_get_defaults(struct nic *nic)
+{
+	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
+	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
+
+	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
+	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
+	if (nic->mac == mac_unknown)
+		nic->mac = mac_82557_D100_A;
+
+	nic->params.rfds = rfds;
+	nic->params.cbs = cbs;
+
+	/* Quadwords to DMA into FIFO before starting frame transmit */
+	nic->tx_threshold = 0xE0;
+
+	/* no interrupt for every tx completion, delay = 256us if not 557 */
+	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
+		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
+
+	/* Template for a freshly allocated RFD */
+	nic->blank_rfd.command = 0;
+	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
+	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
+
+	/* MII setup */
+	nic->mii.phy_id_mask = 0x1F;
+	nic->mii.reg_num_mask = 0x1F;
+	nic->mii.dev = nic->netdev;
+	nic->mii.mdio_read = mdio_read;
+	nic->mii.mdio_write = mdio_write;
+}
+
+static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
+{
+	struct config *config = &cb->u.config;
+	u8 *c = (u8 *)config;
+
+	cb->command = cpu_to_le16(cb_config);
+
+	memset(config, 0, sizeof(struct config));
+
+	config->byte_count = 0x16;		/* bytes in this struct */
+	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
+	config->direct_rx_dma = 0x1;		/* reserved */
+	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
+	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
+	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
+	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
+	if (e100_phy_supports_mii(nic))
+		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
+	config->pad10 = 0x6;
+	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
+	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
+	config->ifs = 0x6;			/* x16 = inter frame spacing */
+	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
+	config->pad15_1 = 0x1;
+	config->pad15_2 = 0x1;
+	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
+	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
+	config->tx_padding = 0x1;		/* 1=pad short frames */
+	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
+	config->pad18 = 0x1;
+	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
+	config->pad20_1 = 0x1F;
+	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
+	config->pad21_1 = 0x5;
+
+	config->adaptive_ifs = nic->adaptive_ifs;
+	config->loopback = nic->loopback;
+
+	if (nic->mii.force_media && nic->mii.full_duplex)
+		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
+
+	if (nic->flags & promiscuous || nic->loopback) {
+		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
+		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
+		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
+	}
+
+	if (nic->flags & multicast_all)
+		config->multicast_all = 0x1;		/* 1=accept, 0=no */
+
+	/* disable WoL when up */
+	if (nic->ecdev || 
+			(netif_running(nic->netdev) || !(nic->flags & wol_magic)))
+		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
+
+	if (nic->mac >= mac_82558_D101_A4) {
+		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
+		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
+		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
+		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
+		if (nic->mac >= mac_82559_D101M) {
+			config->tno_intr = 0x1;		/* TCO stats enable */
+			/* Enable TCO in extended config */
+			if (nic->mac >= mac_82551_10) {
+				config->byte_count = 0x20; /* extended bytes */
+				config->rx_d102_mode = 0x1; /* GMRC for TCO */
+			}
+		} else {
+			config->standard_stat_counter = 0x0;
+		}
+	}
+
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
+		     c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
+		     c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
+		     c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
+}
+
+/*************************************************************************
+*  CPUSaver parameters
+*
+*  All CPUSaver parameters are 16-bit literals that are part of a
+*  "move immediate value" instruction.  By changing the value of
+*  the literal in the instruction before the code is loaded, the
+*  driver can change the algorithm.
+*
+*  INTDELAY - This loads the dead-man timer with its initial value.
+*    When this timer expires the interrupt is asserted, and the
+*    timer is reset each time a new packet is received.  (see
+*    BUNDLEMAX below to set the limit on number of chained packets)
+*    The current default is 0x600 or 1536.  Experiments show that
+*    the value should probably stay within the 0x200 - 0x1000.
+*
+*  BUNDLEMAX -
+*    This sets the maximum number of frames that will be bundled.  In
+*    some situations, such as the TCP windowing algorithm, it may be
+*    better to limit the growth of the bundle size than let it go as
+*    high as it can, because that could cause too much added latency.
+*    The default is six, because this is the number of packets in the
+*    default TCP window size.  A value of 1 would make CPUSaver indicate
+*    an interrupt for every frame received.  If you do not want to put
+*    a limit on the bundle size, set this value to xFFFF.
+*
+*  BUNDLESMALL -
+*    This contains a bit-mask describing the minimum size frame that
+*    will be bundled.  The default masks the lower 7 bits, which means
+*    that any frame less than 128 bytes in length will not be bundled,
+*    but will instead immediately generate an interrupt.  This does
+*    not affect the current bundle in any way.  Any frame that is 128
+*    bytes or large will be bundled normally.  This feature is meant
+*    to provide immediate indication of ACK frames in a TCP environment.
+*    Customers were seeing poor performance when a machine with CPUSaver
+*    enabled was sending but not receiving.  The delay introduced when
+*    the ACKs were received was enough to reduce total throughput, because
+*    the sender would sit idle until the ACK was finally seen.
+*
+*    The current default is 0xFF80, which masks out the lower 7 bits.
+*    This means that any frame which is x7F (127) bytes or smaller
+*    will cause an immediate interrupt.  Because this value must be a
+*    bit mask, there are only a few valid values that can be used.  To
+*    turn this feature off, the driver can write the value xFFFF to the
+*    lower word of this instruction (in the same way that the other
+*    parameters are used).  Likewise, a value of 0xF800 (2047) would
+*    cause an interrupt to be generated for every frame, because all
+*    standard Ethernet frames are <= 2047 bytes in length.
+*************************************************************************/
+
+/* if you wish to disable the ucode functionality, while maintaining the
+ * workarounds it provides, set the following defines to:
+ * BUNDLESMALL 0
+ * BUNDLEMAX 1
+ * INTDELAY 1
+ */
+#define BUNDLESMALL 1
+#define BUNDLEMAX (u16)6
+#define INTDELAY (u16)1536 /* 0x600 */
+
+/* Initialize firmware */
+static const struct firmware *e100_request_firmware(struct nic *nic)
+{
+	const char *fw_name;
+	const struct firmware *fw = nic->fw;
+	u8 timer, bundle, min_size;
+	int err = 0;
+
+	/* do not load u-code for ICH devices */
+	if (nic->flags & ich)
+		return NULL;
+
+	/* Search for ucode match against h/w revision */
+	if (nic->mac == mac_82559_D101M)
+		fw_name = FIRMWARE_D101M;
+	else if (nic->mac == mac_82559_D101S)
+		fw_name = FIRMWARE_D101S;
+	else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
+		fw_name = FIRMWARE_D102E;
+	else /* No ucode on other devices */
+		return NULL;
+
+	/* If the firmware has not previously been loaded, request a pointer
+	 * to it. If it was previously loaded, we are reinitializing the
+	 * adapter, possibly in a resume from hibernate, in which case
+	 * request_firmware() cannot be used.
+	 */
+	if (!fw)
+		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
+
+	if (err) {
+		netif_err(nic, probe, nic->netdev,
+			  "Failed to load firmware \"%s\": %d\n",
+			  fw_name, err);
+		return ERR_PTR(err);
+	}
+
+	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
+	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
+	if (fw->size != UCODE_SIZE * 4 + 3) {
+		netif_err(nic, probe, nic->netdev,
+			  "Firmware \"%s\" has wrong size %zu\n",
+			  fw_name, fw->size);
+		release_firmware(fw);
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* Read timer, bundle and min_size from end of firmware blob */
+	timer = fw->data[UCODE_SIZE * 4];
+	bundle = fw->data[UCODE_SIZE * 4 + 1];
+	min_size = fw->data[UCODE_SIZE * 4 + 2];
+
+	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
+	    min_size >= UCODE_SIZE) {
+		netif_err(nic, probe, nic->netdev,
+			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
+			  fw_name, timer, bundle, min_size);
+		release_firmware(fw);
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* OK, firmware is validated and ready to use. Save a pointer
+	 * to it in the nic */
+	nic->fw = fw;
+	return fw;
+}
+
+static void e100_setup_ucode(struct nic *nic, struct cb *cb,
+			     struct sk_buff *skb)
+{
+	const struct firmware *fw = (void *)skb;
+	u8 timer, bundle, min_size;
+
+	/* It's not a real skb; we just abused the fact that e100_exec_cb
+	   will pass it through to here... */
+	cb->skb = NULL;
+
+	/* firmware is stored as little endian already */
+	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
+
+	/* Read timer, bundle and min_size from end of firmware blob */
+	timer = fw->data[UCODE_SIZE * 4];
+	bundle = fw->data[UCODE_SIZE * 4 + 1];
+	min_size = fw->data[UCODE_SIZE * 4 + 2];
+
+	/* Insert user-tunable settings in cb->u.ucode */
+	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
+	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
+	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
+	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
+	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
+	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
+
+	cb->command = cpu_to_le16(cb_ucode | cb_el);
+}
+
+static inline int e100_load_ucode_wait(struct nic *nic)
+{
+	const struct firmware *fw;
+	int err = 0, counter = 50;
+	struct cb *cb = nic->cb_to_clean;
+
+	fw = e100_request_firmware(nic);
+	/* If it's NULL, then no ucode is required */
+	if (!fw || IS_ERR(fw))
+		return PTR_ERR(fw);
+
+	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
+		netif_err(nic, probe, nic->netdev,
+			  "ucode cmd failed with error %d\n", err);
+
+	/* must restart cuc */
+	nic->cuc_cmd = cuc_start;
+
+	/* wait for completion */
+	e100_write_flush(nic);
+	udelay(10);
+
+	/* wait for possibly (ouch) 500ms */
+	while (!(cb->status & cpu_to_le16(cb_complete))) {
+		msleep(10);
+		if (!--counter) break;
+	}
+
+	/* ack any interrupts, something could have been set */
+	iowrite8(~0, &nic->csr->scb.stat_ack);
+
+	/* if the command failed, or is not OK, notify and return */
+	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
+		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
+		err = -EPERM;
+	}
+
+	return err;
+}
+
+static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
+	struct sk_buff *skb)
+{
+	cb->command = cpu_to_le16(cb_iaaddr);
+	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
+}
+
+static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
+{
+	cb->command = cpu_to_le16(cb_dump);
+	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
+		offsetof(struct mem, dump_buf));
+}
+
+static int e100_phy_check_without_mii(struct nic *nic)
+{
+	u8 phy_type;
+	int without_mii;
+
+	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
+
+	switch (phy_type) {
+	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
+	case I82503: /* Non-MII PHY; UNTESTED! */
+	case S80C24: /* Non-MII PHY; tested and working */
+		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
+		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
+		 * doesn't have a programming interface of any sort.  The
+		 * media is sensed automatically based on how the link partner
+		 * is configured.  This is, in essence, manual configuration.
+		 */
+		netif_info(nic, probe, nic->netdev,
+			   "found MII-less i82503 or 80c24 or other PHY\n");
+
+		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
+		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
+
+		/* these might be needed for certain MII-less cards...
+		 * nic->flags |= ich;
+		 * nic->flags |= ich_10h_workaround; */
+
+		without_mii = 1;
+		break;
+	default:
+		without_mii = 0;
+		break;
+	}
+	return without_mii;
+}
+
+#define NCONFIG_AUTO_SWITCH	0x0080
+#define MII_NSC_CONG		MII_RESV1
+#define NSC_CONG_ENABLE		0x0100
+#define NSC_CONG_TXREADY	0x0400
+#define ADVERTISE_FC_SUPPORTED	0x0400
+static int e100_phy_init(struct nic *nic)
+{
+	struct net_device *netdev = nic->netdev;
+	u32 addr;
+	u16 bmcr, stat, id_lo, id_hi, cong;
+
+	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
+	for (addr = 0; addr < 32; addr++) {
+		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
+		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
+		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
+		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
+		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
+			break;
+	}
+	if (addr == 32) {
+		/* uhoh, no PHY detected: check whether we seem to be some
+		 * weird, rare variant which is *known* to not have any MII.
+		 * But do this AFTER MII checking only, since this does
+		 * lookup of EEPROM values which may easily be unreliable. */
+		if (e100_phy_check_without_mii(nic))
+			return 0; /* simply return and hope for the best */
+		else {
+			/* for unknown cases log a fatal error */
+			netif_err(nic, hw, nic->netdev,
+				  "Failed to locate any known PHY, aborting\n");
+			return -EAGAIN;
+		}
+	} else
+		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+			     "phy_addr = %d\n", nic->mii.phy_id);
+
+	/* Get phy ID */
+	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
+	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
+	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "phy ID = 0x%08X\n", nic->phy);
+
+	/* Select the phy and isolate the rest */
+	for (addr = 0; addr < 32; addr++) {
+		if (addr != nic->mii.phy_id) {
+			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
+		} else if (nic->phy != phy_82552_v) {
+			bmcr = mdio_read(netdev, addr, MII_BMCR);
+			mdio_write(netdev, addr, MII_BMCR,
+				bmcr & ~BMCR_ISOLATE);
+		}
+	}
+	/*
+	 * Workaround for 82552:
+	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
+	 * other phy_id's) using bmcr value from addr discovery loop above.
+	 */
+	if (nic->phy == phy_82552_v)
+		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
+			bmcr & ~BMCR_ISOLATE);
+
+	/* Handle National tx phys */
+#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
+	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
+		/* Disable congestion control */
+		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
+		cong |= NSC_CONG_TXREADY;
+		cong &= ~NSC_CONG_ENABLE;
+		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
+	}
+
+	if (nic->phy == phy_82552_v) {
+		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
+
+		/* assign special tweaked mdio_ctrl() function */
+		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
+
+		/* Workaround Si not advertising flow-control during autoneg */
+		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
+		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
+
+		/* Reset for the above changes to take effect */
+		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
+		bmcr |= BMCR_RESET;
+		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
+	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
+	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
+		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
+		/* enable/disable MDI/MDI-X auto-switching. */
+		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
+				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
+	}
+
+	return 0;
+}
+
+static int e100_hw_init(struct nic *nic)
+{
+	int err;
+
+	e100_hw_reset(nic);
+
+	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
+	if (!in_interrupt() && (err = e100_self_test(nic)))
+		return err;
+
+	if ((err = e100_phy_init(nic)))
+		return err;
+	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
+		return err;
+	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
+		return err;
+	if ((err = e100_load_ucode_wait(nic)))
+		return err;
+	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
+		return err;
+	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
+		return err;
+	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
+		nic->dma_addr + offsetof(struct mem, stats))))
+		return err;
+	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
+		return err;
+
+	e100_disable_irq(nic);
+
+	return 0;
+}
+
+static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
+{
+	struct net_device *netdev = nic->netdev;
+	struct netdev_hw_addr *ha;
+	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
+
+	cb->command = cpu_to_le16(cb_multi);
+	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
+	i = 0;
+	netdev_for_each_mc_addr(ha, netdev) {
+		if (i == count)
+			break;
+		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
+			ETH_ALEN);
+	}
+}
+
+static void e100_set_multicast_list(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "mc_count=%d, flags=0x%04X\n",
+		     netdev_mc_count(netdev), netdev->flags);
+
+	if (netdev->flags & IFF_PROMISC)
+		nic->flags |= promiscuous;
+	else
+		nic->flags &= ~promiscuous;
+
+	if (netdev->flags & IFF_ALLMULTI ||
+		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
+		nic->flags |= multicast_all;
+	else
+		nic->flags &= ~multicast_all;
+
+	e100_exec_cb(nic, NULL, e100_configure);
+	e100_exec_cb(nic, NULL, e100_multi);
+}
+
+static void e100_update_stats(struct nic *nic)
+{
+	struct net_device *dev = nic->netdev;
+	struct net_device_stats *ns = &dev->stats;
+	struct stats *s = &nic->mem->stats;
+	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
+		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
+		&s->complete;
+
+	/* Device's stats reporting may take several microseconds to
+	 * complete, so we're always waiting for results of the
+	 * previous command. */
+
+	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
+		*complete = 0;
+		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
+		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
+		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
+		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
+		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
+		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
+		ns->collisions += nic->tx_collisions;
+		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
+			le32_to_cpu(s->tx_lost_crs);
+		ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
+			nic->rx_over_length_errors;
+		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
+		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
+		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
+		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
+		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
+		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
+			le32_to_cpu(s->rx_alignment_errors) +
+			le32_to_cpu(s->rx_short_frame_errors) +
+			le32_to_cpu(s->rx_cdt_errors);
+		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
+		nic->tx_single_collisions +=
+			le32_to_cpu(s->tx_single_collisions);
+		nic->tx_multiple_collisions +=
+			le32_to_cpu(s->tx_multiple_collisions);
+		if (nic->mac >= mac_82558_D101_A4) {
+			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
+			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
+			nic->rx_fc_unsupported +=
+				le32_to_cpu(s->fc_rcv_unsupported);
+			if (nic->mac >= mac_82559_D101M) {
+				nic->tx_tco_frames +=
+					le16_to_cpu(s->xmt_tco_frames);
+				nic->rx_tco_frames +=
+					le16_to_cpu(s->rcv_tco_frames);
+			}
+		}
+	}
+
+
+	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
+		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+			     "exec cuc_dump_reset failed\n");
+}
+
+static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
+{
+	/* Adjust inter-frame-spacing (IFS) between two transmits if
+	 * we're getting collisions on a half-duplex connection. */
+
+	if (duplex == DUPLEX_HALF) {
+		u32 prev = nic->adaptive_ifs;
+		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
+
+		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
+		   (nic->tx_frames > min_frames)) {
+			if (nic->adaptive_ifs < 60)
+				nic->adaptive_ifs += 5;
+		} else if (nic->tx_frames < min_frames) {
+			if (nic->adaptive_ifs >= 5)
+				nic->adaptive_ifs -= 5;
+		}
+		if (nic->adaptive_ifs != prev)
+			e100_exec_cb(nic, NULL, e100_configure);
+	}
+}
+
+static void e100_watchdog(unsigned long data)
+{
+	struct nic *nic = (struct nic *)data;
+	struct ethtool_cmd cmd;
+
+	if (nic->ecdev) {
+		ecdev_set_link(nic->ecdev, mii_link_ok(&nic->mii) ? 1 : 0);
+		return;
+	}
+
+	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
+		     "right now = %ld\n", jiffies);
+
+	/* mii library handles link maintenance tasks */
+
+	mii_ethtool_gset(&nic->mii, &cmd);
+
+	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
+		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
+			    cmd.speed == SPEED_100 ? 100 : 10,
+			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
+	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
+		netdev_info(nic->netdev, "NIC Link is Down\n");
+	}
+
+	mii_check_link(&nic->mii);
+
+	/* Software generated interrupt to recover from (rare) Rx
+	 * allocation failure.
+	 * Unfortunately have to use a spinlock to not re-enable interrupts
+	 * accidentally, due to hardware that shares a register between the
+	 * interrupt mask bit and the SW Interrupt generation bit */
+	spin_lock_irq(&nic->cmd_lock);
+	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
+	e100_write_flush(nic);
+	spin_unlock_irq(&nic->cmd_lock);
+
+	e100_update_stats(nic);
+	e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
+
+	if (nic->mac <= mac_82557_D100_C)
+		/* Issue a multicast command to workaround a 557 lock up */
+		e100_set_multicast_list(nic->netdev);
+
+	if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
+		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
+		nic->flags |= ich_10h_workaround;
+	else
+		nic->flags &= ~ich_10h_workaround;
+
+	mod_timer(&nic->watchdog,
+		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
+}
+
+static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
+	struct sk_buff *skb)
+{
+	cb->command = nic->tx_command;
+	/* interrupt every 16 packets regardless of delay */
+	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
+		cb->command |= cpu_to_le16(cb_i);
+	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
+	cb->u.tcb.tcb_byte_count = 0;
+	cb->u.tcb.threshold = nic->tx_threshold;
+	cb->u.tcb.tbd_count = 1;
+	cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
+		skb->data, skb->len, PCI_DMA_TODEVICE));
+	/* check for mapping failure? */
+	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
+}
+
+static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
+				   struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int err;
+
+	if (nic->flags & ich_10h_workaround) {
+		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
+		   Issue a NOP command followed by a 1us delay before
+		   issuing the Tx command. */
+		if (e100_exec_cmd(nic, cuc_nop, 0))
+			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+				     "exec cuc_nop failed\n");
+		udelay(1);
+	}
+
+	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
+
+	switch (err) {
+	case -ENOSPC:
+		/* We queued the skb, but now we're out of space. */
+		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+			     "No space for CB\n");
+		if (!nic->ecdev)
+			netif_stop_queue(netdev);
+		break;
+	case -ENOMEM:
+		/* This is a hard error - log it. */
+		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+			     "Out of Tx resources, returning skb\n");
+		if (!nic->ecdev)
+			netif_stop_queue(netdev);
+		return NETDEV_TX_BUSY;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+static int e100_tx_clean(struct nic *nic)
+{
+	struct net_device *dev = nic->netdev;
+	struct cb *cb;
+	int tx_cleaned = 0;
+
+	if (!nic->ecdev)
+		spin_lock(&nic->cb_lock);
+
+	/* Clean CBs marked complete */
+	for (cb = nic->cb_to_clean;
+	    cb->status & cpu_to_le16(cb_complete);
+	    cb = nic->cb_to_clean = cb->next) {
+		rmb(); /* read skb after status */
+		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
+			     "cb[%d]->status = 0x%04X\n",
+			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
+			     cb->status);
+
+		if (likely(cb->skb != NULL)) {
+			dev->stats.tx_packets++;
+			dev->stats.tx_bytes += cb->skb->len;
+
+			pci_unmap_single(nic->pdev,
+				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
+				le16_to_cpu(cb->u.tcb.tbd.size),
+				PCI_DMA_TODEVICE);
+			if (!nic->ecdev)
+				dev_kfree_skb_any(cb->skb);
+			cb->skb = NULL;
+			tx_cleaned = 1;
+		}
+		cb->status = 0;
+		nic->cbs_avail++;
+	}
+
+	if (!nic->ecdev) {
+		spin_unlock(&nic->cb_lock);
+
+		/* Recover from running out of Tx resources in xmit_frame */
+		if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
+			netif_wake_queue(nic->netdev);
+	}
+
+	return tx_cleaned;
+}
+
+static void e100_clean_cbs(struct nic *nic)
+{
+	if (nic->cbs) {
+		while (nic->cbs_avail != nic->params.cbs.count) {
+			struct cb *cb = nic->cb_to_clean;
+			if (cb->skb) {
+				pci_unmap_single(nic->pdev,
+					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
+					le16_to_cpu(cb->u.tcb.tbd.size),
+					PCI_DMA_TODEVICE);
+				if (!nic->ecdev)
+					dev_kfree_skb(cb->skb);
+			}
+			nic->cb_to_clean = nic->cb_to_clean->next;
+			nic->cbs_avail++;
+		}
+		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
+		nic->cbs = NULL;
+		nic->cbs_avail = 0;
+	}
+	nic->cuc_cmd = cuc_start;
+	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
+		nic->cbs;
+}
+
+static int e100_alloc_cbs(struct nic *nic)
+{
+	struct cb *cb;
+	unsigned int i, count = nic->params.cbs.count;
+
+	nic->cuc_cmd = cuc_start;
+	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
+	nic->cbs_avail = 0;
+
+	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
+				  &nic->cbs_dma_addr);
+	if (!nic->cbs)
+		return -ENOMEM;
+	memset(nic->cbs, 0, count * sizeof(struct cb));
+
+	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
+		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
+		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
+
+		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
+		cb->link = cpu_to_le32(nic->cbs_dma_addr +
+			((i+1) % count) * sizeof(struct cb));
+	}
+
+	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
+	nic->cbs_avail = count;
+
+	return 0;
+}
+
+static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
+{
+	if (!nic->rxs) return;
+	if (RU_SUSPENDED != nic->ru_running) return;
+
+	/* handle init time starts */
+	if (!rx) rx = nic->rxs;
+
+	/* (Re)start RU if suspended or idle and RFA is non-NULL */
+	if (rx->skb) {
+		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
+		nic->ru_running = RU_RUNNING;
+	}
+}
+
+#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
+static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
+{
+	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
+		return -ENOMEM;
+
+	/* Init, and map the RFD. */
+	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
+	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
+		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+
+	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
+		dev_kfree_skb_any(rx->skb);
+		rx->skb = NULL;
+		rx->dma_addr = 0;
+		return -ENOMEM;
+	}
+
+	/* Link the RFD to end of RFA by linking previous RFD to
+	 * this one.  We are safe to touch the previous RFD because
+	 * it is protected by the before last buffer's el bit being set */
+	if (rx->prev->skb) {
+		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
+		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
+		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
+			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
+	}
+
+	return 0;
+}
+
+static int e100_rx_indicate(struct nic *nic, struct rx *rx,
+	unsigned int *work_done, unsigned int work_to_do)
+{
+	struct net_device *dev = nic->netdev;
+	struct sk_buff *skb = rx->skb;
+	struct rfd *rfd = (struct rfd *)skb->data;
+	u16 rfd_status, actual_size;
+
+	if (unlikely(work_done && *work_done >= work_to_do))
+		return -EAGAIN;
+
+	/* Need to sync before taking a peek at cb_complete bit */
+	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
+		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
+	rfd_status = le16_to_cpu(rfd->status);
+
+	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
+		     "status=0x%04X\n", rfd_status);
+	rmb(); /* read size after status bit */
+
+	/* If data isn't ready, nothing to indicate */
+	if (unlikely(!(rfd_status & cb_complete))) {
+		/* If the next buffer has the el bit, but we think the receiver
+		 * is still running, check to see if it really stopped while
+		 * we had interrupts off.
+		 * This allows for a fast restart without re-enabling
+		 * interrupts */
+		if ((le16_to_cpu(rfd->command) & cb_el) &&
+		    (RU_RUNNING == nic->ru_running))
+
+			if (ioread8(&nic->csr->scb.status) & rus_no_res)
+				nic->ru_running = RU_SUSPENDED;
+		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
+					       sizeof(struct rfd),
+					       PCI_DMA_FROMDEVICE);
+		return -ENODATA;
+	}
+
+	/* Get actual data size */
+	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
+	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
+		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
+
+	/* Get data */
+	pci_unmap_single(nic->pdev, rx->dma_addr,
+		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+
+	/* If this buffer has the el bit, but we think the receiver
+	 * is still running, check to see if it really stopped while
+	 * we had interrupts off.
+	 * This allows for a fast restart without re-enabling interrupts.
+	 * This can happen when the RU sees the size change but also sees
+	 * the el bit set. */
+	if ((le16_to_cpu(rfd->command) & cb_el) &&
+	    (RU_RUNNING == nic->ru_running)) {
+
+	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
+		nic->ru_running = RU_SUSPENDED;
+	}
+
+	if (!nic->ecdev) {
+		/* Pull off the RFD and put the actual data (minus eth hdr) */
+		skb_reserve(skb, sizeof(struct rfd));
+		skb_put(skb, actual_size);
+		skb->protocol = eth_type_trans(skb, nic->netdev);
+	}
+
+	if (unlikely(!(rfd_status & cb_ok))) {
+		if (!nic->ecdev) {
+			/* Don't indicate if hardware indicates errors */
+			dev_kfree_skb_any(skb);
+		}
+	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
+		/* Don't indicate oversized frames */
+		nic->rx_over_length_errors++;
+		if (!nic->ecdev)
+			dev_kfree_skb_any(skb);
+	} else {
+		dev->stats.rx_packets++;
+		dev->stats.rx_bytes += actual_size;
+		if (nic->ecdev) {
+			ecdev_receive(nic->ecdev,
+					skb->data + sizeof(struct rfd), actual_size);
+
+			// No need to detect link status as
+			// long as frames are received: Reset watchdog.
+			nic->ec_watchdog_jiffies = jiffies;
+		} else {
+			netif_receive_skb(skb);
+		}
+		if (work_done)
+			(*work_done)++;
+	}
+
+	if (nic->ecdev) {
+		// make receive frame descriptior usable again
+		memcpy(skb->data, &nic->blank_rfd, sizeof(struct rfd));
+		rx->dma_addr = pci_map_single(nic->pdev, skb->data,
+				RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+		if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
+			rx->dma_addr = 0;
+		}
+
+		/* Link the RFD to end of RFA by linking previous RFD to
+		 * this one.  We are safe to touch the previous RFD because
+		 * it is protected by the before last buffer's el bit being set */
+		if (rx->prev->skb) {
+			struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
+			put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
+			pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
+					sizeof(struct rfd), PCI_DMA_TODEVICE);
+		}
+	} else {
+		rx->skb = NULL;
+	}
+
+	return 0;
+}
+
+static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
+	unsigned int work_to_do)
+{
+	struct rx *rx;
+	int restart_required = 0, err = 0;
+	struct rx *old_before_last_rx, *new_before_last_rx;
+	struct rfd *old_before_last_rfd, *new_before_last_rfd;
+
+	/* Indicate newly arrived packets */
+	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
+		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
+		/* Hit quota or no more to clean */
+		if (-EAGAIN == err || -ENODATA == err)
+			break;
+	}
+
+
+	/* On EAGAIN, hit quota so have more work to do, restart once
+	 * cleanup is complete.
+	 * Else, are we already rnr? then pay attention!!! this ensures that
+	 * the state machine progression never allows a start with a
+	 * partially cleaned list, avoiding a race between hardware
+	 * and rx_to_clean when in NAPI mode */
+	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
+		restart_required = 1;
+
+	old_before_last_rx = nic->rx_to_use->prev->prev;
+	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
+
+	if (!nic->ecdev) {
+		/* Alloc new skbs to refill list */
+		for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
+			if(unlikely(e100_rx_alloc_skb(nic, rx)))
+				break; /* Better luck next time (see watchdog) */
+		}
+	}
+
+	new_before_last_rx = nic->rx_to_use->prev->prev;
+	if (new_before_last_rx != old_before_last_rx) {
+		/* Set the el-bit on the buffer that is before the last buffer.
+		 * This lets us update the next pointer on the last buffer
+		 * without worrying about hardware touching it.
+		 * We set the size to 0 to prevent hardware from touching this
+		 * buffer.
+		 * When the hardware hits the before last buffer with el-bit
+		 * and size of 0, it will RNR interrupt, the RUS will go into
+		 * the No Resources state.  It will not complete nor write to
+		 * this buffer. */
+		new_before_last_rfd =
+			(struct rfd *)new_before_last_rx->skb->data;
+		new_before_last_rfd->size = 0;
+		new_before_last_rfd->command |= cpu_to_le16(cb_el);
+		pci_dma_sync_single_for_device(nic->pdev,
+			new_before_last_rx->dma_addr, sizeof(struct rfd),
+			PCI_DMA_BIDIRECTIONAL);
+
+		/* Now that we have a new stopping point, we can clear the old
+		 * stopping point.  We must sync twice to get the proper
+		 * ordering on the hardware side of things. */
+		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
+		pci_dma_sync_single_for_device(nic->pdev,
+			old_before_last_rx->dma_addr, sizeof(struct rfd),
+			PCI_DMA_BIDIRECTIONAL);
+		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
+		pci_dma_sync_single_for_device(nic->pdev,
+			old_before_last_rx->dma_addr, sizeof(struct rfd),
+			PCI_DMA_BIDIRECTIONAL);
+	}
+
+	if (restart_required) {
+		// ack the rnr?
+		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
+		e100_start_receiver(nic, nic->rx_to_clean);
+		if (work_done)
+			(*work_done)++;
+	}
+}
+
+static void e100_rx_clean_list(struct nic *nic)
+{
+	struct rx *rx;
+	unsigned int i, count = nic->params.rfds.count;
+
+	nic->ru_running = RU_UNINITIALIZED;
+
+	if (nic->rxs) {
+		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
+			if (rx->skb) {
+				pci_unmap_single(nic->pdev, rx->dma_addr,
+					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+				dev_kfree_skb(rx->skb);
+			}
+		}
+		kfree(nic->rxs);
+		nic->rxs = NULL;
+	}
+
+	nic->rx_to_use = nic->rx_to_clean = NULL;
+}
+
+static int e100_rx_alloc_list(struct nic *nic)
+{
+	struct rx *rx;
+	unsigned int i, count = nic->params.rfds.count;
+	struct rfd *before_last;
+
+	nic->rx_to_use = nic->rx_to_clean = NULL;
+	nic->ru_running = RU_UNINITIALIZED;
+
+	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
+		return -ENOMEM;
+
+	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
+		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
+		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
+		if (e100_rx_alloc_skb(nic, rx)) {
+			e100_rx_clean_list(nic);
+			return -ENOMEM;
+		}
+	}
+
+	if (!nic->ecdev) {
+		/* Set the el-bit on the buffer that is before the last buffer.
+		 * This lets us update the next pointer on the last buffer without
+		 * worrying about hardware touching it.
+		 * We set the size to 0 to prevent hardware from touching this buffer.
+		 * When the hardware hits the before last buffer with el-bit and size
+		 * of 0, it will RNR interrupt, the RU will go into the No Resources
+		 * state.  It will not complete nor write to this buffer. */
+		rx = nic->rxs->prev->prev;
+		before_last = (struct rfd *)rx->skb->data;
+		before_last->command |= cpu_to_le16(cb_el);
+		before_last->size = 0;
+		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
+				sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
+	}
+
+	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
+	nic->ru_running = RU_SUSPENDED;
+
+	return 0;
+}
+
+static irqreturn_t e100_intr(int irq, void *dev_id)
+{
+	struct net_device *netdev = dev_id;
+	struct nic *nic = netdev_priv(netdev);
+	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
+
+	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
+		     "stat_ack = 0x%02X\n", stat_ack);
+
+	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
+	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
+		return IRQ_NONE;
+
+	/* Ack interrupt(s) */
+	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
+
+	/* We hit Receive No Resource (RNR); restart RU after cleaning */
+	if (stat_ack & stat_ack_rnr)
+		nic->ru_running = RU_SUSPENDED;
+
+	if (!nic->ecdev && likely(napi_schedule_prep(&nic->napi))) {
+		e100_disable_irq(nic);
+		__napi_schedule(&nic->napi);
+	}
+
+	return IRQ_HANDLED;
+}
+
+void e100_ec_poll(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	e100_rx_clean(nic, NULL, 100);
+	e100_tx_clean(nic);
+
+	if (jiffies - nic->ec_watchdog_jiffies >= 2 * HZ) {
+		e100_watchdog((unsigned long) nic);
+		nic->ec_watchdog_jiffies = jiffies;
+	}
+}
+
+
+static int e100_poll(struct napi_struct *napi, int budget)
+{
+	struct nic *nic = container_of(napi, struct nic, napi);
+	unsigned int work_done = 0;
+
+	e100_rx_clean(nic, &work_done, budget);
+	e100_tx_clean(nic);
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		napi_complete(napi);
+		e100_enable_irq(nic);
+	}
+
+	return work_done;
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+static void e100_netpoll(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	e100_disable_irq(nic);
+	e100_intr(nic->pdev->irq, netdev);
+	e100_tx_clean(nic);
+	e100_enable_irq(nic);
+}
+#endif
+
+static int e100_set_mac_address(struct net_device *netdev, void *p)
+{
+	struct nic *nic = netdev_priv(netdev);
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
+
+	return 0;
+}
+
+static int e100_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
+		return -EINVAL;
+	netdev->mtu = new_mtu;
+	return 0;
+}
+
+static int e100_asf(struct nic *nic)
+{
+	/* ASF can be enabled from eeprom */
+	return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
+	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
+	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
+	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
+}
+
+static int e100_up(struct nic *nic)
+{
+	int err;
+
+	if ((err = e100_rx_alloc_list(nic)))
+		return err;
+	if ((err = e100_alloc_cbs(nic)))
+		goto err_rx_clean_list;
+	if ((err = e100_hw_init(nic)))
+		goto err_clean_cbs;
+	e100_set_multicast_list(nic->netdev);
+	e100_start_receiver(nic, NULL);
+	if (!nic->ecdev) {
+		mod_timer(&nic->watchdog, jiffies);
+	}
+	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
+		nic->netdev->name, nic->netdev)))
+		goto err_no_irq;
+	if (!nic->ecdev) {
+		netif_wake_queue(nic->netdev);
+		napi_enable(&nic->napi);
+		/* enable ints _after_ enabling poll, preventing a race between
+		 * disable ints+schedule */
+		e100_enable_irq(nic);
+	}
+	return 0;
+
+err_no_irq:
+	if (!nic->ecdev)
+		del_timer_sync(&nic->watchdog);
+err_clean_cbs:
+	e100_clean_cbs(nic);
+err_rx_clean_list:
+	e100_rx_clean_list(nic);
+	return err;
+}
+
+static void e100_down(struct nic *nic)
+{
+	if (!nic->ecdev) {
+		/* wait here for poll to complete */
+		napi_disable(&nic->napi);
+		netif_stop_queue(nic->netdev);
+	}
+	e100_hw_reset(nic);
+	free_irq(nic->pdev->irq, nic->netdev);
+	if (!nic->ecdev) {
+		del_timer_sync(&nic->watchdog);
+		netif_carrier_off(nic->netdev);
+	}
+	e100_clean_cbs(nic);
+	e100_rx_clean_list(nic);
+}
+
+static void e100_tx_timeout(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	/* Reset outside of interrupt context, to avoid request_irq
+	 * in interrupt context */
+	schedule_work(&nic->tx_timeout_task);
+}
+
+static void e100_tx_timeout_task(struct work_struct *work)
+{
+	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
+	struct net_device *netdev = nic->netdev;
+
+	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
+
+	rtnl_lock();
+	if (netif_running(netdev)) {
+		e100_down(netdev_priv(netdev));
+		e100_up(netdev_priv(netdev));
+	}
+	rtnl_unlock();
+}
+
+static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
+{
+	int err;
+	struct sk_buff *skb;
+
+	/* Use driver resources to perform internal MAC or PHY
+	 * loopback test.  A single packet is prepared and transmitted
+	 * in loopback mode, and the test passes if the received
+	 * packet compares byte-for-byte to the transmitted packet. */
+
+	if ((err = e100_rx_alloc_list(nic)))
+		return err;
+	if ((err = e100_alloc_cbs(nic)))
+		goto err_clean_rx;
+
+	/* ICH PHY loopback is broken so do MAC loopback instead */
+	if (nic->flags & ich && loopback_mode == lb_phy)
+		loopback_mode = lb_mac;
+
+	nic->loopback = loopback_mode;
+	if ((err = e100_hw_init(nic)))
+		goto err_loopback_none;
+
+	if (loopback_mode == lb_phy)
+		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
+			BMCR_LOOPBACK);
+
+	e100_start_receiver(nic, NULL);
+
+	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
+		err = -ENOMEM;
+		goto err_loopback_none;
+	}
+	skb_put(skb, ETH_DATA_LEN);
+	memset(skb->data, 0xFF, ETH_DATA_LEN);
+	e100_xmit_frame(skb, nic->netdev);
+
+	msleep(10);
+
+	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
+			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+
+	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
+	   skb->data, ETH_DATA_LEN))
+		err = -EAGAIN;
+
+err_loopback_none:
+	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
+	nic->loopback = lb_none;
+	e100_clean_cbs(nic);
+	e100_hw_reset(nic);
+err_clean_rx:
+	e100_rx_clean_list(nic);
+	return err;
+}
+
+#define MII_LED_CONTROL	0x1B
+#define E100_82552_LED_OVERRIDE 0x19
+#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
+#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
+static void e100_blink_led(unsigned long data)
+{
+	struct nic *nic = (struct nic *)data;
+	enum led_state {
+		led_on     = 0x01,
+		led_off    = 0x04,
+		led_on_559 = 0x05,
+		led_on_557 = 0x07,
+	};
+	u16 led_reg = MII_LED_CONTROL;
+
+	if (nic->phy == phy_82552_v) {
+		led_reg = E100_82552_LED_OVERRIDE;
+
+		nic->leds = (nic->leds == E100_82552_LED_ON) ?
+		            E100_82552_LED_OFF : E100_82552_LED_ON;
+	} else {
+		nic->leds = (nic->leds & led_on) ? led_off :
+		            (nic->mac < mac_82559_D101M) ? led_on_557 :
+		            led_on_559;
+	}
+	mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
+	mod_timer(&nic->blink_timer, jiffies + HZ / 4);
+}
+
+static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return mii_ethtool_gset(&nic->mii, cmd);
+}
+
+static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int err;
+
+	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
+	err = mii_ethtool_sset(&nic->mii, cmd);
+	e100_exec_cb(nic, NULL, e100_configure);
+
+	return err;
+}
+
+static void e100_get_drvinfo(struct net_device *netdev,
+	struct ethtool_drvinfo *info)
+{
+	struct nic *nic = netdev_priv(netdev);
+	strcpy(info->driver, DRV_NAME);
+	strcpy(info->version, DRV_VERSION);
+	strcpy(info->fw_version, "N/A");
+	strcpy(info->bus_info, pci_name(nic->pdev));
+}
+
+#define E100_PHY_REGS 0x1C
+static int e100_get_regs_len(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
+}
+
+static void e100_get_regs(struct net_device *netdev,
+	struct ethtool_regs *regs, void *p)
+{
+	struct nic *nic = netdev_priv(netdev);
+	u32 *buff = p;
+	int i;
+
+	regs->version = (1 << 24) | nic->pdev->revision;
+	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
+		ioread8(&nic->csr->scb.cmd_lo) << 16 |
+		ioread16(&nic->csr->scb.status);
+	for (i = E100_PHY_REGS; i >= 0; i--)
+		buff[1 + E100_PHY_REGS - i] =
+			mdio_read(netdev, nic->mii.phy_id, i);
+	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
+	e100_exec_cb(nic, NULL, e100_dump);
+	msleep(10);
+	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
+		sizeof(nic->mem->dump_buf));
+}
+
+static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct nic *nic = netdev_priv(netdev);
+	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
+	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
+}
+
+static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
+	    !device_can_wakeup(&nic->pdev->dev))
+		return -EOPNOTSUPP;
+
+	if (wol->wolopts)
+		nic->flags |= wol_magic;
+	else
+		nic->flags &= ~wol_magic;
+
+	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
+
+	e100_exec_cb(nic, NULL, e100_configure);
+
+	return 0;
+}
+
+static u32 e100_get_msglevel(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return nic->msg_enable;
+}
+
+static void e100_set_msglevel(struct net_device *netdev, u32 value)
+{
+	struct nic *nic = netdev_priv(netdev);
+	nic->msg_enable = value;
+}
+
+static int e100_nway_reset(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return mii_nway_restart(&nic->mii);
+}
+
+static u32 e100_get_link(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return mii_link_ok(&nic->mii);
+}
+
+static int e100_get_eeprom_len(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return nic->eeprom_wc << 1;
+}
+
+#define E100_EEPROM_MAGIC	0x1234
+static int e100_get_eeprom(struct net_device *netdev,
+	struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	eeprom->magic = E100_EEPROM_MAGIC;
+	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
+
+	return 0;
+}
+
+static int e100_set_eeprom(struct net_device *netdev,
+	struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	if (eeprom->magic != E100_EEPROM_MAGIC)
+		return -EINVAL;
+
+	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
+
+	return e100_eeprom_save(nic, eeprom->offset >> 1,
+		(eeprom->len >> 1) + 1);
+}
+
+static void e100_get_ringparam(struct net_device *netdev,
+	struct ethtool_ringparam *ring)
+{
+	struct nic *nic = netdev_priv(netdev);
+	struct param_range *rfds = &nic->params.rfds;
+	struct param_range *cbs = &nic->params.cbs;
+
+	ring->rx_max_pending = rfds->max;
+	ring->tx_max_pending = cbs->max;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rfds->count;
+	ring->tx_pending = cbs->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e100_set_ringparam(struct net_device *netdev,
+	struct ethtool_ringparam *ring)
+{
+	struct nic *nic = netdev_priv(netdev);
+	struct param_range *rfds = &nic->params.rfds;
+	struct param_range *cbs = &nic->params.cbs;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	if (netif_running(netdev))
+		e100_down(nic);
+	rfds->count = max(ring->rx_pending, rfds->min);
+	rfds->count = min(rfds->count, rfds->max);
+	cbs->count = max(ring->tx_pending, cbs->min);
+	cbs->count = min(cbs->count, cbs->max);
+	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
+		   rfds->count, cbs->count);
+	if (netif_running(netdev))
+		e100_up(nic);
+
+	return 0;
+}
+
+static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Link test     (on/offline)",
+	"Eeprom test   (on/offline)",
+	"Self test        (offline)",
+	"Mac loopback     (offline)",
+	"Phy loopback     (offline)",
+};
+#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
+
+static void e100_diag_test(struct net_device *netdev,
+	struct ethtool_test *test, u64 *data)
+{
+	struct ethtool_cmd cmd;
+	struct nic *nic = netdev_priv(netdev);
+	int i, err __attribute__ ((unused));
+
+	memset(data, 0, E100_TEST_LEN * sizeof(u64));
+	data[0] = !mii_link_ok(&nic->mii);
+	data[1] = e100_eeprom_load(nic);
+	if (test->flags & ETH_TEST_FL_OFFLINE) {
+
+		/* save speed, duplex & autoneg settings */
+		err = mii_ethtool_gset(&nic->mii, &cmd);
+
+		if (netif_running(netdev))
+			e100_down(nic);
+		data[2] = e100_self_test(nic);
+		data[3] = e100_loopback_test(nic, lb_mac);
+		data[4] = e100_loopback_test(nic, lb_phy);
+
+		/* restore speed, duplex & autoneg settings */
+		err = mii_ethtool_sset(&nic->mii, &cmd);
+
+		if (netif_running(netdev))
+			e100_up(nic);
+	}
+	for (i = 0; i < E100_TEST_LEN; i++)
+		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
+
+	msleep_interruptible(4 * 1000);
+}
+
+static int e100_phys_id(struct net_device *netdev, u32 data)
+{
+	struct nic *nic = netdev_priv(netdev);
+	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
+	              MII_LED_CONTROL;
+
+	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
+		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
+	mod_timer(&nic->blink_timer, jiffies);
+	msleep_interruptible(data * 1000);
+	del_timer_sync(&nic->blink_timer);
+	mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
+
+	return 0;
+}
+
+static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
+	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
+	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
+	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
+	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
+	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
+	"tx_heartbeat_errors", "tx_window_errors",
+	/* device-specific stats */
+	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
+	"tx_flow_control_pause", "rx_flow_control_pause",
+	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
+};
+#define E100_NET_STATS_LEN	21
+#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
+
+static int e100_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E100_TEST_LEN;
+	case ETH_SS_STATS:
+		return E100_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e100_get_ethtool_stats(struct net_device *netdev,
+	struct ethtool_stats *stats, u64 *data)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int i;
+
+	for (i = 0; i < E100_NET_STATS_LEN; i++)
+		data[i] = ((unsigned long *)&netdev->stats)[i];
+
+	data[i++] = nic->tx_deferred;
+	data[i++] = nic->tx_single_collisions;
+	data[i++] = nic->tx_multiple_collisions;
+	data[i++] = nic->tx_fc_pause;
+	data[i++] = nic->rx_fc_pause;
+	data[i++] = nic->rx_fc_unsupported;
+	data[i++] = nic->tx_tco_frames;
+	data[i++] = nic->rx_tco_frames;
+}
+
+static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
+{
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
+		break;
+	}
+}
+
+static const struct ethtool_ops e100_ethtool_ops = {
+	.get_settings		= e100_get_settings,
+	.set_settings		= e100_set_settings,
+	.get_drvinfo		= e100_get_drvinfo,
+	.get_regs_len		= e100_get_regs_len,
+	.get_regs		= e100_get_regs,
+	.get_wol		= e100_get_wol,
+	.set_wol		= e100_set_wol,
+	.get_msglevel		= e100_get_msglevel,
+	.set_msglevel		= e100_set_msglevel,
+	.nway_reset		= e100_nway_reset,
+	.get_link		= e100_get_link,
+	.get_eeprom_len		= e100_get_eeprom_len,
+	.get_eeprom		= e100_get_eeprom,
+	.set_eeprom		= e100_set_eeprom,
+	.get_ringparam		= e100_get_ringparam,
+	.set_ringparam		= e100_set_ringparam,
+	.self_test		= e100_diag_test,
+	.get_strings		= e100_get_strings,
+	.phys_id		= e100_phys_id,
+	.get_ethtool_stats	= e100_get_ethtool_stats,
+	.get_sset_count		= e100_get_sset_count,
+};
+
+static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
+}
+
+static int e100_alloc(struct nic *nic)
+{
+	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
+		&nic->dma_addr);
+	return nic->mem ? 0 : -ENOMEM;
+}
+
+static void e100_free(struct nic *nic)
+{
+	if (nic->mem) {
+		pci_free_consistent(nic->pdev, sizeof(struct mem),
+			nic->mem, nic->dma_addr);
+		nic->mem = NULL;
+	}
+}
+
+static int e100_open(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int err = 0;
+
+	if (!nic->ecdev)
+		netif_carrier_off(netdev);
+	if ((err = e100_up(nic)))
+		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
+	return err;
+}
+
+static int e100_close(struct net_device *netdev)
+{
+	e100_down(netdev_priv(netdev));
+	return 0;
+}
+
+static const struct net_device_ops e100_netdev_ops = {
+	.ndo_open		= e100_open,
+	.ndo_stop		= e100_close,
+	.ndo_start_xmit		= e100_xmit_frame,
+	.ndo_validate_addr	= eth_validate_addr,
+	.ndo_set_multicast_list	= e100_set_multicast_list,
+	.ndo_set_mac_address	= e100_set_mac_address,
+	.ndo_change_mtu		= e100_change_mtu,
+	.ndo_do_ioctl		= e100_do_ioctl,
+	.ndo_tx_timeout		= e100_tx_timeout,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e100_netpoll,
+#endif
+};
+
+static int __devinit e100_probe(struct pci_dev *pdev,
+	const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct nic *nic;
+	int err;
+
+	if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
+		if (((1 << debug) - 1) & NETIF_MSG_PROBE)
+			pr_err("Etherdev alloc failed, aborting\n");
+		return -ENOMEM;
+	}
+
+	netdev->netdev_ops = &e100_netdev_ops;
+	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
+	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	nic = netdev_priv(netdev);
+	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
+	nic->netdev = netdev;
+	nic->pdev = pdev;
+	nic->msg_enable = (1 << debug) - 1;
+	nic->mdio_ctrl = mdio_ctrl_hw;
+	pci_set_drvdata(pdev, netdev);
+
+	if ((err = pci_enable_device(pdev))) {
+		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
+		goto err_out_free_dev;
+	}
+
+	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
+		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
+		err = -ENODEV;
+		goto err_out_disable_pdev;
+	}
+
+	if ((err = pci_request_regions(pdev, DRV_NAME))) {
+		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
+		goto err_out_disable_pdev;
+	}
+
+	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
+		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
+		goto err_out_free_res;
+	}
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	if (use_io)
+		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
+
+	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
+	if (!nic->csr) {
+		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
+		err = -ENOMEM;
+		goto err_out_free_res;
+	}
+
+	if (ent->driver_data)
+		nic->flags |= ich;
+	else
+		nic->flags &= ~ich;
+
+	e100_get_defaults(nic);
+
+	/* locks must be initialized before calling hw_reset */
+	spin_lock_init(&nic->cb_lock);
+	spin_lock_init(&nic->cmd_lock);
+	spin_lock_init(&nic->mdio_lock);
+
+	/* Reset the device before pci_set_master() in case device is in some
+	 * funky state and has an interrupt pending - hint: we don't have the
+	 * interrupt handler registered yet. */
+	e100_hw_reset(nic);
+
+	pci_set_master(pdev);
+
+	init_timer(&nic->watchdog);
+	nic->watchdog.function = e100_watchdog;
+	nic->watchdog.data = (unsigned long)nic;
+	init_timer(&nic->blink_timer);
+	nic->blink_timer.function = e100_blink_led;
+	nic->blink_timer.data = (unsigned long)nic;
+
+	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
+
+	if ((err = e100_alloc(nic))) {
+		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
+		goto err_out_iounmap;
+	}
+
+	if ((err = e100_eeprom_load(nic)))
+		goto err_out_free;
+
+	e100_phy_init(nic);
+
+	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
+	memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
+	if (!is_valid_ether_addr(netdev->perm_addr)) {
+		if (!eeprom_bad_csum_allow) {
+			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
+			err = -EAGAIN;
+			goto err_out_free;
+		} else {
+			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
+		}
+	}
+
+	/* Wol magic packet can be enabled from eeprom */
+	if ((nic->mac >= mac_82558_D101_A4) &&
+	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
+		nic->flags |= wol_magic;
+		device_set_wakeup_enable(&pdev->dev, true);
+	}
+
+	/* ack any pending wake events, disable PME */
+	pci_pme_active(pdev, false);
+
+	// offer device to EtherCAT master module
+	nic->ecdev = ecdev_offer(netdev, e100_ec_poll, THIS_MODULE);
+
+	if (!nic->ecdev) {
+		strcpy(netdev->name, "eth%d");
+		if ((err = register_netdev(netdev))) {
+			netif_err(nic, probe, nic->netdev,
+					"Cannot register net device, aborting\n");
+			goto err_out_free;
+		}
+	}
+
+	nic->cbs_pool = pci_pool_create(netdev->name,
+			   nic->pdev,
+			   nic->params.cbs.max * sizeof(struct cb),
+			   sizeof(u32),
+			   0);
+	netif_info(nic, probe, nic->netdev,
+		   "addr 0x%llx, irq %d, MAC addr %pM\n",
+		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
+		   pdev->irq, netdev->dev_addr);
+
+	if (nic->ecdev) {
+		if (ecdev_open(nic->ecdev)) {
+			ecdev_withdraw(nic->ecdev);
+			goto err_out_free;
+		}
+	}
+
+	return 0;
+
+err_out_free:
+	e100_free(nic);
+err_out_iounmap:
+	pci_iounmap(pdev, nic->csr);
+err_out_free_res:
+	pci_release_regions(pdev);
+err_out_disable_pdev:
+	pci_disable_device(pdev);
+err_out_free_dev:
+	pci_set_drvdata(pdev, NULL);
+	free_netdev(netdev);
+	return err;
+}
+
+static void __devexit e100_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+
+	if (netdev) {
+		struct nic *nic = netdev_priv(netdev);
+		if (nic->ecdev) {
+			ecdev_close(nic->ecdev);
+			ecdev_withdraw(nic->ecdev);
+		} else {
+			unregister_netdev(netdev);
+		}
+
+		e100_free(nic);
+		pci_iounmap(pdev, nic->csr);
+		pci_pool_destroy(nic->cbs_pool);
+		free_netdev(netdev);
+		pci_release_regions(pdev);
+		pci_disable_device(pdev);
+		pci_set_drvdata(pdev, NULL);
+	}
+}
+
+#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
+#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
+#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
+static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	if (netif_running(netdev))
+		e100_down(nic);
+	netif_device_detach(netdev);
+
+	pci_save_state(pdev);
+
+	if ((nic->flags & wol_magic) | e100_asf(nic)) {
+		/* enable reverse auto-negotiation */
+		if (nic->phy == phy_82552_v) {
+			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
+			                           E100_82552_SMARTSPEED);
+
+			mdio_write(netdev, nic->mii.phy_id,
+			           E100_82552_SMARTSPEED, smartspeed |
+			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
+		}
+		*enable_wake = true;
+	} else {
+		*enable_wake = false;
+	}
+
+	pci_disable_device(pdev);
+}
+
+static int __e100_power_off(struct pci_dev *pdev, bool wake)
+{
+	if (wake)
+		return pci_prepare_to_sleep(pdev);
+
+	pci_wake_from_d3(pdev, false);
+	pci_set_power_state(pdev, PCI_D3hot);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	bool wake;
+	__e100_shutdown(pdev, &wake);
+	return __e100_power_off(pdev, wake);
+}
+
+static int e100_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	/* ack any pending wake events, disable PME */
+	pci_enable_wake(pdev, 0, 0);
+
+	/* disable reverse auto-negotiation */
+	if (nic->phy == phy_82552_v) {
+		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
+		                           E100_82552_SMARTSPEED);
+
+		mdio_write(netdev, nic->mii.phy_id,
+		           E100_82552_SMARTSPEED,
+		           smartspeed & ~(E100_82552_REV_ANEG));
+	}
+
+	netif_device_attach(netdev);
+	if (netif_running(netdev))
+		e100_up(nic);
+
+	return 0;
+}
+#endif /* CONFIG_PM */
+
+static void e100_shutdown(struct pci_dev *pdev)
+{
+	bool wake;
+	__e100_shutdown(pdev, &wake);
+	if (system_state == SYSTEM_POWER_OFF)
+		__e100_power_off(pdev, wake);
+}
+
+/* ------------------ PCI Error Recovery infrastructure  -------------- */
+/**
+ * e100_io_error_detected - called when PCI error is detected.
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ */
+static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	if (nic->ecdev)
+		return -EBUSY;
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e100_down(nic);
+	pci_disable_device(pdev);
+
+	/* Request a slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e100_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch.
+ */
+static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	if (nic->ecdev)
+		return -EBUSY;
+
+	if (pci_enable_device(pdev)) {
+		pr_err("Cannot re-enable PCI device after reset\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+	pci_set_master(pdev);
+
+	/* Only one device per card can do a reset */
+	if (0 != PCI_FUNC(pdev->devfn))
+		return PCI_ERS_RESULT_RECOVERED;
+	e100_hw_reset(nic);
+	e100_phy_init(nic);
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * e100_io_resume - resume normal operations
+ * @pdev: Pointer to PCI device
+ *
+ * Resume normal operations after an error recovery
+ * sequence has been completed.
+ */
+static void e100_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	/* ack any pending wake events, disable PME */
+	pci_enable_wake(pdev, 0, 0);
+
+	if (!nic->ecdev)
+		netif_device_attach(netdev);
+	if (nic->ecdev || netif_running(netdev)) {
+		e100_open(netdev);
+		if (!nic->ecdev)
+			mod_timer(&nic->watchdog, jiffies);
+	}
+}
+
+static struct pci_error_handlers e100_err_handler = {
+	.error_detected = e100_io_error_detected,
+	.slot_reset = e100_io_slot_reset,
+	.resume = e100_io_resume,
+};
+
+static struct pci_driver e100_driver = {
+	.name =         DRV_NAME,
+	.id_table =     e100_id_table,
+	.probe =        e100_probe,
+	.remove =       __devexit_p(e100_remove),
+#ifdef CONFIG_PM
+	/* Power Management hooks */
+	.suspend =      e100_suspend,
+	.resume =       e100_resume,
+#endif
+	.shutdown =     e100_shutdown,
+	.err_handler = &e100_err_handler,
+};
+
+static int __init e100_init_module(void)
+{
+	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
+		pr_info("%s %s, %s\n", DRV_NAME, DRV_DESCRIPTION, DRV_VERSION);
+		pr_info("%s\n", DRV_COPYRIGHT);
+	}
+	return pci_register_driver(&e100_driver);
+}
+
+static void __exit e100_cleanup_module(void)
+{
+	printk(KERN_INFO DRV_NAME " cleaning up module...\n");
+	pci_unregister_driver(&e100_driver);
+	printk(KERN_INFO DRV_NAME " module cleaned up.\n");
+}
+
+module_init(e100_init_module);
+module_exit(e100_cleanup_module);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e100-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3115 @@
+/*******************************************************************************
+
+  Intel PRO/100 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ *	e100.c: Intel(R) PRO/100 ethernet driver
+ *
+ *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
+ *	original e100 driver, but better described as a munging of
+ *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
+ *
+ *	References:
+ *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
+ *		Open Source Software Developers Manual,
+ *		http://sourceforge.net/projects/e1000
+ *
+ *
+ *	                      Theory of Operation
+ *
+ *	I.   General
+ *
+ *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
+ *	controller family, which includes the 82557, 82558, 82559, 82550,
+ *	82551, and 82562 devices.  82558 and greater controllers
+ *	integrate the Intel 82555 PHY.  The controllers are used in
+ *	server and client network interface cards, as well as in
+ *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
+ *	configurations.  8255x supports a 32-bit linear addressing
+ *	mode and operates at 33Mhz PCI clock rate.
+ *
+ *	II.  Driver Operation
+ *
+ *	Memory-mapped mode is used exclusively to access the device's
+ *	shared-memory structure, the Control/Status Registers (CSR). All
+ *	setup, configuration, and control of the device, including queuing
+ *	of Tx, Rx, and configuration commands is through the CSR.
+ *	cmd_lock serializes accesses to the CSR command register.  cb_lock
+ *	protects the shared Command Block List (CBL).
+ *
+ *	8255x is highly MII-compliant and all access to the PHY go
+ *	through the Management Data Interface (MDI).  Consequently, the
+ *	driver leverages the mii.c library shared with other MII-compliant
+ *	devices.
+ *
+ *	Big- and Little-Endian byte order as well as 32- and 64-bit
+ *	archs are supported.  Weak-ordered memory and non-cache-coherent
+ *	archs are supported.
+ *
+ *	III. Transmit
+ *
+ *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
+ *	together in a fixed-size ring (CBL) thus forming the flexible mode
+ *	memory structure.  A TCB marked with the suspend-bit indicates
+ *	the end of the ring.  The last TCB processed suspends the
+ *	controller, and the controller can be restarted by issue a CU
+ *	resume command to continue from the suspend point, or a CU start
+ *	command to start at a given position in the ring.
+ *
+ *	Non-Tx commands (config, multicast setup, etc) are linked
+ *	into the CBL ring along with Tx commands.  The common structure
+ *	used for both Tx and non-Tx commands is the Command Block (CB).
+ *
+ *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
+ *	is the next CB to check for completion; cb_to_send is the first
+ *	CB to start on in case of a previous failure to resume.  CB clean
+ *	up happens in interrupt context in response to a CU interrupt.
+ *	cbs_avail keeps track of number of free CB resources available.
+ *
+ * 	Hardware padding of short packets to minimum packet size is
+ * 	enabled.  82557 pads with 7Eh, while the later controllers pad
+ * 	with 00h.
+ *
+ *	IV.  Receive
+ *
+ *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
+ *	Descriptors (RFD) + data buffer, thus forming the simplified mode
+ *	memory structure.  Rx skbs are allocated to contain both the RFD
+ *	and the data buffer, but the RFD is pulled off before the skb is
+ *	indicated.  The data buffer is aligned such that encapsulated
+ *	protocol headers are u32-aligned.  Since the RFD is part of the
+ *	mapped shared memory, and completion status is contained within
+ *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
+ *	view from software and hardware.
+ *
+ *	In order to keep updates to the RFD link field from colliding with
+ *	hardware writes to mark packets complete, we use the feature that
+ *	hardware will not write to a size 0 descriptor and mark the previous
+ *	packet as end-of-list (EL).   After updating the link, we remove EL
+ *	and only then restore the size such that hardware may use the
+ *	previous-to-end RFD.
+ *
+ *	Under typical operation, the  receive unit (RU) is start once,
+ *	and the controller happily fills RFDs as frames arrive.  If
+ *	replacement RFDs cannot be allocated, or the RU goes non-active,
+ *	the RU must be restarted.  Frame arrival generates an interrupt,
+ *	and Rx indication and re-allocation happen in the same context,
+ *	therefore no locking is required.  A software-generated interrupt
+ *	is generated from the watchdog to recover from a failed allocation
+ *	scenario where all Rx resources have been indicated and none re-
+ *	placed.
+ *
+ *	V.   Miscellaneous
+ *
+ * 	VLAN offloading of tagging, stripping and filtering is not
+ * 	supported, but driver will accommodate the extra 4-byte VLAN tag
+ * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
+ * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
+ * 	not supported (hardware limitation).
+ *
+ * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
+ *
+ * 	Thanks to JC (jchapman@katalix.com) for helping with
+ * 	testing/troubleshooting the development driver.
+ *
+ * 	TODO:
+ * 	o several entry points race with dev->close
+ * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
+ *
+ *	FIXES:
+ * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
+ *	- Stratus87247: protect MDI control register manipulations
+ * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
+ *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmapool.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/mii.h>
+#include <linux/if_vlan.h>
+#include <linux/skbuff.h>
+#include <linux/ethtool.h>
+#include <linux/string.h>
+#include <linux/firmware.h>
+#include <linux/rtnetlink.h>
+#include <asm/unaligned.h>
+
+
+#define DRV_NAME		"e100"
+#define DRV_EXT			"-NAPI"
+#define DRV_VERSION		"3.5.24-k2"DRV_EXT
+#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
+#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
+
+#define E100_WATCHDOG_PERIOD	(2 * HZ)
+#define E100_NAPI_WEIGHT	16
+
+#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
+#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
+#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
+
+MODULE_DESCRIPTION(DRV_DESCRIPTION);
+MODULE_AUTHOR(DRV_COPYRIGHT);
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+MODULE_FIRMWARE(FIRMWARE_D101M);
+MODULE_FIRMWARE(FIRMWARE_D101S);
+MODULE_FIRMWARE(FIRMWARE_D102E);
+
+static int debug = 3;
+static int eeprom_bad_csum_allow = 0;
+static int use_io = 0;
+module_param(debug, int, 0);
+module_param(eeprom_bad_csum_allow, int, 0);
+module_param(use_io, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
+MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
+
+#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
+	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
+	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
+static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
+	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
+	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
+	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
+	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
+	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
+	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
+	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
+	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
+	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
+	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
+	{ 0, }
+};
+MODULE_DEVICE_TABLE(pci, e100_id_table);
+
+enum mac {
+	mac_82557_D100_A  = 0,
+	mac_82557_D100_B  = 1,
+	mac_82557_D100_C  = 2,
+	mac_82558_D101_A4 = 4,
+	mac_82558_D101_B0 = 5,
+	mac_82559_D101M   = 8,
+	mac_82559_D101S   = 9,
+	mac_82550_D102    = 12,
+	mac_82550_D102_C  = 13,
+	mac_82551_E       = 14,
+	mac_82551_F       = 15,
+	mac_82551_10      = 16,
+	mac_unknown       = 0xFF,
+};
+
+enum phy {
+	phy_100a     = 0x000003E0,
+	phy_100c     = 0x035002A8,
+	phy_82555_tx = 0x015002A8,
+	phy_nsc_tx   = 0x5C002000,
+	phy_82562_et = 0x033002A8,
+	phy_82562_em = 0x032002A8,
+	phy_82562_ek = 0x031002A8,
+	phy_82562_eh = 0x017002A8,
+	phy_82552_v  = 0xd061004d,
+	phy_unknown  = 0xFFFFFFFF,
+};
+
+/* CSR (Control/Status Registers) */
+struct csr {
+	struct {
+		u8 status;
+		u8 stat_ack;
+		u8 cmd_lo;
+		u8 cmd_hi;
+		u32 gen_ptr;
+	} scb;
+	u32 port;
+	u16 flash_ctrl;
+	u8 eeprom_ctrl_lo;
+	u8 eeprom_ctrl_hi;
+	u32 mdi_ctrl;
+	u32 rx_dma_count;
+};
+
+enum scb_status {
+	rus_no_res       = 0x08,
+	rus_ready        = 0x10,
+	rus_mask         = 0x3C,
+};
+
+enum ru_state  {
+	RU_SUSPENDED = 0,
+	RU_RUNNING	 = 1,
+	RU_UNINITIALIZED = -1,
+};
+
+enum scb_stat_ack {
+	stat_ack_not_ours    = 0x00,
+	stat_ack_sw_gen      = 0x04,
+	stat_ack_rnr         = 0x10,
+	stat_ack_cu_idle     = 0x20,
+	stat_ack_frame_rx    = 0x40,
+	stat_ack_cu_cmd_done = 0x80,
+	stat_ack_not_present = 0xFF,
+	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
+	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
+};
+
+enum scb_cmd_hi {
+	irq_mask_none = 0x00,
+	irq_mask_all  = 0x01,
+	irq_sw_gen    = 0x02,
+};
+
+enum scb_cmd_lo {
+	cuc_nop        = 0x00,
+	ruc_start      = 0x01,
+	ruc_load_base  = 0x06,
+	cuc_start      = 0x10,
+	cuc_resume     = 0x20,
+	cuc_dump_addr  = 0x40,
+	cuc_dump_stats = 0x50,
+	cuc_load_base  = 0x60,
+	cuc_dump_reset = 0x70,
+};
+
+enum cuc_dump {
+	cuc_dump_complete       = 0x0000A005,
+	cuc_dump_reset_complete = 0x0000A007,
+};
+
+enum port {
+	software_reset  = 0x0000,
+	selftest        = 0x0001,
+	selective_reset = 0x0002,
+};
+
+enum eeprom_ctrl_lo {
+	eesk = 0x01,
+	eecs = 0x02,
+	eedi = 0x04,
+	eedo = 0x08,
+};
+
+enum mdi_ctrl {
+	mdi_write = 0x04000000,
+	mdi_read  = 0x08000000,
+	mdi_ready = 0x10000000,
+};
+
+enum eeprom_op {
+	op_write = 0x05,
+	op_read  = 0x06,
+	op_ewds  = 0x10,
+	op_ewen  = 0x13,
+};
+
+enum eeprom_offsets {
+	eeprom_cnfg_mdix  = 0x03,
+	eeprom_phy_iface  = 0x06,
+	eeprom_id         = 0x0A,
+	eeprom_config_asf = 0x0D,
+	eeprom_smbus_addr = 0x90,
+};
+
+enum eeprom_cnfg_mdix {
+	eeprom_mdix_enabled = 0x0080,
+};
+
+enum eeprom_phy_iface {
+	NoSuchPhy = 0,
+	I82553AB,
+	I82553C,
+	I82503,
+	DP83840,
+	S80C240,
+	S80C24,
+	I82555,
+	DP83840A = 10,
+};
+
+enum eeprom_id {
+	eeprom_id_wol = 0x0020,
+};
+
+enum eeprom_config_asf {
+	eeprom_asf = 0x8000,
+	eeprom_gcl = 0x4000,
+};
+
+enum cb_status {
+	cb_complete = 0x8000,
+	cb_ok       = 0x2000,
+};
+
+enum cb_command {
+	cb_nop    = 0x0000,
+	cb_iaaddr = 0x0001,
+	cb_config = 0x0002,
+	cb_multi  = 0x0003,
+	cb_tx     = 0x0004,
+	cb_ucode  = 0x0005,
+	cb_dump   = 0x0006,
+	cb_tx_sf  = 0x0008,
+	cb_cid    = 0x1f00,
+	cb_i      = 0x2000,
+	cb_s      = 0x4000,
+	cb_el     = 0x8000,
+};
+
+struct rfd {
+	__le16 status;
+	__le16 command;
+	__le32 link;
+	__le32 rbd;
+	__le16 actual_size;
+	__le16 size;
+};
+
+struct rx {
+	struct rx *next, *prev;
+	struct sk_buff *skb;
+	dma_addr_t dma_addr;
+};
+
+#if defined(__BIG_ENDIAN_BITFIELD)
+#define X(a,b)	b,a
+#else
+#define X(a,b)	a,b
+#endif
+struct config {
+/*0*/	u8 X(byte_count:6, pad0:2);
+/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
+/*2*/	u8 adaptive_ifs;
+/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
+	   term_write_cache_line:1), pad3:4);
+/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
+/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
+/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
+	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
+	   rx_discard_overruns:1), rx_save_bad_frames:1);
+/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
+	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
+	   tx_dynamic_tbd:1);
+/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
+/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
+	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
+/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
+	   loopback:2);
+/*11*/	u8 X(linear_priority:3, pad11:5);
+/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
+/*13*/	u8 ip_addr_lo;
+/*14*/	u8 ip_addr_hi;
+/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
+	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
+	   pad15_2:1), crs_or_cdt:1);
+/*16*/	u8 fc_delay_lo;
+/*17*/	u8 fc_delay_hi;
+/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
+	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
+/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
+	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
+	   full_duplex_force:1), full_duplex_pin:1);
+/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
+/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
+/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
+	u8 pad_d102[9];
+};
+
+#define E100_MAX_MULTICAST_ADDRS	64
+struct multi {
+	__le16 count;
+	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
+};
+
+/* Important: keep total struct u32-aligned */
+#define UCODE_SIZE			134
+struct cb {
+	__le16 status;
+	__le16 command;
+	__le32 link;
+	union {
+		u8 iaaddr[ETH_ALEN];
+		__le32 ucode[UCODE_SIZE];
+		struct config config;
+		struct multi multi;
+		struct {
+			u32 tbd_array;
+			u16 tcb_byte_count;
+			u8 threshold;
+			u8 tbd_count;
+			struct {
+				__le32 buf_addr;
+				__le16 size;
+				u16 eol;
+			} tbd;
+		} tcb;
+		__le32 dump_buffer_addr;
+	} u;
+	struct cb *next, *prev;
+	dma_addr_t dma_addr;
+	struct sk_buff *skb;
+};
+
+enum loopback {
+	lb_none = 0, lb_mac = 1, lb_phy = 3,
+};
+
+struct stats {
+	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
+		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
+		tx_multiple_collisions, tx_total_collisions;
+	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
+		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
+		rx_short_frame_errors;
+	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
+	__le16 xmt_tco_frames, rcv_tco_frames;
+	__le32 complete;
+};
+
+struct mem {
+	struct {
+		u32 signature;
+		u32 result;
+	} selftest;
+	struct stats stats;
+	u8 dump_buf[596];
+};
+
+struct param_range {
+	u32 min;
+	u32 max;
+	u32 count;
+};
+
+struct params {
+	struct param_range rfds;
+	struct param_range cbs;
+};
+
+struct nic {
+	/* Begin: frequently used values: keep adjacent for cache effect */
+	u32 msg_enable				____cacheline_aligned;
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
+
+	struct rx *rxs				____cacheline_aligned;
+	struct rx *rx_to_use;
+	struct rx *rx_to_clean;
+	struct rfd blank_rfd;
+	enum ru_state ru_running;
+
+	spinlock_t cb_lock			____cacheline_aligned;
+	spinlock_t cmd_lock;
+	struct csr __iomem *csr;
+	enum scb_cmd_lo cuc_cmd;
+	unsigned int cbs_avail;
+	struct napi_struct napi;
+	struct cb *cbs;
+	struct cb *cb_to_use;
+	struct cb *cb_to_send;
+	struct cb *cb_to_clean;
+	__le16 tx_command;
+	/* End: frequently used values: keep adjacent for cache effect */
+
+	enum {
+		ich                = (1 << 0),
+		promiscuous        = (1 << 1),
+		multicast_all      = (1 << 2),
+		wol_magic          = (1 << 3),
+		ich_10h_workaround = (1 << 4),
+	} flags					____cacheline_aligned;
+
+	enum mac mac;
+	enum phy phy;
+	struct params params;
+	struct timer_list watchdog;
+	struct timer_list blink_timer;
+	struct mii_if_info mii;
+	struct work_struct tx_timeout_task;
+	enum loopback loopback;
+
+	struct mem *mem;
+	dma_addr_t dma_addr;
+
+	struct pci_pool *cbs_pool;
+	dma_addr_t cbs_dma_addr;
+	u8 adaptive_ifs;
+	u8 tx_threshold;
+	u32 tx_frames;
+	u32 tx_collisions;
+	u32 tx_deferred;
+	u32 tx_single_collisions;
+	u32 tx_multiple_collisions;
+	u32 tx_fc_pause;
+	u32 tx_tco_frames;
+
+	u32 rx_fc_pause;
+	u32 rx_fc_unsupported;
+	u32 rx_tco_frames;
+	u32 rx_over_length_errors;
+
+	u16 leds;
+	u16 eeprom_wc;
+	__le16 eeprom[256];
+	spinlock_t mdio_lock;
+	const struct firmware *fw;
+};
+
+static inline void e100_write_flush(struct nic *nic)
+{
+	/* Flush previous PCI writes through intermediate bridges
+	 * by doing a benign read */
+	(void)ioread8(&nic->csr->scb.status);
+}
+
+static void e100_enable_irq(struct nic *nic)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&nic->cmd_lock, flags);
+	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
+	e100_write_flush(nic);
+	spin_unlock_irqrestore(&nic->cmd_lock, flags);
+}
+
+static void e100_disable_irq(struct nic *nic)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&nic->cmd_lock, flags);
+	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
+	e100_write_flush(nic);
+	spin_unlock_irqrestore(&nic->cmd_lock, flags);
+}
+
+static void e100_hw_reset(struct nic *nic)
+{
+	/* Put CU and RU into idle with a selective reset to get
+	 * device off of PCI bus */
+	iowrite32(selective_reset, &nic->csr->port);
+	e100_write_flush(nic); udelay(20);
+
+	/* Now fully reset device */
+	iowrite32(software_reset, &nic->csr->port);
+	e100_write_flush(nic); udelay(20);
+
+	/* Mask off our interrupt line - it's unmasked after reset */
+	e100_disable_irq(nic);
+}
+
+static int e100_self_test(struct nic *nic)
+{
+	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
+
+	/* Passing the self-test is a pretty good indication
+	 * that the device can DMA to/from host memory */
+
+	nic->mem->selftest.signature = 0;
+	nic->mem->selftest.result = 0xFFFFFFFF;
+
+	iowrite32(selftest | dma_addr, &nic->csr->port);
+	e100_write_flush(nic);
+	/* Wait 10 msec for self-test to complete */
+	msleep(10);
+
+	/* Interrupts are enabled after self-test */
+	e100_disable_irq(nic);
+
+	/* Check results of self-test */
+	if (nic->mem->selftest.result != 0) {
+		netif_err(nic, hw, nic->netdev,
+			  "Self-test failed: result=0x%08X\n",
+			  nic->mem->selftest.result);
+		return -ETIMEDOUT;
+	}
+	if (nic->mem->selftest.signature == 0) {
+		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
+{
+	u32 cmd_addr_data[3];
+	u8 ctrl;
+	int i, j;
+
+	/* Three cmds: write/erase enable, write data, write/erase disable */
+	cmd_addr_data[0] = op_ewen << (addr_len - 2);
+	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
+		le16_to_cpu(data);
+	cmd_addr_data[2] = op_ewds << (addr_len - 2);
+
+	/* Bit-bang cmds to write word to eeprom */
+	for (j = 0; j < 3; j++) {
+
+		/* Chip select */
+		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+
+		for (i = 31; i >= 0; i--) {
+			ctrl = (cmd_addr_data[j] & (1 << i)) ?
+				eecs | eedi : eecs;
+			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
+			e100_write_flush(nic); udelay(4);
+
+			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
+			e100_write_flush(nic); udelay(4);
+		}
+		/* Wait 10 msec for cmd to complete */
+		msleep(10);
+
+		/* Chip deselect */
+		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+	}
+};
+
+/* General technique stolen from the eepro100 driver - very clever */
+static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
+{
+	u32 cmd_addr_data;
+	u16 data = 0;
+	u8 ctrl;
+	int i;
+
+	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
+
+	/* Chip select */
+	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
+	e100_write_flush(nic); udelay(4);
+
+	/* Bit-bang to read word from eeprom */
+	for (i = 31; i >= 0; i--) {
+		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
+		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+
+		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
+		e100_write_flush(nic); udelay(4);
+
+		/* Eeprom drives a dummy zero to EEDO after receiving
+		 * complete address.  Use this to adjust addr_len. */
+		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
+		if (!(ctrl & eedo) && i > 16) {
+			*addr_len -= (i - 16);
+			i = 17;
+		}
+
+		data = (data << 1) | (ctrl & eedo ? 1 : 0);
+	}
+
+	/* Chip deselect */
+	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
+	e100_write_flush(nic); udelay(4);
+
+	return cpu_to_le16(data);
+};
+
+/* Load entire EEPROM image into driver cache and validate checksum */
+static int e100_eeprom_load(struct nic *nic)
+{
+	u16 addr, addr_len = 8, checksum = 0;
+
+	/* Try reading with an 8-bit addr len to discover actual addr len */
+	e100_eeprom_read(nic, &addr_len, 0);
+	nic->eeprom_wc = 1 << addr_len;
+
+	for (addr = 0; addr < nic->eeprom_wc; addr++) {
+		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
+		if (addr < nic->eeprom_wc - 1)
+			checksum += le16_to_cpu(nic->eeprom[addr]);
+	}
+
+	/* The checksum, stored in the last word, is calculated such that
+	 * the sum of words should be 0xBABA */
+	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
+		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
+		if (!eeprom_bad_csum_allow)
+			return -EAGAIN;
+	}
+
+	return 0;
+}
+
+/* Save (portion of) driver EEPROM cache to device and update checksum */
+static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
+{
+	u16 addr, addr_len = 8, checksum = 0;
+
+	/* Try reading with an 8-bit addr len to discover actual addr len */
+	e100_eeprom_read(nic, &addr_len, 0);
+	nic->eeprom_wc = 1 << addr_len;
+
+	if (start + count >= nic->eeprom_wc)
+		return -EINVAL;
+
+	for (addr = start; addr < start + count; addr++)
+		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
+
+	/* The checksum, stored in the last word, is calculated such that
+	 * the sum of words should be 0xBABA */
+	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
+		checksum += le16_to_cpu(nic->eeprom[addr]);
+	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
+	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
+		nic->eeprom[nic->eeprom_wc - 1]);
+
+	return 0;
+}
+
+#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
+#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
+static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
+{
+	unsigned long flags;
+	unsigned int i;
+	int err = 0;
+
+	spin_lock_irqsave(&nic->cmd_lock, flags);
+
+	/* Previous command is accepted when SCB clears */
+	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
+		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
+			break;
+		cpu_relax();
+		if (unlikely(i > E100_WAIT_SCB_FAST))
+			udelay(5);
+	}
+	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
+		err = -EAGAIN;
+		goto err_unlock;
+	}
+
+	if (unlikely(cmd != cuc_resume))
+		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
+	iowrite8(cmd, &nic->csr->scb.cmd_lo);
+
+err_unlock:
+	spin_unlock_irqrestore(&nic->cmd_lock, flags);
+
+	return err;
+}
+
+static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
+	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
+{
+	struct cb *cb;
+	unsigned long flags;
+	int err = 0;
+
+	spin_lock_irqsave(&nic->cb_lock, flags);
+
+	if (unlikely(!nic->cbs_avail)) {
+		err = -ENOMEM;
+		goto err_unlock;
+	}
+
+	cb = nic->cb_to_use;
+	nic->cb_to_use = cb->next;
+	nic->cbs_avail--;
+	cb->skb = skb;
+
+	if (unlikely(!nic->cbs_avail))
+		err = -ENOSPC;
+
+	cb_prepare(nic, cb, skb);
+
+	/* Order is important otherwise we'll be in a race with h/w:
+	 * set S-bit in current first, then clear S-bit in previous. */
+	cb->command |= cpu_to_le16(cb_s);
+	wmb();
+	cb->prev->command &= cpu_to_le16(~cb_s);
+
+	while (nic->cb_to_send != nic->cb_to_use) {
+		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
+			nic->cb_to_send->dma_addr))) {
+			/* Ok, here's where things get sticky.  It's
+			 * possible that we can't schedule the command
+			 * because the controller is too busy, so
+			 * let's just queue the command and try again
+			 * when another command is scheduled. */
+			if (err == -ENOSPC) {
+				//request a reset
+				schedule_work(&nic->tx_timeout_task);
+			}
+			break;
+		} else {
+			nic->cuc_cmd = cuc_resume;
+			nic->cb_to_send = nic->cb_to_send->next;
+		}
+	}
+
+err_unlock:
+	spin_unlock_irqrestore(&nic->cb_lock, flags);
+
+	return err;
+}
+
+static int mdio_read(struct net_device *netdev, int addr, int reg)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
+}
+
+static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
+}
+
+/* the standard mdio_ctrl() function for usual MII-compliant hardware */
+static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
+{
+	u32 data_out = 0;
+	unsigned int i;
+	unsigned long flags;
+
+
+	/*
+	 * Stratus87247: we shouldn't be writing the MDI control
+	 * register until the Ready bit shows True.  Also, since
+	 * manipulation of the MDI control registers is a multi-step
+	 * procedure it should be done under lock.
+	 */
+	spin_lock_irqsave(&nic->mdio_lock, flags);
+	for (i = 100; i; --i) {
+		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
+			break;
+		udelay(20);
+	}
+	if (unlikely(!i)) {
+		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
+		spin_unlock_irqrestore(&nic->mdio_lock, flags);
+		return 0;		/* No way to indicate timeout error */
+	}
+	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
+
+	for (i = 0; i < 100; i++) {
+		udelay(20);
+		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
+			break;
+	}
+	spin_unlock_irqrestore(&nic->mdio_lock, flags);
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
+		     dir == mdi_read ? "READ" : "WRITE",
+		     addr, reg, data, data_out);
+	return (u16)data_out;
+}
+
+/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
+static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
+				 u32 addr,
+				 u32 dir,
+				 u32 reg,
+				 u16 data)
+{
+	if ((reg == MII_BMCR) && (dir == mdi_write)) {
+		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
+			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
+							MII_ADVERTISE);
+
+			/*
+			 * Workaround Si issue where sometimes the part will not
+			 * autoneg to 100Mbps even when advertised.
+			 */
+			if (advert & ADVERTISE_100FULL)
+				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
+			else if (advert & ADVERTISE_100HALF)
+				data |= BMCR_SPEED100;
+		}
+	}
+	return mdio_ctrl_hw(nic, addr, dir, reg, data);
+}
+
+/* Fully software-emulated mdio_ctrl() function for cards without
+ * MII-compliant PHYs.
+ * For now, this is mainly geared towards 80c24 support; in case of further
+ * requirements for other types (i82503, ...?) either extend this mechanism
+ * or split it, whichever is cleaner.
+ */
+static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
+				      u32 addr,
+				      u32 dir,
+				      u32 reg,
+				      u16 data)
+{
+	/* might need to allocate a netdev_priv'ed register array eventually
+	 * to be able to record state changes, but for now
+	 * some fully hardcoded register handling ought to be ok I guess. */
+
+	if (dir == mdi_read) {
+		switch (reg) {
+		case MII_BMCR:
+			/* Auto-negotiation, right? */
+			return  BMCR_ANENABLE |
+				BMCR_FULLDPLX;
+		case MII_BMSR:
+			return	BMSR_LSTATUS /* for mii_link_ok() */ |
+				BMSR_ANEGCAPABLE |
+				BMSR_10FULL;
+		case MII_ADVERTISE:
+			/* 80c24 is a "combo card" PHY, right? */
+			return	ADVERTISE_10HALF |
+				ADVERTISE_10FULL;
+		default:
+			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
+				     dir == mdi_read ? "READ" : "WRITE",
+				     addr, reg, data);
+			return 0xFFFF;
+		}
+	} else {
+		switch (reg) {
+		default:
+			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
+				     dir == mdi_read ? "READ" : "WRITE",
+				     addr, reg, data);
+			return 0xFFFF;
+		}
+	}
+}
+static inline int e100_phy_supports_mii(struct nic *nic)
+{
+	/* for now, just check it by comparing whether we
+	   are using MII software emulation.
+	*/
+	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
+}
+
+static void e100_get_defaults(struct nic *nic)
+{
+	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
+	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
+
+	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
+	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
+	if (nic->mac == mac_unknown)
+		nic->mac = mac_82557_D100_A;
+
+	nic->params.rfds = rfds;
+	nic->params.cbs = cbs;
+
+	/* Quadwords to DMA into FIFO before starting frame transmit */
+	nic->tx_threshold = 0xE0;
+
+	/* no interrupt for every tx completion, delay = 256us if not 557 */
+	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
+		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
+
+	/* Template for a freshly allocated RFD */
+	nic->blank_rfd.command = 0;
+	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
+	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
+
+	/* MII setup */
+	nic->mii.phy_id_mask = 0x1F;
+	nic->mii.reg_num_mask = 0x1F;
+	nic->mii.dev = nic->netdev;
+	nic->mii.mdio_read = mdio_read;
+	nic->mii.mdio_write = mdio_write;
+}
+
+static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
+{
+	struct config *config = &cb->u.config;
+	u8 *c = (u8 *)config;
+
+	cb->command = cpu_to_le16(cb_config);
+
+	memset(config, 0, sizeof(struct config));
+
+	config->byte_count = 0x16;		/* bytes in this struct */
+	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
+	config->direct_rx_dma = 0x1;		/* reserved */
+	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
+	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
+	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
+	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
+	if (e100_phy_supports_mii(nic))
+		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
+	config->pad10 = 0x6;
+	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
+	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
+	config->ifs = 0x6;			/* x16 = inter frame spacing */
+	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
+	config->pad15_1 = 0x1;
+	config->pad15_2 = 0x1;
+	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
+	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
+	config->tx_padding = 0x1;		/* 1=pad short frames */
+	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
+	config->pad18 = 0x1;
+	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
+	config->pad20_1 = 0x1F;
+	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
+	config->pad21_1 = 0x5;
+
+	config->adaptive_ifs = nic->adaptive_ifs;
+	config->loopback = nic->loopback;
+
+	if (nic->mii.force_media && nic->mii.full_duplex)
+		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
+
+	if (nic->flags & promiscuous || nic->loopback) {
+		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
+		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
+		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
+	}
+
+	if (nic->flags & multicast_all)
+		config->multicast_all = 0x1;		/* 1=accept, 0=no */
+
+	/* disable WoL when up */
+	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
+		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
+
+	if (nic->mac >= mac_82558_D101_A4) {
+		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
+		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
+		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
+		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
+		if (nic->mac >= mac_82559_D101M) {
+			config->tno_intr = 0x1;		/* TCO stats enable */
+			/* Enable TCO in extended config */
+			if (nic->mac >= mac_82551_10) {
+				config->byte_count = 0x20; /* extended bytes */
+				config->rx_d102_mode = 0x1; /* GMRC for TCO */
+			}
+		} else {
+			config->standard_stat_counter = 0x0;
+		}
+	}
+
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
+		     c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
+		     c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
+		     c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
+}
+
+/*************************************************************************
+*  CPUSaver parameters
+*
+*  All CPUSaver parameters are 16-bit literals that are part of a
+*  "move immediate value" instruction.  By changing the value of
+*  the literal in the instruction before the code is loaded, the
+*  driver can change the algorithm.
+*
+*  INTDELAY - This loads the dead-man timer with its initial value.
+*    When this timer expires the interrupt is asserted, and the
+*    timer is reset each time a new packet is received.  (see
+*    BUNDLEMAX below to set the limit on number of chained packets)
+*    The current default is 0x600 or 1536.  Experiments show that
+*    the value should probably stay within the 0x200 - 0x1000.
+*
+*  BUNDLEMAX -
+*    This sets the maximum number of frames that will be bundled.  In
+*    some situations, such as the TCP windowing algorithm, it may be
+*    better to limit the growth of the bundle size than let it go as
+*    high as it can, because that could cause too much added latency.
+*    The default is six, because this is the number of packets in the
+*    default TCP window size.  A value of 1 would make CPUSaver indicate
+*    an interrupt for every frame received.  If you do not want to put
+*    a limit on the bundle size, set this value to xFFFF.
+*
+*  BUNDLESMALL -
+*    This contains a bit-mask describing the minimum size frame that
+*    will be bundled.  The default masks the lower 7 bits, which means
+*    that any frame less than 128 bytes in length will not be bundled,
+*    but will instead immediately generate an interrupt.  This does
+*    not affect the current bundle in any way.  Any frame that is 128
+*    bytes or large will be bundled normally.  This feature is meant
+*    to provide immediate indication of ACK frames in a TCP environment.
+*    Customers were seeing poor performance when a machine with CPUSaver
+*    enabled was sending but not receiving.  The delay introduced when
+*    the ACKs were received was enough to reduce total throughput, because
+*    the sender would sit idle until the ACK was finally seen.
+*
+*    The current default is 0xFF80, which masks out the lower 7 bits.
+*    This means that any frame which is x7F (127) bytes or smaller
+*    will cause an immediate interrupt.  Because this value must be a
+*    bit mask, there are only a few valid values that can be used.  To
+*    turn this feature off, the driver can write the value xFFFF to the
+*    lower word of this instruction (in the same way that the other
+*    parameters are used).  Likewise, a value of 0xF800 (2047) would
+*    cause an interrupt to be generated for every frame, because all
+*    standard Ethernet frames are <= 2047 bytes in length.
+*************************************************************************/
+
+/* if you wish to disable the ucode functionality, while maintaining the
+ * workarounds it provides, set the following defines to:
+ * BUNDLESMALL 0
+ * BUNDLEMAX 1
+ * INTDELAY 1
+ */
+#define BUNDLESMALL 1
+#define BUNDLEMAX (u16)6
+#define INTDELAY (u16)1536 /* 0x600 */
+
+/* Initialize firmware */
+static const struct firmware *e100_request_firmware(struct nic *nic)
+{
+	const char *fw_name;
+	const struct firmware *fw = nic->fw;
+	u8 timer, bundle, min_size;
+	int err = 0;
+
+	/* do not load u-code for ICH devices */
+	if (nic->flags & ich)
+		return NULL;
+
+	/* Search for ucode match against h/w revision */
+	if (nic->mac == mac_82559_D101M)
+		fw_name = FIRMWARE_D101M;
+	else if (nic->mac == mac_82559_D101S)
+		fw_name = FIRMWARE_D101S;
+	else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
+		fw_name = FIRMWARE_D102E;
+	else /* No ucode on other devices */
+		return NULL;
+
+	/* If the firmware has not previously been loaded, request a pointer
+	 * to it. If it was previously loaded, we are reinitializing the
+	 * adapter, possibly in a resume from hibernate, in which case
+	 * request_firmware() cannot be used.
+	 */
+	if (!fw)
+		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
+
+	if (err) {
+		netif_err(nic, probe, nic->netdev,
+			  "Failed to load firmware \"%s\": %d\n",
+			  fw_name, err);
+		return ERR_PTR(err);
+	}
+
+	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
+	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
+	if (fw->size != UCODE_SIZE * 4 + 3) {
+		netif_err(nic, probe, nic->netdev,
+			  "Firmware \"%s\" has wrong size %zu\n",
+			  fw_name, fw->size);
+		release_firmware(fw);
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* Read timer, bundle and min_size from end of firmware blob */
+	timer = fw->data[UCODE_SIZE * 4];
+	bundle = fw->data[UCODE_SIZE * 4 + 1];
+	min_size = fw->data[UCODE_SIZE * 4 + 2];
+
+	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
+	    min_size >= UCODE_SIZE) {
+		netif_err(nic, probe, nic->netdev,
+			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
+			  fw_name, timer, bundle, min_size);
+		release_firmware(fw);
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* OK, firmware is validated and ready to use. Save a pointer
+	 * to it in the nic */
+	nic->fw = fw;
+	return fw;
+}
+
+static void e100_setup_ucode(struct nic *nic, struct cb *cb,
+			     struct sk_buff *skb)
+{
+	const struct firmware *fw = (void *)skb;
+	u8 timer, bundle, min_size;
+
+	/* It's not a real skb; we just abused the fact that e100_exec_cb
+	   will pass it through to here... */
+	cb->skb = NULL;
+
+	/* firmware is stored as little endian already */
+	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
+
+	/* Read timer, bundle and min_size from end of firmware blob */
+	timer = fw->data[UCODE_SIZE * 4];
+	bundle = fw->data[UCODE_SIZE * 4 + 1];
+	min_size = fw->data[UCODE_SIZE * 4 + 2];
+
+	/* Insert user-tunable settings in cb->u.ucode */
+	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
+	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
+	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
+	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
+	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
+	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
+
+	cb->command = cpu_to_le16(cb_ucode | cb_el);
+}
+
+static inline int e100_load_ucode_wait(struct nic *nic)
+{
+	const struct firmware *fw;
+	int err = 0, counter = 50;
+	struct cb *cb = nic->cb_to_clean;
+
+	fw = e100_request_firmware(nic);
+	/* If it's NULL, then no ucode is required */
+	if (!fw || IS_ERR(fw))
+		return PTR_ERR(fw);
+
+	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
+		netif_err(nic, probe, nic->netdev,
+			  "ucode cmd failed with error %d\n", err);
+
+	/* must restart cuc */
+	nic->cuc_cmd = cuc_start;
+
+	/* wait for completion */
+	e100_write_flush(nic);
+	udelay(10);
+
+	/* wait for possibly (ouch) 500ms */
+	while (!(cb->status & cpu_to_le16(cb_complete))) {
+		msleep(10);
+		if (!--counter) break;
+	}
+
+	/* ack any interrupts, something could have been set */
+	iowrite8(~0, &nic->csr->scb.stat_ack);
+
+	/* if the command failed, or is not OK, notify and return */
+	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
+		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
+		err = -EPERM;
+	}
+
+	return err;
+}
+
+static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
+	struct sk_buff *skb)
+{
+	cb->command = cpu_to_le16(cb_iaaddr);
+	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
+}
+
+static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
+{
+	cb->command = cpu_to_le16(cb_dump);
+	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
+		offsetof(struct mem, dump_buf));
+}
+
+static int e100_phy_check_without_mii(struct nic *nic)
+{
+	u8 phy_type;
+	int without_mii;
+
+	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
+
+	switch (phy_type) {
+	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
+	case I82503: /* Non-MII PHY; UNTESTED! */
+	case S80C24: /* Non-MII PHY; tested and working */
+		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
+		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
+		 * doesn't have a programming interface of any sort.  The
+		 * media is sensed automatically based on how the link partner
+		 * is configured.  This is, in essence, manual configuration.
+		 */
+		netif_info(nic, probe, nic->netdev,
+			   "found MII-less i82503 or 80c24 or other PHY\n");
+
+		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
+		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
+
+		/* these might be needed for certain MII-less cards...
+		 * nic->flags |= ich;
+		 * nic->flags |= ich_10h_workaround; */
+
+		without_mii = 1;
+		break;
+	default:
+		without_mii = 0;
+		break;
+	}
+	return without_mii;
+}
+
+#define NCONFIG_AUTO_SWITCH	0x0080
+#define MII_NSC_CONG		MII_RESV1
+#define NSC_CONG_ENABLE		0x0100
+#define NSC_CONG_TXREADY	0x0400
+#define ADVERTISE_FC_SUPPORTED	0x0400
+static int e100_phy_init(struct nic *nic)
+{
+	struct net_device *netdev = nic->netdev;
+	u32 addr;
+	u16 bmcr, stat, id_lo, id_hi, cong;
+
+	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
+	for (addr = 0; addr < 32; addr++) {
+		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
+		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
+		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
+		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
+		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
+			break;
+	}
+	if (addr == 32) {
+		/* uhoh, no PHY detected: check whether we seem to be some
+		 * weird, rare variant which is *known* to not have any MII.
+		 * But do this AFTER MII checking only, since this does
+		 * lookup of EEPROM values which may easily be unreliable. */
+		if (e100_phy_check_without_mii(nic))
+			return 0; /* simply return and hope for the best */
+		else {
+			/* for unknown cases log a fatal error */
+			netif_err(nic, hw, nic->netdev,
+				  "Failed to locate any known PHY, aborting\n");
+			return -EAGAIN;
+		}
+	} else
+		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+			     "phy_addr = %d\n", nic->mii.phy_id);
+
+	/* Get phy ID */
+	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
+	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
+	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "phy ID = 0x%08X\n", nic->phy);
+
+	/* Select the phy and isolate the rest */
+	for (addr = 0; addr < 32; addr++) {
+		if (addr != nic->mii.phy_id) {
+			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
+		} else if (nic->phy != phy_82552_v) {
+			bmcr = mdio_read(netdev, addr, MII_BMCR);
+			mdio_write(netdev, addr, MII_BMCR,
+				bmcr & ~BMCR_ISOLATE);
+		}
+	}
+	/*
+	 * Workaround for 82552:
+	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
+	 * other phy_id's) using bmcr value from addr discovery loop above.
+	 */
+	if (nic->phy == phy_82552_v)
+		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
+			bmcr & ~BMCR_ISOLATE);
+
+	/* Handle National tx phys */
+#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
+	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
+		/* Disable congestion control */
+		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
+		cong |= NSC_CONG_TXREADY;
+		cong &= ~NSC_CONG_ENABLE;
+		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
+	}
+
+	if (nic->phy == phy_82552_v) {
+		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
+
+		/* assign special tweaked mdio_ctrl() function */
+		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
+
+		/* Workaround Si not advertising flow-control during autoneg */
+		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
+		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
+
+		/* Reset for the above changes to take effect */
+		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
+		bmcr |= BMCR_RESET;
+		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
+	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
+	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
+		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
+		/* enable/disable MDI/MDI-X auto-switching. */
+		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
+				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
+	}
+
+	return 0;
+}
+
+static int e100_hw_init(struct nic *nic)
+{
+	int err;
+
+	e100_hw_reset(nic);
+
+	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
+	if (!in_interrupt() && (err = e100_self_test(nic)))
+		return err;
+
+	if ((err = e100_phy_init(nic)))
+		return err;
+	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
+		return err;
+	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
+		return err;
+	if ((err = e100_load_ucode_wait(nic)))
+		return err;
+	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
+		return err;
+	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
+		return err;
+	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
+		nic->dma_addr + offsetof(struct mem, stats))))
+		return err;
+	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
+		return err;
+
+	e100_disable_irq(nic);
+
+	return 0;
+}
+
+static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
+{
+	struct net_device *netdev = nic->netdev;
+	struct netdev_hw_addr *ha;
+	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
+
+	cb->command = cpu_to_le16(cb_multi);
+	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
+	i = 0;
+	netdev_for_each_mc_addr(ha, netdev) {
+		if (i == count)
+			break;
+		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
+			ETH_ALEN);
+	}
+}
+
+static void e100_set_multicast_list(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
+		     "mc_count=%d, flags=0x%04X\n",
+		     netdev_mc_count(netdev), netdev->flags);
+
+	if (netdev->flags & IFF_PROMISC)
+		nic->flags |= promiscuous;
+	else
+		nic->flags &= ~promiscuous;
+
+	if (netdev->flags & IFF_ALLMULTI ||
+		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
+		nic->flags |= multicast_all;
+	else
+		nic->flags &= ~multicast_all;
+
+	e100_exec_cb(nic, NULL, e100_configure);
+	e100_exec_cb(nic, NULL, e100_multi);
+}
+
+static void e100_update_stats(struct nic *nic)
+{
+	struct net_device *dev = nic->netdev;
+	struct net_device_stats *ns = &dev->stats;
+	struct stats *s = &nic->mem->stats;
+	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
+		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
+		&s->complete;
+
+	/* Device's stats reporting may take several microseconds to
+	 * complete, so we're always waiting for results of the
+	 * previous command. */
+
+	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
+		*complete = 0;
+		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
+		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
+		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
+		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
+		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
+		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
+		ns->collisions += nic->tx_collisions;
+		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
+			le32_to_cpu(s->tx_lost_crs);
+		ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
+			nic->rx_over_length_errors;
+		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
+		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
+		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
+		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
+		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
+		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
+			le32_to_cpu(s->rx_alignment_errors) +
+			le32_to_cpu(s->rx_short_frame_errors) +
+			le32_to_cpu(s->rx_cdt_errors);
+		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
+		nic->tx_single_collisions +=
+			le32_to_cpu(s->tx_single_collisions);
+		nic->tx_multiple_collisions +=
+			le32_to_cpu(s->tx_multiple_collisions);
+		if (nic->mac >= mac_82558_D101_A4) {
+			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
+			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
+			nic->rx_fc_unsupported +=
+				le32_to_cpu(s->fc_rcv_unsupported);
+			if (nic->mac >= mac_82559_D101M) {
+				nic->tx_tco_frames +=
+					le16_to_cpu(s->xmt_tco_frames);
+				nic->rx_tco_frames +=
+					le16_to_cpu(s->rcv_tco_frames);
+			}
+		}
+	}
+
+
+	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
+		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+			     "exec cuc_dump_reset failed\n");
+}
+
+static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
+{
+	/* Adjust inter-frame-spacing (IFS) between two transmits if
+	 * we're getting collisions on a half-duplex connection. */
+
+	if (duplex == DUPLEX_HALF) {
+		u32 prev = nic->adaptive_ifs;
+		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
+
+		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
+		   (nic->tx_frames > min_frames)) {
+			if (nic->adaptive_ifs < 60)
+				nic->adaptive_ifs += 5;
+		} else if (nic->tx_frames < min_frames) {
+			if (nic->adaptive_ifs >= 5)
+				nic->adaptive_ifs -= 5;
+		}
+		if (nic->adaptive_ifs != prev)
+			e100_exec_cb(nic, NULL, e100_configure);
+	}
+}
+
+static void e100_watchdog(unsigned long data)
+{
+	struct nic *nic = (struct nic *)data;
+	struct ethtool_cmd cmd;
+
+	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
+		     "right now = %ld\n", jiffies);
+
+	/* mii library handles link maintenance tasks */
+
+	mii_ethtool_gset(&nic->mii, &cmd);
+
+	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
+		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
+			    cmd.speed == SPEED_100 ? 100 : 10,
+			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
+	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
+		netdev_info(nic->netdev, "NIC Link is Down\n");
+	}
+
+	mii_check_link(&nic->mii);
+
+	/* Software generated interrupt to recover from (rare) Rx
+	 * allocation failure.
+	 * Unfortunately have to use a spinlock to not re-enable interrupts
+	 * accidentally, due to hardware that shares a register between the
+	 * interrupt mask bit and the SW Interrupt generation bit */
+	spin_lock_irq(&nic->cmd_lock);
+	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
+	e100_write_flush(nic);
+	spin_unlock_irq(&nic->cmd_lock);
+
+	e100_update_stats(nic);
+	e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
+
+	if (nic->mac <= mac_82557_D100_C)
+		/* Issue a multicast command to workaround a 557 lock up */
+		e100_set_multicast_list(nic->netdev);
+
+	if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
+		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
+		nic->flags |= ich_10h_workaround;
+	else
+		nic->flags &= ~ich_10h_workaround;
+
+	mod_timer(&nic->watchdog,
+		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
+}
+
+static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
+	struct sk_buff *skb)
+{
+	cb->command = nic->tx_command;
+	/* interrupt every 16 packets regardless of delay */
+	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
+		cb->command |= cpu_to_le16(cb_i);
+	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
+	cb->u.tcb.tcb_byte_count = 0;
+	cb->u.tcb.threshold = nic->tx_threshold;
+	cb->u.tcb.tbd_count = 1;
+	cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
+		skb->data, skb->len, PCI_DMA_TODEVICE));
+	/* check for mapping failure? */
+	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
+}
+
+static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
+				   struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int err;
+
+	if (nic->flags & ich_10h_workaround) {
+		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
+		   Issue a NOP command followed by a 1us delay before
+		   issuing the Tx command. */
+		if (e100_exec_cmd(nic, cuc_nop, 0))
+			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+				     "exec cuc_nop failed\n");
+		udelay(1);
+	}
+
+	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
+
+	switch (err) {
+	case -ENOSPC:
+		/* We queued the skb, but now we're out of space. */
+		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+			     "No space for CB\n");
+		netif_stop_queue(netdev);
+		break;
+	case -ENOMEM:
+		/* This is a hard error - log it. */
+		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+			     "Out of Tx resources, returning skb\n");
+		netif_stop_queue(netdev);
+		return NETDEV_TX_BUSY;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+static int e100_tx_clean(struct nic *nic)
+{
+	struct net_device *dev = nic->netdev;
+	struct cb *cb;
+	int tx_cleaned = 0;
+
+	spin_lock(&nic->cb_lock);
+
+	/* Clean CBs marked complete */
+	for (cb = nic->cb_to_clean;
+	    cb->status & cpu_to_le16(cb_complete);
+	    cb = nic->cb_to_clean = cb->next) {
+		rmb(); /* read skb after status */
+		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
+			     "cb[%d]->status = 0x%04X\n",
+			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
+			     cb->status);
+
+		if (likely(cb->skb != NULL)) {
+			dev->stats.tx_packets++;
+			dev->stats.tx_bytes += cb->skb->len;
+
+			pci_unmap_single(nic->pdev,
+				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
+				le16_to_cpu(cb->u.tcb.tbd.size),
+				PCI_DMA_TODEVICE);
+			dev_kfree_skb_any(cb->skb);
+			cb->skb = NULL;
+			tx_cleaned = 1;
+		}
+		cb->status = 0;
+		nic->cbs_avail++;
+	}
+
+	spin_unlock(&nic->cb_lock);
+
+	/* Recover from running out of Tx resources in xmit_frame */
+	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
+		netif_wake_queue(nic->netdev);
+
+	return tx_cleaned;
+}
+
+static void e100_clean_cbs(struct nic *nic)
+{
+	if (nic->cbs) {
+		while (nic->cbs_avail != nic->params.cbs.count) {
+			struct cb *cb = nic->cb_to_clean;
+			if (cb->skb) {
+				pci_unmap_single(nic->pdev,
+					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
+					le16_to_cpu(cb->u.tcb.tbd.size),
+					PCI_DMA_TODEVICE);
+				dev_kfree_skb(cb->skb);
+			}
+			nic->cb_to_clean = nic->cb_to_clean->next;
+			nic->cbs_avail++;
+		}
+		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
+		nic->cbs = NULL;
+		nic->cbs_avail = 0;
+	}
+	nic->cuc_cmd = cuc_start;
+	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
+		nic->cbs;
+}
+
+static int e100_alloc_cbs(struct nic *nic)
+{
+	struct cb *cb;
+	unsigned int i, count = nic->params.cbs.count;
+
+	nic->cuc_cmd = cuc_start;
+	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
+	nic->cbs_avail = 0;
+
+	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
+				  &nic->cbs_dma_addr);
+	if (!nic->cbs)
+		return -ENOMEM;
+	memset(nic->cbs, 0, count * sizeof(struct cb));
+
+	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
+		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
+		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
+
+		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
+		cb->link = cpu_to_le32(nic->cbs_dma_addr +
+			((i+1) % count) * sizeof(struct cb));
+	}
+
+	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
+	nic->cbs_avail = count;
+
+	return 0;
+}
+
+static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
+{
+	if (!nic->rxs) return;
+	if (RU_SUSPENDED != nic->ru_running) return;
+
+	/* handle init time starts */
+	if (!rx) rx = nic->rxs;
+
+	/* (Re)start RU if suspended or idle and RFA is non-NULL */
+	if (rx->skb) {
+		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
+		nic->ru_running = RU_RUNNING;
+	}
+}
+
+#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
+static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
+{
+	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
+		return -ENOMEM;
+
+	/* Init, and map the RFD. */
+	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
+	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
+		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+
+	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
+		dev_kfree_skb_any(rx->skb);
+		rx->skb = NULL;
+		rx->dma_addr = 0;
+		return -ENOMEM;
+	}
+
+	/* Link the RFD to end of RFA by linking previous RFD to
+	 * this one.  We are safe to touch the previous RFD because
+	 * it is protected by the before last buffer's el bit being set */
+	if (rx->prev->skb) {
+		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
+		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
+		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
+			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
+	}
+
+	return 0;
+}
+
+static int e100_rx_indicate(struct nic *nic, struct rx *rx,
+	unsigned int *work_done, unsigned int work_to_do)
+{
+	struct net_device *dev = nic->netdev;
+	struct sk_buff *skb = rx->skb;
+	struct rfd *rfd = (struct rfd *)skb->data;
+	u16 rfd_status, actual_size;
+
+	if (unlikely(work_done && *work_done >= work_to_do))
+		return -EAGAIN;
+
+	/* Need to sync before taking a peek at cb_complete bit */
+	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
+		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
+	rfd_status = le16_to_cpu(rfd->status);
+
+	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
+		     "status=0x%04X\n", rfd_status);
+	rmb(); /* read size after status bit */
+
+	/* If data isn't ready, nothing to indicate */
+	if (unlikely(!(rfd_status & cb_complete))) {
+		/* If the next buffer has the el bit, but we think the receiver
+		 * is still running, check to see if it really stopped while
+		 * we had interrupts off.
+		 * This allows for a fast restart without re-enabling
+		 * interrupts */
+		if ((le16_to_cpu(rfd->command) & cb_el) &&
+		    (RU_RUNNING == nic->ru_running))
+
+			if (ioread8(&nic->csr->scb.status) & rus_no_res)
+				nic->ru_running = RU_SUSPENDED;
+		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
+					       sizeof(struct rfd),
+					       PCI_DMA_FROMDEVICE);
+		return -ENODATA;
+	}
+
+	/* Get actual data size */
+	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
+	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
+		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
+
+	/* Get data */
+	pci_unmap_single(nic->pdev, rx->dma_addr,
+		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+
+	/* If this buffer has the el bit, but we think the receiver
+	 * is still running, check to see if it really stopped while
+	 * we had interrupts off.
+	 * This allows for a fast restart without re-enabling interrupts.
+	 * This can happen when the RU sees the size change but also sees
+	 * the el bit set. */
+	if ((le16_to_cpu(rfd->command) & cb_el) &&
+	    (RU_RUNNING == nic->ru_running)) {
+
+	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
+		nic->ru_running = RU_SUSPENDED;
+	}
+
+	/* Pull off the RFD and put the actual data (minus eth hdr) */
+	skb_reserve(skb, sizeof(struct rfd));
+	skb_put(skb, actual_size);
+	skb->protocol = eth_type_trans(skb, nic->netdev);
+
+	if (unlikely(!(rfd_status & cb_ok))) {
+		/* Don't indicate if hardware indicates errors */
+		dev_kfree_skb_any(skb);
+	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
+		/* Don't indicate oversized frames */
+		nic->rx_over_length_errors++;
+		dev_kfree_skb_any(skb);
+	} else {
+		dev->stats.rx_packets++;
+		dev->stats.rx_bytes += actual_size;
+		netif_receive_skb(skb);
+		if (work_done)
+			(*work_done)++;
+	}
+
+	rx->skb = NULL;
+
+	return 0;
+}
+
+static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
+	unsigned int work_to_do)
+{
+	struct rx *rx;
+	int restart_required = 0, err = 0;
+	struct rx *old_before_last_rx, *new_before_last_rx;
+	struct rfd *old_before_last_rfd, *new_before_last_rfd;
+
+	/* Indicate newly arrived packets */
+	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
+		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
+		/* Hit quota or no more to clean */
+		if (-EAGAIN == err || -ENODATA == err)
+			break;
+	}
+
+
+	/* On EAGAIN, hit quota so have more work to do, restart once
+	 * cleanup is complete.
+	 * Else, are we already rnr? then pay attention!!! this ensures that
+	 * the state machine progression never allows a start with a
+	 * partially cleaned list, avoiding a race between hardware
+	 * and rx_to_clean when in NAPI mode */
+	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
+		restart_required = 1;
+
+	old_before_last_rx = nic->rx_to_use->prev->prev;
+	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
+
+	/* Alloc new skbs to refill list */
+	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
+		if (unlikely(e100_rx_alloc_skb(nic, rx)))
+			break; /* Better luck next time (see watchdog) */
+	}
+
+	new_before_last_rx = nic->rx_to_use->prev->prev;
+	if (new_before_last_rx != old_before_last_rx) {
+		/* Set the el-bit on the buffer that is before the last buffer.
+		 * This lets us update the next pointer on the last buffer
+		 * without worrying about hardware touching it.
+		 * We set the size to 0 to prevent hardware from touching this
+		 * buffer.
+		 * When the hardware hits the before last buffer with el-bit
+		 * and size of 0, it will RNR interrupt, the RUS will go into
+		 * the No Resources state.  It will not complete nor write to
+		 * this buffer. */
+		new_before_last_rfd =
+			(struct rfd *)new_before_last_rx->skb->data;
+		new_before_last_rfd->size = 0;
+		new_before_last_rfd->command |= cpu_to_le16(cb_el);
+		pci_dma_sync_single_for_device(nic->pdev,
+			new_before_last_rx->dma_addr, sizeof(struct rfd),
+			PCI_DMA_BIDIRECTIONAL);
+
+		/* Now that we have a new stopping point, we can clear the old
+		 * stopping point.  We must sync twice to get the proper
+		 * ordering on the hardware side of things. */
+		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
+		pci_dma_sync_single_for_device(nic->pdev,
+			old_before_last_rx->dma_addr, sizeof(struct rfd),
+			PCI_DMA_BIDIRECTIONAL);
+		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
+		pci_dma_sync_single_for_device(nic->pdev,
+			old_before_last_rx->dma_addr, sizeof(struct rfd),
+			PCI_DMA_BIDIRECTIONAL);
+	}
+
+	if (restart_required) {
+		// ack the rnr?
+		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
+		e100_start_receiver(nic, nic->rx_to_clean);
+		if (work_done)
+			(*work_done)++;
+	}
+}
+
+static void e100_rx_clean_list(struct nic *nic)
+{
+	struct rx *rx;
+	unsigned int i, count = nic->params.rfds.count;
+
+	nic->ru_running = RU_UNINITIALIZED;
+
+	if (nic->rxs) {
+		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
+			if (rx->skb) {
+				pci_unmap_single(nic->pdev, rx->dma_addr,
+					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+				dev_kfree_skb(rx->skb);
+			}
+		}
+		kfree(nic->rxs);
+		nic->rxs = NULL;
+	}
+
+	nic->rx_to_use = nic->rx_to_clean = NULL;
+}
+
+static int e100_rx_alloc_list(struct nic *nic)
+{
+	struct rx *rx;
+	unsigned int i, count = nic->params.rfds.count;
+	struct rfd *before_last;
+
+	nic->rx_to_use = nic->rx_to_clean = NULL;
+	nic->ru_running = RU_UNINITIALIZED;
+
+	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
+		return -ENOMEM;
+
+	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
+		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
+		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
+		if (e100_rx_alloc_skb(nic, rx)) {
+			e100_rx_clean_list(nic);
+			return -ENOMEM;
+		}
+	}
+	/* Set the el-bit on the buffer that is before the last buffer.
+	 * This lets us update the next pointer on the last buffer without
+	 * worrying about hardware touching it.
+	 * We set the size to 0 to prevent hardware from touching this buffer.
+	 * When the hardware hits the before last buffer with el-bit and size
+	 * of 0, it will RNR interrupt, the RU will go into the No Resources
+	 * state.  It will not complete nor write to this buffer. */
+	rx = nic->rxs->prev->prev;
+	before_last = (struct rfd *)rx->skb->data;
+	before_last->command |= cpu_to_le16(cb_el);
+	before_last->size = 0;
+	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
+		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
+
+	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
+	nic->ru_running = RU_SUSPENDED;
+
+	return 0;
+}
+
+static irqreturn_t e100_intr(int irq, void *dev_id)
+{
+	struct net_device *netdev = dev_id;
+	struct nic *nic = netdev_priv(netdev);
+	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
+
+	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
+		     "stat_ack = 0x%02X\n", stat_ack);
+
+	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
+	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
+		return IRQ_NONE;
+
+	/* Ack interrupt(s) */
+	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
+
+	/* We hit Receive No Resource (RNR); restart RU after cleaning */
+	if (stat_ack & stat_ack_rnr)
+		nic->ru_running = RU_SUSPENDED;
+
+	if (likely(napi_schedule_prep(&nic->napi))) {
+		e100_disable_irq(nic);
+		__napi_schedule(&nic->napi);
+	}
+
+	return IRQ_HANDLED;
+}
+
+static int e100_poll(struct napi_struct *napi, int budget)
+{
+	struct nic *nic = container_of(napi, struct nic, napi);
+	unsigned int work_done = 0;
+
+	e100_rx_clean(nic, &work_done, budget);
+	e100_tx_clean(nic);
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		napi_complete(napi);
+		e100_enable_irq(nic);
+	}
+
+	return work_done;
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+static void e100_netpoll(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	e100_disable_irq(nic);
+	e100_intr(nic->pdev->irq, netdev);
+	e100_tx_clean(nic);
+	e100_enable_irq(nic);
+}
+#endif
+
+static int e100_set_mac_address(struct net_device *netdev, void *p)
+{
+	struct nic *nic = netdev_priv(netdev);
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
+
+	return 0;
+}
+
+static int e100_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
+		return -EINVAL;
+	netdev->mtu = new_mtu;
+	return 0;
+}
+
+static int e100_asf(struct nic *nic)
+{
+	/* ASF can be enabled from eeprom */
+	return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
+	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
+	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
+	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
+}
+
+static int e100_up(struct nic *nic)
+{
+	int err;
+
+	if ((err = e100_rx_alloc_list(nic)))
+		return err;
+	if ((err = e100_alloc_cbs(nic)))
+		goto err_rx_clean_list;
+	if ((err = e100_hw_init(nic)))
+		goto err_clean_cbs;
+	e100_set_multicast_list(nic->netdev);
+	e100_start_receiver(nic, NULL);
+	mod_timer(&nic->watchdog, jiffies);
+	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
+		nic->netdev->name, nic->netdev)))
+		goto err_no_irq;
+	netif_wake_queue(nic->netdev);
+	napi_enable(&nic->napi);
+	/* enable ints _after_ enabling poll, preventing a race between
+	 * disable ints+schedule */
+	e100_enable_irq(nic);
+	return 0;
+
+err_no_irq:
+	del_timer_sync(&nic->watchdog);
+err_clean_cbs:
+	e100_clean_cbs(nic);
+err_rx_clean_list:
+	e100_rx_clean_list(nic);
+	return err;
+}
+
+static void e100_down(struct nic *nic)
+{
+	/* wait here for poll to complete */
+	napi_disable(&nic->napi);
+	netif_stop_queue(nic->netdev);
+	e100_hw_reset(nic);
+	free_irq(nic->pdev->irq, nic->netdev);
+	del_timer_sync(&nic->watchdog);
+	netif_carrier_off(nic->netdev);
+	e100_clean_cbs(nic);
+	e100_rx_clean_list(nic);
+}
+
+static void e100_tx_timeout(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	/* Reset outside of interrupt context, to avoid request_irq
+	 * in interrupt context */
+	schedule_work(&nic->tx_timeout_task);
+}
+
+static void e100_tx_timeout_task(struct work_struct *work)
+{
+	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
+	struct net_device *netdev = nic->netdev;
+
+	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
+		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
+
+	rtnl_lock();
+	if (netif_running(netdev)) {
+		e100_down(netdev_priv(netdev));
+		e100_up(netdev_priv(netdev));
+	}
+	rtnl_unlock();
+}
+
+static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
+{
+	int err;
+	struct sk_buff *skb;
+
+	/* Use driver resources to perform internal MAC or PHY
+	 * loopback test.  A single packet is prepared and transmitted
+	 * in loopback mode, and the test passes if the received
+	 * packet compares byte-for-byte to the transmitted packet. */
+
+	if ((err = e100_rx_alloc_list(nic)))
+		return err;
+	if ((err = e100_alloc_cbs(nic)))
+		goto err_clean_rx;
+
+	/* ICH PHY loopback is broken so do MAC loopback instead */
+	if (nic->flags & ich && loopback_mode == lb_phy)
+		loopback_mode = lb_mac;
+
+	nic->loopback = loopback_mode;
+	if ((err = e100_hw_init(nic)))
+		goto err_loopback_none;
+
+	if (loopback_mode == lb_phy)
+		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
+			BMCR_LOOPBACK);
+
+	e100_start_receiver(nic, NULL);
+
+	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
+		err = -ENOMEM;
+		goto err_loopback_none;
+	}
+	skb_put(skb, ETH_DATA_LEN);
+	memset(skb->data, 0xFF, ETH_DATA_LEN);
+	e100_xmit_frame(skb, nic->netdev);
+
+	msleep(10);
+
+	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
+			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
+
+	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
+	   skb->data, ETH_DATA_LEN))
+		err = -EAGAIN;
+
+err_loopback_none:
+	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
+	nic->loopback = lb_none;
+	e100_clean_cbs(nic);
+	e100_hw_reset(nic);
+err_clean_rx:
+	e100_rx_clean_list(nic);
+	return err;
+}
+
+#define MII_LED_CONTROL	0x1B
+#define E100_82552_LED_OVERRIDE 0x19
+#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
+#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
+static void e100_blink_led(unsigned long data)
+{
+	struct nic *nic = (struct nic *)data;
+	enum led_state {
+		led_on     = 0x01,
+		led_off    = 0x04,
+		led_on_559 = 0x05,
+		led_on_557 = 0x07,
+	};
+	u16 led_reg = MII_LED_CONTROL;
+
+	if (nic->phy == phy_82552_v) {
+		led_reg = E100_82552_LED_OVERRIDE;
+
+		nic->leds = (nic->leds == E100_82552_LED_ON) ?
+		            E100_82552_LED_OFF : E100_82552_LED_ON;
+	} else {
+		nic->leds = (nic->leds & led_on) ? led_off :
+		            (nic->mac < mac_82559_D101M) ? led_on_557 :
+		            led_on_559;
+	}
+	mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
+	mod_timer(&nic->blink_timer, jiffies + HZ / 4);
+}
+
+static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return mii_ethtool_gset(&nic->mii, cmd);
+}
+
+static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int err;
+
+	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
+	err = mii_ethtool_sset(&nic->mii, cmd);
+	e100_exec_cb(nic, NULL, e100_configure);
+
+	return err;
+}
+
+static void e100_get_drvinfo(struct net_device *netdev,
+	struct ethtool_drvinfo *info)
+{
+	struct nic *nic = netdev_priv(netdev);
+	strcpy(info->driver, DRV_NAME);
+	strcpy(info->version, DRV_VERSION);
+	strcpy(info->fw_version, "N/A");
+	strcpy(info->bus_info, pci_name(nic->pdev));
+}
+
+#define E100_PHY_REGS 0x1C
+static int e100_get_regs_len(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
+}
+
+static void e100_get_regs(struct net_device *netdev,
+	struct ethtool_regs *regs, void *p)
+{
+	struct nic *nic = netdev_priv(netdev);
+	u32 *buff = p;
+	int i;
+
+	regs->version = (1 << 24) | nic->pdev->revision;
+	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
+		ioread8(&nic->csr->scb.cmd_lo) << 16 |
+		ioread16(&nic->csr->scb.status);
+	for (i = E100_PHY_REGS; i >= 0; i--)
+		buff[1 + E100_PHY_REGS - i] =
+			mdio_read(netdev, nic->mii.phy_id, i);
+	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
+	e100_exec_cb(nic, NULL, e100_dump);
+	msleep(10);
+	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
+		sizeof(nic->mem->dump_buf));
+}
+
+static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct nic *nic = netdev_priv(netdev);
+	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
+	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
+}
+
+static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
+	    !device_can_wakeup(&nic->pdev->dev))
+		return -EOPNOTSUPP;
+
+	if (wol->wolopts)
+		nic->flags |= wol_magic;
+	else
+		nic->flags &= ~wol_magic;
+
+	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
+
+	e100_exec_cb(nic, NULL, e100_configure);
+
+	return 0;
+}
+
+static u32 e100_get_msglevel(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return nic->msg_enable;
+}
+
+static void e100_set_msglevel(struct net_device *netdev, u32 value)
+{
+	struct nic *nic = netdev_priv(netdev);
+	nic->msg_enable = value;
+}
+
+static int e100_nway_reset(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return mii_nway_restart(&nic->mii);
+}
+
+static u32 e100_get_link(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return mii_link_ok(&nic->mii);
+}
+
+static int e100_get_eeprom_len(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	return nic->eeprom_wc << 1;
+}
+
+#define E100_EEPROM_MAGIC	0x1234
+static int e100_get_eeprom(struct net_device *netdev,
+	struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	eeprom->magic = E100_EEPROM_MAGIC;
+	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
+
+	return 0;
+}
+
+static int e100_set_eeprom(struct net_device *netdev,
+	struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	if (eeprom->magic != E100_EEPROM_MAGIC)
+		return -EINVAL;
+
+	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
+
+	return e100_eeprom_save(nic, eeprom->offset >> 1,
+		(eeprom->len >> 1) + 1);
+}
+
+static void e100_get_ringparam(struct net_device *netdev,
+	struct ethtool_ringparam *ring)
+{
+	struct nic *nic = netdev_priv(netdev);
+	struct param_range *rfds = &nic->params.rfds;
+	struct param_range *cbs = &nic->params.cbs;
+
+	ring->rx_max_pending = rfds->max;
+	ring->tx_max_pending = cbs->max;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rfds->count;
+	ring->tx_pending = cbs->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e100_set_ringparam(struct net_device *netdev,
+	struct ethtool_ringparam *ring)
+{
+	struct nic *nic = netdev_priv(netdev);
+	struct param_range *rfds = &nic->params.rfds;
+	struct param_range *cbs = &nic->params.cbs;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	if (netif_running(netdev))
+		e100_down(nic);
+	rfds->count = max(ring->rx_pending, rfds->min);
+	rfds->count = min(rfds->count, rfds->max);
+	cbs->count = max(ring->tx_pending, cbs->min);
+	cbs->count = min(cbs->count, cbs->max);
+	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
+		   rfds->count, cbs->count);
+	if (netif_running(netdev))
+		e100_up(nic);
+
+	return 0;
+}
+
+static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Link test     (on/offline)",
+	"Eeprom test   (on/offline)",
+	"Self test        (offline)",
+	"Mac loopback     (offline)",
+	"Phy loopback     (offline)",
+};
+#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
+
+static void e100_diag_test(struct net_device *netdev,
+	struct ethtool_test *test, u64 *data)
+{
+	struct ethtool_cmd cmd;
+	struct nic *nic = netdev_priv(netdev);
+	int i, err;
+
+	memset(data, 0, E100_TEST_LEN * sizeof(u64));
+	data[0] = !mii_link_ok(&nic->mii);
+	data[1] = e100_eeprom_load(nic);
+	if (test->flags & ETH_TEST_FL_OFFLINE) {
+
+		/* save speed, duplex & autoneg settings */
+		err = mii_ethtool_gset(&nic->mii, &cmd);
+
+		if (netif_running(netdev))
+			e100_down(nic);
+		data[2] = e100_self_test(nic);
+		data[3] = e100_loopback_test(nic, lb_mac);
+		data[4] = e100_loopback_test(nic, lb_phy);
+
+		/* restore speed, duplex & autoneg settings */
+		err = mii_ethtool_sset(&nic->mii, &cmd);
+
+		if (netif_running(netdev))
+			e100_up(nic);
+	}
+	for (i = 0; i < E100_TEST_LEN; i++)
+		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
+
+	msleep_interruptible(4 * 1000);
+}
+
+static int e100_phys_id(struct net_device *netdev, u32 data)
+{
+	struct nic *nic = netdev_priv(netdev);
+	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
+	              MII_LED_CONTROL;
+
+	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
+		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
+	mod_timer(&nic->blink_timer, jiffies);
+	msleep_interruptible(data * 1000);
+	del_timer_sync(&nic->blink_timer);
+	mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
+
+	return 0;
+}
+
+static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
+	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
+	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
+	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
+	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
+	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
+	"tx_heartbeat_errors", "tx_window_errors",
+	/* device-specific stats */
+	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
+	"tx_flow_control_pause", "rx_flow_control_pause",
+	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
+};
+#define E100_NET_STATS_LEN	21
+#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
+
+static int e100_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E100_TEST_LEN;
+	case ETH_SS_STATS:
+		return E100_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e100_get_ethtool_stats(struct net_device *netdev,
+	struct ethtool_stats *stats, u64 *data)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int i;
+
+	for (i = 0; i < E100_NET_STATS_LEN; i++)
+		data[i] = ((unsigned long *)&netdev->stats)[i];
+
+	data[i++] = nic->tx_deferred;
+	data[i++] = nic->tx_single_collisions;
+	data[i++] = nic->tx_multiple_collisions;
+	data[i++] = nic->tx_fc_pause;
+	data[i++] = nic->rx_fc_pause;
+	data[i++] = nic->rx_fc_unsupported;
+	data[i++] = nic->tx_tco_frames;
+	data[i++] = nic->rx_tco_frames;
+}
+
+static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
+{
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
+		break;
+	}
+}
+
+static const struct ethtool_ops e100_ethtool_ops = {
+	.get_settings		= e100_get_settings,
+	.set_settings		= e100_set_settings,
+	.get_drvinfo		= e100_get_drvinfo,
+	.get_regs_len		= e100_get_regs_len,
+	.get_regs		= e100_get_regs,
+	.get_wol		= e100_get_wol,
+	.set_wol		= e100_set_wol,
+	.get_msglevel		= e100_get_msglevel,
+	.set_msglevel		= e100_set_msglevel,
+	.nway_reset		= e100_nway_reset,
+	.get_link		= e100_get_link,
+	.get_eeprom_len		= e100_get_eeprom_len,
+	.get_eeprom		= e100_get_eeprom,
+	.set_eeprom		= e100_set_eeprom,
+	.get_ringparam		= e100_get_ringparam,
+	.set_ringparam		= e100_set_ringparam,
+	.self_test		= e100_diag_test,
+	.get_strings		= e100_get_strings,
+	.phys_id		= e100_phys_id,
+	.get_ethtool_stats	= e100_get_ethtool_stats,
+	.get_sset_count		= e100_get_sset_count,
+};
+
+static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	struct nic *nic = netdev_priv(netdev);
+
+	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
+}
+
+static int e100_alloc(struct nic *nic)
+{
+	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
+		&nic->dma_addr);
+	return nic->mem ? 0 : -ENOMEM;
+}
+
+static void e100_free(struct nic *nic)
+{
+	if (nic->mem) {
+		pci_free_consistent(nic->pdev, sizeof(struct mem),
+			nic->mem, nic->dma_addr);
+		nic->mem = NULL;
+	}
+}
+
+static int e100_open(struct net_device *netdev)
+{
+	struct nic *nic = netdev_priv(netdev);
+	int err = 0;
+
+	netif_carrier_off(netdev);
+	if ((err = e100_up(nic)))
+		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
+	return err;
+}
+
+static int e100_close(struct net_device *netdev)
+{
+	e100_down(netdev_priv(netdev));
+	return 0;
+}
+
+static const struct net_device_ops e100_netdev_ops = {
+	.ndo_open		= e100_open,
+	.ndo_stop		= e100_close,
+	.ndo_start_xmit		= e100_xmit_frame,
+	.ndo_validate_addr	= eth_validate_addr,
+	.ndo_set_multicast_list	= e100_set_multicast_list,
+	.ndo_set_mac_address	= e100_set_mac_address,
+	.ndo_change_mtu		= e100_change_mtu,
+	.ndo_do_ioctl		= e100_do_ioctl,
+	.ndo_tx_timeout		= e100_tx_timeout,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e100_netpoll,
+#endif
+};
+
+static int __devinit e100_probe(struct pci_dev *pdev,
+	const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct nic *nic;
+	int err;
+
+	if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
+		if (((1 << debug) - 1) & NETIF_MSG_PROBE)
+			pr_err("Etherdev alloc failed, aborting\n");
+		return -ENOMEM;
+	}
+
+	netdev->netdev_ops = &e100_netdev_ops;
+	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
+	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	nic = netdev_priv(netdev);
+	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
+	nic->netdev = netdev;
+	nic->pdev = pdev;
+	nic->msg_enable = (1 << debug) - 1;
+	nic->mdio_ctrl = mdio_ctrl_hw;
+	pci_set_drvdata(pdev, netdev);
+
+	if ((err = pci_enable_device(pdev))) {
+		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
+		goto err_out_free_dev;
+	}
+
+	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
+		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
+		err = -ENODEV;
+		goto err_out_disable_pdev;
+	}
+
+	if ((err = pci_request_regions(pdev, DRV_NAME))) {
+		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
+		goto err_out_disable_pdev;
+	}
+
+	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
+		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
+		goto err_out_free_res;
+	}
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	if (use_io)
+		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
+
+	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
+	if (!nic->csr) {
+		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
+		err = -ENOMEM;
+		goto err_out_free_res;
+	}
+
+	if (ent->driver_data)
+		nic->flags |= ich;
+	else
+		nic->flags &= ~ich;
+
+	e100_get_defaults(nic);
+
+	/* locks must be initialized before calling hw_reset */
+	spin_lock_init(&nic->cb_lock);
+	spin_lock_init(&nic->cmd_lock);
+	spin_lock_init(&nic->mdio_lock);
+
+	/* Reset the device before pci_set_master() in case device is in some
+	 * funky state and has an interrupt pending - hint: we don't have the
+	 * interrupt handler registered yet. */
+	e100_hw_reset(nic);
+
+	pci_set_master(pdev);
+
+	init_timer(&nic->watchdog);
+	nic->watchdog.function = e100_watchdog;
+	nic->watchdog.data = (unsigned long)nic;
+	init_timer(&nic->blink_timer);
+	nic->blink_timer.function = e100_blink_led;
+	nic->blink_timer.data = (unsigned long)nic;
+
+	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
+
+	if ((err = e100_alloc(nic))) {
+		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
+		goto err_out_iounmap;
+	}
+
+	if ((err = e100_eeprom_load(nic)))
+		goto err_out_free;
+
+	e100_phy_init(nic);
+
+	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
+	memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
+	if (!is_valid_ether_addr(netdev->perm_addr)) {
+		if (!eeprom_bad_csum_allow) {
+			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
+			err = -EAGAIN;
+			goto err_out_free;
+		} else {
+			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
+		}
+	}
+
+	/* Wol magic packet can be enabled from eeprom */
+	if ((nic->mac >= mac_82558_D101_A4) &&
+	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
+		nic->flags |= wol_magic;
+		device_set_wakeup_enable(&pdev->dev, true);
+	}
+
+	/* ack any pending wake events, disable PME */
+	pci_pme_active(pdev, false);
+
+	strcpy(netdev->name, "eth%d");
+	if ((err = register_netdev(netdev))) {
+		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
+		goto err_out_free;
+	}
+	nic->cbs_pool = pci_pool_create(netdev->name,
+			   nic->pdev,
+			   nic->params.cbs.max * sizeof(struct cb),
+			   sizeof(u32),
+			   0);
+	netif_info(nic, probe, nic->netdev,
+		   "addr 0x%llx, irq %d, MAC addr %pM\n",
+		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
+		   pdev->irq, netdev->dev_addr);
+
+	return 0;
+
+err_out_free:
+	e100_free(nic);
+err_out_iounmap:
+	pci_iounmap(pdev, nic->csr);
+err_out_free_res:
+	pci_release_regions(pdev);
+err_out_disable_pdev:
+	pci_disable_device(pdev);
+err_out_free_dev:
+	pci_set_drvdata(pdev, NULL);
+	free_netdev(netdev);
+	return err;
+}
+
+static void __devexit e100_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+
+	if (netdev) {
+		struct nic *nic = netdev_priv(netdev);
+		unregister_netdev(netdev);
+		e100_free(nic);
+		pci_iounmap(pdev, nic->csr);
+		pci_pool_destroy(nic->cbs_pool);
+		free_netdev(netdev);
+		pci_release_regions(pdev);
+		pci_disable_device(pdev);
+		pci_set_drvdata(pdev, NULL);
+	}
+}
+
+#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
+#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
+#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
+static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	if (netif_running(netdev))
+		e100_down(nic);
+	netif_device_detach(netdev);
+
+	pci_save_state(pdev);
+
+	if ((nic->flags & wol_magic) | e100_asf(nic)) {
+		/* enable reverse auto-negotiation */
+		if (nic->phy == phy_82552_v) {
+			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
+			                           E100_82552_SMARTSPEED);
+
+			mdio_write(netdev, nic->mii.phy_id,
+			           E100_82552_SMARTSPEED, smartspeed |
+			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
+		}
+		*enable_wake = true;
+	} else {
+		*enable_wake = false;
+	}
+
+	pci_disable_device(pdev);
+}
+
+static int __e100_power_off(struct pci_dev *pdev, bool wake)
+{
+	if (wake)
+		return pci_prepare_to_sleep(pdev);
+
+	pci_wake_from_d3(pdev, false);
+	pci_set_power_state(pdev, PCI_D3hot);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	bool wake;
+	__e100_shutdown(pdev, &wake);
+	return __e100_power_off(pdev, wake);
+}
+
+static int e100_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	/* ack any pending wake events, disable PME */
+	pci_enable_wake(pdev, 0, 0);
+
+	/* disable reverse auto-negotiation */
+	if (nic->phy == phy_82552_v) {
+		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
+		                           E100_82552_SMARTSPEED);
+
+		mdio_write(netdev, nic->mii.phy_id,
+		           E100_82552_SMARTSPEED,
+		           smartspeed & ~(E100_82552_REV_ANEG));
+	}
+
+	netif_device_attach(netdev);
+	if (netif_running(netdev))
+		e100_up(nic);
+
+	return 0;
+}
+#endif /* CONFIG_PM */
+
+static void e100_shutdown(struct pci_dev *pdev)
+{
+	bool wake;
+	__e100_shutdown(pdev, &wake);
+	if (system_state == SYSTEM_POWER_OFF)
+		__e100_power_off(pdev, wake);
+}
+
+/* ------------------ PCI Error Recovery infrastructure  -------------- */
+/**
+ * e100_io_error_detected - called when PCI error is detected.
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ */
+static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e100_down(nic);
+	pci_disable_device(pdev);
+
+	/* Request a slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e100_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch.
+ */
+static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	if (pci_enable_device(pdev)) {
+		pr_err("Cannot re-enable PCI device after reset\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+	pci_set_master(pdev);
+
+	/* Only one device per card can do a reset */
+	if (0 != PCI_FUNC(pdev->devfn))
+		return PCI_ERS_RESULT_RECOVERED;
+	e100_hw_reset(nic);
+	e100_phy_init(nic);
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * e100_io_resume - resume normal operations
+ * @pdev: Pointer to PCI device
+ *
+ * Resume normal operations after an error recovery
+ * sequence has been completed.
+ */
+static void e100_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct nic *nic = netdev_priv(netdev);
+
+	/* ack any pending wake events, disable PME */
+	pci_enable_wake(pdev, 0, 0);
+
+	netif_device_attach(netdev);
+	if (netif_running(netdev)) {
+		e100_open(netdev);
+		mod_timer(&nic->watchdog, jiffies);
+	}
+}
+
+static struct pci_error_handlers e100_err_handler = {
+	.error_detected = e100_io_error_detected,
+	.slot_reset = e100_io_slot_reset,
+	.resume = e100_io_resume,
+};
+
+static struct pci_driver e100_driver = {
+	.name =         DRV_NAME,
+	.id_table =     e100_id_table,
+	.probe =        e100_probe,
+	.remove =       __devexit_p(e100_remove),
+#ifdef CONFIG_PM
+	/* Power Management hooks */
+	.suspend =      e100_suspend,
+	.resume =       e100_resume,
+#endif
+	.shutdown =     e100_shutdown,
+	.err_handler = &e100_err_handler,
+};
+
+static int __init e100_init_module(void)
+{
+	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
+		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
+		pr_info("%s\n", DRV_COPYRIGHT);
+	}
+	return pci_register_driver(&e100_driver);
+}
+
+static void __exit e100_cleanup_module(void)
+{
+	pci_unregister_driver(&e100_driver);
+}
+
+module_init(e100_init_module);
+module_exit(e100_cleanup_module);
--- a/devices/e100-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e100-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -2713,7 +2713,7 @@
 {
 	struct ethtool_cmd cmd;
 	struct nic *nic = netdev_priv(netdev);
-	int i, err;
+	int i, err __attribute__ ((unused));
 
 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
 	data[0] = !mii_link_ok(&nic->mii);
--- a/devices/e1000/Makefile.am	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000/Makefile.am	Tue Apr 10 19:10:56 2012 +0200
@@ -48,10 +48,14 @@
 	e1000-2.6.28-orig.h \
 	e1000-2.6.29-ethercat.h \
 	e1000-2.6.29-orig.h \
+	e1000-2.6.31-ethercat.h \
+	e1000-2.6.31-orig.h \
 	e1000-2.6.32-ethercat.h \
 	e1000-2.6.32-orig.h \
 	e1000-2.6.33-ethercat.h \
 	e1000-2.6.33-orig.h \
+	e1000-2.6.35-ethercat.h \
+	e1000-2.6.35-orig.h \
 	e1000-2.6.37-ethercat.h \
 	e1000-2.6.37-orig.h \
 	e1000_ethtool-2.6.13-ethercat.c \
@@ -72,10 +76,14 @@
 	e1000_ethtool-2.6.28-orig.c \
 	e1000_ethtool-2.6.29-ethercat.c \
 	e1000_ethtool-2.6.29-orig.c \
+	e1000_ethtool-2.6.31-ethercat.c \
+	e1000_ethtool-2.6.31-orig.c \
 	e1000_ethtool-2.6.32-ethercat.c \
 	e1000_ethtool-2.6.32-orig.c \
 	e1000_ethtool-2.6.33-ethercat.c \
 	e1000_ethtool-2.6.33-orig.c \
+	e1000_ethtool-2.6.35-ethercat.c \
+	e1000_ethtool-2.6.35-orig.c \
 	e1000_ethtool-2.6.37-ethercat.c \
 	e1000_ethtool-2.6.37-orig.c \
 	e1000_hw-2.6.13-ethercat.c \
@@ -114,6 +122,10 @@
 	e1000_hw-2.6.29-ethercat.h \
 	e1000_hw-2.6.29-orig.c \
 	e1000_hw-2.6.29-orig.h \
+	e1000_hw-2.6.31-ethercat.c \
+	e1000_hw-2.6.31-ethercat.h \
+	e1000_hw-2.6.31-orig.c \
+	e1000_hw-2.6.31-orig.h \
 	e1000_hw-2.6.32-ethercat.c \
 	e1000_hw-2.6.32-ethercat.h \
 	e1000_hw-2.6.32-orig.c \
@@ -122,6 +134,10 @@
 	e1000_hw-2.6.33-ethercat.h \
 	e1000_hw-2.6.33-orig.c \
 	e1000_hw-2.6.33-orig.h \
+	e1000_hw-2.6.35-ethercat.c \
+	e1000_hw-2.6.35-ethercat.h \
+	e1000_hw-2.6.35-orig.c \
+	e1000_hw-2.6.35-orig.h \
 	e1000_hw-2.6.37-ethercat.c \
 	e1000_hw-2.6.37-ethercat.h \
 	e1000_hw-2.6.37-orig.c \
@@ -144,10 +160,14 @@
 	e1000_main-2.6.28-orig.c \
 	e1000_main-2.6.29-ethercat.c \
 	e1000_main-2.6.29-orig.c \
+	e1000_main-2.6.31-ethercat.c \
+	e1000_main-2.6.31-orig.c \
 	e1000_main-2.6.32-ethercat.c \
 	e1000_main-2.6.32-orig.c \
 	e1000_main-2.6.33-ethercat.c \
 	e1000_main-2.6.33-orig.c \
+	e1000_main-2.6.35-ethercat.c \
+	e1000_main-2.6.35-orig.c \
 	e1000_main-2.6.37-ethercat.c \
 	e1000_main-2.6.37-orig.c \
 	e1000_osdep-2.6.13-ethercat.h \
@@ -168,10 +188,14 @@
 	e1000_osdep-2.6.28-orig.h \
 	e1000_osdep-2.6.29-ethercat.h \
 	e1000_osdep-2.6.29-orig.h \
+	e1000_osdep-2.6.31-ethercat.h \
+	e1000_osdep-2.6.31-orig.h \
 	e1000_osdep-2.6.32-ethercat.h \
 	e1000_osdep-2.6.32-orig.h \
 	e1000_osdep-2.6.33-ethercat.h \
 	e1000_osdep-2.6.33-orig.h \
+	e1000_osdep-2.6.35-ethercat.h \
+	e1000_osdep-2.6.35-orig.h \
 	e1000_osdep-2.6.37-ethercat.h \
 	e1000_osdep-2.6.37-orig.h \
 	e1000_param-2.6.13-ethercat.c \
@@ -192,10 +216,14 @@
 	e1000_param-2.6.28-orig.c \
 	e1000_param-2.6.29-ethercat.c \
 	e1000_param-2.6.29-orig.c \
+	e1000_param-2.6.31-ethercat.c \
+	e1000_param-2.6.31-orig.c \
 	e1000_param-2.6.32-ethercat.c \
 	e1000_param-2.6.32-orig.c \
 	e1000_param-2.6.33-ethercat.c \
 	e1000_param-2.6.33-orig.c \
+	e1000_param-2.6.35-ethercat.c \
+	e1000_param-2.6.35-orig.c \
 	e1000_param-2.6.37-ethercat.c \
 	e1000_param-2.6.37-orig.c
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000-2.6.35-ethercat.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,364 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* Linux PRO/1000 Ethernet Driver main header file */
+
+#ifndef _E1000_H_
+#define _E1000_H_
+
+#include <linux/stddef.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <asm/byteorder.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <linux/timer.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/pagemap.h>
+#include <linux/dma-mapping.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <linux/capability.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <net/pkt_sched.h>
+#include <linux/list.h>
+#include <linux/reboot.h>
+#include <net/checksum.h>
+#include <linux/mii.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+
+#include "../ecdev.h"
+
+#define BAR_0		0
+#define BAR_1		1
+#define BAR_5		5
+
+#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\
+	PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+
+struct e1000_adapter;
+
+#include "e1000_hw-2.6.35-ethercat.h"
+
+#define E1000_MAX_INTR 10
+
+/* TX/RX descriptor defines */
+#define E1000_DEFAULT_TXD                  256
+#define E1000_MAX_TXD                      256
+#define E1000_MIN_TXD                       80
+#define E1000_MAX_82544_TXD               4096
+
+#define E1000_DEFAULT_RXD                  256
+#define E1000_MAX_RXD                      256
+#define E1000_MIN_RXD                       80
+#define E1000_MAX_82544_RXD               4096
+
+#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
+#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
+
+/* this is the size past which hardware will drop packets when setting LPE=0 */
+#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
+
+/* Supported Rx Buffer Sizes */
+#define E1000_RXBUFFER_128   128    /* Used for packet split */
+#define E1000_RXBUFFER_256   256    /* Used for packet split */
+#define E1000_RXBUFFER_512   512
+#define E1000_RXBUFFER_1024  1024
+#define E1000_RXBUFFER_2048  2048
+#define E1000_RXBUFFER_4096  4096
+#define E1000_RXBUFFER_8192  8192
+#define E1000_RXBUFFER_16384 16384
+
+/* SmartSpeed delimiters */
+#define E1000_SMARTSPEED_DOWNSHIFT 3
+#define E1000_SMARTSPEED_MAX       15
+
+/* Packet Buffer allocations */
+#define E1000_PBA_BYTES_SHIFT 0xA
+#define E1000_TX_HEAD_ADDR_SHIFT 7
+#define E1000_PBA_TX_MASK 0xFFFF0000
+
+/* Flow Control Watermarks */
+#define E1000_FC_HIGH_DIFF 0x1638  /* High: 5688 bytes below Rx FIFO size */
+#define E1000_FC_LOW_DIFF 0x1640   /* Low:  5696 bytes below Rx FIFO size */
+
+#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */
+
+/* How many Tx Descriptors do we need to call netif_wake_queue ? */
+#define E1000_TX_QUEUE_WAKE	16
+/* How many Rx Buffers do we bundle into one write to the hardware ? */
+#define E1000_RX_BUFFER_WRITE	16	/* Must be power of 2 */
+
+#define AUTO_ALL_MODES            0
+#define E1000_EEPROM_82544_APM    0x0004
+#define E1000_EEPROM_APME         0x0400
+
+#ifndef E1000_MASTER_SLAVE
+/* Switch to override PHY master/slave setting */
+#define E1000_MASTER_SLAVE	e1000_ms_hw_default
+#endif
+
+#define E1000_MNG_VLAN_NONE (-1)
+
+/* wrapper around a pointer to a socket buffer,
+ * so a DMA handle can be stored along with the buffer */
+struct e1000_buffer {
+	struct sk_buff *skb;
+	dma_addr_t dma;
+	struct page *page;
+	unsigned long time_stamp;
+	u16 length;
+	u16 next_to_watch;
+	u16 mapped_as_page;
+};
+
+struct e1000_tx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+
+	u16 tdh;
+	u16 tdt;
+	bool last_tx_tso;
+};
+
+struct e1000_rx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *rx_skb_top;
+
+	/* cpu for rx queue */
+	int cpu;
+
+	u16 rdh;
+	u16 rdt;
+};
+
+#define E1000_DESC_UNUSED(R)						\
+	((((R)->next_to_clean > (R)->next_to_use)			\
+	  ? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1)
+
+#define E1000_RX_DESC_EXT(R, i)						\
+	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
+#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
+#define E1000_RX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_rx_desc)
+#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
+#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
+
+/* board specific private data structure */
+
+struct e1000_adapter {
+	struct timer_list tx_fifo_stall_timer;
+	struct timer_list watchdog_timer;
+	struct timer_list phy_info_timer;
+	struct vlan_group *vlgrp;
+	u16 mng_vlan_id;
+	u32 bd_number;
+	u32 rx_buffer_len;
+	u32 wol;
+	u32 smartspeed;
+	u32 en_mng_pt;
+	u16 link_speed;
+	u16 link_duplex;
+	spinlock_t stats_lock;
+	unsigned int total_tx_bytes;
+	unsigned int total_tx_packets;
+	unsigned int total_rx_bytes;
+	unsigned int total_rx_packets;
+	/* Interrupt Throttle Rate */
+	u32 itr;
+	u32 itr_setting;
+	u16 tx_itr;
+	u16 rx_itr;
+
+	struct work_struct reset_task;
+	u8 fc_autoneg;
+
+	struct timer_list blink_timer;
+	unsigned long led_status;
+
+	/* TX */
+	struct e1000_tx_ring *tx_ring;      /* One per active queue */
+	unsigned int restart_queue;
+	u32 txd_cmd;
+	u32 tx_int_delay;
+	u32 tx_abs_int_delay;
+	u32 gotcl;
+	u64 gotcl_old;
+	u64 tpt_old;
+	u64 colc_old;
+	u32 tx_timeout_count;
+	u32 tx_fifo_head;
+	u32 tx_head_addr;
+	u32 tx_fifo_size;
+	u8  tx_timeout_factor;
+	atomic_t tx_fifo_stall;
+	bool pcix_82544;
+	bool detect_tx_hung;
+
+	/* RX */
+	bool (*clean_rx)(struct e1000_adapter *adapter,
+			 struct e1000_rx_ring *rx_ring,
+			 int *work_done, int work_to_do);
+	void (*alloc_rx_buf)(struct e1000_adapter *adapter,
+			     struct e1000_rx_ring *rx_ring,
+			     int cleaned_count);
+	struct e1000_rx_ring *rx_ring;      /* One per active queue */
+	struct napi_struct napi;
+
+	int num_tx_queues;
+	int num_rx_queues;
+
+	u64 hw_csum_err;
+	u64 hw_csum_good;
+	u32 alloc_rx_buff_failed;
+	u32 rx_int_delay;
+	u32 rx_abs_int_delay;
+	bool rx_csum;
+	u32 gorcl;
+	u64 gorcl_old;
+
+	/* OS defined structs */
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+
+	/* structs defined in e1000_hw.h */
+	struct e1000_hw hw;
+	struct e1000_hw_stats stats;
+	struct e1000_phy_info phy_info;
+	struct e1000_phy_stats phy_stats;
+
+	u32 test_icr;
+	struct e1000_tx_ring test_tx_ring;
+	struct e1000_rx_ring test_rx_ring;
+
+	int msg_enable;
+
+	/* to not mess up cache alignment, always add to the bottom */
+	bool tso_force;
+	bool smart_power_down;	/* phy smart power down */
+	bool quad_port_a;
+	unsigned long flags;
+	u32 eeprom_wol;
+
+	/* for ioport free */
+	int bars;
+	int need_ioport;
+
+	bool discarding;
+
+	ec_device_t *ecdev;
+	unsigned long ec_watchdog_jiffies;
+};
+
+enum e1000_state_t {
+	__E1000_TESTING,
+	__E1000_RESETTING,
+	__E1000_DOWN
+};
+
+#undef pr_fmt
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+extern struct net_device *e1000_get_hw_dev(struct e1000_hw *hw);
+#define e_dbg(format, arg...) \
+	netdev_dbg(e1000_get_hw_dev(hw), format, ## arg)
+#define e_err(format, arg...) \
+	netdev_err(adapter->netdev, format, ## arg)
+#define e_info(format, arg...) \
+	netdev_info(adapter->netdev, format, ## arg)
+#define e_warn(format, arg...) \
+	netdev_warn(adapter->netdev, format, ## arg)
+#define e_notice(format, arg...) \
+	netdev_notice(adapter->netdev, format, ## arg)
+#define e_dev_info(format, arg...) \
+	dev_info(&adapter->pdev->dev, format, ## arg)
+#define e_dev_warn(format, arg...) \
+	dev_warn(&adapter->pdev->dev, format, ## arg)
+
+extern char e1000_driver_name[];
+extern const char e1000_driver_version[];
+
+extern int e1000_up(struct e1000_adapter *adapter);
+extern void e1000_down(struct e1000_adapter *adapter);
+extern void e1000_reinit_locked(struct e1000_adapter *adapter);
+extern void e1000_reset(struct e1000_adapter *adapter);
+extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_update_stats(struct e1000_adapter *adapter);
+extern bool e1000_has_link(struct e1000_adapter *adapter);
+extern void e1000_power_up_phy(struct e1000_adapter *);
+extern void e1000_set_ethtool_ops(struct net_device *netdev);
+extern void e1000_check_options(struct e1000_adapter *adapter);
+extern char *e1000_get_hw_dev_name(struct e1000_hw *hw);
+
+#endif /* _E1000_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000-2.6.35-orig.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,359 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* Linux PRO/1000 Ethernet Driver main header file */
+
+#ifndef _E1000_H_
+#define _E1000_H_
+
+#include <linux/stddef.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <asm/byteorder.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <linux/timer.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/pagemap.h>
+#include <linux/dma-mapping.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <linux/capability.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <net/pkt_sched.h>
+#include <linux/list.h>
+#include <linux/reboot.h>
+#include <net/checksum.h>
+#include <linux/mii.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+
+#define BAR_0		0
+#define BAR_1		1
+#define BAR_5		5
+
+#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\
+	PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+
+struct e1000_adapter;
+
+#include "e1000_hw.h"
+
+#define E1000_MAX_INTR 10
+
+/* TX/RX descriptor defines */
+#define E1000_DEFAULT_TXD                  256
+#define E1000_MAX_TXD                      256
+#define E1000_MIN_TXD                       80
+#define E1000_MAX_82544_TXD               4096
+
+#define E1000_DEFAULT_RXD                  256
+#define E1000_MAX_RXD                      256
+#define E1000_MIN_RXD                       80
+#define E1000_MAX_82544_RXD               4096
+
+#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
+#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
+
+/* this is the size past which hardware will drop packets when setting LPE=0 */
+#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
+
+/* Supported Rx Buffer Sizes */
+#define E1000_RXBUFFER_128   128    /* Used for packet split */
+#define E1000_RXBUFFER_256   256    /* Used for packet split */
+#define E1000_RXBUFFER_512   512
+#define E1000_RXBUFFER_1024  1024
+#define E1000_RXBUFFER_2048  2048
+#define E1000_RXBUFFER_4096  4096
+#define E1000_RXBUFFER_8192  8192
+#define E1000_RXBUFFER_16384 16384
+
+/* SmartSpeed delimiters */
+#define E1000_SMARTSPEED_DOWNSHIFT 3
+#define E1000_SMARTSPEED_MAX       15
+
+/* Packet Buffer allocations */
+#define E1000_PBA_BYTES_SHIFT 0xA
+#define E1000_TX_HEAD_ADDR_SHIFT 7
+#define E1000_PBA_TX_MASK 0xFFFF0000
+
+/* Flow Control Watermarks */
+#define E1000_FC_HIGH_DIFF 0x1638  /* High: 5688 bytes below Rx FIFO size */
+#define E1000_FC_LOW_DIFF 0x1640   /* Low:  5696 bytes below Rx FIFO size */
+
+#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */
+
+/* How many Tx Descriptors do we need to call netif_wake_queue ? */
+#define E1000_TX_QUEUE_WAKE	16
+/* How many Rx Buffers do we bundle into one write to the hardware ? */
+#define E1000_RX_BUFFER_WRITE	16	/* Must be power of 2 */
+
+#define AUTO_ALL_MODES            0
+#define E1000_EEPROM_82544_APM    0x0004
+#define E1000_EEPROM_APME         0x0400
+
+#ifndef E1000_MASTER_SLAVE
+/* Switch to override PHY master/slave setting */
+#define E1000_MASTER_SLAVE	e1000_ms_hw_default
+#endif
+
+#define E1000_MNG_VLAN_NONE (-1)
+
+/* wrapper around a pointer to a socket buffer,
+ * so a DMA handle can be stored along with the buffer */
+struct e1000_buffer {
+	struct sk_buff *skb;
+	dma_addr_t dma;
+	struct page *page;
+	unsigned long time_stamp;
+	u16 length;
+	u16 next_to_watch;
+	u16 mapped_as_page;
+};
+
+struct e1000_tx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+
+	u16 tdh;
+	u16 tdt;
+	bool last_tx_tso;
+};
+
+struct e1000_rx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *rx_skb_top;
+
+	/* cpu for rx queue */
+	int cpu;
+
+	u16 rdh;
+	u16 rdt;
+};
+
+#define E1000_DESC_UNUSED(R)						\
+	((((R)->next_to_clean > (R)->next_to_use)			\
+	  ? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1)
+
+#define E1000_RX_DESC_EXT(R, i)						\
+	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
+#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
+#define E1000_RX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_rx_desc)
+#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
+#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
+
+/* board specific private data structure */
+
+struct e1000_adapter {
+	struct timer_list tx_fifo_stall_timer;
+	struct timer_list watchdog_timer;
+	struct timer_list phy_info_timer;
+	struct vlan_group *vlgrp;
+	u16 mng_vlan_id;
+	u32 bd_number;
+	u32 rx_buffer_len;
+	u32 wol;
+	u32 smartspeed;
+	u32 en_mng_pt;
+	u16 link_speed;
+	u16 link_duplex;
+	spinlock_t stats_lock;
+	unsigned int total_tx_bytes;
+	unsigned int total_tx_packets;
+	unsigned int total_rx_bytes;
+	unsigned int total_rx_packets;
+	/* Interrupt Throttle Rate */
+	u32 itr;
+	u32 itr_setting;
+	u16 tx_itr;
+	u16 rx_itr;
+
+	struct work_struct reset_task;
+	u8 fc_autoneg;
+
+	struct timer_list blink_timer;
+	unsigned long led_status;
+
+	/* TX */
+	struct e1000_tx_ring *tx_ring;      /* One per active queue */
+	unsigned int restart_queue;
+	u32 txd_cmd;
+	u32 tx_int_delay;
+	u32 tx_abs_int_delay;
+	u32 gotcl;
+	u64 gotcl_old;
+	u64 tpt_old;
+	u64 colc_old;
+	u32 tx_timeout_count;
+	u32 tx_fifo_head;
+	u32 tx_head_addr;
+	u32 tx_fifo_size;
+	u8  tx_timeout_factor;
+	atomic_t tx_fifo_stall;
+	bool pcix_82544;
+	bool detect_tx_hung;
+
+	/* RX */
+	bool (*clean_rx)(struct e1000_adapter *adapter,
+			 struct e1000_rx_ring *rx_ring,
+			 int *work_done, int work_to_do);
+	void (*alloc_rx_buf)(struct e1000_adapter *adapter,
+			     struct e1000_rx_ring *rx_ring,
+			     int cleaned_count);
+	struct e1000_rx_ring *rx_ring;      /* One per active queue */
+	struct napi_struct napi;
+
+	int num_tx_queues;
+	int num_rx_queues;
+
+	u64 hw_csum_err;
+	u64 hw_csum_good;
+	u32 alloc_rx_buff_failed;
+	u32 rx_int_delay;
+	u32 rx_abs_int_delay;
+	bool rx_csum;
+	u32 gorcl;
+	u64 gorcl_old;
+
+	/* OS defined structs */
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+
+	/* structs defined in e1000_hw.h */
+	struct e1000_hw hw;
+	struct e1000_hw_stats stats;
+	struct e1000_phy_info phy_info;
+	struct e1000_phy_stats phy_stats;
+
+	u32 test_icr;
+	struct e1000_tx_ring test_tx_ring;
+	struct e1000_rx_ring test_rx_ring;
+
+	int msg_enable;
+
+	/* to not mess up cache alignment, always add to the bottom */
+	bool tso_force;
+	bool smart_power_down;	/* phy smart power down */
+	bool quad_port_a;
+	unsigned long flags;
+	u32 eeprom_wol;
+
+	/* for ioport free */
+	int bars;
+	int need_ioport;
+
+	bool discarding;
+};
+
+enum e1000_state_t {
+	__E1000_TESTING,
+	__E1000_RESETTING,
+	__E1000_DOWN
+};
+
+#undef pr_fmt
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+extern struct net_device *e1000_get_hw_dev(struct e1000_hw *hw);
+#define e_dbg(format, arg...) \
+	netdev_dbg(e1000_get_hw_dev(hw), format, ## arg)
+#define e_err(format, arg...) \
+	netdev_err(adapter->netdev, format, ## arg)
+#define e_info(format, arg...) \
+	netdev_info(adapter->netdev, format, ## arg)
+#define e_warn(format, arg...) \
+	netdev_warn(adapter->netdev, format, ## arg)
+#define e_notice(format, arg...) \
+	netdev_notice(adapter->netdev, format, ## arg)
+#define e_dev_info(format, arg...) \
+	dev_info(&adapter->pdev->dev, format, ## arg)
+#define e_dev_warn(format, arg...) \
+	dev_warn(&adapter->pdev->dev, format, ## arg)
+
+extern char e1000_driver_name[];
+extern const char e1000_driver_version[];
+
+extern int e1000_up(struct e1000_adapter *adapter);
+extern void e1000_down(struct e1000_adapter *adapter);
+extern void e1000_reinit_locked(struct e1000_adapter *adapter);
+extern void e1000_reset(struct e1000_adapter *adapter);
+extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_update_stats(struct e1000_adapter *adapter);
+extern bool e1000_has_link(struct e1000_adapter *adapter);
+extern void e1000_power_up_phy(struct e1000_adapter *);
+extern void e1000_set_ethtool_ops(struct net_device *netdev);
+extern void e1000_check_options(struct e1000_adapter *adapter);
+extern char *e1000_get_hw_dev_name(struct e1000_hw *hw);
+
+#endif /* _E1000_H_ */
--- a/devices/e1000/e1000_ethtool-2.6.29-org.c	Tue Apr 10 19:09:51 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1987 +0,0 @@
-/*******************************************************************************
-
-  Intel PRO/1000 Linux driver
-  Copyright(c) 1999 - 2006 Intel Corporation.
-
-  This program is free software; you can redistribute it and/or modify it
-  under the terms and conditions of the GNU General Public License,
-  version 2, as published by the Free Software Foundation.
-
-  This program is distributed in the hope it will be useful, but WITHOUT
-  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
-  more details.
-
-  You should have received a copy of the GNU General Public License along with
-  this program; if not, write to the Free Software Foundation, Inc.,
-  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
-  The full GNU General Public License is included in this distribution in
-  the file called "COPYING".
-
-  Contact Information:
-  Linux NICS <linux.nics@intel.com>
-  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
-  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* ethtool support for e1000 */
-
-#include "e1000.h"
-#include <asm/uaccess.h>
-
-struct e1000_stats {
-	char stat_string[ETH_GSTRING_LEN];
-	int sizeof_stat;
-	int stat_offset;
-};
-
-#define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
-		      offsetof(struct e1000_adapter, m)
-static const struct e1000_stats e1000_gstrings_stats[] = {
-	{ "rx_packets", E1000_STAT(stats.gprc) },
-	{ "tx_packets", E1000_STAT(stats.gptc) },
-	{ "rx_bytes", E1000_STAT(stats.gorcl) },
-	{ "tx_bytes", E1000_STAT(stats.gotcl) },
-	{ "rx_broadcast", E1000_STAT(stats.bprc) },
-	{ "tx_broadcast", E1000_STAT(stats.bptc) },
-	{ "rx_multicast", E1000_STAT(stats.mprc) },
-	{ "tx_multicast", E1000_STAT(stats.mptc) },
-	{ "rx_errors", E1000_STAT(stats.rxerrc) },
-	{ "tx_errors", E1000_STAT(stats.txerrc) },
-	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
-	{ "multicast", E1000_STAT(stats.mprc) },
-	{ "collisions", E1000_STAT(stats.colc) },
-	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
-	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
-	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
-	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
-	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
-	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
-	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
-	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
-	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
-	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
-	{ "tx_window_errors", E1000_STAT(stats.latecol) },
-	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
-	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
-	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
-	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
-	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
-	{ "tx_restart_queue", E1000_STAT(restart_queue) },
-	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
-	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
-	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
-	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
-	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
-	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
-	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
-	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
-	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
-	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
-	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
-	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
-	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
-	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
-	{ "tx_smbus", E1000_STAT(stats.mgptc) },
-	{ "rx_smbus", E1000_STAT(stats.mgprc) },
-	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
-};
-
-#define E1000_QUEUE_STATS_LEN 0
-#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
-#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
-static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
-	"Register test  (offline)", "Eeprom test    (offline)",
-	"Interrupt test (offline)", "Loopback test  (offline)",
-	"Link test   (on/offline)"
-};
-#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
-
-static int e1000_get_settings(struct net_device *netdev,
-			      struct ethtool_cmd *ecmd)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (hw->media_type == e1000_media_type_copper) {
-
-		ecmd->supported = (SUPPORTED_10baseT_Half |
-		                   SUPPORTED_10baseT_Full |
-		                   SUPPORTED_100baseT_Half |
-		                   SUPPORTED_100baseT_Full |
-		                   SUPPORTED_1000baseT_Full|
-		                   SUPPORTED_Autoneg |
-		                   SUPPORTED_TP);
-		if (hw->phy_type == e1000_phy_ife)
-			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
-		ecmd->advertising = ADVERTISED_TP;
-
-		if (hw->autoneg == 1) {
-			ecmd->advertising |= ADVERTISED_Autoneg;
-			/* the e1000 autoneg seems to match ethtool nicely */
-			ecmd->advertising |= hw->autoneg_advertised;
-		}
-
-		ecmd->port = PORT_TP;
-		ecmd->phy_address = hw->phy_addr;
-
-		if (hw->mac_type == e1000_82543)
-			ecmd->transceiver = XCVR_EXTERNAL;
-		else
-			ecmd->transceiver = XCVR_INTERNAL;
-
-	} else {
-		ecmd->supported   = (SUPPORTED_1000baseT_Full |
-				     SUPPORTED_FIBRE |
-				     SUPPORTED_Autoneg);
-
-		ecmd->advertising = (ADVERTISED_1000baseT_Full |
-				     ADVERTISED_FIBRE |
-				     ADVERTISED_Autoneg);
-
-		ecmd->port = PORT_FIBRE;
-
-		if (hw->mac_type >= e1000_82545)
-			ecmd->transceiver = XCVR_INTERNAL;
-		else
-			ecmd->transceiver = XCVR_EXTERNAL;
-	}
-
-	if (er32(STATUS) & E1000_STATUS_LU) {
-
-		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
-		                                   &adapter->link_duplex);
-		ecmd->speed = adapter->link_speed;
-
-		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
-		 *          and HALF_DUPLEX != DUPLEX_HALF */
-
-		if (adapter->link_duplex == FULL_DUPLEX)
-			ecmd->duplex = DUPLEX_FULL;
-		else
-			ecmd->duplex = DUPLEX_HALF;
-	} else {
-		ecmd->speed = -1;
-		ecmd->duplex = -1;
-	}
-
-	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
-			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
-	return 0;
-}
-
-static int e1000_set_settings(struct net_device *netdev,
-			      struct ethtool_cmd *ecmd)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* When SoL/IDER sessions are active, autoneg/speed/duplex
-	 * cannot be changed */
-	if (e1000_check_phy_reset_block(hw)) {
-		DPRINTK(DRV, ERR, "Cannot change link characteristics "
-		        "when SoL/IDER is active.\n");
-		return -EINVAL;
-	}
-
-	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
-		msleep(1);
-
-	if (ecmd->autoneg == AUTONEG_ENABLE) {
-		hw->autoneg = 1;
-		if (hw->media_type == e1000_media_type_fiber)
-			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
-				     ADVERTISED_FIBRE |
-				     ADVERTISED_Autoneg;
-		else
-			hw->autoneg_advertised = ecmd->advertising |
-			                         ADVERTISED_TP |
-			                         ADVERTISED_Autoneg;
-		ecmd->advertising = hw->autoneg_advertised;
-	} else
-		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
-			clear_bit(__E1000_RESETTING, &adapter->flags);
-			return -EINVAL;
-		}
-
-	/* reset the link */
-
-	if (netif_running(adapter->netdev)) {
-		e1000_down(adapter);
-		e1000_up(adapter);
-	} else
-		e1000_reset(adapter);
-
-	clear_bit(__E1000_RESETTING, &adapter->flags);
-	return 0;
-}
-
-static void e1000_get_pauseparam(struct net_device *netdev,
-				 struct ethtool_pauseparam *pause)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	pause->autoneg =
-		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
-
-	if (hw->fc == E1000_FC_RX_PAUSE)
-		pause->rx_pause = 1;
-	else if (hw->fc == E1000_FC_TX_PAUSE)
-		pause->tx_pause = 1;
-	else if (hw->fc == E1000_FC_FULL) {
-		pause->rx_pause = 1;
-		pause->tx_pause = 1;
-	}
-}
-
-static int e1000_set_pauseparam(struct net_device *netdev,
-				struct ethtool_pauseparam *pause)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	int retval = 0;
-
-	adapter->fc_autoneg = pause->autoneg;
-
-	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
-		msleep(1);
-
-	if (pause->rx_pause && pause->tx_pause)
-		hw->fc = E1000_FC_FULL;
-	else if (pause->rx_pause && !pause->tx_pause)
-		hw->fc = E1000_FC_RX_PAUSE;
-	else if (!pause->rx_pause && pause->tx_pause)
-		hw->fc = E1000_FC_TX_PAUSE;
-	else if (!pause->rx_pause && !pause->tx_pause)
-		hw->fc = E1000_FC_NONE;
-
-	hw->original_fc = hw->fc;
-
-	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
-		if (netif_running(adapter->netdev)) {
-			e1000_down(adapter);
-			e1000_up(adapter);
-		} else
-			e1000_reset(adapter);
-	} else
-		retval = ((hw->media_type == e1000_media_type_fiber) ?
-			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
-
-	clear_bit(__E1000_RESETTING, &adapter->flags);
-	return retval;
-}
-
-static u32 e1000_get_rx_csum(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	return adapter->rx_csum;
-}
-
-static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	adapter->rx_csum = data;
-
-	if (netif_running(netdev))
-		e1000_reinit_locked(adapter);
-	else
-		e1000_reset(adapter);
-	return 0;
-}
-
-static u32 e1000_get_tx_csum(struct net_device *netdev)
-{
-	return (netdev->features & NETIF_F_HW_CSUM) != 0;
-}
-
-static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (hw->mac_type < e1000_82543) {
-		if (!data)
-			return -EINVAL;
-		return 0;
-	}
-
-	if (data)
-		netdev->features |= NETIF_F_HW_CSUM;
-	else
-		netdev->features &= ~NETIF_F_HW_CSUM;
-
-	return 0;
-}
-
-static int e1000_set_tso(struct net_device *netdev, u32 data)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	if ((hw->mac_type < e1000_82544) ||
-	    (hw->mac_type == e1000_82547))
-		return data ? -EINVAL : 0;
-
-	if (data)
-		netdev->features |= NETIF_F_TSO;
-	else
-		netdev->features &= ~NETIF_F_TSO;
-
-	if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
-		netdev->features |= NETIF_F_TSO6;
-	else
-		netdev->features &= ~NETIF_F_TSO6;
-
-	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
-	adapter->tso_force = true;
-	return 0;
-}
-
-static u32 e1000_get_msglevel(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	return adapter->msg_enable;
-}
-
-static void e1000_set_msglevel(struct net_device *netdev, u32 data)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	adapter->msg_enable = data;
-}
-
-static int e1000_get_regs_len(struct net_device *netdev)
-{
-#define E1000_REGS_LEN 32
-	return E1000_REGS_LEN * sizeof(u32);
-}
-
-static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
-			   void *p)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 *regs_buff = p;
-	u16 phy_data;
-
-	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
-
-	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
-
-	regs_buff[0]  = er32(CTRL);
-	regs_buff[1]  = er32(STATUS);
-
-	regs_buff[2]  = er32(RCTL);
-	regs_buff[3]  = er32(RDLEN);
-	regs_buff[4]  = er32(RDH);
-	regs_buff[5]  = er32(RDT);
-	regs_buff[6]  = er32(RDTR);
-
-	regs_buff[7]  = er32(TCTL);
-	regs_buff[8]  = er32(TDLEN);
-	regs_buff[9]  = er32(TDH);
-	regs_buff[10] = er32(TDT);
-	regs_buff[11] = er32(TIDV);
-
-	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
-	if (hw->phy_type == e1000_phy_igp) {
-		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
-				    IGP01E1000_PHY_AGC_A);
-		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
-				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
-		regs_buff[13] = (u32)phy_data; /* cable length */
-		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
-				    IGP01E1000_PHY_AGC_B);
-		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
-				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
-		regs_buff[14] = (u32)phy_data; /* cable length */
-		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
-				    IGP01E1000_PHY_AGC_C);
-		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
-				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
-		regs_buff[15] = (u32)phy_data; /* cable length */
-		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
-				    IGP01E1000_PHY_AGC_D);
-		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
-				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
-		regs_buff[16] = (u32)phy_data; /* cable length */
-		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
-		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
-		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
-				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
-		regs_buff[18] = (u32)phy_data; /* cable polarity */
-		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
-				    IGP01E1000_PHY_PCS_INIT_REG);
-		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
-				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
-		regs_buff[19] = (u32)phy_data; /* cable polarity */
-		regs_buff[20] = 0; /* polarity correction enabled (always) */
-		regs_buff[22] = 0; /* phy receive errors (unavailable) */
-		regs_buff[23] = regs_buff[18]; /* mdix mode */
-		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
-	} else {
-		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-		regs_buff[13] = (u32)phy_data; /* cable length */
-		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
-		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
-		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
-		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
-		regs_buff[18] = regs_buff[13]; /* cable polarity */
-		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
-		regs_buff[20] = regs_buff[17]; /* polarity correction */
-		/* phy receive errors */
-		regs_buff[22] = adapter->phy_stats.receive_errors;
-		regs_buff[23] = regs_buff[13]; /* mdix mode */
-	}
-	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
-	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
-	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
-	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
-	if (hw->mac_type >= e1000_82540 &&
-	    hw->mac_type < e1000_82571 &&
-	    hw->media_type == e1000_media_type_copper) {
-		regs_buff[26] = er32(MANC);
-	}
-}
-
-static int e1000_get_eeprom_len(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	return hw->eeprom.word_size * 2;
-}
-
-static int e1000_get_eeprom(struct net_device *netdev,
-			    struct ethtool_eeprom *eeprom, u8 *bytes)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u16 *eeprom_buff;
-	int first_word, last_word;
-	int ret_val = 0;
-	u16 i;
-
-	if (eeprom->len == 0)
-		return -EINVAL;
-
-	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
-
-	first_word = eeprom->offset >> 1;
-	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
-
-	eeprom_buff = kmalloc(sizeof(u16) *
-			(last_word - first_word + 1), GFP_KERNEL);
-	if (!eeprom_buff)
-		return -ENOMEM;
-
-	if (hw->eeprom.type == e1000_eeprom_spi)
-		ret_val = e1000_read_eeprom(hw, first_word,
-					    last_word - first_word + 1,
-					    eeprom_buff);
-	else {
-		for (i = 0; i < last_word - first_word + 1; i++) {
-			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
-						    &eeprom_buff[i]);
-			if (ret_val)
-				break;
-		}
-	}
-
-	/* Device's eeprom is always little-endian, word addressable */
-	for (i = 0; i < last_word - first_word + 1; i++)
-		le16_to_cpus(&eeprom_buff[i]);
-
-	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
-			eeprom->len);
-	kfree(eeprom_buff);
-
-	return ret_val;
-}
-
-static int e1000_set_eeprom(struct net_device *netdev,
-			    struct ethtool_eeprom *eeprom, u8 *bytes)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u16 *eeprom_buff;
-	void *ptr;
-	int max_len, first_word, last_word, ret_val = 0;
-	u16 i;
-
-	if (eeprom->len == 0)
-		return -EOPNOTSUPP;
-
-	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
-		return -EFAULT;
-
-	max_len = hw->eeprom.word_size * 2;
-
-	first_word = eeprom->offset >> 1;
-	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
-	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
-	if (!eeprom_buff)
-		return -ENOMEM;
-
-	ptr = (void *)eeprom_buff;
-
-	if (eeprom->offset & 1) {
-		/* need read/modify/write of first changed EEPROM word */
-		/* only the second byte of the word is being modified */
-		ret_val = e1000_read_eeprom(hw, first_word, 1,
-					    &eeprom_buff[0]);
-		ptr++;
-	}
-	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
-		/* need read/modify/write of last changed EEPROM word */
-		/* only the first byte of the word is being modified */
-		ret_val = e1000_read_eeprom(hw, last_word, 1,
-		                  &eeprom_buff[last_word - first_word]);
-	}
-
-	/* Device's eeprom is always little-endian, word addressable */
-	for (i = 0; i < last_word - first_word + 1; i++)
-		le16_to_cpus(&eeprom_buff[i]);
-
-	memcpy(ptr, bytes, eeprom->len);
-
-	for (i = 0; i < last_word - first_word + 1; i++)
-		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
-
-	ret_val = e1000_write_eeprom(hw, first_word,
-				     last_word - first_word + 1, eeprom_buff);
-
-	/* Update the checksum over the first part of the EEPROM if needed
-	 * and flush shadow RAM for 82573 conrollers */
-	if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
-				(hw->mac_type == e1000_82573)))
-		e1000_update_eeprom_checksum(hw);
-
-	kfree(eeprom_buff);
-	return ret_val;
-}
-
-static void e1000_get_drvinfo(struct net_device *netdev,
-			      struct ethtool_drvinfo *drvinfo)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	char firmware_version[32];
-	u16 eeprom_data;
-
-	strncpy(drvinfo->driver,  e1000_driver_name, 32);
-	strncpy(drvinfo->version, e1000_driver_version, 32);
-
-	/* EEPROM image version # is reported as firmware version # for
-	 * 8257{1|2|3} controllers */
-	e1000_read_eeprom(hw, 5, 1, &eeprom_data);
-	switch (hw->mac_type) {
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_82573:
-	case e1000_80003es2lan:
-	case e1000_ich8lan:
-		sprintf(firmware_version, "%d.%d-%d",
-			(eeprom_data & 0xF000) >> 12,
-			(eeprom_data & 0x0FF0) >> 4,
-			eeprom_data & 0x000F);
-		break;
-	default:
-		sprintf(firmware_version, "N/A");
-	}
-
-	strncpy(drvinfo->fw_version, firmware_version, 32);
-	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
-	drvinfo->regdump_len = e1000_get_regs_len(netdev);
-	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
-}
-
-static void e1000_get_ringparam(struct net_device *netdev,
-				struct ethtool_ringparam *ring)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	e1000_mac_type mac_type = hw->mac_type;
-	struct e1000_tx_ring *txdr = adapter->tx_ring;
-	struct e1000_rx_ring *rxdr = adapter->rx_ring;
-
-	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
-		E1000_MAX_82544_RXD;
-	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
-		E1000_MAX_82544_TXD;
-	ring->rx_mini_max_pending = 0;
-	ring->rx_jumbo_max_pending = 0;
-	ring->rx_pending = rxdr->count;
-	ring->tx_pending = txdr->count;
-	ring->rx_mini_pending = 0;
-	ring->rx_jumbo_pending = 0;
-}
-
-static int e1000_set_ringparam(struct net_device *netdev,
-			       struct ethtool_ringparam *ring)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	e1000_mac_type mac_type = hw->mac_type;
-	struct e1000_tx_ring *txdr, *tx_old;
-	struct e1000_rx_ring *rxdr, *rx_old;
-	int i, err;
-
-	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
-		return -EINVAL;
-
-	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
-		msleep(1);
-
-	if (netif_running(adapter->netdev))
-		e1000_down(adapter);
-
-	tx_old = adapter->tx_ring;
-	rx_old = adapter->rx_ring;
-
-	err = -ENOMEM;
-	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
-	if (!txdr)
-		goto err_alloc_tx;
-
-	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
-	if (!rxdr)
-		goto err_alloc_rx;
-
-	adapter->tx_ring = txdr;
-	adapter->rx_ring = rxdr;
-
-	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
-	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
-		E1000_MAX_RXD : E1000_MAX_82544_RXD));
-	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
-
-	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
-	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
-		E1000_MAX_TXD : E1000_MAX_82544_TXD));
-	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
-
-	for (i = 0; i < adapter->num_tx_queues; i++)
-		txdr[i].count = txdr->count;
-	for (i = 0; i < adapter->num_rx_queues; i++)
-		rxdr[i].count = rxdr->count;
-
-	if (netif_running(adapter->netdev)) {
-		/* Try to get new resources before deleting old */
-		err = e1000_setup_all_rx_resources(adapter);
-		if (err)
-			goto err_setup_rx;
-		err = e1000_setup_all_tx_resources(adapter);
-		if (err)
-			goto err_setup_tx;
-
-		/* save the new, restore the old in order to free it,
-		 * then restore the new back again */
-
-		adapter->rx_ring = rx_old;
-		adapter->tx_ring = tx_old;
-		e1000_free_all_rx_resources(adapter);
-		e1000_free_all_tx_resources(adapter);
-		kfree(tx_old);
-		kfree(rx_old);
-		adapter->rx_ring = rxdr;
-		adapter->tx_ring = txdr;
-		err = e1000_up(adapter);
-		if (err)
-			goto err_setup;
-	}
-
-	clear_bit(__E1000_RESETTING, &adapter->flags);
-	return 0;
-err_setup_tx:
-	e1000_free_all_rx_resources(adapter);
-err_setup_rx:
-	adapter->rx_ring = rx_old;
-	adapter->tx_ring = tx_old;
-	kfree(rxdr);
-err_alloc_rx:
-	kfree(txdr);
-err_alloc_tx:
-	e1000_up(adapter);
-err_setup:
-	clear_bit(__E1000_RESETTING, &adapter->flags);
-	return err;
-}
-
-static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
-			     u32 mask, u32 write)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	static const u32 test[] =
-		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
-	u8 __iomem *address = hw->hw_addr + reg;
-	u32 read;
-	int i;
-
-	for (i = 0; i < ARRAY_SIZE(test); i++) {
-		writel(write & test[i], address);
-		read = readl(address);
-		if (read != (write & test[i] & mask)) {
-			DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
-				"got 0x%08X expected 0x%08X\n",
-				reg, read, (write & test[i] & mask));
-			*data = reg;
-			return true;
-		}
-	}
-	return false;
-}
-
-static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
-			      u32 mask, u32 write)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u8 __iomem *address = hw->hw_addr + reg;
-	u32 read;
-
-	writel(write & mask, address);
-	read = readl(address);
-	if ((read & mask) != (write & mask)) {
-		DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
-			"got 0x%08X expected 0x%08X\n",
-			reg, (read & mask), (write & mask));
-		*data = reg;
-		return true;
-	}
-	return false;
-}
-
-#define REG_PATTERN_TEST(reg, mask, write)			     \
-	do {							     \
-		if (reg_pattern_test(adapter, data,		     \
-			     (hw->mac_type >= e1000_82543)   \
-			     ? E1000_##reg : E1000_82542_##reg,	     \
-			     mask, write))			     \
-			return 1;				     \
-	} while (0)
-
-#define REG_SET_AND_CHECK(reg, mask, write)			     \
-	do {							     \
-		if (reg_set_and_check(adapter, data,		     \
-			      (hw->mac_type >= e1000_82543)  \
-			      ? E1000_##reg : E1000_82542_##reg,     \
-			      mask, write))			     \
-			return 1;				     \
-	} while (0)
-
-static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
-{
-	u32 value, before, after;
-	u32 i, toggle;
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* The status register is Read Only, so a write should fail.
-	 * Some bits that get toggled are ignored.
-	 */
-	switch (hw->mac_type) {
-	/* there are several bits on newer hardware that are r/w */
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_80003es2lan:
-		toggle = 0x7FFFF3FF;
-		break;
-	case e1000_82573:
-	case e1000_ich8lan:
-		toggle = 0x7FFFF033;
-		break;
-	default:
-		toggle = 0xFFFFF833;
-		break;
-	}
-
-	before = er32(STATUS);
-	value = (er32(STATUS) & toggle);
-	ew32(STATUS, toggle);
-	after = er32(STATUS) & toggle;
-	if (value != after) {
-		DPRINTK(DRV, ERR, "failed STATUS register test got: "
-		        "0x%08X expected: 0x%08X\n", after, value);
-		*data = 1;
-		return 1;
-	}
-	/* restore previous status */
-	ew32(STATUS, before);
-
-	if (hw->mac_type != e1000_ich8lan) {
-		REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
-		REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
-		REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
-		REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
-	}
-
-	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
-	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
-	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
-	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
-	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
-	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
-	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
-	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
-	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
-	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
-
-	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
-
-	before = (hw->mac_type == e1000_ich8lan ?
-	          0x06C3B33E : 0x06DFB3FE);
-	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
-	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
-
-	if (hw->mac_type >= e1000_82543) {
-
-		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
-		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
-		if (hw->mac_type != e1000_ich8lan)
-			REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
-		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
-		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
-		value = (hw->mac_type == e1000_ich8lan ?
-		         E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
-		for (i = 0; i < value; i++) {
-			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
-			                 0xFFFFFFFF);
-		}
-
-	} else {
-
-		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
-		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
-		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
-		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
-
-	}
-
-	value = (hw->mac_type == e1000_ich8lan ?
-			E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
-	for (i = 0; i < value; i++)
-		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
-
-	*data = 0;
-	return 0;
-}
-
-static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u16 temp;
-	u16 checksum = 0;
-	u16 i;
-
-	*data = 0;
-	/* Read and add up the contents of the EEPROM */
-	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
-		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
-			*data = 1;
-			break;
-		}
-		checksum += temp;
-	}
-
-	/* If Checksum is not Correct return error else test passed */
-	if ((checksum != (u16)EEPROM_SUM) && !(*data))
-		*data = 2;
-
-	return *data;
-}
-
-static irqreturn_t e1000_test_intr(int irq, void *data)
-{
-	struct net_device *netdev = (struct net_device *)data;
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	adapter->test_icr |= er32(ICR);
-
-	return IRQ_HANDLED;
-}
-
-static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
-{
-	struct net_device *netdev = adapter->netdev;
-	u32 mask, i = 0;
-	bool shared_int = true;
-	u32 irq = adapter->pdev->irq;
-	struct e1000_hw *hw = &adapter->hw;
-
-	*data = 0;
-
-	/* NOTE: we don't test MSI interrupts here, yet */
-	/* Hook up test interrupt handler just for this test */
-	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
-	                 netdev))
-		shared_int = false;
-	else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
-	         netdev->name, netdev)) {
-		*data = 1;
-		return -1;
-	}
-	DPRINTK(HW, INFO, "testing %s interrupt\n",
-	        (shared_int ? "shared" : "unshared"));
-
-	/* Disable all the interrupts */
-	ew32(IMC, 0xFFFFFFFF);
-	msleep(10);
-
-	/* Test each interrupt */
-	for (; i < 10; i++) {
-
-		if (hw->mac_type == e1000_ich8lan && i == 8)
-			continue;
-
-		/* Interrupt to test */
-		mask = 1 << i;
-
-		if (!shared_int) {
-			/* Disable the interrupt to be reported in
-			 * the cause register and then force the same
-			 * interrupt and see if one gets posted.  If
-			 * an interrupt was posted to the bus, the
-			 * test failed.
-			 */
-			adapter->test_icr = 0;
-			ew32(IMC, mask);
-			ew32(ICS, mask);
-			msleep(10);
-
-			if (adapter->test_icr & mask) {
-				*data = 3;
-				break;
-			}
-		}
-
-		/* Enable the interrupt to be reported in
-		 * the cause register and then force the same
-		 * interrupt and see if one gets posted.  If
-		 * an interrupt was not posted to the bus, the
-		 * test failed.
-		 */
-		adapter->test_icr = 0;
-		ew32(IMS, mask);
-		ew32(ICS, mask);
-		msleep(10);
-
-		if (!(adapter->test_icr & mask)) {
-			*data = 4;
-			break;
-		}
-
-		if (!shared_int) {
-			/* Disable the other interrupts to be reported in
-			 * the cause register and then force the other
-			 * interrupts and see if any get posted.  If
-			 * an interrupt was posted to the bus, the
-			 * test failed.
-			 */
-			adapter->test_icr = 0;
-			ew32(IMC, ~mask & 0x00007FFF);
-			ew32(ICS, ~mask & 0x00007FFF);
-			msleep(10);
-
-			if (adapter->test_icr) {
-				*data = 5;
-				break;
-			}
-		}
-	}
-
-	/* Disable all the interrupts */
-	ew32(IMC, 0xFFFFFFFF);
-	msleep(10);
-
-	/* Unhook test interrupt handler */
-	free_irq(irq, netdev);
-
-	return *data;
-}
-
-static void e1000_free_desc_rings(struct e1000_adapter *adapter)
-{
-	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
-	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
-	struct pci_dev *pdev = adapter->pdev;
-	int i;
-
-	if (txdr->desc && txdr->buffer_info) {
-		for (i = 0; i < txdr->count; i++) {
-			if (txdr->buffer_info[i].dma)
-				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
-						 txdr->buffer_info[i].length,
-						 PCI_DMA_TODEVICE);
-			if (txdr->buffer_info[i].skb)
-				dev_kfree_skb(txdr->buffer_info[i].skb);
-		}
-	}
-
-	if (rxdr->desc && rxdr->buffer_info) {
-		for (i = 0; i < rxdr->count; i++) {
-			if (rxdr->buffer_info[i].dma)
-				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
-						 rxdr->buffer_info[i].length,
-						 PCI_DMA_FROMDEVICE);
-			if (rxdr->buffer_info[i].skb)
-				dev_kfree_skb(rxdr->buffer_info[i].skb);
-		}
-	}
-
-	if (txdr->desc) {
-		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
-		txdr->desc = NULL;
-	}
-	if (rxdr->desc) {
-		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
-		rxdr->desc = NULL;
-	}
-
-	kfree(txdr->buffer_info);
-	txdr->buffer_info = NULL;
-	kfree(rxdr->buffer_info);
-	rxdr->buffer_info = NULL;
-
-	return;
-}
-
-static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
-	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
-	struct pci_dev *pdev = adapter->pdev;
-	u32 rctl;
-	int i, ret_val;
-
-	/* Setup Tx descriptor ring and Tx buffers */
-
-	if (!txdr->count)
-		txdr->count = E1000_DEFAULT_TXD;
-
-	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
-				    GFP_KERNEL);
-	if (!txdr->buffer_info) {
-		ret_val = 1;
-		goto err_nomem;
-	}
-
-	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
-	txdr->size = ALIGN(txdr->size, 4096);
-	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
-	if (!txdr->desc) {
-		ret_val = 2;
-		goto err_nomem;
-	}
-	memset(txdr->desc, 0, txdr->size);
-	txdr->next_to_use = txdr->next_to_clean = 0;
-
-	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
-	ew32(TDBAH, ((u64)txdr->dma >> 32));
-	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
-	ew32(TDH, 0);
-	ew32(TDT, 0);
-	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
-	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
-	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
-
-	for (i = 0; i < txdr->count; i++) {
-		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
-		struct sk_buff *skb;
-		unsigned int size = 1024;
-
-		skb = alloc_skb(size, GFP_KERNEL);
-		if (!skb) {
-			ret_val = 3;
-			goto err_nomem;
-		}
-		skb_put(skb, size);
-		txdr->buffer_info[i].skb = skb;
-		txdr->buffer_info[i].length = skb->len;
-		txdr->buffer_info[i].dma =
-			pci_map_single(pdev, skb->data, skb->len,
-				       PCI_DMA_TODEVICE);
-		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
-		tx_desc->lower.data = cpu_to_le32(skb->len);
-		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
-						   E1000_TXD_CMD_IFCS |
-						   E1000_TXD_CMD_RPS);
-		tx_desc->upper.data = 0;
-	}
-
-	/* Setup Rx descriptor ring and Rx buffers */
-
-	if (!rxdr->count)
-		rxdr->count = E1000_DEFAULT_RXD;
-
-	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
-				    GFP_KERNEL);
-	if (!rxdr->buffer_info) {
-		ret_val = 4;
-		goto err_nomem;
-	}
-
-	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
-	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
-	if (!rxdr->desc) {
-		ret_val = 5;
-		goto err_nomem;
-	}
-	memset(rxdr->desc, 0, rxdr->size);
-	rxdr->next_to_use = rxdr->next_to_clean = 0;
-
-	rctl = er32(RCTL);
-	ew32(RCTL, rctl & ~E1000_RCTL_EN);
-	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
-	ew32(RDBAH, ((u64)rxdr->dma >> 32));
-	ew32(RDLEN, rxdr->size);
-	ew32(RDH, 0);
-	ew32(RDT, 0);
-	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
-		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
-		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
-	ew32(RCTL, rctl);
-
-	for (i = 0; i < rxdr->count; i++) {
-		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
-		struct sk_buff *skb;
-
-		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
-		if (!skb) {
-			ret_val = 6;
-			goto err_nomem;
-		}
-		skb_reserve(skb, NET_IP_ALIGN);
-		rxdr->buffer_info[i].skb = skb;
-		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
-		rxdr->buffer_info[i].dma =
-			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
-				       PCI_DMA_FROMDEVICE);
-		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
-		memset(skb->data, 0x00, skb->len);
-	}
-
-	return 0;
-
-err_nomem:
-	e1000_free_desc_rings(adapter);
-	return ret_val;
-}
-
-static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
-	e1000_write_phy_reg(hw, 29, 0x001F);
-	e1000_write_phy_reg(hw, 30, 0x8FFC);
-	e1000_write_phy_reg(hw, 29, 0x001A);
-	e1000_write_phy_reg(hw, 30, 0x8FF0);
-}
-
-static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u16 phy_reg;
-
-	/* Because we reset the PHY above, we need to re-force TX_CLK in the
-	 * Extended PHY Specific Control Register to 25MHz clock.  This
-	 * value defaults back to a 2.5MHz clock when the PHY is reset.
-	 */
-	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
-	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
-	e1000_write_phy_reg(hw,
-		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
-
-	/* In addition, because of the s/w reset above, we need to enable
-	 * CRS on TX.  This must be set for both full and half duplex
-	 * operation.
-	 */
-	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
-	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-	e1000_write_phy_reg(hw,
-		M88E1000_PHY_SPEC_CTRL, phy_reg);
-}
-
-static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u32 ctrl_reg;
-	u16 phy_reg;
-
-	/* Setup the Device Control Register for PHY loopback test. */
-
-	ctrl_reg = er32(CTRL);
-	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
-		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
-		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
-		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
-		     E1000_CTRL_FD);		/* Force Duplex to FULL */
-
-	ew32(CTRL, ctrl_reg);
-
-	/* Read the PHY Specific Control Register (0x10) */
-	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
-
-	/* Clear Auto-Crossover bits in PHY Specific Control Register
-	 * (bits 6:5).
-	 */
-	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
-	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
-
-	/* Perform software reset on the PHY */
-	e1000_phy_reset(hw);
-
-	/* Have to setup TX_CLK and TX_CRS after software reset */
-	e1000_phy_reset_clk_and_crs(adapter);
-
-	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
-
-	/* Wait for reset to complete. */
-	udelay(500);
-
-	/* Have to setup TX_CLK and TX_CRS after software reset */
-	e1000_phy_reset_clk_and_crs(adapter);
-
-	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
-	e1000_phy_disable_receiver(adapter);
-
-	/* Set the loopback bit in the PHY control register. */
-	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
-	phy_reg |= MII_CR_LOOPBACK;
-	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
-
-	/* Setup TX_CLK and TX_CRS one more time. */
-	e1000_phy_reset_clk_and_crs(adapter);
-
-	/* Check Phy Configuration */
-	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
-	if (phy_reg != 0x4100)
-		 return 9;
-
-	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
-	if (phy_reg != 0x0070)
-		return 10;
-
-	e1000_read_phy_reg(hw, 29, &phy_reg);
-	if (phy_reg != 0x001A)
-		return 11;
-
-	return 0;
-}
-
-static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u32 ctrl_reg = 0;
-	u32 stat_reg = 0;
-
-	hw->autoneg = false;
-
-	if (hw->phy_type == e1000_phy_m88) {
-		/* Auto-MDI/MDIX Off */
-		e1000_write_phy_reg(hw,
-				    M88E1000_PHY_SPEC_CTRL, 0x0808);
-		/* reset to update Auto-MDI/MDIX */
-		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
-		/* autoneg off */
-		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
-	} else if (hw->phy_type == e1000_phy_gg82563)
-		e1000_write_phy_reg(hw,
-		                    GG82563_PHY_KMRN_MODE_CTRL,
-		                    0x1CC);
-
-	ctrl_reg = er32(CTRL);
-
-	if (hw->phy_type == e1000_phy_ife) {
-		/* force 100, set loopback */
-		e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
-
-		/* Now set up the MAC to the same speed/duplex as the PHY. */
-		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
-		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
-			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
-			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
-			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
-	} else {
-		/* force 1000, set loopback */
-		e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
-
-		/* Now set up the MAC to the same speed/duplex as the PHY. */
-		ctrl_reg = er32(CTRL);
-		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
-		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
-			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
-			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
-			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
-	}
-
-	if (hw->media_type == e1000_media_type_copper &&
-	   hw->phy_type == e1000_phy_m88)
-		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
-	else {
-		/* Set the ILOS bit on the fiber Nic is half
-		 * duplex link is detected. */
-		stat_reg = er32(STATUS);
-		if ((stat_reg & E1000_STATUS_FD) == 0)
-			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
-	}
-
-	ew32(CTRL, ctrl_reg);
-
-	/* Disable the receiver on the PHY so when a cable is plugged in, the
-	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
-	 */
-	if (hw->phy_type == e1000_phy_m88)
-		e1000_phy_disable_receiver(adapter);
-
-	udelay(500);
-
-	return 0;
-}
-
-static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u16 phy_reg = 0;
-	u16 count = 0;
-
-	switch (hw->mac_type) {
-	case e1000_82543:
-		if (hw->media_type == e1000_media_type_copper) {
-			/* Attempt to setup Loopback mode on Non-integrated PHY.
-			 * Some PHY registers get corrupted at random, so
-			 * attempt this 10 times.
-			 */
-			while (e1000_nonintegrated_phy_loopback(adapter) &&
-			      count++ < 10);
-			if (count < 11)
-				return 0;
-		}
-		break;
-
-	case e1000_82544:
-	case e1000_82540:
-	case e1000_82545:
-	case e1000_82545_rev_3:
-	case e1000_82546:
-	case e1000_82546_rev_3:
-	case e1000_82541:
-	case e1000_82541_rev_2:
-	case e1000_82547:
-	case e1000_82547_rev_2:
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_82573:
-	case e1000_80003es2lan:
-	case e1000_ich8lan:
-		return e1000_integrated_phy_loopback(adapter);
-		break;
-
-	default:
-		/* Default PHY loopback work is to read the MII
-		 * control register and assert bit 14 (loopback mode).
-		 */
-		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
-		phy_reg |= MII_CR_LOOPBACK;
-		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
-		return 0;
-		break;
-	}
-
-	return 8;
-}
-
-static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u32 rctl;
-
-	if (hw->media_type == e1000_media_type_fiber ||
-	    hw->media_type == e1000_media_type_internal_serdes) {
-		switch (hw->mac_type) {
-		case e1000_82545:
-		case e1000_82546:
-		case e1000_82545_rev_3:
-		case e1000_82546_rev_3:
-			return e1000_set_phy_loopback(adapter);
-			break;
-		case e1000_82571:
-		case e1000_82572:
-#define E1000_SERDES_LB_ON 0x410
-			e1000_set_phy_loopback(adapter);
-			ew32(SCTL, E1000_SERDES_LB_ON);
-			msleep(10);
-			return 0;
-			break;
-		default:
-			rctl = er32(RCTL);
-			rctl |= E1000_RCTL_LBM_TCVR;
-			ew32(RCTL, rctl);
-			return 0;
-		}
-	} else if (hw->media_type == e1000_media_type_copper)
-		return e1000_set_phy_loopback(adapter);
-
-	return 7;
-}
-
-static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u32 rctl;
-	u16 phy_reg;
-
-	rctl = er32(RCTL);
-	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
-	ew32(RCTL, rctl);
-
-	switch (hw->mac_type) {
-	case e1000_82571:
-	case e1000_82572:
-		if (hw->media_type == e1000_media_type_fiber ||
-		    hw->media_type == e1000_media_type_internal_serdes) {
-#define E1000_SERDES_LB_OFF 0x400
-			ew32(SCTL, E1000_SERDES_LB_OFF);
-			msleep(10);
-			break;
-		}
-		/* Fall Through */
-	case e1000_82545:
-	case e1000_82546:
-	case e1000_82545_rev_3:
-	case e1000_82546_rev_3:
-	default:
-		hw->autoneg = true;
-		if (hw->phy_type == e1000_phy_gg82563)
-			e1000_write_phy_reg(hw,
-					    GG82563_PHY_KMRN_MODE_CTRL,
-					    0x180);
-		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
-		if (phy_reg & MII_CR_LOOPBACK) {
-			phy_reg &= ~MII_CR_LOOPBACK;
-			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
-			e1000_phy_reset(hw);
-		}
-		break;
-	}
-}
-
-static void e1000_create_lbtest_frame(struct sk_buff *skb,
-				      unsigned int frame_size)
-{
-	memset(skb->data, 0xFF, frame_size);
-	frame_size &= ~1;
-	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
-	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
-	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
-}
-
-static int e1000_check_lbtest_frame(struct sk_buff *skb,
-				    unsigned int frame_size)
-{
-	frame_size &= ~1;
-	if (*(skb->data + 3) == 0xFF) {
-		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
-		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
-			return 0;
-		}
-	}
-	return 13;
-}
-
-static int e1000_run_loopback_test(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
-	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
-	struct pci_dev *pdev = adapter->pdev;
-	int i, j, k, l, lc, good_cnt, ret_val=0;
-	unsigned long time;
-
-	ew32(RDT, rxdr->count - 1);
-
-	/* Calculate the loop count based on the largest descriptor ring
-	 * The idea is to wrap the largest ring a number of times using 64
-	 * send/receive pairs during each loop
-	 */
-
-	if (rxdr->count <= txdr->count)
-		lc = ((txdr->count / 64) * 2) + 1;
-	else
-		lc = ((rxdr->count / 64) * 2) + 1;
-
-	k = l = 0;
-	for (j = 0; j <= lc; j++) { /* loop count loop */
-		for (i = 0; i < 64; i++) { /* send the packets */
-			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
-					1024);
-			pci_dma_sync_single_for_device(pdev,
-					txdr->buffer_info[k].dma,
-				    	txdr->buffer_info[k].length,
-				    	PCI_DMA_TODEVICE);
-			if (unlikely(++k == txdr->count)) k = 0;
-		}
-		ew32(TDT, k);
-		msleep(200);
-		time = jiffies; /* set the start time for the receive */
-		good_cnt = 0;
-		do { /* receive the sent packets */
-			pci_dma_sync_single_for_cpu(pdev,
-					rxdr->buffer_info[l].dma,
-				    	rxdr->buffer_info[l].length,
-				    	PCI_DMA_FROMDEVICE);
-
-			ret_val = e1000_check_lbtest_frame(
-					rxdr->buffer_info[l].skb,
-				   	1024);
-			if (!ret_val)
-				good_cnt++;
-			if (unlikely(++l == rxdr->count)) l = 0;
-			/* time + 20 msecs (200 msecs on 2.4) is more than
-			 * enough time to complete the receives, if it's
-			 * exceeded, break and error off
-			 */
-		} while (good_cnt < 64 && jiffies < (time + 20));
-		if (good_cnt != 64) {
-			ret_val = 13; /* ret_val is the same as mis-compare */
-			break;
-		}
-		if (jiffies >= (time + 2)) {
-			ret_val = 14; /* error code for time out error */
-			break;
-		}
-	} /* end loop count loop */
-	return ret_val;
-}
-
-static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* PHY loopback cannot be performed if SoL/IDER
-	 * sessions are active */
-	if (e1000_check_phy_reset_block(hw)) {
-		DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
-		        "when SoL/IDER is active.\n");
-		*data = 0;
-		goto out;
-	}
-
-	*data = e1000_setup_desc_rings(adapter);
-	if (*data)
-		goto out;
-	*data = e1000_setup_loopback_test(adapter);
-	if (*data)
-		goto err_loopback;
-	*data = e1000_run_loopback_test(adapter);
-	e1000_loopback_cleanup(adapter);
-
-err_loopback:
-	e1000_free_desc_rings(adapter);
-out:
-	return *data;
-}
-
-static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	*data = 0;
-	if (hw->media_type == e1000_media_type_internal_serdes) {
-		int i = 0;
-		hw->serdes_link_down = true;
-
-		/* On some blade server designs, link establishment
-		 * could take as long as 2-3 minutes */
-		do {
-			e1000_check_for_link(hw);
-			if (!hw->serdes_link_down)
-				return *data;
-			msleep(20);
-		} while (i++ < 3750);
-
-		*data = 1;
-	} else {
-		e1000_check_for_link(hw);
-		if (hw->autoneg)  /* if auto_neg is set wait for it */
-			msleep(4000);
-
-		if (!(er32(STATUS) & E1000_STATUS_LU)) {
-			*data = 1;
-		}
-	}
-	return *data;
-}
-
-static int e1000_get_sset_count(struct net_device *netdev, int sset)
-{
-	switch (sset) {
-	case ETH_SS_TEST:
-		return E1000_TEST_LEN;
-	case ETH_SS_STATS:
-		return E1000_STATS_LEN;
-	default:
-		return -EOPNOTSUPP;
-	}
-}
-
-static void e1000_diag_test(struct net_device *netdev,
-			    struct ethtool_test *eth_test, u64 *data)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	bool if_running = netif_running(netdev);
-
-	set_bit(__E1000_TESTING, &adapter->flags);
-	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
-		/* Offline tests */
-
-		/* save speed, duplex, autoneg settings */
-		u16 autoneg_advertised = hw->autoneg_advertised;
-		u8 forced_speed_duplex = hw->forced_speed_duplex;
-		u8 autoneg = hw->autoneg;
-
-		DPRINTK(HW, INFO, "offline testing starting\n");
-
-		/* Link test performed before hardware reset so autoneg doesn't
-		 * interfere with test result */
-		if (e1000_link_test(adapter, &data[4]))
-			eth_test->flags |= ETH_TEST_FL_FAILED;
-
-		if (if_running)
-			/* indicate we're in test mode */
-			dev_close(netdev);
-		else
-			e1000_reset(adapter);
-
-		if (e1000_reg_test(adapter, &data[0]))
-			eth_test->flags |= ETH_TEST_FL_FAILED;
-
-		e1000_reset(adapter);
-		if (e1000_eeprom_test(adapter, &data[1]))
-			eth_test->flags |= ETH_TEST_FL_FAILED;
-
-		e1000_reset(adapter);
-		if (e1000_intr_test(adapter, &data[2]))
-			eth_test->flags |= ETH_TEST_FL_FAILED;
-
-		e1000_reset(adapter);
-		/* make sure the phy is powered up */
-		e1000_power_up_phy(adapter);
-		if (e1000_loopback_test(adapter, &data[3]))
-			eth_test->flags |= ETH_TEST_FL_FAILED;
-
-		/* restore speed, duplex, autoneg settings */
-		hw->autoneg_advertised = autoneg_advertised;
-		hw->forced_speed_duplex = forced_speed_duplex;
-		hw->autoneg = autoneg;
-
-		e1000_reset(adapter);
-		clear_bit(__E1000_TESTING, &adapter->flags);
-		if (if_running)
-			dev_open(netdev);
-	} else {
-		DPRINTK(HW, INFO, "online testing starting\n");
-		/* Online tests */
-		if (e1000_link_test(adapter, &data[4]))
-			eth_test->flags |= ETH_TEST_FL_FAILED;
-
-		/* Online tests aren't run; pass by default */
-		data[0] = 0;
-		data[1] = 0;
-		data[2] = 0;
-		data[3] = 0;
-
-		clear_bit(__E1000_TESTING, &adapter->flags);
-	}
-	msleep_interruptible(4 * 1000);
-}
-
-static int e1000_wol_exclusion(struct e1000_adapter *adapter,
-			       struct ethtool_wolinfo *wol)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	int retval = 1; /* fail by default */
-
-	switch (hw->device_id) {
-	case E1000_DEV_ID_82542:
-	case E1000_DEV_ID_82543GC_FIBER:
-	case E1000_DEV_ID_82543GC_COPPER:
-	case E1000_DEV_ID_82544EI_FIBER:
-	case E1000_DEV_ID_82546EB_QUAD_COPPER:
-	case E1000_DEV_ID_82545EM_FIBER:
-	case E1000_DEV_ID_82545EM_COPPER:
-	case E1000_DEV_ID_82546GB_QUAD_COPPER:
-	case E1000_DEV_ID_82546GB_PCIE:
-	case E1000_DEV_ID_82571EB_SERDES_QUAD:
-		/* these don't support WoL at all */
-		wol->supported = 0;
-		break;
-	case E1000_DEV_ID_82546EB_FIBER:
-	case E1000_DEV_ID_82546GB_FIBER:
-	case E1000_DEV_ID_82571EB_FIBER:
-	case E1000_DEV_ID_82571EB_SERDES:
-	case E1000_DEV_ID_82571EB_COPPER:
-		/* Wake events not supported on port B */
-		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
-			wol->supported = 0;
-			break;
-		}
-		/* return success for non excluded adapter ports */
-		retval = 0;
-		break;
-	case E1000_DEV_ID_82571EB_QUAD_COPPER:
-	case E1000_DEV_ID_82571EB_QUAD_FIBER:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
-	case E1000_DEV_ID_82571PT_QUAD_COPPER:
-	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-		/* quad port adapters only support WoL on port A */
-		if (!adapter->quad_port_a) {
-			wol->supported = 0;
-			break;
-		}
-		/* return success for non excluded adapter ports */
-		retval = 0;
-		break;
-	default:
-		/* dual port cards only support WoL on port A from now on
-		 * unless it was enabled in the eeprom for port B
-		 * so exclude FUNC_1 ports from having WoL enabled */
-		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
-		    !adapter->eeprom_wol) {
-			wol->supported = 0;
-			break;
-		}
-
-		retval = 0;
-	}
-
-	return retval;
-}
-
-static void e1000_get_wol(struct net_device *netdev,
-			  struct ethtool_wolinfo *wol)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	wol->supported = WAKE_UCAST | WAKE_MCAST |
-	                 WAKE_BCAST | WAKE_MAGIC;
-	wol->wolopts = 0;
-
-	/* this function will set ->supported = 0 and return 1 if wol is not
-	 * supported by this hardware */
-	if (e1000_wol_exclusion(adapter, wol) ||
-	    !device_can_wakeup(&adapter->pdev->dev))
-		return;
-
-	/* apply any specific unsupported masks here */
-	switch (hw->device_id) {
-	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-		/* KSP3 does not suppport UCAST wake-ups */
-		wol->supported &= ~WAKE_UCAST;
-
-		if (adapter->wol & E1000_WUFC_EX)
-			DPRINTK(DRV, ERR, "Interface does not support "
-		        "directed (unicast) frame wake-up packets\n");
-		break;
-	default:
-		break;
-	}
-
-	if (adapter->wol & E1000_WUFC_EX)
-		wol->wolopts |= WAKE_UCAST;
-	if (adapter->wol & E1000_WUFC_MC)
-		wol->wolopts |= WAKE_MCAST;
-	if (adapter->wol & E1000_WUFC_BC)
-		wol->wolopts |= WAKE_BCAST;
-	if (adapter->wol & E1000_WUFC_MAG)
-		wol->wolopts |= WAKE_MAGIC;
-
-	return;
-}
-
-static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
-		return -EOPNOTSUPP;
-
-	if (e1000_wol_exclusion(adapter, wol) ||
-	    !device_can_wakeup(&adapter->pdev->dev))
-		return wol->wolopts ? -EOPNOTSUPP : 0;
-
-	switch (hw->device_id) {
-	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-		if (wol->wolopts & WAKE_UCAST) {
-			DPRINTK(DRV, ERR, "Interface does not support "
-		        "directed (unicast) frame wake-up packets\n");
-			return -EOPNOTSUPP;
-		}
-		break;
-	default:
-		break;
-	}
-
-	/* these settings will always override what we currently have */
-	adapter->wol = 0;
-
-	if (wol->wolopts & WAKE_UCAST)
-		adapter->wol |= E1000_WUFC_EX;
-	if (wol->wolopts & WAKE_MCAST)
-		adapter->wol |= E1000_WUFC_MC;
-	if (wol->wolopts & WAKE_BCAST)
-		adapter->wol |= E1000_WUFC_BC;
-	if (wol->wolopts & WAKE_MAGIC)
-		adapter->wol |= E1000_WUFC_MAG;
-
-	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
-
-	return 0;
-}
-
-/* toggle LED 4 times per second = 2 "blinks" per second */
-#define E1000_ID_INTERVAL	(HZ/4)
-
-/* bit defines for adapter->led_status */
-#define E1000_LED_ON		0
-
-static void e1000_led_blink_callback(unsigned long data)
-{
-	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
-		e1000_led_off(hw);
-	else
-		e1000_led_on(hw);
-
-	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
-}
-
-static int e1000_phys_id(struct net_device *netdev, u32 data)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (!data)
-		data = INT_MAX;
-
-	if (hw->mac_type < e1000_82571) {
-		if (!adapter->blink_timer.function) {
-			init_timer(&adapter->blink_timer);
-			adapter->blink_timer.function = e1000_led_blink_callback;
-			adapter->blink_timer.data = (unsigned long)adapter;
-		}
-		e1000_setup_led(hw);
-		mod_timer(&adapter->blink_timer, jiffies);
-		msleep_interruptible(data * 1000);
-		del_timer_sync(&adapter->blink_timer);
-	} else if (hw->phy_type == e1000_phy_ife) {
-		if (!adapter->blink_timer.function) {
-			init_timer(&adapter->blink_timer);
-			adapter->blink_timer.function = e1000_led_blink_callback;
-			adapter->blink_timer.data = (unsigned long)adapter;
-		}
-		mod_timer(&adapter->blink_timer, jiffies);
-		msleep_interruptible(data * 1000);
-		del_timer_sync(&adapter->blink_timer);
-		e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
-	} else {
-		e1000_blink_led_start(hw);
-		msleep_interruptible(data * 1000);
-	}
-
-	e1000_led_off(hw);
-	clear_bit(E1000_LED_ON, &adapter->led_status);
-	e1000_cleanup_led(hw);
-
-	return 0;
-}
-
-static int e1000_nway_reset(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	if (netif_running(netdev))
-		e1000_reinit_locked(adapter);
-	return 0;
-}
-
-static void e1000_get_ethtool_stats(struct net_device *netdev,
-				    struct ethtool_stats *stats, u64 *data)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	int i;
-
-	e1000_update_stats(adapter);
-	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
-		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
-		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
-			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
-	}
-/*	BUG_ON(i != E1000_STATS_LEN); */
-}
-
-static void e1000_get_strings(struct net_device *netdev, u32 stringset,
-			      u8 *data)
-{
-	u8 *p = data;
-	int i;
-
-	switch (stringset) {
-	case ETH_SS_TEST:
-		memcpy(data, *e1000_gstrings_test,
-			sizeof(e1000_gstrings_test));
-		break;
-	case ETH_SS_STATS:
-		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
-			memcpy(p, e1000_gstrings_stats[i].stat_string,
-			       ETH_GSTRING_LEN);
-			p += ETH_GSTRING_LEN;
-		}
-/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
-		break;
-	}
-}
-
-static const struct ethtool_ops e1000_ethtool_ops = {
-	.get_settings           = e1000_get_settings,
-	.set_settings           = e1000_set_settings,
-	.get_drvinfo            = e1000_get_drvinfo,
-	.get_regs_len           = e1000_get_regs_len,
-	.get_regs               = e1000_get_regs,
-	.get_wol                = e1000_get_wol,
-	.set_wol                = e1000_set_wol,
-	.get_msglevel           = e1000_get_msglevel,
-	.set_msglevel           = e1000_set_msglevel,
-	.nway_reset             = e1000_nway_reset,
-	.get_link               = ethtool_op_get_link,
-	.get_eeprom_len         = e1000_get_eeprom_len,
-	.get_eeprom             = e1000_get_eeprom,
-	.set_eeprom             = e1000_set_eeprom,
-	.get_ringparam          = e1000_get_ringparam,
-	.set_ringparam          = e1000_set_ringparam,
-	.get_pauseparam         = e1000_get_pauseparam,
-	.set_pauseparam         = e1000_set_pauseparam,
-	.get_rx_csum            = e1000_get_rx_csum,
-	.set_rx_csum            = e1000_set_rx_csum,
-	.get_tx_csum            = e1000_get_tx_csum,
-	.set_tx_csum            = e1000_set_tx_csum,
-	.set_sg                 = ethtool_op_set_sg,
-	.set_tso                = e1000_set_tso,
-	.self_test              = e1000_diag_test,
-	.get_strings            = e1000_get_strings,
-	.phys_id                = e1000_phys_id,
-	.get_ethtool_stats      = e1000_get_ethtool_stats,
-	.get_sset_count		= e1000_get_sset_count,
-};
-
-void e1000_set_ethtool_ops(struct net_device *netdev)
-{
-	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
-}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_ethtool-2.6.29-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,1987 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include "e1000.h"
+#include <asm/uaccess.h>
+
+struct e1000_stats {
+	char stat_string[ETH_GSTRING_LEN];
+	int sizeof_stat;
+	int stat_offset;
+};
+
+#define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
+		      offsetof(struct e1000_adapter, m)
+static const struct e1000_stats e1000_gstrings_stats[] = {
+	{ "rx_packets", E1000_STAT(stats.gprc) },
+	{ "tx_packets", E1000_STAT(stats.gptc) },
+	{ "rx_bytes", E1000_STAT(stats.gorcl) },
+	{ "tx_bytes", E1000_STAT(stats.gotcl) },
+	{ "rx_broadcast", E1000_STAT(stats.bprc) },
+	{ "tx_broadcast", E1000_STAT(stats.bptc) },
+	{ "rx_multicast", E1000_STAT(stats.mprc) },
+	{ "tx_multicast", E1000_STAT(stats.mptc) },
+	{ "rx_errors", E1000_STAT(stats.rxerrc) },
+	{ "tx_errors", E1000_STAT(stats.txerrc) },
+	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
+	{ "multicast", E1000_STAT(stats.mprc) },
+	{ "collisions", E1000_STAT(stats.colc) },
+	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
+	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
+	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
+	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
+	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
+	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
+	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
+	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
+	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
+	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
+	{ "tx_window_errors", E1000_STAT(stats.latecol) },
+	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
+	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
+	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
+	{ "tx_restart_queue", E1000_STAT(restart_queue) },
+	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
+	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
+	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
+	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
+	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
+	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
+	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
+	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
+};
+
+#define E1000_QUEUE_STATS_LEN 0
+#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
+#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Register test  (offline)", "Eeprom test    (offline)",
+	"Interrupt test (offline)", "Loopback test  (offline)",
+	"Link test   (on/offline)"
+};
+#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
+
+static int e1000_get_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->media_type == e1000_media_type_copper) {
+
+		ecmd->supported = (SUPPORTED_10baseT_Half |
+		                   SUPPORTED_10baseT_Full |
+		                   SUPPORTED_100baseT_Half |
+		                   SUPPORTED_100baseT_Full |
+		                   SUPPORTED_1000baseT_Full|
+		                   SUPPORTED_Autoneg |
+		                   SUPPORTED_TP);
+		if (hw->phy_type == e1000_phy_ife)
+			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
+		ecmd->advertising = ADVERTISED_TP;
+
+		if (hw->autoneg == 1) {
+			ecmd->advertising |= ADVERTISED_Autoneg;
+			/* the e1000 autoneg seems to match ethtool nicely */
+			ecmd->advertising |= hw->autoneg_advertised;
+		}
+
+		ecmd->port = PORT_TP;
+		ecmd->phy_address = hw->phy_addr;
+
+		if (hw->mac_type == e1000_82543)
+			ecmd->transceiver = XCVR_EXTERNAL;
+		else
+			ecmd->transceiver = XCVR_INTERNAL;
+
+	} else {
+		ecmd->supported   = (SUPPORTED_1000baseT_Full |
+				     SUPPORTED_FIBRE |
+				     SUPPORTED_Autoneg);
+
+		ecmd->advertising = (ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg);
+
+		ecmd->port = PORT_FIBRE;
+
+		if (hw->mac_type >= e1000_82545)
+			ecmd->transceiver = XCVR_INTERNAL;
+		else
+			ecmd->transceiver = XCVR_EXTERNAL;
+	}
+
+	if (er32(STATUS) & E1000_STATUS_LU) {
+
+		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+		                                   &adapter->link_duplex);
+		ecmd->speed = adapter->link_speed;
+
+		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
+		 *          and HALF_DUPLEX != DUPLEX_HALF */
+
+		if (adapter->link_duplex == FULL_DUPLEX)
+			ecmd->duplex = DUPLEX_FULL;
+		else
+			ecmd->duplex = DUPLEX_HALF;
+	} else {
+		ecmd->speed = -1;
+		ecmd->duplex = -1;
+	}
+
+	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
+			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+	return 0;
+}
+
+static int e1000_set_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* When SoL/IDER sessions are active, autoneg/speed/duplex
+	 * cannot be changed */
+	if (e1000_check_phy_reset_block(hw)) {
+		DPRINTK(DRV, ERR, "Cannot change link characteristics "
+		        "when SoL/IDER is active.\n");
+		return -EINVAL;
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (ecmd->autoneg == AUTONEG_ENABLE) {
+		hw->autoneg = 1;
+		if (hw->media_type == e1000_media_type_fiber)
+			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg;
+		else
+			hw->autoneg_advertised = ecmd->advertising |
+			                         ADVERTISED_TP |
+			                         ADVERTISED_Autoneg;
+		ecmd->advertising = hw->autoneg_advertised;
+	} else
+		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
+			clear_bit(__E1000_RESETTING, &adapter->flags);
+			return -EINVAL;
+		}
+
+	/* reset the link */
+
+	if (netif_running(adapter->netdev)) {
+		e1000_down(adapter);
+		e1000_up(adapter);
+	} else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+}
+
+static void e1000_get_pauseparam(struct net_device *netdev,
+				 struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	pause->autoneg =
+		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+	if (hw->fc == E1000_FC_RX_PAUSE)
+		pause->rx_pause = 1;
+	else if (hw->fc == E1000_FC_TX_PAUSE)
+		pause->tx_pause = 1;
+	else if (hw->fc == E1000_FC_FULL) {
+		pause->rx_pause = 1;
+		pause->tx_pause = 1;
+	}
+}
+
+static int e1000_set_pauseparam(struct net_device *netdev,
+				struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 0;
+
+	adapter->fc_autoneg = pause->autoneg;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_FULL;
+	else if (pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_RX_PAUSE;
+	else if (!pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_TX_PAUSE;
+	else if (!pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_NONE;
+
+	hw->original_fc = hw->fc;
+
+	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+		if (netif_running(adapter->netdev)) {
+			e1000_down(adapter);
+			e1000_up(adapter);
+		} else
+			e1000_reset(adapter);
+	} else
+		retval = ((hw->media_type == e1000_media_type_fiber) ?
+			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return retval;
+}
+
+static u32 e1000_get_rx_csum(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->rx_csum;
+}
+
+static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->rx_csum = data;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	else
+		e1000_reset(adapter);
+	return 0;
+}
+
+static u32 e1000_get_tx_csum(struct net_device *netdev)
+{
+	return (netdev->features & NETIF_F_HW_CSUM) != 0;
+}
+
+static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82543) {
+		if (!data)
+			return -EINVAL;
+		return 0;
+	}
+
+	if (data)
+		netdev->features |= NETIF_F_HW_CSUM;
+	else
+		netdev->features &= ~NETIF_F_HW_CSUM;
+
+	return 0;
+}
+
+static int e1000_set_tso(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if ((hw->mac_type < e1000_82544) ||
+	    (hw->mac_type == e1000_82547))
+		return data ? -EINVAL : 0;
+
+	if (data)
+		netdev->features |= NETIF_F_TSO;
+	else
+		netdev->features &= ~NETIF_F_TSO;
+
+	if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
+		netdev->features |= NETIF_F_TSO6;
+	else
+		netdev->features &= ~NETIF_F_TSO6;
+
+	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
+	adapter->tso_force = true;
+	return 0;
+}
+
+static u32 e1000_get_msglevel(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->msg_enable;
+}
+
+static void e1000_set_msglevel(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->msg_enable = data;
+}
+
+static int e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32
+	return E1000_REGS_LEN * sizeof(u32);
+}
+
+static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
+			   void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 *regs_buff = p;
+	u16 phy_data;
+
+	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
+
+	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
+
+	regs_buff[0]  = er32(CTRL);
+	regs_buff[1]  = er32(STATUS);
+
+	regs_buff[2]  = er32(RCTL);
+	regs_buff[3]  = er32(RDLEN);
+	regs_buff[4]  = er32(RDH);
+	regs_buff[5]  = er32(RDT);
+	regs_buff[6]  = er32(RDTR);
+
+	regs_buff[7]  = er32(TCTL);
+	regs_buff[8]  = er32(TDLEN);
+	regs_buff[9]  = er32(TDH);
+	regs_buff[10] = er32(TDT);
+	regs_buff[11] = er32(TIDV);
+
+	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
+	if (hw->phy_type == e1000_phy_igp) {
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_A);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_B);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[14] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_C);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[15] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_D);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[16] = (u32)phy_data; /* cable length */
+		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[18] = (u32)phy_data; /* cable polarity */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_PCS_INIT_REG);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[19] = (u32)phy_data; /* cable polarity */
+		regs_buff[20] = 0; /* polarity correction enabled (always) */
+		regs_buff[22] = 0; /* phy receive errors (unavailable) */
+		regs_buff[23] = regs_buff[18]; /* mdix mode */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+	} else {
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
+		regs_buff[18] = regs_buff[13]; /* cable polarity */
+		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[20] = regs_buff[17]; /* polarity correction */
+		/* phy receive errors */
+		regs_buff[22] = adapter->phy_stats.receive_errors;
+		regs_buff[23] = regs_buff[13]; /* mdix mode */
+	}
+	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
+	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
+	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
+	if (hw->mac_type >= e1000_82540 &&
+	    hw->mac_type < e1000_82571 &&
+	    hw->media_type == e1000_media_type_copper) {
+		regs_buff[26] = er32(MANC);
+	}
+}
+
+static int e1000_get_eeprom_len(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	return hw->eeprom.word_size * 2;
+}
+
+static int e1000_get_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	int first_word, last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EINVAL;
+
+	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+	eeprom_buff = kmalloc(sizeof(u16) *
+			(last_word - first_word + 1), GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	if (hw->eeprom.type == e1000_eeprom_spi)
+		ret_val = e1000_read_eeprom(hw, first_word,
+					    last_word - first_word + 1,
+					    eeprom_buff);
+	else {
+		for (i = 0; i < last_word - first_word + 1; i++) {
+			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
+						    &eeprom_buff[i]);
+			if (ret_val)
+				break;
+		}
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
+			eeprom->len);
+	kfree(eeprom_buff);
+
+	return ret_val;
+}
+
+static int e1000_set_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	void *ptr;
+	int max_len, first_word, last_word, ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EOPNOTSUPP;
+
+	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
+		return -EFAULT;
+
+	max_len = hw->eeprom.word_size * 2;
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	ptr = (void *)eeprom_buff;
+
+	if (eeprom->offset & 1) {
+		/* need read/modify/write of first changed EEPROM word */
+		/* only the second byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, first_word, 1,
+					    &eeprom_buff[0]);
+		ptr++;
+	}
+	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
+		/* need read/modify/write of last changed EEPROM word */
+		/* only the first byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, last_word, 1,
+		                  &eeprom_buff[last_word - first_word]);
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(ptr, bytes, eeprom->len);
+
+	for (i = 0; i < last_word - first_word + 1; i++)
+		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+	ret_val = e1000_write_eeprom(hw, first_word,
+				     last_word - first_word + 1, eeprom_buff);
+
+	/* Update the checksum over the first part of the EEPROM if needed
+	 * and flush shadow RAM for 82573 conrollers */
+	if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
+				(hw->mac_type == e1000_82573)))
+		e1000_update_eeprom_checksum(hw);
+
+	kfree(eeprom_buff);
+	return ret_val;
+}
+
+static void e1000_get_drvinfo(struct net_device *netdev,
+			      struct ethtool_drvinfo *drvinfo)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	char firmware_version[32];
+	u16 eeprom_data;
+
+	strncpy(drvinfo->driver,  e1000_driver_name, 32);
+	strncpy(drvinfo->version, e1000_driver_version, 32);
+
+	/* EEPROM image version # is reported as firmware version # for
+	 * 8257{1|2|3} controllers */
+	e1000_read_eeprom(hw, 5, 1, &eeprom_data);
+	switch (hw->mac_type) {
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_82573:
+	case e1000_80003es2lan:
+	case e1000_ich8lan:
+		sprintf(firmware_version, "%d.%d-%d",
+			(eeprom_data & 0xF000) >> 12,
+			(eeprom_data & 0x0FF0) >> 4,
+			eeprom_data & 0x000F);
+		break;
+	default:
+		sprintf(firmware_version, "N/A");
+	}
+
+	strncpy(drvinfo->fw_version, firmware_version, 32);
+	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+	drvinfo->regdump_len = e1000_get_regs_len(netdev);
+	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void e1000_get_ringparam(struct net_device *netdev,
+				struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	struct e1000_rx_ring *rxdr = adapter->rx_ring;
+
+	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
+		E1000_MAX_82544_RXD;
+	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
+		E1000_MAX_82544_TXD;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rxdr->count;
+	ring->tx_pending = txdr->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e1000_set_ringparam(struct net_device *netdev,
+			       struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr, *tx_old;
+	struct e1000_rx_ring *rxdr, *rx_old;
+	int i, err;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (netif_running(adapter->netdev))
+		e1000_down(adapter);
+
+	tx_old = adapter->tx_ring;
+	rx_old = adapter->rx_ring;
+
+	err = -ENOMEM;
+	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!txdr)
+		goto err_alloc_tx;
+
+	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!rxdr)
+		goto err_alloc_rx;
+
+	adapter->tx_ring = txdr;
+	adapter->rx_ring = rxdr;
+
+	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
+	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_RXD : E1000_MAX_82544_RXD));
+	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
+	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_TXD : E1000_MAX_82544_TXD));
+	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		txdr[i].count = txdr->count;
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		rxdr[i].count = rxdr->count;
+
+	if (netif_running(adapter->netdev)) {
+		/* Try to get new resources before deleting old */
+		err = e1000_setup_all_rx_resources(adapter);
+		if (err)
+			goto err_setup_rx;
+		err = e1000_setup_all_tx_resources(adapter);
+		if (err)
+			goto err_setup_tx;
+
+		/* save the new, restore the old in order to free it,
+		 * then restore the new back again */
+
+		adapter->rx_ring = rx_old;
+		adapter->tx_ring = tx_old;
+		e1000_free_all_rx_resources(adapter);
+		e1000_free_all_tx_resources(adapter);
+		kfree(tx_old);
+		kfree(rx_old);
+		adapter->rx_ring = rxdr;
+		adapter->tx_ring = txdr;
+		err = e1000_up(adapter);
+		if (err)
+			goto err_setup;
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+err_setup_tx:
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	adapter->rx_ring = rx_old;
+	adapter->tx_ring = tx_old;
+	kfree(rxdr);
+err_alloc_rx:
+	kfree(txdr);
+err_alloc_tx:
+	e1000_up(adapter);
+err_setup:
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return err;
+}
+
+static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
+			     u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	static const u32 test[] =
+		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(test); i++) {
+		writel(write & test[i], address);
+		read = readl(address);
+		if (read != (write & test[i] & mask)) {
+			DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
+				"got 0x%08X expected 0x%08X\n",
+				reg, read, (write & test[i] & mask));
+			*data = reg;
+			return true;
+		}
+	}
+	return false;
+}
+
+static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
+			      u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+
+	writel(write & mask, address);
+	read = readl(address);
+	if ((read & mask) != (write & mask)) {
+		DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
+			"got 0x%08X expected 0x%08X\n",
+			reg, (read & mask), (write & mask));
+		*data = reg;
+		return true;
+	}
+	return false;
+}
+
+#define REG_PATTERN_TEST(reg, mask, write)			     \
+	do {							     \
+		if (reg_pattern_test(adapter, data,		     \
+			     (hw->mac_type >= e1000_82543)   \
+			     ? E1000_##reg : E1000_82542_##reg,	     \
+			     mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+#define REG_SET_AND_CHECK(reg, mask, write)			     \
+	do {							     \
+		if (reg_set_and_check(adapter, data,		     \
+			      (hw->mac_type >= e1000_82543)  \
+			      ? E1000_##reg : E1000_82542_##reg,     \
+			      mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
+{
+	u32 value, before, after;
+	u32 i, toggle;
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* The status register is Read Only, so a write should fail.
+	 * Some bits that get toggled are ignored.
+	 */
+	switch (hw->mac_type) {
+	/* there are several bits on newer hardware that are r/w */
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+		toggle = 0x7FFFF3FF;
+		break;
+	case e1000_82573:
+	case e1000_ich8lan:
+		toggle = 0x7FFFF033;
+		break;
+	default:
+		toggle = 0xFFFFF833;
+		break;
+	}
+
+	before = er32(STATUS);
+	value = (er32(STATUS) & toggle);
+	ew32(STATUS, toggle);
+	after = er32(STATUS) & toggle;
+	if (value != after) {
+		DPRINTK(DRV, ERR, "failed STATUS register test got: "
+		        "0x%08X expected: 0x%08X\n", after, value);
+		*data = 1;
+		return 1;
+	}
+	/* restore previous status */
+	ew32(STATUS, before);
+
+	if (hw->mac_type != e1000_ich8lan) {
+		REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+	}
+
+	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
+	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
+	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
+
+	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
+
+	before = (hw->mac_type == e1000_ich8lan ?
+	          0x06C3B33E : 0x06DFB3FE);
+	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
+	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
+
+	if (hw->mac_type >= e1000_82543) {
+
+		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		if (hw->mac_type != e1000_ich8lan)
+			REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
+		value = (hw->mac_type == e1000_ich8lan ?
+		         E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
+		for (i = 0; i < value; i++) {
+			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
+			                 0xFFFFFFFF);
+		}
+
+	} else {
+
+		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
+
+	}
+
+	value = (hw->mac_type == e1000_ich8lan ?
+			E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
+	for (i = 0; i < value; i++)
+		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
+
+	*data = 0;
+	return 0;
+}
+
+static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 temp;
+	u16 checksum = 0;
+	u16 i;
+
+	*data = 0;
+	/* Read and add up the contents of the EEPROM */
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
+			*data = 1;
+			break;
+		}
+		checksum += temp;
+	}
+
+	/* If Checksum is not Correct return error else test passed */
+	if ((checksum != (u16)EEPROM_SUM) && !(*data))
+		*data = 2;
+
+	return *data;
+}
+
+static irqreturn_t e1000_test_intr(int irq, void *data)
+{
+	struct net_device *netdev = (struct net_device *)data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	adapter->test_icr |= er32(ICR);
+
+	return IRQ_HANDLED;
+}
+
+static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct net_device *netdev = adapter->netdev;
+	u32 mask, i = 0;
+	bool shared_int = true;
+	u32 irq = adapter->pdev->irq;
+	struct e1000_hw *hw = &adapter->hw;
+
+	*data = 0;
+
+	/* NOTE: we don't test MSI interrupts here, yet */
+	/* Hook up test interrupt handler just for this test */
+	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
+	                 netdev))
+		shared_int = false;
+	else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
+	         netdev->name, netdev)) {
+		*data = 1;
+		return -1;
+	}
+	DPRINTK(HW, INFO, "testing %s interrupt\n",
+	        (shared_int ? "shared" : "unshared"));
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Test each interrupt */
+	for (; i < 10; i++) {
+
+		if (hw->mac_type == e1000_ich8lan && i == 8)
+			continue;
+
+		/* Interrupt to test */
+		mask = 1 << i;
+
+		if (!shared_int) {
+			/* Disable the interrupt to be reported in
+			 * the cause register and then force the same
+			 * interrupt and see if one gets posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, mask);
+			ew32(ICS, mask);
+			msleep(10);
+
+			if (adapter->test_icr & mask) {
+				*data = 3;
+				break;
+			}
+		}
+
+		/* Enable the interrupt to be reported in
+		 * the cause register and then force the same
+		 * interrupt and see if one gets posted.  If
+		 * an interrupt was not posted to the bus, the
+		 * test failed.
+		 */
+		adapter->test_icr = 0;
+		ew32(IMS, mask);
+		ew32(ICS, mask);
+		msleep(10);
+
+		if (!(adapter->test_icr & mask)) {
+			*data = 4;
+			break;
+		}
+
+		if (!shared_int) {
+			/* Disable the other interrupts to be reported in
+			 * the cause register and then force the other
+			 * interrupts and see if any get posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, ~mask & 0x00007FFF);
+			ew32(ICS, ~mask & 0x00007FFF);
+			msleep(10);
+
+			if (adapter->test_icr) {
+				*data = 5;
+				break;
+			}
+		}
+	}
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Unhook test interrupt handler */
+	free_irq(irq, netdev);
+
+	return *data;
+}
+
+static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i;
+
+	if (txdr->desc && txdr->buffer_info) {
+		for (i = 0; i < txdr->count; i++) {
+			if (txdr->buffer_info[i].dma)
+				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
+						 txdr->buffer_info[i].length,
+						 PCI_DMA_TODEVICE);
+			if (txdr->buffer_info[i].skb)
+				dev_kfree_skb(txdr->buffer_info[i].skb);
+		}
+	}
+
+	if (rxdr->desc && rxdr->buffer_info) {
+		for (i = 0; i < rxdr->count; i++) {
+			if (rxdr->buffer_info[i].dma)
+				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
+						 rxdr->buffer_info[i].length,
+						 PCI_DMA_FROMDEVICE);
+			if (rxdr->buffer_info[i].skb)
+				dev_kfree_skb(rxdr->buffer_info[i].skb);
+		}
+	}
+
+	if (txdr->desc) {
+		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
+		txdr->desc = NULL;
+	}
+	if (rxdr->desc) {
+		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
+		rxdr->desc = NULL;
+	}
+
+	kfree(txdr->buffer_info);
+	txdr->buffer_info = NULL;
+	kfree(rxdr->buffer_info);
+	rxdr->buffer_info = NULL;
+
+	return;
+}
+
+static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	u32 rctl;
+	int i, ret_val;
+
+	/* Setup Tx descriptor ring and Tx buffers */
+
+	if (!txdr->count)
+		txdr->count = E1000_DEFAULT_TXD;
+
+	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!txdr->buffer_info) {
+		ret_val = 1;
+		goto err_nomem;
+	}
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+	if (!txdr->desc) {
+		ret_val = 2;
+		goto err_nomem;
+	}
+	memset(txdr->desc, 0, txdr->size);
+	txdr->next_to_use = txdr->next_to_clean = 0;
+
+	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
+	ew32(TDBAH, ((u64)txdr->dma >> 32));
+	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
+	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+	for (i = 0; i < txdr->count; i++) {
+		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
+		struct sk_buff *skb;
+		unsigned int size = 1024;
+
+		skb = alloc_skb(size, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 3;
+			goto err_nomem;
+		}
+		skb_put(skb, size);
+		txdr->buffer_info[i].skb = skb;
+		txdr->buffer_info[i].length = skb->len;
+		txdr->buffer_info[i].dma =
+			pci_map_single(pdev, skb->data, skb->len,
+				       PCI_DMA_TODEVICE);
+		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
+		tx_desc->lower.data = cpu_to_le32(skb->len);
+		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+						   E1000_TXD_CMD_IFCS |
+						   E1000_TXD_CMD_RPS);
+		tx_desc->upper.data = 0;
+	}
+
+	/* Setup Rx descriptor ring and Rx buffers */
+
+	if (!rxdr->count)
+		rxdr->count = E1000_DEFAULT_RXD;
+
+	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!rxdr->buffer_info) {
+		ret_val = 4;
+		goto err_nomem;
+	}
+
+	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+	if (!rxdr->desc) {
+		ret_val = 5;
+		goto err_nomem;
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+	rxdr->next_to_use = rxdr->next_to_clean = 0;
+
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
+	ew32(RDBAH, ((u64)rxdr->dma >> 32));
+	ew32(RDLEN, rxdr->size);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+	ew32(RCTL, rctl);
+
+	for (i = 0; i < rxdr->count; i++) {
+		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
+		struct sk_buff *skb;
+
+		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 6;
+			goto err_nomem;
+		}
+		skb_reserve(skb, NET_IP_ALIGN);
+		rxdr->buffer_info[i].skb = skb;
+		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
+		rxdr->buffer_info[i].dma =
+			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
+				       PCI_DMA_FROMDEVICE);
+		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
+		memset(skb->data, 0x00, skb->len);
+	}
+
+	return 0;
+
+err_nomem:
+	e1000_free_desc_rings(adapter);
+	return ret_val;
+}
+
+static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_write_phy_reg(hw, 29, 0x001F);
+	e1000_write_phy_reg(hw, 30, 0x8FFC);
+	e1000_write_phy_reg(hw, 29, 0x001A);
+	e1000_write_phy_reg(hw, 30, 0x8FF0);
+}
+
+static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg;
+
+	/* Because we reset the PHY above, we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock.  This
+	 * value defaults back to a 2.5MHz clock when the PHY is reset.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
+	e1000_write_phy_reg(hw,
+		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
+
+	/* In addition, because of the s/w reset above, we need to enable
+	 * CRS on TX.  This must be set for both full and half duplex
+	 * operation.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	e1000_write_phy_reg(hw,
+		M88E1000_PHY_SPEC_CTRL, phy_reg);
+}
+
+static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg;
+	u16 phy_reg;
+
+	/* Setup the Device Control Register for PHY loopback test. */
+
+	ctrl_reg = er32(CTRL);
+	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
+		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
+		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
+		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
+		     E1000_CTRL_FD);		/* Force Duplex to FULL */
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Read the PHY Specific Control Register (0x10) */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+
+	/* Clear Auto-Crossover bits in PHY Specific Control Register
+	 * (bits 6:5).
+	 */
+	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
+	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
+
+	/* Perform software reset on the PHY */
+	e1000_phy_reset(hw);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
+
+	/* Wait for reset to complete. */
+	udelay(500);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_phy_disable_receiver(adapter);
+
+	/* Set the loopback bit in the PHY control register. */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	phy_reg |= MII_CR_LOOPBACK;
+	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+
+	/* Setup TX_CLK and TX_CRS one more time. */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Check Phy Configuration */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	if (phy_reg != 0x4100)
+		 return 9;
+
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	if (phy_reg != 0x0070)
+		return 10;
+
+	e1000_read_phy_reg(hw, 29, &phy_reg);
+	if (phy_reg != 0x001A)
+		return 11;
+
+	return 0;
+}
+
+static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg = 0;
+	u32 stat_reg = 0;
+
+	hw->autoneg = false;
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Auto-MDI/MDIX Off */
+		e1000_write_phy_reg(hw,
+				    M88E1000_PHY_SPEC_CTRL, 0x0808);
+		/* reset to update Auto-MDI/MDIX */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
+		/* autoneg off */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
+	} else if (hw->phy_type == e1000_phy_gg82563)
+		e1000_write_phy_reg(hw,
+		                    GG82563_PHY_KMRN_MODE_CTRL,
+		                    0x1CC);
+
+	ctrl_reg = er32(CTRL);
+
+	if (hw->phy_type == e1000_phy_ife) {
+		/* force 100, set loopback */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
+
+		/* Now set up the MAC to the same speed/duplex as the PHY. */
+		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
+			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
+	} else {
+		/* force 1000, set loopback */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
+
+		/* Now set up the MAC to the same speed/duplex as the PHY. */
+		ctrl_reg = er32(CTRL);
+		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
+	}
+
+	if (hw->media_type == e1000_media_type_copper &&
+	   hw->phy_type == e1000_phy_m88)
+		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+	else {
+		/* Set the ILOS bit on the fiber Nic is half
+		 * duplex link is detected. */
+		stat_reg = er32(STATUS);
+		if ((stat_reg & E1000_STATUS_FD) == 0)
+			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+	}
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Disable the receiver on the PHY so when a cable is plugged in, the
+	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+	 */
+	if (hw->phy_type == e1000_phy_m88)
+		e1000_phy_disable_receiver(adapter);
+
+	udelay(500);
+
+	return 0;
+}
+
+static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg = 0;
+	u16 count = 0;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->media_type == e1000_media_type_copper) {
+			/* Attempt to setup Loopback mode on Non-integrated PHY.
+			 * Some PHY registers get corrupted at random, so
+			 * attempt this 10 times.
+			 */
+			while (e1000_nonintegrated_phy_loopback(adapter) &&
+			      count++ < 10);
+			if (count < 11)
+				return 0;
+		}
+		break;
+
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_82573:
+	case e1000_80003es2lan:
+	case e1000_ich8lan:
+		return e1000_integrated_phy_loopback(adapter);
+		break;
+
+	default:
+		/* Default PHY loopback work is to read the MII
+		 * control register and assert bit 14 (loopback mode).
+		 */
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		phy_reg |= MII_CR_LOOPBACK;
+		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+		return 0;
+		break;
+	}
+
+	return 8;
+}
+
+static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	if (hw->media_type == e1000_media_type_fiber ||
+	    hw->media_type == e1000_media_type_internal_serdes) {
+		switch (hw->mac_type) {
+		case e1000_82545:
+		case e1000_82546:
+		case e1000_82545_rev_3:
+		case e1000_82546_rev_3:
+			return e1000_set_phy_loopback(adapter);
+			break;
+		case e1000_82571:
+		case e1000_82572:
+#define E1000_SERDES_LB_ON 0x410
+			e1000_set_phy_loopback(adapter);
+			ew32(SCTL, E1000_SERDES_LB_ON);
+			msleep(10);
+			return 0;
+			break;
+		default:
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_LBM_TCVR;
+			ew32(RCTL, rctl);
+			return 0;
+		}
+	} else if (hw->media_type == e1000_media_type_copper)
+		return e1000_set_phy_loopback(adapter);
+
+	return 7;
+}
+
+static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	u16 phy_reg;
+
+	rctl = er32(RCTL);
+	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+	ew32(RCTL, rctl);
+
+	switch (hw->mac_type) {
+	case e1000_82571:
+	case e1000_82572:
+		if (hw->media_type == e1000_media_type_fiber ||
+		    hw->media_type == e1000_media_type_internal_serdes) {
+#define E1000_SERDES_LB_OFF 0x400
+			ew32(SCTL, E1000_SERDES_LB_OFF);
+			msleep(10);
+			break;
+		}
+		/* Fall Through */
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+	default:
+		hw->autoneg = true;
+		if (hw->phy_type == e1000_phy_gg82563)
+			e1000_write_phy_reg(hw,
+					    GG82563_PHY_KMRN_MODE_CTRL,
+					    0x180);
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		if (phy_reg & MII_CR_LOOPBACK) {
+			phy_reg &= ~MII_CR_LOOPBACK;
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+			e1000_phy_reset(hw);
+		}
+		break;
+	}
+}
+
+static void e1000_create_lbtest_frame(struct sk_buff *skb,
+				      unsigned int frame_size)
+{
+	memset(skb->data, 0xFF, frame_size);
+	frame_size &= ~1;
+	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int e1000_check_lbtest_frame(struct sk_buff *skb,
+				    unsigned int frame_size)
+{
+	frame_size &= ~1;
+	if (*(skb->data + 3) == 0xFF) {
+		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
+			return 0;
+		}
+	}
+	return 13;
+}
+
+static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i, j, k, l, lc, good_cnt, ret_val=0;
+	unsigned long time;
+
+	ew32(RDT, rxdr->count - 1);
+
+	/* Calculate the loop count based on the largest descriptor ring
+	 * The idea is to wrap the largest ring a number of times using 64
+	 * send/receive pairs during each loop
+	 */
+
+	if (rxdr->count <= txdr->count)
+		lc = ((txdr->count / 64) * 2) + 1;
+	else
+		lc = ((rxdr->count / 64) * 2) + 1;
+
+	k = l = 0;
+	for (j = 0; j <= lc; j++) { /* loop count loop */
+		for (i = 0; i < 64; i++) { /* send the packets */
+			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
+					1024);
+			pci_dma_sync_single_for_device(pdev,
+					txdr->buffer_info[k].dma,
+				    	txdr->buffer_info[k].length,
+				    	PCI_DMA_TODEVICE);
+			if (unlikely(++k == txdr->count)) k = 0;
+		}
+		ew32(TDT, k);
+		msleep(200);
+		time = jiffies; /* set the start time for the receive */
+		good_cnt = 0;
+		do { /* receive the sent packets */
+			pci_dma_sync_single_for_cpu(pdev,
+					rxdr->buffer_info[l].dma,
+				    	rxdr->buffer_info[l].length,
+				    	PCI_DMA_FROMDEVICE);
+
+			ret_val = e1000_check_lbtest_frame(
+					rxdr->buffer_info[l].skb,
+				   	1024);
+			if (!ret_val)
+				good_cnt++;
+			if (unlikely(++l == rxdr->count)) l = 0;
+			/* time + 20 msecs (200 msecs on 2.4) is more than
+			 * enough time to complete the receives, if it's
+			 * exceeded, break and error off
+			 */
+		} while (good_cnt < 64 && jiffies < (time + 20));
+		if (good_cnt != 64) {
+			ret_val = 13; /* ret_val is the same as mis-compare */
+			break;
+		}
+		if (jiffies >= (time + 2)) {
+			ret_val = 14; /* error code for time out error */
+			break;
+		}
+	} /* end loop count loop */
+	return ret_val;
+}
+
+static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* PHY loopback cannot be performed if SoL/IDER
+	 * sessions are active */
+	if (e1000_check_phy_reset_block(hw)) {
+		DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
+		        "when SoL/IDER is active.\n");
+		*data = 0;
+		goto out;
+	}
+
+	*data = e1000_setup_desc_rings(adapter);
+	if (*data)
+		goto out;
+	*data = e1000_setup_loopback_test(adapter);
+	if (*data)
+		goto err_loopback;
+	*data = e1000_run_loopback_test(adapter);
+	e1000_loopback_cleanup(adapter);
+
+err_loopback:
+	e1000_free_desc_rings(adapter);
+out:
+	return *data;
+}
+
+static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	*data = 0;
+	if (hw->media_type == e1000_media_type_internal_serdes) {
+		int i = 0;
+		hw->serdes_link_down = true;
+
+		/* On some blade server designs, link establishment
+		 * could take as long as 2-3 minutes */
+		do {
+			e1000_check_for_link(hw);
+			if (!hw->serdes_link_down)
+				return *data;
+			msleep(20);
+		} while (i++ < 3750);
+
+		*data = 1;
+	} else {
+		e1000_check_for_link(hw);
+		if (hw->autoneg)  /* if auto_neg is set wait for it */
+			msleep(4000);
+
+		if (!(er32(STATUS) & E1000_STATUS_LU)) {
+			*data = 1;
+		}
+	}
+	return *data;
+}
+
+static int e1000_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E1000_TEST_LEN;
+	case ETH_SS_STATS:
+		return E1000_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e1000_diag_test(struct net_device *netdev,
+			    struct ethtool_test *eth_test, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	bool if_running = netif_running(netdev);
+
+	set_bit(__E1000_TESTING, &adapter->flags);
+	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline tests */
+
+		/* save speed, duplex, autoneg settings */
+		u16 autoneg_advertised = hw->autoneg_advertised;
+		u8 forced_speed_duplex = hw->forced_speed_duplex;
+		u8 autoneg = hw->autoneg;
+
+		DPRINTK(HW, INFO, "offline testing starting\n");
+
+		/* Link test performed before hardware reset so autoneg doesn't
+		 * interfere with test result */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		if (if_running)
+			/* indicate we're in test mode */
+			dev_close(netdev);
+		else
+			e1000_reset(adapter);
+
+		if (e1000_reg_test(adapter, &data[0]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_eeprom_test(adapter, &data[1]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_intr_test(adapter, &data[2]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		/* make sure the phy is powered up */
+		e1000_power_up_phy(adapter);
+		if (e1000_loopback_test(adapter, &data[3]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* restore speed, duplex, autoneg settings */
+		hw->autoneg_advertised = autoneg_advertised;
+		hw->forced_speed_duplex = forced_speed_duplex;
+		hw->autoneg = autoneg;
+
+		e1000_reset(adapter);
+		clear_bit(__E1000_TESTING, &adapter->flags);
+		if (if_running)
+			dev_open(netdev);
+	} else {
+		DPRINTK(HW, INFO, "online testing starting\n");
+		/* Online tests */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* Online tests aren't run; pass by default */
+		data[0] = 0;
+		data[1] = 0;
+		data[2] = 0;
+		data[3] = 0;
+
+		clear_bit(__E1000_TESTING, &adapter->flags);
+	}
+	msleep_interruptible(4 * 1000);
+}
+
+static int e1000_wol_exclusion(struct e1000_adapter *adapter,
+			       struct ethtool_wolinfo *wol)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 1; /* fail by default */
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+		/* these don't support WoL at all */
+		wol->supported = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_COPPER:
+		/* Wake events not supported on port B */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* quad port adapters only support WoL on port A */
+		if (!adapter->quad_port_a) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	default:
+		/* dual port cards only support WoL on port A from now on
+		 * unless it was enabled in the eeprom for port B
+		 * so exclude FUNC_1 ports from having WoL enabled */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
+		    !adapter->eeprom_wol) {
+			wol->supported = 0;
+			break;
+		}
+
+		retval = 0;
+	}
+
+	return retval;
+}
+
+static void e1000_get_wol(struct net_device *netdev,
+			  struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	wol->supported = WAKE_UCAST | WAKE_MCAST |
+	                 WAKE_BCAST | WAKE_MAGIC;
+	wol->wolopts = 0;
+
+	/* this function will set ->supported = 0 and return 1 if wol is not
+	 * supported by this hardware */
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return;
+
+	/* apply any specific unsupported masks here */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* KSP3 does not suppport UCAST wake-ups */
+		wol->supported &= ~WAKE_UCAST;
+
+		if (adapter->wol & E1000_WUFC_EX)
+			DPRINTK(DRV, ERR, "Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+		break;
+	default:
+		break;
+	}
+
+	if (adapter->wol & E1000_WUFC_EX)
+		wol->wolopts |= WAKE_UCAST;
+	if (adapter->wol & E1000_WUFC_MC)
+		wol->wolopts |= WAKE_MCAST;
+	if (adapter->wol & E1000_WUFC_BC)
+		wol->wolopts |= WAKE_BCAST;
+	if (adapter->wol & E1000_WUFC_MAG)
+		wol->wolopts |= WAKE_MAGIC;
+
+	return;
+}
+
+static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
+		return -EOPNOTSUPP;
+
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return wol->wolopts ? -EOPNOTSUPP : 0;
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		if (wol->wolopts & WAKE_UCAST) {
+			DPRINTK(DRV, ERR, "Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+			return -EOPNOTSUPP;
+		}
+		break;
+	default:
+		break;
+	}
+
+	/* these settings will always override what we currently have */
+	adapter->wol = 0;
+
+	if (wol->wolopts & WAKE_UCAST)
+		adapter->wol |= E1000_WUFC_EX;
+	if (wol->wolopts & WAKE_MCAST)
+		adapter->wol |= E1000_WUFC_MC;
+	if (wol->wolopts & WAKE_BCAST)
+		adapter->wol |= E1000_WUFC_BC;
+	if (wol->wolopts & WAKE_MAGIC)
+		adapter->wol |= E1000_WUFC_MAG;
+
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL	(HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON		0
+
+static void e1000_led_blink_callback(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+		e1000_led_off(hw);
+	else
+		e1000_led_on(hw);
+
+	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int e1000_phys_id(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (!data)
+		data = INT_MAX;
+
+	if (hw->mac_type < e1000_82571) {
+		if (!adapter->blink_timer.function) {
+			init_timer(&adapter->blink_timer);
+			adapter->blink_timer.function = e1000_led_blink_callback;
+			adapter->blink_timer.data = (unsigned long)adapter;
+		}
+		e1000_setup_led(hw);
+		mod_timer(&adapter->blink_timer, jiffies);
+		msleep_interruptible(data * 1000);
+		del_timer_sync(&adapter->blink_timer);
+	} else if (hw->phy_type == e1000_phy_ife) {
+		if (!adapter->blink_timer.function) {
+			init_timer(&adapter->blink_timer);
+			adapter->blink_timer.function = e1000_led_blink_callback;
+			adapter->blink_timer.data = (unsigned long)adapter;
+		}
+		mod_timer(&adapter->blink_timer, jiffies);
+		msleep_interruptible(data * 1000);
+		del_timer_sync(&adapter->blink_timer);
+		e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
+	} else {
+		e1000_blink_led_start(hw);
+		msleep_interruptible(data * 1000);
+	}
+
+	e1000_led_off(hw);
+	clear_bit(E1000_LED_ON, &adapter->led_status);
+	e1000_cleanup_led(hw);
+
+	return 0;
+}
+
+static int e1000_nway_reset(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	return 0;
+}
+
+static void e1000_get_ethtool_stats(struct net_device *netdev,
+				    struct ethtool_stats *stats, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int i;
+
+	e1000_update_stats(adapter);
+	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
+		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
+	}
+/*	BUG_ON(i != E1000_STATS_LEN); */
+}
+
+static void e1000_get_strings(struct net_device *netdev, u32 stringset,
+			      u8 *data)
+{
+	u8 *p = data;
+	int i;
+
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e1000_gstrings_test,
+			sizeof(e1000_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+			memcpy(p, e1000_gstrings_stats[i].stat_string,
+			       ETH_GSTRING_LEN);
+			p += ETH_GSTRING_LEN;
+		}
+/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
+		break;
+	}
+}
+
+static const struct ethtool_ops e1000_ethtool_ops = {
+	.get_settings           = e1000_get_settings,
+	.set_settings           = e1000_set_settings,
+	.get_drvinfo            = e1000_get_drvinfo,
+	.get_regs_len           = e1000_get_regs_len,
+	.get_regs               = e1000_get_regs,
+	.get_wol                = e1000_get_wol,
+	.set_wol                = e1000_set_wol,
+	.get_msglevel           = e1000_get_msglevel,
+	.set_msglevel           = e1000_set_msglevel,
+	.nway_reset             = e1000_nway_reset,
+	.get_link               = ethtool_op_get_link,
+	.get_eeprom_len         = e1000_get_eeprom_len,
+	.get_eeprom             = e1000_get_eeprom,
+	.set_eeprom             = e1000_set_eeprom,
+	.get_ringparam          = e1000_get_ringparam,
+	.set_ringparam          = e1000_set_ringparam,
+	.get_pauseparam         = e1000_get_pauseparam,
+	.set_pauseparam         = e1000_set_pauseparam,
+	.get_rx_csum            = e1000_get_rx_csum,
+	.set_rx_csum            = e1000_set_rx_csum,
+	.get_tx_csum            = e1000_get_tx_csum,
+	.set_tx_csum            = e1000_set_tx_csum,
+	.set_sg                 = ethtool_op_set_sg,
+	.set_tso                = e1000_set_tso,
+	.self_test              = e1000_diag_test,
+	.get_strings            = e1000_get_strings,
+	.phys_id                = e1000_phys_id,
+	.get_ethtool_stats      = e1000_get_ethtool_stats,
+	.get_sset_count		= e1000_get_sset_count,
+};
+
+void e1000_set_ethtool_ops(struct net_device *netdev)
+{
+	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_ethtool-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,1963 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include "e1000-2.6.35-ethercat.h"
+#include <asm/uaccess.h>
+
+enum {NETDEV_STATS, E1000_STATS};
+
+struct e1000_stats {
+	char stat_string[ETH_GSTRING_LEN];
+	int type;
+	int sizeof_stat;
+	int stat_offset;
+};
+
+#define E1000_STAT(m)		E1000_STATS, \
+				sizeof(((struct e1000_adapter *)0)->m), \
+		      		offsetof(struct e1000_adapter, m)
+#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
+				sizeof(((struct net_device *)0)->m), \
+				offsetof(struct net_device, m)
+
+static const struct e1000_stats e1000_gstrings_stats[] = {
+	{ "rx_packets", E1000_STAT(stats.gprc) },
+	{ "tx_packets", E1000_STAT(stats.gptc) },
+	{ "rx_bytes", E1000_STAT(stats.gorcl) },
+	{ "tx_bytes", E1000_STAT(stats.gotcl) },
+	{ "rx_broadcast", E1000_STAT(stats.bprc) },
+	{ "tx_broadcast", E1000_STAT(stats.bptc) },
+	{ "rx_multicast", E1000_STAT(stats.mprc) },
+	{ "tx_multicast", E1000_STAT(stats.mptc) },
+	{ "rx_errors", E1000_STAT(stats.rxerrc) },
+	{ "tx_errors", E1000_STAT(stats.txerrc) },
+	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
+	{ "multicast", E1000_STAT(stats.mprc) },
+	{ "collisions", E1000_STAT(stats.colc) },
+	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
+	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
+	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
+	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
+	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
+	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
+	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
+	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
+	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
+	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
+	{ "tx_window_errors", E1000_STAT(stats.latecol) },
+	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
+	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
+	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
+	{ "tx_restart_queue", E1000_STAT(restart_queue) },
+	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
+	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
+	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
+	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
+	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
+	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
+	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
+};
+
+#define E1000_QUEUE_STATS_LEN 0
+#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
+#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Register test  (offline)", "Eeprom test    (offline)",
+	"Interrupt test (offline)", "Loopback test  (offline)",
+	"Link test   (on/offline)"
+};
+#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
+
+static int e1000_get_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->media_type == e1000_media_type_copper) {
+
+		ecmd->supported = (SUPPORTED_10baseT_Half |
+		                   SUPPORTED_10baseT_Full |
+		                   SUPPORTED_100baseT_Half |
+		                   SUPPORTED_100baseT_Full |
+		                   SUPPORTED_1000baseT_Full|
+		                   SUPPORTED_Autoneg |
+		                   SUPPORTED_TP);
+		ecmd->advertising = ADVERTISED_TP;
+
+		if (hw->autoneg == 1) {
+			ecmd->advertising |= ADVERTISED_Autoneg;
+			/* the e1000 autoneg seems to match ethtool nicely */
+			ecmd->advertising |= hw->autoneg_advertised;
+		}
+
+		ecmd->port = PORT_TP;
+		ecmd->phy_address = hw->phy_addr;
+
+		if (hw->mac_type == e1000_82543)
+			ecmd->transceiver = XCVR_EXTERNAL;
+		else
+			ecmd->transceiver = XCVR_INTERNAL;
+
+	} else {
+		ecmd->supported   = (SUPPORTED_1000baseT_Full |
+				     SUPPORTED_FIBRE |
+				     SUPPORTED_Autoneg);
+
+		ecmd->advertising = (ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg);
+
+		ecmd->port = PORT_FIBRE;
+
+		if (hw->mac_type >= e1000_82545)
+			ecmd->transceiver = XCVR_INTERNAL;
+		else
+			ecmd->transceiver = XCVR_EXTERNAL;
+	}
+
+	if (er32(STATUS) & E1000_STATUS_LU) {
+
+		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+		                                   &adapter->link_duplex);
+		ecmd->speed = adapter->link_speed;
+
+		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
+		 *          and HALF_DUPLEX != DUPLEX_HALF */
+
+		if (adapter->link_duplex == FULL_DUPLEX)
+			ecmd->duplex = DUPLEX_FULL;
+		else
+			ecmd->duplex = DUPLEX_HALF;
+	} else {
+		ecmd->speed = -1;
+		ecmd->duplex = -1;
+	}
+
+	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
+			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+	return 0;
+}
+
+static int e1000_set_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (ecmd->autoneg == AUTONEG_ENABLE) {
+		hw->autoneg = 1;
+		if (hw->media_type == e1000_media_type_fiber)
+			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg;
+		else
+			hw->autoneg_advertised = ecmd->advertising |
+			                         ADVERTISED_TP |
+			                         ADVERTISED_Autoneg;
+		ecmd->advertising = hw->autoneg_advertised;
+	} else
+		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
+			clear_bit(__E1000_RESETTING, &adapter->flags);
+			return -EINVAL;
+		}
+
+	/* reset the link */
+
+	if (netif_running(adapter->netdev)) {
+		e1000_down(adapter);
+		e1000_up(adapter);
+	} else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+}
+
+static u32 e1000_get_link(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/*
+	 * If the link is not reported up to netdev, interrupts are disabled,
+	 * and so the physical link state may have changed since we last
+	 * looked. Set get_link_status to make sure that the true link
+	 * state is interrogated, rather than pulling a cached and possibly
+	 * stale link state from the driver.
+	 */
+	if (!netif_carrier_ok(netdev))
+		adapter->hw.get_link_status = 1;
+
+	return e1000_has_link(adapter);
+}
+
+static void e1000_get_pauseparam(struct net_device *netdev,
+				 struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	pause->autoneg =
+		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+	if (hw->fc == E1000_FC_RX_PAUSE)
+		pause->rx_pause = 1;
+	else if (hw->fc == E1000_FC_TX_PAUSE)
+		pause->tx_pause = 1;
+	else if (hw->fc == E1000_FC_FULL) {
+		pause->rx_pause = 1;
+		pause->tx_pause = 1;
+	}
+}
+
+static int e1000_set_pauseparam(struct net_device *netdev,
+				struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 0;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	adapter->fc_autoneg = pause->autoneg;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_FULL;
+	else if (pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_RX_PAUSE;
+	else if (!pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_TX_PAUSE;
+	else if (!pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_NONE;
+
+	hw->original_fc = hw->fc;
+
+	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+		if (netif_running(adapter->netdev)) {
+			e1000_down(adapter);
+			e1000_up(adapter);
+		} else
+			e1000_reset(adapter);
+	} else
+		retval = ((hw->media_type == e1000_media_type_fiber) ?
+			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return retval;
+}
+
+static u32 e1000_get_rx_csum(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->rx_csum;
+}
+
+static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	adapter->rx_csum = data;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	else
+		e1000_reset(adapter);
+	return 0;
+}
+
+static u32 e1000_get_tx_csum(struct net_device *netdev)
+{
+	return (netdev->features & NETIF_F_HW_CSUM) != 0;
+}
+
+static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82543) {
+		if (!data)
+			return -EINVAL;
+		return 0;
+	}
+
+	if (data)
+		netdev->features |= NETIF_F_HW_CSUM;
+	else
+		netdev->features &= ~NETIF_F_HW_CSUM;
+
+	return 0;
+}
+
+static int e1000_set_tso(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if ((hw->mac_type < e1000_82544) ||
+	    (hw->mac_type == e1000_82547))
+		return data ? -EINVAL : 0;
+
+	if (data)
+		netdev->features |= NETIF_F_TSO;
+	else
+		netdev->features &= ~NETIF_F_TSO;
+
+	netdev->features &= ~NETIF_F_TSO6;
+
+	e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
+	adapter->tso_force = true;
+	return 0;
+}
+
+static u32 e1000_get_msglevel(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->msg_enable;
+}
+
+static void e1000_set_msglevel(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->msg_enable = data;
+}
+
+static int e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32
+	return E1000_REGS_LEN * sizeof(u32);
+}
+
+static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
+			   void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 *regs_buff = p;
+	u16 phy_data;
+
+	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
+
+	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
+
+	regs_buff[0]  = er32(CTRL);
+	regs_buff[1]  = er32(STATUS);
+
+	regs_buff[2]  = er32(RCTL);
+	regs_buff[3]  = er32(RDLEN);
+	regs_buff[4]  = er32(RDH);
+	regs_buff[5]  = er32(RDT);
+	regs_buff[6]  = er32(RDTR);
+
+	regs_buff[7]  = er32(TCTL);
+	regs_buff[8]  = er32(TDLEN);
+	regs_buff[9]  = er32(TDH);
+	regs_buff[10] = er32(TDT);
+	regs_buff[11] = er32(TIDV);
+
+	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
+	if (hw->phy_type == e1000_phy_igp) {
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_A);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_B);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[14] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_C);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[15] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_D);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[16] = (u32)phy_data; /* cable length */
+		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[18] = (u32)phy_data; /* cable polarity */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_PCS_INIT_REG);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[19] = (u32)phy_data; /* cable polarity */
+		regs_buff[20] = 0; /* polarity correction enabled (always) */
+		regs_buff[22] = 0; /* phy receive errors (unavailable) */
+		regs_buff[23] = regs_buff[18]; /* mdix mode */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+	} else {
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
+		regs_buff[18] = regs_buff[13]; /* cable polarity */
+		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[20] = regs_buff[17]; /* polarity correction */
+		/* phy receive errors */
+		regs_buff[22] = adapter->phy_stats.receive_errors;
+		regs_buff[23] = regs_buff[13]; /* mdix mode */
+	}
+	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
+	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
+	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
+	if (hw->mac_type >= e1000_82540 &&
+	    hw->media_type == e1000_media_type_copper) {
+		regs_buff[26] = er32(MANC);
+	}
+}
+
+static int e1000_get_eeprom_len(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	return hw->eeprom.word_size * 2;
+}
+
+static int e1000_get_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	int first_word, last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EINVAL;
+
+	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+	eeprom_buff = kmalloc(sizeof(u16) *
+			(last_word - first_word + 1), GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	if (hw->eeprom.type == e1000_eeprom_spi)
+		ret_val = e1000_read_eeprom(hw, first_word,
+					    last_word - first_word + 1,
+					    eeprom_buff);
+	else {
+		for (i = 0; i < last_word - first_word + 1; i++) {
+			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
+						    &eeprom_buff[i]);
+			if (ret_val)
+				break;
+		}
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
+			eeprom->len);
+	kfree(eeprom_buff);
+
+	return ret_val;
+}
+
+static int e1000_set_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	void *ptr;
+	int max_len, first_word, last_word, ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EOPNOTSUPP;
+
+	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
+		return -EFAULT;
+
+	max_len = hw->eeprom.word_size * 2;
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	ptr = (void *)eeprom_buff;
+
+	if (eeprom->offset & 1) {
+		/* need read/modify/write of first changed EEPROM word */
+		/* only the second byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, first_word, 1,
+					    &eeprom_buff[0]);
+		ptr++;
+	}
+	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
+		/* need read/modify/write of last changed EEPROM word */
+		/* only the first byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, last_word, 1,
+		                  &eeprom_buff[last_word - first_word]);
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(ptr, bytes, eeprom->len);
+
+	for (i = 0; i < last_word - first_word + 1; i++)
+		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+	ret_val = e1000_write_eeprom(hw, first_word,
+				     last_word - first_word + 1, eeprom_buff);
+
+	/* Update the checksum over the first part of the EEPROM if needed */
+	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
+		e1000_update_eeprom_checksum(hw);
+
+	kfree(eeprom_buff);
+	return ret_val;
+}
+
+static void e1000_get_drvinfo(struct net_device *netdev,
+			      struct ethtool_drvinfo *drvinfo)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	char firmware_version[32];
+
+	strncpy(drvinfo->driver,  e1000_driver_name, 32);
+	strncpy(drvinfo->version, e1000_driver_version, 32);
+
+	sprintf(firmware_version, "N/A");
+	strncpy(drvinfo->fw_version, firmware_version, 32);
+	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+	drvinfo->regdump_len = e1000_get_regs_len(netdev);
+	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void e1000_get_ringparam(struct net_device *netdev,
+				struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	struct e1000_rx_ring *rxdr = adapter->rx_ring;
+
+	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
+		E1000_MAX_82544_RXD;
+	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
+		E1000_MAX_82544_TXD;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rxdr->count;
+	ring->tx_pending = txdr->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e1000_set_ringparam(struct net_device *netdev,
+			       struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr, *tx_old;
+	struct e1000_rx_ring *rxdr, *rx_old;
+	int i, err;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (netif_running(adapter->netdev))
+		e1000_down(adapter);
+
+	tx_old = adapter->tx_ring;
+	rx_old = adapter->rx_ring;
+
+	err = -ENOMEM;
+	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!txdr)
+		goto err_alloc_tx;
+
+	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!rxdr)
+		goto err_alloc_rx;
+
+	adapter->tx_ring = txdr;
+	adapter->rx_ring = rxdr;
+
+	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
+	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_RXD : E1000_MAX_82544_RXD));
+	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
+	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_TXD : E1000_MAX_82544_TXD));
+	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		txdr[i].count = txdr->count;
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		rxdr[i].count = rxdr->count;
+
+	if (netif_running(adapter->netdev)) {
+		/* Try to get new resources before deleting old */
+		err = e1000_setup_all_rx_resources(adapter);
+		if (err)
+			goto err_setup_rx;
+		err = e1000_setup_all_tx_resources(adapter);
+		if (err)
+			goto err_setup_tx;
+
+		/* save the new, restore the old in order to free it,
+		 * then restore the new back again */
+
+		adapter->rx_ring = rx_old;
+		adapter->tx_ring = tx_old;
+		e1000_free_all_rx_resources(adapter);
+		e1000_free_all_tx_resources(adapter);
+		kfree(tx_old);
+		kfree(rx_old);
+		adapter->rx_ring = rxdr;
+		adapter->tx_ring = txdr;
+		err = e1000_up(adapter);
+		if (err)
+			goto err_setup;
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+err_setup_tx:
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	adapter->rx_ring = rx_old;
+	adapter->tx_ring = tx_old;
+	kfree(rxdr);
+err_alloc_rx:
+	kfree(txdr);
+err_alloc_tx:
+	e1000_up(adapter);
+err_setup:
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return err;
+}
+
+static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
+			     u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	static const u32 test[] =
+		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(test); i++) {
+		writel(write & test[i], address);
+		read = readl(address);
+		if (read != (write & test[i] & mask)) {
+			e_info("pattern test reg %04X failed: "
+			       "got 0x%08X expected 0x%08X\n",
+			       reg, read, (write & test[i] & mask));
+			*data = reg;
+			return true;
+		}
+	}
+	return false;
+}
+
+static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
+			      u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+
+	writel(write & mask, address);
+	read = readl(address);
+	if ((read & mask) != (write & mask)) {
+		e_err("set/check reg %04X test failed: "
+		      "got 0x%08X expected 0x%08X\n",
+		      reg, (read & mask), (write & mask));
+		*data = reg;
+		return true;
+	}
+	return false;
+}
+
+#define REG_PATTERN_TEST(reg, mask, write)			     \
+	do {							     \
+		if (reg_pattern_test(adapter, data,		     \
+			     (hw->mac_type >= e1000_82543)   \
+			     ? E1000_##reg : E1000_82542_##reg,	     \
+			     mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+#define REG_SET_AND_CHECK(reg, mask, write)			     \
+	do {							     \
+		if (reg_set_and_check(adapter, data,		     \
+			      (hw->mac_type >= e1000_82543)  \
+			      ? E1000_##reg : E1000_82542_##reg,     \
+			      mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
+{
+	u32 value, before, after;
+	u32 i, toggle;
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* The status register is Read Only, so a write should fail.
+	 * Some bits that get toggled are ignored.
+	 */
+
+	/* there are several bits on newer hardware that are r/w */
+	toggle = 0xFFFFF833;
+
+	before = er32(STATUS);
+	value = (er32(STATUS) & toggle);
+	ew32(STATUS, toggle);
+	after = er32(STATUS) & toggle;
+	if (value != after) {
+		e_err("failed STATUS register test got: "
+		      "0x%08X expected: 0x%08X\n", after, value);
+		*data = 1;
+		return 1;
+	}
+	/* restore previous status */
+	ew32(STATUS, before);
+
+	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+
+	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
+	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
+	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
+
+	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
+
+	before = 0x06DFB3FE;
+	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
+	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
+
+	if (hw->mac_type >= e1000_82543) {
+
+		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
+		value = E1000_RAR_ENTRIES;
+		for (i = 0; i < value; i++) {
+			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
+			                 0xFFFFFFFF);
+		}
+
+	} else {
+
+		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
+
+	}
+
+	value = E1000_MC_TBL_SIZE;
+	for (i = 0; i < value; i++)
+		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
+
+	*data = 0;
+	return 0;
+}
+
+static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 temp;
+	u16 checksum = 0;
+	u16 i;
+
+	*data = 0;
+	/* Read and add up the contents of the EEPROM */
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
+			*data = 1;
+			break;
+		}
+		checksum += temp;
+	}
+
+	/* If Checksum is not Correct return error else test passed */
+	if ((checksum != (u16)EEPROM_SUM) && !(*data))
+		*data = 2;
+
+	return *data;
+}
+
+static irqreturn_t e1000_test_intr(int irq, void *data)
+{
+	struct net_device *netdev = (struct net_device *)data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	adapter->test_icr |= er32(ICR);
+
+	return IRQ_HANDLED;
+}
+
+static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct net_device *netdev = adapter->netdev;
+	u32 mask, i = 0;
+	bool shared_int = true;
+	u32 irq = adapter->pdev->irq;
+	struct e1000_hw *hw = &adapter->hw;
+
+	*data = 0;
+
+	/* NOTE: we don't test MSI interrupts here, yet */
+	/* Hook up test interrupt handler just for this test */
+	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
+	                 netdev))
+		shared_int = false;
+	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
+	         netdev->name, netdev)) {
+		*data = 1;
+		return -1;
+	}
+	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Test each interrupt */
+	for (; i < 10; i++) {
+
+		/* Interrupt to test */
+		mask = 1 << i;
+
+		if (!shared_int) {
+			/* Disable the interrupt to be reported in
+			 * the cause register and then force the same
+			 * interrupt and see if one gets posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, mask);
+			ew32(ICS, mask);
+			msleep(10);
+
+			if (adapter->test_icr & mask) {
+				*data = 3;
+				break;
+			}
+		}
+
+		/* Enable the interrupt to be reported in
+		 * the cause register and then force the same
+		 * interrupt and see if one gets posted.  If
+		 * an interrupt was not posted to the bus, the
+		 * test failed.
+		 */
+		adapter->test_icr = 0;
+		ew32(IMS, mask);
+		ew32(ICS, mask);
+		msleep(10);
+
+		if (!(adapter->test_icr & mask)) {
+			*data = 4;
+			break;
+		}
+
+		if (!shared_int) {
+			/* Disable the other interrupts to be reported in
+			 * the cause register and then force the other
+			 * interrupts and see if any get posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, ~mask & 0x00007FFF);
+			ew32(ICS, ~mask & 0x00007FFF);
+			msleep(10);
+
+			if (adapter->test_icr) {
+				*data = 5;
+				break;
+			}
+		}
+	}
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Unhook test interrupt handler */
+	free_irq(irq, netdev);
+
+	return *data;
+}
+
+static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i;
+
+	if (txdr->desc && txdr->buffer_info) {
+		for (i = 0; i < txdr->count; i++) {
+			if (txdr->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+						 txdr->buffer_info[i].dma,
+						 txdr->buffer_info[i].length,
+						 DMA_TO_DEVICE);
+			if (txdr->buffer_info[i].skb)
+				dev_kfree_skb(txdr->buffer_info[i].skb);
+		}
+	}
+
+	if (rxdr->desc && rxdr->buffer_info) {
+		for (i = 0; i < rxdr->count; i++) {
+			if (rxdr->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+						 rxdr->buffer_info[i].dma,
+						 rxdr->buffer_info[i].length,
+						 DMA_FROM_DEVICE);
+			if (rxdr->buffer_info[i].skb)
+				dev_kfree_skb(rxdr->buffer_info[i].skb);
+		}
+	}
+
+	if (txdr->desc) {
+		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
+				  txdr->dma);
+		txdr->desc = NULL;
+	}
+	if (rxdr->desc) {
+		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
+				  rxdr->dma);
+		rxdr->desc = NULL;
+	}
+
+	kfree(txdr->buffer_info);
+	txdr->buffer_info = NULL;
+	kfree(rxdr->buffer_info);
+	rxdr->buffer_info = NULL;
+}
+
+static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	u32 rctl;
+	int i, ret_val;
+
+	/* Setup Tx descriptor ring and Tx buffers */
+
+	if (!txdr->count)
+		txdr->count = E1000_DEFAULT_TXD;
+
+	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!txdr->buffer_info) {
+		ret_val = 1;
+		goto err_nomem;
+	}
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
+					GFP_KERNEL);
+	if (!txdr->desc) {
+		ret_val = 2;
+		goto err_nomem;
+	}
+	memset(txdr->desc, 0, txdr->size);
+	txdr->next_to_use = txdr->next_to_clean = 0;
+
+	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
+	ew32(TDBAH, ((u64)txdr->dma >> 32));
+	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
+	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+	for (i = 0; i < txdr->count; i++) {
+		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
+		struct sk_buff *skb;
+		unsigned int size = 1024;
+
+		skb = alloc_skb(size, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 3;
+			goto err_nomem;
+		}
+		skb_put(skb, size);
+		txdr->buffer_info[i].skb = skb;
+		txdr->buffer_info[i].length = skb->len;
+		txdr->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data, skb->len,
+				       DMA_TO_DEVICE);
+		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
+		tx_desc->lower.data = cpu_to_le32(skb->len);
+		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+						   E1000_TXD_CMD_IFCS |
+						   E1000_TXD_CMD_RPS);
+		tx_desc->upper.data = 0;
+	}
+
+	/* Setup Rx descriptor ring and Rx buffers */
+
+	if (!rxdr->count)
+		rxdr->count = E1000_DEFAULT_RXD;
+
+	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!rxdr->buffer_info) {
+		ret_val = 4;
+		goto err_nomem;
+	}
+
+	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
+					GFP_KERNEL);
+	if (!rxdr->desc) {
+		ret_val = 5;
+		goto err_nomem;
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+	rxdr->next_to_use = rxdr->next_to_clean = 0;
+
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
+	ew32(RDBAH, ((u64)rxdr->dma >> 32));
+	ew32(RDLEN, rxdr->size);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+	ew32(RCTL, rctl);
+
+	for (i = 0; i < rxdr->count; i++) {
+		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
+		struct sk_buff *skb;
+
+		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 6;
+			goto err_nomem;
+		}
+		skb_reserve(skb, NET_IP_ALIGN);
+		rxdr->buffer_info[i].skb = skb;
+		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
+		rxdr->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data,
+				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
+		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
+		memset(skb->data, 0x00, skb->len);
+	}
+
+	return 0;
+
+err_nomem:
+	e1000_free_desc_rings(adapter);
+	return ret_val;
+}
+
+static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_write_phy_reg(hw, 29, 0x001F);
+	e1000_write_phy_reg(hw, 30, 0x8FFC);
+	e1000_write_phy_reg(hw, 29, 0x001A);
+	e1000_write_phy_reg(hw, 30, 0x8FF0);
+}
+
+static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg;
+
+	/* Because we reset the PHY above, we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock.  This
+	 * value defaults back to a 2.5MHz clock when the PHY is reset.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
+	e1000_write_phy_reg(hw,
+		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
+
+	/* In addition, because of the s/w reset above, we need to enable
+	 * CRS on TX.  This must be set for both full and half duplex
+	 * operation.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	e1000_write_phy_reg(hw,
+		M88E1000_PHY_SPEC_CTRL, phy_reg);
+}
+
+static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg;
+	u16 phy_reg;
+
+	/* Setup the Device Control Register for PHY loopback test. */
+
+	ctrl_reg = er32(CTRL);
+	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
+		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
+		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
+		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
+		     E1000_CTRL_FD);		/* Force Duplex to FULL */
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Read the PHY Specific Control Register (0x10) */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+
+	/* Clear Auto-Crossover bits in PHY Specific Control Register
+	 * (bits 6:5).
+	 */
+	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
+	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
+
+	/* Perform software reset on the PHY */
+	e1000_phy_reset(hw);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
+
+	/* Wait for reset to complete. */
+	udelay(500);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_phy_disable_receiver(adapter);
+
+	/* Set the loopback bit in the PHY control register. */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	phy_reg |= MII_CR_LOOPBACK;
+	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+
+	/* Setup TX_CLK and TX_CRS one more time. */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Check Phy Configuration */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	if (phy_reg != 0x4100)
+		 return 9;
+
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	if (phy_reg != 0x0070)
+		return 10;
+
+	e1000_read_phy_reg(hw, 29, &phy_reg);
+	if (phy_reg != 0x001A)
+		return 11;
+
+	return 0;
+}
+
+static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg = 0;
+	u32 stat_reg = 0;
+
+	hw->autoneg = false;
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Auto-MDI/MDIX Off */
+		e1000_write_phy_reg(hw,
+				    M88E1000_PHY_SPEC_CTRL, 0x0808);
+		/* reset to update Auto-MDI/MDIX */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
+		/* autoneg off */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
+	}
+
+	ctrl_reg = er32(CTRL);
+
+	/* force 1000, set loopback */
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
+
+	/* Now set up the MAC to the same speed/duplex as the PHY. */
+	ctrl_reg = er32(CTRL);
+	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			E1000_CTRL_FD);	 /* Force Duplex to FULL */
+
+	if (hw->media_type == e1000_media_type_copper &&
+	   hw->phy_type == e1000_phy_m88)
+		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+	else {
+		/* Set the ILOS bit on the fiber Nic is half
+		 * duplex link is detected. */
+		stat_reg = er32(STATUS);
+		if ((stat_reg & E1000_STATUS_FD) == 0)
+			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+	}
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Disable the receiver on the PHY so when a cable is plugged in, the
+	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+	 */
+	if (hw->phy_type == e1000_phy_m88)
+		e1000_phy_disable_receiver(adapter);
+
+	udelay(500);
+
+	return 0;
+}
+
+static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg = 0;
+	u16 count = 0;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->media_type == e1000_media_type_copper) {
+			/* Attempt to setup Loopback mode on Non-integrated PHY.
+			 * Some PHY registers get corrupted at random, so
+			 * attempt this 10 times.
+			 */
+			while (e1000_nonintegrated_phy_loopback(adapter) &&
+			      count++ < 10);
+			if (count < 11)
+				return 0;
+		}
+		break;
+
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		return e1000_integrated_phy_loopback(adapter);
+		break;
+	default:
+		/* Default PHY loopback work is to read the MII
+		 * control register and assert bit 14 (loopback mode).
+		 */
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		phy_reg |= MII_CR_LOOPBACK;
+		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+		return 0;
+		break;
+	}
+
+	return 8;
+}
+
+static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	if (hw->media_type == e1000_media_type_fiber ||
+	    hw->media_type == e1000_media_type_internal_serdes) {
+		switch (hw->mac_type) {
+		case e1000_82545:
+		case e1000_82546:
+		case e1000_82545_rev_3:
+		case e1000_82546_rev_3:
+			return e1000_set_phy_loopback(adapter);
+			break;
+		default:
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_LBM_TCVR;
+			ew32(RCTL, rctl);
+			return 0;
+		}
+	} else if (hw->media_type == e1000_media_type_copper)
+		return e1000_set_phy_loopback(adapter);
+
+	return 7;
+}
+
+static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	u16 phy_reg;
+
+	rctl = er32(RCTL);
+	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+	ew32(RCTL, rctl);
+
+	switch (hw->mac_type) {
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+	default:
+		hw->autoneg = true;
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		if (phy_reg & MII_CR_LOOPBACK) {
+			phy_reg &= ~MII_CR_LOOPBACK;
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+			e1000_phy_reset(hw);
+		}
+		break;
+	}
+}
+
+static void e1000_create_lbtest_frame(struct sk_buff *skb,
+				      unsigned int frame_size)
+{
+	memset(skb->data, 0xFF, frame_size);
+	frame_size &= ~1;
+	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int e1000_check_lbtest_frame(struct sk_buff *skb,
+				    unsigned int frame_size)
+{
+	frame_size &= ~1;
+	if (*(skb->data + 3) == 0xFF) {
+		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
+			return 0;
+		}
+	}
+	return 13;
+}
+
+static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i, j, k, l, lc, good_cnt, ret_val=0;
+	unsigned long time;
+
+	ew32(RDT, rxdr->count - 1);
+
+	/* Calculate the loop count based on the largest descriptor ring
+	 * The idea is to wrap the largest ring a number of times using 64
+	 * send/receive pairs during each loop
+	 */
+
+	if (rxdr->count <= txdr->count)
+		lc = ((txdr->count / 64) * 2) + 1;
+	else
+		lc = ((rxdr->count / 64) * 2) + 1;
+
+	k = l = 0;
+	for (j = 0; j <= lc; j++) { /* loop count loop */
+		for (i = 0; i < 64; i++) { /* send the packets */
+			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
+					1024);
+			dma_sync_single_for_device(&pdev->dev,
+						   txdr->buffer_info[k].dma,
+						   txdr->buffer_info[k].length,
+						   DMA_TO_DEVICE);
+			if (unlikely(++k == txdr->count)) k = 0;
+		}
+		ew32(TDT, k);
+		msleep(200);
+		time = jiffies; /* set the start time for the receive */
+		good_cnt = 0;
+		do { /* receive the sent packets */
+			dma_sync_single_for_cpu(&pdev->dev,
+						rxdr->buffer_info[l].dma,
+						rxdr->buffer_info[l].length,
+						DMA_FROM_DEVICE);
+
+			ret_val = e1000_check_lbtest_frame(
+					rxdr->buffer_info[l].skb,
+				   	1024);
+			if (!ret_val)
+				good_cnt++;
+			if (unlikely(++l == rxdr->count)) l = 0;
+			/* time + 20 msecs (200 msecs on 2.4) is more than
+			 * enough time to complete the receives, if it's
+			 * exceeded, break and error off
+			 */
+		} while (good_cnt < 64 && jiffies < (time + 20));
+		if (good_cnt != 64) {
+			ret_val = 13; /* ret_val is the same as mis-compare */
+			break;
+		}
+		if (jiffies >= (time + 2)) {
+			ret_val = 14; /* error code for time out error */
+			break;
+		}
+	} /* end loop count loop */
+	return ret_val;
+}
+
+static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
+{
+	*data = e1000_setup_desc_rings(adapter);
+	if (*data)
+		goto out;
+	*data = e1000_setup_loopback_test(adapter);
+	if (*data)
+		goto err_loopback;
+	*data = e1000_run_loopback_test(adapter);
+	e1000_loopback_cleanup(adapter);
+
+err_loopback:
+	e1000_free_desc_rings(adapter);
+out:
+	return *data;
+}
+
+static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	*data = 0;
+	if (hw->media_type == e1000_media_type_internal_serdes) {
+		int i = 0;
+		hw->serdes_has_link = false;
+
+		/* On some blade server designs, link establishment
+		 * could take as long as 2-3 minutes */
+		do {
+			e1000_check_for_link(hw);
+			if (hw->serdes_has_link)
+				return *data;
+			msleep(20);
+		} while (i++ < 3750);
+
+		*data = 1;
+	} else {
+		e1000_check_for_link(hw);
+		if (hw->autoneg)  /* if auto_neg is set wait for it */
+			msleep(4000);
+
+		if (!(er32(STATUS) & E1000_STATUS_LU)) {
+			*data = 1;
+		}
+	}
+	return *data;
+}
+
+static int e1000_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E1000_TEST_LEN;
+	case ETH_SS_STATS:
+		return E1000_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e1000_diag_test(struct net_device *netdev,
+			    struct ethtool_test *eth_test, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	bool if_running;
+
+	if (adapter->ecdev)
+		return;
+
+	if_running = netif_running(netdev);
+
+	set_bit(__E1000_TESTING, &adapter->flags);
+	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline tests */
+
+		/* save speed, duplex, autoneg settings */
+		u16 autoneg_advertised = hw->autoneg_advertised;
+		u8 forced_speed_duplex = hw->forced_speed_duplex;
+		u8 autoneg = hw->autoneg;
+
+		e_info("offline testing starting\n");
+
+		/* Link test performed before hardware reset so autoneg doesn't
+		 * interfere with test result */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		if (if_running)
+			/* indicate we're in test mode */
+			dev_close(netdev);
+		else
+			e1000_reset(adapter);
+
+		if (e1000_reg_test(adapter, &data[0]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_eeprom_test(adapter, &data[1]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_intr_test(adapter, &data[2]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		/* make sure the phy is powered up */
+		e1000_power_up_phy(adapter);
+		if (e1000_loopback_test(adapter, &data[3]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* restore speed, duplex, autoneg settings */
+		hw->autoneg_advertised = autoneg_advertised;
+		hw->forced_speed_duplex = forced_speed_duplex;
+		hw->autoneg = autoneg;
+
+		e1000_reset(adapter);
+		clear_bit(__E1000_TESTING, &adapter->flags);
+		if (if_running)
+			dev_open(netdev);
+	} else {
+		e_info("online testing starting\n");
+		/* Online tests */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* Online tests aren't run; pass by default */
+		data[0] = 0;
+		data[1] = 0;
+		data[2] = 0;
+		data[3] = 0;
+
+		clear_bit(__E1000_TESTING, &adapter->flags);
+	}
+	msleep_interruptible(4 * 1000);
+}
+
+static int e1000_wol_exclusion(struct e1000_adapter *adapter,
+			       struct ethtool_wolinfo *wol)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 1; /* fail by default */
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_PCIE:
+		/* these don't support WoL at all */
+		wol->supported = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events not supported on port B */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* quad port adapters only support WoL on port A */
+		if (!adapter->quad_port_a) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	default:
+		/* dual port cards only support WoL on port A from now on
+		 * unless it was enabled in the eeprom for port B
+		 * so exclude FUNC_1 ports from having WoL enabled */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
+		    !adapter->eeprom_wol) {
+			wol->supported = 0;
+			break;
+		}
+
+		retval = 0;
+	}
+
+	return retval;
+}
+
+static void e1000_get_wol(struct net_device *netdev,
+			  struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	wol->supported = WAKE_UCAST | WAKE_MCAST |
+	                 WAKE_BCAST | WAKE_MAGIC;
+	wol->wolopts = 0;
+
+	/* this function will set ->supported = 0 and return 1 if wol is not
+	 * supported by this hardware */
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return;
+
+	/* apply any specific unsupported masks here */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* KSP3 does not suppport UCAST wake-ups */
+		wol->supported &= ~WAKE_UCAST;
+
+		if (adapter->wol & E1000_WUFC_EX)
+			e_err("Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+		break;
+	default:
+		break;
+	}
+
+	if (adapter->wol & E1000_WUFC_EX)
+		wol->wolopts |= WAKE_UCAST;
+	if (adapter->wol & E1000_WUFC_MC)
+		wol->wolopts |= WAKE_MCAST;
+	if (adapter->wol & E1000_WUFC_BC)
+		wol->wolopts |= WAKE_BCAST;
+	if (adapter->wol & E1000_WUFC_MAG)
+		wol->wolopts |= WAKE_MAGIC;
+}
+
+static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
+		return -EOPNOTSUPP;
+
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return wol->wolopts ? -EOPNOTSUPP : 0;
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		if (wol->wolopts & WAKE_UCAST) {
+			e_err("Interface does not support "
+			      "directed (unicast) frame wake-up packets\n");
+			return -EOPNOTSUPP;
+		}
+		break;
+	default:
+		break;
+	}
+
+	/* these settings will always override what we currently have */
+	adapter->wol = 0;
+
+	if (wol->wolopts & WAKE_UCAST)
+		adapter->wol |= E1000_WUFC_EX;
+	if (wol->wolopts & WAKE_MCAST)
+		adapter->wol |= E1000_WUFC_MC;
+	if (wol->wolopts & WAKE_BCAST)
+		adapter->wol |= E1000_WUFC_BC;
+	if (wol->wolopts & WAKE_MAGIC)
+		adapter->wol |= E1000_WUFC_MAG;
+
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL	(HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON		0
+
+static void e1000_led_blink_callback(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+		e1000_led_off(hw);
+	else
+		e1000_led_on(hw);
+
+	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int e1000_phys_id(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (!data)
+		data = INT_MAX;
+
+	if (!adapter->blink_timer.function) {
+		init_timer(&adapter->blink_timer);
+		adapter->blink_timer.function = e1000_led_blink_callback;
+		adapter->blink_timer.data = (unsigned long)adapter;
+	}
+	e1000_setup_led(hw);
+	mod_timer(&adapter->blink_timer, jiffies);
+	msleep_interruptible(data * 1000);
+	del_timer_sync(&adapter->blink_timer);
+
+	e1000_led_off(hw);
+	clear_bit(E1000_LED_ON, &adapter->led_status);
+	e1000_cleanup_led(hw);
+
+	return 0;
+}
+
+static int e1000_get_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->hw.mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if (adapter->itr_setting <= 4)
+		ec->rx_coalesce_usecs = adapter->itr_setting;
+	else
+		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
+
+	return 0;
+}
+
+static int e1000_set_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
+	    ((ec->rx_coalesce_usecs > 4) &&
+	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
+	    (ec->rx_coalesce_usecs == 2))
+		return -EINVAL;
+
+	if (ec->rx_coalesce_usecs == 4) {
+		adapter->itr = adapter->itr_setting = 4;
+	} else if (ec->rx_coalesce_usecs <= 3) {
+		adapter->itr = 20000;
+		adapter->itr_setting = ec->rx_coalesce_usecs;
+	} else {
+		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
+		adapter->itr_setting = adapter->itr & ~3;
+	}
+
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+	else
+		ew32(ITR, 0);
+
+	return 0;
+}
+
+static int e1000_nway_reset(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	return 0;
+}
+
+static void e1000_get_ethtool_stats(struct net_device *netdev,
+				    struct ethtool_stats *stats, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int i;
+	char *p = NULL;
+
+	e1000_update_stats(adapter);
+	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+		switch (e1000_gstrings_stats[i].type) {
+		case NETDEV_STATS:
+			p = (char *) netdev +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		case E1000_STATS:
+			p = (char *) adapter +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		}
+
+		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
+	}
+/*	BUG_ON(i != E1000_STATS_LEN); */
+}
+
+static void e1000_get_strings(struct net_device *netdev, u32 stringset,
+			      u8 *data)
+{
+	u8 *p = data;
+	int i;
+
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e1000_gstrings_test,
+			sizeof(e1000_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+			memcpy(p, e1000_gstrings_stats[i].stat_string,
+			       ETH_GSTRING_LEN);
+			p += ETH_GSTRING_LEN;
+		}
+/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
+		break;
+	}
+}
+
+static const struct ethtool_ops e1000_ethtool_ops = {
+	.get_settings           = e1000_get_settings,
+	.set_settings           = e1000_set_settings,
+	.get_drvinfo            = e1000_get_drvinfo,
+	.get_regs_len           = e1000_get_regs_len,
+	.get_regs               = e1000_get_regs,
+	.get_wol                = e1000_get_wol,
+	.set_wol                = e1000_set_wol,
+	.get_msglevel           = e1000_get_msglevel,
+	.set_msglevel           = e1000_set_msglevel,
+	.nway_reset             = e1000_nway_reset,
+	.get_link               = e1000_get_link,
+	.get_eeprom_len         = e1000_get_eeprom_len,
+	.get_eeprom             = e1000_get_eeprom,
+	.set_eeprom             = e1000_set_eeprom,
+	.get_ringparam          = e1000_get_ringparam,
+	.set_ringparam          = e1000_set_ringparam,
+	.get_pauseparam         = e1000_get_pauseparam,
+	.set_pauseparam         = e1000_set_pauseparam,
+	.get_rx_csum            = e1000_get_rx_csum,
+	.set_rx_csum            = e1000_set_rx_csum,
+	.get_tx_csum            = e1000_get_tx_csum,
+	.set_tx_csum            = e1000_set_tx_csum,
+	.set_sg                 = ethtool_op_set_sg,
+	.set_tso                = e1000_set_tso,
+	.self_test              = e1000_diag_test,
+	.get_strings            = e1000_get_strings,
+	.phys_id                = e1000_phys_id,
+	.get_ethtool_stats      = e1000_get_ethtool_stats,
+	.get_sset_count         = e1000_get_sset_count,
+	.get_coalesce           = e1000_get_coalesce,
+	.set_coalesce           = e1000_set_coalesce,
+};
+
+void e1000_set_ethtool_ops(struct net_device *netdev)
+{
+	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_ethtool-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,1941 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include "e1000.h"
+#include <asm/uaccess.h>
+
+enum {NETDEV_STATS, E1000_STATS};
+
+struct e1000_stats {
+	char stat_string[ETH_GSTRING_LEN];
+	int type;
+	int sizeof_stat;
+	int stat_offset;
+};
+
+#define E1000_STAT(m)		E1000_STATS, \
+				sizeof(((struct e1000_adapter *)0)->m), \
+		      		offsetof(struct e1000_adapter, m)
+#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
+				sizeof(((struct net_device *)0)->m), \
+				offsetof(struct net_device, m)
+
+static const struct e1000_stats e1000_gstrings_stats[] = {
+	{ "rx_packets", E1000_STAT(stats.gprc) },
+	{ "tx_packets", E1000_STAT(stats.gptc) },
+	{ "rx_bytes", E1000_STAT(stats.gorcl) },
+	{ "tx_bytes", E1000_STAT(stats.gotcl) },
+	{ "rx_broadcast", E1000_STAT(stats.bprc) },
+	{ "tx_broadcast", E1000_STAT(stats.bptc) },
+	{ "rx_multicast", E1000_STAT(stats.mprc) },
+	{ "tx_multicast", E1000_STAT(stats.mptc) },
+	{ "rx_errors", E1000_STAT(stats.rxerrc) },
+	{ "tx_errors", E1000_STAT(stats.txerrc) },
+	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
+	{ "multicast", E1000_STAT(stats.mprc) },
+	{ "collisions", E1000_STAT(stats.colc) },
+	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
+	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
+	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
+	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
+	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
+	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
+	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
+	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
+	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
+	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
+	{ "tx_window_errors", E1000_STAT(stats.latecol) },
+	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
+	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
+	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
+	{ "tx_restart_queue", E1000_STAT(restart_queue) },
+	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
+	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
+	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
+	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
+	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
+	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
+	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
+};
+
+#define E1000_QUEUE_STATS_LEN 0
+#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
+#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Register test  (offline)", "Eeprom test    (offline)",
+	"Interrupt test (offline)", "Loopback test  (offline)",
+	"Link test   (on/offline)"
+};
+#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
+
+static int e1000_get_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->media_type == e1000_media_type_copper) {
+
+		ecmd->supported = (SUPPORTED_10baseT_Half |
+		                   SUPPORTED_10baseT_Full |
+		                   SUPPORTED_100baseT_Half |
+		                   SUPPORTED_100baseT_Full |
+		                   SUPPORTED_1000baseT_Full|
+		                   SUPPORTED_Autoneg |
+		                   SUPPORTED_TP);
+		ecmd->advertising = ADVERTISED_TP;
+
+		if (hw->autoneg == 1) {
+			ecmd->advertising |= ADVERTISED_Autoneg;
+			/* the e1000 autoneg seems to match ethtool nicely */
+			ecmd->advertising |= hw->autoneg_advertised;
+		}
+
+		ecmd->port = PORT_TP;
+		ecmd->phy_address = hw->phy_addr;
+
+		if (hw->mac_type == e1000_82543)
+			ecmd->transceiver = XCVR_EXTERNAL;
+		else
+			ecmd->transceiver = XCVR_INTERNAL;
+
+	} else {
+		ecmd->supported   = (SUPPORTED_1000baseT_Full |
+				     SUPPORTED_FIBRE |
+				     SUPPORTED_Autoneg);
+
+		ecmd->advertising = (ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg);
+
+		ecmd->port = PORT_FIBRE;
+
+		if (hw->mac_type >= e1000_82545)
+			ecmd->transceiver = XCVR_INTERNAL;
+		else
+			ecmd->transceiver = XCVR_EXTERNAL;
+	}
+
+	if (er32(STATUS) & E1000_STATUS_LU) {
+
+		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+		                                   &adapter->link_duplex);
+		ecmd->speed = adapter->link_speed;
+
+		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
+		 *          and HALF_DUPLEX != DUPLEX_HALF */
+
+		if (adapter->link_duplex == FULL_DUPLEX)
+			ecmd->duplex = DUPLEX_FULL;
+		else
+			ecmd->duplex = DUPLEX_HALF;
+	} else {
+		ecmd->speed = -1;
+		ecmd->duplex = -1;
+	}
+
+	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
+			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+	return 0;
+}
+
+static int e1000_set_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (ecmd->autoneg == AUTONEG_ENABLE) {
+		hw->autoneg = 1;
+		if (hw->media_type == e1000_media_type_fiber)
+			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg;
+		else
+			hw->autoneg_advertised = ecmd->advertising |
+			                         ADVERTISED_TP |
+			                         ADVERTISED_Autoneg;
+		ecmd->advertising = hw->autoneg_advertised;
+	} else
+		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
+			clear_bit(__E1000_RESETTING, &adapter->flags);
+			return -EINVAL;
+		}
+
+	/* reset the link */
+
+	if (netif_running(adapter->netdev)) {
+		e1000_down(adapter);
+		e1000_up(adapter);
+	} else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+}
+
+static u32 e1000_get_link(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/*
+	 * If the link is not reported up to netdev, interrupts are disabled,
+	 * and so the physical link state may have changed since we last
+	 * looked. Set get_link_status to make sure that the true link
+	 * state is interrogated, rather than pulling a cached and possibly
+	 * stale link state from the driver.
+	 */
+	if (!netif_carrier_ok(netdev))
+		adapter->hw.get_link_status = 1;
+
+	return e1000_has_link(adapter);
+}
+
+static void e1000_get_pauseparam(struct net_device *netdev,
+				 struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	pause->autoneg =
+		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+	if (hw->fc == E1000_FC_RX_PAUSE)
+		pause->rx_pause = 1;
+	else if (hw->fc == E1000_FC_TX_PAUSE)
+		pause->tx_pause = 1;
+	else if (hw->fc == E1000_FC_FULL) {
+		pause->rx_pause = 1;
+		pause->tx_pause = 1;
+	}
+}
+
+static int e1000_set_pauseparam(struct net_device *netdev,
+				struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 0;
+
+	adapter->fc_autoneg = pause->autoneg;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_FULL;
+	else if (pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_RX_PAUSE;
+	else if (!pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_TX_PAUSE;
+	else if (!pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_NONE;
+
+	hw->original_fc = hw->fc;
+
+	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+		if (netif_running(adapter->netdev)) {
+			e1000_down(adapter);
+			e1000_up(adapter);
+		} else
+			e1000_reset(adapter);
+	} else
+		retval = ((hw->media_type == e1000_media_type_fiber) ?
+			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return retval;
+}
+
+static u32 e1000_get_rx_csum(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->rx_csum;
+}
+
+static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->rx_csum = data;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	else
+		e1000_reset(adapter);
+	return 0;
+}
+
+static u32 e1000_get_tx_csum(struct net_device *netdev)
+{
+	return (netdev->features & NETIF_F_HW_CSUM) != 0;
+}
+
+static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82543) {
+		if (!data)
+			return -EINVAL;
+		return 0;
+	}
+
+	if (data)
+		netdev->features |= NETIF_F_HW_CSUM;
+	else
+		netdev->features &= ~NETIF_F_HW_CSUM;
+
+	return 0;
+}
+
+static int e1000_set_tso(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if ((hw->mac_type < e1000_82544) ||
+	    (hw->mac_type == e1000_82547))
+		return data ? -EINVAL : 0;
+
+	if (data)
+		netdev->features |= NETIF_F_TSO;
+	else
+		netdev->features &= ~NETIF_F_TSO;
+
+	netdev->features &= ~NETIF_F_TSO6;
+
+	e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
+	adapter->tso_force = true;
+	return 0;
+}
+
+static u32 e1000_get_msglevel(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->msg_enable;
+}
+
+static void e1000_set_msglevel(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->msg_enable = data;
+}
+
+static int e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32
+	return E1000_REGS_LEN * sizeof(u32);
+}
+
+static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
+			   void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 *regs_buff = p;
+	u16 phy_data;
+
+	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
+
+	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
+
+	regs_buff[0]  = er32(CTRL);
+	regs_buff[1]  = er32(STATUS);
+
+	regs_buff[2]  = er32(RCTL);
+	regs_buff[3]  = er32(RDLEN);
+	regs_buff[4]  = er32(RDH);
+	regs_buff[5]  = er32(RDT);
+	regs_buff[6]  = er32(RDTR);
+
+	regs_buff[7]  = er32(TCTL);
+	regs_buff[8]  = er32(TDLEN);
+	regs_buff[9]  = er32(TDH);
+	regs_buff[10] = er32(TDT);
+	regs_buff[11] = er32(TIDV);
+
+	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
+	if (hw->phy_type == e1000_phy_igp) {
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_A);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_B);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[14] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_C);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[15] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_D);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[16] = (u32)phy_data; /* cable length */
+		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[18] = (u32)phy_data; /* cable polarity */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_PCS_INIT_REG);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[19] = (u32)phy_data; /* cable polarity */
+		regs_buff[20] = 0; /* polarity correction enabled (always) */
+		regs_buff[22] = 0; /* phy receive errors (unavailable) */
+		regs_buff[23] = regs_buff[18]; /* mdix mode */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+	} else {
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
+		regs_buff[18] = regs_buff[13]; /* cable polarity */
+		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[20] = regs_buff[17]; /* polarity correction */
+		/* phy receive errors */
+		regs_buff[22] = adapter->phy_stats.receive_errors;
+		regs_buff[23] = regs_buff[13]; /* mdix mode */
+	}
+	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
+	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
+	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
+	if (hw->mac_type >= e1000_82540 &&
+	    hw->media_type == e1000_media_type_copper) {
+		regs_buff[26] = er32(MANC);
+	}
+}
+
+static int e1000_get_eeprom_len(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	return hw->eeprom.word_size * 2;
+}
+
+static int e1000_get_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	int first_word, last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EINVAL;
+
+	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+	eeprom_buff = kmalloc(sizeof(u16) *
+			(last_word - first_word + 1), GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	if (hw->eeprom.type == e1000_eeprom_spi)
+		ret_val = e1000_read_eeprom(hw, first_word,
+					    last_word - first_word + 1,
+					    eeprom_buff);
+	else {
+		for (i = 0; i < last_word - first_word + 1; i++) {
+			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
+						    &eeprom_buff[i]);
+			if (ret_val)
+				break;
+		}
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
+			eeprom->len);
+	kfree(eeprom_buff);
+
+	return ret_val;
+}
+
+static int e1000_set_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	void *ptr;
+	int max_len, first_word, last_word, ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EOPNOTSUPP;
+
+	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
+		return -EFAULT;
+
+	max_len = hw->eeprom.word_size * 2;
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	ptr = (void *)eeprom_buff;
+
+	if (eeprom->offset & 1) {
+		/* need read/modify/write of first changed EEPROM word */
+		/* only the second byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, first_word, 1,
+					    &eeprom_buff[0]);
+		ptr++;
+	}
+	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
+		/* need read/modify/write of last changed EEPROM word */
+		/* only the first byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, last_word, 1,
+		                  &eeprom_buff[last_word - first_word]);
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(ptr, bytes, eeprom->len);
+
+	for (i = 0; i < last_word - first_word + 1; i++)
+		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+	ret_val = e1000_write_eeprom(hw, first_word,
+				     last_word - first_word + 1, eeprom_buff);
+
+	/* Update the checksum over the first part of the EEPROM if needed */
+	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
+		e1000_update_eeprom_checksum(hw);
+
+	kfree(eeprom_buff);
+	return ret_val;
+}
+
+static void e1000_get_drvinfo(struct net_device *netdev,
+			      struct ethtool_drvinfo *drvinfo)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	char firmware_version[32];
+
+	strncpy(drvinfo->driver,  e1000_driver_name, 32);
+	strncpy(drvinfo->version, e1000_driver_version, 32);
+
+	sprintf(firmware_version, "N/A");
+	strncpy(drvinfo->fw_version, firmware_version, 32);
+	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+	drvinfo->regdump_len = e1000_get_regs_len(netdev);
+	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void e1000_get_ringparam(struct net_device *netdev,
+				struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	struct e1000_rx_ring *rxdr = adapter->rx_ring;
+
+	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
+		E1000_MAX_82544_RXD;
+	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
+		E1000_MAX_82544_TXD;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rxdr->count;
+	ring->tx_pending = txdr->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e1000_set_ringparam(struct net_device *netdev,
+			       struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr, *tx_old;
+	struct e1000_rx_ring *rxdr, *rx_old;
+	int i, err;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (netif_running(adapter->netdev))
+		e1000_down(adapter);
+
+	tx_old = adapter->tx_ring;
+	rx_old = adapter->rx_ring;
+
+	err = -ENOMEM;
+	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!txdr)
+		goto err_alloc_tx;
+
+	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!rxdr)
+		goto err_alloc_rx;
+
+	adapter->tx_ring = txdr;
+	adapter->rx_ring = rxdr;
+
+	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
+	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_RXD : E1000_MAX_82544_RXD));
+	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
+	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_TXD : E1000_MAX_82544_TXD));
+	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		txdr[i].count = txdr->count;
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		rxdr[i].count = rxdr->count;
+
+	if (netif_running(adapter->netdev)) {
+		/* Try to get new resources before deleting old */
+		err = e1000_setup_all_rx_resources(adapter);
+		if (err)
+			goto err_setup_rx;
+		err = e1000_setup_all_tx_resources(adapter);
+		if (err)
+			goto err_setup_tx;
+
+		/* save the new, restore the old in order to free it,
+		 * then restore the new back again */
+
+		adapter->rx_ring = rx_old;
+		adapter->tx_ring = tx_old;
+		e1000_free_all_rx_resources(adapter);
+		e1000_free_all_tx_resources(adapter);
+		kfree(tx_old);
+		kfree(rx_old);
+		adapter->rx_ring = rxdr;
+		adapter->tx_ring = txdr;
+		err = e1000_up(adapter);
+		if (err)
+			goto err_setup;
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+err_setup_tx:
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	adapter->rx_ring = rx_old;
+	adapter->tx_ring = tx_old;
+	kfree(rxdr);
+err_alloc_rx:
+	kfree(txdr);
+err_alloc_tx:
+	e1000_up(adapter);
+err_setup:
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return err;
+}
+
+static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
+			     u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	static const u32 test[] =
+		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(test); i++) {
+		writel(write & test[i], address);
+		read = readl(address);
+		if (read != (write & test[i] & mask)) {
+			e_info("pattern test reg %04X failed: "
+			       "got 0x%08X expected 0x%08X\n",
+			       reg, read, (write & test[i] & mask));
+			*data = reg;
+			return true;
+		}
+	}
+	return false;
+}
+
+static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
+			      u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+
+	writel(write & mask, address);
+	read = readl(address);
+	if ((read & mask) != (write & mask)) {
+		e_err("set/check reg %04X test failed: "
+		      "got 0x%08X expected 0x%08X\n",
+		      reg, (read & mask), (write & mask));
+		*data = reg;
+		return true;
+	}
+	return false;
+}
+
+#define REG_PATTERN_TEST(reg, mask, write)			     \
+	do {							     \
+		if (reg_pattern_test(adapter, data,		     \
+			     (hw->mac_type >= e1000_82543)   \
+			     ? E1000_##reg : E1000_82542_##reg,	     \
+			     mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+#define REG_SET_AND_CHECK(reg, mask, write)			     \
+	do {							     \
+		if (reg_set_and_check(adapter, data,		     \
+			      (hw->mac_type >= e1000_82543)  \
+			      ? E1000_##reg : E1000_82542_##reg,     \
+			      mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
+{
+	u32 value, before, after;
+	u32 i, toggle;
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* The status register is Read Only, so a write should fail.
+	 * Some bits that get toggled are ignored.
+	 */
+
+	/* there are several bits on newer hardware that are r/w */
+	toggle = 0xFFFFF833;
+
+	before = er32(STATUS);
+	value = (er32(STATUS) & toggle);
+	ew32(STATUS, toggle);
+	after = er32(STATUS) & toggle;
+	if (value != after) {
+		e_err("failed STATUS register test got: "
+		      "0x%08X expected: 0x%08X\n", after, value);
+		*data = 1;
+		return 1;
+	}
+	/* restore previous status */
+	ew32(STATUS, before);
+
+	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+
+	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
+	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
+	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
+
+	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
+
+	before = 0x06DFB3FE;
+	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
+	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
+
+	if (hw->mac_type >= e1000_82543) {
+
+		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
+		value = E1000_RAR_ENTRIES;
+		for (i = 0; i < value; i++) {
+			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
+			                 0xFFFFFFFF);
+		}
+
+	} else {
+
+		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
+
+	}
+
+	value = E1000_MC_TBL_SIZE;
+	for (i = 0; i < value; i++)
+		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
+
+	*data = 0;
+	return 0;
+}
+
+static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 temp;
+	u16 checksum = 0;
+	u16 i;
+
+	*data = 0;
+	/* Read and add up the contents of the EEPROM */
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
+			*data = 1;
+			break;
+		}
+		checksum += temp;
+	}
+
+	/* If Checksum is not Correct return error else test passed */
+	if ((checksum != (u16)EEPROM_SUM) && !(*data))
+		*data = 2;
+
+	return *data;
+}
+
+static irqreturn_t e1000_test_intr(int irq, void *data)
+{
+	struct net_device *netdev = (struct net_device *)data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	adapter->test_icr |= er32(ICR);
+
+	return IRQ_HANDLED;
+}
+
+static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct net_device *netdev = adapter->netdev;
+	u32 mask, i = 0;
+	bool shared_int = true;
+	u32 irq = adapter->pdev->irq;
+	struct e1000_hw *hw = &adapter->hw;
+
+	*data = 0;
+
+	/* NOTE: we don't test MSI interrupts here, yet */
+	/* Hook up test interrupt handler just for this test */
+	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
+	                 netdev))
+		shared_int = false;
+	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
+	         netdev->name, netdev)) {
+		*data = 1;
+		return -1;
+	}
+	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Test each interrupt */
+	for (; i < 10; i++) {
+
+		/* Interrupt to test */
+		mask = 1 << i;
+
+		if (!shared_int) {
+			/* Disable the interrupt to be reported in
+			 * the cause register and then force the same
+			 * interrupt and see if one gets posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, mask);
+			ew32(ICS, mask);
+			msleep(10);
+
+			if (adapter->test_icr & mask) {
+				*data = 3;
+				break;
+			}
+		}
+
+		/* Enable the interrupt to be reported in
+		 * the cause register and then force the same
+		 * interrupt and see if one gets posted.  If
+		 * an interrupt was not posted to the bus, the
+		 * test failed.
+		 */
+		adapter->test_icr = 0;
+		ew32(IMS, mask);
+		ew32(ICS, mask);
+		msleep(10);
+
+		if (!(adapter->test_icr & mask)) {
+			*data = 4;
+			break;
+		}
+
+		if (!shared_int) {
+			/* Disable the other interrupts to be reported in
+			 * the cause register and then force the other
+			 * interrupts and see if any get posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, ~mask & 0x00007FFF);
+			ew32(ICS, ~mask & 0x00007FFF);
+			msleep(10);
+
+			if (adapter->test_icr) {
+				*data = 5;
+				break;
+			}
+		}
+	}
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Unhook test interrupt handler */
+	free_irq(irq, netdev);
+
+	return *data;
+}
+
+static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i;
+
+	if (txdr->desc && txdr->buffer_info) {
+		for (i = 0; i < txdr->count; i++) {
+			if (txdr->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+						 txdr->buffer_info[i].dma,
+						 txdr->buffer_info[i].length,
+						 DMA_TO_DEVICE);
+			if (txdr->buffer_info[i].skb)
+				dev_kfree_skb(txdr->buffer_info[i].skb);
+		}
+	}
+
+	if (rxdr->desc && rxdr->buffer_info) {
+		for (i = 0; i < rxdr->count; i++) {
+			if (rxdr->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+						 rxdr->buffer_info[i].dma,
+						 rxdr->buffer_info[i].length,
+						 DMA_FROM_DEVICE);
+			if (rxdr->buffer_info[i].skb)
+				dev_kfree_skb(rxdr->buffer_info[i].skb);
+		}
+	}
+
+	if (txdr->desc) {
+		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
+				  txdr->dma);
+		txdr->desc = NULL;
+	}
+	if (rxdr->desc) {
+		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
+				  rxdr->dma);
+		rxdr->desc = NULL;
+	}
+
+	kfree(txdr->buffer_info);
+	txdr->buffer_info = NULL;
+	kfree(rxdr->buffer_info);
+	rxdr->buffer_info = NULL;
+}
+
+static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	u32 rctl;
+	int i, ret_val;
+
+	/* Setup Tx descriptor ring and Tx buffers */
+
+	if (!txdr->count)
+		txdr->count = E1000_DEFAULT_TXD;
+
+	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!txdr->buffer_info) {
+		ret_val = 1;
+		goto err_nomem;
+	}
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
+					GFP_KERNEL);
+	if (!txdr->desc) {
+		ret_val = 2;
+		goto err_nomem;
+	}
+	memset(txdr->desc, 0, txdr->size);
+	txdr->next_to_use = txdr->next_to_clean = 0;
+
+	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
+	ew32(TDBAH, ((u64)txdr->dma >> 32));
+	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
+	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+	for (i = 0; i < txdr->count; i++) {
+		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
+		struct sk_buff *skb;
+		unsigned int size = 1024;
+
+		skb = alloc_skb(size, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 3;
+			goto err_nomem;
+		}
+		skb_put(skb, size);
+		txdr->buffer_info[i].skb = skb;
+		txdr->buffer_info[i].length = skb->len;
+		txdr->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data, skb->len,
+				       DMA_TO_DEVICE);
+		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
+		tx_desc->lower.data = cpu_to_le32(skb->len);
+		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+						   E1000_TXD_CMD_IFCS |
+						   E1000_TXD_CMD_RPS);
+		tx_desc->upper.data = 0;
+	}
+
+	/* Setup Rx descriptor ring and Rx buffers */
+
+	if (!rxdr->count)
+		rxdr->count = E1000_DEFAULT_RXD;
+
+	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!rxdr->buffer_info) {
+		ret_val = 4;
+		goto err_nomem;
+	}
+
+	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
+					GFP_KERNEL);
+	if (!rxdr->desc) {
+		ret_val = 5;
+		goto err_nomem;
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+	rxdr->next_to_use = rxdr->next_to_clean = 0;
+
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
+	ew32(RDBAH, ((u64)rxdr->dma >> 32));
+	ew32(RDLEN, rxdr->size);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+	ew32(RCTL, rctl);
+
+	for (i = 0; i < rxdr->count; i++) {
+		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
+		struct sk_buff *skb;
+
+		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 6;
+			goto err_nomem;
+		}
+		skb_reserve(skb, NET_IP_ALIGN);
+		rxdr->buffer_info[i].skb = skb;
+		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
+		rxdr->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data,
+				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
+		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
+		memset(skb->data, 0x00, skb->len);
+	}
+
+	return 0;
+
+err_nomem:
+	e1000_free_desc_rings(adapter);
+	return ret_val;
+}
+
+static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_write_phy_reg(hw, 29, 0x001F);
+	e1000_write_phy_reg(hw, 30, 0x8FFC);
+	e1000_write_phy_reg(hw, 29, 0x001A);
+	e1000_write_phy_reg(hw, 30, 0x8FF0);
+}
+
+static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg;
+
+	/* Because we reset the PHY above, we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock.  This
+	 * value defaults back to a 2.5MHz clock when the PHY is reset.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
+	e1000_write_phy_reg(hw,
+		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
+
+	/* In addition, because of the s/w reset above, we need to enable
+	 * CRS on TX.  This must be set for both full and half duplex
+	 * operation.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	e1000_write_phy_reg(hw,
+		M88E1000_PHY_SPEC_CTRL, phy_reg);
+}
+
+static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg;
+	u16 phy_reg;
+
+	/* Setup the Device Control Register for PHY loopback test. */
+
+	ctrl_reg = er32(CTRL);
+	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
+		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
+		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
+		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
+		     E1000_CTRL_FD);		/* Force Duplex to FULL */
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Read the PHY Specific Control Register (0x10) */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+
+	/* Clear Auto-Crossover bits in PHY Specific Control Register
+	 * (bits 6:5).
+	 */
+	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
+	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
+
+	/* Perform software reset on the PHY */
+	e1000_phy_reset(hw);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
+
+	/* Wait for reset to complete. */
+	udelay(500);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_phy_disable_receiver(adapter);
+
+	/* Set the loopback bit in the PHY control register. */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	phy_reg |= MII_CR_LOOPBACK;
+	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+
+	/* Setup TX_CLK and TX_CRS one more time. */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Check Phy Configuration */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	if (phy_reg != 0x4100)
+		 return 9;
+
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	if (phy_reg != 0x0070)
+		return 10;
+
+	e1000_read_phy_reg(hw, 29, &phy_reg);
+	if (phy_reg != 0x001A)
+		return 11;
+
+	return 0;
+}
+
+static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg = 0;
+	u32 stat_reg = 0;
+
+	hw->autoneg = false;
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Auto-MDI/MDIX Off */
+		e1000_write_phy_reg(hw,
+				    M88E1000_PHY_SPEC_CTRL, 0x0808);
+		/* reset to update Auto-MDI/MDIX */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
+		/* autoneg off */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
+	}
+
+	ctrl_reg = er32(CTRL);
+
+	/* force 1000, set loopback */
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
+
+	/* Now set up the MAC to the same speed/duplex as the PHY. */
+	ctrl_reg = er32(CTRL);
+	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			E1000_CTRL_FD);	 /* Force Duplex to FULL */
+
+	if (hw->media_type == e1000_media_type_copper &&
+	   hw->phy_type == e1000_phy_m88)
+		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+	else {
+		/* Set the ILOS bit on the fiber Nic is half
+		 * duplex link is detected. */
+		stat_reg = er32(STATUS);
+		if ((stat_reg & E1000_STATUS_FD) == 0)
+			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+	}
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Disable the receiver on the PHY so when a cable is plugged in, the
+	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+	 */
+	if (hw->phy_type == e1000_phy_m88)
+		e1000_phy_disable_receiver(adapter);
+
+	udelay(500);
+
+	return 0;
+}
+
+static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg = 0;
+	u16 count = 0;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->media_type == e1000_media_type_copper) {
+			/* Attempt to setup Loopback mode on Non-integrated PHY.
+			 * Some PHY registers get corrupted at random, so
+			 * attempt this 10 times.
+			 */
+			while (e1000_nonintegrated_phy_loopback(adapter) &&
+			      count++ < 10);
+			if (count < 11)
+				return 0;
+		}
+		break;
+
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		return e1000_integrated_phy_loopback(adapter);
+		break;
+	default:
+		/* Default PHY loopback work is to read the MII
+		 * control register and assert bit 14 (loopback mode).
+		 */
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		phy_reg |= MII_CR_LOOPBACK;
+		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+		return 0;
+		break;
+	}
+
+	return 8;
+}
+
+static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	if (hw->media_type == e1000_media_type_fiber ||
+	    hw->media_type == e1000_media_type_internal_serdes) {
+		switch (hw->mac_type) {
+		case e1000_82545:
+		case e1000_82546:
+		case e1000_82545_rev_3:
+		case e1000_82546_rev_3:
+			return e1000_set_phy_loopback(adapter);
+			break;
+		default:
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_LBM_TCVR;
+			ew32(RCTL, rctl);
+			return 0;
+		}
+	} else if (hw->media_type == e1000_media_type_copper)
+		return e1000_set_phy_loopback(adapter);
+
+	return 7;
+}
+
+static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	u16 phy_reg;
+
+	rctl = er32(RCTL);
+	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+	ew32(RCTL, rctl);
+
+	switch (hw->mac_type) {
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+	default:
+		hw->autoneg = true;
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		if (phy_reg & MII_CR_LOOPBACK) {
+			phy_reg &= ~MII_CR_LOOPBACK;
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+			e1000_phy_reset(hw);
+		}
+		break;
+	}
+}
+
+static void e1000_create_lbtest_frame(struct sk_buff *skb,
+				      unsigned int frame_size)
+{
+	memset(skb->data, 0xFF, frame_size);
+	frame_size &= ~1;
+	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int e1000_check_lbtest_frame(struct sk_buff *skb,
+				    unsigned int frame_size)
+{
+	frame_size &= ~1;
+	if (*(skb->data + 3) == 0xFF) {
+		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
+			return 0;
+		}
+	}
+	return 13;
+}
+
+static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i, j, k, l, lc, good_cnt, ret_val=0;
+	unsigned long time;
+
+	ew32(RDT, rxdr->count - 1);
+
+	/* Calculate the loop count based on the largest descriptor ring
+	 * The idea is to wrap the largest ring a number of times using 64
+	 * send/receive pairs during each loop
+	 */
+
+	if (rxdr->count <= txdr->count)
+		lc = ((txdr->count / 64) * 2) + 1;
+	else
+		lc = ((rxdr->count / 64) * 2) + 1;
+
+	k = l = 0;
+	for (j = 0; j <= lc; j++) { /* loop count loop */
+		for (i = 0; i < 64; i++) { /* send the packets */
+			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
+					1024);
+			dma_sync_single_for_device(&pdev->dev,
+						   txdr->buffer_info[k].dma,
+						   txdr->buffer_info[k].length,
+						   DMA_TO_DEVICE);
+			if (unlikely(++k == txdr->count)) k = 0;
+		}
+		ew32(TDT, k);
+		msleep(200);
+		time = jiffies; /* set the start time for the receive */
+		good_cnt = 0;
+		do { /* receive the sent packets */
+			dma_sync_single_for_cpu(&pdev->dev,
+						rxdr->buffer_info[l].dma,
+						rxdr->buffer_info[l].length,
+						DMA_FROM_DEVICE);
+
+			ret_val = e1000_check_lbtest_frame(
+					rxdr->buffer_info[l].skb,
+				   	1024);
+			if (!ret_val)
+				good_cnt++;
+			if (unlikely(++l == rxdr->count)) l = 0;
+			/* time + 20 msecs (200 msecs on 2.4) is more than
+			 * enough time to complete the receives, if it's
+			 * exceeded, break and error off
+			 */
+		} while (good_cnt < 64 && jiffies < (time + 20));
+		if (good_cnt != 64) {
+			ret_val = 13; /* ret_val is the same as mis-compare */
+			break;
+		}
+		if (jiffies >= (time + 2)) {
+			ret_val = 14; /* error code for time out error */
+			break;
+		}
+	} /* end loop count loop */
+	return ret_val;
+}
+
+static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
+{
+	*data = e1000_setup_desc_rings(adapter);
+	if (*data)
+		goto out;
+	*data = e1000_setup_loopback_test(adapter);
+	if (*data)
+		goto err_loopback;
+	*data = e1000_run_loopback_test(adapter);
+	e1000_loopback_cleanup(adapter);
+
+err_loopback:
+	e1000_free_desc_rings(adapter);
+out:
+	return *data;
+}
+
+static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	*data = 0;
+	if (hw->media_type == e1000_media_type_internal_serdes) {
+		int i = 0;
+		hw->serdes_has_link = false;
+
+		/* On some blade server designs, link establishment
+		 * could take as long as 2-3 minutes */
+		do {
+			e1000_check_for_link(hw);
+			if (hw->serdes_has_link)
+				return *data;
+			msleep(20);
+		} while (i++ < 3750);
+
+		*data = 1;
+	} else {
+		e1000_check_for_link(hw);
+		if (hw->autoneg)  /* if auto_neg is set wait for it */
+			msleep(4000);
+
+		if (!(er32(STATUS) & E1000_STATUS_LU)) {
+			*data = 1;
+		}
+	}
+	return *data;
+}
+
+static int e1000_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E1000_TEST_LEN;
+	case ETH_SS_STATS:
+		return E1000_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e1000_diag_test(struct net_device *netdev,
+			    struct ethtool_test *eth_test, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	bool if_running = netif_running(netdev);
+
+	set_bit(__E1000_TESTING, &adapter->flags);
+	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline tests */
+
+		/* save speed, duplex, autoneg settings */
+		u16 autoneg_advertised = hw->autoneg_advertised;
+		u8 forced_speed_duplex = hw->forced_speed_duplex;
+		u8 autoneg = hw->autoneg;
+
+		e_info("offline testing starting\n");
+
+		/* Link test performed before hardware reset so autoneg doesn't
+		 * interfere with test result */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		if (if_running)
+			/* indicate we're in test mode */
+			dev_close(netdev);
+		else
+			e1000_reset(adapter);
+
+		if (e1000_reg_test(adapter, &data[0]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_eeprom_test(adapter, &data[1]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_intr_test(adapter, &data[2]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		/* make sure the phy is powered up */
+		e1000_power_up_phy(adapter);
+		if (e1000_loopback_test(adapter, &data[3]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* restore speed, duplex, autoneg settings */
+		hw->autoneg_advertised = autoneg_advertised;
+		hw->forced_speed_duplex = forced_speed_duplex;
+		hw->autoneg = autoneg;
+
+		e1000_reset(adapter);
+		clear_bit(__E1000_TESTING, &adapter->flags);
+		if (if_running)
+			dev_open(netdev);
+	} else {
+		e_info("online testing starting\n");
+		/* Online tests */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* Online tests aren't run; pass by default */
+		data[0] = 0;
+		data[1] = 0;
+		data[2] = 0;
+		data[3] = 0;
+
+		clear_bit(__E1000_TESTING, &adapter->flags);
+	}
+	msleep_interruptible(4 * 1000);
+}
+
+static int e1000_wol_exclusion(struct e1000_adapter *adapter,
+			       struct ethtool_wolinfo *wol)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 1; /* fail by default */
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_PCIE:
+		/* these don't support WoL at all */
+		wol->supported = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events not supported on port B */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* quad port adapters only support WoL on port A */
+		if (!adapter->quad_port_a) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	default:
+		/* dual port cards only support WoL on port A from now on
+		 * unless it was enabled in the eeprom for port B
+		 * so exclude FUNC_1 ports from having WoL enabled */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
+		    !adapter->eeprom_wol) {
+			wol->supported = 0;
+			break;
+		}
+
+		retval = 0;
+	}
+
+	return retval;
+}
+
+static void e1000_get_wol(struct net_device *netdev,
+			  struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	wol->supported = WAKE_UCAST | WAKE_MCAST |
+	                 WAKE_BCAST | WAKE_MAGIC;
+	wol->wolopts = 0;
+
+	/* this function will set ->supported = 0 and return 1 if wol is not
+	 * supported by this hardware */
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return;
+
+	/* apply any specific unsupported masks here */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* KSP3 does not suppport UCAST wake-ups */
+		wol->supported &= ~WAKE_UCAST;
+
+		if (adapter->wol & E1000_WUFC_EX)
+			e_err("Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+		break;
+	default:
+		break;
+	}
+
+	if (adapter->wol & E1000_WUFC_EX)
+		wol->wolopts |= WAKE_UCAST;
+	if (adapter->wol & E1000_WUFC_MC)
+		wol->wolopts |= WAKE_MCAST;
+	if (adapter->wol & E1000_WUFC_BC)
+		wol->wolopts |= WAKE_BCAST;
+	if (adapter->wol & E1000_WUFC_MAG)
+		wol->wolopts |= WAKE_MAGIC;
+}
+
+static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
+		return -EOPNOTSUPP;
+
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return wol->wolopts ? -EOPNOTSUPP : 0;
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		if (wol->wolopts & WAKE_UCAST) {
+			e_err("Interface does not support "
+			      "directed (unicast) frame wake-up packets\n");
+			return -EOPNOTSUPP;
+		}
+		break;
+	default:
+		break;
+	}
+
+	/* these settings will always override what we currently have */
+	adapter->wol = 0;
+
+	if (wol->wolopts & WAKE_UCAST)
+		adapter->wol |= E1000_WUFC_EX;
+	if (wol->wolopts & WAKE_MCAST)
+		adapter->wol |= E1000_WUFC_MC;
+	if (wol->wolopts & WAKE_BCAST)
+		adapter->wol |= E1000_WUFC_BC;
+	if (wol->wolopts & WAKE_MAGIC)
+		adapter->wol |= E1000_WUFC_MAG;
+
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL	(HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON		0
+
+static void e1000_led_blink_callback(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+		e1000_led_off(hw);
+	else
+		e1000_led_on(hw);
+
+	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int e1000_phys_id(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (!data)
+		data = INT_MAX;
+
+	if (!adapter->blink_timer.function) {
+		init_timer(&adapter->blink_timer);
+		adapter->blink_timer.function = e1000_led_blink_callback;
+		adapter->blink_timer.data = (unsigned long)adapter;
+	}
+	e1000_setup_led(hw);
+	mod_timer(&adapter->blink_timer, jiffies);
+	msleep_interruptible(data * 1000);
+	del_timer_sync(&adapter->blink_timer);
+
+	e1000_led_off(hw);
+	clear_bit(E1000_LED_ON, &adapter->led_status);
+	e1000_cleanup_led(hw);
+
+	return 0;
+}
+
+static int e1000_get_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->hw.mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if (adapter->itr_setting <= 4)
+		ec->rx_coalesce_usecs = adapter->itr_setting;
+	else
+		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
+
+	return 0;
+}
+
+static int e1000_set_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
+	    ((ec->rx_coalesce_usecs > 4) &&
+	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
+	    (ec->rx_coalesce_usecs == 2))
+		return -EINVAL;
+
+	if (ec->rx_coalesce_usecs == 4) {
+		adapter->itr = adapter->itr_setting = 4;
+	} else if (ec->rx_coalesce_usecs <= 3) {
+		adapter->itr = 20000;
+		adapter->itr_setting = ec->rx_coalesce_usecs;
+	} else {
+		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
+		adapter->itr_setting = adapter->itr & ~3;
+	}
+
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+	else
+		ew32(ITR, 0);
+
+	return 0;
+}
+
+static int e1000_nway_reset(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	return 0;
+}
+
+static void e1000_get_ethtool_stats(struct net_device *netdev,
+				    struct ethtool_stats *stats, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int i;
+	char *p = NULL;
+
+	e1000_update_stats(adapter);
+	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+		switch (e1000_gstrings_stats[i].type) {
+		case NETDEV_STATS:
+			p = (char *) netdev +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		case E1000_STATS:
+			p = (char *) adapter +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		}
+
+		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
+	}
+/*	BUG_ON(i != E1000_STATS_LEN); */
+}
+
+static void e1000_get_strings(struct net_device *netdev, u32 stringset,
+			      u8 *data)
+{
+	u8 *p = data;
+	int i;
+
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e1000_gstrings_test,
+			sizeof(e1000_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+			memcpy(p, e1000_gstrings_stats[i].stat_string,
+			       ETH_GSTRING_LEN);
+			p += ETH_GSTRING_LEN;
+		}
+/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
+		break;
+	}
+}
+
+static const struct ethtool_ops e1000_ethtool_ops = {
+	.get_settings           = e1000_get_settings,
+	.set_settings           = e1000_set_settings,
+	.get_drvinfo            = e1000_get_drvinfo,
+	.get_regs_len           = e1000_get_regs_len,
+	.get_regs               = e1000_get_regs,
+	.get_wol                = e1000_get_wol,
+	.set_wol                = e1000_set_wol,
+	.get_msglevel           = e1000_get_msglevel,
+	.set_msglevel           = e1000_set_msglevel,
+	.nway_reset             = e1000_nway_reset,
+	.get_link               = e1000_get_link,
+	.get_eeprom_len         = e1000_get_eeprom_len,
+	.get_eeprom             = e1000_get_eeprom,
+	.set_eeprom             = e1000_set_eeprom,
+	.get_ringparam          = e1000_get_ringparam,
+	.set_ringparam          = e1000_set_ringparam,
+	.get_pauseparam         = e1000_get_pauseparam,
+	.set_pauseparam         = e1000_set_pauseparam,
+	.get_rx_csum            = e1000_get_rx_csum,
+	.set_rx_csum            = e1000_set_rx_csum,
+	.get_tx_csum            = e1000_get_tx_csum,
+	.set_tx_csum            = e1000_set_tx_csum,
+	.set_sg                 = ethtool_op_set_sg,
+	.set_tso                = e1000_set_tso,
+	.self_test              = e1000_diag_test,
+	.get_strings            = e1000_get_strings,
+	.phys_id                = e1000_phys_id,
+	.get_ethtool_stats      = e1000_get_ethtool_stats,
+	.get_sset_count         = e1000_get_sset_count,
+	.get_coalesce           = e1000_get_coalesce,
+	.set_coalesce           = e1000_set_coalesce,
+};
+
+void e1000_set_ethtool_ops(struct net_device *netdev)
+{
+	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,5632 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+ */
+
+/* e1000_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "e1000-2.6.35-ethercat.h"
+
+static s32 e1000_check_downshift(struct e1000_hw *hw);
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity);
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
+static void e1000_clear_vfta(struct e1000_hw *hw);
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
+					      bool link_up);
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length);
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static s32 e1000_id_led_init(struct e1000_hw *hw);
+static void e1000_init_rx_addrs(struct e1000_hw *hw);
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
+static s32 e1000_set_phy_type(struct e1000_hw *hw);
+static void e1000_phy_init_script(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
+				  u16 words, u16 *data);
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data);
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data);
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data);
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed(struct e1000_hw *hw);
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode(struct e1000_hw *hw);
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data);
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data);
+
+/* IGP cable length table */
+static const
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
+	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+	    100,
+	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+	    110, 110,
+	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
+	    120, 120
+};
+
+static DEFINE_SPINLOCK(e1000_eeprom_lock);
+
+/**
+ * e1000_set_phy_type - Set the phy type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_set_phy_type(struct e1000_hw *hw)
+{
+	e_dbg("e1000_set_phy_type");
+
+	if (hw->mac_type == e1000_undefined)
+		return -E1000_ERR_PHY_TYPE;
+
+	switch (hw->phy_id) {
+	case M88E1000_E_PHY_ID:
+	case M88E1000_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+	case M88E1111_I_PHY_ID:
+		hw->phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID:
+		if (hw->mac_type == e1000_82541 ||
+		    hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			hw->phy_type = e1000_phy_igp;
+			break;
+		}
+	default:
+		/* Should never have loaded on this device */
+		hw->phy_type = e1000_phy_undefined;
+		return -E1000_ERR_PHY_TYPE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+	u32 ret_val __attribute__ ((unused));
+	u16 phy_saved_data;
+
+	e_dbg("e1000_phy_init_script");
+
+	if (hw->phy_init_script) {
+		msleep(20);
+
+		/* Save off the current value of register 0x2F5B to be restored at
+		 * the end of this routine. */
+		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+		/* Disabled the PHY transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+		msleep(20);
+
+		e1000_write_phy_reg(hw, 0x0000, 0x0140);
+		msleep(5);
+
+		switch (hw->mac_type) {
+		case e1000_82541:
+		case e1000_82547:
+			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+			e1000_write_phy_reg(hw, 0x2010, 0x0008);
+			break;
+
+		case e1000_82541_rev_2:
+		case e1000_82547_rev_2:
+			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+			break;
+		default:
+			break;
+		}
+
+		e1000_write_phy_reg(hw, 0x0000, 0x3300);
+		msleep(20);
+
+		/* Now enable the transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (hw->mac_type == e1000_82547) {
+			u16 fused, fine, coarse;
+
+			/* Move to analog registers page */
+			e1000_read_phy_reg(hw,
+					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+					   &fused);
+
+			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+				e1000_read_phy_reg(hw,
+						   IGP01E1000_ANALOG_FUSE_STATUS,
+						   &fused);
+
+				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+				coarse =
+				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+				if (coarse >
+				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+					coarse -=
+					    IGP01E1000_ANALOG_FUSE_COARSE_10;
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+				} else if (coarse ==
+					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+				fused =
+				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+				    (coarse &
+				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_CONTROL,
+						    fused);
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_BYPASS,
+						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+			}
+		}
+	}
+}
+
+/**
+ * e1000_set_mac_type - Set the mac type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+	e_dbg("e1000_set_mac_type");
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+		switch (hw->revision_id) {
+		case E1000_82542_2_0_REV_ID:
+			hw->mac_type = e1000_82542_rev2_0;
+			break;
+		case E1000_82542_2_1_REV_ID:
+			hw->mac_type = e1000_82542_rev2_1;
+			break;
+		default:
+			/* Invalid 82542 revision ID */
+			return -E1000_ERR_MAC_TYPE;
+		}
+		break;
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		hw->mac_type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		hw->mac_type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		hw->mac_type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		hw->mac_type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		hw->mac_type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		hw->mac_type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		hw->mac_type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		hw->mac_type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		hw->mac_type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		hw->mac_type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		hw->mac_type = e1000_82547_rev_2;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		return -E1000_ERR_MAC_TYPE;
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->asf_firmware_present = true;
+		break;
+	default:
+		break;
+	}
+
+	/* The 82543 chip does not count tx_carrier_errors properly in
+	 * FD mode
+	 */
+	if (hw->mac_type == e1000_82543)
+		hw->bad_tx_carr_stats_fd = true;
+
+	if (hw->mac_type > e1000_82544)
+		hw->has_smbus = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_media_type - Set media type and TBI compatibility.
+ * @hw: Struct containing variables accessed by shared code
+ */
+void e1000_set_media_type(struct e1000_hw *hw)
+{
+	u32 status;
+
+	e_dbg("e1000_set_media_type");
+
+	if (hw->mac_type != e1000_82543) {
+		/* tbi_compatibility is only valid on 82543 */
+		hw->tbi_compatibility_en = false;
+	}
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		switch (hw->mac_type) {
+		case e1000_82542_rev2_0:
+		case e1000_82542_rev2_1:
+			hw->media_type = e1000_media_type_fiber;
+			break;
+		default:
+			status = er32(STATUS);
+			if (status & E1000_STATUS_TBIMODE) {
+				hw->media_type = e1000_media_type_fiber;
+				/* tbi_compatibility not valid on fiber */
+				hw->tbi_compatibility_en = false;
+			} else {
+				hw->media_type = e1000_media_type_copper;
+			}
+			break;
+		}
+	}
+}
+
+/**
+ * e1000_reset_hw: reset the hardware completely
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ */
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 ctrl_ext;
+	u32 icr __attribute__ ((unused));
+	u32 manc;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	e_dbg("e1000_reset_hw");
+
+	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		e_dbg("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC with
+	 * the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH();
+
+	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+	hw->tbi_compatibility_on = false;
+
+	/* Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msleep(10);
+
+	ctrl = er32(CTRL);
+
+	/* Must reset the PHY before resetting the MAC */
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		msleep(5);
+	}
+
+	/* Issue a global reset to the MAC.  This will reset the chip's
+	 * transmit, receive, DMA, and link units.  It will not effect
+	 * the current PCI configuration.  The global reset bit is self-
+	 * clearing, and should clear within a microsecond.
+	 */
+	e_dbg("Issuing a global reset to MAC\n");
+
+	switch (hw->mac_type) {
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/* These controllers can't ack the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround to issue the reset */
+		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		/* Reset is performed on a shadow of the control register */
+		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
+		break;
+	default:
+		ew32(CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	}
+
+	/* After MAC reset, force reload of EEPROM to restore power-on settings to
+	 * device.  Later controllers reload the EEPROM automatically, so just wait
+	 * for reload to complete.
+	 */
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* Wait for reset to complete */
+		udelay(10);
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		/* Wait for EEPROM reload */
+		msleep(2);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		/* Wait for EEPROM reload */
+		msleep(20);
+		break;
+	default:
+		/* Auto read done will delay 5ms or poll based on mac type */
+		ret_val = e1000_get_auto_rd_done(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	}
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	if (hw->mac_type >= e1000_82540) {
+		manc = er32(MANC);
+		manc &= ~(E1000_MANC_ARP_EN);
+		ew32(MANC, manc);
+	}
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		e1000_phy_init_script(hw);
+
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Clear any pending interrupt events. */
+	icr = er32(ICR);
+
+	/* If MWI was previously enabled, reenable it. */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw: Performs basic configuration of the adapter.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ */
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 i;
+	s32 ret_val;
+	u32 mta_size;
+	u32 ctrl_ext;
+
+	e_dbg("e1000_init_hw");
+
+	/* Initialize Identification LED */
+	ret_val = e1000_id_led_init(hw);
+	if (ret_val) {
+		e_dbg("Error Initializing Identification LED\n");
+		return ret_val;
+	}
+
+	/* Set the media type and TBI compatibility */
+	e1000_set_media_type(hw);
+
+	/* Disabling VLAN filtering. */
+	e_dbg("Initializing the IEEE VLAN\n");
+	if (hw->mac_type < e1000_82545_rev_3)
+		ew32(VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		e_dbg("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		ew32(RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH();
+		msleep(5);
+	}
+
+	/* Setup the receive address. This involves initializing all of the Receive
+	 * Address Registers (RARs 0 - 15).
+	 */
+	e1000_init_rx_addrs(hw);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		ew32(RCTL, 0);
+		E1000_WRITE_FLUSH();
+		msleep(1);
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	mta_size = E1000_MC_TBL_SIZE;
+	for (i = 0; i < mta_size; i++) {
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+		/* use write flush to prevent Memory Write Block (MWB) from
+		 * occurring when accessing our register space */
+		E1000_WRITE_FLUSH();
+	}
+
+	/* Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.  Valid only on
+	 * 82542 and 82543 silicon.
+	 */
+	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+		if (hw->bus_type == e1000_bus_type_pcix
+		    && e1000_pcix_get_mmrbc(hw) > 2048)
+			e1000_pcix_set_mmrbc(hw, 2048);
+		break;
+	}
+
+	/* Call a subroutine to configure the link and setup flow control. */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	if (hw->mac_type > e1000_82544) {
+		ctrl = er32(TXDCTL);
+		ctrl =
+		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB;
+		ew32(TXDCTL, ctrl);
+	}
+
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs(hw);
+
+	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+		ctrl_ext = er32(CTRL_EXT);
+		/* Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot. */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
+ * @hw: Struct containing variables accessed by shared code.
+ */
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
+{
+	u16 eeprom_data;
+	s32 ret_val;
+
+	e_dbg("e1000_adjust_serdes_amplitude");
+
+	if (hw->media_type != e1000_media_type_internal_serdes)
+		return E1000_SUCCESS;
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
+	                            &eeprom_data);
+	if (ret_val) {
+		return ret_val;
+	}
+
+	if (eeprom_data != EEPROM_RESERVED_WORD) {
+		/* Adjust SERDES output amplitude only. */
+		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_link - Configures flow control and link settings.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the appropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ */
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32 ret_val;
+	u16 eeprom_data;
+
+	e_dbg("e1000_setup_link");
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (hw->fc == E1000_FC_DEFAULT) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+			hw->fc = E1000_FC_NONE;
+		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+			 EEPROM_WORD0F_ASM_DIR)
+			hw->fc = E1000_FC_TX_PAUSE;
+		else
+			hw->fc = E1000_FC_FULL;
+	}
+
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		hw->fc &= (~E1000_FC_TX_PAUSE);
+
+	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+		hw->fc &= (~E1000_FC_RX_PAUSE);
+
+	hw->original_fc = hw->fc;
+
+	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before e1000_setup_pcs_link()
+	 * or e1000_phy_setup() is called.
+	 */
+	if (hw->mac_type == e1000_82543) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+			    SWDPIO__EXT_SHIFT);
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = (hw->media_type == e1000_media_type_copper) ?
+	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	e_dbg("Initializing the Flow Control address, type and timer regs\n");
+
+	ew32(FCT, FLOW_CONTROL_TYPE);
+	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	ew32(FCTTV, hw->fc_pause_time);
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames in not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+		ew32(FCRTL, 0);
+		ew32(FCRTH, 0);
+	} else {
+		/* We need to set up the Receive Threshold high and low water marks
+		 * as well as (optionally) enabling the transmission of XON frames.
+		 */
+		if (hw->fc_send_xon) {
+			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+			ew32(FCRTH, hw->fc_high_water);
+		} else {
+			ew32(FCRTL, hw->fc_low_water);
+			ew32(FCRTH, hw->fc_high_water);
+		}
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ */
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 status;
+	u32 txcw = 0;
+	u32 i;
+	u32 signal = 0;
+	s32 ret_val;
+
+	e_dbg("e1000_setup_fiber_serdes_link");
+
+	/* On adapters with a MAC newer than 82544, SWDP 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 * If we're on serdes media, adjust the output amplitude to value
+	 * set in the EEPROM.
+	 */
+	ctrl = er32(CTRL);
+	if (hw->media_type == e1000_media_type_fiber)
+		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+	ret_val = e1000_adjust_serdes_amplitude(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Take the link out of reset */
+	ctrl &= ~(E1000_CTRL_LRST);
+
+	/* Adjust VCO speed to improve BER performance */
+	ret_val = e1000_set_vco_speed(hw);
+	if (ret_val)
+		return ret_val;
+
+	e1000_config_collision_dist(hw);
+
+	/* Check for a software override of the flow control settings, and setup
+	 * the device accordingly.  If auto-negotiation is enabled, then software
+	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+	 * auto-negotiation is disabled, then software will have to manually
+	 * configure the two flow control enable bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames, but
+	 *          not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we do
+	 *          not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		/* Flow control is completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case E1000_FC_RX_PAUSE:
+		/* RX Flow control is enabled and TX Flow control is disabled by a
+		 * software over-ride. Since there really isn't a way to advertise
+		 * that we are capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE. Later, we will
+		 *  disable the adapter's ability to send PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case E1000_FC_TX_PAUSE:
+		/* TX Flow control is enabled, and RX Flow control is disabled, by a
+		 * software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case E1000_FC_FULL:
+		/* Flow control (both RX and TX) is enabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the link
+	 * will be in reset, because we previously reset the chip). This will
+	 * restart auto-negotiation.  If auto-negotiation is successful then the
+	 * link-up status bit will be set and the flow control enable bits (RFCE
+	 * and TFCE) will be set according to their negotiated value.
+	 */
+	e_dbg("Auto-negotiation enabled\n");
+
+	ew32(TXCW, txcw);
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	hw->txcw = txcw;
+	msleep(1);
+
+	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+	 * indication in the Device Status Register.  Time-out if a link isn't
+	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+	 * less than 500 milliseconds even if the other end is doing it in SW).
+	 * For internal serdes, we just assume a signal is present, then poll.
+	 */
+	if (hw->media_type == e1000_media_type_internal_serdes ||
+	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+		e_dbg("Looking for Link\n");
+		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+			msleep(10);
+			status = er32(STATUS);
+			if (status & E1000_STATUS_LU)
+				break;
+		}
+		if (i == (LINK_UP_TIMEOUT / 10)) {
+			e_dbg("Never got a valid link from auto-neg!!!\n");
+			hw->autoneg_failed = 1;
+			/* AutoNeg failed to achieve a link, so we'll call
+			 * e1000_check_for_link. This routine will force the link up if
+			 * we detect a signal. This will allow us to communicate with
+			 * non-autonegotiating link partners.
+			 */
+			ret_val = e1000_check_for_link(hw);
+			if (ret_val) {
+				e_dbg("Error while checking for link\n");
+				return ret_val;
+			}
+			hw->autoneg_failed = 0;
+		} else {
+			hw->autoneg_failed = 0;
+			e_dbg("Valid Link Found\n");
+		}
+	} else {
+		e_dbg("No Signal Detected\n");
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_preconfig - early configuration for copper
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Make sure we have a valid PHY and change PHY mode before link setup.
+ */
+static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_preconfig");
+
+	ctrl = er32(CTRL);
+	/* With 82543, we need to force speed and duplex on the MAC equal to what
+	 * the PHY speed and duplex configuration is. In addition, we need to
+	 * perform a hardware reset on the PHY to take it out of reset.
+	 */
+	if (hw->mac_type > e1000_82543) {
+		ctrl |= E1000_CTRL_SLU;
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		ew32(CTRL, ctrl);
+	} else {
+		ctrl |=
+		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+		ew32(CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Make sure we have a valid PHY */
+	ret_val = e1000_detect_gig_phy(hw);
+	if (ret_val) {
+		e_dbg("Error, did not detect valid phy.\n");
+		return ret_val;
+	}
+	e_dbg("Phy ID = %x\n", hw->phy_id);
+
+	/* Set PHY to class A mode (if necessary) */
+	ret_val = e1000_set_phy_mode(hw);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82545_rev_3) ||
+	    (hw->mac_type == e1000_82546_rev_3)) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		phy_data |= 0x00000008;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	}
+
+	if (hw->mac_type <= e1000_82543 ||
+	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+	    hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2)
+		hw->phy_reset_disable = false;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+	u32 led_ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_igp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		e_dbg("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Wait 15ms for MAC to configure PHY from eeprom settings */
+	msleep(15);
+	/* Configure activity LED after PHY reset */
+	led_ctrl = er32(LEDCTL);
+	led_ctrl &= IGP_ACTIVITY_LED_MASK;
+	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	ew32(LEDCTL, led_ctrl);
+
+	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+	if (hw->phy_type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state(hw, false);
+		if (ret_val) {
+			e_dbg("Error Disabling LPLU D3\n");
+			return ret_val;
+		}
+	}
+
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		hw->dsp_config_state = e1000_dsp_config_disabled;
+		/* Force MDI for earlier revs of the IGP PHY */
+		phy_data &=
+		    ~(IGP01E1000_PSCR_AUTO_MDIX |
+		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
+		hw->mdix = 1;
+
+	} else {
+		hw->dsp_config_state = e1000_dsp_config_enabled;
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+		switch (hw->mdix) {
+		case 1:
+			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 2:
+			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 0:
+		default:
+			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+			break;
+		}
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->autoneg) {
+		e1000_ms_type phy_ms_setting = hw->master_slave;
+
+		if (hw->ffe_config_state == e1000_ffe_config_active)
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+
+		if (hw->dsp_config_state == e1000_dsp_config_activated)
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+
+		/* when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default. */
+		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+			/* Set auto Master/Slave resolution process */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~CR_1000T_MS_ENABLE;
+			ret_val =
+			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* load defaults for future use */
+		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+		    ((phy_data & CR_1000T_MS_VALUE) ?
+		     e1000_ms_force_master :
+		     e1000_ms_force_slave) : e1000_ms_auto;
+
+		switch (phy_ms_setting) {
+		case e1000_ms_force_master:
+			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			phy_data |= CR_1000T_MS_ENABLE;
+			phy_data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			phy_data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_mgp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (hw->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (hw->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_revision < M88E1011_I_REV_4) {
+		/* Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((hw->phy_revision == E1000_REVISION_2) &&
+		    (hw->phy_id == M88E1111_I_PHY_ID)) {
+			/* Vidalia Phy, set the downshift counter to 5x */
+			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		e_dbg("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_autoneg - setup auto-neg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Setup auto-negotiation and flow control advertisements,
+ * and then perform auto-negotiation.
+ */
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_autoneg");
+
+	/* Perform some bounds checking on the hw->autoneg_advertised
+	 * parameter.  If this variable is zero, then set it to the default.
+	 */
+	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	/* If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (hw->autoneg_advertised == 0)
+		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	e_dbg("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		e_dbg("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	e_dbg("Restarting Auto-Neg\n");
+
+	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (hw->wait_autoneg_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			e_dbg
+			    ("Error while waiting for autoneg to complete\n");
+			return ret_val;
+		}
+	}
+
+	hw->get_link_status = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_postconfig - post link setup
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Config the MAC and the PHY after link is up.
+ *   1) Set up the MAC to the current PHY speed/duplex
+ *      if we are on 82543.  If we
+ *      are on newer silicon, we only need to configure
+ *      collision distance in the Transmit Control Register.
+ *   2) Set up flow control on the MAC to that established with
+ *      the link partner.
+ *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+ */
+static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	e_dbg("e1000_copper_link_postconfig");
+
+	if (hw->mac_type >= e1000_82544) {
+		e1000_config_collision_dist(hw);
+	} else {
+		ret_val = e1000_config_mac_to_phy(hw);
+		if (ret_val) {
+			e_dbg("Error configuring MAC to PHY settings\n");
+			return ret_val;
+		}
+	}
+	ret_val = e1000_config_fc_after_link_up(hw);
+	if (ret_val) {
+		e_dbg("Error Configuring Flow Control\n");
+		return ret_val;
+	}
+
+	/* Config DSP to improve Giga link quality */
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_config_dsp_after_link_change(hw, true);
+		if (ret_val) {
+			e_dbg("Error Configuring DSP after link up\n");
+			return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_copper_link - phy/speed/duplex setting
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Detects which PHY is present and sets up the speed and duplex
+ */
+static s32 e1000_setup_copper_link(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	e_dbg("e1000_setup_copper_link");
+
+	/* Check if it is a valid PHY and set PHY mode if necessary. */
+	ret_val = e1000_copper_link_preconfig(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_copper_link_igp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_copper_link_mgp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->autoneg) {
+		/* Setup autoneg and flow control advertisement
+		 * and perform autonegotiation */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* PHY will be set to 10H, 10F, 100H,or 100F
+		 * depending on value from forced_speed_duplex. */
+		e_dbg("Forcing speed and duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			e_dbg("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
+
+	/* Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	for (i = 0; i < 10; i++) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			/* Config the MAC and PHY after link is up */
+			ret_val = e1000_copper_link_postconfig(hw);
+			if (ret_val)
+				return ret_val;
+
+			e_dbg("Valid link established!!!\n");
+			return E1000_SUCCESS;
+		}
+		udelay(10);
+	}
+
+	e_dbg("Unable to establish link!!!\n");
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_setup_autoneg - phy settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures PHY autoneg and flow control advertisement settings
+ */
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg;
+
+	e_dbg("e1000_phy_setup_autoneg");
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Read the MII 1000Base-T Control Register (Address 9). */
+	ret_val =
+	    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+		e_dbg("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+		e_dbg("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+		e_dbg("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+		e_dbg("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+		e_dbg
+		    ("Advertise 1000mb Half duplex requested, request denied!\n");
+	}
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+		e_dbg("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          but we do not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *          in the EEPROM is used.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:	/* 0 */
+		/* Flow control (RX & TX) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_RX_PAUSE:	/* 1 */
+		/* RX Flow control is enabled, and TX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		/* Since there really isn't a way to advertise that we are
+		 * capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 *hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_TX_PAUSE:	/* 2 */
+		/* TX Flow control is enabled, and RX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case E1000_FC_FULL:	/* 3 */
+		/* Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_force_speed_duplex - force link settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
+ */
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 mii_ctrl_reg;
+	u16 mii_status_reg;
+	u16 phy_data;
+	u16 i;
+
+	e_dbg("e1000_phy_force_speed_duplex");
+
+	/* Turn off Flow control if we are forcing speed and duplex. */
+	hw->fc = E1000_FC_NONE;
+
+	e_dbg("hw->fc = %d\n", hw->fc);
+
+	/* Read the Device Control Register. */
+	ctrl = er32(CTRL);
+
+	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(DEVICE_SPEED_MASK);
+
+	/* Clear the Auto Speed Detect Enable bit. */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Read the MII Control Register. */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* We need to disable autoneg in order to force link and duplex. */
+
+	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Are we forcing Full or Half Duplex? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_10_full) {
+		/* We want to force full duplex so we SET the full duplex bits in the
+		 * Device and MII Control Registers.
+		 */
+		ctrl |= E1000_CTRL_FD;
+		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+		e_dbg("Full Duplex\n");
+	} else {
+		/* We want to force half duplex so we CLEAR the full duplex bits in
+		 * the Device and MII Control Registers.
+		 */
+		ctrl &= ~E1000_CTRL_FD;
+		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+		e_dbg("Half Duplex\n");
+	}
+
+	/* Are we forcing 100Mbps??? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_100_half) {
+		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+		ctrl |= E1000_CTRL_SPD_100;
+		mii_ctrl_reg |= MII_CR_SPEED_100;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		e_dbg("Forcing 100mb ");
+	} else {
+		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		mii_ctrl_reg |= MII_CR_SPEED_10;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		e_dbg("Forcing 10mb ");
+	}
+
+	e1000_config_collision_dist(hw);
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+
+	if (hw->phy_type == e1000_phy_m88) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+		 * forced whenever speed are duplex are forced.
+		 */
+		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		e_dbg("M88E1000 PSCR: %x\n", phy_data);
+
+		/* Need to reset the PHY or these changes will be ignored */
+		mii_ctrl_reg |= MII_CR_RESET;
+
+		/* Disable MDI-X support for 10/100 */
+	} else {
+		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+		 * forced whenever speed or duplex are forced.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Write back the modified PHY MII control register. */
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	/* The wait_autoneg_complete flag may be a little misleading here.
+	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+	 * But we do want to delay for a period while forcing only so we
+	 * don't generate false No Link messages.  So we will wait here
+	 * only if the user has set wait_autoneg_complete to 1, which is
+	 * the default.
+	 */
+	if (hw->wait_autoneg_complete) {
+		/* We will wait for autoneg to complete. */
+		e_dbg("Waiting for forced speed/duplex link.\n");
+		mii_status_reg = 0;
+
+		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+		}
+		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
+			/* We didn't get link.  Reset the DSP and wait again for link. */
+			ret_val = e1000_phy_reset_dsp(hw);
+			if (ret_val) {
+				e_dbg("Error Resetting PHY DSP\n");
+				return ret_val;
+			}
+		}
+		/* This loop will early-out if the link condition has been met.  */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Because we reset the PHY above, we need to re-force TX_CLK in the
+		 * Extended PHY Specific Control Register to 25MHz clock.  This value
+		 * defaults back to a 2.5MHz clock when the PHY is reset.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* In addition, because of the s/w reset above, we need to enable CRS on
+		 * TX.  This must be set for both full and half duplex operation.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
+		    && (!hw->autoneg)
+		    && (hw->forced_speed_duplex == e1000_10_full
+			|| hw->forced_speed_duplex == e1000_10_half)) {
+			ret_val = e1000_polarity_reversal_workaround(hw);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_collision_dist - set collision distance register
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets the collision distance in the Transmit Control register.
+ * Link should have been established previously. Reads the speed and duplex
+ * information from the Device Status register.
+ */
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl, coll_dist;
+
+	e_dbg("e1000_config_collision_dist");
+
+	if (hw->mac_type < e1000_82543)
+		coll_dist = E1000_COLLISION_DISTANCE_82542;
+	else
+		coll_dist = E1000_COLLISION_DISTANCE;
+
+	tctl = er32(TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= coll_dist << E1000_COLD_SHIFT;
+
+	ew32(TCTL, tctl);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_config_mac_to_phy - sync phy and mac settings
+ * @hw: Struct containing variables accessed by shared code
+ * @mii_reg: data to write to the MII control register
+ *
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
+ * The contents of the PHY register containing the needed information need to
+ * be passed in.
+ */
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_config_mac_to_phy");
+
+	/* 82544 or newer MAC, Auto Speed Detection takes care of
+	 * MAC speed/duplex configuration.*/
+	if (hw->mac_type >= e1000_82544)
+		return E1000_SUCCESS;
+
+	/* Read the Device Control Register and set the bits to Force Speed
+	 * and Duplex.
+	 */
+	ctrl = er32(CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+	/* Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+	else
+		ctrl &= ~E1000_CTRL_FD;
+
+	e1000_config_collision_dist(hw);
+
+	/* Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_force_mac_fc - force flow control settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Forces the MAC's flow control settings.
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ */
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	e_dbg("e1000_force_mac_fc");
+
+	/* Get the current configuration of the Device Control Register */
+	ctrl = er32(CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case E1000_FC_RX_PAUSE:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case E1000_FC_TX_PAUSE:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case E1000_FC_FULL:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	/* Disable TX Flow Control for 82542 (rev 2.0) */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		ctrl &= (~E1000_CTRL_TFCE);
+
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_fc_after_link_up - configure flow control after autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures flow control settings after link is established
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automatically set to the negotiated flow control mode.
+ */
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 mii_nway_adv_reg;
+	u16 mii_nway_lp_ability_reg;
+	u16 speed;
+	u16 duplex;
+
+	e_dbg("e1000_config_fc_after_link_up");
+
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_internal_serdes)
+		&& (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_copper)
+		&& (!hw->autoneg))) {
+		ret_val = e1000_force_mac_fc(hw);
+		if (ret_val) {
+			e_dbg("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+			/* The AutoNeg process has completed, so we now need to
+			 * read both the Auto Negotiation Advertisement Register
+			 * (Address 4) and the Auto_Negotiation Base Page Ability
+			 * Register (Address 5) to determine how flow control was
+			 * negotiated.
+			 */
+			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+						     &mii_nway_adv_reg);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+						     &mii_nway_lp_ability_reg);
+			if (ret_val)
+				return ret_val;
+
+			/* Two bits in the Auto Negotiation Advertisement Register
+			 * (Address 4) and two bits in the Auto Negotiation Base
+			 * Page Ability Register (Address 5) determine flow control
+			 * for both the PHY and the link partner.  The following
+			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+			 * 1999, describes these PAUSE resolution bits and how flow
+			 * control is determined based upon these settings.
+			 * NOTE:  DC = Don't Care
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			/* Are both PAUSE bits set to 1?  If so, this implies
+			 * Symmetric Flow Control is enabled at both ends.  The
+			 * ASM_DIR bits are irrelevant per the spec.
+			 *
+			 * For Symmetric Flow Control:
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *
+			 */
+			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+				/* Now we need to check if the user selected RX ONLY
+				 * of pause frames.  In this case, we had to advertise
+				 * FULL flow control because we could not advertise RX
+				 * ONLY. Hence, we must now check to see if we need to
+				 * turn OFF  the TRANSMISSION of PAUSE frames.
+				 */
+				if (hw->original_fc == E1000_FC_FULL) {
+					hw->fc = E1000_FC_FULL;
+					e_dbg("Flow Control = FULL.\n");
+				} else {
+					hw->fc = E1000_FC_RX_PAUSE;
+					e_dbg
+					    ("Flow Control = RX PAUSE frames only.\n");
+				}
+			}
+			/* For receiving PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *
+			 */
+			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_TX_PAUSE;
+				e_dbg
+				    ("Flow Control = TX PAUSE frames only.\n");
+			}
+			/* For transmitting PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_RX_PAUSE;
+				e_dbg
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+			/* Per the IEEE spec, at this point flow control should be
+			 * disabled.  However, we want to consider that we could
+			 * be connected to a legacy switch that doesn't advertise
+			 * desired flow control, but can be forced on the link
+			 * partner.  So if we advertised no flow control, that is
+			 * what we will resolve to.  If we advertised some kind of
+			 * receive capability (Rx Pause Only or Full Flow Control)
+			 * and the link partner advertised none, we will configure
+			 * ourselves to enable Rx Flow Control only.  We can do
+			 * this safely for two reasons:  If the link partner really
+			 * didn't want flow control enabled, and we enable Rx, no
+			 * harm done since we won't be receiving any PAUSE frames
+			 * anyway.  If the intent on the link partner was to have
+			 * flow control enabled, then by us enabling RX only, we
+			 * can at least receive pause frames and process them.
+			 * This is a good idea because in most cases, since we are
+			 * predominantly a server NIC, more times than not we will
+			 * be asked to delay transmission of packets than asking
+			 * our link partner to pause transmission of frames.
+			 */
+			else if ((hw->original_fc == E1000_FC_NONE ||
+				  hw->original_fc == E1000_FC_TX_PAUSE) ||
+				 hw->fc_strict_ieee) {
+				hw->fc = E1000_FC_NONE;
+				e_dbg("Flow Control = NONE.\n");
+			} else {
+				hw->fc = E1000_FC_RX_PAUSE;
+				e_dbg
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+
+			/* Now we need to do one last check...  If we auto-
+			 * negotiated to HALF DUPLEX, flow control should not be
+			 * enabled per IEEE 802.3 spec.
+			 */
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				e_dbg
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+
+			if (duplex == HALF_DUPLEX)
+				hw->fc = E1000_FC_NONE;
+
+			/* Now we call a subroutine to actually force the MAC
+			 * controller to use the correct flow control settings.
+			 */
+			ret_val = e1000_force_mac_fc(hw);
+			if (ret_val) {
+				e_dbg
+				    ("Error forcing flow control settings\n");
+				return ret_val;
+			}
+		} else {
+			e_dbg
+			    ("Copper PHY and Auto Neg has not completed.\n");
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	e_dbg("e1000_check_for_serdes_link_generic");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (hw->autoneg_failed == 0) {
+			hw->autoneg_failed = 1;
+			goto out;
+		}
+		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, hw->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		hw->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		rxcw = er32(RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				hw->serdes_has_link = true;
+				e_dbg("SERDES: Link up - forced.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			e_dbg("SERDES: Link down - force failed.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & er32(TXCW)) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					hw->serdes_has_link = true;
+					e_dbg("SERDES: Link up - autoneg "
+						 "completed successfully.\n");
+				} else {
+					hw->serdes_has_link = false;
+					e_dbg("SERDES: Link down - invalid"
+						 "codewords detected in autoneg.\n");
+				}
+			} else {
+				hw->serdes_has_link = false;
+				e_dbg("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			e_dbg("SERDES: Link down - autoneg failed\n");
+		}
+	}
+
+      out:
+	return ret_val;
+}
+
+/**
+ * e1000_check_for_link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks to see if the link status of the hardware has changed.
+ * Called by any function that needs to check the link status of the adapter.
+ */
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+	u32 rxcw __attribute__ ((unused)) = 0;
+	u32 ctrl __attribute__ ((unused));
+	u32 status;
+	u32 rctl;
+	u32 icr;
+	u32 signal __attribute__ ((unused)) = 0;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_check_for_link");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+
+	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 */
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes)) {
+		rxcw = er32(RXCW);
+
+		if (hw->media_type == e1000_media_type_fiber) {
+			signal =
+			    (hw->mac_type >
+			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+			if (status & E1000_STATUS_LU)
+				hw->get_link_status = false;
+		}
+	}
+
+	/* If we have a copper PHY then we only want to go out to the PHY
+	 * registers to see if Auto-Neg has completed and/or if our link
+	 * status has changed.  The get_link_status flag will be set if we
+	 * receive a Link Status Change interrupt or we have Rx Sequence
+	 * Errors.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+		/* First we want to see if the MII Status Register reports
+		 * link.  If so, then we want to get the current speed/duplex
+		 * of the PHY.
+		 * Read the register twice since the link bit is sticky.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			hw->get_link_status = false;
+			/* Check if there was DownShift, must be checked immediately after
+			 * link-up */
+			e1000_check_downshift(hw);
+
+			/* If we are on 82544 or 82543 silicon and speed/duplex
+			 * are forced to 10H or 10F, then we will implement the polarity
+			 * reversal workaround.  We disable interrupts first, and upon
+			 * returning, place the devices interrupt state to its previous
+			 * value except for the link status change interrupt which will
+			 * happen due to the execution of this workaround.
+			 */
+
+			if ((hw->mac_type == e1000_82544
+			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
+			    && (hw->forced_speed_duplex == e1000_10_full
+				|| hw->forced_speed_duplex == e1000_10_half)) {
+				ew32(IMC, 0xffffffff);
+				ret_val =
+				    e1000_polarity_reversal_workaround(hw);
+				icr = er32(ICR);
+				ew32(ICS, (icr & ~E1000_ICS_LSC));
+				ew32(IMS, IMS_ENABLE_MASK);
+			}
+
+		} else {
+			/* No link detected */
+			e1000_config_dsp_after_link_change(hw, false);
+			return 0;
+		}
+
+		/* If we are forcing speed/duplex, then we simply return since
+		 * we have already determined whether we have link or not.
+		 */
+		if (!hw->autoneg)
+			return -E1000_ERR_CONFIG;
+
+		/* optimize the dsp settings for the igp phy */
+		e1000_config_dsp_after_link_change(hw, true);
+
+		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+		 * have Si on board that is 82544 or newer, Auto
+		 * Speed Detection takes care of MAC speed/duplex
+		 * configuration.  So we only need to configure Collision
+		 * Distance in the MAC.  Otherwise, we need to force
+		 * speed/duplex on the MAC to the current PHY speed/duplex
+		 * settings.
+		 */
+		if (hw->mac_type >= e1000_82544)
+			e1000_config_collision_dist(hw);
+		else {
+			ret_val = e1000_config_mac_to_phy(hw);
+			if (ret_val) {
+				e_dbg
+				    ("Error configuring MAC to PHY settings\n");
+				return ret_val;
+			}
+		}
+
+		/* Configure Flow Control now that Auto-Neg has completed. First, we
+		 * need to restore the desired flow control settings because we may
+		 * have had to re-autoneg with a different link partner.
+		 */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			return ret_val;
+		}
+
+		/* At this point we know that we are on copper and we have
+		 * auto-negotiated link.  These are conditions for checking the link
+		 * partner capability register.  We use the link speed to determine if
+		 * TBI compatibility needs to be turned on or off.  If the link is not
+		 * at gigabit speed, then TBI compatibility is not needed.  If we are
+		 * at gigabit speed, we turn on TBI compatibility.
+		 */
+		if (hw->tbi_compatibility_en) {
+			u16 speed, duplex;
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				e_dbg
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+			if (speed != SPEED_1000) {
+				/* If link speed is not set to gigabit speed, we do not need
+				 * to enable TBI compatibility.
+				 */
+				if (hw->tbi_compatibility_on) {
+					/* If we previously were in the mode, turn it off. */
+					rctl = er32(RCTL);
+					rctl &= ~E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+					hw->tbi_compatibility_on = false;
+				}
+			} else {
+				/* If TBI compatibility is was previously off, turn it on. For
+				 * compatibility with a TBI link partner, we will store bad
+				 * packets. Some frames have an additional byte on the end and
+				 * will look like CRC errors to to the hardware.
+				 */
+				if (!hw->tbi_compatibility_on) {
+					hw->tbi_compatibility_on = true;
+					rctl = er32(RCTL);
+					rctl |= E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+				}
+			}
+		}
+	}
+
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes))
+		e1000_check_for_serdes_link_generic(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex
+ * @hw: Struct containing variables accessed by shared code
+ * @speed: Speed of the connection
+ * @duplex: Duplex setting of the connection
+
+ * Detects the current speed and duplex settings of the hardware.
+ */
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	u32 status;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_get_speed_and_duplex");
+
+	if (hw->mac_type >= e1000_82543) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_SPEED_1000) {
+			*speed = SPEED_1000;
+			e_dbg("1000 Mbs, ");
+		} else if (status & E1000_STATUS_SPEED_100) {
+			*speed = SPEED_100;
+			e_dbg("100 Mbs, ");
+		} else {
+			*speed = SPEED_10;
+			e_dbg("10 Mbs, ");
+		}
+
+		if (status & E1000_STATUS_FD) {
+			*duplex = FULL_DUPLEX;
+			e_dbg("Full Duplex\n");
+		} else {
+			*duplex = HALF_DUPLEX;
+			e_dbg(" Half Duplex\n");
+		}
+	} else {
+		e_dbg("1000 Mbs, Full Duplex\n");
+		*speed = SPEED_1000;
+		*duplex = FULL_DUPLEX;
+	}
+
+	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
+	 * if it is operating at half duplex.  Here we set the duplex settings to
+	 * match the duplex in the link partner's capabilities.
+	 */
+	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+			*duplex = HALF_DUPLEX;
+		else {
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+			if (ret_val)
+				return ret_val;
+			if ((*speed == SPEED_100
+			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+			    || (*speed == SPEED_10
+				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_wait_autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Blocks until autoneg completes or times out (~4.5 seconds)
+ */
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	e_dbg("e1000_wait_autoneg");
+	e_dbg("Waiting for Auto-Neg to complete.\n");
+
+	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Auto-Neg
+		 * Complete bit to be set.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+			return E1000_SUCCESS;
+		}
+		msleep(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_raise_mdi_clk - Raises the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Raise the clock input to the Management Data Clock (by setting the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_lower_mdi_clk - Lowers the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Lower the clock input to the Management Data Clock (by clearing the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
+ * @hw: Struct containing variables accessed by shared code
+ * @data: Data to send out to the PHY
+ * @count: Number of bits to shift out
+ *
+ * Bits are shifted out in MSB to LSB order.
+ */
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
+{
+	u32 ctrl;
+	u32 mask;
+
+	/* We need to shift "count" number of bits out to the PHY. So, the value
+	 * in the "data" parameter will be shifted out to the PHY one bit at a
+	 * time. In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
+
+	ctrl = er32(CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+		 * then raising and lowering the Management Data Clock. A "0" is
+		 * shifted out to the PHY by setting the MDIO bit to "0" and then
+		 * raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+		udelay(10);
+
+		e1000_raise_mdi_clk(hw, &ctrl);
+		e1000_lower_mdi_clk(hw, &ctrl);
+
+		mask = mask >> 1;
+	}
+}
+
+/**
+ * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Bits are shifted in in MSB to LSB order.
+ */
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
+
+	/* In order to read a register from the PHY, we need to shift in a total
+	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
+	 * to avoid contention on the MDIO pin when a read operation is performed.
+	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
+	 * by raising the input to the Management Data Clock (setting the MDC bit),
+	 * and then reading the value of the MDIO bit.
+	 */
+	ctrl = er32(CTRL);
+
+	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	/* Raise and Lower the clock before reading in the data. This accounts for
+	 * the turnaround bits. The first clock occurred when we clocked out the
+	 * last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data = data << 1;
+		e1000_raise_mdi_clk(hw, &ctrl);
+		ctrl = er32(CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	return data;
+}
+
+
+/**
+ * e1000_read_phy_reg - read a phy register
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to read
+ *
+ * Reads the value from a PHY register, if the value is on a specific non zero
+ * page, sets the page first.
+ */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
+{
+	u32 ret_val;
+
+	e_dbg("e1000_read_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	e_dbg("e1000_read_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, and register address in the MDI
+		 * Control register.  The MAC will take care of interfacing with the
+		 * PHY to retrieve the desired data.
+		 */
+		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_READ));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 64; i++) {
+			udelay(50);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			e_dbg("MDI Read did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+		if (mdic & E1000_MDIC_ERROR) {
+			e_dbg("MDI Error\n");
+			return -E1000_ERR_PHY;
+		}
+		*phy_data = (u16) mdic;
+	} else {
+		/* We must first send a preamble through the MDIO pin to signal the
+		 * beginning of an MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the next few fields that are required for a read
+		 * operation.  We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine five different times. The format of
+		 * a MII read instruction consists of a shift out of 14 bits and is
+		 * defined as follows:
+		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+		 * followed by a shift in of 18 bits.  This first two bits shifted in
+		 * are TurnAround bits used to avoid contention on the MDIO pin when a
+		 * READ operation is performed.  These two bits are thrown away
+		 * followed by a shift in of 16 bits which contains the desired data.
+		 */
+		mdic = ((reg_addr) | (phy_addr << 5) |
+			(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+		e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+		/* Now that we've shifted out the read command to the MII, we need to
+		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+		 * register address.
+		 */
+		*phy_data = e1000_shift_in_mdi_bits(hw);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - write a phy register
+ *
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to write
+ * @data: data to write to the PHY
+
+ * Writes a value to a PHY register
+ */
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
+{
+	u32 ret_val;
+
+	e_dbg("e1000_write_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					 phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	e_dbg("e1000_write_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, register address, and data intended
+		 * for the PHY register in the MDI Control register.  The MAC will take
+		 * care of interfacing with the PHY to send the desired data.
+		 */
+		mdic = (((u32) phy_data) |
+			(reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_WRITE));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 641; i++) {
+			udelay(5);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			e_dbg("MDI Write did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+	} else {
+		/* We'll need to use the SW defined pins to shift the write command
+		 * out to the PHY. We first send a preamble to the PHY to signal the
+		 * beginning of the MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the remaining required fields that will indicate a
+		 * write operation. We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine for each field in the command. The
+		 * format of a MII write instruction is as follows:
+		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+		 */
+		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+		mdic <<= 16;
+		mdic |= (u32) phy_data;
+
+		e1000_shift_out_mdi_bits(hw, mdic, 32);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - reset the phy, hardware style
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Returns the PHY to the power-on reset state
+ */
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	u32 ctrl, ctrl_ext;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	e_dbg("e1000_phy_hw_reset");
+
+	e_dbg("Resetting Phy...\n");
+
+	if (hw->mac_type > e1000_82543) {
+		/* Read the device control register and assert the E1000_CTRL_PHY_RST
+		 * bit. Then, take it out of reset.
+		 * For e1000 hardware, we delay for 10ms between the assert
+		 * and deassert.
+		 */
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+		E1000_WRITE_FLUSH();
+
+		msleep(10);
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+	} else {
+		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+		 * bit to put the PHY into reset. Then, take it out of reset.
+		 */
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		msleep(10);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+	}
+	udelay(150);
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Wait for FW to finish PHY configuration. */
+	ret_val = e1000_get_phy_cfg_done(hw);
+	if (ret_val != E1000_SUCCESS)
+		return ret_val;
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_reset - reset the phy to commit settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY
+ * Sets bit 15 of the MII Control register
+ */
+s32 e1000_phy_reset(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_phy_reset");
+
+	switch (hw->phy_type) {
+	case e1000_phy_igp:
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= MII_CR_RESET;
+		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		udelay(1);
+		break;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		e1000_phy_init_script(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_detect_gig_phy - check the phy type
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Probes the expected PHY address for known PHY IDs
+ */
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+	s32 phy_init_status, ret_val;
+	u16 phy_id_high, phy_id_low;
+	bool match = false;
+
+	e_dbg("e1000_detect_gig_phy");
+
+	if (hw->phy_id != 0)
+		return E1000_SUCCESS;
+
+	/* Read the PHY ID Registers to identify which PHY is onboard. */
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id = (u32) (phy_id_high << 16);
+	udelay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
+	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->phy_id == M88E1000_E_PHY_ID)
+			match = true;
+		break;
+	case e1000_82544:
+		if (hw->phy_id == M88E1000_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (hw->phy_id == M88E1011_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (hw->phy_id == IGP01E1000_I_PHY_ID)
+			match = true;
+		break;
+	default:
+		e_dbg("Invalid MAC type %d\n", hw->mac_type);
+		return -E1000_ERR_CONFIG;
+	}
+	phy_init_status = e1000_set_phy_type(hw);
+
+	if ((match) && (phy_init_status == E1000_SUCCESS)) {
+		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
+		return E1000_SUCCESS;
+	}
+	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
+	return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_phy_reset_dsp - reset DSP
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY's DSP
+ */
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	e_dbg("e1000_phy_reset_dsp");
+
+	do {
+		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+		if (ret_val)
+			break;
+		ret_val = E1000_SUCCESS;
+	} while (0);
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_igp_get_info - get igp specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for igp PHY only.
+ */
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data, min_length, max_length, average;
+	e1000_rev_polarity polarity;
+
+	e_dbg("e1000_phy_igp_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	/* IGP01E1000 does not need to support it. */
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+	/* IGP01E1000 always correct polarity reversal */
+	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
+				 IGP01E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+		/* Get cable length */
+		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+		if (ret_val)
+			return ret_val;
+
+		/* Translate to old method */
+		average = (max_length + min_length) / 2;
+
+		if (average <= e1000_igp_cable_length_50)
+			phy_info->cable_length = e1000_cable_length_50;
+		else if (average <= e1000_igp_cable_length_80)
+			phy_info->cable_length = e1000_cable_length_50_80;
+		else if (average <= e1000_igp_cable_length_110)
+			phy_info->cable_length = e1000_cable_length_80_110;
+		else if (average <= e1000_igp_cable_length_140)
+			phy_info->cable_length = e1000_cable_length_110_140;
+		else
+			phy_info->cable_length = e1000_cable_length_140;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_m88_get_info - get m88 specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for m88 PHY only.
+ */
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+	e1000_rev_polarity polarity;
+
+	e_dbg("e1000_phy_m88_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->extended_10bt_distance =
+	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+	    e1000_10bt_ext_dist_enable_lower :
+	    e1000_10bt_ext_dist_enable_normal;
+
+	phy_info->polarity_correction =
+	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
+				 M88E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		/* Cable Length Estimation and Local/Remote Receiver Information
+		 * are only valid at 1000 Mbps.
+		 */
+		phy_info->cable_length =
+		    (e1000_cable_length) ((phy_data &
+					   M88E1000_PSSR_CABLE_LENGTH) >>
+					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_get_info - request phy info
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers
+ */
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_phy_get_info");
+
+	phy_info->cable_length = e1000_cable_length_undefined;
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+	phy_info->cable_polarity = e1000_rev_polarity_undefined;
+	phy_info->downshift = e1000_downshift_undefined;
+	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+	phy_info->local_rx = e1000_1000t_rx_status_undefined;
+	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+	if (hw->media_type != e1000_media_type_copper) {
+		e_dbg("PHY info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+		e_dbg("PHY info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		return e1000_phy_igp_get_info(hw, phy_info);
+	else
+		return e1000_phy_m88_get_info(hw, phy_info);
+}
+
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+	e_dbg("e1000_validate_mdi_settings");
+
+	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+		e_dbg("Invalid MDI setting detected\n");
+		hw->mdix = 1;
+		return -E1000_ERR_CONFIG;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_eeprom_params - initialize sw eeprom vars
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.
+ */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd = er32(EECD);
+	s32 ret_val = E1000_SUCCESS;
+	u16 eeprom_size;
+
+	e_dbg("e1000_init_eeprom_params");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->word_size = 64;
+		eeprom->opcode_bits = 3;
+		eeprom->address_bits = 6;
+		eeprom->delay_usec = 50;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->opcode_bits = 3;
+		eeprom->delay_usec = 50;
+		if (eecd & E1000_EECD_SIZE) {
+			eeprom->word_size = 256;
+			eeprom->address_bits = 8;
+		} else {
+			eeprom->word_size = 64;
+			eeprom->address_bits = 6;
+		}
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (eecd & E1000_EECD_TYPE) {
+			eeprom->type = e1000_eeprom_spi;
+			eeprom->opcode_bits = 8;
+			eeprom->delay_usec = 1;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->page_size = 32;
+				eeprom->address_bits = 16;
+			} else {
+				eeprom->page_size = 8;
+				eeprom->address_bits = 8;
+			}
+		} else {
+			eeprom->type = e1000_eeprom_microwire;
+			eeprom->opcode_bits = 3;
+			eeprom->delay_usec = 50;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->word_size = 256;
+				eeprom->address_bits = 8;
+			} else {
+				eeprom->word_size = 64;
+				eeprom->address_bits = 6;
+			}
+		}
+		break;
+	default:
+		break;
+	}
+
+	if (eeprom->type == e1000_eeprom_spi) {
+		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+		 * 32KB (incremented by powers of 2).
+		 */
+		/* Set to default value for initial eeprom read. */
+		eeprom->word_size = 64;
+		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+		if (ret_val)
+			return ret_val;
+		eeprom_size =
+		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+		/* 256B eeprom size was not supported in earlier hardware, so we
+		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+		 * is never the result used in the shifting logic below. */
+		if (eeprom_size)
+			eeprom_size++;
+
+		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_raise_ee_clk - Raises the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
+	 * wait <delay> microseconds.
+	 */
+	*eecd = *eecd | E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+	 * wait 50 microseconds.
+	 */
+	*eecd = *eecd & ~E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ */
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u32 mask;
+
+	/* We need to shift "count" bits out to the EEPROM. So, value in the
+	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
+	 * In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01 << (count - 1);
+	eecd = er32(EECD);
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~E1000_EECD_DO;
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_DO;
+	}
+	do {
+		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+		 * and then raising and then lowering the clock (the SK bit controls
+		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+		 * by setting "DI" to "0" and then raising and then lowering the clock.
+		 */
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+
+		udelay(eeprom->delay_usec);
+
+		e1000_raise_ee_clk(hw, &eecd);
+		e1000_lower_ee_clk(hw, &eecd);
+
+		mask = mask >> 1;
+
+	} while (mask);
+
+	/* We leave the "DI" bit set to "0" when we leave this routine. */
+	eecd &= ~E1000_EECD_DI;
+	ew32(EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
+ * @hw: Struct containing variables accessed by shared code
+ * @count: number of bits to shift in
+ */
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	/* In order to read a register from the EEPROM, we need to shift 'count'
+	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+	 * input to the EEPROM (setting the SK bit), and then reading the value of
+	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
+	 * always be clear.
+	 */
+
+	eecd = er32(EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data = data << 1;
+		e1000_raise_ee_clk(hw, &eecd);
+
+		eecd = er32(EECD);
+
+		eecd &= ~(E1000_EECD_DI);
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_ee_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ * e1000_acquire_eeprom - Prepares EEPROM for access
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ */
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd, i = 0;
+
+	e_dbg("e1000_acquire_eeprom");
+
+	eecd = er32(EECD);
+
+	/* Request EEPROM Access */
+	if (hw->mac_type > e1000_82544) {
+		eecd |= E1000_EECD_REQ;
+		ew32(EECD, eecd);
+		eecd = er32(EECD);
+		while ((!(eecd & E1000_EECD_GNT)) &&
+		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+			i++;
+			udelay(5);
+			eecd = er32(EECD);
+		}
+		if (!(eecd & E1000_EECD_GNT)) {
+			eecd &= ~E1000_EECD_REQ;
+			ew32(EECD, eecd);
+			e_dbg("Could not acquire EEPROM grant\n");
+			return -E1000_ERR_EEPROM;
+		}
+	}
+
+	/* Setup EEPROM for Read/Write */
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		ew32(EECD, eecd);
+
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		udelay(1);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_standby_eeprom - Returns EEPROM to a "standby" state
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_standby_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+
+	eecd = er32(EECD);
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock high */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock low */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	}
+}
+
+/**
+ * e1000_release_eeprom - drop chip select
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Terminates a command by inverting the EEPROM's chip select pin
+ */
+static void e1000_release_eeprom(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	e_dbg("e1000_release_eeprom");
+
+	eecd = er32(EECD);
+
+	if (hw->eeprom.type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_CS;	/* Pull CS high */
+		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
+
+		ew32(EECD, eecd);
+
+		udelay(hw->eeprom.delay_usec);
+	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
+		/* cleanup eeprom */
+
+		/* CS on Microwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+		ew32(EECD, eecd);
+
+		/* Rising edge of clock */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+
+		/* Falling edge of clock */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+	}
+
+	/* Stop requesting EEPROM access */
+	if (hw->mac_type > e1000_82544) {
+		eecd &= ~E1000_EECD_REQ;
+		ew32(EECD, eecd);
+	}
+}
+
+/**
+ * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+	u16 retry_count = 0;
+	u8 spi_stat_reg;
+
+	e_dbg("e1000_spi_eeprom_ready");
+
+	/* Read "Status Register" repeatedly until the LSB is cleared.  The
+	 * EEPROM will signal that the command has been completed by clearing
+	 * bit 0 of the internal status register.  If it's not cleared within
+	 * 5 milliseconds, then error out.
+	 */
+	retry_count = 0;
+	do {
+		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+					hw->eeprom.opcode_bits);
+		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
+		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+			break;
+
+		udelay(5);
+		retry_count += 5;
+
+		e1000_standby_eeprom(hw);
+	} while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+	 * only 0-5mSec on 5V devices)
+	 */
+	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+		e_dbg("SPI EEPROM Status error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset of  word in the EEPROM to read
+ * @data: word read from the EEPROM
+ * @words: number of words to read
+ */
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_read_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 i = 0;
+
+	e_dbg("e1000_read_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		e_dbg("\"words\" parameter out of bounds. Words = %d,"
+		      "size = %d\n", offset, eeprom->word_size);
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+	 * directly. In this case, we need to acquire the EEPROM so that
+	 * FW or other port software does not interrupt.
+	 */
+	/* Prepare the EEPROM for bit-bang reading */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+	 * acquired the EEPROM at this point, so any returns should release it */
+	if (eeprom->type == e1000_eeprom_spi) {
+		u16 word_in;
+		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw)) {
+			e1000_release_eeprom(hw);
+			return -E1000_ERR_EEPROM;
+		}
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the READ command (opcode + addr)  */
+		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
+					eeprom->address_bits);
+
+		/* Read the data.  The address of the eeprom internally increments with
+		 * each byte (spi) being read, saving on the overhead of eeprom setup
+		 * and tear-down.  The address counter will roll over if reading beyond
+		 * the size of the eeprom, thus allowing the entire memory to be read
+		 * starting from any offset. */
+		for (i = 0; i < words; i++) {
+			word_in = e1000_shift_in_ee_bits(hw, 16);
+			data[i] = (word_in >> 8) | (word_in << 8);
+		}
+	} else if (eeprom->type == e1000_eeprom_microwire) {
+		for (i = 0; i < words; i++) {
+			/* Send the READ command (opcode + addr)  */
+			e1000_shift_out_ee_bits(hw,
+						EEPROM_READ_OPCODE_MICROWIRE,
+						eeprom->opcode_bits);
+			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
+						eeprom->address_bits);
+
+			/* Read the data.  For microwire, each word requires the overhead
+			 * of eeprom setup and tear-down. */
+			data[i] = e1000_shift_in_ee_bits(hw, 16);
+			e1000_standby_eeprom(hw);
+		}
+	}
+
+	/* End this read operation */
+	e1000_release_eeprom(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ */
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	e_dbg("e1000_validate_eeprom_checksum");
+
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+
+	if (checksum == (u16) EEPROM_SUM)
+		return E1000_SUCCESS;
+	else {
+		e_dbg("EEPROM Checksum Invalid\n");
+		return -E1000_ERR_EEPROM;
+	}
+}
+
+/**
+ * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ */
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	e_dbg("e1000_update_eeprom_checksum");
+
+	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+	checksum = (u16) EEPROM_SUM - checksum;
+	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+		e_dbg("EEPROM Write Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom - write words to the different EEPROM types.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word to be written to the EEPROM
+ *
+ * If e1000_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ */
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_write_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	s32 status = 0;
+
+	e_dbg("e1000_write_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		e_dbg("\"words\" parameter out of bounds\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* Prepare the EEPROM for writing  */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		status = e1000_write_eeprom_microwire(hw, offset, words, data);
+	} else {
+		status = e1000_write_eeprom_spi(hw, offset, words, data);
+		msleep(10);
+	}
+
+	/* Done with writing */
+	e1000_release_eeprom(hw);
+
+	return status;
+}
+
+/**
+ * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u16 widx = 0;
+
+	e_dbg("e1000_write_eeprom_spi");
+
+	while (widx < words) {
+		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw))
+			return -E1000_ERR_EEPROM;
+
+		e1000_standby_eeprom(hw);
+
+		/*  Send the WRITE ENABLE command (8 bit opcode )  */
+		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+					eeprom->opcode_bits);
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			write_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
+					eeprom->address_bits);
+
+		/* Send the data */
+
+		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_ee_bits(hw, word_out, 16);
+			widx++;
+
+			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+			 * operation, while the smaller eeproms are capable of an 8-byte
+			 * PAGE WRITE operation.  Break the inner loop to pass new address
+			 */
+			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
+				e1000_standby_eeprom(hw);
+				break;
+			}
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 i = 0;
+
+	e_dbg("e1000_write_eeprom_microwire");
+
+	/* Send the write enable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 11).  It's less work to include
+	 * the 11 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This puts the
+	 * EEPROM into write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	/* Prepare the EEPROM */
+	e1000_standby_eeprom(hw);
+
+	while (words_written < words) {
+		/* Send the Write command (3-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+					eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
+					eeprom->address_bits);
+
+		/* Send the data */
+		e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+		/* Toggle the CS line.  This in effect tells the EEPROM to execute
+		 * the previous command.
+		 */
+		e1000_standby_eeprom(hw);
+
+		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
+		 * signal that the command has been completed by raising the DO signal.
+		 * If DO does not go high in 10 milliseconds, then error out.
+		 */
+		for (i = 0; i < 200; i++) {
+			eecd = er32(EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			udelay(50);
+		}
+		if (i == 200) {
+			e_dbg("EEPROM Write did not complete\n");
+			return -E1000_ERR_EEPROM;
+		}
+
+		/* Recover from write */
+		e1000_standby_eeprom(hw);
+
+		words_written++;
+	}
+
+	/* Send the write disable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 10).  It's less work to include
+	 * the 10 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This takes the
+	 * EEPROM out of write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - read the adapters MAC from eeprom
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ */
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+	u16 offset;
+	u16 eeprom_data, i;
+
+	e_dbg("e1000_read_mac_addr");
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+		offset = i >> 1;
+		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
+		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			hw->perm_mac_addr[5] ^= 0x01;
+		break;
+	}
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+		hw->mac_addr[i] = hw->perm_mac_addr[i];
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_rx_addrs - Initializes receive address filters.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive address registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ */
+static void e1000_init_rx_addrs(struct e1000_hw *hw)
+{
+	u32 i;
+	u32 rar_num;
+
+	e_dbg("e1000_init_rx_addrs");
+
+	/* Setup the receive address. */
+	e_dbg("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	rar_num = E1000_RAR_ENTRIES;
+
+	/* Zero out the other 15 receive addresses. */
+	e_dbg("Clearing RAR[1-15]\n");
+	for (i = 1; i < rar_num; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
+ * @hw: Struct containing variables accessed by shared code
+ * @mc_addr: the multicast address to hash
+ */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value = 0;
+
+	/* The portion of the address that is used for the hash table is
+	 * determined by the mc_filter_type setting.
+	 */
+	switch (hw->mc_filter_type) {
+		/* [0] [1] [2] [3] [4] [5]
+		 * 01  AA  00  12  34  56
+		 * LSB                 MSB
+		 */
+	case 0:
+		/* [47:36] i.e. 0x563 for above example address */
+		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
+		break;
+	case 1:
+		/* [46:35] i.e. 0xAC6 for above example address */
+		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
+		break;
+	case 2:
+		/* [45:34] i.e. 0x5D8 for above example address */
+		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
+		break;
+	case 3:
+		/* [43:32] i.e. 0x634 for above example address */
+		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
+		break;
+	}
+
+	hash_value &= 0xFFF;
+	return hash_value;
+}
+
+/**
+ * e1000_rar_set - Puts an ethernet address into a receive address register.
+ * @hw: Struct containing variables accessed by shared code
+ * @addr: Address to put into receive address register
+ * @index: Receive address register to write
+ */
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+	 * unit hang.
+	 *
+	 * Description:
+	 * If there are any Rx frames queued up or otherwise present in the HW
+	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
+	 * hang.  To work around this issue, we have to disable receives and
+	 * flush out all Rx frames before we enable RSS. To do so, we modify we
+	 * redirect all Rx traffic to manageability and then reset the HW.
+	 * This flushes away Rx frames, and (since the redirections to
+	 * manageability persists across resets) keeps new ones from coming in
+	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
+	 * addresses and undo the re-direction to manageability.
+	 * Now, frames are coming in again, but the MAC won't accept them, so
+	 * far so good.  We now proceed to initialize RSS (if necessary) and
+	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
+	 * on our merry way.
+	 */
+	switch (hw->mac_type) {
+	default:
+		/* Indicate to hardware the Address is Valid. */
+		rar_high |= E1000_RAH_AV;
+		break;
+	}
+
+	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+	E1000_WRITE_FLUSH();
+	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: Offset in VLAN filer table to write
+ * @value: Value to write into VLAN filter table
+ */
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	u32 temp;
+
+	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+		E1000_WRITE_FLUSH();
+	} else {
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_clear_vfta - Clears the VLAN filer table
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/* If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of the
+		 * manageability unit */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+static s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 eeprom_data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	e_dbg("e1000_id_led_init");
+
+	if (hw->mac_type < e1000_82540) {
+		/* Nothing to do */
+		return E1000_SUCCESS;
+	}
+
+	ledctl = er32(LEDCTL);
+	hw->ledctl_default = ledctl;
+	hw->ledctl_mode1 = hw->ledctl_default;
+	hw->ledctl_mode2 = hw->ledctl_default;
+
+	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+		e_dbg("EEPROM Read Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	if ((eeprom_data == ID_LED_RESERVED_0000) ||
+	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
+		eeprom_data = ID_LED_DEFAULT;
+	}
+
+	for (i = 0; i < 4; i++) {
+		temp = (eeprom_data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_led
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ */
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
+
+	e_dbg("e1000_setup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No setup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn off PHY Smart Power Down (if enabled) */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					     &hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      (u16) (hw->phy_spd_default &
+						     ~IGP01E1000_GMII_SPD));
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			ledctl = er32(LEDCTL);
+			/* Save current LEDCTL settings */
+			hw->ledctl_default = ledctl;
+			/* Turn off LED0 */
+			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+				    E1000_LEDCTL_LED0_BLINK |
+				    E1000_LEDCTL_LED0_MODE_MASK);
+			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+				   E1000_LEDCTL_LED0_MODE_SHIFT);
+			ew32(LEDCTL, ledctl);
+		} else if (hw->media_type == e1000_media_type_copper)
+			ew32(LEDCTL, hw->ledctl_mode1);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	e_dbg("e1000_cleanup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No cleanup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn on PHY Smart Power Down (if previously enabled) */
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		/* Restore LEDCTL settings */
+		ew32(LEDCTL, hw->ledctl_default);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turns on the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	e_dbg("e1000_led_on");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Set SW Defineable Pin 0 to turn on the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn on the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode2);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turns off the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	e_dbg("e1000_led_off");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Clear SW Defineable Pin 0 to turn off the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn off the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode1);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+	volatile u32 temp __attribute__ ((unused));
+
+	temp = er32(CRCERRS);
+	temp = er32(SYMERRS);
+	temp = er32(MPC);
+	temp = er32(SCC);
+	temp = er32(ECOL);
+	temp = er32(MCC);
+	temp = er32(LATECOL);
+	temp = er32(COLC);
+	temp = er32(DC);
+	temp = er32(SEC);
+	temp = er32(RLEC);
+	temp = er32(XONRXC);
+	temp = er32(XONTXC);
+	temp = er32(XOFFRXC);
+	temp = er32(XOFFTXC);
+	temp = er32(FCRUC);
+
+	temp = er32(PRC64);
+	temp = er32(PRC127);
+	temp = er32(PRC255);
+	temp = er32(PRC511);
+	temp = er32(PRC1023);
+	temp = er32(PRC1522);
+
+	temp = er32(GPRC);
+	temp = er32(BPRC);
+	temp = er32(MPRC);
+	temp = er32(GPTC);
+	temp = er32(GORCL);
+	temp = er32(GORCH);
+	temp = er32(GOTCL);
+	temp = er32(GOTCH);
+	temp = er32(RNBC);
+	temp = er32(RUC);
+	temp = er32(RFC);
+	temp = er32(ROC);
+	temp = er32(RJC);
+	temp = er32(TORL);
+	temp = er32(TORH);
+	temp = er32(TOTL);
+	temp = er32(TOTH);
+	temp = er32(TPR);
+	temp = er32(TPT);
+
+	temp = er32(PTC64);
+	temp = er32(PTC127);
+	temp = er32(PTC255);
+	temp = er32(PTC511);
+	temp = er32(PTC1023);
+	temp = er32(PTC1522);
+
+	temp = er32(MPTC);
+	temp = er32(BPTC);
+
+	if (hw->mac_type < e1000_82543)
+		return;
+
+	temp = er32(ALGNERRC);
+	temp = er32(RXERRC);
+	temp = er32(TNCRS);
+	temp = er32(CEXTERR);
+	temp = er32(TSCTC);
+	temp = er32(TSCTFC);
+
+	if (hw->mac_type <= e1000_82544)
+		return;
+
+	temp = er32(MGTPRC);
+	temp = er32(MGTPDC);
+	temp = er32(MGTPTC);
+}
+
+/**
+ * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to true. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ */
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+	e_dbg("e1000_reset_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if (!hw->ifs_params_forced) {
+			hw->current_ifs_val = 0;
+			hw->ifs_min_val = IFS_MIN;
+			hw->ifs_max_val = IFS_MAX;
+			hw->ifs_step_size = IFS_STEP;
+			hw->ifs_ratio = IFS_RATIO;
+		}
+		hw->in_ifs_mode = false;
+		ew32(AIT, 0);
+	} else {
+		e_dbg("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_update_adaptive - update adaptive IFS
+ * @hw: Struct containing variables accessed by shared code
+ * @tx_packets: Number of transmits since last callback
+ * @total_collisions: Number of collisions since last callback
+ *
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ */
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+	e_dbg("e1000_update_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
+			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+				hw->in_ifs_mode = true;
+				if (hw->current_ifs_val < hw->ifs_max_val) {
+					if (hw->current_ifs_val == 0)
+						hw->current_ifs_val =
+						    hw->ifs_min_val;
+					else
+						hw->current_ifs_val +=
+						    hw->ifs_step_size;
+					ew32(AIT, hw->current_ifs_val);
+				}
+			}
+		} else {
+			if (hw->in_ifs_mode
+			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+				hw->current_ifs_val = 0;
+				hw->in_ifs_mode = false;
+				ew32(AIT, 0);
+			}
+		}
+	} else {
+		e_dbg("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_tbi_adjust_stats
+ * @hw: Struct containing variables accessed by shared code
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ */
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 *mac_addr)
+{
+	u64 carry_bit;
+
+	/* First adjust the frame length. */
+	frame_len--;
+	/* We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error.    */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received.    */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters             */
+	carry_bit = 0x80000000 & stats->gorcl;
+	stats->gorcl += frame_len;
+	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
+	 * Received Count) was one before the addition,
+	 * AND it is zero after, then we lost the carry out,
+	 * need to add one to Gorch (Good Octets Received Count High).
+	 * This could be simplified if all environments supported
+	 * 64-bit integers.
+	 */
+	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+		stats->gorch++;
+	/* Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	if (frame_len == hw->max_frame_size) {
+		/* In this case, the hardware has overcounted the number of
+		 * oversize frames.
+		 */
+		if (stats->roc > 0)
+			stats->roc--;
+	}
+
+	/* Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
+}
+
+/**
+ * e1000_get_bus_info
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Gets the current PCI bus type, speed, and width of the hardware
+ */
+void e1000_get_bus_info(struct e1000_hw *hw)
+{
+	u32 status;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		hw->bus_type = e1000_bus_type_pci;
+		hw->bus_speed = e1000_bus_speed_unknown;
+		hw->bus_width = e1000_bus_width_unknown;
+		break;
+	default:
+		status = er32(STATUS);
+		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+		    e1000_bus_type_pcix : e1000_bus_type_pci;
+
+		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_120;
+		} else if (hw->bus_type == e1000_bus_type_pci) {
+			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_33;
+		} else {
+			switch (status & E1000_STATUS_PCIX_SPEED) {
+			case E1000_STATUS_PCIX_SPEED_66:
+				hw->bus_speed = e1000_bus_speed_66;
+				break;
+			case E1000_STATUS_PCIX_SPEED_100:
+				hw->bus_speed = e1000_bus_speed_100;
+				break;
+			case E1000_STATUS_PCIX_SPEED_133:
+				hw->bus_speed = e1000_bus_speed_133;
+				break;
+			default:
+				hw->bus_speed = e1000_bus_speed_reserved;
+				break;
+			}
+		}
+		hw->bus_width = (status & E1000_STATUS_BUS64) ?
+		    e1000_bus_width_64 : e1000_bus_width_32;
+		break;
+	}
+}
+
+/**
+ * e1000_write_reg_io
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset to write to
+ * @value: value to write
+ *
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ */
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	unsigned long io_addr = hw->io_base;
+	unsigned long io_data = hw->io_base + 4;
+
+	e1000_io_write(hw, io_addr, offset);
+	e1000_io_write(hw, io_data, value);
+}
+
+/**
+ * e1000_get_cable_length - Estimates the cable length.
+ * @hw: Struct containing variables accessed by shared code
+ * @min_length: The estimated minimum length
+ * @max_length: The estimated maximum length
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * This function always returns a ranged length (minimum & maximum).
+ * So for M88 phy's, this function interprets the one value returned from the
+ * register to the minimum and maximum range.
+ * For IGP phy's, the function calculates the range by the AGC registers.
+ */
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length)
+{
+	s32 ret_val;
+	u16 agc_value = 0;
+	u16 i, phy_data;
+	u16 cable_length;
+
+	e_dbg("e1000_get_cable_length");
+
+	*min_length = *max_length = 0;
+
+	/* Use old method for Phy older than IGP */
+	if (hw->phy_type == e1000_phy_m88) {
+
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+		/* Convert the enum value to ranged values */
+		switch (cable_length) {
+		case e1000_cable_length_50:
+			*min_length = 0;
+			*max_length = e1000_igp_cable_length_50;
+			break;
+		case e1000_cable_length_50_80:
+			*min_length = e1000_igp_cable_length_50;
+			*max_length = e1000_igp_cable_length_80;
+			break;
+		case e1000_cable_length_80_110:
+			*min_length = e1000_igp_cable_length_80;
+			*max_length = e1000_igp_cable_length_110;
+			break;
+		case e1000_cable_length_110_140:
+			*min_length = e1000_igp_cable_length_110;
+			*max_length = e1000_igp_cable_length_140;
+			break;
+		case e1000_cable_length_140:
+			*min_length = e1000_igp_cable_length_140;
+			*max_length = e1000_igp_cable_length_170;
+			break;
+		default:
+			return -E1000_ERR_PHY;
+			break;
+		}
+	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
+		u16 cur_agc_value;
+		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+		u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+		    { IGP01E1000_PHY_AGC_A,
+			IGP01E1000_PHY_AGC_B,
+			IGP01E1000_PHY_AGC_C,
+			IGP01E1000_PHY_AGC_D
+		};
+		/* Read the AGC registers for all channels */
+		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+			ret_val =
+			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+			/* Value bound check. */
+			if ((cur_agc_value >=
+			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
+			    || (cur_agc_value == 0))
+				return -E1000_ERR_PHY;
+
+			agc_value += cur_agc_value;
+
+			/* Update minimal AGC value. */
+			if (min_agc_value > cur_agc_value)
+				min_agc_value = cur_agc_value;
+		}
+
+		/* Remove the minimal AGC result for length < 50m */
+		if (agc_value <
+		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+			agc_value -= min_agc_value;
+
+			/* Get the average length of the remaining 3 channels */
+			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+		} else {
+			/* Get the average length of all the 4 channels. */
+			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+		}
+
+		/* Set the range of the calculated length. */
+		*min_length = ((e1000_igp_cable_length_table[agc_value] -
+				IGP01E1000_AGC_RANGE) > 0) ?
+		    (e1000_igp_cable_length_table[agc_value] -
+		     IGP01E1000_AGC_RANGE) : 0;
+		*max_length = e1000_igp_cable_length_table[agc_value] +
+		    IGP01E1000_AGC_RANGE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_polarity - Check the cable polarity
+ * @hw: Struct containing variables accessed by shared code
+ * @polarity: output parameter : 0 - Polarity is not reversed
+ *                               1 - Polarity is reversed.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function simply reads the polarity bit in the
+ * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
+ * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
+ * return 0.  If the link speed is 1000 Mbps the polarity status is in the
+ * IGP01E1000_PHY_PCS_INIT_REG.
+ */
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_check_polarity");
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* return the Polarity bit in the Status register. */
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+	} else if (hw->phy_type == e1000_phy_igp) {
+		/* Read the Status register to check the speed */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+		 * find the polarity status */
+		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+		    IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+			/* Read the GIG initialization PCS register (0x00B4) */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			/* Check the polarity bits */
+			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		} else {
+			/* For 10 Mbps, read the polarity bit in the status register. (for
+			 * 100 Mbps this bit is always 0) */
+			*polarity =
+			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_downshift - Check if Downshift occurred
+ * @hw: Struct containing variables accessed by shared code
+ * @downshift: output parameter : 0 - No Downshift occurred.
+ *                                1 - Downshift occurred.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function reads the Downshift bit in the Phy
+ * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
+ * Link Health register.  In IGP this bit is latched high, so the driver must
+ * read it immediately after link is established.
+ */
+static s32 e1000_check_downshift(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_check_downshift");
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded =
+		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_dsp_after_link_change
+ * @hw: Struct containing variables accessed by shared code
+ * @link_up: was link up at the time this was called
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ */
+
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
+{
+	s32 ret_val;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	    { IGP01E1000_PHY_AGC_PARAM_A,
+		IGP01E1000_PHY_AGC_PARAM_B,
+		IGP01E1000_PHY_AGC_PARAM_C,
+		IGP01E1000_PHY_AGC_PARAM_D
+	};
+	u16 min_length, max_length;
+
+	e_dbg("e1000_config_dsp_after_link_change");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	if (link_up) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			e_dbg("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+
+		if (speed == SPEED_1000) {
+
+			ret_val =
+			    e1000_get_cable_length(hw, &min_length,
+						   &max_length);
+			if (ret_val)
+				return ret_val;
+
+			if ((hw->dsp_config_state == e1000_dsp_config_enabled)
+			    && min_length >= e1000_igp_cable_length_50) {
+
+				for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       dsp_reg_array[i],
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					phy_data &=
+					    ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+					ret_val =
+					    e1000_write_phy_reg(hw,
+								dsp_reg_array
+								[i], phy_data);
+					if (ret_val)
+						return ret_val;
+				}
+				hw->dsp_config_state =
+				    e1000_dsp_config_activated;
+			}
+
+			if ((hw->ffe_config_state == e1000_ffe_config_enabled)
+			    && (min_length < e1000_igp_cable_length_50)) {
+
+				u16 ffe_idle_err_timeout =
+				    FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+				u32 idle_errs = 0;
+
+				/* clear previous idle error counts */
+				ret_val =
+				    e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				for (i = 0; i < ffe_idle_err_timeout; i++) {
+					udelay(1000);
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       PHY_1000T_STATUS,
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					idle_errs +=
+					    (phy_data &
+					     SR_1000T_IDLE_ERROR_CNT);
+					if (idle_errs >
+					    SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
+					{
+						hw->ffe_config_state =
+						    e1000_ffe_config_active;
+
+						ret_val =
+						    e1000_write_phy_reg(hw,
+									IGP01E1000_PHY_DSP_FFE,
+									IGP01E1000_PHY_DSP_FFE_CM_CP);
+						if (ret_val)
+							return ret_val;
+						break;
+					}
+
+					if (idle_errs)
+						ffe_idle_err_timeout =
+						    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+				}
+			}
+		}
+	} else {
+		if (hw->dsp_config_state == e1000_dsp_config_activated) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val =
+				    e1000_read_phy_reg(hw, dsp_reg_array[i],
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val =
+				    e1000_write_phy_reg(hw, dsp_reg_array[i],
+							phy_data);
+				if (ret_val)
+					return ret_val;
+			}
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+		}
+
+		if (hw->ffe_config_state == e1000_ffe_config_active) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+						IGP01E1000_PHY_DSP_FFE_DEFAULT);
+			if (ret_val)
+				return ret_val;
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_phy_mode - Set PHY to class A mode
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ */
+static s32 e1000_set_phy_mode(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 eeprom_data;
+
+	e_dbg("e1000_set_phy_mode");
+
+	if ((hw->mac_type == e1000_82545_rev_3) &&
+	    (hw->media_type == e1000_media_type_copper)) {
+		ret_val =
+		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
+				      &eeprom_data);
+		if (ret_val) {
+			return ret_val;
+		}
+
+		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+						0x000B);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
+						0x8104);
+			if (ret_val)
+				return ret_val;
+
+			hw->phy_reset_disable = false;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - set d3 link power state
+ * @hw: Struct containing variables accessed by shared code
+ * @active: true to enable lplu false to disable lplu.
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisement
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val;
+	u16 phy_data;
+	e_dbg("e1000_set_d3_lplu_state");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	/* During driver activity LPLU should not be used or it will attain link
+	 * from the lowest speeds starting from 10Mbps. The capability is used for
+	 * Dx transitions and states */
+	if (hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2) {
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (!active) {
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+		 * Dx states where the power conservation is most important.  During
+		 * driver activity we should enable SmartSpeed, so performance is
+		 * maintained. */
+		if (hw->smart_speed == e1000_smart_speed_on) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		} else if (hw->smart_speed == e1000_smart_speed_off) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
+		   || (hw->autoneg_advertised ==
+		       AUTONEG_ADVERTISE_10_100_ALL)) {
+
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data |= IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* When LPLU is enabled we should disable SmartSpeed */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_vco_speed
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ */
+static s32 e1000_set_vco_speed(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 default_page = 0;
+	u16 phy_data;
+
+	e_dbg("e1000_set_vco_speed");
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	/* Set PHY register 30, page 5, bit 8 to 0 */
+
+	ret_val =
+	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val =
+	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+
+/**
+ * e1000_enable_mng_pass_thru - check for bmc pass through
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Verifies the hardware needs to allow ARPs to be processed by the host
+ * returns: - true/false
+ */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	if (hw->asf_firmware_present) {
+		manc = er32(MANC);
+
+		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+			return false;
+		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+			return true;
+	}
+	return false;
+}
+
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 i;
+
+	/* Polarity reversal workaround for forced 10F/10H links. */
+
+	/* Disable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the NO link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+			break;
+		mdelay(100);
+	}
+
+	/* Recommended delay time after link has been lost */
+	mdelay(1000);
+
+	/* Now we will re-enable th transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be set.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_LINK_STATUS)
+			break;
+		mdelay(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_auto_rd_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Check for EEPROM Auto Read bit done.
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+{
+	e_dbg("e1000_get_auto_rd_done");
+	msleep(5);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_cfg_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks if the PHY configuration is done
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	e_dbg("e1000_get_phy_cfg_done");
+	mdelay(10);
+	return E1000_SUCCESS;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.35-ethercat.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3049 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep-2.6.35-ethercat.h"
+
+
+/* Forward declarations of structures used by the shared code */
+struct e1000_hw;
+struct e1000_hw_stats;
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+	e1000_undefined = 0,
+	e1000_82542_rev2_0,
+	e1000_82542_rev2_1,
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_num_macs
+} e1000_mac_type;
+
+typedef enum {
+	e1000_eeprom_uninitialized = 0,
+	e1000_eeprom_spi,
+	e1000_eeprom_microwire,
+	e1000_eeprom_flash,
+	e1000_eeprom_none,	/* No NVM support */
+	e1000_num_eeprom_types
+} e1000_eeprom_type;
+
+/* Media Types */
+typedef enum {
+	e1000_media_type_copper = 0,
+	e1000_media_type_fiber = 1,
+	e1000_media_type_internal_serdes = 2,
+	e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+	e1000_10_half = 0,
+	e1000_10_full = 1,
+	e1000_100_half = 2,
+	e1000_100_full = 3
+} e1000_speed_duplex_type;
+
+/* Flow Control Settings */
+typedef enum {
+	E1000_FC_NONE = 0,
+	E1000_FC_RX_PAUSE = 1,
+	E1000_FC_TX_PAUSE = 2,
+	E1000_FC_FULL = 3,
+	E1000_FC_DEFAULT = 0xFF
+} e1000_fc_type;
+
+struct e1000_shadow_ram {
+	u16 eeprom_word;
+	bool modified;
+};
+
+/* PCI bus types */
+typedef enum {
+	e1000_bus_type_unknown = 0,
+	e1000_bus_type_pci,
+	e1000_bus_type_pcix,
+	e1000_bus_type_reserved
+} e1000_bus_type;
+
+/* PCI bus speeds */
+typedef enum {
+	e1000_bus_speed_unknown = 0,
+	e1000_bus_speed_33,
+	e1000_bus_speed_66,
+	e1000_bus_speed_100,
+	e1000_bus_speed_120,
+	e1000_bus_speed_133,
+	e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+/* PCI bus widths */
+typedef enum {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+} e1000_bus_width;
+
+/* PHY status info structure and supporting enums */
+typedef enum {
+	e1000_cable_length_50 = 0,
+	e1000_cable_length_50_80,
+	e1000_cable_length_80_110,
+	e1000_cable_length_110_140,
+	e1000_cable_length_140,
+	e1000_cable_length_undefined = 0xFF
+} e1000_cable_length;
+
+typedef enum {
+	e1000_gg_cable_length_60 = 0,
+	e1000_gg_cable_length_60_115 = 1,
+	e1000_gg_cable_length_115_150 = 2,
+	e1000_gg_cable_length_150 = 4
+} e1000_gg_cable_length;
+
+typedef enum {
+	e1000_igp_cable_length_10 = 10,
+	e1000_igp_cable_length_20 = 20,
+	e1000_igp_cable_length_30 = 30,
+	e1000_igp_cable_length_40 = 40,
+	e1000_igp_cable_length_50 = 50,
+	e1000_igp_cable_length_60 = 60,
+	e1000_igp_cable_length_70 = 70,
+	e1000_igp_cable_length_80 = 80,
+	e1000_igp_cable_length_90 = 90,
+	e1000_igp_cable_length_100 = 100,
+	e1000_igp_cable_length_110 = 110,
+	e1000_igp_cable_length_115 = 115,
+	e1000_igp_cable_length_120 = 120,
+	e1000_igp_cable_length_130 = 130,
+	e1000_igp_cable_length_140 = 140,
+	e1000_igp_cable_length_150 = 150,
+	e1000_igp_cable_length_160 = 160,
+	e1000_igp_cable_length_170 = 170,
+	e1000_igp_cable_length_180 = 180
+} e1000_igp_cable_length;
+
+typedef enum {
+	e1000_10bt_ext_dist_enable_normal = 0,
+	e1000_10bt_ext_dist_enable_lower,
+	e1000_10bt_ext_dist_enable_undefined = 0xFF
+} e1000_10bt_ext_dist_enable;
+
+typedef enum {
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+	e1000_downshift_normal = 0,
+	e1000_downshift_activated,
+	e1000_downshift_undefined = 0xFF
+} e1000_downshift;
+
+typedef enum {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+} e1000_smart_speed;
+
+typedef enum {
+	e1000_polarity_reversal_enabled = 0,
+	e1000_polarity_reversal_disabled,
+	e1000_polarity_reversal_undefined = 0xFF
+} e1000_polarity_reversal;
+
+typedef enum {
+	e1000_auto_x_mode_manual_mdi = 0,
+	e1000_auto_x_mode_manual_mdix,
+	e1000_auto_x_mode_auto1,
+	e1000_auto_x_mode_auto2,
+	e1000_auto_x_mode_undefined = 0xFF
+} e1000_auto_x_mode;
+
+typedef enum {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+    e1000_phy_m88 = 0,
+    e1000_phy_igp,
+    e1000_phy_undefined = 0xFF
+} e1000_phy_type;
+
+typedef enum {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+	e1000_ffe_config_enabled = 0,
+	e1000_ffe_config_active,
+	e1000_ffe_config_blocked
+} e1000_ffe_config;
+
+typedef enum {
+	e1000_dsp_config_disabled = 0,
+	e1000_dsp_config_enabled,
+	e1000_dsp_config_activated,
+	e1000_dsp_config_undefined = 0xFF
+} e1000_dsp_config;
+
+struct e1000_phy_info {
+	e1000_cable_length cable_length;
+	e1000_10bt_ext_dist_enable extended_10bt_distance;
+	e1000_rev_polarity cable_polarity;
+	e1000_downshift downshift;
+	e1000_polarity_reversal polarity_correction;
+	e1000_auto_x_mode mdix_mode;
+	e1000_1000t_rx_status local_rx;
+	e1000_1000t_rx_status remote_rx;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_eeprom_info {
+	e1000_eeprom_type type;
+	u16 word_size;
+	u16 opcode_bits;
+	u16 address_bits;
+	u16 delay_usec;
+	u16 page_size;
+};
+
+/* Flex ASF Information */
+#define E1000_HOST_IF_MAX_SIZE  2048
+
+typedef enum {
+	e1000_byte_align = 0,
+	e1000_word_align = 1,
+	e1000_dword_align = 2
+} e1000_align_type;
+
+/* Error Codes */
+#define E1000_SUCCESS      0
+#define E1000_ERR_EEPROM   1
+#define E1000_ERR_PHY      2
+#define E1000_ERR_CONFIG   3
+#define E1000_ERR_PARAM    4
+#define E1000_ERR_MAC_TYPE 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET   9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET   12
+
+#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \
+                                     (((_value) & 0xff00) >> 8))
+
+/* Function prototypes */
+/* Initialization */
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+void e1000_set_media_type(struct e1000_hw *hw);
+
+/* Link Configuration */
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+
+/* PHY */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_reset(struct e1000_hw *hw);
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+
+/* EEPROM Functions */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw);
+
+/* MNG HOST IF functions */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD   64
+#define E1000_HI_MAX_MNG_DATA_LENGTH    0x6F8	/* Host Interface data length */
+
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT  10	/* Time in ms to process MNG command */
+#define E1000_MNG_DHCP_COOKIE_OFFSET    0x6F0	/* Cookie offset */
+#define E1000_MNG_DHCP_COOKIE_LENGTH    0x10	/* Cookie length */
+#define E1000_MNG_IAMT_MODE             0x3
+#define E1000_MNG_ICH_IAMT_MODE         0x2
+#define E1000_IAMT_SIGNATURE            0x544D4149	/* Intel(R) Active Management Technology signature */
+
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1	/* DHCP parsing enabled */
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT    0x2	/* DHCP parsing enabled */
+#define E1000_VFTA_ENTRY_SHIFT                       0x5
+#define E1000_VFTA_ENTRY_MASK                        0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK              0x1F
+
+struct e1000_host_mng_command_header {
+	u8 command_id;
+	u8 checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];	/* Command data can length 0..0x658 */
+};
+#ifdef __BIG_ENDIAN
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u16 vlan_id;
+	u8 reserved0;
+	u8 status;
+	u32 reserved1;
+	u8 checksum;
+	u8 reserved3;
+	u16 reserved2;
+};
+#else
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8 status;
+	u8 reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8 reserved3;
+	u8 checksum;
+};
+#endif
+
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+
+/* Filters (multicast, vlan, receive) */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+void e1000_rar_set(struct e1000_hw *hw, u8 * mc_addr, u32 rar_index);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+
+/* LED functions */
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_blink_led_start(struct e1000_hw *hw);
+
+/* Adaptive IFS Functions */
+
+/* Everything else */
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 * mac_addr);
+void e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc);
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw);
+/* Port I/O is only supported on 82544 and newer */
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value);
+
+#define E1000_READ_REG_IO(a, reg) \
+    e1000_read_reg_io((a), E1000_##reg)
+#define E1000_WRITE_REG_IO(a, reg, val) \
+    e1000_write_reg_io((a), E1000_##reg, val)
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542               0x1000
+#define E1000_DEV_ID_82543GC_FIBER       0x1001
+#define E1000_DEV_ID_82543GC_COPPER      0x1004
+#define E1000_DEV_ID_82544EI_COPPER      0x1008
+#define E1000_DEV_ID_82544EI_FIBER       0x1009
+#define E1000_DEV_ID_82544GC_COPPER      0x100C
+#define E1000_DEV_ID_82544GC_LOM         0x100D
+#define E1000_DEV_ID_82540EM             0x100E
+#define E1000_DEV_ID_82540EM_LOM         0x1015
+#define E1000_DEV_ID_82540EP_LOM         0x1016
+#define E1000_DEV_ID_82540EP             0x1017
+#define E1000_DEV_ID_82540EP_LP          0x101E
+#define E1000_DEV_ID_82545EM_COPPER      0x100F
+#define E1000_DEV_ID_82545EM_FIBER       0x1011
+#define E1000_DEV_ID_82545GM_COPPER      0x1026
+#define E1000_DEV_ID_82545GM_FIBER       0x1027
+#define E1000_DEV_ID_82545GM_SERDES      0x1028
+#define E1000_DEV_ID_82546EB_COPPER      0x1010
+#define E1000_DEV_ID_82546EB_FIBER       0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82541EI             0x1013
+#define E1000_DEV_ID_82541EI_MOBILE      0x1018
+#define E1000_DEV_ID_82541ER_LOM         0x1014
+#define E1000_DEV_ID_82541ER             0x1078
+#define E1000_DEV_ID_82547GI             0x1075
+#define E1000_DEV_ID_82541GI             0x1076
+#define E1000_DEV_ID_82541GI_MOBILE      0x1077
+#define E1000_DEV_ID_82541GI_LF          0x107C
+#define E1000_DEV_ID_82546GB_COPPER      0x1079
+#define E1000_DEV_ID_82546GB_FIBER       0x107A
+#define E1000_DEV_ID_82546GB_SERDES      0x107B
+#define E1000_DEV_ID_82546GB_PCIE        0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82547EI             0x1019
+#define E1000_DEV_ID_82547EI_MOBILE      0x101A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+
+#define NODE_ADDRESS_SIZE 6
+#define ETH_LENGTH_OF_ADDRESS 6
+
+/* MAC decode size is 128K - This is the size of BAR0 */
+#define MAC_DECODE_SIZE (128 * 1024)
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+#define E1000_REVISION_0       0
+#define E1000_REVISION_1       1
+#define E1000_REVISION_2       2
+#define E1000_REVISION_3       3
+
+#define SPEED_10    10
+#define SPEED_100   100
+#define SPEED_1000  1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The sizes (in bytes) of a ethernet packet */
+#define ENET_HEADER_SIZE             14
+#define MINIMUM_ETHERNET_FRAME_SIZE  64	/* With FCS */
+#define ETHERNET_FCS_SIZE            4
+#define MINIMUM_ETHERNET_PACKET_SIZE \
+    (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define CRC_LENGTH                   ETHERNET_FCS_SIZE
+#define MAX_JUMBO_FRAME_SIZE         0x3F00
+
+/* 802.1q VLAN Packet Sizes */
+#define VLAN_TAG_SIZE  4	/* 802.3ac tag (not DMAed) */
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100	/* 802.3ac packet */
+#define ETHERNET_IP_TYPE        0x0800	/* IP packets */
+#define ETHERNET_ARP_TYPE       0x0806	/* Address Resolution Protocol (ARP) */
+
+/* Packet Header defines */
+#define IP_PROTOCOL_TCP    6
+#define IP_PROTOCOL_UDP    0x11
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+    E1000_IMS_RXDMT0 |         \
+    E1000_IMS_RXSEQ)
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   |    \
+    E1000_IMS_TXDW   |    \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ  |    \
+    E1000_IMS_LSC)
+
+/* Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+
+#define MIN_NUMBER_OF_DESCRIPTORS  8
+#define MAX_NUMBER_OF_DESCRIPTORS  0xFFF8
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	__le16 length;		/* Length of data DMAed into data buffer */
+	__le16 csum;		/* Packet checksum */
+	u8 status;		/* Descriptor status */
+	u8 errors;		/* Descriptor Errors */
+	__le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		__le64 buffer_addr;
+		__le64 reserved;
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length;
+			__le16 vlan;	/* VLAN tag */
+		} upper;
+	} wb;			/* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		__le64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length0;	/* length of buffer 0 */
+			__le16 vlan;	/* VLAN tag */
+		} middle;
+		struct {
+			__le16 header_status;
+			__le16 length[3];	/* length of buffers 1-3 */
+		} upper;
+		__le64 reserved;
+	} wb;			/* writeback */
+};
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD       0x01	/* Descriptor Done */
+#define E1000_RXD_STAT_EOP      0x02	/* End of Packet */
+#define E1000_RXD_STAT_IXSM     0x04	/* Ignore checksum */
+#define E1000_RXD_STAT_VP       0x08	/* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS    0x10	/* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS    0x20	/* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS     0x40	/* IP xsum calculated */
+#define E1000_RXD_STAT_PIF      0x80	/* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV    0x200	/* IP identification valid */
+#define E1000_RXD_STAT_UDPV     0x400	/* Valid UDP checksum */
+#define E1000_RXD_STAT_ACK      0x8000	/* ACK Packet indication */
+#define E1000_RXD_ERR_CE        0x01	/* CRC Error */
+#define E1000_RXD_ERR_SE        0x02	/* Symbol Error */
+#define E1000_RXD_ERR_SEQ       0x04	/* Sequence Error */
+#define E1000_RXD_ERR_CXE       0x10	/* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE      0x20	/* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE       0x40	/* IP Checksum Error */
+#define E1000_RXD_ERR_RXE       0x80	/* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF	/* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK  0xE000	/* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK  0x1000	/* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE    0x01000000
+#define E1000_RXDEXT_STATERR_SE    0x02000000
+#define E1000_RXDEXT_STATERR_SEQ   0x04000000
+#define E1000_RXDEXT_STATERR_CXE   0x10000000
+#define E1000_RXDEXT_STATERR_TCPE  0x20000000
+#define E1000_RXDEXT_STATERR_IPE   0x40000000
+#define E1000_RXDEXT_STATERR_RXE   0x80000000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP        0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK  0x000003FF
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |                \
+    E1000_RXD_ERR_SE  |                \
+    E1000_RXD_ERR_SEQ |                \
+    E1000_RXD_ERR_CXE |                \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  |            \
+    E1000_RXDEXT_STATERR_SE  |            \
+    E1000_RXDEXT_STATERR_SEQ |            \
+    E1000_RXDEXT_STATERR_CXE |            \
+    E1000_RXDEXT_STATERR_RXE)
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 cso;	/* Checksum offset */
+			u8 cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 css;	/* Checksum start */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000	/* Data Descriptor */
+#define E1000_TXD_DTYP_C     0x00000000	/* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01	/* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02	/* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000	/* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000	/* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000	/* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000	/* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000	/* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000	/* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000	/* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000	/* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001	/* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002	/* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004	/* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008	/* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000	/* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000	/* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000	/* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004	/* Tx Underrun */
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		__le32 ip_config;
+		struct {
+			u8 ipcss;	/* IP checksum start */
+			u8 ipcso;	/* IP checksum offset */
+			__le16 ipcse;	/* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		__le32 tcp_config;
+		struct {
+			u8 tucss;	/* TCP checksum start */
+			u8 tucso;	/* TCP checksum offset */
+			__le16 tucse;	/* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	__le32 cmd_and_length;	/* */
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 hdr_len;	/* Header length */
+			__le16 mss;	/* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's buffer address */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 typ_len_ext;	/* */
+			u8 cmd;	/* */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 popts;	/* Packet Options */
+			__le16 special;	/* */
+		} fields;
+	} upper;
+};
+
+/* Filters */
+#define E1000_NUM_UNICAST          16	/* Unicast filter entries */
+#define E1000_MC_TBL_SIZE          128	/* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128	/* VLAN Filter Table (4096 bits) */
+
+/* Receive Address Register */
+struct e1000_rar {
+	volatile __le32 low;	/* receive address low */
+	volatile __le32 high;	/* receive address high */
+};
+
+/* Number of entries in the Multicast Table Array (MTA). */
+#define E1000_NUM_MTA_REGISTERS 128
+
+/* IPv4 Address Table Entry */
+struct e1000_ipv4_at_entry {
+	volatile u32 ipv4_addr;	/* IP Address (RW) */
+	volatile u32 reserved;
+};
+
+/* Four wakeup IP addresses are supported */
+#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
+#define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP6AT_SIZE                  1
+
+/* IPv6 Address Table Entry */
+struct e1000_ipv6_at_entry {
+	volatile u8 ipv6_addr[16];
+};
+
+/* Flexible Filter Length Table Entry */
+struct e1000_fflt_entry {
+	volatile u32 length;	/* Flexible Filter Length (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Mask Table Entry */
+struct e1000_ffmt_entry {
+	volatile u32 mask;	/* Flexible Filter Mask (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Value Table Entry */
+struct e1000_ffvt_entry {
+	volatile u32 value;	/* Flexible Filter Value (RW) */
+	volatile u32 reserved;
+};
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+#define E1000_DISABLE_SERDES_LOOPBACK   0x0400
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and  should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL     0x00000	/* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004	/* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS   0x00008	/* Device Status - RO */
+#define E1000_EECD     0x00010	/* EEPROM/Flash Control - RW */
+#define E1000_EERD     0x00014	/* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018	/* Extended Device Control - RW */
+#define E1000_FLA      0x0001C	/* Flash Access - RW */
+#define E1000_MDIC     0x00020	/* MDI Control - RW */
+#define E1000_SCTL     0x00024	/* SerDes Control - RW */
+#define E1000_FEXTNVM  0x00028	/* Future Extended NVM register */
+#define E1000_FCAL     0x00028	/* Flow Control Address Low - RW */
+#define E1000_FCAH     0x0002C	/* Flow Control Address High -RW */
+#define E1000_FCT      0x00030	/* Flow Control Type - RW */
+#define E1000_VET      0x00038	/* VLAN Ether Type - RW */
+#define E1000_ICR      0x000C0	/* Interrupt Cause Read - R/clr */
+#define E1000_ITR      0x000C4	/* Interrupt Throttling Rate - RW */
+#define E1000_ICS      0x000C8	/* Interrupt Cause Set - WO */
+#define E1000_IMS      0x000D0	/* Interrupt Mask Set - RW */
+#define E1000_IMC      0x000D8	/* Interrupt Mask Clear - WO */
+#define E1000_IAM      0x000E0	/* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL     0x00100	/* RX Control - RW */
+#define E1000_RDTR1    0x02820	/* RX Delay Timer (1) - RW */
+#define E1000_RDBAL1   0x02900	/* RX Descriptor Base Address Low (1) - RW */
+#define E1000_RDBAH1   0x02904	/* RX Descriptor Base Address High (1) - RW */
+#define E1000_RDLEN1   0x02908	/* RX Descriptor Length (1) - RW */
+#define E1000_RDH1     0x02910	/* RX Descriptor Head (1) - RW */
+#define E1000_RDT1     0x02918	/* RX Descriptor Tail (1) - RW */
+#define E1000_FCTTV    0x00170	/* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW     0x00178	/* TX Configuration Word - RW */
+#define E1000_RXCW     0x00180	/* RX Configuration Word - RO */
+#define E1000_TCTL     0x00400	/* TX Control - RW */
+#define E1000_TCTL_EXT 0x00404	/* Extended TX Control - RW */
+#define E1000_TIPG     0x00410	/* TX Inter-packet gap -RW */
+#define E1000_TBT      0x00448	/* TX Burst Timer - RW */
+#define E1000_AIT      0x00458	/* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL   0x00E00	/* LED Control - RW */
+#define E1000_EXTCNF_CTRL  0x00F00	/* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE  0x00F08	/* Extended Configuration Size */
+#define E1000_PHY_CTRL     0x00F10	/* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG  0x0001
+#define E1000_PBA      0x01000	/* Packet Buffer Allocation - RW */
+#define E1000_PBS      0x01008	/* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010	/* MNG EEprom Control */
+#define E1000_FLASH_UPDATES 1000
+#define E1000_EEARBC   0x01024	/* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT   0x01028	/* FLASH Timer Register */
+#define E1000_EEWR     0x0102C	/* EEPROM Write Register - RW */
+#define E1000_FLSWCTL  0x01030	/* FLASH control register */
+#define E1000_FLSWDATA 0x01034	/* FLASH data register */
+#define E1000_FLSWCNT  0x01038	/* FLASH Access Counter */
+#define E1000_FLOP     0x0103C	/* FLASH Opcode Register */
+#define E1000_ERT      0x02008	/* Early Rx Threshold - RW */
+#define E1000_FCRTL    0x02160	/* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH    0x02168	/* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL   0x02170	/* Packet Split Receive Control - RW */
+#define E1000_RDBAL    0x02800	/* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH    0x02804	/* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN    0x02808	/* RX Descriptor Length - RW */
+#define E1000_RDH      0x02810	/* RX Descriptor Head - RW */
+#define E1000_RDT      0x02818	/* RX Descriptor Tail - RW */
+#define E1000_RDTR     0x02820	/* RX Delay Timer - RW */
+#define E1000_RDBAL0   E1000_RDBAL	/* RX Desc Base Address Low (0) - RW */
+#define E1000_RDBAH0   E1000_RDBAH	/* RX Desc Base Address High (0) - RW */
+#define E1000_RDLEN0   E1000_RDLEN	/* RX Desc Length (0) - RW */
+#define E1000_RDH0     E1000_RDH	/* RX Desc Head (0) - RW */
+#define E1000_RDT0     E1000_RDT	/* RX Desc Tail (0) - RW */
+#define E1000_RDTR0    E1000_RDTR	/* RX Delay Timer (0) - RW */
+#define E1000_RXDCTL   0x02828	/* RX Descriptor Control queue 0 - RW */
+#define E1000_RXDCTL1  0x02928	/* RX Descriptor Control queue 1 - RW */
+#define E1000_RADV     0x0282C	/* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD    0x02C00	/* RX Small Packet Detect - RW */
+#define E1000_RAID     0x02C08	/* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC   0x03000	/* TX DMA Control - RW */
+#define E1000_KABGTXD  0x03004	/* AFE Band Gap Transmit Ref Data */
+#define E1000_TDFH     0x03410	/* TX Data FIFO Head - RW */
+#define E1000_TDFT     0x03418	/* TX Data FIFO Tail - RW */
+#define E1000_TDFHS    0x03420	/* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS    0x03428	/* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC    0x03430	/* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL    0x03800	/* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH    0x03804	/* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN    0x03808	/* TX Descriptor Length - RW */
+#define E1000_TDH      0x03810	/* TX Descriptor Head - RW */
+#define E1000_TDT      0x03818	/* TX Descripotr Tail - RW */
+#define E1000_TIDV     0x03820	/* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL   0x03828	/* TX Descriptor Control - RW */
+#define E1000_TADV     0x0382C	/* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT    0x03830	/* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0    0x03840	/* TX Arbitration Count (0) */
+#define E1000_TDBAL1   0x03900	/* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1   0x03904	/* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1   0x03908	/* TX Desc Length (1) - RW */
+#define E1000_TDH1     0x03910	/* TX Desc Head (1) - RW */
+#define E1000_TDT1     0x03918	/* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1  0x03928	/* TX Descriptor Control (1) - RW */
+#define E1000_TARC1    0x03940	/* TX Arbitration Count (1) */
+#define E1000_CRCERRS  0x04000	/* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004	/* Alignment Error Count - R/clr */
+#define E1000_SYMERRS  0x04008	/* Symbol Error Count - R/clr */
+#define E1000_RXERRC   0x0400C	/* Receive Error Count - R/clr */
+#define E1000_MPC      0x04010	/* Missed Packet Count - R/clr */
+#define E1000_SCC      0x04014	/* Single Collision Count - R/clr */
+#define E1000_ECOL     0x04018	/* Excessive Collision Count - R/clr */
+#define E1000_MCC      0x0401C	/* Multiple Collision Count - R/clr */
+#define E1000_LATECOL  0x04020	/* Late Collision Count - R/clr */
+#define E1000_COLC     0x04028	/* Collision Count - R/clr */
+#define E1000_DC       0x04030	/* Defer Count - R/clr */
+#define E1000_TNCRS    0x04034	/* TX-No CRS - R/clr */
+#define E1000_SEC      0x04038	/* Sequence Error Count - R/clr */
+#define E1000_CEXTERR  0x0403C	/* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC     0x04040	/* Receive Length Error Count - R/clr */
+#define E1000_XONRXC   0x04048	/* XON RX Count - R/clr */
+#define E1000_XONTXC   0x0404C	/* XON TX Count - R/clr */
+#define E1000_XOFFRXC  0x04050	/* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC  0x04054	/* XOFF TX Count - R/clr */
+#define E1000_FCRUC    0x04058	/* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64    0x0405C	/* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127   0x04060	/* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255   0x04064	/* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511   0x04068	/* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023  0x0406C	/* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522  0x04070	/* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC     0x04074	/* Good Packets RX Count - R/clr */
+#define E1000_BPRC     0x04078	/* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC     0x0407C	/* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC     0x04080	/* Good Packets TX Count - R/clr */
+#define E1000_GORCL    0x04088	/* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH    0x0408C	/* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL    0x04090	/* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH    0x04094	/* Good Octets TX Count High - R/clr */
+#define E1000_RNBC     0x040A0	/* RX No Buffers Count - R/clr */
+#define E1000_RUC      0x040A4	/* RX Undersize Count - R/clr */
+#define E1000_RFC      0x040A8	/* RX Fragment Count - R/clr */
+#define E1000_ROC      0x040AC	/* RX Oversize Count - R/clr */
+#define E1000_RJC      0x040B0	/* RX Jabber Count - R/clr */
+#define E1000_MGTPRC   0x040B4	/* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC   0x040B8	/* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC   0x040BC	/* Management Packets TX Count - R/clr */
+#define E1000_TORL     0x040C0	/* Total Octets RX Low - R/clr */
+#define E1000_TORH     0x040C4	/* Total Octets RX High - R/clr */
+#define E1000_TOTL     0x040C8	/* Total Octets TX Low - R/clr */
+#define E1000_TOTH     0x040CC	/* Total Octets TX High - R/clr */
+#define E1000_TPR      0x040D0	/* Total Packets RX - R/clr */
+#define E1000_TPT      0x040D4	/* Total Packets TX - R/clr */
+#define E1000_PTC64    0x040D8	/* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127   0x040DC	/* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255   0x040E0	/* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511   0x040E4	/* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023  0x040E8	/* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522  0x040EC	/* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC     0x040F0	/* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC     0x040F4	/* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC    0x040F8	/* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC   0x040FC	/* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_IAC      0x04100	/* Interrupt Assertion Count */
+#define E1000_ICRXPTC  0x04104	/* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC  0x04108	/* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC  0x0410C	/* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC  0x04110	/* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC  0x04118	/* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C	/* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120	/* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC   0x04124	/* Interrupt Cause Receiver Overrun Count */
+#define E1000_RXCSUM   0x05000	/* RX Checksum Control - RW */
+#define E1000_RFCTL    0x05008	/* Receive Filter Control */
+#define E1000_MTA      0x05200	/* Multicast Table Array - RW Array */
+#define E1000_RA       0x05400	/* Receive Address - RW Array */
+#define E1000_VFTA     0x05600	/* VLAN Filter Table Array - RW Array */
+#define E1000_WUC      0x05800	/* Wakeup Control - RW */
+#define E1000_WUFC     0x05808	/* Wakeup Filter Control - RW */
+#define E1000_WUS      0x05810	/* Wakeup Status - RO */
+#define E1000_MANC     0x05820	/* Management Control - RW */
+#define E1000_IPAV     0x05838	/* IP Address Valid - RW */
+#define E1000_IP4AT    0x05840	/* IPv4 Address Table - RW Array */
+#define E1000_IP6AT    0x05880	/* IPv6 Address Table - RW Array */
+#define E1000_WUPL     0x05900	/* Wakeup Packet Length - RW */
+#define E1000_WUPM     0x05A00	/* Wakeup Packet Memory - RO A */
+#define E1000_FFLT     0x05F00	/* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF  0x08800	/* Host Interface */
+#define E1000_FFMT     0x09000	/* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT     0x09800	/* Flexible Filter Value Table - RW Array */
+
+#define E1000_KUMCTRLSTA 0x00034	/* MAC-PHY interface - RW */
+#define E1000_MDPHYA     0x0003C	/* PHY address - RW */
+#define E1000_MANC2H     0x05860	/* Managment Control To Host - RW */
+#define E1000_SW_FW_SYNC 0x05B5C	/* Software-Firmware Synchronization - RW */
+
+#define E1000_GCR       0x05B00	/* PCI-Ex Control */
+#define E1000_GSCL_1    0x05B10	/* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2    0x05B14	/* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3    0x05B18	/* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4    0x05B1C	/* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS    0x05B30	/* Function Active and Power State to MNG */
+#define E1000_SWSM      0x05B50	/* SW Semaphore */
+#define E1000_FWSM      0x05B54	/* FW Semaphore */
+#define E1000_FFLT_DBG  0x05F04	/* Debug Register */
+#define E1000_HICR      0x08F00	/* Host Interface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC    0x02C10	/* CPU Vector Register - RW */
+#define E1000_MRQC      0x05818	/* Multiple Receive Control - RW */
+#define E1000_RETA      0x05C00	/* Redirection Table - RW Array */
+#define E1000_RSSRK     0x05C80	/* RSS Random Key - RW Array */
+#define E1000_RSSIM     0x05864	/* RSS Interrupt Mask */
+#define E1000_RSSIR     0x05868	/* RSS Interrupt Request */
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL     E1000_CTRL
+#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
+#define E1000_82542_STATUS   E1000_STATUS
+#define E1000_82542_EECD     E1000_EECD
+#define E1000_82542_EERD     E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_FLA      E1000_FLA
+#define E1000_82542_MDIC     E1000_MDIC
+#define E1000_82542_SCTL     E1000_SCTL
+#define E1000_82542_FEXTNVM  E1000_FEXTNVM
+#define E1000_82542_FCAL     E1000_FCAL
+#define E1000_82542_FCAH     E1000_FCAH
+#define E1000_82542_FCT      E1000_FCT
+#define E1000_82542_VET      E1000_VET
+#define E1000_82542_RA       0x00040
+#define E1000_82542_ICR      E1000_ICR
+#define E1000_82542_ITR      E1000_ITR
+#define E1000_82542_ICS      E1000_ICS
+#define E1000_82542_IMS      E1000_IMS
+#define E1000_82542_IMC      E1000_IMC
+#define E1000_82542_RCTL     E1000_RCTL
+#define E1000_82542_RDTR     0x00108
+#define E1000_82542_RDBAL    0x00110
+#define E1000_82542_RDBAH    0x00114
+#define E1000_82542_RDLEN    0x00118
+#define E1000_82542_RDH      0x00120
+#define E1000_82542_RDT      0x00128
+#define E1000_82542_RDTR0    E1000_82542_RDTR
+#define E1000_82542_RDBAL0   E1000_82542_RDBAL
+#define E1000_82542_RDBAH0   E1000_82542_RDBAH
+#define E1000_82542_RDLEN0   E1000_82542_RDLEN
+#define E1000_82542_RDH0     E1000_82542_RDH
+#define E1000_82542_RDT0     E1000_82542_RDT
+#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8))	/* Split and Replication
+							 * RX Control - RW */
+#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
+#define E1000_82542_RDBAH3   0x02B04	/* RX Desc Base High Queue 3 - RW */
+#define E1000_82542_RDBAL3   0x02B00	/* RX Desc Low Queue 3 - RW */
+#define E1000_82542_RDLEN3   0x02B08	/* RX Desc Length Queue 3 - RW */
+#define E1000_82542_RDH3     0x02B10	/* RX Desc Head Queue 3 - RW */
+#define E1000_82542_RDT3     0x02B18	/* RX Desc Tail Queue 3 - RW */
+#define E1000_82542_RDBAL2   0x02A00	/* RX Desc Base Low Queue 2 - RW */
+#define E1000_82542_RDBAH2   0x02A04	/* RX Desc Base High Queue 2 - RW */
+#define E1000_82542_RDLEN2   0x02A08	/* RX Desc Length Queue 2 - RW */
+#define E1000_82542_RDH2     0x02A10	/* RX Desc Head Queue 2 - RW */
+#define E1000_82542_RDT2     0x02A18	/* RX Desc Tail Queue 2 - RW */
+#define E1000_82542_RDTR1    0x00130
+#define E1000_82542_RDBAL1   0x00138
+#define E1000_82542_RDBAH1   0x0013C
+#define E1000_82542_RDLEN1   0x00140
+#define E1000_82542_RDH1     0x00148
+#define E1000_82542_RDT1     0x00150
+#define E1000_82542_FCRTH    0x00160
+#define E1000_82542_FCRTL    0x00168
+#define E1000_82542_FCTTV    E1000_FCTTV
+#define E1000_82542_TXCW     E1000_TXCW
+#define E1000_82542_RXCW     E1000_RXCW
+#define E1000_82542_MTA      0x00200
+#define E1000_82542_TCTL     E1000_TCTL
+#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
+#define E1000_82542_TIPG     E1000_TIPG
+#define E1000_82542_TDBAL    0x00420
+#define E1000_82542_TDBAH    0x00424
+#define E1000_82542_TDLEN    0x00428
+#define E1000_82542_TDH      0x00430
+#define E1000_82542_TDT      0x00438
+#define E1000_82542_TIDV     0x00440
+#define E1000_82542_TBT      E1000_TBT
+#define E1000_82542_AIT      E1000_AIT
+#define E1000_82542_VFTA     0x00600
+#define E1000_82542_LEDCTL   E1000_LEDCTL
+#define E1000_82542_PBA      E1000_PBA
+#define E1000_82542_PBS      E1000_PBS
+#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
+#define E1000_82542_EEARBC   E1000_EEARBC
+#define E1000_82542_FLASHT   E1000_FLASHT
+#define E1000_82542_EEWR     E1000_EEWR
+#define E1000_82542_FLSWCTL  E1000_FLSWCTL
+#define E1000_82542_FLSWDATA E1000_FLSWDATA
+#define E1000_82542_FLSWCNT  E1000_FLSWCNT
+#define E1000_82542_FLOP     E1000_FLOP
+#define E1000_82542_EXTCNF_CTRL  E1000_EXTCNF_CTRL
+#define E1000_82542_EXTCNF_SIZE  E1000_EXTCNF_SIZE
+#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
+#define E1000_82542_ERT      E1000_ERT
+#define E1000_82542_RXDCTL   E1000_RXDCTL
+#define E1000_82542_RXDCTL1  E1000_RXDCTL1
+#define E1000_82542_RADV     E1000_RADV
+#define E1000_82542_RSRPD    E1000_RSRPD
+#define E1000_82542_TXDMAC   E1000_TXDMAC
+#define E1000_82542_KABGTXD  E1000_KABGTXD
+#define E1000_82542_TDFHS    E1000_TDFHS
+#define E1000_82542_TDFTS    E1000_TDFTS
+#define E1000_82542_TDFPC    E1000_TDFPC
+#define E1000_82542_TXDCTL   E1000_TXDCTL
+#define E1000_82542_TADV     E1000_TADV
+#define E1000_82542_TSPMT    E1000_TSPMT
+#define E1000_82542_CRCERRS  E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS  E1000_SYMERRS
+#define E1000_82542_RXERRC   E1000_RXERRC
+#define E1000_82542_MPC      E1000_MPC
+#define E1000_82542_SCC      E1000_SCC
+#define E1000_82542_ECOL     E1000_ECOL
+#define E1000_82542_MCC      E1000_MCC
+#define E1000_82542_LATECOL  E1000_LATECOL
+#define E1000_82542_COLC     E1000_COLC
+#define E1000_82542_DC       E1000_DC
+#define E1000_82542_TNCRS    E1000_TNCRS
+#define E1000_82542_SEC      E1000_SEC
+#define E1000_82542_CEXTERR  E1000_CEXTERR
+#define E1000_82542_RLEC     E1000_RLEC
+#define E1000_82542_XONRXC   E1000_XONRXC
+#define E1000_82542_XONTXC   E1000_XONTXC
+#define E1000_82542_XOFFRXC  E1000_XOFFRXC
+#define E1000_82542_XOFFTXC  E1000_XOFFTXC
+#define E1000_82542_FCRUC    E1000_FCRUC
+#define E1000_82542_PRC64    E1000_PRC64
+#define E1000_82542_PRC127   E1000_PRC127
+#define E1000_82542_PRC255   E1000_PRC255
+#define E1000_82542_PRC511   E1000_PRC511
+#define E1000_82542_PRC1023  E1000_PRC1023
+#define E1000_82542_PRC1522  E1000_PRC1522
+#define E1000_82542_GPRC     E1000_GPRC
+#define E1000_82542_BPRC     E1000_BPRC
+#define E1000_82542_MPRC     E1000_MPRC
+#define E1000_82542_GPTC     E1000_GPTC
+#define E1000_82542_GORCL    E1000_GORCL
+#define E1000_82542_GORCH    E1000_GORCH
+#define E1000_82542_GOTCL    E1000_GOTCL
+#define E1000_82542_GOTCH    E1000_GOTCH
+#define E1000_82542_RNBC     E1000_RNBC
+#define E1000_82542_RUC      E1000_RUC
+#define E1000_82542_RFC      E1000_RFC
+#define E1000_82542_ROC      E1000_ROC
+#define E1000_82542_RJC      E1000_RJC
+#define E1000_82542_MGTPRC   E1000_MGTPRC
+#define E1000_82542_MGTPDC   E1000_MGTPDC
+#define E1000_82542_MGTPTC   E1000_MGTPTC
+#define E1000_82542_TORL     E1000_TORL
+#define E1000_82542_TORH     E1000_TORH
+#define E1000_82542_TOTL     E1000_TOTL
+#define E1000_82542_TOTH     E1000_TOTH
+#define E1000_82542_TPR      E1000_TPR
+#define E1000_82542_TPT      E1000_TPT
+#define E1000_82542_PTC64    E1000_PTC64
+#define E1000_82542_PTC127   E1000_PTC127
+#define E1000_82542_PTC255   E1000_PTC255
+#define E1000_82542_PTC511   E1000_PTC511
+#define E1000_82542_PTC1023  E1000_PTC1023
+#define E1000_82542_PTC1522  E1000_PTC1522
+#define E1000_82542_MPTC     E1000_MPTC
+#define E1000_82542_BPTC     E1000_BPTC
+#define E1000_82542_TSCTC    E1000_TSCTC
+#define E1000_82542_TSCTFC   E1000_TSCTFC
+#define E1000_82542_RXCSUM   E1000_RXCSUM
+#define E1000_82542_WUC      E1000_WUC
+#define E1000_82542_WUFC     E1000_WUFC
+#define E1000_82542_WUS      E1000_WUS
+#define E1000_82542_MANC     E1000_MANC
+#define E1000_82542_IPAV     E1000_IPAV
+#define E1000_82542_IP4AT    E1000_IP4AT
+#define E1000_82542_IP6AT    E1000_IP6AT
+#define E1000_82542_WUPL     E1000_WUPL
+#define E1000_82542_WUPM     E1000_WUPM
+#define E1000_82542_FFLT     E1000_FFLT
+#define E1000_82542_TDFH     0x08010
+#define E1000_82542_TDFT     0x08018
+#define E1000_82542_FFMT     E1000_FFMT
+#define E1000_82542_FFVT     E1000_FFVT
+#define E1000_82542_HOST_IF  E1000_HOST_IF
+#define E1000_82542_IAM         E1000_IAM
+#define E1000_82542_EEMNGCTL    E1000_EEMNGCTL
+#define E1000_82542_PSRCTL      E1000_PSRCTL
+#define E1000_82542_RAID        E1000_RAID
+#define E1000_82542_TARC0       E1000_TARC0
+#define E1000_82542_TDBAL1      E1000_TDBAL1
+#define E1000_82542_TDBAH1      E1000_TDBAH1
+#define E1000_82542_TDLEN1      E1000_TDLEN1
+#define E1000_82542_TDH1        E1000_TDH1
+#define E1000_82542_TDT1        E1000_TDT1
+#define E1000_82542_TXDCTL1     E1000_TXDCTL1
+#define E1000_82542_TARC1       E1000_TARC1
+#define E1000_82542_RFCTL       E1000_RFCTL
+#define E1000_82542_GCR         E1000_GCR
+#define E1000_82542_GSCL_1      E1000_GSCL_1
+#define E1000_82542_GSCL_2      E1000_GSCL_2
+#define E1000_82542_GSCL_3      E1000_GSCL_3
+#define E1000_82542_GSCL_4      E1000_GSCL_4
+#define E1000_82542_FACTPS      E1000_FACTPS
+#define E1000_82542_SWSM        E1000_SWSM
+#define E1000_82542_FWSM        E1000_FWSM
+#define E1000_82542_FFLT_DBG    E1000_FFLT_DBG
+#define E1000_82542_IAC         E1000_IAC
+#define E1000_82542_ICRXPTC     E1000_ICRXPTC
+#define E1000_82542_ICRXATC     E1000_ICRXATC
+#define E1000_82542_ICTXPTC     E1000_ICTXPTC
+#define E1000_82542_ICTXATC     E1000_ICTXATC
+#define E1000_82542_ICTXQEC     E1000_ICTXQEC
+#define E1000_82542_ICTXQMTC    E1000_ICTXQMTC
+#define E1000_82542_ICRXDMTC    E1000_ICRXDMTC
+#define E1000_82542_ICRXOC      E1000_ICRXOC
+#define E1000_82542_HICR        E1000_HICR
+
+#define E1000_82542_CPUVEC      E1000_CPUVEC
+#define E1000_82542_MRQC        E1000_MRQC
+#define E1000_82542_RETA        E1000_RETA
+#define E1000_82542_RSSRK       E1000_RSSRK
+#define E1000_82542_RSSIM       E1000_RSSIM
+#define E1000_82542_RSSIR       E1000_RSSIR
+#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
+#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 txerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorcl;
+	u64 gorch;
+	u64 gotcl;
+	u64 gotch;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rlerrc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 torl;
+	u64 torh;
+	u64 totl;
+	u64 toth;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+};
+
+/* Structure containing variables used by the shared code (e1000_hw.c) */
+struct e1000_hw {
+	u8 __iomem *hw_addr;
+	u8 __iomem *flash_address;
+	e1000_mac_type mac_type;
+	e1000_phy_type phy_type;
+	u32 phy_init_script;
+	e1000_media_type media_type;
+	void *back;
+	struct e1000_shadow_ram *eeprom_shadow_ram;
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+	e1000_fc_type fc;
+	e1000_bus_speed bus_speed;
+	e1000_bus_width bus_width;
+	e1000_bus_type bus_type;
+	struct e1000_eeprom_info eeprom;
+	e1000_ms_type master_slave;
+	e1000_ms_type original_master_slave;
+	e1000_ffe_config ffe_config_state;
+	u32 asf_firmware_present;
+	u32 eeprom_semaphore_present;
+	unsigned long io_base;
+	u32 phy_id;
+	u32 phy_revision;
+	u32 phy_addr;
+	u32 original_fc;
+	u32 txcw;
+	u32 autoneg_failed;
+	u32 max_frame_size;
+	u32 min_frame_size;
+	u32 mc_filter_type;
+	u32 num_mc_addrs;
+	u32 collision_delta;
+	u32 tx_packet_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	bool tx_pkt_filtering;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+	u16 phy_spd_default;
+	u16 autoneg_advertised;
+	u16 pci_cmd_word;
+	u16 fc_high_water;
+	u16 fc_low_water;
+	u16 fc_pause_time;
+	u16 current_ifs_val;
+	u16 ifs_min_val;
+	u16 ifs_max_val;
+	u16 ifs_step_size;
+	u16 ifs_ratio;
+	u16 device_id;
+	u16 vendor_id;
+	u16 subsystem_id;
+	u16 subsystem_vendor_id;
+	u8 revision_id;
+	u8 autoneg;
+	u8 mdix;
+	u8 forced_speed_duplex;
+	u8 wait_autoneg_complete;
+	u8 dma_fairness;
+	u8 mac_addr[NODE_ADDRESS_SIZE];
+	u8 perm_mac_addr[NODE_ADDRESS_SIZE];
+	bool disable_polarity_correction;
+	bool speed_downgraded;
+	e1000_smart_speed smart_speed;
+	e1000_dsp_config dsp_config_state;
+	bool get_link_status;
+	bool serdes_has_link;
+	bool tbi_compatibility_en;
+	bool tbi_compatibility_on;
+	bool laa_is_present;
+	bool phy_reset_disable;
+	bool initialize_hw_bits_disable;
+	bool fc_send_xon;
+	bool fc_strict_ieee;
+	bool report_tx_early;
+	bool adaptive_ifs;
+	bool ifs_params_forced;
+	bool in_ifs_mode;
+	bool mng_reg_access_disabled;
+	bool leave_av_bit_off;
+	bool bad_tx_carr_stats_fd;
+	bool has_smbus;
+};
+
+#define E1000_EEPROM_SWDPIN0   0x0001	/* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020	/* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA   16	/* Offset to data in EEPROM read/write registers */
+#define E1000_EEPROM_RW_REG_DONE   2	/* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START  1	/* First bit for telling part to start operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2	/* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE    1	/* Flag for polling for write complete */
+#define E1000_EEPROM_POLL_READ     0	/* Flag for polling for read complete */
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD       0x00000001	/* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM      0x00000002	/* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR    0x00000004	/* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004	/*Blocks new Master requests */
+#define E1000_CTRL_LRST     0x00000008	/* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME      0x00000010	/* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE      0x00000020	/* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE     0x00000020	/* Auto-speed detect enable */
+#define E1000_CTRL_SLU      0x00000040	/* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080	/* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300	/* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000	/* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100	/* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200	/* Force 1Gb */
+#define E1000_CTRL_BEM32    0x00000400	/* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD   0x00000800	/* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000	/* Force Duplex */
+#define E1000_CTRL_D_UD_EN  0x00002000	/* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000	/* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000	/* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000	/* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0  0x00040000	/* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000	/* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2  0x00100000	/* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3  0x00200000	/* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0  0x00400000	/* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1  0x00800000	/* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2  0x01000000	/* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3  0x02000000	/* SWDPIN 3 input or output */
+#define E1000_CTRL_RST      0x04000000	/* Global reset */
+#define E1000_CTRL_RFCE     0x08000000	/* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000	/* Transmit flow control enable */
+#define E1000_CTRL_RTE      0x20000000	/* Routing tag enable */
+#define E1000_CTRL_VME      0x40000000	/* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000	/* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000	/* Initiate an interrupt to manageability engine */
+
+/* Device Status */
+#define E1000_STATUS_FD         0x00000001	/* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU         0x00000002	/* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK  0x0000000C	/* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0     0x00000000	/* Function 0 */
+#define E1000_STATUS_FUNC_1     0x00000004	/* Function 1 */
+#define E1000_STATUS_TXOFF      0x00000010	/* transmission paused */
+#define E1000_STATUS_TBIMODE    0x00000020	/* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10   0x00000000	/* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100  0x00000040	/* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080	/* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200	/* Lan Init Completion
+						   by EEPROM/Flash */
+#define E1000_STATUS_ASDV       0x00000300	/* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI    0x00000800	/* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000	/* Status of Master requests. */
+#define E1000_STATUS_MTXCKOK    0x00000400	/* MTX clock running OK */
+#define E1000_STATUS_PCI66      0x00000800	/* In 66Mhz slot */
+#define E1000_STATUS_BUS64      0x00001000	/* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE  0x00002000	/* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000	/* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0  0x00100000	/* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1  0x00200000	/* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2  0x00400000	/* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000	/* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE   0x01000000	/* BMC external code execution disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000	/* RGMII disabled */
+#define E1000_STATUS_FUSE_8       0x04000000
+#define E1000_STATUS_FUSE_9       0x08000000
+#define E1000_STATUS_SERDES0_DIS  0x10000000	/* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS  0x20000000	/* SERDES disabled on port 1 */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66  0x00000000	/* PCI-X bus speed  50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000	/* PCI-X bus speed  66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000	/* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK        0x00000001	/* EEPROM Clock */
+#define E1000_EECD_CS        0x00000002	/* EEPROM Chip Select */
+#define E1000_EECD_DI        0x00000004	/* EEPROM Data In */
+#define E1000_EECD_DO        0x00000008	/* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK  0x00000030
+#define E1000_EECD_FWE_DIS   0x00000010	/* Disable FLASH writes */
+#define E1000_EECD_FWE_EN    0x00000020	/* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ       0x00000040	/* EEPROM Access Request */
+#define E1000_EECD_GNT       0x00000080	/* EEPROM Access Grant */
+#define E1000_EECD_PRES      0x00000100	/* EEPROM Present */
+#define E1000_EECD_SIZE      0x00000200	/* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_ADDR_BITS 0x00000400	/* EEPROM Addressing bits based on type
+					 * (0-small, 1-large) */
+#define E1000_EECD_TYPE      0x00002000	/* EEPROM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_EEPROM_GRANT_ATTEMPTS
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000	/* EEPROM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD          0x00000200	/* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800	/* EEprom Size */
+#define E1000_EECD_SIZE_EX_SHIFT    11
+#define E1000_EECD_NVADDS    0x00018000	/* NVM Address Size */
+#define E1000_EECD_SELSHAD   0x00020000	/* Select Shadow RAM */
+#define E1000_EECD_INITSRAM  0x00040000	/* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD     0x00080000	/* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000	/* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV     0x00200000	/* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL   0x00400000	/* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT      22
+#define E1000_STM_OPCODE     0xDB00
+#define E1000_HICR_FW_RESET  0xC0
+
+#define E1000_SHADOW_RAM_WORDS     2048
+#define E1000_ICH_NVM_SIG_WORD     0x13
+#define E1000_ICH_NVM_SIG_MASK     0xC0
+
+/* EEPROM Read */
+#define E1000_EERD_START      0x00000001	/* Start Read */
+#define E1000_EERD_DONE       0x00000010	/* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK  0x0000FF00	/* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK  0xFFFF0000	/* Read Data */
+
+/* SPI EEPROM Status Register */
+#define EEPROM_STATUS_RDY_SPI  0x01
+#define EEPROM_STATUS_WEN_SPI  0x02
+#define EEPROM_STATUS_BP0_SPI  0x04
+#define EEPROM_STATUS_BP1_SPI  0x08
+#define EEPROM_STATUS_WPEN_SPI 0x80
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN   0x00000001	/* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN   0x00000002	/* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN   0x00000004	/* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN   0x00000008	/* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010	/* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020	/* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040	/* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080	/* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR  0x00000100	/* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR  0x00000200	/* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR  0x00000400	/* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR  0x00000800	/* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK    0x00001000	/* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST    0x00002000	/* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS       0x00004000	/* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000	/* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000	/* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_SERDES  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII   0x00800000
+#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
+#define E1000_CTRL_EXT_DRV_LOAD       0x10000000	/* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME           0x08000000	/* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000	/* Clear Interrupt timers after IMS clear */
+#define E1000_CRTL_EXT_PB_PAREN       0x01000000	/* packet buffer parity error detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN       0x02000000	/* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN    0x40000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK  0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK  0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_INT_EN    0x20000000
+#define E1000_MDIC_ERROR     0x40000000
+
+#define E1000_KUMCTRLSTA_MASK           0x0000FFFF
+#define E1000_KUMCTRLSTA_OFFSET         0x001F0000
+#define E1000_KUMCTRLSTA_OFFSET_SHIFT   16
+#define E1000_KUMCTRLSTA_REN            0x00200000
+
+#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL      0x00000000
+#define E1000_KUMCTRLSTA_OFFSET_CTRL           0x00000001
+#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL       0x00000002
+#define E1000_KUMCTRLSTA_OFFSET_DIAG           0x00000003
+#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS       0x00000004
+#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM      0x00000009
+#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL        0x00000010
+#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES     0x0000001E
+#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES      0x0000001F
+
+/* FIFO Control */
+#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS   0x00000008
+#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
+
+/* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
+#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
+
+/* Half-Duplex Control */
+#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
+#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
+
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
+
+#define E1000_KABGTXD_BGSQLBIAS                0x00050000
+
+#define E1000_PHY_CTRL_SPD_EN                  0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
+#define E1000_PHY_CTRL_B2B_EN                  0x00000080
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT      0
+#define E1000_LEDCTL_LED0_BLINK_RATE      0x0000020
+#define E1000_LEDCTL_LED0_IVRT            0x00000040
+#define E1000_LEDCTL_LED0_BLINK           0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK       0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT      8
+#define E1000_LEDCTL_LED1_BLINK_RATE      0x0002000
+#define E1000_LEDCTL_LED1_IVRT            0x00004000
+#define E1000_LEDCTL_LED1_BLINK           0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK       0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT      16
+#define E1000_LEDCTL_LED2_BLINK_RATE      0x00200000
+#define E1000_LEDCTL_LED2_IVRT            0x00400000
+#define E1000_LEDCTL_LED2_BLINK           0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK       0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT      24
+#define E1000_LEDCTL_LED3_BLINK_RATE      0x20000000
+#define E1000_LEDCTL_LED3_IVRT            0x40000000
+#define E1000_LEDCTL_LED3_BLINK           0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000  0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP       0x2
+#define E1000_LEDCTL_MODE_ACTIVITY      0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10       0x5
+#define E1000_LEDCTL_MODE_LINK_100      0x6
+#define E1000_LEDCTL_MODE_LINK_1000     0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE     0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9
+#define E1000_LEDCTL_MODE_COLLISION     0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED     0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE      0xC
+#define E1000_LEDCTL_MODE_PAUSED        0xD
+#define E1000_LEDCTL_MODE_LED_ON        0xE
+#define E1000_LEDCTL_MODE_LED_OFF       0xF
+
+/* Receive Address */
+#define E1000_RAH_AV  0x80000000	/* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW          0x00000001	/* Transmit desc written back */
+#define E1000_ICR_TXQE          0x00000002	/* Transmit Queue empty */
+#define E1000_ICR_LSC           0x00000004	/* Link Status Change */
+#define E1000_ICR_RXSEQ         0x00000008	/* rx sequence error */
+#define E1000_ICR_RXDMT0        0x00000010	/* rx desc min. threshold (0) */
+#define E1000_ICR_RXO           0x00000040	/* rx overrun */
+#define E1000_ICR_RXT0          0x00000080	/* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC          0x00000200	/* MDIO access complete */
+#define E1000_ICR_RXCFG         0x00000400	/* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0       0x00000800	/* GP Int 0 */
+#define E1000_ICR_GPI_EN1       0x00001000	/* GP Int 1 */
+#define E1000_ICR_GPI_EN2       0x00002000	/* GP Int 2 */
+#define E1000_ICR_GPI_EN3       0x00004000	/* GP Int 3 */
+#define E1000_ICR_TXD_LOW       0x00008000
+#define E1000_ICR_SRPD          0x00010000
+#define E1000_ICR_ACK           0x00020000	/* Receive Ack frame */
+#define E1000_ICR_MNG           0x00040000	/* Manageability event */
+#define E1000_ICR_DOCK          0x00080000	/* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED  0x80000000	/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR  0x00400000	/* host arb read buffer parity error */
+#define E1000_ICR_PB_PAR        0x00800000	/* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_ALL_PARITY    0x03F00000	/* all parity error bits */
+#define E1000_ICR_DSW           0x00000020	/* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT        0x00001000	/* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST         0x00100000	/* ME hardware reset occurs */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_ICS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_ICS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_ICS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_ICS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_ICS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_ICS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_ICS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_ICS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_ICS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_ICS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD      E1000_ICR_SRPD
+#define E1000_ICS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_ICS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_ICS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW       E1000_ICR_DSW
+#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
+#define E1000_ICS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD      E1000_ICR_SRPD
+#define E1000_IMS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW       E1000_ICR_DSW
+#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMC_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMC_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMC_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMC_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMC_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMC_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMC_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMC_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMC_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMC_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMC_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMC_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD      E1000_ICR_SRPD
+#define E1000_IMC_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMC_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMC_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMC_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMC_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMC_DSW       E1000_ICR_DSW
+#define E1000_IMC_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMC_EPRST     E1000_ICR_EPRST
+
+/* Receive Control */
+#define E1000_RCTL_RST            0x00000001	/* Software reset */
+#define E1000_RCTL_EN             0x00000002	/* enable */
+#define E1000_RCTL_SBP            0x00000004	/* store bad packet */
+#define E1000_RCTL_UPE            0x00000008	/* unicast promiscuous enable */
+#define E1000_RCTL_MPE            0x00000010	/* multicast promiscuous enab */
+#define E1000_RCTL_LPE            0x00000020	/* long packet enable */
+#define E1000_RCTL_LBM_NO         0x00000000	/* no loopback mode */
+#define E1000_RCTL_LBM_MAC        0x00000040	/* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP        0x00000080	/* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR       0x000000C0	/* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK      0x00000C00	/* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS        0x00000400	/* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF     0x00000000	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT     0x00000100	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH    0x00000200	/* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT       12	/* multicast offset shift */
+#define E1000_RCTL_MO_0           0x00000000	/* multicast offset 11:0 */
+#define E1000_RCTL_MO_1           0x00001000	/* multicast offset 12:1 */
+#define E1000_RCTL_MO_2           0x00002000	/* multicast offset 13:2 */
+#define E1000_RCTL_MO_3           0x00003000	/* multicast offset 15:4 */
+#define E1000_RCTL_MDR            0x00004000	/* multicast desc ring 0 */
+#define E1000_RCTL_BAM            0x00008000	/* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048        0x00000000	/* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024        0x00010000	/* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512         0x00020000	/* rx buffer size 512 */
+#define E1000_RCTL_SZ_256         0x00030000	/* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384       0x00010000	/* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192        0x00020000	/* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096        0x00030000	/* rx buffer size 4096 */
+#define E1000_RCTL_VFE            0x00040000	/* vlan filter enable */
+#define E1000_RCTL_CFIEN          0x00080000	/* canonical form enable */
+#define E1000_RCTL_CFI            0x00100000	/* canonical form indicator */
+#define E1000_RCTL_DPF            0x00400000	/* discard pause frames */
+#define E1000_RCTL_PMCF           0x00800000	/* pass MAC control frames */
+#define E1000_RCTL_BSEX           0x02000000	/* Buffer size extension */
+#define E1000_RCTL_SECRC          0x04000000	/* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK    0x78000000	/* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT   27	/* Flexible buffer shift */
+
+/* Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE0_MASK) |
+ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE1_MASK) |
+ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE2_MASK) |
+ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *                  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT  7	/* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT  2	/* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT  6	/* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14	/* Shift _left_ 14 */
+
+/* SW_W_SYNC definitions */
+#define E1000_SWFW_EEP_SM     0x0001
+#define E1000_SWFW_PHY0_SM    0x0002
+#define E1000_SWFW_PHY1_SM    0x0004
+#define E1000_SWFW_MAC_CSR_SM 0x0008
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff	/* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB  0x80000000	/* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80	/* descriptor length */
+#define E1000_RDH_RDH   0x0000ffff	/* receive descriptor head */
+#define E1000_RDT_RDT   0x0000ffff	/* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8	/* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000	/* External Flow Control Enable */
+#define E1000_FCRTL_RTL  0x0000FFF8	/* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000	/* Enable XON frame transmission */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS           0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK      0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT     1
+#define E1000_RFCTL_NFSW_DIS            0x00000040
+#define E1000_RFCTL_NFSR_DIS            0x00000080
+#define E1000_RFCTL_NFS_VER_MASK        0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT       8
+#define E1000_RFCTL_IPV6_DIS            0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS       0x00000800
+#define E1000_RFCTL_ACK_DIS             0x00001000
+#define E1000_RFCTL_ACKD_DIS            0x00002000
+#define E1000_RFCTL_IPFRSP_DIS          0x00004000
+#define E1000_RFCTL_EXTEN               0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F	/* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00	/* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000	/* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN    0x01000000	/* RXDCTL Granularity */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F	/* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00	/* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000	/* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN    0x01000000	/* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000	/* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000	/* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000	/* Enable the counting of desc.
+						   still to be processed. */
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD         0x00000020	/* TXCW full duplex */
+#define E1000_TXCW_HD         0x00000040	/* TXCW half duplex */
+#define E1000_TXCW_PAUSE      0x00000080	/* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100	/* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180	/* TXCW pause request mask */
+#define E1000_TXCW_RF         0x00003000	/* TXCW remote fault */
+#define E1000_TXCW_NP         0x00008000	/* TXCW next page */
+#define E1000_TXCW_CW         0x0000ffff	/* TxConfigWord mask */
+#define E1000_TXCW_TXC        0x40000000	/* Transmit Config control */
+#define E1000_TXCW_ANE        0x80000000	/* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW    0x0000ffff	/* RxConfigWord mask */
+#define E1000_RXCW_NC    0x04000000	/* Receive config no carrier */
+#define E1000_RXCW_IV    0x08000000	/* Receive config invalid */
+#define E1000_RXCW_CC    0x10000000	/* Receive config change */
+#define E1000_RXCW_C     0x20000000	/* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000	/* Receive config synch */
+#define E1000_RXCW_ANC   0x80000000	/* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST    0x00000001	/* software reset */
+#define E1000_TCTL_EN     0x00000002	/* enable tx */
+#define E1000_TCTL_BCE    0x00000004	/* busy check enable */
+#define E1000_TCTL_PSP    0x00000008	/* pad short packets */
+#define E1000_TCTL_CT     0x00000ff0	/* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000	/* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000	/* SW Xoff transmission */
+#define E1000_TCTL_PBE    0x00800000	/* Packet Burst Enable */
+#define E1000_TCTL_RTLC   0x01000000	/* Re-transmit on late collision */
+#define E1000_TCTL_NRTU   0x02000000	/* No Re-transmit on underrun */
+#define E1000_TCTL_MULR   0x10000000	/* Multiple request support */
+/* Extended Transmit Control */
+#define E1000_TCTL_EXT_BST_MASK  0x000003FF	/* Backoff Slot Time */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00	/* Gigabit Carry Extend Padding */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF	/* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL     0x00000100	/* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL     0x00000200	/* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL   0x00000400	/* IPv6 checksum offload */
+#define E1000_RXCSUM_IPPCSE    0x00001000	/* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD      0x00002000	/* packet checksum disabled */
+
+/* Multiple Receive Queue Control */
+#define E1000_MRQC_ENABLE_MASK              0x00000003
+#define E1000_MRQC_ENABLE_RSS_2Q            0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT           0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK           0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP       0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4           0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX    0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX        0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6           0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00200000
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME       0x00000001	/* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002	/* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004	/* PME Status */
+#define E1000_WUC_APMPME     0x00000008	/* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM        0x80000000	/* Enable SPM */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001	/* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG  0x00000002	/* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX   0x00000004	/* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC   0x00000008	/* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC   0x00000010	/* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP  0x00000020	/* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO      0x00008000	/* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000	/* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000	/* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000	/* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000	/* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF	/* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16	/* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001	/* Link Status Changed */
+#define E1000_WUS_MAG  0x00000002	/* Magic Packet Received */
+#define E1000_WUS_EX   0x00000004	/* Directed Exact Received */
+#define E1000_WUS_MC   0x00000008	/* Directed Multicast Received */
+#define E1000_WUS_BC   0x00000010	/* Broadcast Received */
+#define E1000_WUS_ARP  0x00000020	/* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000	/* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000	/* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000	/* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000	/* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN      0x00000001	/* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN        0x00000002	/* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE    0x00000004	/* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN       0x00000100	/* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN       0x00000200	/* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN       0x00000400	/* Enable IPv4 */
+#define E1000_MANC_IPV6_EN       0x00000800	/* Enable IPv6 */
+#define E1000_MANC_SNAP_EN       0x00001000	/* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN        0x00002000	/* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN   0x00004000	/* Enable Neighbor Discovery
+						 * Filtering */
+#define E1000_MANC_ARP_RES_EN    0x00008000	/* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET     0x00010000	/* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN    0x00020000	/* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000	/* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL       0x00080000	/* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000	/* Block phy resets */
+#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000	/* Enable MAC address
+							 * filtering */
+#define E1000_MANC_EN_MNG2HOST   0x00200000	/* Enable MNG packets to host
+						 * memory */
+#define E1000_MANC_EN_IP_ADDR_FILTER    0x00400000	/* Enable IP address
+							 * filtering */
+#define E1000_MANC_EN_XSUM_FILTER   0x00800000	/* Enable checksum filtering */
+#define E1000_MANC_BR_EN         0x01000000	/* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ       0x01000000	/* SMBus Request */
+#define E1000_MANC_SMB_GNT       0x02000000	/* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN    0x04000000	/* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN   0x08000000	/* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT  0x10000000	/* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT   0x20000000	/* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT  28	/* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT   29	/* SMBus Clock Out Shift */
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI         0x00000001	/* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI      0x00000002	/* FW Semaphore bit */
+#define E1000_SWSM_WMNG         0x00000004	/* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD     0x00000008	/* Driver Loaded Bit */
+
+/* FW Semaphore Register */
+#define E1000_FWSM_MODE_MASK    0x0000000E	/* FW mode */
+#define E1000_FWSM_MODE_SHIFT            1
+#define E1000_FWSM_FW_VALID     0x00008000	/* FW established a valid mode */
+
+#define E1000_FWSM_RSPCIPHY        0x00000040	/* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW           0x10000000	/* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK     0x60000000	/* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT     29
+#define E1000_FWSM_SKUSEL_EMB      0x0	/* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS     0x1	/* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2	/* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3	/* Perf & Copr GbE SKU */
+
+/* FFLT Debug Register */
+#define E1000_FFLT_DBG_INVC     0x00100000	/* Invalid /C/ code handling */
+
+typedef enum {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_interface_only
+} e1000_mng_mode;
+
+/* Host Interface Control Register */
+#define E1000_HICR_EN           0x00000001	/* Enable Bit - RO */
+#define E1000_HICR_C            0x00000002	/* Driver sets this bit when done
+						 * to put command in RAM */
+#define E1000_HICR_SV           0x00000004	/* Status Validity */
+#define E1000_HICR_FWR          0x00000080	/* FW reset. Set by the Host */
+
+/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
+#define E1000_HI_MAX_DATA_LENGTH         252	/* Host Interface data length */
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH  1792	/* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH  448	/* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT         500	/* Time in ms to process HI command */
+
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;	/* I/F bits for command, status for return */
+	u8 checksum;
+};
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];	/* Command data can length 0..252 */
+};
+
+/* Host SMB register #0 */
+#define E1000_HSMC0R_CLKIN      0x00000001	/* SMB Clock in */
+#define E1000_HSMC0R_DATAIN     0x00000002	/* SMB Data in */
+#define E1000_HSMC0R_DATAOUT    0x00000004	/* SMB Data out */
+#define E1000_HSMC0R_CLKOUT     0x00000008	/* SMB Clock out */
+
+/* Host SMB register #1 */
+#define E1000_HSMC1R_CLKIN      E1000_HSMC0R_CLKIN
+#define E1000_HSMC1R_DATAIN     E1000_HSMC0R_DATAIN
+#define E1000_HSMC1R_DATAOUT    E1000_HSMC0R_DATAOUT
+#define E1000_HSMC1R_CLKOUT     E1000_HSMC0R_CLKOUT
+
+/* FW Status Register */
+#define E1000_FWSTS_FWS_MASK    0x000000FF	/* FW Status */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF	/* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN          4096
+
+/* PCI-Ex registers*/
+
+/* PCI-Ex Control Register */
+#define E1000_GCR_RXD_NO_SNOOP          0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
+#define E1000_GCR_TXD_NO_SNOOP          0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
+
+#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
+                             E1000_GCR_RXDSCW_NO_SNOOP      | \
+                             E1000_GCR_RXDSCR_NO_SNOOP      | \
+                             E1000_GCR_TXD_NO_SNOOP         | \
+                             E1000_GCR_TXDSCW_NO_SNOOP      | \
+                             E1000_GCR_TXDSCR_NO_SNOOP)
+
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+/* Function Active and Power State to MNG */
+#define E1000_FACTPS_FUNC0_POWER_STATE_MASK         0x00000003
+#define E1000_FACTPS_LAN0_VALID                     0x00000004
+#define E1000_FACTPS_FUNC0_AUX_EN                   0x00000008
+#define E1000_FACTPS_FUNC1_POWER_STATE_MASK         0x000000C0
+#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT        6
+#define E1000_FACTPS_LAN1_VALID                     0x00000100
+#define E1000_FACTPS_FUNC1_AUX_EN                   0x00000200
+#define E1000_FACTPS_FUNC2_POWER_STATE_MASK         0x00003000
+#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT        12
+#define E1000_FACTPS_IDE_ENABLE                     0x00004000
+#define E1000_FACTPS_FUNC2_AUX_EN                   0x00008000
+#define E1000_FACTPS_FUNC3_POWER_STATE_MASK         0x000C0000
+#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT        18
+#define E1000_FACTPS_SP_ENABLE                      0x00100000
+#define E1000_FACTPS_FUNC3_AUX_EN                   0x00200000
+#define E1000_FACTPS_FUNC4_POWER_STATE_MASK         0x03000000
+#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT        24
+#define E1000_FACTPS_IPMI_ENABLE                    0x04000000
+#define E1000_FACTPS_FUNC4_AUX_EN                   0x08000000
+#define E1000_FACTPS_MNGCG                          0x20000000
+#define E1000_FACTPS_LAN_FUNC_SEL                   0x40000000
+#define E1000_FACTPS_PM_STATE_CHANGED               0x80000000
+
+/* PCI-Ex Config Space */
+#define PCI_EX_LINK_STATUS           0x12
+#define PCI_EX_LINK_WIDTH_MASK       0x3F0
+#define PCI_EX_LINK_WIDTH_SHIFT      4
+
+/* EEPROM Commands - Microwire */
+#define EEPROM_READ_OPCODE_MICROWIRE  0x6	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5	/* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7	/* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE  0x13	/* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE  0x10	/* EEPROM erase/write disable */
+
+/* EEPROM Commands - SPI */
+#define EEPROM_MAX_RETRY_SPI        5000	/* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI      0x03	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI     0x02	/* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI        0x08	/* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI      0x06	/* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI      0x04	/* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI      0x05	/* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI      0x01	/* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI   0x20	/* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI  0xD8	/* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI  0xDB	/* EEPROM ERASE 256B */
+
+/* EEPROM Size definitions */
+#define EEPROM_WORD_SIZE_SHIFT  6
+#define EEPROM_SIZE_SHIFT       10
+#define EEPROM_SIZE_MASK        0x1C00
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT                 0x0003
+#define EEPROM_ID_LED_SETTINGS        0x0004
+#define EEPROM_VERSION                0x0005
+#define EEPROM_SERDES_AMPLITUDE       0x0006	/* For SERDES output amplitude adjustment. */
+#define EEPROM_PHY_CLASS_WORD         0x0007
+#define EEPROM_INIT_CONTROL1_REG      0x000A
+#define EEPROM_INIT_CONTROL2_REG      0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define EEPROM_INIT_CONTROL3_PORT_B   0x0014
+#define EEPROM_INIT_3GIO_3            0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define EEPROM_INIT_CONTROL3_PORT_A   0x0024
+#define EEPROM_CFG                    0x0012
+#define EEPROM_FLASH_VERSION          0x0032
+#define EEPROM_CHECKSUM_REG           0x003F
+
+#define E1000_EEPROM_CFG_DONE         0x00040000	/* MNG config cycle done */
+#define E1000_EEPROM_CFG_DONE_PORT_1  0x00080000	/* ...for second port */
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \
+                              (ID_LED_OFF1_OFF2 << 8) | \
+                              (ID_LED_DEF1_DEF2 << 4) | \
+                              (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2       0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
+#define EEPROM_SERDES_AMPLITUDE_MASK  0x000F
+
+/* Mask bit for PHY class in Word 7 of the EEPROM */
+#define EEPROM_PHY_CLASS_A   0x8000
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS   0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST   0x0200
+#define EEPROM_WORD0A_FD     0x0400
+#define EEPROM_WORD0A_66MHZ  0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE      0x1000
+#define EEPROM_WORD0F_ASM_DIR    0x2000
+#define EEPROM_WORD0F_ANE        0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+#define EEPROM_WORD0F_LPLU       0x0001
+
+/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
+#define EEPROM_WORD1020_GIGA_DISABLE         0x0010
+#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
+
+/* Mask bits for fields in Word 0x1a of the EEPROM */
+#define EEPROM_WORD1A_ASPM_MASK  0x000C
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1          8
+
+#define EEPROM_RESERVED_WORD          0xFFFF
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD       15
+#define E1000_CT_SHIFT                  4
+/* Collision distance is a 0-based value that applies to
+ * half-duplex-capable hardware only. */
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLLISION_DISTANCE_82542  64
+#define E1000_FDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_COLD_SHIFT                12
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT        10
+#define DEFAULT_82543_TIPG_IPGT_FIBER  9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT  10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define E1000_TIPG_IPGR2_SHIFT  20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START     8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP      190
+#define TX_THRESHOLD_DISABLE   0
+#define TX_THRESHOLD_TIMER_MS  10000
+#define MIN_NUM_XMITS          1000
+#define IFS_MAX                80
+#define IFS_STEP               10
+#define IFS_MIN                40
+#define IFS_RATIO              4
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE  0x00000002
+#define E1000_EXTCNF_CTRL_D_UD_ENABLE       0x00000004
+#define E1000_EXTCNF_CTRL_D_UD_LATENCY      0x00000008
+#define E1000_EXTCNF_CTRL_D_UD_OWNER        0x00000010
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x0FFF0000
+
+#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH    0x000000FF
+#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH   0x0000FF00
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH   0x00FF0000
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE  0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG            0x00000020
+
+/* PBA constants */
+#define E1000_PBA_8K 0x0008	/* 8KB, default Rx allocation */
+#define E1000_PBA_12K 0x000C	/* 12KB, default Rx allocation */
+#define E1000_PBA_16K 0x0010	/* 16KB, default TX allocation */
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030	/* 48KB, default RX allocation */
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE         0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH        (0x8000)	/* 32KB */
+#define FC_DEFAULT_LO_THRESH        (0x4000)	/* 16KB */
+#define FC_DEFAULT_TX_TIMER         (0x100)	/* ~130 us */
+
+/* PCIX Config space */
+#define PCIX_COMMAND_REGISTER    0xE6
+#define PCIX_STATUS_REGISTER_LO  0xE8
+#define PCIX_STATUS_REGISTER_HI  0xEA
+
+#define PCIX_COMMAND_MMRBC_MASK      0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT     0x2
+#define PCIX_STATUS_HI_MMRBC_MASK    0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5
+#define PCIX_STATUS_HI_MMRBC_4K      0x3
+#define PCIX_STATUS_HI_MMRBC_2K      0x2
+
+/* Number of bits required to shift right the "pause" bits from the
+ * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
+ */
+#define PAUSE_SHIFT 5
+
+/* Number of bits required to shift left the "SWDPIO" bits from the
+ * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
+ */
+#define SWDPIO_SHIFT 17
+
+/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
+ * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+/* Number of bits required to shift left the "ILOS" bit from the EEPROM
+ * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
+ */
+#define ILOS_SHIFT  3
+
+#define RECEIVE_BUFFER_ALIGN_SIZE  (256)
+
+/* Number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT             500
+
+/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
+#define AUTO_READ_DONE_TIMEOUT      10
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+
+#define E1000_TX_BUFFER_SIZE ((u32)1514)
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION   0x0F
+
+/* TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ *      adapter = a pointer to struct e1000_hw
+ *      status = the 8 bit status field of the RX descriptor with EOP set
+ *      error = the 8 bit error field of the RX descriptor with EOP set
+ *      length = the sum of all the length fields of the RX descriptors that
+ *               make up the current frame
+ *      last_byte = the last byte of the frame DMAed by the hardware
+ *      max_frame_length = the maximum frame length we want to accept.
+ *      min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ *  ...
+ *  if (TBI_ACCEPT) {
+ *      accept_frame = true;
+ *      e1000_tbi_adjust_stats(adapter, MacAddress);
+ *      frame_length--;
+ *  } else {
+ *      accept_frame = false;
+ *  }
+ *  ...
+ */
+
+#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
+    ((adapter)->tbi_compatibility_on && \
+     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+     ((last_byte) == CARRIER_EXTENSION) && \
+     (((status) & E1000_RXD_STAT_VP) ? \
+          (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
+           ((length) <= ((adapter)->max_frame_size + 1))) : \
+          (((length) > (adapter)->min_frame_size) && \
+           ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL         0x00	/* Control Register */
+#define PHY_STATUS       0x01	/* Status Register */
+#define PHY_ID1          0x02	/* Phy Id Reg (word 1) */
+#define PHY_ID2          0x03	/* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV  0x04	/* Autoneg Advertisement */
+#define PHY_LP_ABILITY   0x05	/* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP  0x06	/* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07	/* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08	/* Link Partner Next Page */
+#define PHY_1000T_CTRL   0x09	/* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A	/* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS   0x0F	/* Extended Status Reg */
+
+#define MAX_PHY_REG_ADDRESS        0x1F	/* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG     0xF	/* Registers equal on all pages */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL     0x10	/* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS   0x11	/* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE        0x12	/* Interrupt Enable Register */
+#define M88E1000_INT_STATUS        0x13	/* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14	/* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR       0x15	/* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL      0x1A	/* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT   0x1D	/* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E	/* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8  0x100	/* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800	/* improved BER performance */
+
+#define IGP01E1000_IEEE_REGS_PAGE  0x0000
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+#define IGP01E1000_IEEE_FORCE_GIGA      0x0140
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10	/* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS 0x11	/* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL   0x12	/* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13	/* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO       0x14	/* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15	/* PHY Channel Quality Register */
+#define IGP02E1000_PHY_POWER_MGMT      0x19
+#define IGP01E1000_PHY_PAGE_SELECT     0x1F	/* PHY Page Select Core Register */
+
+/* IGP01E1000 AGC Registers - stores the cable length values*/
+#define IGP01E1000_PHY_AGC_A        0x1172
+#define IGP01E1000_PHY_AGC_B        0x1272
+#define IGP01E1000_PHY_AGC_C        0x1472
+#define IGP01E1000_PHY_AGC_D        0x1872
+
+/* IGP02E1000 AGC Registers for cable length values */
+#define IGP02E1000_PHY_AGC_A        0x11B1
+#define IGP02E1000_PHY_AGC_B        0x12B1
+#define IGP02E1000_PHY_AGC_C        0x14B1
+#define IGP02E1000_PHY_AGC_D        0x18B1
+
+/* IGP01E1000 DSP Reset Register */
+#define IGP01E1000_PHY_DSP_RESET   0x1F33
+#define IGP01E1000_PHY_DSP_SET     0x1F71
+#define IGP01E1000_PHY_DSP_FFE     0x1F35
+
+#define IGP01E1000_PHY_CHANNEL_NUM    4
+#define IGP02E1000_PHY_CHANNEL_NUM    4
+
+#define IGP01E1000_PHY_AGC_PARAM_A    0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B    0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C    0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D    0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX        0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_ANALOG_TX_STATE      0x2890
+#define IGP01E1000_PHY_ANALOG_CLASS_A       0x2000
+#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE  0x0004
+#define IGP01E1000_PHY_DSP_FFE_CM_CP        0x0069
+
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT      0x002A
+/* IGP01E1000 PCS Initialization register - stores the polarity status when
+ * speed = 1000 Mbps. */
+#define IGP01E1000_PHY_PCS_INIT_REG  0x00B4
+#define IGP01E1000_PHY_PCS_CTRL_REG  0x00B5
+
+#define IGP01E1000_ANALOG_REGS_PAGE  0x20C0
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080	/* Collision test enable */
+#define MII_CR_FULL_DUPLEX      0x0100	/* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200	/* Restart auto negotiation */
+#define MII_CR_ISOLATE          0x0400	/* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN       0x0800	/* Power down */
+#define MII_CR_AUTO_NEG_EN      0x1000	/* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK         0x4000	/* 0 = normal, 1 = loopback */
+#define MII_CR_RESET            0x8000	/* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS     0x0001	/* Extended register capabilities */
+#define MII_SR_JABBER_DETECT     0x0002	/* Jabber Detected */
+#define MII_SR_LINK_STATUS       0x0004	/* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS      0x0008	/* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT      0x0010	/* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE  0x0020	/* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040	/* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS   0x0100	/* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS     0x0200	/* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS     0x0400	/* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS       0x0800	/* 10T   Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS       0x1000	/* 10T   Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS      0x2000	/* 100X  Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS      0x4000	/* 100X  Full Duplex Capable */
+#define MII_SR_100T4_CAPS        0x8000	/* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001	/* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS    0x0020	/* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS    0x0040	/* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS  0x0080	/* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS  0x0100	/* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS     0x0200	/* 100T4 Capable */
+#define NWAY_AR_PAUSE          0x0400	/* Pause operation desired */
+#define NWAY_AR_ASM_DIR        0x0800	/* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT   0x2000	/* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000	/* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS    0x0020	/* LP is 10T   Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS    0x0040	/* LP is 10T   Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS  0x0080	/* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS  0x0100	/* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS     0x0200	/* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE          0x0400	/* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR        0x0800	/* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT   0x2000	/* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE    0x4000	/* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS      0x0001	/* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD          0x0002	/* LP is 10T   Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS    0x0004	/* LP is 10T   Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008	/* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT  0x0010	/* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define NPTX_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define NPTX_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define NPTX_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define LP_RNPR_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define LP_RNPR_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE     0x4000	/* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE      0x0080	/* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS         0x0100	/* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS         0x0200	/* Advertise 1000T FD capability  */
+#define CR_1000T_REPEATER_DTE    0x0400	/* 1=Repeater/switch device port */
+					/* 0=DTE device */
+#define CR_1000T_MS_VALUE        0x0800	/* 1=Configure PHY as Master */
+					/* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE       0x1000	/* 1=Master/Slave manual config value */
+					/* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000	/* Normal Operation */
+#define CR_1000T_TEST_MODE_1     0x2000	/* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2     0x4000	/* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3     0x6000	/* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4     0x8000	/* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT   0x00FF	/* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR   0x0100	/* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS       0x0400	/* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS       0x0800	/* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000	/* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS  0x2000	/* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES    0x4000	/* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT  0x8000	/* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT          12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT           13
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT    5
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20            20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100           100
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000	/* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000	/* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000	/* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000	/* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK   0x0100	/* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0	/* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE  0x0010	/* register 11h bit 4 */
+				      /* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE    0x0001	/* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002	/* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST          0x0004	/* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE    0x0010	/* 1=CLK125 low,
+						 * 0=CLK125 toggling
+						 */
+#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000	/* MDI Crossover Mode bits 6:5 */
+					       /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020	/* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T     0x0040	/* 1000BASE-T: Auto crossover,
+						 *  100BASE-TX/10BASE-T:
+						 *  MDI Mode
+						 */
+#define M88E1000_PSCR_AUTO_X_MODE      0x0060	/* Auto crossover enabled
+						 * all speeds.
+						 */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+					/* 1=Enable Extended 10BASE-T distance
+					 * (Lower 10BASE-T RX Threshold)
+					 * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100
+					/* 1=5-Bit interface in 100BASE-TX
+					 * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200	/* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400	/* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800	/* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT    1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT          5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER             0x0001	/* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY       0x0002	/* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT          0x0020	/* 1=Downshifted */
+#define M88E1000_PSSR_MDIX               0x0040	/* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH       0x0380	/* 0=<50M;1=50-80M;2=80-110M;
+						 * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK               0x0400	/* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800	/* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD          0x1000	/* 1=Page received */
+#define M88E1000_PSSR_DPLX               0x2000	/* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED              0xC000	/* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS              0x0000	/* 00=10Mbs */
+#define M88E1000_PSSR_100MBS             0x4000	/* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS            0x8000	/* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_DOWNSHIFT_SHIFT    5
+#define M88E1000_PSSR_MDIX_SHIFT         6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000	/* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000	/* 1=Lost lock detect enabled.
+						 * Will assert lost lock and bring
+						 * link down if idle not seen
+						 * within 1ms in 1000BASE-T
+						 */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5     0x0060	/* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25      0x0070	/* 25  MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0       0x0000	/* NO  TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
+
+/* IGP01E1000 Specific Port Config Register - R/W */
+#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
+#define IGP01E1000_PSCFR_PRE_EN                0x0020
+#define IGP01E1000_PSCFR_SMART_SPEED           0x0080
+#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK    0x0100
+#define IGP01E1000_PSCFR_DISABLE_JABBER        0x0400
+#define IGP01E1000_PSCFR_DISABLE_TRANSMIT      0x2000
+
+/* IGP01E1000 Specific Port Status Register - R/O */
+#define IGP01E1000_PSSR_AUTONEG_FAILED         0x0001	/* RO LH SC */
+#define IGP01E1000_PSSR_POLARITY_REVERSED      0x0002
+#define IGP01E1000_PSSR_CABLE_LENGTH           0x007C
+#define IGP01E1000_PSSR_FULL_DUPLEX            0x0200
+#define IGP01E1000_PSSR_LINK_UP                0x0400
+#define IGP01E1000_PSSR_MDIX                   0x0800
+#define IGP01E1000_PSSR_SPEED_MASK             0xC000	/* speed bits mask */
+#define IGP01E1000_PSSR_SPEED_10MBPS           0x4000
+#define IGP01E1000_PSSR_SPEED_100MBPS          0x8000
+#define IGP01E1000_PSSR_SPEED_1000MBPS         0xC000
+#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT     0x0002	/* shift right 2 */
+#define IGP01E1000_PSSR_MDIX_SHIFT             0x000B	/* shift right 11 */
+
+/* IGP01E1000 Specific Port Control Register - R/W */
+#define IGP01E1000_PSCR_TP_LOOPBACK            0x0010
+#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR      0x0200
+#define IGP01E1000_PSCR_TEN_CRS_SELECT         0x0400
+#define IGP01E1000_PSCR_FLIP_CHIP              0x0800
+#define IGP01E1000_PSCR_AUTO_MDIX              0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX         0x2000	/* 0-MDI, 1-MDIX */
+
+/* IGP01E1000 Specific Port Link Health Register */
+#define IGP01E1000_PLHR_SS_DOWNGRADE           0x8000
+#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR    0x4000
+#define IGP01E1000_PLHR_MASTER_FAULT           0x2000
+#define IGP01E1000_PLHR_MASTER_RESOLUTION      0x1000
+#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK       0x0800	/* LH */
+#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW   0x0400	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_1             0x0200	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_0             0x0100
+#define IGP01E1000_PLHR_AUTONEG_FAULT          0x0040
+#define IGP01E1000_PLHR_AUTONEG_ACTIVE         0x0010
+#define IGP01E1000_PLHR_VALID_CHANNEL_D        0x0008
+#define IGP01E1000_PLHR_VALID_CHANNEL_C        0x0004
+#define IGP01E1000_PLHR_VALID_CHANNEL_B        0x0002
+#define IGP01E1000_PLHR_VALID_CHANNEL_A        0x0001
+
+/* IGP01E1000 Channel Quality Register */
+#define IGP01E1000_MSE_CHANNEL_D        0x000F
+#define IGP01E1000_MSE_CHANNEL_C        0x00F0
+#define IGP01E1000_MSE_CHANNEL_B        0x0F00
+#define IGP01E1000_MSE_CHANNEL_A        0xF000
+
+#define IGP02E1000_PM_SPD                         0x0001	/* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU                     0x0004	/* Enable LPLU in non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU                     0x0002	/* Enable LPLU in D0a mode */
+
+/* IGP01E1000 DSP reset macros */
+#define DSP_RESET_ENABLE     0x0
+#define DSP_RESET_DISABLE    0x2
+#define E1000_MAX_DSP_RESETS 10
+
+/* IGP01E1000 & IGP02E1000 AGC Registers */
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7	/* Coarse - 13:11, Fine - 10:7 */
+#define IGP02E1000_AGC_LENGTH_SHIFT 9	/* Coarse - 15:13, Fine - 12:9 */
+
+/* IGP02E1000 AGC Register Length 9-bit mask */
+#define IGP02E1000_AGC_LENGTH_MASK  0x7F
+
+/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
+#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
+
+/* The precision error of the cable length is +/- 10 meters */
+#define IGP01E1000_AGC_RANGE    10
+#define IGP02E1000_AGC_RANGE    15
+
+/* IGP01E1000 PCS Initialization register */
+/* bits 3:6 in the PCS registers stores the channels polarity */
+#define IGP01E1000_PHY_POLARITY_MASK    0x0078
+
+/* IGP01E1000 GMII FIFO Register */
+#define IGP01E1000_GMII_FLEX_SPD               0x10	/* Enable flexible speed
+							 * on Link-Up */
+#define IGP01E1000_GMII_SPD                    0x20	/* Enable SPD */
+
+/* IGP01E1000 Analog Register */
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS       0x20D1
+#define IGP01E1000_ANALOG_FUSE_STATUS             0x20D0
+#define IGP01E1000_ANALOG_FUSE_CONTROL            0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS             0x20DE
+
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK            0xF000
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK            0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK          0x0070
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED        0x0100
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL    0x0002
+
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH        0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10            0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1               0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10              0x0500
+
+/* Bit definitions for valid PHY IDs. */
+/* I = Integrated
+ * E = External
+ */
+#define M88_VENDOR         0x0141
+#define M88E1000_E_PHY_ID  0x01410C50
+#define M88E1000_I_PHY_ID  0x01410C30
+#define M88E1011_I_PHY_ID  0x01410C20
+#define IGP01E1000_I_PHY_ID  0x02A80380
+#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
+#define M88E1011_I_REV_4   0x04
+#define M88E1111_I_PHY_ID  0x01410CC0
+#define L1LXT971A_PHY_ID   0x001378E0
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define PHY_PAGE_SHIFT        5
+#define PHY_REG(page, reg)    \
+        (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+
+#define IGP3_PHY_PORT_CTRL           \
+        PHY_REG(769, 17)	/* Port General Configuration */
+#define IGP3_PHY_RATE_ADAPT_CTRL \
+        PHY_REG(769, 25)	/* Rate Adapter Control Register */
+
+#define IGP3_KMRN_FIFO_CTRL_STATS \
+        PHY_REG(770, 16)	/* KMRN FIFO's control/status register */
+#define IGP3_KMRN_POWER_MNG_CTRL \
+        PHY_REG(770, 17)	/* KMRN Power Management Control Register */
+#define IGP3_KMRN_INBAND_CTRL \
+        PHY_REG(770, 18)	/* KMRN Inband Control Register */
+#define IGP3_KMRN_DIAG \
+        PHY_REG(770, 19)	/* KMRN Diagnostic register */
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002	/* RX PCS is not synced */
+#define IGP3_KMRN_ACK_TIMEOUT \
+        PHY_REG(770, 20)	/* KMRN Acknowledge Timeouts register */
+
+#define IGP3_VR_CTRL \
+        PHY_REG(776, 18)	/* Voltage regulator control register */
+#define IGP3_VR_CTRL_MODE_SHUT       0x0200	/* Enter powerdown, shutdown VRs */
+#define IGP3_VR_CTRL_MODE_MASK       0x0300	/* Shutdown VR Mask */
+
+#define IGP3_CAPABILITY \
+        PHY_REG(776, 19)	/* IGP3 Capability Register */
+
+/* Capabilities for SKU Control  */
+#define IGP3_CAP_INITIATE_TEAM       0x0001	/* Able to initiate a team */
+#define IGP3_CAP_WFM                 0x0002	/* Support WoL and PXE */
+#define IGP3_CAP_ASF                 0x0004	/* Support ASF */
+#define IGP3_CAP_LPLU                0x0008	/* Support Low Power Link Up */
+#define IGP3_CAP_DC_AUTO_SPEED       0x0010	/* Support AC/DC Auto Link Speed */
+#define IGP3_CAP_SPD                 0x0020	/* Support Smart Power Down */
+#define IGP3_CAP_MULT_QUEUE          0x0040	/* Support 2 tx & 2 rx queues */
+#define IGP3_CAP_RSS                 0x0080	/* Support RSS */
+#define IGP3_CAP_8021PQ              0x0100	/* Support 802.1Q & 802.1p */
+#define IGP3_CAP_AMT_CB              0x0200	/* Support active manageability and circuit breaker */
+
+#define IGP3_PPC_JORDAN_EN           0x0001
+#define IGP3_PPC_JORDAN_GIGA_SPEED   0x0002
+
+#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS         0x0001
+#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK   0x001E
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA        0x0020
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_100         0x0040
+
+#define IGP3E1000_PHY_MISC_CTRL                0x1B	/* Misc. Ctrl register */
+#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET        0x1000	/* Duplex Manual Set */
+
+#define IGP3_KMRN_EXT_CTRL  PHY_REG(770, 18)
+#define IGP3_KMRN_EC_DIS_INBAND    0x0080
+
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330	/* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10	/* 100BaseTx Extended Status, Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL           0x11	/* 100BaseTx PHY special control register */
+#define IFE_PHY_RCV_FALSE_CARRIER         0x13	/* 100BaseTx Receive False Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT            0x14	/* 100BaseTx Receive Disconnect Counter */
+#define IFE_PHY_RCV_ERROT_FRAME           0x15	/* 100BaseTx Receive Error Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR            0x16	/* Receive Symbol Error Counter */
+#define IFE_PHY_PREM_EOF_ERR              0x17	/* 100BaseTx Receive Premature End Of Frame Error Counter */
+#define IFE_PHY_RCV_EOF_ERR               0x18	/* 10BaseT Receive End Of Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT          0x19	/* 10BaseT Transmit Jabber Detect Counter */
+#define IFE_PHY_EQUALIZER                 0x1A	/* PHY Equalizer Control and Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B	/* PHY special control and LED configuration */
+#define IFE_PHY_MDIX_CONTROL              0x1C	/* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL               0x1D	/* Hardware Integrity Control (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000	/* Default 1 = Disable auto reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN           0x0400	/* Indicates the power state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN            0x0200	/* Indicates the power state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED           0x0100	/* Indicates 10BASE-T polarity */
+#define IFE_PESC_PHY_ADDR_MASK               0x007C	/* Bit 6:2 for sampled PHY address */
+#define IFE_PESC_SPEED                       0x0002	/* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX                      0x0001	/* Auto-negotiation duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100	/* 1 = Dynamic Power Down disabled */
+#define IFE_PSC_FORCE_POLARITY               0x0020	/* 1=Reversed Polarity, 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010	/* 1=Auto Polarity Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001	/* 1=Jabber Disabled, 0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT         5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
+
+#define IFE_PMC_AUTO_MDIX                    0x0080	/* 1=enable MDI/MDI-X feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX                   0x0040	/* 1=force MDIX-X, 0=force MDI */
+#define IFE_PMC_MDIX_STATUS                  0x0020	/* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010	/* Resolution algorithm is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT              6
+#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000	/* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE                   0x8000	/* Enable the HWI feature */
+#define IFE_PHC_ABILITY_CHECK                0x4000	/* 1= Test Passed, 0=failed */
+#define IFE_PHC_TEST_EXEC                    0x2000	/* PHY launch test pulses on the wire */
+#define IFE_PHC_HIGHZ                        0x0200	/* 1 = Open Circuit */
+#define IFE_PHC_LOWZ                         0x0400	/* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600	/* Mask for indication type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK                0x01FF	/* Mask for distance to the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK               0x0000	/* Disable HWI */
+#define IFE_PSCL_PROBE_MODE                  0x0020	/* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF              0x0006	/* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON               0x0007	/* Force LEDs 0 and 2 on */
+
+#define ICH_FLASH_COMMAND_TIMEOUT            5000	/* 5000 uSecs - adjusted */
+#define ICH_FLASH_ERASE_TIMEOUT              3000000	/* Up to 3 seconds - worst case */
+#define ICH_FLASH_CYCLE_REPEAT_COUNT         10	/* 10 cycles */
+#define ICH_FLASH_SEG_SIZE_256               256
+#define ICH_FLASH_SEG_SIZE_4K                4096
+#define ICH_FLASH_SEG_SIZE_64K               65536
+
+#define ICH_CYCLE_READ                       0x0
+#define ICH_CYCLE_RESERVED                   0x1
+#define ICH_CYCLE_WRITE                      0x2
+#define ICH_CYCLE_ERASE                      0x3
+
+#define ICH_FLASH_GFPREG   0x0000
+#define ICH_FLASH_HSFSTS   0x0004
+#define ICH_FLASH_HSFCTL   0x0006
+#define ICH_FLASH_FADDR    0x0008
+#define ICH_FLASH_FDATA0   0x0010
+#define ICH_FLASH_FRACC    0x0050
+#define ICH_FLASH_FREG0    0x0054
+#define ICH_FLASH_FREG1    0x0058
+#define ICH_FLASH_FREG2    0x005C
+#define ICH_FLASH_FREG3    0x0060
+#define ICH_FLASH_FPR0     0x0074
+#define ICH_FLASH_FPR1     0x0078
+#define ICH_FLASH_SSFSTS   0x0090
+#define ICH_FLASH_SSFCTL   0x0092
+#define ICH_FLASH_PREOP    0x0094
+#define ICH_FLASH_OPTYPE   0x0096
+#define ICH_FLASH_OPMENU   0x0098
+
+#define ICH_FLASH_REG_MAPSIZE      0x00A0
+#define ICH_FLASH_SECTOR_SIZE      4096
+#define ICH_GFPREG_BASE_MASK       0x1FFF
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE        0xFFFFFFFF
+#define PHY_SOF             0x01
+#define PHY_OP_READ         0x02
+#define PHY_OP_WRITE        0x01
+#define PHY_TURNAROUND      0x02
+#define PHY_PREAMBLE_SIZE   32
+#define MII_CR_SPEED_1000   0x0040
+#define MII_CR_SPEED_100    0x2000
+#define MII_CR_SPEED_10     0x0000
+#define E1000_PHY_ADDRESS   0x01
+#define PHY_AUTO_NEG_TIME   45	/* 4.5 Seconds */
+#define PHY_FORCE_TIME      20	/* 2.0 Seconds */
+#define PHY_REVISION_MASK   0xFFFFFFF0
+#define DEVICE_SPEED_MASK   0x00000300	/* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK     0x01E0
+#define REG9_SPEED_MASK     0x0300
+#define ADVERTISE_10_HALF   0x0001
+#define ADVERTISE_10_FULL   0x0002
+#define ADVERTISE_100_HALF  0x0004
+#define ADVERTISE_100_FULL  0x0008
+#define ADVERTISE_1000_HALF 0x0010
+#define ADVERTISE_1000_FULL 0x0020
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F	/* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL    0x000F	/* All 10/100 speeds */
+#define AUTONEG_ADVERTISE_10_ALL        0x0003	/* 10Mbps Full & Half speeds */
+
+#endif /* _E1000_HW_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,5632 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+ */
+
+/* e1000_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "e1000.h"
+
+static s32 e1000_check_downshift(struct e1000_hw *hw);
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity);
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
+static void e1000_clear_vfta(struct e1000_hw *hw);
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
+					      bool link_up);
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length);
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static s32 e1000_id_led_init(struct e1000_hw *hw);
+static void e1000_init_rx_addrs(struct e1000_hw *hw);
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
+static s32 e1000_set_phy_type(struct e1000_hw *hw);
+static void e1000_phy_init_script(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
+				  u16 words, u16 *data);
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data);
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data);
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data);
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed(struct e1000_hw *hw);
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode(struct e1000_hw *hw);
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data);
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data);
+
+/* IGP cable length table */
+static const
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
+	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+	    100,
+	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+	    110, 110,
+	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
+	    120, 120
+};
+
+static DEFINE_SPINLOCK(e1000_eeprom_lock);
+
+/**
+ * e1000_set_phy_type - Set the phy type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_set_phy_type(struct e1000_hw *hw)
+{
+	e_dbg("e1000_set_phy_type");
+
+	if (hw->mac_type == e1000_undefined)
+		return -E1000_ERR_PHY_TYPE;
+
+	switch (hw->phy_id) {
+	case M88E1000_E_PHY_ID:
+	case M88E1000_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+	case M88E1111_I_PHY_ID:
+		hw->phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID:
+		if (hw->mac_type == e1000_82541 ||
+		    hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			hw->phy_type = e1000_phy_igp;
+			break;
+		}
+	default:
+		/* Should never have loaded on this device */
+		hw->phy_type = e1000_phy_undefined;
+		return -E1000_ERR_PHY_TYPE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+	u32 ret_val;
+	u16 phy_saved_data;
+
+	e_dbg("e1000_phy_init_script");
+
+	if (hw->phy_init_script) {
+		msleep(20);
+
+		/* Save off the current value of register 0x2F5B to be restored at
+		 * the end of this routine. */
+		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+		/* Disabled the PHY transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+		msleep(20);
+
+		e1000_write_phy_reg(hw, 0x0000, 0x0140);
+		msleep(5);
+
+		switch (hw->mac_type) {
+		case e1000_82541:
+		case e1000_82547:
+			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+			e1000_write_phy_reg(hw, 0x2010, 0x0008);
+			break;
+
+		case e1000_82541_rev_2:
+		case e1000_82547_rev_2:
+			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+			break;
+		default:
+			break;
+		}
+
+		e1000_write_phy_reg(hw, 0x0000, 0x3300);
+		msleep(20);
+
+		/* Now enable the transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (hw->mac_type == e1000_82547) {
+			u16 fused, fine, coarse;
+
+			/* Move to analog registers page */
+			e1000_read_phy_reg(hw,
+					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+					   &fused);
+
+			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+				e1000_read_phy_reg(hw,
+						   IGP01E1000_ANALOG_FUSE_STATUS,
+						   &fused);
+
+				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+				coarse =
+				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+				if (coarse >
+				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+					coarse -=
+					    IGP01E1000_ANALOG_FUSE_COARSE_10;
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+				} else if (coarse ==
+					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+				fused =
+				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+				    (coarse &
+				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_CONTROL,
+						    fused);
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_BYPASS,
+						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+			}
+		}
+	}
+}
+
+/**
+ * e1000_set_mac_type - Set the mac type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+	e_dbg("e1000_set_mac_type");
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+		switch (hw->revision_id) {
+		case E1000_82542_2_0_REV_ID:
+			hw->mac_type = e1000_82542_rev2_0;
+			break;
+		case E1000_82542_2_1_REV_ID:
+			hw->mac_type = e1000_82542_rev2_1;
+			break;
+		default:
+			/* Invalid 82542 revision ID */
+			return -E1000_ERR_MAC_TYPE;
+		}
+		break;
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		hw->mac_type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		hw->mac_type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		hw->mac_type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		hw->mac_type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		hw->mac_type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		hw->mac_type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		hw->mac_type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		hw->mac_type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		hw->mac_type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		hw->mac_type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		hw->mac_type = e1000_82547_rev_2;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		return -E1000_ERR_MAC_TYPE;
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->asf_firmware_present = true;
+		break;
+	default:
+		break;
+	}
+
+	/* The 82543 chip does not count tx_carrier_errors properly in
+	 * FD mode
+	 */
+	if (hw->mac_type == e1000_82543)
+		hw->bad_tx_carr_stats_fd = true;
+
+	if (hw->mac_type > e1000_82544)
+		hw->has_smbus = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_media_type - Set media type and TBI compatibility.
+ * @hw: Struct containing variables accessed by shared code
+ */
+void e1000_set_media_type(struct e1000_hw *hw)
+{
+	u32 status;
+
+	e_dbg("e1000_set_media_type");
+
+	if (hw->mac_type != e1000_82543) {
+		/* tbi_compatibility is only valid on 82543 */
+		hw->tbi_compatibility_en = false;
+	}
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		switch (hw->mac_type) {
+		case e1000_82542_rev2_0:
+		case e1000_82542_rev2_1:
+			hw->media_type = e1000_media_type_fiber;
+			break;
+		default:
+			status = er32(STATUS);
+			if (status & E1000_STATUS_TBIMODE) {
+				hw->media_type = e1000_media_type_fiber;
+				/* tbi_compatibility not valid on fiber */
+				hw->tbi_compatibility_en = false;
+			} else {
+				hw->media_type = e1000_media_type_copper;
+			}
+			break;
+		}
+	}
+}
+
+/**
+ * e1000_reset_hw: reset the hardware completely
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ */
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 ctrl_ext;
+	u32 icr;
+	u32 manc;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	e_dbg("e1000_reset_hw");
+
+	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		e_dbg("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC with
+	 * the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH();
+
+	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+	hw->tbi_compatibility_on = false;
+
+	/* Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msleep(10);
+
+	ctrl = er32(CTRL);
+
+	/* Must reset the PHY before resetting the MAC */
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		msleep(5);
+	}
+
+	/* Issue a global reset to the MAC.  This will reset the chip's
+	 * transmit, receive, DMA, and link units.  It will not effect
+	 * the current PCI configuration.  The global reset bit is self-
+	 * clearing, and should clear within a microsecond.
+	 */
+	e_dbg("Issuing a global reset to MAC\n");
+
+	switch (hw->mac_type) {
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/* These controllers can't ack the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround to issue the reset */
+		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		/* Reset is performed on a shadow of the control register */
+		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
+		break;
+	default:
+		ew32(CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	}
+
+	/* After MAC reset, force reload of EEPROM to restore power-on settings to
+	 * device.  Later controllers reload the EEPROM automatically, so just wait
+	 * for reload to complete.
+	 */
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* Wait for reset to complete */
+		udelay(10);
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		/* Wait for EEPROM reload */
+		msleep(2);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		/* Wait for EEPROM reload */
+		msleep(20);
+		break;
+	default:
+		/* Auto read done will delay 5ms or poll based on mac type */
+		ret_val = e1000_get_auto_rd_done(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	}
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	if (hw->mac_type >= e1000_82540) {
+		manc = er32(MANC);
+		manc &= ~(E1000_MANC_ARP_EN);
+		ew32(MANC, manc);
+	}
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		e1000_phy_init_script(hw);
+
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Clear any pending interrupt events. */
+	icr = er32(ICR);
+
+	/* If MWI was previously enabled, reenable it. */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw: Performs basic configuration of the adapter.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ */
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 i;
+	s32 ret_val;
+	u32 mta_size;
+	u32 ctrl_ext;
+
+	e_dbg("e1000_init_hw");
+
+	/* Initialize Identification LED */
+	ret_val = e1000_id_led_init(hw);
+	if (ret_val) {
+		e_dbg("Error Initializing Identification LED\n");
+		return ret_val;
+	}
+
+	/* Set the media type and TBI compatibility */
+	e1000_set_media_type(hw);
+
+	/* Disabling VLAN filtering. */
+	e_dbg("Initializing the IEEE VLAN\n");
+	if (hw->mac_type < e1000_82545_rev_3)
+		ew32(VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		e_dbg("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		ew32(RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH();
+		msleep(5);
+	}
+
+	/* Setup the receive address. This involves initializing all of the Receive
+	 * Address Registers (RARs 0 - 15).
+	 */
+	e1000_init_rx_addrs(hw);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		ew32(RCTL, 0);
+		E1000_WRITE_FLUSH();
+		msleep(1);
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	mta_size = E1000_MC_TBL_SIZE;
+	for (i = 0; i < mta_size; i++) {
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+		/* use write flush to prevent Memory Write Block (MWB) from
+		 * occurring when accessing our register space */
+		E1000_WRITE_FLUSH();
+	}
+
+	/* Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.  Valid only on
+	 * 82542 and 82543 silicon.
+	 */
+	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+		if (hw->bus_type == e1000_bus_type_pcix
+		    && e1000_pcix_get_mmrbc(hw) > 2048)
+			e1000_pcix_set_mmrbc(hw, 2048);
+		break;
+	}
+
+	/* Call a subroutine to configure the link and setup flow control. */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	if (hw->mac_type > e1000_82544) {
+		ctrl = er32(TXDCTL);
+		ctrl =
+		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB;
+		ew32(TXDCTL, ctrl);
+	}
+
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs(hw);
+
+	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+		ctrl_ext = er32(CTRL_EXT);
+		/* Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot. */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
+ * @hw: Struct containing variables accessed by shared code.
+ */
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
+{
+	u16 eeprom_data;
+	s32 ret_val;
+
+	e_dbg("e1000_adjust_serdes_amplitude");
+
+	if (hw->media_type != e1000_media_type_internal_serdes)
+		return E1000_SUCCESS;
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
+	                            &eeprom_data);
+	if (ret_val) {
+		return ret_val;
+	}
+
+	if (eeprom_data != EEPROM_RESERVED_WORD) {
+		/* Adjust SERDES output amplitude only. */
+		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_link - Configures flow control and link settings.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the appropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ */
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32 ret_val;
+	u16 eeprom_data;
+
+	e_dbg("e1000_setup_link");
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (hw->fc == E1000_FC_DEFAULT) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+			hw->fc = E1000_FC_NONE;
+		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+			 EEPROM_WORD0F_ASM_DIR)
+			hw->fc = E1000_FC_TX_PAUSE;
+		else
+			hw->fc = E1000_FC_FULL;
+	}
+
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		hw->fc &= (~E1000_FC_TX_PAUSE);
+
+	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+		hw->fc &= (~E1000_FC_RX_PAUSE);
+
+	hw->original_fc = hw->fc;
+
+	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before e1000_setup_pcs_link()
+	 * or e1000_phy_setup() is called.
+	 */
+	if (hw->mac_type == e1000_82543) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+			    SWDPIO__EXT_SHIFT);
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = (hw->media_type == e1000_media_type_copper) ?
+	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	e_dbg("Initializing the Flow Control address, type and timer regs\n");
+
+	ew32(FCT, FLOW_CONTROL_TYPE);
+	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	ew32(FCTTV, hw->fc_pause_time);
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames in not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+		ew32(FCRTL, 0);
+		ew32(FCRTH, 0);
+	} else {
+		/* We need to set up the Receive Threshold high and low water marks
+		 * as well as (optionally) enabling the transmission of XON frames.
+		 */
+		if (hw->fc_send_xon) {
+			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+			ew32(FCRTH, hw->fc_high_water);
+		} else {
+			ew32(FCRTL, hw->fc_low_water);
+			ew32(FCRTH, hw->fc_high_water);
+		}
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ */
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 status;
+	u32 txcw = 0;
+	u32 i;
+	u32 signal = 0;
+	s32 ret_val;
+
+	e_dbg("e1000_setup_fiber_serdes_link");
+
+	/* On adapters with a MAC newer than 82544, SWDP 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 * If we're on serdes media, adjust the output amplitude to value
+	 * set in the EEPROM.
+	 */
+	ctrl = er32(CTRL);
+	if (hw->media_type == e1000_media_type_fiber)
+		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+	ret_val = e1000_adjust_serdes_amplitude(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Take the link out of reset */
+	ctrl &= ~(E1000_CTRL_LRST);
+
+	/* Adjust VCO speed to improve BER performance */
+	ret_val = e1000_set_vco_speed(hw);
+	if (ret_val)
+		return ret_val;
+
+	e1000_config_collision_dist(hw);
+
+	/* Check for a software override of the flow control settings, and setup
+	 * the device accordingly.  If auto-negotiation is enabled, then software
+	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+	 * auto-negotiation is disabled, then software will have to manually
+	 * configure the two flow control enable bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames, but
+	 *          not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we do
+	 *          not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		/* Flow control is completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case E1000_FC_RX_PAUSE:
+		/* RX Flow control is enabled and TX Flow control is disabled by a
+		 * software over-ride. Since there really isn't a way to advertise
+		 * that we are capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE. Later, we will
+		 *  disable the adapter's ability to send PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case E1000_FC_TX_PAUSE:
+		/* TX Flow control is enabled, and RX Flow control is disabled, by a
+		 * software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case E1000_FC_FULL:
+		/* Flow control (both RX and TX) is enabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the link
+	 * will be in reset, because we previously reset the chip). This will
+	 * restart auto-negotiation.  If auto-negotiation is successful then the
+	 * link-up status bit will be set and the flow control enable bits (RFCE
+	 * and TFCE) will be set according to their negotiated value.
+	 */
+	e_dbg("Auto-negotiation enabled\n");
+
+	ew32(TXCW, txcw);
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	hw->txcw = txcw;
+	msleep(1);
+
+	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+	 * indication in the Device Status Register.  Time-out if a link isn't
+	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+	 * less than 500 milliseconds even if the other end is doing it in SW).
+	 * For internal serdes, we just assume a signal is present, then poll.
+	 */
+	if (hw->media_type == e1000_media_type_internal_serdes ||
+	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+		e_dbg("Looking for Link\n");
+		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+			msleep(10);
+			status = er32(STATUS);
+			if (status & E1000_STATUS_LU)
+				break;
+		}
+		if (i == (LINK_UP_TIMEOUT / 10)) {
+			e_dbg("Never got a valid link from auto-neg!!!\n");
+			hw->autoneg_failed = 1;
+			/* AutoNeg failed to achieve a link, so we'll call
+			 * e1000_check_for_link. This routine will force the link up if
+			 * we detect a signal. This will allow us to communicate with
+			 * non-autonegotiating link partners.
+			 */
+			ret_val = e1000_check_for_link(hw);
+			if (ret_val) {
+				e_dbg("Error while checking for link\n");
+				return ret_val;
+			}
+			hw->autoneg_failed = 0;
+		} else {
+			hw->autoneg_failed = 0;
+			e_dbg("Valid Link Found\n");
+		}
+	} else {
+		e_dbg("No Signal Detected\n");
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_preconfig - early configuration for copper
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Make sure we have a valid PHY and change PHY mode before link setup.
+ */
+static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_preconfig");
+
+	ctrl = er32(CTRL);
+	/* With 82543, we need to force speed and duplex on the MAC equal to what
+	 * the PHY speed and duplex configuration is. In addition, we need to
+	 * perform a hardware reset on the PHY to take it out of reset.
+	 */
+	if (hw->mac_type > e1000_82543) {
+		ctrl |= E1000_CTRL_SLU;
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		ew32(CTRL, ctrl);
+	} else {
+		ctrl |=
+		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+		ew32(CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Make sure we have a valid PHY */
+	ret_val = e1000_detect_gig_phy(hw);
+	if (ret_val) {
+		e_dbg("Error, did not detect valid phy.\n");
+		return ret_val;
+	}
+	e_dbg("Phy ID = %x\n", hw->phy_id);
+
+	/* Set PHY to class A mode (if necessary) */
+	ret_val = e1000_set_phy_mode(hw);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82545_rev_3) ||
+	    (hw->mac_type == e1000_82546_rev_3)) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		phy_data |= 0x00000008;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	}
+
+	if (hw->mac_type <= e1000_82543 ||
+	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+	    hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2)
+		hw->phy_reset_disable = false;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+	u32 led_ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_igp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		e_dbg("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Wait 15ms for MAC to configure PHY from eeprom settings */
+	msleep(15);
+	/* Configure activity LED after PHY reset */
+	led_ctrl = er32(LEDCTL);
+	led_ctrl &= IGP_ACTIVITY_LED_MASK;
+	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	ew32(LEDCTL, led_ctrl);
+
+	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+	if (hw->phy_type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state(hw, false);
+		if (ret_val) {
+			e_dbg("Error Disabling LPLU D3\n");
+			return ret_val;
+		}
+	}
+
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		hw->dsp_config_state = e1000_dsp_config_disabled;
+		/* Force MDI for earlier revs of the IGP PHY */
+		phy_data &=
+		    ~(IGP01E1000_PSCR_AUTO_MDIX |
+		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
+		hw->mdix = 1;
+
+	} else {
+		hw->dsp_config_state = e1000_dsp_config_enabled;
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+		switch (hw->mdix) {
+		case 1:
+			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 2:
+			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 0:
+		default:
+			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+			break;
+		}
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->autoneg) {
+		e1000_ms_type phy_ms_setting = hw->master_slave;
+
+		if (hw->ffe_config_state == e1000_ffe_config_active)
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+
+		if (hw->dsp_config_state == e1000_dsp_config_activated)
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+
+		/* when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default. */
+		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+			/* Set auto Master/Slave resolution process */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~CR_1000T_MS_ENABLE;
+			ret_val =
+			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* load defaults for future use */
+		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+		    ((phy_data & CR_1000T_MS_VALUE) ?
+		     e1000_ms_force_master :
+		     e1000_ms_force_slave) : e1000_ms_auto;
+
+		switch (phy_ms_setting) {
+		case e1000_ms_force_master:
+			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			phy_data |= CR_1000T_MS_ENABLE;
+			phy_data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			phy_data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_mgp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (hw->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (hw->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_revision < M88E1011_I_REV_4) {
+		/* Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((hw->phy_revision == E1000_REVISION_2) &&
+		    (hw->phy_id == M88E1111_I_PHY_ID)) {
+			/* Vidalia Phy, set the downshift counter to 5x */
+			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		e_dbg("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_autoneg - setup auto-neg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Setup auto-negotiation and flow control advertisements,
+ * and then perform auto-negotiation.
+ */
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_copper_link_autoneg");
+
+	/* Perform some bounds checking on the hw->autoneg_advertised
+	 * parameter.  If this variable is zero, then set it to the default.
+	 */
+	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	/* If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (hw->autoneg_advertised == 0)
+		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	e_dbg("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		e_dbg("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	e_dbg("Restarting Auto-Neg\n");
+
+	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (hw->wait_autoneg_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			e_dbg
+			    ("Error while waiting for autoneg to complete\n");
+			return ret_val;
+		}
+	}
+
+	hw->get_link_status = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_postconfig - post link setup
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Config the MAC and the PHY after link is up.
+ *   1) Set up the MAC to the current PHY speed/duplex
+ *      if we are on 82543.  If we
+ *      are on newer silicon, we only need to configure
+ *      collision distance in the Transmit Control Register.
+ *   2) Set up flow control on the MAC to that established with
+ *      the link partner.
+ *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+ */
+static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	e_dbg("e1000_copper_link_postconfig");
+
+	if (hw->mac_type >= e1000_82544) {
+		e1000_config_collision_dist(hw);
+	} else {
+		ret_val = e1000_config_mac_to_phy(hw);
+		if (ret_val) {
+			e_dbg("Error configuring MAC to PHY settings\n");
+			return ret_val;
+		}
+	}
+	ret_val = e1000_config_fc_after_link_up(hw);
+	if (ret_val) {
+		e_dbg("Error Configuring Flow Control\n");
+		return ret_val;
+	}
+
+	/* Config DSP to improve Giga link quality */
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_config_dsp_after_link_change(hw, true);
+		if (ret_val) {
+			e_dbg("Error Configuring DSP after link up\n");
+			return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_copper_link - phy/speed/duplex setting
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Detects which PHY is present and sets up the speed and duplex
+ */
+static s32 e1000_setup_copper_link(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	e_dbg("e1000_setup_copper_link");
+
+	/* Check if it is a valid PHY and set PHY mode if necessary. */
+	ret_val = e1000_copper_link_preconfig(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_copper_link_igp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_copper_link_mgp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->autoneg) {
+		/* Setup autoneg and flow control advertisement
+		 * and perform autonegotiation */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* PHY will be set to 10H, 10F, 100H,or 100F
+		 * depending on value from forced_speed_duplex. */
+		e_dbg("Forcing speed and duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			e_dbg("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
+
+	/* Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	for (i = 0; i < 10; i++) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			/* Config the MAC and PHY after link is up */
+			ret_val = e1000_copper_link_postconfig(hw);
+			if (ret_val)
+				return ret_val;
+
+			e_dbg("Valid link established!!!\n");
+			return E1000_SUCCESS;
+		}
+		udelay(10);
+	}
+
+	e_dbg("Unable to establish link!!!\n");
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_setup_autoneg - phy settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures PHY autoneg and flow control advertisement settings
+ */
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg;
+
+	e_dbg("e1000_phy_setup_autoneg");
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Read the MII 1000Base-T Control Register (Address 9). */
+	ret_val =
+	    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+		e_dbg("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+		e_dbg("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+		e_dbg("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+		e_dbg("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+		e_dbg
+		    ("Advertise 1000mb Half duplex requested, request denied!\n");
+	}
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+		e_dbg("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          but we do not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *          in the EEPROM is used.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:	/* 0 */
+		/* Flow control (RX & TX) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_RX_PAUSE:	/* 1 */
+		/* RX Flow control is enabled, and TX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		/* Since there really isn't a way to advertise that we are
+		 * capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 *hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_TX_PAUSE:	/* 2 */
+		/* TX Flow control is enabled, and RX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case E1000_FC_FULL:	/* 3 */
+		/* Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_force_speed_duplex - force link settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
+ */
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 mii_ctrl_reg;
+	u16 mii_status_reg;
+	u16 phy_data;
+	u16 i;
+
+	e_dbg("e1000_phy_force_speed_duplex");
+
+	/* Turn off Flow control if we are forcing speed and duplex. */
+	hw->fc = E1000_FC_NONE;
+
+	e_dbg("hw->fc = %d\n", hw->fc);
+
+	/* Read the Device Control Register. */
+	ctrl = er32(CTRL);
+
+	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(DEVICE_SPEED_MASK);
+
+	/* Clear the Auto Speed Detect Enable bit. */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Read the MII Control Register. */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* We need to disable autoneg in order to force link and duplex. */
+
+	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Are we forcing Full or Half Duplex? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_10_full) {
+		/* We want to force full duplex so we SET the full duplex bits in the
+		 * Device and MII Control Registers.
+		 */
+		ctrl |= E1000_CTRL_FD;
+		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+		e_dbg("Full Duplex\n");
+	} else {
+		/* We want to force half duplex so we CLEAR the full duplex bits in
+		 * the Device and MII Control Registers.
+		 */
+		ctrl &= ~E1000_CTRL_FD;
+		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+		e_dbg("Half Duplex\n");
+	}
+
+	/* Are we forcing 100Mbps??? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_100_half) {
+		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+		ctrl |= E1000_CTRL_SPD_100;
+		mii_ctrl_reg |= MII_CR_SPEED_100;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		e_dbg("Forcing 100mb ");
+	} else {
+		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		mii_ctrl_reg |= MII_CR_SPEED_10;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		e_dbg("Forcing 10mb ");
+	}
+
+	e1000_config_collision_dist(hw);
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+
+	if (hw->phy_type == e1000_phy_m88) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+		 * forced whenever speed are duplex are forced.
+		 */
+		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		e_dbg("M88E1000 PSCR: %x\n", phy_data);
+
+		/* Need to reset the PHY or these changes will be ignored */
+		mii_ctrl_reg |= MII_CR_RESET;
+
+		/* Disable MDI-X support for 10/100 */
+	} else {
+		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+		 * forced whenever speed or duplex are forced.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Write back the modified PHY MII control register. */
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	/* The wait_autoneg_complete flag may be a little misleading here.
+	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+	 * But we do want to delay for a period while forcing only so we
+	 * don't generate false No Link messages.  So we will wait here
+	 * only if the user has set wait_autoneg_complete to 1, which is
+	 * the default.
+	 */
+	if (hw->wait_autoneg_complete) {
+		/* We will wait for autoneg to complete. */
+		e_dbg("Waiting for forced speed/duplex link.\n");
+		mii_status_reg = 0;
+
+		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+		}
+		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
+			/* We didn't get link.  Reset the DSP and wait again for link. */
+			ret_val = e1000_phy_reset_dsp(hw);
+			if (ret_val) {
+				e_dbg("Error Resetting PHY DSP\n");
+				return ret_val;
+			}
+		}
+		/* This loop will early-out if the link condition has been met.  */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Because we reset the PHY above, we need to re-force TX_CLK in the
+		 * Extended PHY Specific Control Register to 25MHz clock.  This value
+		 * defaults back to a 2.5MHz clock when the PHY is reset.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* In addition, because of the s/w reset above, we need to enable CRS on
+		 * TX.  This must be set for both full and half duplex operation.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
+		    && (!hw->autoneg)
+		    && (hw->forced_speed_duplex == e1000_10_full
+			|| hw->forced_speed_duplex == e1000_10_half)) {
+			ret_val = e1000_polarity_reversal_workaround(hw);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_collision_dist - set collision distance register
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets the collision distance in the Transmit Control register.
+ * Link should have been established previously. Reads the speed and duplex
+ * information from the Device Status register.
+ */
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl, coll_dist;
+
+	e_dbg("e1000_config_collision_dist");
+
+	if (hw->mac_type < e1000_82543)
+		coll_dist = E1000_COLLISION_DISTANCE_82542;
+	else
+		coll_dist = E1000_COLLISION_DISTANCE;
+
+	tctl = er32(TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= coll_dist << E1000_COLD_SHIFT;
+
+	ew32(TCTL, tctl);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_config_mac_to_phy - sync phy and mac settings
+ * @hw: Struct containing variables accessed by shared code
+ * @mii_reg: data to write to the MII control register
+ *
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
+ * The contents of the PHY register containing the needed information need to
+ * be passed in.
+ */
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_config_mac_to_phy");
+
+	/* 82544 or newer MAC, Auto Speed Detection takes care of
+	 * MAC speed/duplex configuration.*/
+	if (hw->mac_type >= e1000_82544)
+		return E1000_SUCCESS;
+
+	/* Read the Device Control Register and set the bits to Force Speed
+	 * and Duplex.
+	 */
+	ctrl = er32(CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+	/* Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+	else
+		ctrl &= ~E1000_CTRL_FD;
+
+	e1000_config_collision_dist(hw);
+
+	/* Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_force_mac_fc - force flow control settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Forces the MAC's flow control settings.
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ */
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	e_dbg("e1000_force_mac_fc");
+
+	/* Get the current configuration of the Device Control Register */
+	ctrl = er32(CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case E1000_FC_RX_PAUSE:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case E1000_FC_TX_PAUSE:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case E1000_FC_FULL:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	/* Disable TX Flow Control for 82542 (rev 2.0) */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		ctrl &= (~E1000_CTRL_TFCE);
+
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_fc_after_link_up - configure flow control after autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures flow control settings after link is established
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automatically set to the negotiated flow control mode.
+ */
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 mii_nway_adv_reg;
+	u16 mii_nway_lp_ability_reg;
+	u16 speed;
+	u16 duplex;
+
+	e_dbg("e1000_config_fc_after_link_up");
+
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_internal_serdes)
+		&& (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_copper)
+		&& (!hw->autoneg))) {
+		ret_val = e1000_force_mac_fc(hw);
+		if (ret_val) {
+			e_dbg("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+			/* The AutoNeg process has completed, so we now need to
+			 * read both the Auto Negotiation Advertisement Register
+			 * (Address 4) and the Auto_Negotiation Base Page Ability
+			 * Register (Address 5) to determine how flow control was
+			 * negotiated.
+			 */
+			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+						     &mii_nway_adv_reg);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+						     &mii_nway_lp_ability_reg);
+			if (ret_val)
+				return ret_val;
+
+			/* Two bits in the Auto Negotiation Advertisement Register
+			 * (Address 4) and two bits in the Auto Negotiation Base
+			 * Page Ability Register (Address 5) determine flow control
+			 * for both the PHY and the link partner.  The following
+			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+			 * 1999, describes these PAUSE resolution bits and how flow
+			 * control is determined based upon these settings.
+			 * NOTE:  DC = Don't Care
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			/* Are both PAUSE bits set to 1?  If so, this implies
+			 * Symmetric Flow Control is enabled at both ends.  The
+			 * ASM_DIR bits are irrelevant per the spec.
+			 *
+			 * For Symmetric Flow Control:
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *
+			 */
+			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+				/* Now we need to check if the user selected RX ONLY
+				 * of pause frames.  In this case, we had to advertise
+				 * FULL flow control because we could not advertise RX
+				 * ONLY. Hence, we must now check to see if we need to
+				 * turn OFF  the TRANSMISSION of PAUSE frames.
+				 */
+				if (hw->original_fc == E1000_FC_FULL) {
+					hw->fc = E1000_FC_FULL;
+					e_dbg("Flow Control = FULL.\n");
+				} else {
+					hw->fc = E1000_FC_RX_PAUSE;
+					e_dbg
+					    ("Flow Control = RX PAUSE frames only.\n");
+				}
+			}
+			/* For receiving PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *
+			 */
+			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_TX_PAUSE;
+				e_dbg
+				    ("Flow Control = TX PAUSE frames only.\n");
+			}
+			/* For transmitting PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_RX_PAUSE;
+				e_dbg
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+			/* Per the IEEE spec, at this point flow control should be
+			 * disabled.  However, we want to consider that we could
+			 * be connected to a legacy switch that doesn't advertise
+			 * desired flow control, but can be forced on the link
+			 * partner.  So if we advertised no flow control, that is
+			 * what we will resolve to.  If we advertised some kind of
+			 * receive capability (Rx Pause Only or Full Flow Control)
+			 * and the link partner advertised none, we will configure
+			 * ourselves to enable Rx Flow Control only.  We can do
+			 * this safely for two reasons:  If the link partner really
+			 * didn't want flow control enabled, and we enable Rx, no
+			 * harm done since we won't be receiving any PAUSE frames
+			 * anyway.  If the intent on the link partner was to have
+			 * flow control enabled, then by us enabling RX only, we
+			 * can at least receive pause frames and process them.
+			 * This is a good idea because in most cases, since we are
+			 * predominantly a server NIC, more times than not we will
+			 * be asked to delay transmission of packets than asking
+			 * our link partner to pause transmission of frames.
+			 */
+			else if ((hw->original_fc == E1000_FC_NONE ||
+				  hw->original_fc == E1000_FC_TX_PAUSE) ||
+				 hw->fc_strict_ieee) {
+				hw->fc = E1000_FC_NONE;
+				e_dbg("Flow Control = NONE.\n");
+			} else {
+				hw->fc = E1000_FC_RX_PAUSE;
+				e_dbg
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+
+			/* Now we need to do one last check...  If we auto-
+			 * negotiated to HALF DUPLEX, flow control should not be
+			 * enabled per IEEE 802.3 spec.
+			 */
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				e_dbg
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+
+			if (duplex == HALF_DUPLEX)
+				hw->fc = E1000_FC_NONE;
+
+			/* Now we call a subroutine to actually force the MAC
+			 * controller to use the correct flow control settings.
+			 */
+			ret_val = e1000_force_mac_fc(hw);
+			if (ret_val) {
+				e_dbg
+				    ("Error forcing flow control settings\n");
+				return ret_val;
+			}
+		} else {
+			e_dbg
+			    ("Copper PHY and Auto Neg has not completed.\n");
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	e_dbg("e1000_check_for_serdes_link_generic");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (hw->autoneg_failed == 0) {
+			hw->autoneg_failed = 1;
+			goto out;
+		}
+		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, hw->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		hw->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		rxcw = er32(RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				hw->serdes_has_link = true;
+				e_dbg("SERDES: Link up - forced.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			e_dbg("SERDES: Link down - force failed.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & er32(TXCW)) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					hw->serdes_has_link = true;
+					e_dbg("SERDES: Link up - autoneg "
+						 "completed successfully.\n");
+				} else {
+					hw->serdes_has_link = false;
+					e_dbg("SERDES: Link down - invalid"
+						 "codewords detected in autoneg.\n");
+				}
+			} else {
+				hw->serdes_has_link = false;
+				e_dbg("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			e_dbg("SERDES: Link down - autoneg failed\n");
+		}
+	}
+
+      out:
+	return ret_val;
+}
+
+/**
+ * e1000_check_for_link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks to see if the link status of the hardware has changed.
+ * Called by any function that needs to check the link status of the adapter.
+ */
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+	u32 rxcw = 0;
+	u32 ctrl;
+	u32 status;
+	u32 rctl;
+	u32 icr;
+	u32 signal = 0;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_check_for_link");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+
+	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 */
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes)) {
+		rxcw = er32(RXCW);
+
+		if (hw->media_type == e1000_media_type_fiber) {
+			signal =
+			    (hw->mac_type >
+			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+			if (status & E1000_STATUS_LU)
+				hw->get_link_status = false;
+		}
+	}
+
+	/* If we have a copper PHY then we only want to go out to the PHY
+	 * registers to see if Auto-Neg has completed and/or if our link
+	 * status has changed.  The get_link_status flag will be set if we
+	 * receive a Link Status Change interrupt or we have Rx Sequence
+	 * Errors.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+		/* First we want to see if the MII Status Register reports
+		 * link.  If so, then we want to get the current speed/duplex
+		 * of the PHY.
+		 * Read the register twice since the link bit is sticky.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			hw->get_link_status = false;
+			/* Check if there was DownShift, must be checked immediately after
+			 * link-up */
+			e1000_check_downshift(hw);
+
+			/* If we are on 82544 or 82543 silicon and speed/duplex
+			 * are forced to 10H or 10F, then we will implement the polarity
+			 * reversal workaround.  We disable interrupts first, and upon
+			 * returning, place the devices interrupt state to its previous
+			 * value except for the link status change interrupt which will
+			 * happen due to the execution of this workaround.
+			 */
+
+			if ((hw->mac_type == e1000_82544
+			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
+			    && (hw->forced_speed_duplex == e1000_10_full
+				|| hw->forced_speed_duplex == e1000_10_half)) {
+				ew32(IMC, 0xffffffff);
+				ret_val =
+				    e1000_polarity_reversal_workaround(hw);
+				icr = er32(ICR);
+				ew32(ICS, (icr & ~E1000_ICS_LSC));
+				ew32(IMS, IMS_ENABLE_MASK);
+			}
+
+		} else {
+			/* No link detected */
+			e1000_config_dsp_after_link_change(hw, false);
+			return 0;
+		}
+
+		/* If we are forcing speed/duplex, then we simply return since
+		 * we have already determined whether we have link or not.
+		 */
+		if (!hw->autoneg)
+			return -E1000_ERR_CONFIG;
+
+		/* optimize the dsp settings for the igp phy */
+		e1000_config_dsp_after_link_change(hw, true);
+
+		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+		 * have Si on board that is 82544 or newer, Auto
+		 * Speed Detection takes care of MAC speed/duplex
+		 * configuration.  So we only need to configure Collision
+		 * Distance in the MAC.  Otherwise, we need to force
+		 * speed/duplex on the MAC to the current PHY speed/duplex
+		 * settings.
+		 */
+		if (hw->mac_type >= e1000_82544)
+			e1000_config_collision_dist(hw);
+		else {
+			ret_val = e1000_config_mac_to_phy(hw);
+			if (ret_val) {
+				e_dbg
+				    ("Error configuring MAC to PHY settings\n");
+				return ret_val;
+			}
+		}
+
+		/* Configure Flow Control now that Auto-Neg has completed. First, we
+		 * need to restore the desired flow control settings because we may
+		 * have had to re-autoneg with a different link partner.
+		 */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			return ret_val;
+		}
+
+		/* At this point we know that we are on copper and we have
+		 * auto-negotiated link.  These are conditions for checking the link
+		 * partner capability register.  We use the link speed to determine if
+		 * TBI compatibility needs to be turned on or off.  If the link is not
+		 * at gigabit speed, then TBI compatibility is not needed.  If we are
+		 * at gigabit speed, we turn on TBI compatibility.
+		 */
+		if (hw->tbi_compatibility_en) {
+			u16 speed, duplex;
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				e_dbg
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+			if (speed != SPEED_1000) {
+				/* If link speed is not set to gigabit speed, we do not need
+				 * to enable TBI compatibility.
+				 */
+				if (hw->tbi_compatibility_on) {
+					/* If we previously were in the mode, turn it off. */
+					rctl = er32(RCTL);
+					rctl &= ~E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+					hw->tbi_compatibility_on = false;
+				}
+			} else {
+				/* If TBI compatibility is was previously off, turn it on. For
+				 * compatibility with a TBI link partner, we will store bad
+				 * packets. Some frames have an additional byte on the end and
+				 * will look like CRC errors to to the hardware.
+				 */
+				if (!hw->tbi_compatibility_on) {
+					hw->tbi_compatibility_on = true;
+					rctl = er32(RCTL);
+					rctl |= E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+				}
+			}
+		}
+	}
+
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes))
+		e1000_check_for_serdes_link_generic(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex
+ * @hw: Struct containing variables accessed by shared code
+ * @speed: Speed of the connection
+ * @duplex: Duplex setting of the connection
+
+ * Detects the current speed and duplex settings of the hardware.
+ */
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	u32 status;
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_get_speed_and_duplex");
+
+	if (hw->mac_type >= e1000_82543) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_SPEED_1000) {
+			*speed = SPEED_1000;
+			e_dbg("1000 Mbs, ");
+		} else if (status & E1000_STATUS_SPEED_100) {
+			*speed = SPEED_100;
+			e_dbg("100 Mbs, ");
+		} else {
+			*speed = SPEED_10;
+			e_dbg("10 Mbs, ");
+		}
+
+		if (status & E1000_STATUS_FD) {
+			*duplex = FULL_DUPLEX;
+			e_dbg("Full Duplex\n");
+		} else {
+			*duplex = HALF_DUPLEX;
+			e_dbg(" Half Duplex\n");
+		}
+	} else {
+		e_dbg("1000 Mbs, Full Duplex\n");
+		*speed = SPEED_1000;
+		*duplex = FULL_DUPLEX;
+	}
+
+	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
+	 * if it is operating at half duplex.  Here we set the duplex settings to
+	 * match the duplex in the link partner's capabilities.
+	 */
+	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+			*duplex = HALF_DUPLEX;
+		else {
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+			if (ret_val)
+				return ret_val;
+			if ((*speed == SPEED_100
+			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+			    || (*speed == SPEED_10
+				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_wait_autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Blocks until autoneg completes or times out (~4.5 seconds)
+ */
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	e_dbg("e1000_wait_autoneg");
+	e_dbg("Waiting for Auto-Neg to complete.\n");
+
+	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Auto-Neg
+		 * Complete bit to be set.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+			return E1000_SUCCESS;
+		}
+		msleep(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_raise_mdi_clk - Raises the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Raise the clock input to the Management Data Clock (by setting the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_lower_mdi_clk - Lowers the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Lower the clock input to the Management Data Clock (by clearing the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
+ * @hw: Struct containing variables accessed by shared code
+ * @data: Data to send out to the PHY
+ * @count: Number of bits to shift out
+ *
+ * Bits are shifted out in MSB to LSB order.
+ */
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
+{
+	u32 ctrl;
+	u32 mask;
+
+	/* We need to shift "count" number of bits out to the PHY. So, the value
+	 * in the "data" parameter will be shifted out to the PHY one bit at a
+	 * time. In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
+
+	ctrl = er32(CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+		 * then raising and lowering the Management Data Clock. A "0" is
+		 * shifted out to the PHY by setting the MDIO bit to "0" and then
+		 * raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+		udelay(10);
+
+		e1000_raise_mdi_clk(hw, &ctrl);
+		e1000_lower_mdi_clk(hw, &ctrl);
+
+		mask = mask >> 1;
+	}
+}
+
+/**
+ * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Bits are shifted in in MSB to LSB order.
+ */
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
+
+	/* In order to read a register from the PHY, we need to shift in a total
+	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
+	 * to avoid contention on the MDIO pin when a read operation is performed.
+	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
+	 * by raising the input to the Management Data Clock (setting the MDC bit),
+	 * and then reading the value of the MDIO bit.
+	 */
+	ctrl = er32(CTRL);
+
+	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	/* Raise and Lower the clock before reading in the data. This accounts for
+	 * the turnaround bits. The first clock occurred when we clocked out the
+	 * last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data = data << 1;
+		e1000_raise_mdi_clk(hw, &ctrl);
+		ctrl = er32(CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	return data;
+}
+
+
+/**
+ * e1000_read_phy_reg - read a phy register
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to read
+ *
+ * Reads the value from a PHY register, if the value is on a specific non zero
+ * page, sets the page first.
+ */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
+{
+	u32 ret_val;
+
+	e_dbg("e1000_read_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	e_dbg("e1000_read_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, and register address in the MDI
+		 * Control register.  The MAC will take care of interfacing with the
+		 * PHY to retrieve the desired data.
+		 */
+		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_READ));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 64; i++) {
+			udelay(50);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			e_dbg("MDI Read did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+		if (mdic & E1000_MDIC_ERROR) {
+			e_dbg("MDI Error\n");
+			return -E1000_ERR_PHY;
+		}
+		*phy_data = (u16) mdic;
+	} else {
+		/* We must first send a preamble through the MDIO pin to signal the
+		 * beginning of an MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the next few fields that are required for a read
+		 * operation.  We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine five different times. The format of
+		 * a MII read instruction consists of a shift out of 14 bits and is
+		 * defined as follows:
+		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+		 * followed by a shift in of 18 bits.  This first two bits shifted in
+		 * are TurnAround bits used to avoid contention on the MDIO pin when a
+		 * READ operation is performed.  These two bits are thrown away
+		 * followed by a shift in of 16 bits which contains the desired data.
+		 */
+		mdic = ((reg_addr) | (phy_addr << 5) |
+			(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+		e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+		/* Now that we've shifted out the read command to the MII, we need to
+		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+		 * register address.
+		 */
+		*phy_data = e1000_shift_in_mdi_bits(hw);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - write a phy register
+ *
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to write
+ * @data: data to write to the PHY
+
+ * Writes a value to a PHY register
+ */
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
+{
+	u32 ret_val;
+
+	e_dbg("e1000_write_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					 phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	e_dbg("e1000_write_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, register address, and data intended
+		 * for the PHY register in the MDI Control register.  The MAC will take
+		 * care of interfacing with the PHY to send the desired data.
+		 */
+		mdic = (((u32) phy_data) |
+			(reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_WRITE));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 641; i++) {
+			udelay(5);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			e_dbg("MDI Write did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+	} else {
+		/* We'll need to use the SW defined pins to shift the write command
+		 * out to the PHY. We first send a preamble to the PHY to signal the
+		 * beginning of the MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the remaining required fields that will indicate a
+		 * write operation. We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine for each field in the command. The
+		 * format of a MII write instruction is as follows:
+		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+		 */
+		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+		mdic <<= 16;
+		mdic |= (u32) phy_data;
+
+		e1000_shift_out_mdi_bits(hw, mdic, 32);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - reset the phy, hardware style
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Returns the PHY to the power-on reset state
+ */
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	u32 ctrl, ctrl_ext;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	e_dbg("e1000_phy_hw_reset");
+
+	e_dbg("Resetting Phy...\n");
+
+	if (hw->mac_type > e1000_82543) {
+		/* Read the device control register and assert the E1000_CTRL_PHY_RST
+		 * bit. Then, take it out of reset.
+		 * For e1000 hardware, we delay for 10ms between the assert
+		 * and deassert.
+		 */
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+		E1000_WRITE_FLUSH();
+
+		msleep(10);
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+	} else {
+		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+		 * bit to put the PHY into reset. Then, take it out of reset.
+		 */
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		msleep(10);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+	}
+	udelay(150);
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Wait for FW to finish PHY configuration. */
+	ret_val = e1000_get_phy_cfg_done(hw);
+	if (ret_val != E1000_SUCCESS)
+		return ret_val;
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_reset - reset the phy to commit settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY
+ * Sets bit 15 of the MII Control register
+ */
+s32 e1000_phy_reset(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_phy_reset");
+
+	switch (hw->phy_type) {
+	case e1000_phy_igp:
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= MII_CR_RESET;
+		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		udelay(1);
+		break;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		e1000_phy_init_script(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_detect_gig_phy - check the phy type
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Probes the expected PHY address for known PHY IDs
+ */
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+	s32 phy_init_status, ret_val;
+	u16 phy_id_high, phy_id_low;
+	bool match = false;
+
+	e_dbg("e1000_detect_gig_phy");
+
+	if (hw->phy_id != 0)
+		return E1000_SUCCESS;
+
+	/* Read the PHY ID Registers to identify which PHY is onboard. */
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id = (u32) (phy_id_high << 16);
+	udelay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
+	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->phy_id == M88E1000_E_PHY_ID)
+			match = true;
+		break;
+	case e1000_82544:
+		if (hw->phy_id == M88E1000_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (hw->phy_id == M88E1011_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (hw->phy_id == IGP01E1000_I_PHY_ID)
+			match = true;
+		break;
+	default:
+		e_dbg("Invalid MAC type %d\n", hw->mac_type);
+		return -E1000_ERR_CONFIG;
+	}
+	phy_init_status = e1000_set_phy_type(hw);
+
+	if ((match) && (phy_init_status == E1000_SUCCESS)) {
+		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
+		return E1000_SUCCESS;
+	}
+	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
+	return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_phy_reset_dsp - reset DSP
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY's DSP
+ */
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	e_dbg("e1000_phy_reset_dsp");
+
+	do {
+		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+		if (ret_val)
+			break;
+		ret_val = E1000_SUCCESS;
+	} while (0);
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_igp_get_info - get igp specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for igp PHY only.
+ */
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data, min_length, max_length, average;
+	e1000_rev_polarity polarity;
+
+	e_dbg("e1000_phy_igp_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	/* IGP01E1000 does not need to support it. */
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+	/* IGP01E1000 always correct polarity reversal */
+	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
+				 IGP01E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+		/* Get cable length */
+		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+		if (ret_val)
+			return ret_val;
+
+		/* Translate to old method */
+		average = (max_length + min_length) / 2;
+
+		if (average <= e1000_igp_cable_length_50)
+			phy_info->cable_length = e1000_cable_length_50;
+		else if (average <= e1000_igp_cable_length_80)
+			phy_info->cable_length = e1000_cable_length_50_80;
+		else if (average <= e1000_igp_cable_length_110)
+			phy_info->cable_length = e1000_cable_length_80_110;
+		else if (average <= e1000_igp_cable_length_140)
+			phy_info->cable_length = e1000_cable_length_110_140;
+		else
+			phy_info->cable_length = e1000_cable_length_140;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_m88_get_info - get m88 specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for m88 PHY only.
+ */
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+	e1000_rev_polarity polarity;
+
+	e_dbg("e1000_phy_m88_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->extended_10bt_distance =
+	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+	    e1000_10bt_ext_dist_enable_lower :
+	    e1000_10bt_ext_dist_enable_normal;
+
+	phy_info->polarity_correction =
+	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
+				 M88E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		/* Cable Length Estimation and Local/Remote Receiver Information
+		 * are only valid at 1000 Mbps.
+		 */
+		phy_info->cable_length =
+		    (e1000_cable_length) ((phy_data &
+					   M88E1000_PSSR_CABLE_LENGTH) >>
+					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_get_info - request phy info
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers
+ */
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_phy_get_info");
+
+	phy_info->cable_length = e1000_cable_length_undefined;
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+	phy_info->cable_polarity = e1000_rev_polarity_undefined;
+	phy_info->downshift = e1000_downshift_undefined;
+	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+	phy_info->local_rx = e1000_1000t_rx_status_undefined;
+	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+	if (hw->media_type != e1000_media_type_copper) {
+		e_dbg("PHY info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+		e_dbg("PHY info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		return e1000_phy_igp_get_info(hw, phy_info);
+	else
+		return e1000_phy_m88_get_info(hw, phy_info);
+}
+
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+	e_dbg("e1000_validate_mdi_settings");
+
+	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+		e_dbg("Invalid MDI setting detected\n");
+		hw->mdix = 1;
+		return -E1000_ERR_CONFIG;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_eeprom_params - initialize sw eeprom vars
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.
+ */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd = er32(EECD);
+	s32 ret_val = E1000_SUCCESS;
+	u16 eeprom_size;
+
+	e_dbg("e1000_init_eeprom_params");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->word_size = 64;
+		eeprom->opcode_bits = 3;
+		eeprom->address_bits = 6;
+		eeprom->delay_usec = 50;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->opcode_bits = 3;
+		eeprom->delay_usec = 50;
+		if (eecd & E1000_EECD_SIZE) {
+			eeprom->word_size = 256;
+			eeprom->address_bits = 8;
+		} else {
+			eeprom->word_size = 64;
+			eeprom->address_bits = 6;
+		}
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (eecd & E1000_EECD_TYPE) {
+			eeprom->type = e1000_eeprom_spi;
+			eeprom->opcode_bits = 8;
+			eeprom->delay_usec = 1;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->page_size = 32;
+				eeprom->address_bits = 16;
+			} else {
+				eeprom->page_size = 8;
+				eeprom->address_bits = 8;
+			}
+		} else {
+			eeprom->type = e1000_eeprom_microwire;
+			eeprom->opcode_bits = 3;
+			eeprom->delay_usec = 50;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->word_size = 256;
+				eeprom->address_bits = 8;
+			} else {
+				eeprom->word_size = 64;
+				eeprom->address_bits = 6;
+			}
+		}
+		break;
+	default:
+		break;
+	}
+
+	if (eeprom->type == e1000_eeprom_spi) {
+		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+		 * 32KB (incremented by powers of 2).
+		 */
+		/* Set to default value for initial eeprom read. */
+		eeprom->word_size = 64;
+		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+		if (ret_val)
+			return ret_val;
+		eeprom_size =
+		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+		/* 256B eeprom size was not supported in earlier hardware, so we
+		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+		 * is never the result used in the shifting logic below. */
+		if (eeprom_size)
+			eeprom_size++;
+
+		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_raise_ee_clk - Raises the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
+	 * wait <delay> microseconds.
+	 */
+	*eecd = *eecd | E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+	 * wait 50 microseconds.
+	 */
+	*eecd = *eecd & ~E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ */
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u32 mask;
+
+	/* We need to shift "count" bits out to the EEPROM. So, value in the
+	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
+	 * In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01 << (count - 1);
+	eecd = er32(EECD);
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~E1000_EECD_DO;
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_DO;
+	}
+	do {
+		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+		 * and then raising and then lowering the clock (the SK bit controls
+		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+		 * by setting "DI" to "0" and then raising and then lowering the clock.
+		 */
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+
+		udelay(eeprom->delay_usec);
+
+		e1000_raise_ee_clk(hw, &eecd);
+		e1000_lower_ee_clk(hw, &eecd);
+
+		mask = mask >> 1;
+
+	} while (mask);
+
+	/* We leave the "DI" bit set to "0" when we leave this routine. */
+	eecd &= ~E1000_EECD_DI;
+	ew32(EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
+ * @hw: Struct containing variables accessed by shared code
+ * @count: number of bits to shift in
+ */
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	/* In order to read a register from the EEPROM, we need to shift 'count'
+	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+	 * input to the EEPROM (setting the SK bit), and then reading the value of
+	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
+	 * always be clear.
+	 */
+
+	eecd = er32(EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data = data << 1;
+		e1000_raise_ee_clk(hw, &eecd);
+
+		eecd = er32(EECD);
+
+		eecd &= ~(E1000_EECD_DI);
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_ee_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ * e1000_acquire_eeprom - Prepares EEPROM for access
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ */
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd, i = 0;
+
+	e_dbg("e1000_acquire_eeprom");
+
+	eecd = er32(EECD);
+
+	/* Request EEPROM Access */
+	if (hw->mac_type > e1000_82544) {
+		eecd |= E1000_EECD_REQ;
+		ew32(EECD, eecd);
+		eecd = er32(EECD);
+		while ((!(eecd & E1000_EECD_GNT)) &&
+		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+			i++;
+			udelay(5);
+			eecd = er32(EECD);
+		}
+		if (!(eecd & E1000_EECD_GNT)) {
+			eecd &= ~E1000_EECD_REQ;
+			ew32(EECD, eecd);
+			e_dbg("Could not acquire EEPROM grant\n");
+			return -E1000_ERR_EEPROM;
+		}
+	}
+
+	/* Setup EEPROM for Read/Write */
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		ew32(EECD, eecd);
+
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		udelay(1);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_standby_eeprom - Returns EEPROM to a "standby" state
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_standby_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+
+	eecd = er32(EECD);
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock high */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock low */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	}
+}
+
+/**
+ * e1000_release_eeprom - drop chip select
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Terminates a command by inverting the EEPROM's chip select pin
+ */
+static void e1000_release_eeprom(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	e_dbg("e1000_release_eeprom");
+
+	eecd = er32(EECD);
+
+	if (hw->eeprom.type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_CS;	/* Pull CS high */
+		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
+
+		ew32(EECD, eecd);
+
+		udelay(hw->eeprom.delay_usec);
+	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
+		/* cleanup eeprom */
+
+		/* CS on Microwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+		ew32(EECD, eecd);
+
+		/* Rising edge of clock */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+
+		/* Falling edge of clock */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+	}
+
+	/* Stop requesting EEPROM access */
+	if (hw->mac_type > e1000_82544) {
+		eecd &= ~E1000_EECD_REQ;
+		ew32(EECD, eecd);
+	}
+}
+
+/**
+ * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+	u16 retry_count = 0;
+	u8 spi_stat_reg;
+
+	e_dbg("e1000_spi_eeprom_ready");
+
+	/* Read "Status Register" repeatedly until the LSB is cleared.  The
+	 * EEPROM will signal that the command has been completed by clearing
+	 * bit 0 of the internal status register.  If it's not cleared within
+	 * 5 milliseconds, then error out.
+	 */
+	retry_count = 0;
+	do {
+		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+					hw->eeprom.opcode_bits);
+		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
+		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+			break;
+
+		udelay(5);
+		retry_count += 5;
+
+		e1000_standby_eeprom(hw);
+	} while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+	 * only 0-5mSec on 5V devices)
+	 */
+	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+		e_dbg("SPI EEPROM Status error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset of  word in the EEPROM to read
+ * @data: word read from the EEPROM
+ * @words: number of words to read
+ */
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_read_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 i = 0;
+
+	e_dbg("e1000_read_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		e_dbg("\"words\" parameter out of bounds. Words = %d,"
+		      "size = %d\n", offset, eeprom->word_size);
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+	 * directly. In this case, we need to acquire the EEPROM so that
+	 * FW or other port software does not interrupt.
+	 */
+	/* Prepare the EEPROM for bit-bang reading */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+	 * acquired the EEPROM at this point, so any returns should release it */
+	if (eeprom->type == e1000_eeprom_spi) {
+		u16 word_in;
+		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw)) {
+			e1000_release_eeprom(hw);
+			return -E1000_ERR_EEPROM;
+		}
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the READ command (opcode + addr)  */
+		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
+					eeprom->address_bits);
+
+		/* Read the data.  The address of the eeprom internally increments with
+		 * each byte (spi) being read, saving on the overhead of eeprom setup
+		 * and tear-down.  The address counter will roll over if reading beyond
+		 * the size of the eeprom, thus allowing the entire memory to be read
+		 * starting from any offset. */
+		for (i = 0; i < words; i++) {
+			word_in = e1000_shift_in_ee_bits(hw, 16);
+			data[i] = (word_in >> 8) | (word_in << 8);
+		}
+	} else if (eeprom->type == e1000_eeprom_microwire) {
+		for (i = 0; i < words; i++) {
+			/* Send the READ command (opcode + addr)  */
+			e1000_shift_out_ee_bits(hw,
+						EEPROM_READ_OPCODE_MICROWIRE,
+						eeprom->opcode_bits);
+			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
+						eeprom->address_bits);
+
+			/* Read the data.  For microwire, each word requires the overhead
+			 * of eeprom setup and tear-down. */
+			data[i] = e1000_shift_in_ee_bits(hw, 16);
+			e1000_standby_eeprom(hw);
+		}
+	}
+
+	/* End this read operation */
+	e1000_release_eeprom(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ */
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	e_dbg("e1000_validate_eeprom_checksum");
+
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+
+	if (checksum == (u16) EEPROM_SUM)
+		return E1000_SUCCESS;
+	else {
+		e_dbg("EEPROM Checksum Invalid\n");
+		return -E1000_ERR_EEPROM;
+	}
+}
+
+/**
+ * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ */
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	e_dbg("e1000_update_eeprom_checksum");
+
+	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+	checksum = (u16) EEPROM_SUM - checksum;
+	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+		e_dbg("EEPROM Write Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom - write words to the different EEPROM types.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word to be written to the EEPROM
+ *
+ * If e1000_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ */
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_write_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	s32 status = 0;
+
+	e_dbg("e1000_write_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		e_dbg("\"words\" parameter out of bounds\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* Prepare the EEPROM for writing  */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		status = e1000_write_eeprom_microwire(hw, offset, words, data);
+	} else {
+		status = e1000_write_eeprom_spi(hw, offset, words, data);
+		msleep(10);
+	}
+
+	/* Done with writing */
+	e1000_release_eeprom(hw);
+
+	return status;
+}
+
+/**
+ * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u16 widx = 0;
+
+	e_dbg("e1000_write_eeprom_spi");
+
+	while (widx < words) {
+		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw))
+			return -E1000_ERR_EEPROM;
+
+		e1000_standby_eeprom(hw);
+
+		/*  Send the WRITE ENABLE command (8 bit opcode )  */
+		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+					eeprom->opcode_bits);
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			write_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
+					eeprom->address_bits);
+
+		/* Send the data */
+
+		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_ee_bits(hw, word_out, 16);
+			widx++;
+
+			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+			 * operation, while the smaller eeproms are capable of an 8-byte
+			 * PAGE WRITE operation.  Break the inner loop to pass new address
+			 */
+			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
+				e1000_standby_eeprom(hw);
+				break;
+			}
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 i = 0;
+
+	e_dbg("e1000_write_eeprom_microwire");
+
+	/* Send the write enable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 11).  It's less work to include
+	 * the 11 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This puts the
+	 * EEPROM into write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	/* Prepare the EEPROM */
+	e1000_standby_eeprom(hw);
+
+	while (words_written < words) {
+		/* Send the Write command (3-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+					eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
+					eeprom->address_bits);
+
+		/* Send the data */
+		e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+		/* Toggle the CS line.  This in effect tells the EEPROM to execute
+		 * the previous command.
+		 */
+		e1000_standby_eeprom(hw);
+
+		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
+		 * signal that the command has been completed by raising the DO signal.
+		 * If DO does not go high in 10 milliseconds, then error out.
+		 */
+		for (i = 0; i < 200; i++) {
+			eecd = er32(EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			udelay(50);
+		}
+		if (i == 200) {
+			e_dbg("EEPROM Write did not complete\n");
+			return -E1000_ERR_EEPROM;
+		}
+
+		/* Recover from write */
+		e1000_standby_eeprom(hw);
+
+		words_written++;
+	}
+
+	/* Send the write disable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 10).  It's less work to include
+	 * the 10 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This takes the
+	 * EEPROM out of write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - read the adapters MAC from eeprom
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ */
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+	u16 offset;
+	u16 eeprom_data, i;
+
+	e_dbg("e1000_read_mac_addr");
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+		offset = i >> 1;
+		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+			e_dbg("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
+		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			hw->perm_mac_addr[5] ^= 0x01;
+		break;
+	}
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+		hw->mac_addr[i] = hw->perm_mac_addr[i];
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_rx_addrs - Initializes receive address filters.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive address registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ */
+static void e1000_init_rx_addrs(struct e1000_hw *hw)
+{
+	u32 i;
+	u32 rar_num;
+
+	e_dbg("e1000_init_rx_addrs");
+
+	/* Setup the receive address. */
+	e_dbg("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	rar_num = E1000_RAR_ENTRIES;
+
+	/* Zero out the other 15 receive addresses. */
+	e_dbg("Clearing RAR[1-15]\n");
+	for (i = 1; i < rar_num; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
+ * @hw: Struct containing variables accessed by shared code
+ * @mc_addr: the multicast address to hash
+ */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value = 0;
+
+	/* The portion of the address that is used for the hash table is
+	 * determined by the mc_filter_type setting.
+	 */
+	switch (hw->mc_filter_type) {
+		/* [0] [1] [2] [3] [4] [5]
+		 * 01  AA  00  12  34  56
+		 * LSB                 MSB
+		 */
+	case 0:
+		/* [47:36] i.e. 0x563 for above example address */
+		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
+		break;
+	case 1:
+		/* [46:35] i.e. 0xAC6 for above example address */
+		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
+		break;
+	case 2:
+		/* [45:34] i.e. 0x5D8 for above example address */
+		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
+		break;
+	case 3:
+		/* [43:32] i.e. 0x634 for above example address */
+		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
+		break;
+	}
+
+	hash_value &= 0xFFF;
+	return hash_value;
+}
+
+/**
+ * e1000_rar_set - Puts an ethernet address into a receive address register.
+ * @hw: Struct containing variables accessed by shared code
+ * @addr: Address to put into receive address register
+ * @index: Receive address register to write
+ */
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+	 * unit hang.
+	 *
+	 * Description:
+	 * If there are any Rx frames queued up or otherwise present in the HW
+	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
+	 * hang.  To work around this issue, we have to disable receives and
+	 * flush out all Rx frames before we enable RSS. To do so, we modify we
+	 * redirect all Rx traffic to manageability and then reset the HW.
+	 * This flushes away Rx frames, and (since the redirections to
+	 * manageability persists across resets) keeps new ones from coming in
+	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
+	 * addresses and undo the re-direction to manageability.
+	 * Now, frames are coming in again, but the MAC won't accept them, so
+	 * far so good.  We now proceed to initialize RSS (if necessary) and
+	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
+	 * on our merry way.
+	 */
+	switch (hw->mac_type) {
+	default:
+		/* Indicate to hardware the Address is Valid. */
+		rar_high |= E1000_RAH_AV;
+		break;
+	}
+
+	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+	E1000_WRITE_FLUSH();
+	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: Offset in VLAN filer table to write
+ * @value: Value to write into VLAN filter table
+ */
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	u32 temp;
+
+	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+		E1000_WRITE_FLUSH();
+	} else {
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_clear_vfta - Clears the VLAN filer table
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/* If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of the
+		 * manageability unit */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+static s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 eeprom_data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	e_dbg("e1000_id_led_init");
+
+	if (hw->mac_type < e1000_82540) {
+		/* Nothing to do */
+		return E1000_SUCCESS;
+	}
+
+	ledctl = er32(LEDCTL);
+	hw->ledctl_default = ledctl;
+	hw->ledctl_mode1 = hw->ledctl_default;
+	hw->ledctl_mode2 = hw->ledctl_default;
+
+	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+		e_dbg("EEPROM Read Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	if ((eeprom_data == ID_LED_RESERVED_0000) ||
+	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
+		eeprom_data = ID_LED_DEFAULT;
+	}
+
+	for (i = 0; i < 4; i++) {
+		temp = (eeprom_data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_led
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ */
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
+
+	e_dbg("e1000_setup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No setup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn off PHY Smart Power Down (if enabled) */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					     &hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      (u16) (hw->phy_spd_default &
+						     ~IGP01E1000_GMII_SPD));
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			ledctl = er32(LEDCTL);
+			/* Save current LEDCTL settings */
+			hw->ledctl_default = ledctl;
+			/* Turn off LED0 */
+			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+				    E1000_LEDCTL_LED0_BLINK |
+				    E1000_LEDCTL_LED0_MODE_MASK);
+			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+				   E1000_LEDCTL_LED0_MODE_SHIFT);
+			ew32(LEDCTL, ledctl);
+		} else if (hw->media_type == e1000_media_type_copper)
+			ew32(LEDCTL, hw->ledctl_mode1);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	e_dbg("e1000_cleanup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No cleanup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn on PHY Smart Power Down (if previously enabled) */
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		/* Restore LEDCTL settings */
+		ew32(LEDCTL, hw->ledctl_default);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turns on the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	e_dbg("e1000_led_on");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Set SW Defineable Pin 0 to turn on the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn on the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode2);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turns off the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	e_dbg("e1000_led_off");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Clear SW Defineable Pin 0 to turn off the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn off the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode1);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	temp = er32(CRCERRS);
+	temp = er32(SYMERRS);
+	temp = er32(MPC);
+	temp = er32(SCC);
+	temp = er32(ECOL);
+	temp = er32(MCC);
+	temp = er32(LATECOL);
+	temp = er32(COLC);
+	temp = er32(DC);
+	temp = er32(SEC);
+	temp = er32(RLEC);
+	temp = er32(XONRXC);
+	temp = er32(XONTXC);
+	temp = er32(XOFFRXC);
+	temp = er32(XOFFTXC);
+	temp = er32(FCRUC);
+
+	temp = er32(PRC64);
+	temp = er32(PRC127);
+	temp = er32(PRC255);
+	temp = er32(PRC511);
+	temp = er32(PRC1023);
+	temp = er32(PRC1522);
+
+	temp = er32(GPRC);
+	temp = er32(BPRC);
+	temp = er32(MPRC);
+	temp = er32(GPTC);
+	temp = er32(GORCL);
+	temp = er32(GORCH);
+	temp = er32(GOTCL);
+	temp = er32(GOTCH);
+	temp = er32(RNBC);
+	temp = er32(RUC);
+	temp = er32(RFC);
+	temp = er32(ROC);
+	temp = er32(RJC);
+	temp = er32(TORL);
+	temp = er32(TORH);
+	temp = er32(TOTL);
+	temp = er32(TOTH);
+	temp = er32(TPR);
+	temp = er32(TPT);
+
+	temp = er32(PTC64);
+	temp = er32(PTC127);
+	temp = er32(PTC255);
+	temp = er32(PTC511);
+	temp = er32(PTC1023);
+	temp = er32(PTC1522);
+
+	temp = er32(MPTC);
+	temp = er32(BPTC);
+
+	if (hw->mac_type < e1000_82543)
+		return;
+
+	temp = er32(ALGNERRC);
+	temp = er32(RXERRC);
+	temp = er32(TNCRS);
+	temp = er32(CEXTERR);
+	temp = er32(TSCTC);
+	temp = er32(TSCTFC);
+
+	if (hw->mac_type <= e1000_82544)
+		return;
+
+	temp = er32(MGTPRC);
+	temp = er32(MGTPDC);
+	temp = er32(MGTPTC);
+}
+
+/**
+ * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to true. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ */
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+	e_dbg("e1000_reset_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if (!hw->ifs_params_forced) {
+			hw->current_ifs_val = 0;
+			hw->ifs_min_val = IFS_MIN;
+			hw->ifs_max_val = IFS_MAX;
+			hw->ifs_step_size = IFS_STEP;
+			hw->ifs_ratio = IFS_RATIO;
+		}
+		hw->in_ifs_mode = false;
+		ew32(AIT, 0);
+	} else {
+		e_dbg("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_update_adaptive - update adaptive IFS
+ * @hw: Struct containing variables accessed by shared code
+ * @tx_packets: Number of transmits since last callback
+ * @total_collisions: Number of collisions since last callback
+ *
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ */
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+	e_dbg("e1000_update_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
+			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+				hw->in_ifs_mode = true;
+				if (hw->current_ifs_val < hw->ifs_max_val) {
+					if (hw->current_ifs_val == 0)
+						hw->current_ifs_val =
+						    hw->ifs_min_val;
+					else
+						hw->current_ifs_val +=
+						    hw->ifs_step_size;
+					ew32(AIT, hw->current_ifs_val);
+				}
+			}
+		} else {
+			if (hw->in_ifs_mode
+			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+				hw->current_ifs_val = 0;
+				hw->in_ifs_mode = false;
+				ew32(AIT, 0);
+			}
+		}
+	} else {
+		e_dbg("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_tbi_adjust_stats
+ * @hw: Struct containing variables accessed by shared code
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ */
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 *mac_addr)
+{
+	u64 carry_bit;
+
+	/* First adjust the frame length. */
+	frame_len--;
+	/* We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error.    */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received.    */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters             */
+	carry_bit = 0x80000000 & stats->gorcl;
+	stats->gorcl += frame_len;
+	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
+	 * Received Count) was one before the addition,
+	 * AND it is zero after, then we lost the carry out,
+	 * need to add one to Gorch (Good Octets Received Count High).
+	 * This could be simplified if all environments supported
+	 * 64-bit integers.
+	 */
+	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+		stats->gorch++;
+	/* Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	if (frame_len == hw->max_frame_size) {
+		/* In this case, the hardware has overcounted the number of
+		 * oversize frames.
+		 */
+		if (stats->roc > 0)
+			stats->roc--;
+	}
+
+	/* Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
+}
+
+/**
+ * e1000_get_bus_info
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Gets the current PCI bus type, speed, and width of the hardware
+ */
+void e1000_get_bus_info(struct e1000_hw *hw)
+{
+	u32 status;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		hw->bus_type = e1000_bus_type_pci;
+		hw->bus_speed = e1000_bus_speed_unknown;
+		hw->bus_width = e1000_bus_width_unknown;
+		break;
+	default:
+		status = er32(STATUS);
+		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+		    e1000_bus_type_pcix : e1000_bus_type_pci;
+
+		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_120;
+		} else if (hw->bus_type == e1000_bus_type_pci) {
+			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_33;
+		} else {
+			switch (status & E1000_STATUS_PCIX_SPEED) {
+			case E1000_STATUS_PCIX_SPEED_66:
+				hw->bus_speed = e1000_bus_speed_66;
+				break;
+			case E1000_STATUS_PCIX_SPEED_100:
+				hw->bus_speed = e1000_bus_speed_100;
+				break;
+			case E1000_STATUS_PCIX_SPEED_133:
+				hw->bus_speed = e1000_bus_speed_133;
+				break;
+			default:
+				hw->bus_speed = e1000_bus_speed_reserved;
+				break;
+			}
+		}
+		hw->bus_width = (status & E1000_STATUS_BUS64) ?
+		    e1000_bus_width_64 : e1000_bus_width_32;
+		break;
+	}
+}
+
+/**
+ * e1000_write_reg_io
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset to write to
+ * @value: value to write
+ *
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ */
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	unsigned long io_addr = hw->io_base;
+	unsigned long io_data = hw->io_base + 4;
+
+	e1000_io_write(hw, io_addr, offset);
+	e1000_io_write(hw, io_data, value);
+}
+
+/**
+ * e1000_get_cable_length - Estimates the cable length.
+ * @hw: Struct containing variables accessed by shared code
+ * @min_length: The estimated minimum length
+ * @max_length: The estimated maximum length
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * This function always returns a ranged length (minimum & maximum).
+ * So for M88 phy's, this function interprets the one value returned from the
+ * register to the minimum and maximum range.
+ * For IGP phy's, the function calculates the range by the AGC registers.
+ */
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length)
+{
+	s32 ret_val;
+	u16 agc_value = 0;
+	u16 i, phy_data;
+	u16 cable_length;
+
+	e_dbg("e1000_get_cable_length");
+
+	*min_length = *max_length = 0;
+
+	/* Use old method for Phy older than IGP */
+	if (hw->phy_type == e1000_phy_m88) {
+
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+		/* Convert the enum value to ranged values */
+		switch (cable_length) {
+		case e1000_cable_length_50:
+			*min_length = 0;
+			*max_length = e1000_igp_cable_length_50;
+			break;
+		case e1000_cable_length_50_80:
+			*min_length = e1000_igp_cable_length_50;
+			*max_length = e1000_igp_cable_length_80;
+			break;
+		case e1000_cable_length_80_110:
+			*min_length = e1000_igp_cable_length_80;
+			*max_length = e1000_igp_cable_length_110;
+			break;
+		case e1000_cable_length_110_140:
+			*min_length = e1000_igp_cable_length_110;
+			*max_length = e1000_igp_cable_length_140;
+			break;
+		case e1000_cable_length_140:
+			*min_length = e1000_igp_cable_length_140;
+			*max_length = e1000_igp_cable_length_170;
+			break;
+		default:
+			return -E1000_ERR_PHY;
+			break;
+		}
+	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
+		u16 cur_agc_value;
+		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+		u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+		    { IGP01E1000_PHY_AGC_A,
+			IGP01E1000_PHY_AGC_B,
+			IGP01E1000_PHY_AGC_C,
+			IGP01E1000_PHY_AGC_D
+		};
+		/* Read the AGC registers for all channels */
+		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+			ret_val =
+			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+			/* Value bound check. */
+			if ((cur_agc_value >=
+			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
+			    || (cur_agc_value == 0))
+				return -E1000_ERR_PHY;
+
+			agc_value += cur_agc_value;
+
+			/* Update minimal AGC value. */
+			if (min_agc_value > cur_agc_value)
+				min_agc_value = cur_agc_value;
+		}
+
+		/* Remove the minimal AGC result for length < 50m */
+		if (agc_value <
+		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+			agc_value -= min_agc_value;
+
+			/* Get the average length of the remaining 3 channels */
+			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+		} else {
+			/* Get the average length of all the 4 channels. */
+			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+		}
+
+		/* Set the range of the calculated length. */
+		*min_length = ((e1000_igp_cable_length_table[agc_value] -
+				IGP01E1000_AGC_RANGE) > 0) ?
+		    (e1000_igp_cable_length_table[agc_value] -
+		     IGP01E1000_AGC_RANGE) : 0;
+		*max_length = e1000_igp_cable_length_table[agc_value] +
+		    IGP01E1000_AGC_RANGE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_polarity - Check the cable polarity
+ * @hw: Struct containing variables accessed by shared code
+ * @polarity: output parameter : 0 - Polarity is not reversed
+ *                               1 - Polarity is reversed.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function simply reads the polarity bit in the
+ * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
+ * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
+ * return 0.  If the link speed is 1000 Mbps the polarity status is in the
+ * IGP01E1000_PHY_PCS_INIT_REG.
+ */
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_check_polarity");
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* return the Polarity bit in the Status register. */
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+	} else if (hw->phy_type == e1000_phy_igp) {
+		/* Read the Status register to check the speed */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+		 * find the polarity status */
+		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+		    IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+			/* Read the GIG initialization PCS register (0x00B4) */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			/* Check the polarity bits */
+			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		} else {
+			/* For 10 Mbps, read the polarity bit in the status register. (for
+			 * 100 Mbps this bit is always 0) */
+			*polarity =
+			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_downshift - Check if Downshift occurred
+ * @hw: Struct containing variables accessed by shared code
+ * @downshift: output parameter : 0 - No Downshift occurred.
+ *                                1 - Downshift occurred.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function reads the Downshift bit in the Phy
+ * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
+ * Link Health register.  In IGP this bit is latched high, so the driver must
+ * read it immediately after link is established.
+ */
+static s32 e1000_check_downshift(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	e_dbg("e1000_check_downshift");
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded =
+		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_dsp_after_link_change
+ * @hw: Struct containing variables accessed by shared code
+ * @link_up: was link up at the time this was called
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ */
+
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
+{
+	s32 ret_val;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	    { IGP01E1000_PHY_AGC_PARAM_A,
+		IGP01E1000_PHY_AGC_PARAM_B,
+		IGP01E1000_PHY_AGC_PARAM_C,
+		IGP01E1000_PHY_AGC_PARAM_D
+	};
+	u16 min_length, max_length;
+
+	e_dbg("e1000_config_dsp_after_link_change");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	if (link_up) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			e_dbg("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+
+		if (speed == SPEED_1000) {
+
+			ret_val =
+			    e1000_get_cable_length(hw, &min_length,
+						   &max_length);
+			if (ret_val)
+				return ret_val;
+
+			if ((hw->dsp_config_state == e1000_dsp_config_enabled)
+			    && min_length >= e1000_igp_cable_length_50) {
+
+				for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       dsp_reg_array[i],
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					phy_data &=
+					    ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+					ret_val =
+					    e1000_write_phy_reg(hw,
+								dsp_reg_array
+								[i], phy_data);
+					if (ret_val)
+						return ret_val;
+				}
+				hw->dsp_config_state =
+				    e1000_dsp_config_activated;
+			}
+
+			if ((hw->ffe_config_state == e1000_ffe_config_enabled)
+			    && (min_length < e1000_igp_cable_length_50)) {
+
+				u16 ffe_idle_err_timeout =
+				    FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+				u32 idle_errs = 0;
+
+				/* clear previous idle error counts */
+				ret_val =
+				    e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				for (i = 0; i < ffe_idle_err_timeout; i++) {
+					udelay(1000);
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       PHY_1000T_STATUS,
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					idle_errs +=
+					    (phy_data &
+					     SR_1000T_IDLE_ERROR_CNT);
+					if (idle_errs >
+					    SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
+					{
+						hw->ffe_config_state =
+						    e1000_ffe_config_active;
+
+						ret_val =
+						    e1000_write_phy_reg(hw,
+									IGP01E1000_PHY_DSP_FFE,
+									IGP01E1000_PHY_DSP_FFE_CM_CP);
+						if (ret_val)
+							return ret_val;
+						break;
+					}
+
+					if (idle_errs)
+						ffe_idle_err_timeout =
+						    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+				}
+			}
+		}
+	} else {
+		if (hw->dsp_config_state == e1000_dsp_config_activated) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val =
+				    e1000_read_phy_reg(hw, dsp_reg_array[i],
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val =
+				    e1000_write_phy_reg(hw, dsp_reg_array[i],
+							phy_data);
+				if (ret_val)
+					return ret_val;
+			}
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+		}
+
+		if (hw->ffe_config_state == e1000_ffe_config_active) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+						IGP01E1000_PHY_DSP_FFE_DEFAULT);
+			if (ret_val)
+				return ret_val;
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_phy_mode - Set PHY to class A mode
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ */
+static s32 e1000_set_phy_mode(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 eeprom_data;
+
+	e_dbg("e1000_set_phy_mode");
+
+	if ((hw->mac_type == e1000_82545_rev_3) &&
+	    (hw->media_type == e1000_media_type_copper)) {
+		ret_val =
+		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
+				      &eeprom_data);
+		if (ret_val) {
+			return ret_val;
+		}
+
+		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+						0x000B);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
+						0x8104);
+			if (ret_val)
+				return ret_val;
+
+			hw->phy_reset_disable = false;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - set d3 link power state
+ * @hw: Struct containing variables accessed by shared code
+ * @active: true to enable lplu false to disable lplu.
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisement
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val;
+	u16 phy_data;
+	e_dbg("e1000_set_d3_lplu_state");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	/* During driver activity LPLU should not be used or it will attain link
+	 * from the lowest speeds starting from 10Mbps. The capability is used for
+	 * Dx transitions and states */
+	if (hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2) {
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (!active) {
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+		 * Dx states where the power conservation is most important.  During
+		 * driver activity we should enable SmartSpeed, so performance is
+		 * maintained. */
+		if (hw->smart_speed == e1000_smart_speed_on) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		} else if (hw->smart_speed == e1000_smart_speed_off) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
+		   || (hw->autoneg_advertised ==
+		       AUTONEG_ADVERTISE_10_100_ALL)) {
+
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data |= IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* When LPLU is enabled we should disable SmartSpeed */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_vco_speed
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ */
+static s32 e1000_set_vco_speed(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 default_page = 0;
+	u16 phy_data;
+
+	e_dbg("e1000_set_vco_speed");
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	/* Set PHY register 30, page 5, bit 8 to 0 */
+
+	ret_val =
+	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val =
+	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+
+/**
+ * e1000_enable_mng_pass_thru - check for bmc pass through
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Verifies the hardware needs to allow ARPs to be processed by the host
+ * returns: - true/false
+ */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	if (hw->asf_firmware_present) {
+		manc = er32(MANC);
+
+		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+			return false;
+		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+			return true;
+	}
+	return false;
+}
+
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 i;
+
+	/* Polarity reversal workaround for forced 10F/10H links. */
+
+	/* Disable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the NO link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+			break;
+		mdelay(100);
+	}
+
+	/* Recommended delay time after link has been lost */
+	mdelay(1000);
+
+	/* Now we will re-enable th transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be set.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_LINK_STATUS)
+			break;
+		mdelay(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_auto_rd_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Check for EEPROM Auto Read bit done.
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+{
+	e_dbg("e1000_get_auto_rd_done");
+	msleep(5);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_cfg_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks if the PHY configuration is done
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	e_dbg("e1000_get_phy_cfg_done");
+	mdelay(10);
+	return E1000_SUCCESS;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.35-orig.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3049 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+
+
+/* Forward declarations of structures used by the shared code */
+struct e1000_hw;
+struct e1000_hw_stats;
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+	e1000_undefined = 0,
+	e1000_82542_rev2_0,
+	e1000_82542_rev2_1,
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_num_macs
+} e1000_mac_type;
+
+typedef enum {
+	e1000_eeprom_uninitialized = 0,
+	e1000_eeprom_spi,
+	e1000_eeprom_microwire,
+	e1000_eeprom_flash,
+	e1000_eeprom_none,	/* No NVM support */
+	e1000_num_eeprom_types
+} e1000_eeprom_type;
+
+/* Media Types */
+typedef enum {
+	e1000_media_type_copper = 0,
+	e1000_media_type_fiber = 1,
+	e1000_media_type_internal_serdes = 2,
+	e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+	e1000_10_half = 0,
+	e1000_10_full = 1,
+	e1000_100_half = 2,
+	e1000_100_full = 3
+} e1000_speed_duplex_type;
+
+/* Flow Control Settings */
+typedef enum {
+	E1000_FC_NONE = 0,
+	E1000_FC_RX_PAUSE = 1,
+	E1000_FC_TX_PAUSE = 2,
+	E1000_FC_FULL = 3,
+	E1000_FC_DEFAULT = 0xFF
+} e1000_fc_type;
+
+struct e1000_shadow_ram {
+	u16 eeprom_word;
+	bool modified;
+};
+
+/* PCI bus types */
+typedef enum {
+	e1000_bus_type_unknown = 0,
+	e1000_bus_type_pci,
+	e1000_bus_type_pcix,
+	e1000_bus_type_reserved
+} e1000_bus_type;
+
+/* PCI bus speeds */
+typedef enum {
+	e1000_bus_speed_unknown = 0,
+	e1000_bus_speed_33,
+	e1000_bus_speed_66,
+	e1000_bus_speed_100,
+	e1000_bus_speed_120,
+	e1000_bus_speed_133,
+	e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+/* PCI bus widths */
+typedef enum {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+} e1000_bus_width;
+
+/* PHY status info structure and supporting enums */
+typedef enum {
+	e1000_cable_length_50 = 0,
+	e1000_cable_length_50_80,
+	e1000_cable_length_80_110,
+	e1000_cable_length_110_140,
+	e1000_cable_length_140,
+	e1000_cable_length_undefined = 0xFF
+} e1000_cable_length;
+
+typedef enum {
+	e1000_gg_cable_length_60 = 0,
+	e1000_gg_cable_length_60_115 = 1,
+	e1000_gg_cable_length_115_150 = 2,
+	e1000_gg_cable_length_150 = 4
+} e1000_gg_cable_length;
+
+typedef enum {
+	e1000_igp_cable_length_10 = 10,
+	e1000_igp_cable_length_20 = 20,
+	e1000_igp_cable_length_30 = 30,
+	e1000_igp_cable_length_40 = 40,
+	e1000_igp_cable_length_50 = 50,
+	e1000_igp_cable_length_60 = 60,
+	e1000_igp_cable_length_70 = 70,
+	e1000_igp_cable_length_80 = 80,
+	e1000_igp_cable_length_90 = 90,
+	e1000_igp_cable_length_100 = 100,
+	e1000_igp_cable_length_110 = 110,
+	e1000_igp_cable_length_115 = 115,
+	e1000_igp_cable_length_120 = 120,
+	e1000_igp_cable_length_130 = 130,
+	e1000_igp_cable_length_140 = 140,
+	e1000_igp_cable_length_150 = 150,
+	e1000_igp_cable_length_160 = 160,
+	e1000_igp_cable_length_170 = 170,
+	e1000_igp_cable_length_180 = 180
+} e1000_igp_cable_length;
+
+typedef enum {
+	e1000_10bt_ext_dist_enable_normal = 0,
+	e1000_10bt_ext_dist_enable_lower,
+	e1000_10bt_ext_dist_enable_undefined = 0xFF
+} e1000_10bt_ext_dist_enable;
+
+typedef enum {
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+	e1000_downshift_normal = 0,
+	e1000_downshift_activated,
+	e1000_downshift_undefined = 0xFF
+} e1000_downshift;
+
+typedef enum {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+} e1000_smart_speed;
+
+typedef enum {
+	e1000_polarity_reversal_enabled = 0,
+	e1000_polarity_reversal_disabled,
+	e1000_polarity_reversal_undefined = 0xFF
+} e1000_polarity_reversal;
+
+typedef enum {
+	e1000_auto_x_mode_manual_mdi = 0,
+	e1000_auto_x_mode_manual_mdix,
+	e1000_auto_x_mode_auto1,
+	e1000_auto_x_mode_auto2,
+	e1000_auto_x_mode_undefined = 0xFF
+} e1000_auto_x_mode;
+
+typedef enum {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+    e1000_phy_m88 = 0,
+    e1000_phy_igp,
+    e1000_phy_undefined = 0xFF
+} e1000_phy_type;
+
+typedef enum {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+	e1000_ffe_config_enabled = 0,
+	e1000_ffe_config_active,
+	e1000_ffe_config_blocked
+} e1000_ffe_config;
+
+typedef enum {
+	e1000_dsp_config_disabled = 0,
+	e1000_dsp_config_enabled,
+	e1000_dsp_config_activated,
+	e1000_dsp_config_undefined = 0xFF
+} e1000_dsp_config;
+
+struct e1000_phy_info {
+	e1000_cable_length cable_length;
+	e1000_10bt_ext_dist_enable extended_10bt_distance;
+	e1000_rev_polarity cable_polarity;
+	e1000_downshift downshift;
+	e1000_polarity_reversal polarity_correction;
+	e1000_auto_x_mode mdix_mode;
+	e1000_1000t_rx_status local_rx;
+	e1000_1000t_rx_status remote_rx;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_eeprom_info {
+	e1000_eeprom_type type;
+	u16 word_size;
+	u16 opcode_bits;
+	u16 address_bits;
+	u16 delay_usec;
+	u16 page_size;
+};
+
+/* Flex ASF Information */
+#define E1000_HOST_IF_MAX_SIZE  2048
+
+typedef enum {
+	e1000_byte_align = 0,
+	e1000_word_align = 1,
+	e1000_dword_align = 2
+} e1000_align_type;
+
+/* Error Codes */
+#define E1000_SUCCESS      0
+#define E1000_ERR_EEPROM   1
+#define E1000_ERR_PHY      2
+#define E1000_ERR_CONFIG   3
+#define E1000_ERR_PARAM    4
+#define E1000_ERR_MAC_TYPE 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET   9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET   12
+
+#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \
+                                     (((_value) & 0xff00) >> 8))
+
+/* Function prototypes */
+/* Initialization */
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+void e1000_set_media_type(struct e1000_hw *hw);
+
+/* Link Configuration */
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+
+/* PHY */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_reset(struct e1000_hw *hw);
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+
+/* EEPROM Functions */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw);
+
+/* MNG HOST IF functions */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD   64
+#define E1000_HI_MAX_MNG_DATA_LENGTH    0x6F8	/* Host Interface data length */
+
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT  10	/* Time in ms to process MNG command */
+#define E1000_MNG_DHCP_COOKIE_OFFSET    0x6F0	/* Cookie offset */
+#define E1000_MNG_DHCP_COOKIE_LENGTH    0x10	/* Cookie length */
+#define E1000_MNG_IAMT_MODE             0x3
+#define E1000_MNG_ICH_IAMT_MODE         0x2
+#define E1000_IAMT_SIGNATURE            0x544D4149	/* Intel(R) Active Management Technology signature */
+
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1	/* DHCP parsing enabled */
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT    0x2	/* DHCP parsing enabled */
+#define E1000_VFTA_ENTRY_SHIFT                       0x5
+#define E1000_VFTA_ENTRY_MASK                        0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK              0x1F
+
+struct e1000_host_mng_command_header {
+	u8 command_id;
+	u8 checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];	/* Command data can length 0..0x658 */
+};
+#ifdef __BIG_ENDIAN
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u16 vlan_id;
+	u8 reserved0;
+	u8 status;
+	u32 reserved1;
+	u8 checksum;
+	u8 reserved3;
+	u16 reserved2;
+};
+#else
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8 status;
+	u8 reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8 reserved3;
+	u8 checksum;
+};
+#endif
+
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+
+/* Filters (multicast, vlan, receive) */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+void e1000_rar_set(struct e1000_hw *hw, u8 * mc_addr, u32 rar_index);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+
+/* LED functions */
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_blink_led_start(struct e1000_hw *hw);
+
+/* Adaptive IFS Functions */
+
+/* Everything else */
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 * mac_addr);
+void e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc);
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw);
+/* Port I/O is only supported on 82544 and newer */
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value);
+
+#define E1000_READ_REG_IO(a, reg) \
+    e1000_read_reg_io((a), E1000_##reg)
+#define E1000_WRITE_REG_IO(a, reg, val) \
+    e1000_write_reg_io((a), E1000_##reg, val)
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542               0x1000
+#define E1000_DEV_ID_82543GC_FIBER       0x1001
+#define E1000_DEV_ID_82543GC_COPPER      0x1004
+#define E1000_DEV_ID_82544EI_COPPER      0x1008
+#define E1000_DEV_ID_82544EI_FIBER       0x1009
+#define E1000_DEV_ID_82544GC_COPPER      0x100C
+#define E1000_DEV_ID_82544GC_LOM         0x100D
+#define E1000_DEV_ID_82540EM             0x100E
+#define E1000_DEV_ID_82540EM_LOM         0x1015
+#define E1000_DEV_ID_82540EP_LOM         0x1016
+#define E1000_DEV_ID_82540EP             0x1017
+#define E1000_DEV_ID_82540EP_LP          0x101E
+#define E1000_DEV_ID_82545EM_COPPER      0x100F
+#define E1000_DEV_ID_82545EM_FIBER       0x1011
+#define E1000_DEV_ID_82545GM_COPPER      0x1026
+#define E1000_DEV_ID_82545GM_FIBER       0x1027
+#define E1000_DEV_ID_82545GM_SERDES      0x1028
+#define E1000_DEV_ID_82546EB_COPPER      0x1010
+#define E1000_DEV_ID_82546EB_FIBER       0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82541EI             0x1013
+#define E1000_DEV_ID_82541EI_MOBILE      0x1018
+#define E1000_DEV_ID_82541ER_LOM         0x1014
+#define E1000_DEV_ID_82541ER             0x1078
+#define E1000_DEV_ID_82547GI             0x1075
+#define E1000_DEV_ID_82541GI             0x1076
+#define E1000_DEV_ID_82541GI_MOBILE      0x1077
+#define E1000_DEV_ID_82541GI_LF          0x107C
+#define E1000_DEV_ID_82546GB_COPPER      0x1079
+#define E1000_DEV_ID_82546GB_FIBER       0x107A
+#define E1000_DEV_ID_82546GB_SERDES      0x107B
+#define E1000_DEV_ID_82546GB_PCIE        0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82547EI             0x1019
+#define E1000_DEV_ID_82547EI_MOBILE      0x101A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+
+#define NODE_ADDRESS_SIZE 6
+#define ETH_LENGTH_OF_ADDRESS 6
+
+/* MAC decode size is 128K - This is the size of BAR0 */
+#define MAC_DECODE_SIZE (128 * 1024)
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+#define E1000_REVISION_0       0
+#define E1000_REVISION_1       1
+#define E1000_REVISION_2       2
+#define E1000_REVISION_3       3
+
+#define SPEED_10    10
+#define SPEED_100   100
+#define SPEED_1000  1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The sizes (in bytes) of a ethernet packet */
+#define ENET_HEADER_SIZE             14
+#define MINIMUM_ETHERNET_FRAME_SIZE  64	/* With FCS */
+#define ETHERNET_FCS_SIZE            4
+#define MINIMUM_ETHERNET_PACKET_SIZE \
+    (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define CRC_LENGTH                   ETHERNET_FCS_SIZE
+#define MAX_JUMBO_FRAME_SIZE         0x3F00
+
+/* 802.1q VLAN Packet Sizes */
+#define VLAN_TAG_SIZE  4	/* 802.3ac tag (not DMAed) */
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100	/* 802.3ac packet */
+#define ETHERNET_IP_TYPE        0x0800	/* IP packets */
+#define ETHERNET_ARP_TYPE       0x0806	/* Address Resolution Protocol (ARP) */
+
+/* Packet Header defines */
+#define IP_PROTOCOL_TCP    6
+#define IP_PROTOCOL_UDP    0x11
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+    E1000_IMS_RXDMT0 |         \
+    E1000_IMS_RXSEQ)
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   |    \
+    E1000_IMS_TXDW   |    \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ  |    \
+    E1000_IMS_LSC)
+
+/* Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+
+#define MIN_NUMBER_OF_DESCRIPTORS  8
+#define MAX_NUMBER_OF_DESCRIPTORS  0xFFF8
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	__le16 length;		/* Length of data DMAed into data buffer */
+	__le16 csum;		/* Packet checksum */
+	u8 status;		/* Descriptor status */
+	u8 errors;		/* Descriptor Errors */
+	__le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		__le64 buffer_addr;
+		__le64 reserved;
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length;
+			__le16 vlan;	/* VLAN tag */
+		} upper;
+	} wb;			/* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		__le64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length0;	/* length of buffer 0 */
+			__le16 vlan;	/* VLAN tag */
+		} middle;
+		struct {
+			__le16 header_status;
+			__le16 length[3];	/* length of buffers 1-3 */
+		} upper;
+		__le64 reserved;
+	} wb;			/* writeback */
+};
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD       0x01	/* Descriptor Done */
+#define E1000_RXD_STAT_EOP      0x02	/* End of Packet */
+#define E1000_RXD_STAT_IXSM     0x04	/* Ignore checksum */
+#define E1000_RXD_STAT_VP       0x08	/* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS    0x10	/* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS    0x20	/* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS     0x40	/* IP xsum calculated */
+#define E1000_RXD_STAT_PIF      0x80	/* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV    0x200	/* IP identification valid */
+#define E1000_RXD_STAT_UDPV     0x400	/* Valid UDP checksum */
+#define E1000_RXD_STAT_ACK      0x8000	/* ACK Packet indication */
+#define E1000_RXD_ERR_CE        0x01	/* CRC Error */
+#define E1000_RXD_ERR_SE        0x02	/* Symbol Error */
+#define E1000_RXD_ERR_SEQ       0x04	/* Sequence Error */
+#define E1000_RXD_ERR_CXE       0x10	/* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE      0x20	/* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE       0x40	/* IP Checksum Error */
+#define E1000_RXD_ERR_RXE       0x80	/* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF	/* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK  0xE000	/* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK  0x1000	/* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE    0x01000000
+#define E1000_RXDEXT_STATERR_SE    0x02000000
+#define E1000_RXDEXT_STATERR_SEQ   0x04000000
+#define E1000_RXDEXT_STATERR_CXE   0x10000000
+#define E1000_RXDEXT_STATERR_TCPE  0x20000000
+#define E1000_RXDEXT_STATERR_IPE   0x40000000
+#define E1000_RXDEXT_STATERR_RXE   0x80000000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP        0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK  0x000003FF
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |                \
+    E1000_RXD_ERR_SE  |                \
+    E1000_RXD_ERR_SEQ |                \
+    E1000_RXD_ERR_CXE |                \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  |            \
+    E1000_RXDEXT_STATERR_SE  |            \
+    E1000_RXDEXT_STATERR_SEQ |            \
+    E1000_RXDEXT_STATERR_CXE |            \
+    E1000_RXDEXT_STATERR_RXE)
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 cso;	/* Checksum offset */
+			u8 cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 css;	/* Checksum start */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000	/* Data Descriptor */
+#define E1000_TXD_DTYP_C     0x00000000	/* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01	/* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02	/* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000	/* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000	/* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000	/* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000	/* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000	/* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000	/* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000	/* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000	/* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001	/* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002	/* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004	/* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008	/* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000	/* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000	/* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000	/* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004	/* Tx Underrun */
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		__le32 ip_config;
+		struct {
+			u8 ipcss;	/* IP checksum start */
+			u8 ipcso;	/* IP checksum offset */
+			__le16 ipcse;	/* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		__le32 tcp_config;
+		struct {
+			u8 tucss;	/* TCP checksum start */
+			u8 tucso;	/* TCP checksum offset */
+			__le16 tucse;	/* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	__le32 cmd_and_length;	/* */
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 hdr_len;	/* Header length */
+			__le16 mss;	/* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's buffer address */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 typ_len_ext;	/* */
+			u8 cmd;	/* */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 popts;	/* Packet Options */
+			__le16 special;	/* */
+		} fields;
+	} upper;
+};
+
+/* Filters */
+#define E1000_NUM_UNICAST          16	/* Unicast filter entries */
+#define E1000_MC_TBL_SIZE          128	/* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128	/* VLAN Filter Table (4096 bits) */
+
+/* Receive Address Register */
+struct e1000_rar {
+	volatile __le32 low;	/* receive address low */
+	volatile __le32 high;	/* receive address high */
+};
+
+/* Number of entries in the Multicast Table Array (MTA). */
+#define E1000_NUM_MTA_REGISTERS 128
+
+/* IPv4 Address Table Entry */
+struct e1000_ipv4_at_entry {
+	volatile u32 ipv4_addr;	/* IP Address (RW) */
+	volatile u32 reserved;
+};
+
+/* Four wakeup IP addresses are supported */
+#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
+#define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP6AT_SIZE                  1
+
+/* IPv6 Address Table Entry */
+struct e1000_ipv6_at_entry {
+	volatile u8 ipv6_addr[16];
+};
+
+/* Flexible Filter Length Table Entry */
+struct e1000_fflt_entry {
+	volatile u32 length;	/* Flexible Filter Length (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Mask Table Entry */
+struct e1000_ffmt_entry {
+	volatile u32 mask;	/* Flexible Filter Mask (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Value Table Entry */
+struct e1000_ffvt_entry {
+	volatile u32 value;	/* Flexible Filter Value (RW) */
+	volatile u32 reserved;
+};
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+#define E1000_DISABLE_SERDES_LOOPBACK   0x0400
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and  should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL     0x00000	/* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004	/* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS   0x00008	/* Device Status - RO */
+#define E1000_EECD     0x00010	/* EEPROM/Flash Control - RW */
+#define E1000_EERD     0x00014	/* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018	/* Extended Device Control - RW */
+#define E1000_FLA      0x0001C	/* Flash Access - RW */
+#define E1000_MDIC     0x00020	/* MDI Control - RW */
+#define E1000_SCTL     0x00024	/* SerDes Control - RW */
+#define E1000_FEXTNVM  0x00028	/* Future Extended NVM register */
+#define E1000_FCAL     0x00028	/* Flow Control Address Low - RW */
+#define E1000_FCAH     0x0002C	/* Flow Control Address High -RW */
+#define E1000_FCT      0x00030	/* Flow Control Type - RW */
+#define E1000_VET      0x00038	/* VLAN Ether Type - RW */
+#define E1000_ICR      0x000C0	/* Interrupt Cause Read - R/clr */
+#define E1000_ITR      0x000C4	/* Interrupt Throttling Rate - RW */
+#define E1000_ICS      0x000C8	/* Interrupt Cause Set - WO */
+#define E1000_IMS      0x000D0	/* Interrupt Mask Set - RW */
+#define E1000_IMC      0x000D8	/* Interrupt Mask Clear - WO */
+#define E1000_IAM      0x000E0	/* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL     0x00100	/* RX Control - RW */
+#define E1000_RDTR1    0x02820	/* RX Delay Timer (1) - RW */
+#define E1000_RDBAL1   0x02900	/* RX Descriptor Base Address Low (1) - RW */
+#define E1000_RDBAH1   0x02904	/* RX Descriptor Base Address High (1) - RW */
+#define E1000_RDLEN1   0x02908	/* RX Descriptor Length (1) - RW */
+#define E1000_RDH1     0x02910	/* RX Descriptor Head (1) - RW */
+#define E1000_RDT1     0x02918	/* RX Descriptor Tail (1) - RW */
+#define E1000_FCTTV    0x00170	/* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW     0x00178	/* TX Configuration Word - RW */
+#define E1000_RXCW     0x00180	/* RX Configuration Word - RO */
+#define E1000_TCTL     0x00400	/* TX Control - RW */
+#define E1000_TCTL_EXT 0x00404	/* Extended TX Control - RW */
+#define E1000_TIPG     0x00410	/* TX Inter-packet gap -RW */
+#define E1000_TBT      0x00448	/* TX Burst Timer - RW */
+#define E1000_AIT      0x00458	/* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL   0x00E00	/* LED Control - RW */
+#define E1000_EXTCNF_CTRL  0x00F00	/* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE  0x00F08	/* Extended Configuration Size */
+#define E1000_PHY_CTRL     0x00F10	/* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG  0x0001
+#define E1000_PBA      0x01000	/* Packet Buffer Allocation - RW */
+#define E1000_PBS      0x01008	/* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010	/* MNG EEprom Control */
+#define E1000_FLASH_UPDATES 1000
+#define E1000_EEARBC   0x01024	/* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT   0x01028	/* FLASH Timer Register */
+#define E1000_EEWR     0x0102C	/* EEPROM Write Register - RW */
+#define E1000_FLSWCTL  0x01030	/* FLASH control register */
+#define E1000_FLSWDATA 0x01034	/* FLASH data register */
+#define E1000_FLSWCNT  0x01038	/* FLASH Access Counter */
+#define E1000_FLOP     0x0103C	/* FLASH Opcode Register */
+#define E1000_ERT      0x02008	/* Early Rx Threshold - RW */
+#define E1000_FCRTL    0x02160	/* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH    0x02168	/* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL   0x02170	/* Packet Split Receive Control - RW */
+#define E1000_RDBAL    0x02800	/* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH    0x02804	/* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN    0x02808	/* RX Descriptor Length - RW */
+#define E1000_RDH      0x02810	/* RX Descriptor Head - RW */
+#define E1000_RDT      0x02818	/* RX Descriptor Tail - RW */
+#define E1000_RDTR     0x02820	/* RX Delay Timer - RW */
+#define E1000_RDBAL0   E1000_RDBAL	/* RX Desc Base Address Low (0) - RW */
+#define E1000_RDBAH0   E1000_RDBAH	/* RX Desc Base Address High (0) - RW */
+#define E1000_RDLEN0   E1000_RDLEN	/* RX Desc Length (0) - RW */
+#define E1000_RDH0     E1000_RDH	/* RX Desc Head (0) - RW */
+#define E1000_RDT0     E1000_RDT	/* RX Desc Tail (0) - RW */
+#define E1000_RDTR0    E1000_RDTR	/* RX Delay Timer (0) - RW */
+#define E1000_RXDCTL   0x02828	/* RX Descriptor Control queue 0 - RW */
+#define E1000_RXDCTL1  0x02928	/* RX Descriptor Control queue 1 - RW */
+#define E1000_RADV     0x0282C	/* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD    0x02C00	/* RX Small Packet Detect - RW */
+#define E1000_RAID     0x02C08	/* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC   0x03000	/* TX DMA Control - RW */
+#define E1000_KABGTXD  0x03004	/* AFE Band Gap Transmit Ref Data */
+#define E1000_TDFH     0x03410	/* TX Data FIFO Head - RW */
+#define E1000_TDFT     0x03418	/* TX Data FIFO Tail - RW */
+#define E1000_TDFHS    0x03420	/* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS    0x03428	/* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC    0x03430	/* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL    0x03800	/* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH    0x03804	/* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN    0x03808	/* TX Descriptor Length - RW */
+#define E1000_TDH      0x03810	/* TX Descriptor Head - RW */
+#define E1000_TDT      0x03818	/* TX Descripotr Tail - RW */
+#define E1000_TIDV     0x03820	/* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL   0x03828	/* TX Descriptor Control - RW */
+#define E1000_TADV     0x0382C	/* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT    0x03830	/* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0    0x03840	/* TX Arbitration Count (0) */
+#define E1000_TDBAL1   0x03900	/* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1   0x03904	/* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1   0x03908	/* TX Desc Length (1) - RW */
+#define E1000_TDH1     0x03910	/* TX Desc Head (1) - RW */
+#define E1000_TDT1     0x03918	/* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1  0x03928	/* TX Descriptor Control (1) - RW */
+#define E1000_TARC1    0x03940	/* TX Arbitration Count (1) */
+#define E1000_CRCERRS  0x04000	/* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004	/* Alignment Error Count - R/clr */
+#define E1000_SYMERRS  0x04008	/* Symbol Error Count - R/clr */
+#define E1000_RXERRC   0x0400C	/* Receive Error Count - R/clr */
+#define E1000_MPC      0x04010	/* Missed Packet Count - R/clr */
+#define E1000_SCC      0x04014	/* Single Collision Count - R/clr */
+#define E1000_ECOL     0x04018	/* Excessive Collision Count - R/clr */
+#define E1000_MCC      0x0401C	/* Multiple Collision Count - R/clr */
+#define E1000_LATECOL  0x04020	/* Late Collision Count - R/clr */
+#define E1000_COLC     0x04028	/* Collision Count - R/clr */
+#define E1000_DC       0x04030	/* Defer Count - R/clr */
+#define E1000_TNCRS    0x04034	/* TX-No CRS - R/clr */
+#define E1000_SEC      0x04038	/* Sequence Error Count - R/clr */
+#define E1000_CEXTERR  0x0403C	/* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC     0x04040	/* Receive Length Error Count - R/clr */
+#define E1000_XONRXC   0x04048	/* XON RX Count - R/clr */
+#define E1000_XONTXC   0x0404C	/* XON TX Count - R/clr */
+#define E1000_XOFFRXC  0x04050	/* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC  0x04054	/* XOFF TX Count - R/clr */
+#define E1000_FCRUC    0x04058	/* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64    0x0405C	/* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127   0x04060	/* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255   0x04064	/* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511   0x04068	/* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023  0x0406C	/* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522  0x04070	/* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC     0x04074	/* Good Packets RX Count - R/clr */
+#define E1000_BPRC     0x04078	/* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC     0x0407C	/* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC     0x04080	/* Good Packets TX Count - R/clr */
+#define E1000_GORCL    0x04088	/* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH    0x0408C	/* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL    0x04090	/* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH    0x04094	/* Good Octets TX Count High - R/clr */
+#define E1000_RNBC     0x040A0	/* RX No Buffers Count - R/clr */
+#define E1000_RUC      0x040A4	/* RX Undersize Count - R/clr */
+#define E1000_RFC      0x040A8	/* RX Fragment Count - R/clr */
+#define E1000_ROC      0x040AC	/* RX Oversize Count - R/clr */
+#define E1000_RJC      0x040B0	/* RX Jabber Count - R/clr */
+#define E1000_MGTPRC   0x040B4	/* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC   0x040B8	/* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC   0x040BC	/* Management Packets TX Count - R/clr */
+#define E1000_TORL     0x040C0	/* Total Octets RX Low - R/clr */
+#define E1000_TORH     0x040C4	/* Total Octets RX High - R/clr */
+#define E1000_TOTL     0x040C8	/* Total Octets TX Low - R/clr */
+#define E1000_TOTH     0x040CC	/* Total Octets TX High - R/clr */
+#define E1000_TPR      0x040D0	/* Total Packets RX - R/clr */
+#define E1000_TPT      0x040D4	/* Total Packets TX - R/clr */
+#define E1000_PTC64    0x040D8	/* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127   0x040DC	/* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255   0x040E0	/* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511   0x040E4	/* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023  0x040E8	/* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522  0x040EC	/* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC     0x040F0	/* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC     0x040F4	/* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC    0x040F8	/* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC   0x040FC	/* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_IAC      0x04100	/* Interrupt Assertion Count */
+#define E1000_ICRXPTC  0x04104	/* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC  0x04108	/* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC  0x0410C	/* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC  0x04110	/* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC  0x04118	/* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C	/* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120	/* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC   0x04124	/* Interrupt Cause Receiver Overrun Count */
+#define E1000_RXCSUM   0x05000	/* RX Checksum Control - RW */
+#define E1000_RFCTL    0x05008	/* Receive Filter Control */
+#define E1000_MTA      0x05200	/* Multicast Table Array - RW Array */
+#define E1000_RA       0x05400	/* Receive Address - RW Array */
+#define E1000_VFTA     0x05600	/* VLAN Filter Table Array - RW Array */
+#define E1000_WUC      0x05800	/* Wakeup Control - RW */
+#define E1000_WUFC     0x05808	/* Wakeup Filter Control - RW */
+#define E1000_WUS      0x05810	/* Wakeup Status - RO */
+#define E1000_MANC     0x05820	/* Management Control - RW */
+#define E1000_IPAV     0x05838	/* IP Address Valid - RW */
+#define E1000_IP4AT    0x05840	/* IPv4 Address Table - RW Array */
+#define E1000_IP6AT    0x05880	/* IPv6 Address Table - RW Array */
+#define E1000_WUPL     0x05900	/* Wakeup Packet Length - RW */
+#define E1000_WUPM     0x05A00	/* Wakeup Packet Memory - RO A */
+#define E1000_FFLT     0x05F00	/* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF  0x08800	/* Host Interface */
+#define E1000_FFMT     0x09000	/* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT     0x09800	/* Flexible Filter Value Table - RW Array */
+
+#define E1000_KUMCTRLSTA 0x00034	/* MAC-PHY interface - RW */
+#define E1000_MDPHYA     0x0003C	/* PHY address - RW */
+#define E1000_MANC2H     0x05860	/* Managment Control To Host - RW */
+#define E1000_SW_FW_SYNC 0x05B5C	/* Software-Firmware Synchronization - RW */
+
+#define E1000_GCR       0x05B00	/* PCI-Ex Control */
+#define E1000_GSCL_1    0x05B10	/* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2    0x05B14	/* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3    0x05B18	/* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4    0x05B1C	/* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS    0x05B30	/* Function Active and Power State to MNG */
+#define E1000_SWSM      0x05B50	/* SW Semaphore */
+#define E1000_FWSM      0x05B54	/* FW Semaphore */
+#define E1000_FFLT_DBG  0x05F04	/* Debug Register */
+#define E1000_HICR      0x08F00	/* Host Interface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC    0x02C10	/* CPU Vector Register - RW */
+#define E1000_MRQC      0x05818	/* Multiple Receive Control - RW */
+#define E1000_RETA      0x05C00	/* Redirection Table - RW Array */
+#define E1000_RSSRK     0x05C80	/* RSS Random Key - RW Array */
+#define E1000_RSSIM     0x05864	/* RSS Interrupt Mask */
+#define E1000_RSSIR     0x05868	/* RSS Interrupt Request */
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL     E1000_CTRL
+#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
+#define E1000_82542_STATUS   E1000_STATUS
+#define E1000_82542_EECD     E1000_EECD
+#define E1000_82542_EERD     E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_FLA      E1000_FLA
+#define E1000_82542_MDIC     E1000_MDIC
+#define E1000_82542_SCTL     E1000_SCTL
+#define E1000_82542_FEXTNVM  E1000_FEXTNVM
+#define E1000_82542_FCAL     E1000_FCAL
+#define E1000_82542_FCAH     E1000_FCAH
+#define E1000_82542_FCT      E1000_FCT
+#define E1000_82542_VET      E1000_VET
+#define E1000_82542_RA       0x00040
+#define E1000_82542_ICR      E1000_ICR
+#define E1000_82542_ITR      E1000_ITR
+#define E1000_82542_ICS      E1000_ICS
+#define E1000_82542_IMS      E1000_IMS
+#define E1000_82542_IMC      E1000_IMC
+#define E1000_82542_RCTL     E1000_RCTL
+#define E1000_82542_RDTR     0x00108
+#define E1000_82542_RDBAL    0x00110
+#define E1000_82542_RDBAH    0x00114
+#define E1000_82542_RDLEN    0x00118
+#define E1000_82542_RDH      0x00120
+#define E1000_82542_RDT      0x00128
+#define E1000_82542_RDTR0    E1000_82542_RDTR
+#define E1000_82542_RDBAL0   E1000_82542_RDBAL
+#define E1000_82542_RDBAH0   E1000_82542_RDBAH
+#define E1000_82542_RDLEN0   E1000_82542_RDLEN
+#define E1000_82542_RDH0     E1000_82542_RDH
+#define E1000_82542_RDT0     E1000_82542_RDT
+#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8))	/* Split and Replication
+							 * RX Control - RW */
+#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
+#define E1000_82542_RDBAH3   0x02B04	/* RX Desc Base High Queue 3 - RW */
+#define E1000_82542_RDBAL3   0x02B00	/* RX Desc Low Queue 3 - RW */
+#define E1000_82542_RDLEN3   0x02B08	/* RX Desc Length Queue 3 - RW */
+#define E1000_82542_RDH3     0x02B10	/* RX Desc Head Queue 3 - RW */
+#define E1000_82542_RDT3     0x02B18	/* RX Desc Tail Queue 3 - RW */
+#define E1000_82542_RDBAL2   0x02A00	/* RX Desc Base Low Queue 2 - RW */
+#define E1000_82542_RDBAH2   0x02A04	/* RX Desc Base High Queue 2 - RW */
+#define E1000_82542_RDLEN2   0x02A08	/* RX Desc Length Queue 2 - RW */
+#define E1000_82542_RDH2     0x02A10	/* RX Desc Head Queue 2 - RW */
+#define E1000_82542_RDT2     0x02A18	/* RX Desc Tail Queue 2 - RW */
+#define E1000_82542_RDTR1    0x00130
+#define E1000_82542_RDBAL1   0x00138
+#define E1000_82542_RDBAH1   0x0013C
+#define E1000_82542_RDLEN1   0x00140
+#define E1000_82542_RDH1     0x00148
+#define E1000_82542_RDT1     0x00150
+#define E1000_82542_FCRTH    0x00160
+#define E1000_82542_FCRTL    0x00168
+#define E1000_82542_FCTTV    E1000_FCTTV
+#define E1000_82542_TXCW     E1000_TXCW
+#define E1000_82542_RXCW     E1000_RXCW
+#define E1000_82542_MTA      0x00200
+#define E1000_82542_TCTL     E1000_TCTL
+#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
+#define E1000_82542_TIPG     E1000_TIPG
+#define E1000_82542_TDBAL    0x00420
+#define E1000_82542_TDBAH    0x00424
+#define E1000_82542_TDLEN    0x00428
+#define E1000_82542_TDH      0x00430
+#define E1000_82542_TDT      0x00438
+#define E1000_82542_TIDV     0x00440
+#define E1000_82542_TBT      E1000_TBT
+#define E1000_82542_AIT      E1000_AIT
+#define E1000_82542_VFTA     0x00600
+#define E1000_82542_LEDCTL   E1000_LEDCTL
+#define E1000_82542_PBA      E1000_PBA
+#define E1000_82542_PBS      E1000_PBS
+#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
+#define E1000_82542_EEARBC   E1000_EEARBC
+#define E1000_82542_FLASHT   E1000_FLASHT
+#define E1000_82542_EEWR     E1000_EEWR
+#define E1000_82542_FLSWCTL  E1000_FLSWCTL
+#define E1000_82542_FLSWDATA E1000_FLSWDATA
+#define E1000_82542_FLSWCNT  E1000_FLSWCNT
+#define E1000_82542_FLOP     E1000_FLOP
+#define E1000_82542_EXTCNF_CTRL  E1000_EXTCNF_CTRL
+#define E1000_82542_EXTCNF_SIZE  E1000_EXTCNF_SIZE
+#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
+#define E1000_82542_ERT      E1000_ERT
+#define E1000_82542_RXDCTL   E1000_RXDCTL
+#define E1000_82542_RXDCTL1  E1000_RXDCTL1
+#define E1000_82542_RADV     E1000_RADV
+#define E1000_82542_RSRPD    E1000_RSRPD
+#define E1000_82542_TXDMAC   E1000_TXDMAC
+#define E1000_82542_KABGTXD  E1000_KABGTXD
+#define E1000_82542_TDFHS    E1000_TDFHS
+#define E1000_82542_TDFTS    E1000_TDFTS
+#define E1000_82542_TDFPC    E1000_TDFPC
+#define E1000_82542_TXDCTL   E1000_TXDCTL
+#define E1000_82542_TADV     E1000_TADV
+#define E1000_82542_TSPMT    E1000_TSPMT
+#define E1000_82542_CRCERRS  E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS  E1000_SYMERRS
+#define E1000_82542_RXERRC   E1000_RXERRC
+#define E1000_82542_MPC      E1000_MPC
+#define E1000_82542_SCC      E1000_SCC
+#define E1000_82542_ECOL     E1000_ECOL
+#define E1000_82542_MCC      E1000_MCC
+#define E1000_82542_LATECOL  E1000_LATECOL
+#define E1000_82542_COLC     E1000_COLC
+#define E1000_82542_DC       E1000_DC
+#define E1000_82542_TNCRS    E1000_TNCRS
+#define E1000_82542_SEC      E1000_SEC
+#define E1000_82542_CEXTERR  E1000_CEXTERR
+#define E1000_82542_RLEC     E1000_RLEC
+#define E1000_82542_XONRXC   E1000_XONRXC
+#define E1000_82542_XONTXC   E1000_XONTXC
+#define E1000_82542_XOFFRXC  E1000_XOFFRXC
+#define E1000_82542_XOFFTXC  E1000_XOFFTXC
+#define E1000_82542_FCRUC    E1000_FCRUC
+#define E1000_82542_PRC64    E1000_PRC64
+#define E1000_82542_PRC127   E1000_PRC127
+#define E1000_82542_PRC255   E1000_PRC255
+#define E1000_82542_PRC511   E1000_PRC511
+#define E1000_82542_PRC1023  E1000_PRC1023
+#define E1000_82542_PRC1522  E1000_PRC1522
+#define E1000_82542_GPRC     E1000_GPRC
+#define E1000_82542_BPRC     E1000_BPRC
+#define E1000_82542_MPRC     E1000_MPRC
+#define E1000_82542_GPTC     E1000_GPTC
+#define E1000_82542_GORCL    E1000_GORCL
+#define E1000_82542_GORCH    E1000_GORCH
+#define E1000_82542_GOTCL    E1000_GOTCL
+#define E1000_82542_GOTCH    E1000_GOTCH
+#define E1000_82542_RNBC     E1000_RNBC
+#define E1000_82542_RUC      E1000_RUC
+#define E1000_82542_RFC      E1000_RFC
+#define E1000_82542_ROC      E1000_ROC
+#define E1000_82542_RJC      E1000_RJC
+#define E1000_82542_MGTPRC   E1000_MGTPRC
+#define E1000_82542_MGTPDC   E1000_MGTPDC
+#define E1000_82542_MGTPTC   E1000_MGTPTC
+#define E1000_82542_TORL     E1000_TORL
+#define E1000_82542_TORH     E1000_TORH
+#define E1000_82542_TOTL     E1000_TOTL
+#define E1000_82542_TOTH     E1000_TOTH
+#define E1000_82542_TPR      E1000_TPR
+#define E1000_82542_TPT      E1000_TPT
+#define E1000_82542_PTC64    E1000_PTC64
+#define E1000_82542_PTC127   E1000_PTC127
+#define E1000_82542_PTC255   E1000_PTC255
+#define E1000_82542_PTC511   E1000_PTC511
+#define E1000_82542_PTC1023  E1000_PTC1023
+#define E1000_82542_PTC1522  E1000_PTC1522
+#define E1000_82542_MPTC     E1000_MPTC
+#define E1000_82542_BPTC     E1000_BPTC
+#define E1000_82542_TSCTC    E1000_TSCTC
+#define E1000_82542_TSCTFC   E1000_TSCTFC
+#define E1000_82542_RXCSUM   E1000_RXCSUM
+#define E1000_82542_WUC      E1000_WUC
+#define E1000_82542_WUFC     E1000_WUFC
+#define E1000_82542_WUS      E1000_WUS
+#define E1000_82542_MANC     E1000_MANC
+#define E1000_82542_IPAV     E1000_IPAV
+#define E1000_82542_IP4AT    E1000_IP4AT
+#define E1000_82542_IP6AT    E1000_IP6AT
+#define E1000_82542_WUPL     E1000_WUPL
+#define E1000_82542_WUPM     E1000_WUPM
+#define E1000_82542_FFLT     E1000_FFLT
+#define E1000_82542_TDFH     0x08010
+#define E1000_82542_TDFT     0x08018
+#define E1000_82542_FFMT     E1000_FFMT
+#define E1000_82542_FFVT     E1000_FFVT
+#define E1000_82542_HOST_IF  E1000_HOST_IF
+#define E1000_82542_IAM         E1000_IAM
+#define E1000_82542_EEMNGCTL    E1000_EEMNGCTL
+#define E1000_82542_PSRCTL      E1000_PSRCTL
+#define E1000_82542_RAID        E1000_RAID
+#define E1000_82542_TARC0       E1000_TARC0
+#define E1000_82542_TDBAL1      E1000_TDBAL1
+#define E1000_82542_TDBAH1      E1000_TDBAH1
+#define E1000_82542_TDLEN1      E1000_TDLEN1
+#define E1000_82542_TDH1        E1000_TDH1
+#define E1000_82542_TDT1        E1000_TDT1
+#define E1000_82542_TXDCTL1     E1000_TXDCTL1
+#define E1000_82542_TARC1       E1000_TARC1
+#define E1000_82542_RFCTL       E1000_RFCTL
+#define E1000_82542_GCR         E1000_GCR
+#define E1000_82542_GSCL_1      E1000_GSCL_1
+#define E1000_82542_GSCL_2      E1000_GSCL_2
+#define E1000_82542_GSCL_3      E1000_GSCL_3
+#define E1000_82542_GSCL_4      E1000_GSCL_4
+#define E1000_82542_FACTPS      E1000_FACTPS
+#define E1000_82542_SWSM        E1000_SWSM
+#define E1000_82542_FWSM        E1000_FWSM
+#define E1000_82542_FFLT_DBG    E1000_FFLT_DBG
+#define E1000_82542_IAC         E1000_IAC
+#define E1000_82542_ICRXPTC     E1000_ICRXPTC
+#define E1000_82542_ICRXATC     E1000_ICRXATC
+#define E1000_82542_ICTXPTC     E1000_ICTXPTC
+#define E1000_82542_ICTXATC     E1000_ICTXATC
+#define E1000_82542_ICTXQEC     E1000_ICTXQEC
+#define E1000_82542_ICTXQMTC    E1000_ICTXQMTC
+#define E1000_82542_ICRXDMTC    E1000_ICRXDMTC
+#define E1000_82542_ICRXOC      E1000_ICRXOC
+#define E1000_82542_HICR        E1000_HICR
+
+#define E1000_82542_CPUVEC      E1000_CPUVEC
+#define E1000_82542_MRQC        E1000_MRQC
+#define E1000_82542_RETA        E1000_RETA
+#define E1000_82542_RSSRK       E1000_RSSRK
+#define E1000_82542_RSSIM       E1000_RSSIM
+#define E1000_82542_RSSIR       E1000_RSSIR
+#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
+#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 txerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorcl;
+	u64 gorch;
+	u64 gotcl;
+	u64 gotch;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rlerrc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 torl;
+	u64 torh;
+	u64 totl;
+	u64 toth;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+};
+
+/* Structure containing variables used by the shared code (e1000_hw.c) */
+struct e1000_hw {
+	u8 __iomem *hw_addr;
+	u8 __iomem *flash_address;
+	e1000_mac_type mac_type;
+	e1000_phy_type phy_type;
+	u32 phy_init_script;
+	e1000_media_type media_type;
+	void *back;
+	struct e1000_shadow_ram *eeprom_shadow_ram;
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+	e1000_fc_type fc;
+	e1000_bus_speed bus_speed;
+	e1000_bus_width bus_width;
+	e1000_bus_type bus_type;
+	struct e1000_eeprom_info eeprom;
+	e1000_ms_type master_slave;
+	e1000_ms_type original_master_slave;
+	e1000_ffe_config ffe_config_state;
+	u32 asf_firmware_present;
+	u32 eeprom_semaphore_present;
+	unsigned long io_base;
+	u32 phy_id;
+	u32 phy_revision;
+	u32 phy_addr;
+	u32 original_fc;
+	u32 txcw;
+	u32 autoneg_failed;
+	u32 max_frame_size;
+	u32 min_frame_size;
+	u32 mc_filter_type;
+	u32 num_mc_addrs;
+	u32 collision_delta;
+	u32 tx_packet_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	bool tx_pkt_filtering;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+	u16 phy_spd_default;
+	u16 autoneg_advertised;
+	u16 pci_cmd_word;
+	u16 fc_high_water;
+	u16 fc_low_water;
+	u16 fc_pause_time;
+	u16 current_ifs_val;
+	u16 ifs_min_val;
+	u16 ifs_max_val;
+	u16 ifs_step_size;
+	u16 ifs_ratio;
+	u16 device_id;
+	u16 vendor_id;
+	u16 subsystem_id;
+	u16 subsystem_vendor_id;
+	u8 revision_id;
+	u8 autoneg;
+	u8 mdix;
+	u8 forced_speed_duplex;
+	u8 wait_autoneg_complete;
+	u8 dma_fairness;
+	u8 mac_addr[NODE_ADDRESS_SIZE];
+	u8 perm_mac_addr[NODE_ADDRESS_SIZE];
+	bool disable_polarity_correction;
+	bool speed_downgraded;
+	e1000_smart_speed smart_speed;
+	e1000_dsp_config dsp_config_state;
+	bool get_link_status;
+	bool serdes_has_link;
+	bool tbi_compatibility_en;
+	bool tbi_compatibility_on;
+	bool laa_is_present;
+	bool phy_reset_disable;
+	bool initialize_hw_bits_disable;
+	bool fc_send_xon;
+	bool fc_strict_ieee;
+	bool report_tx_early;
+	bool adaptive_ifs;
+	bool ifs_params_forced;
+	bool in_ifs_mode;
+	bool mng_reg_access_disabled;
+	bool leave_av_bit_off;
+	bool bad_tx_carr_stats_fd;
+	bool has_smbus;
+};
+
+#define E1000_EEPROM_SWDPIN0   0x0001	/* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020	/* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA   16	/* Offset to data in EEPROM read/write registers */
+#define E1000_EEPROM_RW_REG_DONE   2	/* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START  1	/* First bit for telling part to start operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2	/* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE    1	/* Flag for polling for write complete */
+#define E1000_EEPROM_POLL_READ     0	/* Flag for polling for read complete */
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD       0x00000001	/* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM      0x00000002	/* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR    0x00000004	/* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004	/*Blocks new Master requests */
+#define E1000_CTRL_LRST     0x00000008	/* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME      0x00000010	/* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE      0x00000020	/* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE     0x00000020	/* Auto-speed detect enable */
+#define E1000_CTRL_SLU      0x00000040	/* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080	/* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300	/* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000	/* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100	/* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200	/* Force 1Gb */
+#define E1000_CTRL_BEM32    0x00000400	/* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD   0x00000800	/* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000	/* Force Duplex */
+#define E1000_CTRL_D_UD_EN  0x00002000	/* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000	/* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000	/* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000	/* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0  0x00040000	/* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000	/* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2  0x00100000	/* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3  0x00200000	/* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0  0x00400000	/* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1  0x00800000	/* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2  0x01000000	/* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3  0x02000000	/* SWDPIN 3 input or output */
+#define E1000_CTRL_RST      0x04000000	/* Global reset */
+#define E1000_CTRL_RFCE     0x08000000	/* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000	/* Transmit flow control enable */
+#define E1000_CTRL_RTE      0x20000000	/* Routing tag enable */
+#define E1000_CTRL_VME      0x40000000	/* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000	/* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000	/* Initiate an interrupt to manageability engine */
+
+/* Device Status */
+#define E1000_STATUS_FD         0x00000001	/* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU         0x00000002	/* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK  0x0000000C	/* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0     0x00000000	/* Function 0 */
+#define E1000_STATUS_FUNC_1     0x00000004	/* Function 1 */
+#define E1000_STATUS_TXOFF      0x00000010	/* transmission paused */
+#define E1000_STATUS_TBIMODE    0x00000020	/* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10   0x00000000	/* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100  0x00000040	/* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080	/* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200	/* Lan Init Completion
+						   by EEPROM/Flash */
+#define E1000_STATUS_ASDV       0x00000300	/* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI    0x00000800	/* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000	/* Status of Master requests. */
+#define E1000_STATUS_MTXCKOK    0x00000400	/* MTX clock running OK */
+#define E1000_STATUS_PCI66      0x00000800	/* In 66Mhz slot */
+#define E1000_STATUS_BUS64      0x00001000	/* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE  0x00002000	/* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000	/* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0  0x00100000	/* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1  0x00200000	/* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2  0x00400000	/* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000	/* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE   0x01000000	/* BMC external code execution disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000	/* RGMII disabled */
+#define E1000_STATUS_FUSE_8       0x04000000
+#define E1000_STATUS_FUSE_9       0x08000000
+#define E1000_STATUS_SERDES0_DIS  0x10000000	/* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS  0x20000000	/* SERDES disabled on port 1 */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66  0x00000000	/* PCI-X bus speed  50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000	/* PCI-X bus speed  66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000	/* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK        0x00000001	/* EEPROM Clock */
+#define E1000_EECD_CS        0x00000002	/* EEPROM Chip Select */
+#define E1000_EECD_DI        0x00000004	/* EEPROM Data In */
+#define E1000_EECD_DO        0x00000008	/* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK  0x00000030
+#define E1000_EECD_FWE_DIS   0x00000010	/* Disable FLASH writes */
+#define E1000_EECD_FWE_EN    0x00000020	/* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ       0x00000040	/* EEPROM Access Request */
+#define E1000_EECD_GNT       0x00000080	/* EEPROM Access Grant */
+#define E1000_EECD_PRES      0x00000100	/* EEPROM Present */
+#define E1000_EECD_SIZE      0x00000200	/* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_ADDR_BITS 0x00000400	/* EEPROM Addressing bits based on type
+					 * (0-small, 1-large) */
+#define E1000_EECD_TYPE      0x00002000	/* EEPROM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_EEPROM_GRANT_ATTEMPTS
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000	/* EEPROM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD          0x00000200	/* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800	/* EEprom Size */
+#define E1000_EECD_SIZE_EX_SHIFT    11
+#define E1000_EECD_NVADDS    0x00018000	/* NVM Address Size */
+#define E1000_EECD_SELSHAD   0x00020000	/* Select Shadow RAM */
+#define E1000_EECD_INITSRAM  0x00040000	/* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD     0x00080000	/* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000	/* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV     0x00200000	/* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL   0x00400000	/* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT      22
+#define E1000_STM_OPCODE     0xDB00
+#define E1000_HICR_FW_RESET  0xC0
+
+#define E1000_SHADOW_RAM_WORDS     2048
+#define E1000_ICH_NVM_SIG_WORD     0x13
+#define E1000_ICH_NVM_SIG_MASK     0xC0
+
+/* EEPROM Read */
+#define E1000_EERD_START      0x00000001	/* Start Read */
+#define E1000_EERD_DONE       0x00000010	/* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK  0x0000FF00	/* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK  0xFFFF0000	/* Read Data */
+
+/* SPI EEPROM Status Register */
+#define EEPROM_STATUS_RDY_SPI  0x01
+#define EEPROM_STATUS_WEN_SPI  0x02
+#define EEPROM_STATUS_BP0_SPI  0x04
+#define EEPROM_STATUS_BP1_SPI  0x08
+#define EEPROM_STATUS_WPEN_SPI 0x80
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN   0x00000001	/* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN   0x00000002	/* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN   0x00000004	/* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN   0x00000008	/* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010	/* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020	/* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040	/* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080	/* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR  0x00000100	/* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR  0x00000200	/* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR  0x00000400	/* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR  0x00000800	/* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK    0x00001000	/* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST    0x00002000	/* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS       0x00004000	/* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000	/* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000	/* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_SERDES  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII   0x00800000
+#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
+#define E1000_CTRL_EXT_DRV_LOAD       0x10000000	/* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME           0x08000000	/* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000	/* Clear Interrupt timers after IMS clear */
+#define E1000_CRTL_EXT_PB_PAREN       0x01000000	/* packet buffer parity error detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN       0x02000000	/* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN    0x40000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK  0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK  0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_INT_EN    0x20000000
+#define E1000_MDIC_ERROR     0x40000000
+
+#define E1000_KUMCTRLSTA_MASK           0x0000FFFF
+#define E1000_KUMCTRLSTA_OFFSET         0x001F0000
+#define E1000_KUMCTRLSTA_OFFSET_SHIFT   16
+#define E1000_KUMCTRLSTA_REN            0x00200000
+
+#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL      0x00000000
+#define E1000_KUMCTRLSTA_OFFSET_CTRL           0x00000001
+#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL       0x00000002
+#define E1000_KUMCTRLSTA_OFFSET_DIAG           0x00000003
+#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS       0x00000004
+#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM      0x00000009
+#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL        0x00000010
+#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES     0x0000001E
+#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES      0x0000001F
+
+/* FIFO Control */
+#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS   0x00000008
+#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
+
+/* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
+#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
+
+/* Half-Duplex Control */
+#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
+#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
+
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
+
+#define E1000_KABGTXD_BGSQLBIAS                0x00050000
+
+#define E1000_PHY_CTRL_SPD_EN                  0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
+#define E1000_PHY_CTRL_B2B_EN                  0x00000080
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT      0
+#define E1000_LEDCTL_LED0_BLINK_RATE      0x0000020
+#define E1000_LEDCTL_LED0_IVRT            0x00000040
+#define E1000_LEDCTL_LED0_BLINK           0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK       0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT      8
+#define E1000_LEDCTL_LED1_BLINK_RATE      0x0002000
+#define E1000_LEDCTL_LED1_IVRT            0x00004000
+#define E1000_LEDCTL_LED1_BLINK           0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK       0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT      16
+#define E1000_LEDCTL_LED2_BLINK_RATE      0x00200000
+#define E1000_LEDCTL_LED2_IVRT            0x00400000
+#define E1000_LEDCTL_LED2_BLINK           0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK       0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT      24
+#define E1000_LEDCTL_LED3_BLINK_RATE      0x20000000
+#define E1000_LEDCTL_LED3_IVRT            0x40000000
+#define E1000_LEDCTL_LED3_BLINK           0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000  0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP       0x2
+#define E1000_LEDCTL_MODE_ACTIVITY      0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10       0x5
+#define E1000_LEDCTL_MODE_LINK_100      0x6
+#define E1000_LEDCTL_MODE_LINK_1000     0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE     0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9
+#define E1000_LEDCTL_MODE_COLLISION     0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED     0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE      0xC
+#define E1000_LEDCTL_MODE_PAUSED        0xD
+#define E1000_LEDCTL_MODE_LED_ON        0xE
+#define E1000_LEDCTL_MODE_LED_OFF       0xF
+
+/* Receive Address */
+#define E1000_RAH_AV  0x80000000	/* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW          0x00000001	/* Transmit desc written back */
+#define E1000_ICR_TXQE          0x00000002	/* Transmit Queue empty */
+#define E1000_ICR_LSC           0x00000004	/* Link Status Change */
+#define E1000_ICR_RXSEQ         0x00000008	/* rx sequence error */
+#define E1000_ICR_RXDMT0        0x00000010	/* rx desc min. threshold (0) */
+#define E1000_ICR_RXO           0x00000040	/* rx overrun */
+#define E1000_ICR_RXT0          0x00000080	/* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC          0x00000200	/* MDIO access complete */
+#define E1000_ICR_RXCFG         0x00000400	/* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0       0x00000800	/* GP Int 0 */
+#define E1000_ICR_GPI_EN1       0x00001000	/* GP Int 1 */
+#define E1000_ICR_GPI_EN2       0x00002000	/* GP Int 2 */
+#define E1000_ICR_GPI_EN3       0x00004000	/* GP Int 3 */
+#define E1000_ICR_TXD_LOW       0x00008000
+#define E1000_ICR_SRPD          0x00010000
+#define E1000_ICR_ACK           0x00020000	/* Receive Ack frame */
+#define E1000_ICR_MNG           0x00040000	/* Manageability event */
+#define E1000_ICR_DOCK          0x00080000	/* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED  0x80000000	/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR  0x00400000	/* host arb read buffer parity error */
+#define E1000_ICR_PB_PAR        0x00800000	/* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_ALL_PARITY    0x03F00000	/* all parity error bits */
+#define E1000_ICR_DSW           0x00000020	/* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT        0x00001000	/* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST         0x00100000	/* ME hardware reset occurs */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_ICS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_ICS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_ICS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_ICS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_ICS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_ICS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_ICS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_ICS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_ICS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_ICS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD      E1000_ICR_SRPD
+#define E1000_ICS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_ICS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_ICS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW       E1000_ICR_DSW
+#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
+#define E1000_ICS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD      E1000_ICR_SRPD
+#define E1000_IMS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW       E1000_ICR_DSW
+#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMC_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMC_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMC_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMC_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMC_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMC_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMC_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMC_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMC_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMC_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMC_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMC_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD      E1000_ICR_SRPD
+#define E1000_IMC_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMC_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMC_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMC_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMC_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMC_DSW       E1000_ICR_DSW
+#define E1000_IMC_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMC_EPRST     E1000_ICR_EPRST
+
+/* Receive Control */
+#define E1000_RCTL_RST            0x00000001	/* Software reset */
+#define E1000_RCTL_EN             0x00000002	/* enable */
+#define E1000_RCTL_SBP            0x00000004	/* store bad packet */
+#define E1000_RCTL_UPE            0x00000008	/* unicast promiscuous enable */
+#define E1000_RCTL_MPE            0x00000010	/* multicast promiscuous enab */
+#define E1000_RCTL_LPE            0x00000020	/* long packet enable */
+#define E1000_RCTL_LBM_NO         0x00000000	/* no loopback mode */
+#define E1000_RCTL_LBM_MAC        0x00000040	/* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP        0x00000080	/* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR       0x000000C0	/* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK      0x00000C00	/* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS        0x00000400	/* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF     0x00000000	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT     0x00000100	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH    0x00000200	/* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT       12	/* multicast offset shift */
+#define E1000_RCTL_MO_0           0x00000000	/* multicast offset 11:0 */
+#define E1000_RCTL_MO_1           0x00001000	/* multicast offset 12:1 */
+#define E1000_RCTL_MO_2           0x00002000	/* multicast offset 13:2 */
+#define E1000_RCTL_MO_3           0x00003000	/* multicast offset 15:4 */
+#define E1000_RCTL_MDR            0x00004000	/* multicast desc ring 0 */
+#define E1000_RCTL_BAM            0x00008000	/* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048        0x00000000	/* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024        0x00010000	/* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512         0x00020000	/* rx buffer size 512 */
+#define E1000_RCTL_SZ_256         0x00030000	/* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384       0x00010000	/* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192        0x00020000	/* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096        0x00030000	/* rx buffer size 4096 */
+#define E1000_RCTL_VFE            0x00040000	/* vlan filter enable */
+#define E1000_RCTL_CFIEN          0x00080000	/* canonical form enable */
+#define E1000_RCTL_CFI            0x00100000	/* canonical form indicator */
+#define E1000_RCTL_DPF            0x00400000	/* discard pause frames */
+#define E1000_RCTL_PMCF           0x00800000	/* pass MAC control frames */
+#define E1000_RCTL_BSEX           0x02000000	/* Buffer size extension */
+#define E1000_RCTL_SECRC          0x04000000	/* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK    0x78000000	/* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT   27	/* Flexible buffer shift */
+
+/* Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE0_MASK) |
+ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE1_MASK) |
+ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE2_MASK) |
+ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *                  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT  7	/* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT  2	/* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT  6	/* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14	/* Shift _left_ 14 */
+
+/* SW_W_SYNC definitions */
+#define E1000_SWFW_EEP_SM     0x0001
+#define E1000_SWFW_PHY0_SM    0x0002
+#define E1000_SWFW_PHY1_SM    0x0004
+#define E1000_SWFW_MAC_CSR_SM 0x0008
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff	/* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB  0x80000000	/* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80	/* descriptor length */
+#define E1000_RDH_RDH   0x0000ffff	/* receive descriptor head */
+#define E1000_RDT_RDT   0x0000ffff	/* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8	/* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000	/* External Flow Control Enable */
+#define E1000_FCRTL_RTL  0x0000FFF8	/* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000	/* Enable XON frame transmission */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS           0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK      0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT     1
+#define E1000_RFCTL_NFSW_DIS            0x00000040
+#define E1000_RFCTL_NFSR_DIS            0x00000080
+#define E1000_RFCTL_NFS_VER_MASK        0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT       8
+#define E1000_RFCTL_IPV6_DIS            0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS       0x00000800
+#define E1000_RFCTL_ACK_DIS             0x00001000
+#define E1000_RFCTL_ACKD_DIS            0x00002000
+#define E1000_RFCTL_IPFRSP_DIS          0x00004000
+#define E1000_RFCTL_EXTEN               0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F	/* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00	/* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000	/* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN    0x01000000	/* RXDCTL Granularity */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F	/* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00	/* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000	/* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN    0x01000000	/* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000	/* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000	/* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000	/* Enable the counting of desc.
+						   still to be processed. */
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD         0x00000020	/* TXCW full duplex */
+#define E1000_TXCW_HD         0x00000040	/* TXCW half duplex */
+#define E1000_TXCW_PAUSE      0x00000080	/* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100	/* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180	/* TXCW pause request mask */
+#define E1000_TXCW_RF         0x00003000	/* TXCW remote fault */
+#define E1000_TXCW_NP         0x00008000	/* TXCW next page */
+#define E1000_TXCW_CW         0x0000ffff	/* TxConfigWord mask */
+#define E1000_TXCW_TXC        0x40000000	/* Transmit Config control */
+#define E1000_TXCW_ANE        0x80000000	/* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW    0x0000ffff	/* RxConfigWord mask */
+#define E1000_RXCW_NC    0x04000000	/* Receive config no carrier */
+#define E1000_RXCW_IV    0x08000000	/* Receive config invalid */
+#define E1000_RXCW_CC    0x10000000	/* Receive config change */
+#define E1000_RXCW_C     0x20000000	/* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000	/* Receive config synch */
+#define E1000_RXCW_ANC   0x80000000	/* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST    0x00000001	/* software reset */
+#define E1000_TCTL_EN     0x00000002	/* enable tx */
+#define E1000_TCTL_BCE    0x00000004	/* busy check enable */
+#define E1000_TCTL_PSP    0x00000008	/* pad short packets */
+#define E1000_TCTL_CT     0x00000ff0	/* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000	/* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000	/* SW Xoff transmission */
+#define E1000_TCTL_PBE    0x00800000	/* Packet Burst Enable */
+#define E1000_TCTL_RTLC   0x01000000	/* Re-transmit on late collision */
+#define E1000_TCTL_NRTU   0x02000000	/* No Re-transmit on underrun */
+#define E1000_TCTL_MULR   0x10000000	/* Multiple request support */
+/* Extended Transmit Control */
+#define E1000_TCTL_EXT_BST_MASK  0x000003FF	/* Backoff Slot Time */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00	/* Gigabit Carry Extend Padding */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF	/* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL     0x00000100	/* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL     0x00000200	/* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL   0x00000400	/* IPv6 checksum offload */
+#define E1000_RXCSUM_IPPCSE    0x00001000	/* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD      0x00002000	/* packet checksum disabled */
+
+/* Multiple Receive Queue Control */
+#define E1000_MRQC_ENABLE_MASK              0x00000003
+#define E1000_MRQC_ENABLE_RSS_2Q            0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT           0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK           0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP       0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4           0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX    0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX        0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6           0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00200000
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME       0x00000001	/* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002	/* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004	/* PME Status */
+#define E1000_WUC_APMPME     0x00000008	/* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM        0x80000000	/* Enable SPM */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001	/* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG  0x00000002	/* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX   0x00000004	/* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC   0x00000008	/* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC   0x00000010	/* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP  0x00000020	/* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO      0x00008000	/* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000	/* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000	/* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000	/* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000	/* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF	/* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16	/* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001	/* Link Status Changed */
+#define E1000_WUS_MAG  0x00000002	/* Magic Packet Received */
+#define E1000_WUS_EX   0x00000004	/* Directed Exact Received */
+#define E1000_WUS_MC   0x00000008	/* Directed Multicast Received */
+#define E1000_WUS_BC   0x00000010	/* Broadcast Received */
+#define E1000_WUS_ARP  0x00000020	/* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000	/* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000	/* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000	/* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000	/* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN      0x00000001	/* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN        0x00000002	/* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE    0x00000004	/* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN       0x00000100	/* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN       0x00000200	/* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN       0x00000400	/* Enable IPv4 */
+#define E1000_MANC_IPV6_EN       0x00000800	/* Enable IPv6 */
+#define E1000_MANC_SNAP_EN       0x00001000	/* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN        0x00002000	/* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN   0x00004000	/* Enable Neighbor Discovery
+						 * Filtering */
+#define E1000_MANC_ARP_RES_EN    0x00008000	/* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET     0x00010000	/* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN    0x00020000	/* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000	/* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL       0x00080000	/* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000	/* Block phy resets */
+#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000	/* Enable MAC address
+							 * filtering */
+#define E1000_MANC_EN_MNG2HOST   0x00200000	/* Enable MNG packets to host
+						 * memory */
+#define E1000_MANC_EN_IP_ADDR_FILTER    0x00400000	/* Enable IP address
+							 * filtering */
+#define E1000_MANC_EN_XSUM_FILTER   0x00800000	/* Enable checksum filtering */
+#define E1000_MANC_BR_EN         0x01000000	/* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ       0x01000000	/* SMBus Request */
+#define E1000_MANC_SMB_GNT       0x02000000	/* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN    0x04000000	/* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN   0x08000000	/* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT  0x10000000	/* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT   0x20000000	/* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT  28	/* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT   29	/* SMBus Clock Out Shift */
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI         0x00000001	/* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI      0x00000002	/* FW Semaphore bit */
+#define E1000_SWSM_WMNG         0x00000004	/* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD     0x00000008	/* Driver Loaded Bit */
+
+/* FW Semaphore Register */
+#define E1000_FWSM_MODE_MASK    0x0000000E	/* FW mode */
+#define E1000_FWSM_MODE_SHIFT            1
+#define E1000_FWSM_FW_VALID     0x00008000	/* FW established a valid mode */
+
+#define E1000_FWSM_RSPCIPHY        0x00000040	/* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW           0x10000000	/* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK     0x60000000	/* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT     29
+#define E1000_FWSM_SKUSEL_EMB      0x0	/* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS     0x1	/* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2	/* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3	/* Perf & Copr GbE SKU */
+
+/* FFLT Debug Register */
+#define E1000_FFLT_DBG_INVC     0x00100000	/* Invalid /C/ code handling */
+
+typedef enum {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_interface_only
+} e1000_mng_mode;
+
+/* Host Interface Control Register */
+#define E1000_HICR_EN           0x00000001	/* Enable Bit - RO */
+#define E1000_HICR_C            0x00000002	/* Driver sets this bit when done
+						 * to put command in RAM */
+#define E1000_HICR_SV           0x00000004	/* Status Validity */
+#define E1000_HICR_FWR          0x00000080	/* FW reset. Set by the Host */
+
+/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
+#define E1000_HI_MAX_DATA_LENGTH         252	/* Host Interface data length */
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH  1792	/* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH  448	/* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT         500	/* Time in ms to process HI command */
+
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;	/* I/F bits for command, status for return */
+	u8 checksum;
+};
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];	/* Command data can length 0..252 */
+};
+
+/* Host SMB register #0 */
+#define E1000_HSMC0R_CLKIN      0x00000001	/* SMB Clock in */
+#define E1000_HSMC0R_DATAIN     0x00000002	/* SMB Data in */
+#define E1000_HSMC0R_DATAOUT    0x00000004	/* SMB Data out */
+#define E1000_HSMC0R_CLKOUT     0x00000008	/* SMB Clock out */
+
+/* Host SMB register #1 */
+#define E1000_HSMC1R_CLKIN      E1000_HSMC0R_CLKIN
+#define E1000_HSMC1R_DATAIN     E1000_HSMC0R_DATAIN
+#define E1000_HSMC1R_DATAOUT    E1000_HSMC0R_DATAOUT
+#define E1000_HSMC1R_CLKOUT     E1000_HSMC0R_CLKOUT
+
+/* FW Status Register */
+#define E1000_FWSTS_FWS_MASK    0x000000FF	/* FW Status */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF	/* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN          4096
+
+/* PCI-Ex registers*/
+
+/* PCI-Ex Control Register */
+#define E1000_GCR_RXD_NO_SNOOP          0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
+#define E1000_GCR_TXD_NO_SNOOP          0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
+
+#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
+                             E1000_GCR_RXDSCW_NO_SNOOP      | \
+                             E1000_GCR_RXDSCR_NO_SNOOP      | \
+                             E1000_GCR_TXD_NO_SNOOP         | \
+                             E1000_GCR_TXDSCW_NO_SNOOP      | \
+                             E1000_GCR_TXDSCR_NO_SNOOP)
+
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+/* Function Active and Power State to MNG */
+#define E1000_FACTPS_FUNC0_POWER_STATE_MASK         0x00000003
+#define E1000_FACTPS_LAN0_VALID                     0x00000004
+#define E1000_FACTPS_FUNC0_AUX_EN                   0x00000008
+#define E1000_FACTPS_FUNC1_POWER_STATE_MASK         0x000000C0
+#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT        6
+#define E1000_FACTPS_LAN1_VALID                     0x00000100
+#define E1000_FACTPS_FUNC1_AUX_EN                   0x00000200
+#define E1000_FACTPS_FUNC2_POWER_STATE_MASK         0x00003000
+#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT        12
+#define E1000_FACTPS_IDE_ENABLE                     0x00004000
+#define E1000_FACTPS_FUNC2_AUX_EN                   0x00008000
+#define E1000_FACTPS_FUNC3_POWER_STATE_MASK         0x000C0000
+#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT        18
+#define E1000_FACTPS_SP_ENABLE                      0x00100000
+#define E1000_FACTPS_FUNC3_AUX_EN                   0x00200000
+#define E1000_FACTPS_FUNC4_POWER_STATE_MASK         0x03000000
+#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT        24
+#define E1000_FACTPS_IPMI_ENABLE                    0x04000000
+#define E1000_FACTPS_FUNC4_AUX_EN                   0x08000000
+#define E1000_FACTPS_MNGCG                          0x20000000
+#define E1000_FACTPS_LAN_FUNC_SEL                   0x40000000
+#define E1000_FACTPS_PM_STATE_CHANGED               0x80000000
+
+/* PCI-Ex Config Space */
+#define PCI_EX_LINK_STATUS           0x12
+#define PCI_EX_LINK_WIDTH_MASK       0x3F0
+#define PCI_EX_LINK_WIDTH_SHIFT      4
+
+/* EEPROM Commands - Microwire */
+#define EEPROM_READ_OPCODE_MICROWIRE  0x6	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5	/* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7	/* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE  0x13	/* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE  0x10	/* EEPROM erase/write disable */
+
+/* EEPROM Commands - SPI */
+#define EEPROM_MAX_RETRY_SPI        5000	/* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI      0x03	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI     0x02	/* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI        0x08	/* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI      0x06	/* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI      0x04	/* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI      0x05	/* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI      0x01	/* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI   0x20	/* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI  0xD8	/* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI  0xDB	/* EEPROM ERASE 256B */
+
+/* EEPROM Size definitions */
+#define EEPROM_WORD_SIZE_SHIFT  6
+#define EEPROM_SIZE_SHIFT       10
+#define EEPROM_SIZE_MASK        0x1C00
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT                 0x0003
+#define EEPROM_ID_LED_SETTINGS        0x0004
+#define EEPROM_VERSION                0x0005
+#define EEPROM_SERDES_AMPLITUDE       0x0006	/* For SERDES output amplitude adjustment. */
+#define EEPROM_PHY_CLASS_WORD         0x0007
+#define EEPROM_INIT_CONTROL1_REG      0x000A
+#define EEPROM_INIT_CONTROL2_REG      0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define EEPROM_INIT_CONTROL3_PORT_B   0x0014
+#define EEPROM_INIT_3GIO_3            0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define EEPROM_INIT_CONTROL3_PORT_A   0x0024
+#define EEPROM_CFG                    0x0012
+#define EEPROM_FLASH_VERSION          0x0032
+#define EEPROM_CHECKSUM_REG           0x003F
+
+#define E1000_EEPROM_CFG_DONE         0x00040000	/* MNG config cycle done */
+#define E1000_EEPROM_CFG_DONE_PORT_1  0x00080000	/* ...for second port */
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \
+                              (ID_LED_OFF1_OFF2 << 8) | \
+                              (ID_LED_DEF1_DEF2 << 4) | \
+                              (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2       0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
+#define EEPROM_SERDES_AMPLITUDE_MASK  0x000F
+
+/* Mask bit for PHY class in Word 7 of the EEPROM */
+#define EEPROM_PHY_CLASS_A   0x8000
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS   0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST   0x0200
+#define EEPROM_WORD0A_FD     0x0400
+#define EEPROM_WORD0A_66MHZ  0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE      0x1000
+#define EEPROM_WORD0F_ASM_DIR    0x2000
+#define EEPROM_WORD0F_ANE        0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+#define EEPROM_WORD0F_LPLU       0x0001
+
+/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
+#define EEPROM_WORD1020_GIGA_DISABLE         0x0010
+#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
+
+/* Mask bits for fields in Word 0x1a of the EEPROM */
+#define EEPROM_WORD1A_ASPM_MASK  0x000C
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1          8
+
+#define EEPROM_RESERVED_WORD          0xFFFF
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD       15
+#define E1000_CT_SHIFT                  4
+/* Collision distance is a 0-based value that applies to
+ * half-duplex-capable hardware only. */
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLLISION_DISTANCE_82542  64
+#define E1000_FDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_COLD_SHIFT                12
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT        10
+#define DEFAULT_82543_TIPG_IPGT_FIBER  9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT  10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define E1000_TIPG_IPGR2_SHIFT  20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START     8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP      190
+#define TX_THRESHOLD_DISABLE   0
+#define TX_THRESHOLD_TIMER_MS  10000
+#define MIN_NUM_XMITS          1000
+#define IFS_MAX                80
+#define IFS_STEP               10
+#define IFS_MIN                40
+#define IFS_RATIO              4
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE  0x00000002
+#define E1000_EXTCNF_CTRL_D_UD_ENABLE       0x00000004
+#define E1000_EXTCNF_CTRL_D_UD_LATENCY      0x00000008
+#define E1000_EXTCNF_CTRL_D_UD_OWNER        0x00000010
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x0FFF0000
+
+#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH    0x000000FF
+#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH   0x0000FF00
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH   0x00FF0000
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE  0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG            0x00000020
+
+/* PBA constants */
+#define E1000_PBA_8K 0x0008	/* 8KB, default Rx allocation */
+#define E1000_PBA_12K 0x000C	/* 12KB, default Rx allocation */
+#define E1000_PBA_16K 0x0010	/* 16KB, default TX allocation */
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030	/* 48KB, default RX allocation */
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE         0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH        (0x8000)	/* 32KB */
+#define FC_DEFAULT_LO_THRESH        (0x4000)	/* 16KB */
+#define FC_DEFAULT_TX_TIMER         (0x100)	/* ~130 us */
+
+/* PCIX Config space */
+#define PCIX_COMMAND_REGISTER    0xE6
+#define PCIX_STATUS_REGISTER_LO  0xE8
+#define PCIX_STATUS_REGISTER_HI  0xEA
+
+#define PCIX_COMMAND_MMRBC_MASK      0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT     0x2
+#define PCIX_STATUS_HI_MMRBC_MASK    0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5
+#define PCIX_STATUS_HI_MMRBC_4K      0x3
+#define PCIX_STATUS_HI_MMRBC_2K      0x2
+
+/* Number of bits required to shift right the "pause" bits from the
+ * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
+ */
+#define PAUSE_SHIFT 5
+
+/* Number of bits required to shift left the "SWDPIO" bits from the
+ * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
+ */
+#define SWDPIO_SHIFT 17
+
+/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
+ * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+/* Number of bits required to shift left the "ILOS" bit from the EEPROM
+ * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
+ */
+#define ILOS_SHIFT  3
+
+#define RECEIVE_BUFFER_ALIGN_SIZE  (256)
+
+/* Number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT             500
+
+/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
+#define AUTO_READ_DONE_TIMEOUT      10
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+
+#define E1000_TX_BUFFER_SIZE ((u32)1514)
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION   0x0F
+
+/* TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ *      adapter = a pointer to struct e1000_hw
+ *      status = the 8 bit status field of the RX descriptor with EOP set
+ *      error = the 8 bit error field of the RX descriptor with EOP set
+ *      length = the sum of all the length fields of the RX descriptors that
+ *               make up the current frame
+ *      last_byte = the last byte of the frame DMAed by the hardware
+ *      max_frame_length = the maximum frame length we want to accept.
+ *      min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ *  ...
+ *  if (TBI_ACCEPT) {
+ *      accept_frame = true;
+ *      e1000_tbi_adjust_stats(adapter, MacAddress);
+ *      frame_length--;
+ *  } else {
+ *      accept_frame = false;
+ *  }
+ *  ...
+ */
+
+#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
+    ((adapter)->tbi_compatibility_on && \
+     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+     ((last_byte) == CARRIER_EXTENSION) && \
+     (((status) & E1000_RXD_STAT_VP) ? \
+          (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
+           ((length) <= ((adapter)->max_frame_size + 1))) : \
+          (((length) > (adapter)->min_frame_size) && \
+           ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL         0x00	/* Control Register */
+#define PHY_STATUS       0x01	/* Status Register */
+#define PHY_ID1          0x02	/* Phy Id Reg (word 1) */
+#define PHY_ID2          0x03	/* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV  0x04	/* Autoneg Advertisement */
+#define PHY_LP_ABILITY   0x05	/* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP  0x06	/* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07	/* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08	/* Link Partner Next Page */
+#define PHY_1000T_CTRL   0x09	/* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A	/* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS   0x0F	/* Extended Status Reg */
+
+#define MAX_PHY_REG_ADDRESS        0x1F	/* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG     0xF	/* Registers equal on all pages */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL     0x10	/* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS   0x11	/* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE        0x12	/* Interrupt Enable Register */
+#define M88E1000_INT_STATUS        0x13	/* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14	/* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR       0x15	/* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL      0x1A	/* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT   0x1D	/* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E	/* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8  0x100	/* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800	/* improved BER performance */
+
+#define IGP01E1000_IEEE_REGS_PAGE  0x0000
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+#define IGP01E1000_IEEE_FORCE_GIGA      0x0140
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10	/* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS 0x11	/* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL   0x12	/* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13	/* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO       0x14	/* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15	/* PHY Channel Quality Register */
+#define IGP02E1000_PHY_POWER_MGMT      0x19
+#define IGP01E1000_PHY_PAGE_SELECT     0x1F	/* PHY Page Select Core Register */
+
+/* IGP01E1000 AGC Registers - stores the cable length values*/
+#define IGP01E1000_PHY_AGC_A        0x1172
+#define IGP01E1000_PHY_AGC_B        0x1272
+#define IGP01E1000_PHY_AGC_C        0x1472
+#define IGP01E1000_PHY_AGC_D        0x1872
+
+/* IGP02E1000 AGC Registers for cable length values */
+#define IGP02E1000_PHY_AGC_A        0x11B1
+#define IGP02E1000_PHY_AGC_B        0x12B1
+#define IGP02E1000_PHY_AGC_C        0x14B1
+#define IGP02E1000_PHY_AGC_D        0x18B1
+
+/* IGP01E1000 DSP Reset Register */
+#define IGP01E1000_PHY_DSP_RESET   0x1F33
+#define IGP01E1000_PHY_DSP_SET     0x1F71
+#define IGP01E1000_PHY_DSP_FFE     0x1F35
+
+#define IGP01E1000_PHY_CHANNEL_NUM    4
+#define IGP02E1000_PHY_CHANNEL_NUM    4
+
+#define IGP01E1000_PHY_AGC_PARAM_A    0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B    0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C    0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D    0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX        0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_ANALOG_TX_STATE      0x2890
+#define IGP01E1000_PHY_ANALOG_CLASS_A       0x2000
+#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE  0x0004
+#define IGP01E1000_PHY_DSP_FFE_CM_CP        0x0069
+
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT      0x002A
+/* IGP01E1000 PCS Initialization register - stores the polarity status when
+ * speed = 1000 Mbps. */
+#define IGP01E1000_PHY_PCS_INIT_REG  0x00B4
+#define IGP01E1000_PHY_PCS_CTRL_REG  0x00B5
+
+#define IGP01E1000_ANALOG_REGS_PAGE  0x20C0
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080	/* Collision test enable */
+#define MII_CR_FULL_DUPLEX      0x0100	/* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200	/* Restart auto negotiation */
+#define MII_CR_ISOLATE          0x0400	/* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN       0x0800	/* Power down */
+#define MII_CR_AUTO_NEG_EN      0x1000	/* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK         0x4000	/* 0 = normal, 1 = loopback */
+#define MII_CR_RESET            0x8000	/* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS     0x0001	/* Extended register capabilities */
+#define MII_SR_JABBER_DETECT     0x0002	/* Jabber Detected */
+#define MII_SR_LINK_STATUS       0x0004	/* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS      0x0008	/* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT      0x0010	/* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE  0x0020	/* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040	/* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS   0x0100	/* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS     0x0200	/* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS     0x0400	/* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS       0x0800	/* 10T   Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS       0x1000	/* 10T   Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS      0x2000	/* 100X  Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS      0x4000	/* 100X  Full Duplex Capable */
+#define MII_SR_100T4_CAPS        0x8000	/* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001	/* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS    0x0020	/* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS    0x0040	/* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS  0x0080	/* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS  0x0100	/* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS     0x0200	/* 100T4 Capable */
+#define NWAY_AR_PAUSE          0x0400	/* Pause operation desired */
+#define NWAY_AR_ASM_DIR        0x0800	/* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT   0x2000	/* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000	/* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS    0x0020	/* LP is 10T   Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS    0x0040	/* LP is 10T   Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS  0x0080	/* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS  0x0100	/* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS     0x0200	/* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE          0x0400	/* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR        0x0800	/* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT   0x2000	/* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE    0x4000	/* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS      0x0001	/* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD          0x0002	/* LP is 10T   Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS    0x0004	/* LP is 10T   Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008	/* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT  0x0010	/* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define NPTX_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define NPTX_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define NPTX_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define LP_RNPR_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define LP_RNPR_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE     0x4000	/* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE      0x0080	/* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS         0x0100	/* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS         0x0200	/* Advertise 1000T FD capability  */
+#define CR_1000T_REPEATER_DTE    0x0400	/* 1=Repeater/switch device port */
+					/* 0=DTE device */
+#define CR_1000T_MS_VALUE        0x0800	/* 1=Configure PHY as Master */
+					/* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE       0x1000	/* 1=Master/Slave manual config value */
+					/* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000	/* Normal Operation */
+#define CR_1000T_TEST_MODE_1     0x2000	/* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2     0x4000	/* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3     0x6000	/* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4     0x8000	/* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT   0x00FF	/* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR   0x0100	/* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS       0x0400	/* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS       0x0800	/* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000	/* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS  0x2000	/* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES    0x4000	/* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT  0x8000	/* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT          12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT           13
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT    5
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20            20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100           100
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000	/* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000	/* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000	/* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000	/* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK   0x0100	/* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0	/* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE  0x0010	/* register 11h bit 4 */
+				      /* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE    0x0001	/* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002	/* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST          0x0004	/* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE    0x0010	/* 1=CLK125 low,
+						 * 0=CLK125 toggling
+						 */
+#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000	/* MDI Crossover Mode bits 6:5 */
+					       /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020	/* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T     0x0040	/* 1000BASE-T: Auto crossover,
+						 *  100BASE-TX/10BASE-T:
+						 *  MDI Mode
+						 */
+#define M88E1000_PSCR_AUTO_X_MODE      0x0060	/* Auto crossover enabled
+						 * all speeds.
+						 */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+					/* 1=Enable Extended 10BASE-T distance
+					 * (Lower 10BASE-T RX Threshold)
+					 * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100
+					/* 1=5-Bit interface in 100BASE-TX
+					 * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200	/* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400	/* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800	/* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT    1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT          5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER             0x0001	/* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY       0x0002	/* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT          0x0020	/* 1=Downshifted */
+#define M88E1000_PSSR_MDIX               0x0040	/* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH       0x0380	/* 0=<50M;1=50-80M;2=80-110M;
+						 * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK               0x0400	/* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800	/* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD          0x1000	/* 1=Page received */
+#define M88E1000_PSSR_DPLX               0x2000	/* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED              0xC000	/* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS              0x0000	/* 00=10Mbs */
+#define M88E1000_PSSR_100MBS             0x4000	/* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS            0x8000	/* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_DOWNSHIFT_SHIFT    5
+#define M88E1000_PSSR_MDIX_SHIFT         6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000	/* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000	/* 1=Lost lock detect enabled.
+						 * Will assert lost lock and bring
+						 * link down if idle not seen
+						 * within 1ms in 1000BASE-T
+						 */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5     0x0060	/* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25      0x0070	/* 25  MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0       0x0000	/* NO  TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
+
+/* IGP01E1000 Specific Port Config Register - R/W */
+#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
+#define IGP01E1000_PSCFR_PRE_EN                0x0020
+#define IGP01E1000_PSCFR_SMART_SPEED           0x0080
+#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK    0x0100
+#define IGP01E1000_PSCFR_DISABLE_JABBER        0x0400
+#define IGP01E1000_PSCFR_DISABLE_TRANSMIT      0x2000
+
+/* IGP01E1000 Specific Port Status Register - R/O */
+#define IGP01E1000_PSSR_AUTONEG_FAILED         0x0001	/* RO LH SC */
+#define IGP01E1000_PSSR_POLARITY_REVERSED      0x0002
+#define IGP01E1000_PSSR_CABLE_LENGTH           0x007C
+#define IGP01E1000_PSSR_FULL_DUPLEX            0x0200
+#define IGP01E1000_PSSR_LINK_UP                0x0400
+#define IGP01E1000_PSSR_MDIX                   0x0800
+#define IGP01E1000_PSSR_SPEED_MASK             0xC000	/* speed bits mask */
+#define IGP01E1000_PSSR_SPEED_10MBPS           0x4000
+#define IGP01E1000_PSSR_SPEED_100MBPS          0x8000
+#define IGP01E1000_PSSR_SPEED_1000MBPS         0xC000
+#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT     0x0002	/* shift right 2 */
+#define IGP01E1000_PSSR_MDIX_SHIFT             0x000B	/* shift right 11 */
+
+/* IGP01E1000 Specific Port Control Register - R/W */
+#define IGP01E1000_PSCR_TP_LOOPBACK            0x0010
+#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR      0x0200
+#define IGP01E1000_PSCR_TEN_CRS_SELECT         0x0400
+#define IGP01E1000_PSCR_FLIP_CHIP              0x0800
+#define IGP01E1000_PSCR_AUTO_MDIX              0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX         0x2000	/* 0-MDI, 1-MDIX */
+
+/* IGP01E1000 Specific Port Link Health Register */
+#define IGP01E1000_PLHR_SS_DOWNGRADE           0x8000
+#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR    0x4000
+#define IGP01E1000_PLHR_MASTER_FAULT           0x2000
+#define IGP01E1000_PLHR_MASTER_RESOLUTION      0x1000
+#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK       0x0800	/* LH */
+#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW   0x0400	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_1             0x0200	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_0             0x0100
+#define IGP01E1000_PLHR_AUTONEG_FAULT          0x0040
+#define IGP01E1000_PLHR_AUTONEG_ACTIVE         0x0010
+#define IGP01E1000_PLHR_VALID_CHANNEL_D        0x0008
+#define IGP01E1000_PLHR_VALID_CHANNEL_C        0x0004
+#define IGP01E1000_PLHR_VALID_CHANNEL_B        0x0002
+#define IGP01E1000_PLHR_VALID_CHANNEL_A        0x0001
+
+/* IGP01E1000 Channel Quality Register */
+#define IGP01E1000_MSE_CHANNEL_D        0x000F
+#define IGP01E1000_MSE_CHANNEL_C        0x00F0
+#define IGP01E1000_MSE_CHANNEL_B        0x0F00
+#define IGP01E1000_MSE_CHANNEL_A        0xF000
+
+#define IGP02E1000_PM_SPD                         0x0001	/* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU                     0x0004	/* Enable LPLU in non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU                     0x0002	/* Enable LPLU in D0a mode */
+
+/* IGP01E1000 DSP reset macros */
+#define DSP_RESET_ENABLE     0x0
+#define DSP_RESET_DISABLE    0x2
+#define E1000_MAX_DSP_RESETS 10
+
+/* IGP01E1000 & IGP02E1000 AGC Registers */
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7	/* Coarse - 13:11, Fine - 10:7 */
+#define IGP02E1000_AGC_LENGTH_SHIFT 9	/* Coarse - 15:13, Fine - 12:9 */
+
+/* IGP02E1000 AGC Register Length 9-bit mask */
+#define IGP02E1000_AGC_LENGTH_MASK  0x7F
+
+/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
+#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
+
+/* The precision error of the cable length is +/- 10 meters */
+#define IGP01E1000_AGC_RANGE    10
+#define IGP02E1000_AGC_RANGE    15
+
+/* IGP01E1000 PCS Initialization register */
+/* bits 3:6 in the PCS registers stores the channels polarity */
+#define IGP01E1000_PHY_POLARITY_MASK    0x0078
+
+/* IGP01E1000 GMII FIFO Register */
+#define IGP01E1000_GMII_FLEX_SPD               0x10	/* Enable flexible speed
+							 * on Link-Up */
+#define IGP01E1000_GMII_SPD                    0x20	/* Enable SPD */
+
+/* IGP01E1000 Analog Register */
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS       0x20D1
+#define IGP01E1000_ANALOG_FUSE_STATUS             0x20D0
+#define IGP01E1000_ANALOG_FUSE_CONTROL            0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS             0x20DE
+
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK            0xF000
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK            0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK          0x0070
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED        0x0100
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL    0x0002
+
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH        0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10            0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1               0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10              0x0500
+
+/* Bit definitions for valid PHY IDs. */
+/* I = Integrated
+ * E = External
+ */
+#define M88_VENDOR         0x0141
+#define M88E1000_E_PHY_ID  0x01410C50
+#define M88E1000_I_PHY_ID  0x01410C30
+#define M88E1011_I_PHY_ID  0x01410C20
+#define IGP01E1000_I_PHY_ID  0x02A80380
+#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
+#define M88E1011_I_REV_4   0x04
+#define M88E1111_I_PHY_ID  0x01410CC0
+#define L1LXT971A_PHY_ID   0x001378E0
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define PHY_PAGE_SHIFT        5
+#define PHY_REG(page, reg)    \
+        (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+
+#define IGP3_PHY_PORT_CTRL           \
+        PHY_REG(769, 17)	/* Port General Configuration */
+#define IGP3_PHY_RATE_ADAPT_CTRL \
+        PHY_REG(769, 25)	/* Rate Adapter Control Register */
+
+#define IGP3_KMRN_FIFO_CTRL_STATS \
+        PHY_REG(770, 16)	/* KMRN FIFO's control/status register */
+#define IGP3_KMRN_POWER_MNG_CTRL \
+        PHY_REG(770, 17)	/* KMRN Power Management Control Register */
+#define IGP3_KMRN_INBAND_CTRL \
+        PHY_REG(770, 18)	/* KMRN Inband Control Register */
+#define IGP3_KMRN_DIAG \
+        PHY_REG(770, 19)	/* KMRN Diagnostic register */
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002	/* RX PCS is not synced */
+#define IGP3_KMRN_ACK_TIMEOUT \
+        PHY_REG(770, 20)	/* KMRN Acknowledge Timeouts register */
+
+#define IGP3_VR_CTRL \
+        PHY_REG(776, 18)	/* Voltage regulator control register */
+#define IGP3_VR_CTRL_MODE_SHUT       0x0200	/* Enter powerdown, shutdown VRs */
+#define IGP3_VR_CTRL_MODE_MASK       0x0300	/* Shutdown VR Mask */
+
+#define IGP3_CAPABILITY \
+        PHY_REG(776, 19)	/* IGP3 Capability Register */
+
+/* Capabilities for SKU Control  */
+#define IGP3_CAP_INITIATE_TEAM       0x0001	/* Able to initiate a team */
+#define IGP3_CAP_WFM                 0x0002	/* Support WoL and PXE */
+#define IGP3_CAP_ASF                 0x0004	/* Support ASF */
+#define IGP3_CAP_LPLU                0x0008	/* Support Low Power Link Up */
+#define IGP3_CAP_DC_AUTO_SPEED       0x0010	/* Support AC/DC Auto Link Speed */
+#define IGP3_CAP_SPD                 0x0020	/* Support Smart Power Down */
+#define IGP3_CAP_MULT_QUEUE          0x0040	/* Support 2 tx & 2 rx queues */
+#define IGP3_CAP_RSS                 0x0080	/* Support RSS */
+#define IGP3_CAP_8021PQ              0x0100	/* Support 802.1Q & 802.1p */
+#define IGP3_CAP_AMT_CB              0x0200	/* Support active manageability and circuit breaker */
+
+#define IGP3_PPC_JORDAN_EN           0x0001
+#define IGP3_PPC_JORDAN_GIGA_SPEED   0x0002
+
+#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS         0x0001
+#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK   0x001E
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA        0x0020
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_100         0x0040
+
+#define IGP3E1000_PHY_MISC_CTRL                0x1B	/* Misc. Ctrl register */
+#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET        0x1000	/* Duplex Manual Set */
+
+#define IGP3_KMRN_EXT_CTRL  PHY_REG(770, 18)
+#define IGP3_KMRN_EC_DIS_INBAND    0x0080
+
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330	/* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10	/* 100BaseTx Extended Status, Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL           0x11	/* 100BaseTx PHY special control register */
+#define IFE_PHY_RCV_FALSE_CARRIER         0x13	/* 100BaseTx Receive False Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT            0x14	/* 100BaseTx Receive Disconnect Counter */
+#define IFE_PHY_RCV_ERROT_FRAME           0x15	/* 100BaseTx Receive Error Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR            0x16	/* Receive Symbol Error Counter */
+#define IFE_PHY_PREM_EOF_ERR              0x17	/* 100BaseTx Receive Premature End Of Frame Error Counter */
+#define IFE_PHY_RCV_EOF_ERR               0x18	/* 10BaseT Receive End Of Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT          0x19	/* 10BaseT Transmit Jabber Detect Counter */
+#define IFE_PHY_EQUALIZER                 0x1A	/* PHY Equalizer Control and Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B	/* PHY special control and LED configuration */
+#define IFE_PHY_MDIX_CONTROL              0x1C	/* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL               0x1D	/* Hardware Integrity Control (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000	/* Default 1 = Disable auto reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN           0x0400	/* Indicates the power state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN            0x0200	/* Indicates the power state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED           0x0100	/* Indicates 10BASE-T polarity */
+#define IFE_PESC_PHY_ADDR_MASK               0x007C	/* Bit 6:2 for sampled PHY address */
+#define IFE_PESC_SPEED                       0x0002	/* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX                      0x0001	/* Auto-negotiation duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100	/* 1 = Dynamic Power Down disabled */
+#define IFE_PSC_FORCE_POLARITY               0x0020	/* 1=Reversed Polarity, 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010	/* 1=Auto Polarity Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001	/* 1=Jabber Disabled, 0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT         5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
+
+#define IFE_PMC_AUTO_MDIX                    0x0080	/* 1=enable MDI/MDI-X feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX                   0x0040	/* 1=force MDIX-X, 0=force MDI */
+#define IFE_PMC_MDIX_STATUS                  0x0020	/* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010	/* Resolution algorithm is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT              6
+#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000	/* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE                   0x8000	/* Enable the HWI feature */
+#define IFE_PHC_ABILITY_CHECK                0x4000	/* 1= Test Passed, 0=failed */
+#define IFE_PHC_TEST_EXEC                    0x2000	/* PHY launch test pulses on the wire */
+#define IFE_PHC_HIGHZ                        0x0200	/* 1 = Open Circuit */
+#define IFE_PHC_LOWZ                         0x0400	/* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600	/* Mask for indication type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK                0x01FF	/* Mask for distance to the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK               0x0000	/* Disable HWI */
+#define IFE_PSCL_PROBE_MODE                  0x0020	/* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF              0x0006	/* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON               0x0007	/* Force LEDs 0 and 2 on */
+
+#define ICH_FLASH_COMMAND_TIMEOUT            5000	/* 5000 uSecs - adjusted */
+#define ICH_FLASH_ERASE_TIMEOUT              3000000	/* Up to 3 seconds - worst case */
+#define ICH_FLASH_CYCLE_REPEAT_COUNT         10	/* 10 cycles */
+#define ICH_FLASH_SEG_SIZE_256               256
+#define ICH_FLASH_SEG_SIZE_4K                4096
+#define ICH_FLASH_SEG_SIZE_64K               65536
+
+#define ICH_CYCLE_READ                       0x0
+#define ICH_CYCLE_RESERVED                   0x1
+#define ICH_CYCLE_WRITE                      0x2
+#define ICH_CYCLE_ERASE                      0x3
+
+#define ICH_FLASH_GFPREG   0x0000
+#define ICH_FLASH_HSFSTS   0x0004
+#define ICH_FLASH_HSFCTL   0x0006
+#define ICH_FLASH_FADDR    0x0008
+#define ICH_FLASH_FDATA0   0x0010
+#define ICH_FLASH_FRACC    0x0050
+#define ICH_FLASH_FREG0    0x0054
+#define ICH_FLASH_FREG1    0x0058
+#define ICH_FLASH_FREG2    0x005C
+#define ICH_FLASH_FREG3    0x0060
+#define ICH_FLASH_FPR0     0x0074
+#define ICH_FLASH_FPR1     0x0078
+#define ICH_FLASH_SSFSTS   0x0090
+#define ICH_FLASH_SSFCTL   0x0092
+#define ICH_FLASH_PREOP    0x0094
+#define ICH_FLASH_OPTYPE   0x0096
+#define ICH_FLASH_OPMENU   0x0098
+
+#define ICH_FLASH_REG_MAPSIZE      0x00A0
+#define ICH_FLASH_SECTOR_SIZE      4096
+#define ICH_GFPREG_BASE_MASK       0x1FFF
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE        0xFFFFFFFF
+#define PHY_SOF             0x01
+#define PHY_OP_READ         0x02
+#define PHY_OP_WRITE        0x01
+#define PHY_TURNAROUND      0x02
+#define PHY_PREAMBLE_SIZE   32
+#define MII_CR_SPEED_1000   0x0040
+#define MII_CR_SPEED_100    0x2000
+#define MII_CR_SPEED_10     0x0000
+#define E1000_PHY_ADDRESS   0x01
+#define PHY_AUTO_NEG_TIME   45	/* 4.5 Seconds */
+#define PHY_FORCE_TIME      20	/* 2.0 Seconds */
+#define PHY_REVISION_MASK   0xFFFFFFF0
+#define DEVICE_SPEED_MASK   0x00000300	/* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK     0x01E0
+#define REG9_SPEED_MASK     0x0300
+#define ADVERTISE_10_HALF   0x0001
+#define ADVERTISE_10_FULL   0x0002
+#define ADVERTISE_100_HALF  0x0004
+#define ADVERTISE_100_FULL  0x0008
+#define ADVERTISE_1000_HALF 0x0010
+#define ADVERTISE_1000_FULL 0x0020
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F	/* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL    0x000F	/* All 10/100 speeds */
+#define AUTONEG_ADVERTISE_10_ALL        0x0003	/* 10Mbps Full & Half speeds */
+
+#endif /* _E1000_HW_H_ */
--- a/devices/e1000/e1000_hw-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000/e1000_hw-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -149,7 +149,7 @@
  */
 static void e1000_phy_init_script(struct e1000_hw *hw)
 {
-	u32 ret_val;
+	u32 ret_val __attribute__ ((unused));
 	u16 phy_saved_data;
 
 	e_dbg("e1000_phy_init_script");
@@ -396,7 +396,7 @@
 {
 	u32 ctrl;
 	u32 ctrl_ext;
-	u32 icr;
+	u32 icr __attribute__ ((unused));
 	u32 manc;
 	u32 led_ctrl;
 	s32 ret_val;
@@ -2302,12 +2302,12 @@
  */
 s32 e1000_check_for_link(struct e1000_hw *hw)
 {
-	u32 rxcw = 0;
-	u32 ctrl;
+	u32 rxcw __attribute__ ((unused)) = 0;
+	u32 ctrl __attribute__ ((unused));
 	u32 status;
 	u32 rctl;
 	u32 icr;
-	u32 signal = 0;
+	u32 signal __attribute__ ((unused)) = 0;
 	s32 ret_val;
 	u16 phy_data;
 
@@ -4539,7 +4539,7 @@
  */
 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
 {
-	volatile u32 temp;
+	volatile u32 temp __attribute__ ((unused));
 
 	temp = er32(CRCERRS);
 	temp = er32(SYMERRS);
--- a/devices/e1000/e1000_main-2.6.27-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000/e1000_main-2.6.27-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -4252,22 +4252,13 @@
 
 		length = le16_to_cpu(rx_desc->length);
 		/* !EOP means multiple descriptors were used to store a single
-		 * packet, if thats the case we need to toss it.  In fact, we
-		 * to toss every packet with the EOP bit clear and the next
-		 * frame that _does_ have the EOP bit set, as it is by
-		 * definition only a frame fragment
-		 */
-		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
-			set_bit(__E1000_DISCARDING, &adapter->flags);
-
-		if (test_bit(__E1000_DISCARDING, &adapter->flags)) {
+		 * packet, also make sure the frame isn't just CRC only */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
 			/* All receives must fit into a single buffer */
 			E1000_DBG("%s: Receive packet consumed multiple"
 				  " buffers\n", netdev->name);
 			/* recycle */
 			buffer_info->skb = skb;
-			if (status & E1000_RXD_STAT_EOP)
-				clear_bit(__E1000_DISCARDING, &adapter->flags);
 			goto next_desc;
 		}
 
@@ -4485,8 +4476,12 @@
 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
 			ps_page_dma->ps_page_dma[j] = 0;
-			skb_add_rx_frag(skb, j, ps_page->ps_page[j], 0, length);
+			skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
+			                   length);
 			ps_page->ps_page[j] = NULL;
+			skb->len += length;
+			skb->data_len += length;
+			skb->truesize += length;
 		}
 
 		/* strip the ethernet crc, problem is we're using pages now so
@@ -4691,7 +4686,7 @@
 			if (j < adapter->rx_ps_pages) {
 				if (likely(!ps_page->ps_page[j])) {
 					ps_page->ps_page[j] =
-						netdev_alloc_page(netdev);
+						alloc_page(GFP_ATOMIC);
 					if (unlikely(!ps_page->ps_page[j])) {
 						adapter->alloc_rx_buff_failed++;
 						goto no_buffers;
@@ -5314,9 +5309,6 @@
 
 	netif_device_detach(netdev);
 
-	if (state == pci_channel_io_perm_failure)
-		return PCI_ERS_RESULT_DISCONNECT;
-
 	if (netif_running(netdev))
 		e1000_down(adapter);
 	pci_disable_device(pdev);
--- a/devices/e1000/e1000_main-2.6.27-orig.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000/e1000_main-2.6.27-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -4134,22 +4134,13 @@
 
 		length = le16_to_cpu(rx_desc->length);
 		/* !EOP means multiple descriptors were used to store a single
-		 * packet, if thats the case we need to toss it.  In fact, we
-		 * to toss every packet with the EOP bit clear and the next
-		 * frame that _does_ have the EOP bit set, as it is by
-		 * definition only a frame fragment
-		 */
-		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
-			set_bit(__E1000_DISCARDING, &adapter->flags);
-
-		if (test_bit(__E1000_DISCARDING, &adapter->flags)) {
+		 * packet, also make sure the frame isn't just CRC only */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
 			/* All receives must fit into a single buffer */
 			E1000_DBG("%s: Receive packet consumed multiple"
 				  " buffers\n", netdev->name);
 			/* recycle */
 			buffer_info->skb = skb;
-			if (status & E1000_RXD_STAT_EOP)
-				clear_bit(__E1000_DISCARDING, &adapter->flags);
 			goto next_desc;
 		}
 
@@ -4358,8 +4349,12 @@
 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
 			ps_page_dma->ps_page_dma[j] = 0;
-			skb_add_rx_frag(skb, j, ps_page->ps_page[j], 0, length);
+			skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
+			                   length);
 			ps_page->ps_page[j] = NULL;
+			skb->len += length;
+			skb->data_len += length;
+			skb->truesize += length;
 		}
 
 		/* strip the ethernet crc, problem is we're using pages now so
@@ -4558,7 +4553,7 @@
 			if (j < adapter->rx_ps_pages) {
 				if (likely(!ps_page->ps_page[j])) {
 					ps_page->ps_page[j] =
-						netdev_alloc_page(netdev);
+						alloc_page(GFP_ATOMIC);
 					if (unlikely(!ps_page->ps_page[j])) {
 						adapter->alloc_rx_buff_failed++;
 						goto no_buffers;
@@ -5175,9 +5170,6 @@
 
 	netif_device_detach(netdev);
 
-	if (state == pci_channel_io_perm_failure)
-		return PCI_ERS_RESULT_DISCONNECT;
-
 	if (netif_running(netdev))
 		e1000_down(adapter);
 	pci_disable_device(pdev);
--- a/devices/e1000/e1000_main-2.6.29-org.c	Tue Apr 10 19:09:51 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4849 +0,0 @@
-/*******************************************************************************
-
-  Intel PRO/1000 Linux driver
-  Copyright(c) 1999 - 2006 Intel Corporation.
-
-  This program is free software; you can redistribute it and/or modify it
-  under the terms and conditions of the GNU General Public License,
-  version 2, as published by the Free Software Foundation.
-
-  This program is distributed in the hope it will be useful, but WITHOUT
-  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
-  more details.
-
-  You should have received a copy of the GNU General Public License along with
-  this program; if not, write to the Free Software Foundation, Inc.,
-  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
-  The full GNU General Public License is included in this distribution in
-  the file called "COPYING".
-
-  Contact Information:
-  Linux NICS <linux.nics@intel.com>
-  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
-  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include "e1000.h"
-#include <net/ip6_checksum.h>
-
-char e1000_driver_name[] = "e1000";
-static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
-#define DRV_VERSION "7.3.21-k3-NAPI"
-const char e1000_driver_version[] = DRV_VERSION;
-static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
-
-/* e1000_pci_tbl - PCI Device ID Table
- *
- * Last entry must be all 0s
- *
- * Macro expands to...
- *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
- */
-static struct pci_device_id e1000_pci_tbl[] = {
-	INTEL_E1000_ETHERNET_DEVICE(0x1000),
-	INTEL_E1000_ETHERNET_DEVICE(0x1001),
-	INTEL_E1000_ETHERNET_DEVICE(0x1004),
-	INTEL_E1000_ETHERNET_DEVICE(0x1008),
-	INTEL_E1000_ETHERNET_DEVICE(0x1009),
-	INTEL_E1000_ETHERNET_DEVICE(0x100C),
-	INTEL_E1000_ETHERNET_DEVICE(0x100D),
-	INTEL_E1000_ETHERNET_DEVICE(0x100E),
-	INTEL_E1000_ETHERNET_DEVICE(0x100F),
-	INTEL_E1000_ETHERNET_DEVICE(0x1010),
-	INTEL_E1000_ETHERNET_DEVICE(0x1011),
-	INTEL_E1000_ETHERNET_DEVICE(0x1012),
-	INTEL_E1000_ETHERNET_DEVICE(0x1013),
-	INTEL_E1000_ETHERNET_DEVICE(0x1014),
-	INTEL_E1000_ETHERNET_DEVICE(0x1015),
-	INTEL_E1000_ETHERNET_DEVICE(0x1016),
-	INTEL_E1000_ETHERNET_DEVICE(0x1017),
-	INTEL_E1000_ETHERNET_DEVICE(0x1018),
-	INTEL_E1000_ETHERNET_DEVICE(0x1019),
-	INTEL_E1000_ETHERNET_DEVICE(0x101A),
-	INTEL_E1000_ETHERNET_DEVICE(0x101D),
-	INTEL_E1000_ETHERNET_DEVICE(0x101E),
-	INTEL_E1000_ETHERNET_DEVICE(0x1026),
-	INTEL_E1000_ETHERNET_DEVICE(0x1027),
-	INTEL_E1000_ETHERNET_DEVICE(0x1028),
-	INTEL_E1000_ETHERNET_DEVICE(0x1075),
-	INTEL_E1000_ETHERNET_DEVICE(0x1076),
-	INTEL_E1000_ETHERNET_DEVICE(0x1077),
-	INTEL_E1000_ETHERNET_DEVICE(0x1078),
-	INTEL_E1000_ETHERNET_DEVICE(0x1079),
-	INTEL_E1000_ETHERNET_DEVICE(0x107A),
-	INTEL_E1000_ETHERNET_DEVICE(0x107B),
-	INTEL_E1000_ETHERNET_DEVICE(0x107C),
-	INTEL_E1000_ETHERNET_DEVICE(0x108A),
-	INTEL_E1000_ETHERNET_DEVICE(0x1099),
-	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
-	/* required last entry */
-	{0,}
-};
-
-MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
-
-int e1000_up(struct e1000_adapter *adapter);
-void e1000_down(struct e1000_adapter *adapter);
-void e1000_reinit_locked(struct e1000_adapter *adapter);
-void e1000_reset(struct e1000_adapter *adapter);
-int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
-int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
-int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
-void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
-void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
-static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
-                             struct e1000_tx_ring *txdr);
-static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
-                             struct e1000_rx_ring *rxdr);
-static void e1000_free_tx_resources(struct e1000_adapter *adapter,
-                             struct e1000_tx_ring *tx_ring);
-static void e1000_free_rx_resources(struct e1000_adapter *adapter,
-                             struct e1000_rx_ring *rx_ring);
-void e1000_update_stats(struct e1000_adapter *adapter);
-
-static int e1000_init_module(void);
-static void e1000_exit_module(void);
-static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
-static void __devexit e1000_remove(struct pci_dev *pdev);
-static int e1000_alloc_queues(struct e1000_adapter *adapter);
-static int e1000_sw_init(struct e1000_adapter *adapter);
-static int e1000_open(struct net_device *netdev);
-static int e1000_close(struct net_device *netdev);
-static void e1000_configure_tx(struct e1000_adapter *adapter);
-static void e1000_configure_rx(struct e1000_adapter *adapter);
-static void e1000_setup_rctl(struct e1000_adapter *adapter);
-static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
-static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
-static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
-                                struct e1000_tx_ring *tx_ring);
-static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
-                                struct e1000_rx_ring *rx_ring);
-static void e1000_set_rx_mode(struct net_device *netdev);
-static void e1000_update_phy_info(unsigned long data);
-static void e1000_watchdog(unsigned long data);
-static void e1000_82547_tx_fifo_stall(unsigned long data);
-static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
-static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
-static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
-static int e1000_set_mac(struct net_device *netdev, void *p);
-static irqreturn_t e1000_intr(int irq, void *data);
-static irqreturn_t e1000_intr_msi(int irq, void *data);
-static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
-			       struct e1000_tx_ring *tx_ring);
-static int e1000_clean(struct napi_struct *napi, int budget);
-static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
-			       struct e1000_rx_ring *rx_ring,
-			       int *work_done, int work_to_do);
-static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
-                                   struct e1000_rx_ring *rx_ring,
-				   int cleaned_count);
-static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
-static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
-			   int cmd);
-static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
-static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
-static void e1000_tx_timeout(struct net_device *dev);
-static void e1000_reset_task(struct work_struct *work);
-static void e1000_smartspeed(struct e1000_adapter *adapter);
-static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
-                                       struct sk_buff *skb);
-
-static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
-static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
-static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
-static void e1000_restore_vlan(struct e1000_adapter *adapter);
-
-static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
-#ifdef CONFIG_PM
-static int e1000_resume(struct pci_dev *pdev);
-#endif
-static void e1000_shutdown(struct pci_dev *pdev);
-
-#ifdef CONFIG_NET_POLL_CONTROLLER
-/* for netdump / net console */
-static void e1000_netpoll (struct net_device *netdev);
-#endif
-
-#define COPYBREAK_DEFAULT 256
-static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
-module_param(copybreak, uint, 0644);
-MODULE_PARM_DESC(copybreak,
-	"Maximum size of packet that is copied to a new buffer on receive");
-
-static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
-                     pci_channel_state_t state);
-static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
-static void e1000_io_resume(struct pci_dev *pdev);
-
-static struct pci_error_handlers e1000_err_handler = {
-	.error_detected = e1000_io_error_detected,
-	.slot_reset = e1000_io_slot_reset,
-	.resume = e1000_io_resume,
-};
-
-static struct pci_driver e1000_driver = {
-	.name     = e1000_driver_name,
-	.id_table = e1000_pci_tbl,
-	.probe    = e1000_probe,
-	.remove   = __devexit_p(e1000_remove),
-#ifdef CONFIG_PM
-	/* Power Managment Hooks */
-	.suspend  = e1000_suspend,
-	.resume   = e1000_resume,
-#endif
-	.shutdown = e1000_shutdown,
-	.err_handler = &e1000_err_handler
-};
-
-MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
-MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
-MODULE_LICENSE("GPL");
-MODULE_VERSION(DRV_VERSION);
-
-static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
-module_param(debug, int, 0);
-MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
-
-/**
- * e1000_init_module - Driver Registration Routine
- *
- * e1000_init_module is the first routine called when the driver is
- * loaded. All it does is register with the PCI subsystem.
- **/
-
-static int __init e1000_init_module(void)
-{
-	int ret;
-	printk(KERN_INFO "%s - version %s\n",
-	       e1000_driver_string, e1000_driver_version);
-
-	printk(KERN_INFO "%s\n", e1000_copyright);
-
-	ret = pci_register_driver(&e1000_driver);
-	if (copybreak != COPYBREAK_DEFAULT) {
-		if (copybreak == 0)
-			printk(KERN_INFO "e1000: copybreak disabled\n");
-		else
-			printk(KERN_INFO "e1000: copybreak enabled for "
-			       "packets <= %u bytes\n", copybreak);
-	}
-	return ret;
-}
-
-module_init(e1000_init_module);
-
-/**
- * e1000_exit_module - Driver Exit Cleanup Routine
- *
- * e1000_exit_module is called just before the driver is removed
- * from memory.
- **/
-
-static void __exit e1000_exit_module(void)
-{
-	pci_unregister_driver(&e1000_driver);
-}
-
-module_exit(e1000_exit_module);
-
-static int e1000_request_irq(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	irq_handler_t handler = e1000_intr;
-	int irq_flags = IRQF_SHARED;
-	int err;
-
-	if (hw->mac_type >= e1000_82571) {
-		adapter->have_msi = !pci_enable_msi(adapter->pdev);
-		if (adapter->have_msi) {
-			handler = e1000_intr_msi;
-			irq_flags = 0;
-		}
-	}
-
-	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
-	                  netdev);
-	if (err) {
-		if (adapter->have_msi)
-			pci_disable_msi(adapter->pdev);
-		DPRINTK(PROBE, ERR,
-		        "Unable to allocate interrupt Error: %d\n", err);
-	}
-
-	return err;
-}
-
-static void e1000_free_irq(struct e1000_adapter *adapter)
-{
-	struct net_device *netdev = adapter->netdev;
-
-	free_irq(adapter->pdev->irq, netdev);
-
-	if (adapter->have_msi)
-		pci_disable_msi(adapter->pdev);
-}
-
-/**
- * e1000_irq_disable - Mask off interrupt generation on the NIC
- * @adapter: board private structure
- **/
-
-static void e1000_irq_disable(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	ew32(IMC, ~0);
-	E1000_WRITE_FLUSH();
-	synchronize_irq(adapter->pdev->irq);
-}
-
-/**
- * e1000_irq_enable - Enable default interrupt generation settings
- * @adapter: board private structure
- **/
-
-static void e1000_irq_enable(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	ew32(IMS, IMS_ENABLE_MASK);
-	E1000_WRITE_FLUSH();
-}
-
-static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	u16 vid = hw->mng_cookie.vlan_id;
-	u16 old_vid = adapter->mng_vlan_id;
-	if (adapter->vlgrp) {
-		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
-			if (hw->mng_cookie.status &
-				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
-				e1000_vlan_rx_add_vid(netdev, vid);
-				adapter->mng_vlan_id = vid;
-			} else
-				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
-
-			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
-					(vid != old_vid) &&
-			    !vlan_group_get_device(adapter->vlgrp, old_vid))
-				e1000_vlan_rx_kill_vid(netdev, old_vid);
-		} else
-			adapter->mng_vlan_id = vid;
-	}
-}
-
-/**
- * e1000_release_hw_control - release control of the h/w to f/w
- * @adapter: address of board private structure
- *
- * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded. For AMT version (only with 82573) i
- * of the f/w this means that the network i/f is closed.
- *
- **/
-
-static void e1000_release_hw_control(struct e1000_adapter *adapter)
-{
-	u32 ctrl_ext;
-	u32 swsm;
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* Let firmware taken over control of h/w */
-	switch (hw->mac_type) {
-	case e1000_82573:
-		swsm = er32(SWSM);
-		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
-		break;
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_80003es2lan:
-	case e1000_ich8lan:
-		ctrl_ext = er32(CTRL_EXT);
-		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
-		break;
-	default:
-		break;
-	}
-}
-
-/**
- * e1000_get_hw_control - get control of the h/w from f/w
- * @adapter: address of board private structure
- *
- * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that
- * the driver is loaded. For AMT version (only with 82573)
- * of the f/w this means that the network i/f is open.
- *
- **/
-
-static void e1000_get_hw_control(struct e1000_adapter *adapter)
-{
-	u32 ctrl_ext;
-	u32 swsm;
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* Let firmware know the driver has taken over */
-	switch (hw->mac_type) {
-	case e1000_82573:
-		swsm = er32(SWSM);
-		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
-		break;
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_80003es2lan:
-	case e1000_ich8lan:
-		ctrl_ext = er32(CTRL_EXT);
-		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
-		break;
-	default:
-		break;
-	}
-}
-
-static void e1000_init_manageability(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (adapter->en_mng_pt) {
-		u32 manc = er32(MANC);
-
-		/* disable hardware interception of ARP */
-		manc &= ~(E1000_MANC_ARP_EN);
-
-		/* enable receiving management packets to the host */
-		/* this will probably generate destination unreachable messages
-		 * from the host OS, but the packets will be handled on SMBUS */
-		if (hw->has_manc2h) {
-			u32 manc2h = er32(MANC2H);
-
-			manc |= E1000_MANC_EN_MNG2HOST;
-#define E1000_MNG2HOST_PORT_623 (1 << 5)
-#define E1000_MNG2HOST_PORT_664 (1 << 6)
-			manc2h |= E1000_MNG2HOST_PORT_623;
-			manc2h |= E1000_MNG2HOST_PORT_664;
-			ew32(MANC2H, manc2h);
-		}
-
-		ew32(MANC, manc);
-	}
-}
-
-static void e1000_release_manageability(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (adapter->en_mng_pt) {
-		u32 manc = er32(MANC);
-
-		/* re-enable hardware interception of ARP */
-		manc |= E1000_MANC_ARP_EN;
-
-		if (hw->has_manc2h)
-			manc &= ~E1000_MANC_EN_MNG2HOST;
-
-		/* don't explicitly have to mess with MANC2H since
-		 * MANC has an enable disable that gates MANC2H */
-
-		ew32(MANC, manc);
-	}
-}
-
-/**
- * e1000_configure - configure the hardware for RX and TX
- * @adapter = private board structure
- **/
-static void e1000_configure(struct e1000_adapter *adapter)
-{
-	struct net_device *netdev = adapter->netdev;
-	int i;
-
-	e1000_set_rx_mode(netdev);
-
-	e1000_restore_vlan(adapter);
-	e1000_init_manageability(adapter);
-
-	e1000_configure_tx(adapter);
-	e1000_setup_rctl(adapter);
-	e1000_configure_rx(adapter);
-	/* call E1000_DESC_UNUSED which always leaves
-	 * at least 1 descriptor unused to make sure
-	 * next_to_use != next_to_clean */
-	for (i = 0; i < adapter->num_rx_queues; i++) {
-		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
-		adapter->alloc_rx_buf(adapter, ring,
-		                      E1000_DESC_UNUSED(ring));
-	}
-
-	adapter->tx_queue_len = netdev->tx_queue_len;
-}
-
-int e1000_up(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* hardware has been reset, we need to reload some things */
-	e1000_configure(adapter);
-
-	clear_bit(__E1000_DOWN, &adapter->flags);
-
-	napi_enable(&adapter->napi);
-
-	e1000_irq_enable(adapter);
-
-	/* fire a link change interrupt to start the watchdog */
-	ew32(ICS, E1000_ICS_LSC);
-	return 0;
-}
-
-/**
- * e1000_power_up_phy - restore link in case the phy was powered down
- * @adapter: address of board private structure
- *
- * The phy may be powered down to save power and turn off link when the
- * driver is unloaded and wake on lan is not enabled (among others)
- * *** this routine MUST be followed by a call to e1000_reset ***
- *
- **/
-
-void e1000_power_up_phy(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u16 mii_reg = 0;
-
-	/* Just clear the power down bit to wake the phy back up */
-	if (hw->media_type == e1000_media_type_copper) {
-		/* according to the manual, the phy will retain its
-		 * settings across a power-down/up cycle */
-		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
-		mii_reg &= ~MII_CR_POWER_DOWN;
-		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
-	}
-}
-
-static void e1000_power_down_phy(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* Power down the PHY so no link is implied when interface is down *
-	 * The PHY cannot be powered down if any of the following is true *
-	 * (a) WoL is enabled
-	 * (b) AMT is active
-	 * (c) SoL/IDER session is active */
-	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
-	   hw->media_type == e1000_media_type_copper) {
-		u16 mii_reg = 0;
-
-		switch (hw->mac_type) {
-		case e1000_82540:
-		case e1000_82545:
-		case e1000_82545_rev_3:
-		case e1000_82546:
-		case e1000_82546_rev_3:
-		case e1000_82541:
-		case e1000_82541_rev_2:
-		case e1000_82547:
-		case e1000_82547_rev_2:
-			if (er32(MANC) & E1000_MANC_SMBUS_EN)
-				goto out;
-			break;
-		case e1000_82571:
-		case e1000_82572:
-		case e1000_82573:
-		case e1000_80003es2lan:
-		case e1000_ich8lan:
-			if (e1000_check_mng_mode(hw) ||
-			    e1000_check_phy_reset_block(hw))
-				goto out;
-			break;
-		default:
-			goto out;
-		}
-		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
-		mii_reg |= MII_CR_POWER_DOWN;
-		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
-		mdelay(1);
-	}
-out:
-	return;
-}
-
-void e1000_down(struct e1000_adapter *adapter)
-{
-	struct net_device *netdev = adapter->netdev;
-
-	/* signal that we're down so the interrupt handler does not
-	 * reschedule our watchdog timer */
-	set_bit(__E1000_DOWN, &adapter->flags);
-
-	napi_disable(&adapter->napi);
-
-	e1000_irq_disable(adapter);
-
-	del_timer_sync(&adapter->tx_fifo_stall_timer);
-	del_timer_sync(&adapter->watchdog_timer);
-	del_timer_sync(&adapter->phy_info_timer);
-
-	netdev->tx_queue_len = adapter->tx_queue_len;
-	adapter->link_speed = 0;
-	adapter->link_duplex = 0;
-	netif_carrier_off(netdev);
-	netif_stop_queue(netdev);
-
-	e1000_reset(adapter);
-	e1000_clean_all_tx_rings(adapter);
-	e1000_clean_all_rx_rings(adapter);
-}
-
-void e1000_reinit_locked(struct e1000_adapter *adapter)
-{
-	WARN_ON(in_interrupt());
-	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
-		msleep(1);
-	e1000_down(adapter);
-	e1000_up(adapter);
-	clear_bit(__E1000_RESETTING, &adapter->flags);
-}
-
-void e1000_reset(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
-	u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
-	bool legacy_pba_adjust = false;
-
-	/* Repartition Pba for greater than 9k mtu
-	 * To take effect CTRL.RST is required.
-	 */
-
-	switch (hw->mac_type) {
-	case e1000_82542_rev2_0:
-	case e1000_82542_rev2_1:
-	case e1000_82543:
-	case e1000_82544:
-	case e1000_82540:
-	case e1000_82541:
-	case e1000_82541_rev_2:
-		legacy_pba_adjust = true;
-		pba = E1000_PBA_48K;
-		break;
-	case e1000_82545:
-	case e1000_82545_rev_3:
-	case e1000_82546:
-	case e1000_82546_rev_3:
-		pba = E1000_PBA_48K;
-		break;
-	case e1000_82547:
-	case e1000_82547_rev_2:
-		legacy_pba_adjust = true;
-		pba = E1000_PBA_30K;
-		break;
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_80003es2lan:
-		pba = E1000_PBA_38K;
-		break;
-	case e1000_82573:
-		pba = E1000_PBA_20K;
-		break;
-	case e1000_ich8lan:
-		pba = E1000_PBA_8K;
-	case e1000_undefined:
-	case e1000_num_macs:
-		break;
-	}
-
-	if (legacy_pba_adjust) {
-		if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
-			pba -= 8; /* allocate more FIFO for Tx */
-
-		if (hw->mac_type == e1000_82547) {
-			adapter->tx_fifo_head = 0;
-			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
-			adapter->tx_fifo_size =
-				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
-			atomic_set(&adapter->tx_fifo_stall, 0);
-		}
-	} else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
-		/* adjust PBA for jumbo frames */
-		ew32(PBA, pba);
-
-		/* To maintain wire speed transmits, the Tx FIFO should be
-		 * large enough to accomodate two full transmit packets,
-		 * rounded up to the next 1KB and expressed in KB.  Likewise,
-		 * the Rx FIFO should be large enough to accomodate at least
-		 * one full receive packet and is similarly rounded up and
-		 * expressed in KB. */
-		pba = er32(PBA);
-		/* upper 16 bits has Tx packet buffer allocation size in KB */
-		tx_space = pba >> 16;
-		/* lower 16 bits has Rx packet buffer allocation size in KB */
-		pba &= 0xffff;
-		/* don't include ethernet FCS because hardware appends/strips */
-		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
-		               VLAN_TAG_SIZE;
-		min_tx_space = min_rx_space;
-		min_tx_space *= 2;
-		min_tx_space = ALIGN(min_tx_space, 1024);
-		min_tx_space >>= 10;
-		min_rx_space = ALIGN(min_rx_space, 1024);
-		min_rx_space >>= 10;
-
-		/* If current Tx allocation is less than the min Tx FIFO size,
-		 * and the min Tx FIFO size is less than the current Rx FIFO
-		 * allocation, take space away from current Rx allocation */
-		if (tx_space < min_tx_space &&
-		    ((min_tx_space - tx_space) < pba)) {
-			pba = pba - (min_tx_space - tx_space);
-
-			/* PCI/PCIx hardware has PBA alignment constraints */
-			switch (hw->mac_type) {
-			case e1000_82545 ... e1000_82546_rev_3:
-				pba &= ~(E1000_PBA_8K - 1);
-				break;
-			default:
-				break;
-			}
-
-			/* if short on rx space, rx wins and must trump tx
-			 * adjustment or use Early Receive if available */
-			if (pba < min_rx_space) {
-				switch (hw->mac_type) {
-				case e1000_82573:
-					/* ERT enabled in e1000_configure_rx */
-					break;
-				default:
-					pba = min_rx_space;
-					break;
-				}
-			}
-		}
-	}
-
-	ew32(PBA, pba);
-
-	/* flow control settings */
-	/* Set the FC high water mark to 90% of the FIFO size.
-	 * Required to clear last 3 LSB */
-	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
-	/* We can't use 90% on small FIFOs because the remainder
-	 * would be less than 1 full frame.  In this case, we size
-	 * it to allow at least a full frame above the high water
-	 *  mark. */
-	if (pba < E1000_PBA_16K)
-		fc_high_water_mark = (pba * 1024) - 1600;
-
-	hw->fc_high_water = fc_high_water_mark;
-	hw->fc_low_water = fc_high_water_mark - 8;
-	if (hw->mac_type == e1000_80003es2lan)
-		hw->fc_pause_time = 0xFFFF;
-	else
-		hw->fc_pause_time = E1000_FC_PAUSE_TIME;
-	hw->fc_send_xon = 1;
-	hw->fc = hw->original_fc;
-
-	/* Allow time for pending master requests to run */
-	e1000_reset_hw(hw);
-	if (hw->mac_type >= e1000_82544)
-		ew32(WUC, 0);
-
-	if (e1000_init_hw(hw))
-		DPRINTK(PROBE, ERR, "Hardware Error\n");
-	e1000_update_mng_vlan(adapter);
-
-	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
-	if (hw->mac_type >= e1000_82544 &&
-	    hw->mac_type <= e1000_82547_rev_2 &&
-	    hw->autoneg == 1 &&
-	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
-		u32 ctrl = er32(CTRL);
-		/* clear phy power management bit if we are in gig only mode,
-		 * which if enabled will attempt negotiation to 100Mb, which
-		 * can cause a loss of link at power off or driver unload */
-		ctrl &= ~E1000_CTRL_SWDPIN3;
-		ew32(CTRL, ctrl);
-	}
-
-	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
-	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
-
-	e1000_reset_adaptive(hw);
-	e1000_phy_get_info(hw, &adapter->phy_info);
-
-	if (!adapter->smart_power_down &&
-	    (hw->mac_type == e1000_82571 ||
-	     hw->mac_type == e1000_82572)) {
-		u16 phy_data = 0;
-		/* speed up time to link by disabling smart power down, ignore
-		 * the return value of this function because there is nothing
-		 * different we would do if it failed */
-		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-		                   &phy_data);
-		phy_data &= ~IGP02E1000_PM_SPD;
-		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-		                    phy_data);
-	}
-
-	e1000_release_manageability(adapter);
-}
-
-/**
- *  Dump the eeprom for users having checksum issues
- **/
-static void e1000_dump_eeprom(struct e1000_adapter *adapter)
-{
-	struct net_device *netdev = adapter->netdev;
-	struct ethtool_eeprom eeprom;
-	const struct ethtool_ops *ops = netdev->ethtool_ops;
-	u8 *data;
-	int i;
-	u16 csum_old, csum_new = 0;
-
-	eeprom.len = ops->get_eeprom_len(netdev);
-	eeprom.offset = 0;
-
-	data = kmalloc(eeprom.len, GFP_KERNEL);
-	if (!data) {
-		printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
-		       " data\n");
-		return;
-	}
-
-	ops->get_eeprom(netdev, &eeprom, data);
-
-	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
-		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
-	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
-		csum_new += data[i] + (data[i + 1] << 8);
-	csum_new = EEPROM_SUM - csum_new;
-
-	printk(KERN_ERR "/*********************/\n");
-	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
-	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
-
-	printk(KERN_ERR "Offset    Values\n");
-	printk(KERN_ERR "========  ======\n");
-	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
-
-	printk(KERN_ERR "Include this output when contacting your support "
-	       "provider.\n");
-	printk(KERN_ERR "This is not a software error! Something bad "
-	       "happened to your hardware or\n");
-	printk(KERN_ERR "EEPROM image. Ignoring this "
-	       "problem could result in further problems,\n");
-	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
-	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
-	       "which is invalid\n");
-	printk(KERN_ERR "and requires you to set the proper MAC "
-	       "address manually before continuing\n");
-	printk(KERN_ERR "to enable this network device.\n");
-	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
-	       "to your hardware vendor\n");
-	printk(KERN_ERR "or Intel Customer Support.\n");
-	printk(KERN_ERR "/*********************/\n");
-
-	kfree(data);
-}
-
-/**
- * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
- * @pdev: PCI device information struct
- *
- * Return true if an adapter needs ioport resources
- **/
-static int e1000_is_need_ioport(struct pci_dev *pdev)
-{
-	switch (pdev->device) {
-	case E1000_DEV_ID_82540EM:
-	case E1000_DEV_ID_82540EM_LOM:
-	case E1000_DEV_ID_82540EP:
-	case E1000_DEV_ID_82540EP_LOM:
-	case E1000_DEV_ID_82540EP_LP:
-	case E1000_DEV_ID_82541EI:
-	case E1000_DEV_ID_82541EI_MOBILE:
-	case E1000_DEV_ID_82541ER:
-	case E1000_DEV_ID_82541ER_LOM:
-	case E1000_DEV_ID_82541GI:
-	case E1000_DEV_ID_82541GI_LF:
-	case E1000_DEV_ID_82541GI_MOBILE:
-	case E1000_DEV_ID_82544EI_COPPER:
-	case E1000_DEV_ID_82544EI_FIBER:
-	case E1000_DEV_ID_82544GC_COPPER:
-	case E1000_DEV_ID_82544GC_LOM:
-	case E1000_DEV_ID_82545EM_COPPER:
-	case E1000_DEV_ID_82545EM_FIBER:
-	case E1000_DEV_ID_82546EB_COPPER:
-	case E1000_DEV_ID_82546EB_FIBER:
-	case E1000_DEV_ID_82546EB_QUAD_COPPER:
-		return true;
-	default:
-		return false;
-	}
-}
-
-static const struct net_device_ops e1000_netdev_ops = {
-	.ndo_open		= e1000_open,
-	.ndo_stop		= e1000_close,
-	.ndo_start_xmit		= e1000_xmit_frame,
-	.ndo_get_stats		= e1000_get_stats,
-	.ndo_set_rx_mode	= e1000_set_rx_mode,
-	.ndo_set_mac_address	= e1000_set_mac,
-	.ndo_tx_timeout 	= e1000_tx_timeout,
-	.ndo_change_mtu		= e1000_change_mtu,
-	.ndo_do_ioctl		= e1000_ioctl,
-	.ndo_validate_addr	= eth_validate_addr,
-
-	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
-	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
-	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
-#ifdef CONFIG_NET_POLL_CONTROLLER
-	.ndo_poll_controller	= e1000_netpoll,
-#endif
-};
-
-/**
- * e1000_probe - Device Initialization Routine
- * @pdev: PCI device information struct
- * @ent: entry in e1000_pci_tbl
- *
- * Returns 0 on success, negative on failure
- *
- * e1000_probe initializes an adapter identified by a pci_dev structure.
- * The OS initialization, configuring of the adapter private structure,
- * and a hardware reset occur.
- **/
-static int __devinit e1000_probe(struct pci_dev *pdev,
-				 const struct pci_device_id *ent)
-{
-	struct net_device *netdev;
-	struct e1000_adapter *adapter;
-	struct e1000_hw *hw;
-
-	static int cards_found = 0;
-	static int global_quad_port_a = 0; /* global ksp3 port a indication */
-	int i, err, pci_using_dac;
-	u16 eeprom_data = 0;
-	u16 eeprom_apme_mask = E1000_EEPROM_APME;
-	int bars, need_ioport;
-
-	/* do not allocate ioport bars when not needed */
-	need_ioport = e1000_is_need_ioport(pdev);
-	if (need_ioport) {
-		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
-		err = pci_enable_device(pdev);
-	} else {
-		bars = pci_select_bars(pdev, IORESOURCE_MEM);
-		err = pci_enable_device_mem(pdev);
-	}
-	if (err)
-		return err;
-
-	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
-	    !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
-		pci_using_dac = 1;
-	} else {
-		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
-		if (err) {
-			err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
-			if (err) {
-				E1000_ERR("No usable DMA configuration, "
-					  "aborting\n");
-				goto err_dma;
-			}
-		}
-		pci_using_dac = 0;
-	}
-
-	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
-	if (err)
-		goto err_pci_reg;
-
-	pci_set_master(pdev);
-
-	err = -ENOMEM;
-	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
-	if (!netdev)
-		goto err_alloc_etherdev;
-
-	SET_NETDEV_DEV(netdev, &pdev->dev);
-
-	pci_set_drvdata(pdev, netdev);
-	adapter = netdev_priv(netdev);
-	adapter->netdev = netdev;
-	adapter->pdev = pdev;
-	adapter->msg_enable = (1 << debug) - 1;
-	adapter->bars = bars;
-	adapter->need_ioport = need_ioport;
-
-	hw = &adapter->hw;
-	hw->back = adapter;
-
-	err = -EIO;
-	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
-	if (!hw->hw_addr)
-		goto err_ioremap;
-
-	if (adapter->need_ioport) {
-		for (i = BAR_1; i <= BAR_5; i++) {
-			if (pci_resource_len(pdev, i) == 0)
-				continue;
-			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
-				hw->io_base = pci_resource_start(pdev, i);
-				break;
-			}
-		}
-	}
-
-	netdev->netdev_ops = &e1000_netdev_ops;
-	e1000_set_ethtool_ops(netdev);
-	netdev->watchdog_timeo = 5 * HZ;
-	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
-
-	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
-
-	adapter->bd_number = cards_found;
-
-	/* setup the private structure */
-
-	err = e1000_sw_init(adapter);
-	if (err)
-		goto err_sw_init;
-
-	err = -EIO;
-	/* Flash BAR mapping must happen after e1000_sw_init
-	 * because it depends on mac_type */
-	if ((hw->mac_type == e1000_ich8lan) &&
-	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
-		hw->flash_address = pci_ioremap_bar(pdev, 1);
-		if (!hw->flash_address)
-			goto err_flashmap;
-	}
-
-	if (e1000_check_phy_reset_block(hw))
-		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
-
-	if (hw->mac_type >= e1000_82543) {
-		netdev->features = NETIF_F_SG |
-				   NETIF_F_HW_CSUM |
-				   NETIF_F_HW_VLAN_TX |
-				   NETIF_F_HW_VLAN_RX |
-				   NETIF_F_HW_VLAN_FILTER;
-		if (hw->mac_type == e1000_ich8lan)
-			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
-	}
-
-	if ((hw->mac_type >= e1000_82544) &&
-	   (hw->mac_type != e1000_82547))
-		netdev->features |= NETIF_F_TSO;
-
-	if (hw->mac_type > e1000_82547_rev_2)
-		netdev->features |= NETIF_F_TSO6;
-	if (pci_using_dac)
-		netdev->features |= NETIF_F_HIGHDMA;
-
-	netdev->features |= NETIF_F_LLTX;
-
-	netdev->vlan_features |= NETIF_F_TSO;
-	netdev->vlan_features |= NETIF_F_TSO6;
-	netdev->vlan_features |= NETIF_F_HW_CSUM;
-	netdev->vlan_features |= NETIF_F_SG;
-
-	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
-
-	/* initialize eeprom parameters */
-	if (e1000_init_eeprom_params(hw)) {
-		E1000_ERR("EEPROM initialization failed\n");
-		goto err_eeprom;
-	}
-
-	/* before reading the EEPROM, reset the controller to
-	 * put the device in a known good starting state */
-
-	e1000_reset_hw(hw);
-
-	/* make sure the EEPROM is good */
-	if (e1000_validate_eeprom_checksum(hw) < 0) {
-		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
-		e1000_dump_eeprom(adapter);
-		/*
-		 * set MAC address to all zeroes to invalidate and temporary
-		 * disable this device for the user. This blocks regular
-		 * traffic while still permitting ethtool ioctls from reaching
-		 * the hardware as well as allowing the user to run the
-		 * interface after manually setting a hw addr using
-		 * `ip set address`
-		 */
-		memset(hw->mac_addr, 0, netdev->addr_len);
-	} else {
-		/* copy the MAC address out of the EEPROM */
-		if (e1000_read_mac_addr(hw))
-			DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
-	}
-	/* don't block initalization here due to bad MAC address */
-	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
-	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
-
-	if (!is_valid_ether_addr(netdev->perm_addr))
-		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
-
-	e1000_get_bus_info(hw);
-
-	init_timer(&adapter->tx_fifo_stall_timer);
-	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
-	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
-
-	init_timer(&adapter->watchdog_timer);
-	adapter->watchdog_timer.function = &e1000_watchdog;
-	adapter->watchdog_timer.data = (unsigned long) adapter;
-
-	init_timer(&adapter->phy_info_timer);
-	adapter->phy_info_timer.function = &e1000_update_phy_info;
-	adapter->phy_info_timer.data = (unsigned long)adapter;
-
-	INIT_WORK(&adapter->reset_task, e1000_reset_task);
-
-	e1000_check_options(adapter);
-
-	/* Initial Wake on LAN setting
-	 * If APM wake is enabled in the EEPROM,
-	 * enable the ACPI Magic Packet filter
-	 */
-
-	switch (hw->mac_type) {
-	case e1000_82542_rev2_0:
-	case e1000_82542_rev2_1:
-	case e1000_82543:
-		break;
-	case e1000_82544:
-		e1000_read_eeprom(hw,
-			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
-		eeprom_apme_mask = E1000_EEPROM_82544_APM;
-		break;
-	case e1000_ich8lan:
-		e1000_read_eeprom(hw,
-			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
-		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
-		break;
-	case e1000_82546:
-	case e1000_82546_rev_3:
-	case e1000_82571:
-	case e1000_80003es2lan:
-		if (er32(STATUS) & E1000_STATUS_FUNC_1){
-			e1000_read_eeprom(hw,
-				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
-			break;
-		}
-		/* Fall Through */
-	default:
-		e1000_read_eeprom(hw,
-			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
-		break;
-	}
-	if (eeprom_data & eeprom_apme_mask)
-		adapter->eeprom_wol |= E1000_WUFC_MAG;
-
-	/* now that we have the eeprom settings, apply the special cases
-	 * where the eeprom may be wrong or the board simply won't support
-	 * wake on lan on a particular port */
-	switch (pdev->device) {
-	case E1000_DEV_ID_82546GB_PCIE:
-		adapter->eeprom_wol = 0;
-		break;
-	case E1000_DEV_ID_82546EB_FIBER:
-	case E1000_DEV_ID_82546GB_FIBER:
-	case E1000_DEV_ID_82571EB_FIBER:
-		/* Wake events only supported on port A for dual fiber
-		 * regardless of eeprom setting */
-		if (er32(STATUS) & E1000_STATUS_FUNC_1)
-			adapter->eeprom_wol = 0;
-		break;
-	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER:
-	case E1000_DEV_ID_82571EB_QUAD_FIBER:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
-	case E1000_DEV_ID_82571PT_QUAD_COPPER:
-		/* if quad port adapter, disable WoL on all but port A */
-		if (global_quad_port_a != 0)
-			adapter->eeprom_wol = 0;
-		else
-			adapter->quad_port_a = 1;
-		/* Reset for multiple quad port adapters */
-		if (++global_quad_port_a == 4)
-			global_quad_port_a = 0;
-		break;
-	}
-
-	/* initialize the wol settings based on the eeprom settings */
-	adapter->wol = adapter->eeprom_wol;
-	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
-
-	/* print bus type/speed/width info */
-	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
-		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
-		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
-		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
-		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
-		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
-		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
-		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
-		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
-		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
-		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
-		 "32-bit"));
-
-	printk("%pM\n", netdev->dev_addr);
-
-	if (hw->bus_type == e1000_bus_type_pci_express) {
-		DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
-			"longer be supported by this driver in the future.\n",
-			pdev->vendor, pdev->device);
-		DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
-			"driver instead.\n");
-	}
-
-	/* reset the hardware with the new settings */
-	e1000_reset(adapter);
-
-	/* If the controller is 82573 and f/w is AMT, do not set
-	 * DRV_LOAD until the interface is up.  For all other cases,
-	 * let the f/w know that the h/w is now under the control
-	 * of the driver. */
-	if (hw->mac_type != e1000_82573 ||
-	    !e1000_check_mng_mode(hw))
-		e1000_get_hw_control(adapter);
-
-	/* tell the stack to leave us alone until e1000_open() is called */
-	netif_carrier_off(netdev);
-	netif_stop_queue(netdev);
-
-	strcpy(netdev->name, "eth%d");
-	err = register_netdev(netdev);
-	if (err)
-		goto err_register;
-
-	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
-
-	cards_found++;
-	return 0;
-
-err_register:
-	e1000_release_hw_control(adapter);
-err_eeprom:
-	if (!e1000_check_phy_reset_block(hw))
-		e1000_phy_hw_reset(hw);
-
-	if (hw->flash_address)
-		iounmap(hw->flash_address);
-err_flashmap:
-	kfree(adapter->tx_ring);
-	kfree(adapter->rx_ring);
-err_sw_init:
-	iounmap(hw->hw_addr);
-err_ioremap:
-	free_netdev(netdev);
-err_alloc_etherdev:
-	pci_release_selected_regions(pdev, bars);
-err_pci_reg:
-err_dma:
-	pci_disable_device(pdev);
-	return err;
-}
-
-/**
- * e1000_remove - Device Removal Routine
- * @pdev: PCI device information struct
- *
- * e1000_remove is called by the PCI subsystem to alert the driver
- * that it should release a PCI device.  The could be caused by a
- * Hot-Plug event, or because the driver is going to be removed from
- * memory.
- **/
-
-static void __devexit e1000_remove(struct pci_dev *pdev)
-{
-	struct net_device *netdev = pci_get_drvdata(pdev);
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	cancel_work_sync(&adapter->reset_task);
-
-	e1000_release_manageability(adapter);
-
-	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
-	 * would have already happened in close and is redundant. */
-	e1000_release_hw_control(adapter);
-
-	unregister_netdev(netdev);
-
-	if (!e1000_check_phy_reset_block(hw))
-		e1000_phy_hw_reset(hw);
-
-	kfree(adapter->tx_ring);
-	kfree(adapter->rx_ring);
-
-	iounmap(hw->hw_addr);
-	if (hw->flash_address)
-		iounmap(hw->flash_address);
-	pci_release_selected_regions(pdev, adapter->bars);
-
-	free_netdev(netdev);
-
-	pci_disable_device(pdev);
-}
-
-/**
- * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
- * @adapter: board private structure to initialize
- *
- * e1000_sw_init initializes the Adapter private data structure.
- * Fields are initialized based on PCI device information and
- * OS network device settings (MTU size).
- **/
-
-static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	struct pci_dev *pdev = adapter->pdev;
-
-	/* PCI config space info */
-
-	hw->vendor_id = pdev->vendor;
-	hw->device_id = pdev->device;
-	hw->subsystem_vendor_id = pdev->subsystem_vendor;
-	hw->subsystem_id = pdev->subsystem_device;
-	hw->revision_id = pdev->revision;
-
-	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
-
-	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
-	hw->max_frame_size = netdev->mtu +
-			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
-	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
-
-	/* identify the MAC */
-
-	if (e1000_set_mac_type(hw)) {
-		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
-		return -EIO;
-	}
-
-	switch (hw->mac_type) {
-	default:
-		break;
-	case e1000_82541:
-	case e1000_82547:
-	case e1000_82541_rev_2:
-	case e1000_82547_rev_2:
-		hw->phy_init_script = 1;
-		break;
-	}
-
-	e1000_set_media_type(hw);
-
-	hw->wait_autoneg_complete = false;
-	hw->tbi_compatibility_en = true;
-	hw->adaptive_ifs = true;
-
-	/* Copper options */
-
-	if (hw->media_type == e1000_media_type_copper) {
-		hw->mdix = AUTO_ALL_MODES;
-		hw->disable_polarity_correction = false;
-		hw->master_slave = E1000_MASTER_SLAVE;
-	}
-
-	adapter->num_tx_queues = 1;
-	adapter->num_rx_queues = 1;
-
-	if (e1000_alloc_queues(adapter)) {
-		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
-		return -ENOMEM;
-	}
-
-	spin_lock_init(&adapter->tx_queue_lock);
-
-	/* Explicitly disable IRQ since the NIC can be in any state. */
-	e1000_irq_disable(adapter);
-
-	spin_lock_init(&adapter->stats_lock);
-
-	set_bit(__E1000_DOWN, &adapter->flags);
-
-	return 0;
-}
-
-/**
- * e1000_alloc_queues - Allocate memory for all rings
- * @adapter: board private structure to initialize
- *
- * We allocate one ring per queue at run-time since we don't know the
- * number of queues at compile-time.
- **/
-
-static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
-{
-	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
-	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
-	if (!adapter->tx_ring)
-		return -ENOMEM;
-
-	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
-	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
-	if (!adapter->rx_ring) {
-		kfree(adapter->tx_ring);
-		return -ENOMEM;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- * e1000_open - Called when a network interface is made active
- * @netdev: network interface device structure
- *
- * Returns 0 on success, negative value on failure
- *
- * The open entry point is called when a network interface is made
- * active by the system (IFF_UP).  At this point all resources needed
- * for transmit and receive operations are allocated, the interrupt
- * handler is registered with the OS, the watchdog timer is started,
- * and the stack is notified that the interface is ready.
- **/
-
-static int e1000_open(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	int err;
-
-	/* disallow open during test */
-	if (test_bit(__E1000_TESTING, &adapter->flags))
-		return -EBUSY;
-
-	/* allocate transmit descriptors */
-	err = e1000_setup_all_tx_resources(adapter);
-	if (err)
-		goto err_setup_tx;
-
-	/* allocate receive descriptors */
-	err = e1000_setup_all_rx_resources(adapter);
-	if (err)
-		goto err_setup_rx;
-
-	e1000_power_up_phy(adapter);
-
-	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
-	if ((hw->mng_cookie.status &
-			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
-		e1000_update_mng_vlan(adapter);
-	}
-
-	/* If AMT is enabled, let the firmware know that the network
-	 * interface is now open */
-	if (hw->mac_type == e1000_82573 &&
-	    e1000_check_mng_mode(hw))
-		e1000_get_hw_control(adapter);
-
-	/* before we allocate an interrupt, we must be ready to handle it.
-	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
-	 * as soon as we call pci_request_irq, so we have to setup our
-	 * clean_rx handler before we do so.  */
-	e1000_configure(adapter);
-
-	err = e1000_request_irq(adapter);
-	if (err)
-		goto err_req_irq;
-
-	/* From here on the code is the same as e1000_up() */
-	clear_bit(__E1000_DOWN, &adapter->flags);
-
-	napi_enable(&adapter->napi);
-
-	e1000_irq_enable(adapter);
-
-	netif_start_queue(netdev);
-
-	/* fire a link status change interrupt to start the watchdog */
-	ew32(ICS, E1000_ICS_LSC);
-
-	return E1000_SUCCESS;
-
-err_req_irq:
-	e1000_release_hw_control(adapter);
-	e1000_power_down_phy(adapter);
-	e1000_free_all_rx_resources(adapter);
-err_setup_rx:
-	e1000_free_all_tx_resources(adapter);
-err_setup_tx:
-	e1000_reset(adapter);
-
-	return err;
-}
-
-/**
- * e1000_close - Disables a network interface
- * @netdev: network interface device structure
- *
- * Returns 0, this is not allowed to fail
- *
- * The close entry point is called when an interface is de-activated
- * by the OS.  The hardware is still under the drivers control, but
- * needs to be disabled.  A global MAC reset is issued to stop the
- * hardware, and all transmit and receive resources are freed.
- **/
-
-static int e1000_close(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
-	e1000_down(adapter);
-	e1000_power_down_phy(adapter);
-	e1000_free_irq(adapter);
-
-	e1000_free_all_tx_resources(adapter);
-	e1000_free_all_rx_resources(adapter);
-
-	/* kill manageability vlan ID if supported, but not if a vlan with
-	 * the same ID is registered on the host OS (let 8021q kill it) */
-	if ((hw->mng_cookie.status &
-			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
-	     !(adapter->vlgrp &&
-	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
-		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
-	}
-
-	/* If AMT is enabled, let the firmware know that the network
-	 * interface is now closed */
-	if (hw->mac_type == e1000_82573 &&
-	    e1000_check_mng_mode(hw))
-		e1000_release_hw_control(adapter);
-
-	return 0;
-}
-
-/**
- * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
- * @adapter: address of board private structure
- * @start: address of beginning of memory
- * @len: length of memory
- **/
-static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
-				  unsigned long len)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	unsigned long begin = (unsigned long)start;
-	unsigned long end = begin + len;
-
-	/* First rev 82545 and 82546 need to not allow any memory
-	 * write location to cross 64k boundary due to errata 23 */
-	if (hw->mac_type == e1000_82545 ||
-	    hw->mac_type == e1000_82546) {
-		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
-	}
-
-	return true;
-}
-
-/**
- * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
- * @adapter: board private structure
- * @txdr:    tx descriptor ring (for a specific queue) to setup
- *
- * Return 0 on success, negative on failure
- **/
-
-static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
-				    struct e1000_tx_ring *txdr)
-{
-	struct pci_dev *pdev = adapter->pdev;
-	int size;
-
-	size = sizeof(struct e1000_buffer) * txdr->count;
-	txdr->buffer_info = vmalloc(size);
-	if (!txdr->buffer_info) {
-		DPRINTK(PROBE, ERR,
-		"Unable to allocate memory for the transmit descriptor ring\n");
-		return -ENOMEM;
-	}
-	memset(txdr->buffer_info, 0, size);
-
-	/* round up to nearest 4K */
-
-	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
-	txdr->size = ALIGN(txdr->size, 4096);
-
-	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
-	if (!txdr->desc) {
-setup_tx_desc_die:
-		vfree(txdr->buffer_info);
-		DPRINTK(PROBE, ERR,
-		"Unable to allocate memory for the transmit descriptor ring\n");
-		return -ENOMEM;
-	}
-
-	/* Fix for errata 23, can't cross 64kB boundary */
-	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
-		void *olddesc = txdr->desc;
-		dma_addr_t olddma = txdr->dma;
-		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
-				     "at %p\n", txdr->size, txdr->desc);
-		/* Try again, without freeing the previous */
-		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
-		/* Failed allocation, critical failure */
-		if (!txdr->desc) {
-			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
-			goto setup_tx_desc_die;
-		}
-
-		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
-			/* give up */
-			pci_free_consistent(pdev, txdr->size, txdr->desc,
-					    txdr->dma);
-			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
-			DPRINTK(PROBE, ERR,
-				"Unable to allocate aligned memory "
-				"for the transmit descriptor ring\n");
-			vfree(txdr->buffer_info);
-			return -ENOMEM;
-		} else {
-			/* Free old allocation, new allocation was successful */
-			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
-		}
-	}
-	memset(txdr->desc, 0, txdr->size);
-
-	txdr->next_to_use = 0;
-	txdr->next_to_clean = 0;
-	spin_lock_init(&txdr->tx_lock);
-
-	return 0;
-}
-
-/**
- * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
- * 				  (Descriptors) for all queues
- * @adapter: board private structure
- *
- * Return 0 on success, negative on failure
- **/
-
-int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
-{
-	int i, err = 0;
-
-	for (i = 0; i < adapter->num_tx_queues; i++) {
-		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
-		if (err) {
-			DPRINTK(PROBE, ERR,
-				"Allocation for Tx Queue %u failed\n", i);
-			for (i-- ; i >= 0; i--)
-				e1000_free_tx_resources(adapter,
-							&adapter->tx_ring[i]);
-			break;
-		}
-	}
-
-	return err;
-}
-
-/**
- * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Tx unit of the MAC after a reset.
- **/
-
-static void e1000_configure_tx(struct e1000_adapter *adapter)
-{
-	u64 tdba;
-	struct e1000_hw *hw = &adapter->hw;
-	u32 tdlen, tctl, tipg, tarc;
-	u32 ipgr1, ipgr2;
-
-	/* Setup the HW Tx Head and Tail descriptor pointers */
-
-	switch (adapter->num_tx_queues) {
-	case 1:
-	default:
-		tdba = adapter->tx_ring[0].dma;
-		tdlen = adapter->tx_ring[0].count *
-			sizeof(struct e1000_tx_desc);
-		ew32(TDLEN, tdlen);
-		ew32(TDBAH, (tdba >> 32));
-		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
-		ew32(TDT, 0);
-		ew32(TDH, 0);
-		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
-		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
-		break;
-	}
-
-	/* Set the default values for the Tx Inter Packet Gap timer */
-	if (hw->mac_type <= e1000_82547_rev_2 &&
-	    (hw->media_type == e1000_media_type_fiber ||
-	     hw->media_type == e1000_media_type_internal_serdes))
-		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
-	else
-		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
-
-	switch (hw->mac_type) {
-	case e1000_82542_rev2_0:
-	case e1000_82542_rev2_1:
-		tipg = DEFAULT_82542_TIPG_IPGT;
-		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
-		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
-		break;
-	case e1000_80003es2lan:
-		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
-		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
-		break;
-	default:
-		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
-		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
-		break;
-	}
-	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
-	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
-	ew32(TIPG, tipg);
-
-	/* Set the Tx Interrupt Delay register */
-
-	ew32(TIDV, adapter->tx_int_delay);
-	if (hw->mac_type >= e1000_82540)
-		ew32(TADV, adapter->tx_abs_int_delay);
-
-	/* Program the Transmit Control Register */
-
-	tctl = er32(TCTL);
-	tctl &= ~E1000_TCTL_CT;
-	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
-		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
-
-	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
-		tarc = er32(TARC0);
-		/* set the speed mode bit, we'll clear it if we're not at
-		 * gigabit link later */
-		tarc |= (1 << 21);
-		ew32(TARC0, tarc);
-	} else if (hw->mac_type == e1000_80003es2lan) {
-		tarc = er32(TARC0);
-		tarc |= 1;
-		ew32(TARC0, tarc);
-		tarc = er32(TARC1);
-		tarc |= 1;
-		ew32(TARC1, tarc);
-	}
-
-	e1000_config_collision_dist(hw);
-
-	/* Setup Transmit Descriptor Settings for eop descriptor */
-	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
-
-	/* only set IDE if we are delaying interrupts using the timers */
-	if (adapter->tx_int_delay)
-		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
-
-	if (hw->mac_type < e1000_82543)
-		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
-	else
-		adapter->txd_cmd |= E1000_TXD_CMD_RS;
-
-	/* Cache if we're 82544 running in PCI-X because we'll
-	 * need this to apply a workaround later in the send path. */
-	if (hw->mac_type == e1000_82544 &&
-	    hw->bus_type == e1000_bus_type_pcix)
-		adapter->pcix_82544 = 1;
-
-	ew32(TCTL, tctl);
-
-}
-
-/**
- * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
- * @adapter: board private structure
- * @rxdr:    rx descriptor ring (for a specific queue) to setup
- *
- * Returns 0 on success, negative on failure
- **/
-
-static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
-				    struct e1000_rx_ring *rxdr)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct pci_dev *pdev = adapter->pdev;
-	int size, desc_len;
-
-	size = sizeof(struct e1000_buffer) * rxdr->count;
-	rxdr->buffer_info = vmalloc(size);
-	if (!rxdr->buffer_info) {
-		DPRINTK(PROBE, ERR,
-		"Unable to allocate memory for the receive descriptor ring\n");
-		return -ENOMEM;
-	}
-	memset(rxdr->buffer_info, 0, size);
-
-	if (hw->mac_type <= e1000_82547_rev_2)
-		desc_len = sizeof(struct e1000_rx_desc);
-	else
-		desc_len = sizeof(union e1000_rx_desc_packet_split);
-
-	/* Round up to nearest 4K */
-
-	rxdr->size = rxdr->count * desc_len;
-	rxdr->size = ALIGN(rxdr->size, 4096);
-
-	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
-
-	if (!rxdr->desc) {
-		DPRINTK(PROBE, ERR,
-		"Unable to allocate memory for the receive descriptor ring\n");
-setup_rx_desc_die:
-		vfree(rxdr->buffer_info);
-		return -ENOMEM;
-	}
-
-	/* Fix for errata 23, can't cross 64kB boundary */
-	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
-		void *olddesc = rxdr->desc;
-		dma_addr_t olddma = rxdr->dma;
-		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
-				     "at %p\n", rxdr->size, rxdr->desc);
-		/* Try again, without freeing the previous */
-		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
-		/* Failed allocation, critical failure */
-		if (!rxdr->desc) {
-			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
-			DPRINTK(PROBE, ERR,
-				"Unable to allocate memory "
-				"for the receive descriptor ring\n");
-			goto setup_rx_desc_die;
-		}
-
-		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
-			/* give up */
-			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
-					    rxdr->dma);
-			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
-			DPRINTK(PROBE, ERR,
-				"Unable to allocate aligned memory "
-				"for the receive descriptor ring\n");
-			goto setup_rx_desc_die;
-		} else {
-			/* Free old allocation, new allocation was successful */
-			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
-		}
-	}
-	memset(rxdr->desc, 0, rxdr->size);
-
-	rxdr->next_to_clean = 0;
-	rxdr->next_to_use = 0;
-
-	return 0;
-}
-
-/**
- * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
- * 				  (Descriptors) for all queues
- * @adapter: board private structure
- *
- * Return 0 on success, negative on failure
- **/
-
-int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
-{
-	int i, err = 0;
-
-	for (i = 0; i < adapter->num_rx_queues; i++) {
-		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
-		if (err) {
-			DPRINTK(PROBE, ERR,
-				"Allocation for Rx Queue %u failed\n", i);
-			for (i-- ; i >= 0; i--)
-				e1000_free_rx_resources(adapter,
-							&adapter->rx_ring[i]);
-			break;
-		}
-	}
-
-	return err;
-}
-
-/**
- * e1000_setup_rctl - configure the receive control registers
- * @adapter: Board private structure
- **/
-#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
-			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
-static void e1000_setup_rctl(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u32 rctl;
-
-	rctl = er32(RCTL);
-
-	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
-
-	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
-		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
-		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
-
-	if (hw->tbi_compatibility_on == 1)
-		rctl |= E1000_RCTL_SBP;
-	else
-		rctl &= ~E1000_RCTL_SBP;
-
-	if (adapter->netdev->mtu <= ETH_DATA_LEN)
-		rctl &= ~E1000_RCTL_LPE;
-	else
-		rctl |= E1000_RCTL_LPE;
-
-	/* Setup buffer sizes */
-	rctl &= ~E1000_RCTL_SZ_4096;
-	rctl |= E1000_RCTL_BSEX;
-	switch (adapter->rx_buffer_len) {
-		case E1000_RXBUFFER_256:
-			rctl |= E1000_RCTL_SZ_256;
-			rctl &= ~E1000_RCTL_BSEX;
-			break;
-		case E1000_RXBUFFER_512:
-			rctl |= E1000_RCTL_SZ_512;
-			rctl &= ~E1000_RCTL_BSEX;
-			break;
-		case E1000_RXBUFFER_1024:
-			rctl |= E1000_RCTL_SZ_1024;
-			rctl &= ~E1000_RCTL_BSEX;
-			break;
-		case E1000_RXBUFFER_2048:
-		default:
-			rctl |= E1000_RCTL_SZ_2048;
-			rctl &= ~E1000_RCTL_BSEX;
-			break;
-		case E1000_RXBUFFER_4096:
-			rctl |= E1000_RCTL_SZ_4096;
-			break;
-		case E1000_RXBUFFER_8192:
-			rctl |= E1000_RCTL_SZ_8192;
-			break;
-		case E1000_RXBUFFER_16384:
-			rctl |= E1000_RCTL_SZ_16384;
-			break;
-	}
-
-	ew32(RCTL, rctl);
-}
-
-/**
- * e1000_configure_rx - Configure 8254x Receive Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Rx unit of the MAC after a reset.
- **/
-
-static void e1000_configure_rx(struct e1000_adapter *adapter)
-{
-	u64 rdba;
-	struct e1000_hw *hw = &adapter->hw;
-	u32 rdlen, rctl, rxcsum, ctrl_ext;
-
-	rdlen = adapter->rx_ring[0].count *
-		sizeof(struct e1000_rx_desc);
-	adapter->clean_rx = e1000_clean_rx_irq;
-	adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
-
-	/* disable receives while setting up the descriptors */
-	rctl = er32(RCTL);
-	ew32(RCTL, rctl & ~E1000_RCTL_EN);
-
-	/* set the Receive Delay Timer Register */
-	ew32(RDTR, adapter->rx_int_delay);
-
-	if (hw->mac_type >= e1000_82540) {
-		ew32(RADV, adapter->rx_abs_int_delay);
-		if (adapter->itr_setting != 0)
-			ew32(ITR, 1000000000 / (adapter->itr * 256));
-	}
-
-	if (hw->mac_type >= e1000_82571) {
-		ctrl_ext = er32(CTRL_EXT);
-		/* Reset delay timers after every interrupt */
-		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
-		/* Auto-Mask interrupts upon ICR access */
-		ctrl_ext |= E1000_CTRL_EXT_IAME;
-		ew32(IAM, 0xffffffff);
-		ew32(CTRL_EXT, ctrl_ext);
-		E1000_WRITE_FLUSH();
-	}
-
-	/* Setup the HW Rx Head and Tail Descriptor Pointers and
-	 * the Base and Length of the Rx Descriptor Ring */
-	switch (adapter->num_rx_queues) {
-	case 1:
-	default:
-		rdba = adapter->rx_ring[0].dma;
-		ew32(RDLEN, rdlen);
-		ew32(RDBAH, (rdba >> 32));
-		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
-		ew32(RDT, 0);
-		ew32(RDH, 0);
-		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
-		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
-		break;
-	}
-
-	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
-	if (hw->mac_type >= e1000_82543) {
-		rxcsum = er32(RXCSUM);
-		if (adapter->rx_csum)
-			rxcsum |= E1000_RXCSUM_TUOFL;
-		else
-			/* don't need to clear IPPCSE as it defaults to 0 */
-			rxcsum &= ~E1000_RXCSUM_TUOFL;
-		ew32(RXCSUM, rxcsum);
-	}
-
-	/* Enable Receives */
-	ew32(RCTL, rctl);
-}
-
-/**
- * e1000_free_tx_resources - Free Tx Resources per Queue
- * @adapter: board private structure
- * @tx_ring: Tx descriptor ring for a specific queue
- *
- * Free all transmit software resources
- **/
-
-static void e1000_free_tx_resources(struct e1000_adapter *adapter,
-				    struct e1000_tx_ring *tx_ring)
-{
-	struct pci_dev *pdev = adapter->pdev;
-
-	e1000_clean_tx_ring(adapter, tx_ring);
-
-	vfree(tx_ring->buffer_info);
-	tx_ring->buffer_info = NULL;
-
-	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
-
-	tx_ring->desc = NULL;
-}
-
-/**
- * e1000_free_all_tx_resources - Free Tx Resources for All Queues
- * @adapter: board private structure
- *
- * Free all transmit software resources
- **/
-
-void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
-{
-	int i;
-
-	for (i = 0; i < adapter->num_tx_queues; i++)
-		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
-}
-
-static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
-					     struct e1000_buffer *buffer_info)
-{
-	if (buffer_info->dma) {
-		pci_unmap_page(adapter->pdev,
-				buffer_info->dma,
-				buffer_info->length,
-				PCI_DMA_TODEVICE);
-		buffer_info->dma = 0;
-	}
-	if (buffer_info->skb) {
-		dev_kfree_skb_any(buffer_info->skb);
-		buffer_info->skb = NULL;
-	}
-	/* buffer_info must be completely set up in the transmit path */
-}
-
-/**
- * e1000_clean_tx_ring - Free Tx Buffers
- * @adapter: board private structure
- * @tx_ring: ring to be cleaned
- **/
-
-static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
-				struct e1000_tx_ring *tx_ring)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct e1000_buffer *buffer_info;
-	unsigned long size;
-	unsigned int i;
-
-	/* Free all the Tx ring sk_buffs */
-
-	for (i = 0; i < tx_ring->count; i++) {
-		buffer_info = &tx_ring->buffer_info[i];
-		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
-	}
-
-	size = sizeof(struct e1000_buffer) * tx_ring->count;
-	memset(tx_ring->buffer_info, 0, size);
-
-	/* Zero out the descriptor ring */
-
-	memset(tx_ring->desc, 0, tx_ring->size);
-
-	tx_ring->next_to_use = 0;
-	tx_ring->next_to_clean = 0;
-	tx_ring->last_tx_tso = 0;
-
-	writel(0, hw->hw_addr + tx_ring->tdh);
-	writel(0, hw->hw_addr + tx_ring->tdt);
-}
-
-/**
- * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
- * @adapter: board private structure
- **/
-
-static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
-{
-	int i;
-
-	for (i = 0; i < adapter->num_tx_queues; i++)
-		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
-}
-
-/**
- * e1000_free_rx_resources - Free Rx Resources
- * @adapter: board private structure
- * @rx_ring: ring to clean the resources from
- *
- * Free all receive software resources
- **/
-
-static void e1000_free_rx_resources(struct e1000_adapter *adapter,
-				    struct e1000_rx_ring *rx_ring)
-{
-	struct pci_dev *pdev = adapter->pdev;
-
-	e1000_clean_rx_ring(adapter, rx_ring);
-
-	vfree(rx_ring->buffer_info);
-	rx_ring->buffer_info = NULL;
-
-	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
-
-	rx_ring->desc = NULL;
-}
-
-/**
- * e1000_free_all_rx_resources - Free Rx Resources for All Queues
- * @adapter: board private structure
- *
- * Free all receive software resources
- **/
-
-void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
-{
-	int i;
-
-	for (i = 0; i < adapter->num_rx_queues; i++)
-		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
-}
-
-/**
- * e1000_clean_rx_ring - Free Rx Buffers per Queue
- * @adapter: board private structure
- * @rx_ring: ring to free buffers from
- **/
-
-static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
-				struct e1000_rx_ring *rx_ring)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct e1000_buffer *buffer_info;
-	struct pci_dev *pdev = adapter->pdev;
-	unsigned long size;
-	unsigned int i;
-
-	/* Free all the Rx ring sk_buffs */
-	for (i = 0; i < rx_ring->count; i++) {
-		buffer_info = &rx_ring->buffer_info[i];
-		if (buffer_info->skb) {
-			pci_unmap_single(pdev,
-					 buffer_info->dma,
-					 buffer_info->length,
-					 PCI_DMA_FROMDEVICE);
-
-			dev_kfree_skb(buffer_info->skb);
-			buffer_info->skb = NULL;
-		}
-	}
-
-	size = sizeof(struct e1000_buffer) * rx_ring->count;
-	memset(rx_ring->buffer_info, 0, size);
-
-	/* Zero out the descriptor ring */
-
-	memset(rx_ring->desc, 0, rx_ring->size);
-
-	rx_ring->next_to_clean = 0;
-	rx_ring->next_to_use = 0;
-
-	writel(0, hw->hw_addr + rx_ring->rdh);
-	writel(0, hw->hw_addr + rx_ring->rdt);
-}
-
-/**
- * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
- * @adapter: board private structure
- **/
-
-static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
-{
-	int i;
-
-	for (i = 0; i < adapter->num_rx_queues; i++)
-		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
-}
-
-/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
- * and memory write and invalidate disabled for certain operations
- */
-static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	u32 rctl;
-
-	e1000_pci_clear_mwi(hw);
-
-	rctl = er32(RCTL);
-	rctl |= E1000_RCTL_RST;
-	ew32(RCTL, rctl);
-	E1000_WRITE_FLUSH();
-	mdelay(5);
-
-	if (netif_running(netdev))
-		e1000_clean_all_rx_rings(adapter);
-}
-
-static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	u32 rctl;
-
-	rctl = er32(RCTL);
-	rctl &= ~E1000_RCTL_RST;
-	ew32(RCTL, rctl);
-	E1000_WRITE_FLUSH();
-	mdelay(5);
-
-	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
-		e1000_pci_set_mwi(hw);
-
-	if (netif_running(netdev)) {
-		/* No need to loop, because 82542 supports only 1 queue */
-		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
-		e1000_configure_rx(adapter);
-		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
-	}
-}
-
-/**
- * e1000_set_mac - Change the Ethernet Address of the NIC
- * @netdev: network interface device structure
- * @p: pointer to an address structure
- *
- * Returns 0 on success, negative on failure
- **/
-
-static int e1000_set_mac(struct net_device *netdev, void *p)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	struct sockaddr *addr = p;
-
-	if (!is_valid_ether_addr(addr->sa_data))
-		return -EADDRNOTAVAIL;
-
-	/* 82542 2.0 needs to be in reset to write receive address registers */
-
-	if (hw->mac_type == e1000_82542_rev2_0)
-		e1000_enter_82542_rst(adapter);
-
-	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
-	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
-
-	e1000_rar_set(hw, hw->mac_addr, 0);
-
-	/* With 82571 controllers, LAA may be overwritten (with the default)
-	 * due to controller reset from the other port. */
-	if (hw->mac_type == e1000_82571) {
-		/* activate the work around */
-		hw->laa_is_present = 1;
-
-		/* Hold a copy of the LAA in RAR[14] This is done so that
-		 * between the time RAR[0] gets clobbered  and the time it
-		 * gets fixed (in e1000_watchdog), the actual LAA is in one
-		 * of the RARs and no incoming packets directed to this port
-		 * are dropped. Eventaully the LAA will be in RAR[0] and
-		 * RAR[14] */
-		e1000_rar_set(hw, hw->mac_addr,
-					E1000_RAR_ENTRIES - 1);
-	}
-
-	if (hw->mac_type == e1000_82542_rev2_0)
-		e1000_leave_82542_rst(adapter);
-
-	return 0;
-}
-
-/**
- * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
- * @netdev: network interface device structure
- *
- * The set_rx_mode entry point is called whenever the unicast or multicast
- * address lists or the network interface flags are updated. This routine is
- * responsible for configuring the hardware for proper unicast, multicast,
- * promiscuous mode, and all-multi behavior.
- **/
-
-static void e1000_set_rx_mode(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	struct dev_addr_list *uc_ptr;
-	struct dev_addr_list *mc_ptr;
-	u32 rctl;
-	u32 hash_value;
-	int i, rar_entries = E1000_RAR_ENTRIES;
-	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
-				E1000_NUM_MTA_REGISTERS_ICH8LAN :
-				E1000_NUM_MTA_REGISTERS;
-
-	if (hw->mac_type == e1000_ich8lan)
-		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
-
-	/* reserve RAR[14] for LAA over-write work-around */
-	if (hw->mac_type == e1000_82571)
-		rar_entries--;
-
-	/* Check for Promiscuous and All Multicast modes */
-
-	rctl = er32(RCTL);
-
-	if (netdev->flags & IFF_PROMISC) {
-		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
-		rctl &= ~E1000_RCTL_VFE;
-	} else {
-		if (netdev->flags & IFF_ALLMULTI) {
-			rctl |= E1000_RCTL_MPE;
-		} else {
-			rctl &= ~E1000_RCTL_MPE;
-		}
-		if (adapter->hw.mac_type != e1000_ich8lan)
-			rctl |= E1000_RCTL_VFE;
-	}
-
-	uc_ptr = NULL;
-	if (netdev->uc_count > rar_entries - 1) {
-		rctl |= E1000_RCTL_UPE;
-	} else if (!(netdev->flags & IFF_PROMISC)) {
-		rctl &= ~E1000_RCTL_UPE;
-		uc_ptr = netdev->uc_list;
-	}
-
-	ew32(RCTL, rctl);
-
-	/* 82542 2.0 needs to be in reset to write receive address registers */
-
-	if (hw->mac_type == e1000_82542_rev2_0)
-		e1000_enter_82542_rst(adapter);
-
-	/* load the first 14 addresses into the exact filters 1-14. Unicast
-	 * addresses take precedence to avoid disabling unicast filtering
-	 * when possible.
-	 *
-	 * RAR 0 is used for the station MAC adddress
-	 * if there are not 14 addresses, go ahead and clear the filters
-	 * -- with 82571 controllers only 0-13 entries are filled here
-	 */
-	mc_ptr = netdev->mc_list;
-
-	for (i = 1; i < rar_entries; i++) {
-		if (uc_ptr) {
-			e1000_rar_set(hw, uc_ptr->da_addr, i);
-			uc_ptr = uc_ptr->next;
-		} else if (mc_ptr) {
-			e1000_rar_set(hw, mc_ptr->da_addr, i);
-			mc_ptr = mc_ptr->next;
-		} else {
-			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
-			E1000_WRITE_FLUSH();
-			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
-			E1000_WRITE_FLUSH();
-		}
-	}
-	WARN_ON(uc_ptr != NULL);
-
-	/* clear the old settings from the multicast hash table */
-
-	for (i = 0; i < mta_reg_count; i++) {
-		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-		E1000_WRITE_FLUSH();
-	}
-
-	/* load any remaining addresses into the hash table */
-
-	for (; mc_ptr; mc_ptr = mc_ptr->next) {
-		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
-		e1000_mta_set(hw, hash_value);
-	}
-
-	if (hw->mac_type == e1000_82542_rev2_0)
-		e1000_leave_82542_rst(adapter);
-}
-
-/* Need to wait a few seconds after link up to get diagnostic information from
- * the phy */
-
-static void e1000_update_phy_info(unsigned long data)
-{
-	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
-	struct e1000_hw *hw = &adapter->hw;
-	e1000_phy_get_info(hw, &adapter->phy_info);
-}
-
-/**
- * e1000_82547_tx_fifo_stall - Timer Call-back
- * @data: pointer to adapter cast into an unsigned long
- **/
-
-static void e1000_82547_tx_fifo_stall(unsigned long data)
-{
-	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	u32 tctl;
-
-	if (atomic_read(&adapter->tx_fifo_stall)) {
-		if ((er32(TDT) == er32(TDH)) &&
-		   (er32(TDFT) == er32(TDFH)) &&
-		   (er32(TDFTS) == er32(TDFHS))) {
-			tctl = er32(TCTL);
-			ew32(TCTL, tctl & ~E1000_TCTL_EN);
-			ew32(TDFT, adapter->tx_head_addr);
-			ew32(TDFH, adapter->tx_head_addr);
-			ew32(TDFTS, adapter->tx_head_addr);
-			ew32(TDFHS, adapter->tx_head_addr);
-			ew32(TCTL, tctl);
-			E1000_WRITE_FLUSH();
-
-			adapter->tx_fifo_head = 0;
-			atomic_set(&adapter->tx_fifo_stall, 0);
-			netif_wake_queue(netdev);
-		} else {
-			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
-		}
-	}
-}
-
-/**
- * e1000_watchdog - Timer Call-back
- * @data: pointer to adapter cast into an unsigned long
- **/
-static void e1000_watchdog(unsigned long data)
-{
-	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	struct e1000_tx_ring *txdr = adapter->tx_ring;
-	u32 link, tctl;
-	s32 ret_val;
-
-	ret_val = e1000_check_for_link(hw);
-	if ((ret_val == E1000_ERR_PHY) &&
-	    (hw->phy_type == e1000_phy_igp_3) &&
-	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
-		/* See e1000_kumeran_lock_loss_workaround() */
-		DPRINTK(LINK, INFO,
-			"Gigabit has been disabled, downgrading speed\n");
-	}
-
-	if (hw->mac_type == e1000_82573) {
-		e1000_enable_tx_pkt_filtering(hw);
-		if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
-			e1000_update_mng_vlan(adapter);
-	}
-
-	if ((hw->media_type == e1000_media_type_internal_serdes) &&
-	   !(er32(TXCW) & E1000_TXCW_ANE))
-		link = !hw->serdes_link_down;
-	else
-		link = er32(STATUS) & E1000_STATUS_LU;
-
-	if (link) {
-		if (!netif_carrier_ok(netdev)) {
-			u32 ctrl;
-			bool txb2b = true;
-			e1000_get_speed_and_duplex(hw,
-			                           &adapter->link_speed,
-			                           &adapter->link_duplex);
-
-			ctrl = er32(CTRL);
-			printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
-			       "Flow Control: %s\n",
-			       netdev->name,
-			       adapter->link_speed,
-			       adapter->link_duplex == FULL_DUPLEX ?
-			        "Full Duplex" : "Half Duplex",
-			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
-			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
-			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
-			        E1000_CTRL_TFCE) ? "TX" : "None" )));
-
-			/* tweak tx_queue_len according to speed/duplex
-			 * and adjust the timeout factor */
-			netdev->tx_queue_len = adapter->tx_queue_len;
-			adapter->tx_timeout_factor = 1;
-			switch (adapter->link_speed) {
-			case SPEED_10:
-				txb2b = false;
-				netdev->tx_queue_len = 10;
-				adapter->tx_timeout_factor = 8;
-				break;
-			case SPEED_100:
-				txb2b = false;
-				netdev->tx_queue_len = 100;
-				/* maybe add some timeout factor ? */
-				break;
-			}
-
-			if ((hw->mac_type == e1000_82571 ||
-			     hw->mac_type == e1000_82572) &&
-			    !txb2b) {
-				u32 tarc0;
-				tarc0 = er32(TARC0);
-				tarc0 &= ~(1 << 21);
-				ew32(TARC0, tarc0);
-			}
-
-			/* disable TSO for pcie and 10/100 speeds, to avoid
-			 * some hardware issues */
-			if (!adapter->tso_force &&
-			    hw->bus_type == e1000_bus_type_pci_express){
-				switch (adapter->link_speed) {
-				case SPEED_10:
-				case SPEED_100:
-					DPRINTK(PROBE,INFO,
-				        "10/100 speed: disabling TSO\n");
-					netdev->features &= ~NETIF_F_TSO;
-					netdev->features &= ~NETIF_F_TSO6;
-					break;
-				case SPEED_1000:
-					netdev->features |= NETIF_F_TSO;
-					netdev->features |= NETIF_F_TSO6;
-					break;
-				default:
-					/* oops */
-					break;
-				}
-			}
-
-			/* enable transmits in the hardware, need to do this
-			 * after setting TARC0 */
-			tctl = er32(TCTL);
-			tctl |= E1000_TCTL_EN;
-			ew32(TCTL, tctl);
-
-			netif_carrier_on(netdev);
-			netif_wake_queue(netdev);
-			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
-			adapter->smartspeed = 0;
-		} else {
-			/* make sure the receive unit is started */
-			if (hw->rx_needs_kicking) {
-				u32 rctl = er32(RCTL);
-				ew32(RCTL, rctl | E1000_RCTL_EN);
-			}
-		}
-	} else {
-		if (netif_carrier_ok(netdev)) {
-			adapter->link_speed = 0;
-			adapter->link_duplex = 0;
-			printk(KERN_INFO "e1000: %s NIC Link is Down\n",
-			       netdev->name);
-			netif_carrier_off(netdev);
-			netif_stop_queue(netdev);
-			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
-
-			/* 80003ES2LAN workaround--
-			 * For packet buffer work-around on link down event;
-			 * disable receives in the ISR and
-			 * reset device here in the watchdog
-			 */
-			if (hw->mac_type == e1000_80003es2lan)
-				/* reset device */
-				schedule_work(&adapter->reset_task);
-		}
-
-		e1000_smartspeed(adapter);
-	}
-
-	e1000_update_stats(adapter);
-
-	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
-	adapter->tpt_old = adapter->stats.tpt;
-	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
-	adapter->colc_old = adapter->stats.colc;
-
-	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
-	adapter->gorcl_old = adapter->stats.gorcl;
-	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
-	adapter->gotcl_old = adapter->stats.gotcl;
-
-	e1000_update_adaptive(hw);
-
-	if (!netif_carrier_ok(netdev)) {
-		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
-			/* We've lost link, so the controller stops DMA,
-			 * but we've got queued Tx work that's never going
-			 * to get done, so reset controller to flush Tx.
-			 * (Do the reset outside of interrupt context). */
-			adapter->tx_timeout_count++;
-			schedule_work(&adapter->reset_task);
-		}
-	}
-
-	/* Cause software interrupt to ensure rx ring is cleaned */
-	ew32(ICS, E1000_ICS_RXDMT0);
-
-	/* Force detection of hung controller every watchdog period */
-	adapter->detect_tx_hung = true;
-
-	/* With 82571 controllers, LAA may be overwritten due to controller
-	 * reset from the other port. Set the appropriate LAA in RAR[0] */
-	if (hw->mac_type == e1000_82571 && hw->laa_is_present)
-		e1000_rar_set(hw, hw->mac_addr, 0);
-
-	/* Reset the timer */
-	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
-}
-
-enum latency_range {
-	lowest_latency = 0,
-	low_latency = 1,
-	bulk_latency = 2,
-	latency_invalid = 255
-};
-
-/**
- * e1000_update_itr - update the dynamic ITR value based on statistics
- *      Stores a new ITR value based on packets and byte
- *      counts during the last interrupt.  The advantage of per interrupt
- *      computation is faster updates and more accurate ITR for the current
- *      traffic pattern.  Constants in this function were computed
- *      based on theoretical maximum wire speed and thresholds were set based
- *      on testing data as well as attempting to minimize response time
- *      while increasing bulk throughput.
- *      this functionality is controlled by the InterruptThrottleRate module
- *      parameter (see e1000_param.c)
- * @adapter: pointer to adapter
- * @itr_setting: current adapter->itr
- * @packets: the number of packets during this measurement interval
- * @bytes: the number of bytes during this measurement interval
- **/
-static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
-				     u16 itr_setting, int packets, int bytes)
-{
-	unsigned int retval = itr_setting;
-	struct e1000_hw *hw = &adapter->hw;
-
-	if (unlikely(hw->mac_type < e1000_82540))
-		goto update_itr_done;
-
-	if (packets == 0)
-		goto update_itr_done;
-
-	switch (itr_setting) {
-	case lowest_latency:
-		/* jumbo frames get bulk treatment*/
-		if (bytes/packets > 8000)
-			retval = bulk_latency;
-		else if ((packets < 5) && (bytes > 512))
-			retval = low_latency;
-		break;
-	case low_latency:  /* 50 usec aka 20000 ints/s */
-		if (bytes > 10000) {
-			/* jumbo frames need bulk latency setting */
-			if (bytes/packets > 8000)
-				retval = bulk_latency;
-			else if ((packets < 10) || ((bytes/packets) > 1200))
-				retval = bulk_latency;
-			else if ((packets > 35))
-				retval = lowest_latency;
-		} else if (bytes/packets > 2000)
-			retval = bulk_latency;
-		else if (packets <= 2 && bytes < 512)
-			retval = lowest_latency;
-		break;
-	case bulk_latency: /* 250 usec aka 4000 ints/s */
-		if (bytes > 25000) {
-			if (packets > 35)
-				retval = low_latency;
-		} else if (bytes < 6000) {
-			retval = low_latency;
-		}
-		break;
-	}
-
-update_itr_done:
-	return retval;
-}
-
-static void e1000_set_itr(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u16 current_itr;
-	u32 new_itr = adapter->itr;
-
-	if (unlikely(hw->mac_type < e1000_82540))
-		return;
-
-	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
-	if (unlikely(adapter->link_speed != SPEED_1000)) {
-		current_itr = 0;
-		new_itr = 4000;
-		goto set_itr_now;
-	}
-
-	adapter->tx_itr = e1000_update_itr(adapter,
-	                            adapter->tx_itr,
-	                            adapter->total_tx_packets,
-	                            adapter->total_tx_bytes);
-	/* conservative mode (itr 3) eliminates the lowest_latency setting */
-	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
-		adapter->tx_itr = low_latency;
-
-	adapter->rx_itr = e1000_update_itr(adapter,
-	                            adapter->rx_itr,
-	                            adapter->total_rx_packets,
-	                            adapter->total_rx_bytes);
-	/* conservative mode (itr 3) eliminates the lowest_latency setting */
-	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
-		adapter->rx_itr = low_latency;
-
-	current_itr = max(adapter->rx_itr, adapter->tx_itr);
-
-	switch (current_itr) {
-	/* counts and packets in update_itr are dependent on these numbers */
-	case lowest_latency:
-		new_itr = 70000;
-		break;
-	case low_latency:
-		new_itr = 20000; /* aka hwitr = ~200 */
-		break;
-	case bulk_latency:
-		new_itr = 4000;
-		break;
-	default:
-		break;
-	}
-
-set_itr_now:
-	if (new_itr != adapter->itr) {
-		/* this attempts to bias the interrupt rate towards Bulk
-		 * by adding intermediate steps when interrupt rate is
-		 * increasing */
-		new_itr = new_itr > adapter->itr ?
-		             min(adapter->itr + (new_itr >> 2), new_itr) :
-		             new_itr;
-		adapter->itr = new_itr;
-		ew32(ITR, 1000000000 / (new_itr * 256));
-	}
-
-	return;
-}
-
-#define E1000_TX_FLAGS_CSUM		0x00000001
-#define E1000_TX_FLAGS_VLAN		0x00000002
-#define E1000_TX_FLAGS_TSO		0x00000004
-#define E1000_TX_FLAGS_IPV4		0x00000008
-#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
-#define E1000_TX_FLAGS_VLAN_SHIFT	16
-
-static int e1000_tso(struct e1000_adapter *adapter,
-		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
-{
-	struct e1000_context_desc *context_desc;
-	struct e1000_buffer *buffer_info;
-	unsigned int i;
-	u32 cmd_length = 0;
-	u16 ipcse = 0, tucse, mss;
-	u8 ipcss, ipcso, tucss, tucso, hdr_len;
-	int err;
-
-	if (skb_is_gso(skb)) {
-		if (skb_header_cloned(skb)) {
-			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
-			if (err)
-				return err;
-		}
-
-		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
-		mss = skb_shinfo(skb)->gso_size;
-		if (skb->protocol == htons(ETH_P_IP)) {
-			struct iphdr *iph = ip_hdr(skb);
-			iph->tot_len = 0;
-			iph->check = 0;
-			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
-								 iph->daddr, 0,
-								 IPPROTO_TCP,
-								 0);
-			cmd_length = E1000_TXD_CMD_IP;
-			ipcse = skb_transport_offset(skb) - 1;
-		} else if (skb->protocol == htons(ETH_P_IPV6)) {
-			ipv6_hdr(skb)->payload_len = 0;
-			tcp_hdr(skb)->check =
-				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
-						 &ipv6_hdr(skb)->daddr,
-						 0, IPPROTO_TCP, 0);
-			ipcse = 0;
-		}
-		ipcss = skb_network_offset(skb);
-		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
-		tucss = skb_transport_offset(skb);
-		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
-		tucse = 0;
-
-		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
-			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
-
-		i = tx_ring->next_to_use;
-		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
-		buffer_info = &tx_ring->buffer_info[i];
-
-		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
-		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
-		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
-		context_desc->upper_setup.tcp_fields.tucss = tucss;
-		context_desc->upper_setup.tcp_fields.tucso = tucso;
-		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
-		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
-		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
-		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
-
-		buffer_info->time_stamp = jiffies;
-		buffer_info->next_to_watch = i;
-
-		if (++i == tx_ring->count) i = 0;
-		tx_ring->next_to_use = i;
-
-		return true;
-	}
-	return false;
-}
-
-static bool e1000_tx_csum(struct e1000_adapter *adapter,
-			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
-{
-	struct e1000_context_desc *context_desc;
-	struct e1000_buffer *buffer_info;
-	unsigned int i;
-	u8 css;
-	u32 cmd_len = E1000_TXD_CMD_DEXT;
-
-	if (skb->ip_summed != CHECKSUM_PARTIAL)
-		return false;
-
-	switch (skb->protocol) {
-	case __constant_htons(ETH_P_IP):
-		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
-			cmd_len |= E1000_TXD_CMD_TCP;
-		break;
-	case __constant_htons(ETH_P_IPV6):
-		/* XXX not handling all IPV6 headers */
-		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
-			cmd_len |= E1000_TXD_CMD_TCP;
-		break;
-	default:
-		if (unlikely(net_ratelimit()))
-			DPRINTK(DRV, WARNING,
-			        "checksum_partial proto=%x!\n", skb->protocol);
-		break;
-	}
-
-	css = skb_transport_offset(skb);
-
-	i = tx_ring->next_to_use;
-	buffer_info = &tx_ring->buffer_info[i];
-	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
-
-	context_desc->lower_setup.ip_config = 0;
-	context_desc->upper_setup.tcp_fields.tucss = css;
-	context_desc->upper_setup.tcp_fields.tucso =
-		css + skb->csum_offset;
-	context_desc->upper_setup.tcp_fields.tucse = 0;
-	context_desc->tcp_seg_setup.data = 0;
-	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
-
-	buffer_info->time_stamp = jiffies;
-	buffer_info->next_to_watch = i;
-
-	if (unlikely(++i == tx_ring->count)) i = 0;
-	tx_ring->next_to_use = i;
-
-	return true;
-}
-
-#define E1000_MAX_TXD_PWR	12
-#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
-
-static int e1000_tx_map(struct e1000_adapter *adapter,
-			struct e1000_tx_ring *tx_ring,
-			struct sk_buff *skb, unsigned int first,
-			unsigned int max_per_txd, unsigned int nr_frags,
-			unsigned int mss)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct e1000_buffer *buffer_info;
-	unsigned int len = skb->len;
-	unsigned int offset = 0, size, count = 0, i;
-	unsigned int f;
-	len -= skb->data_len;
-
-	i = tx_ring->next_to_use;
-
-	while (len) {
-		buffer_info = &tx_ring->buffer_info[i];
-		size = min(len, max_per_txd);
-		/* Workaround for Controller erratum --
-		 * descriptor for non-tso packet in a linear SKB that follows a
-		 * tso gets written back prematurely before the data is fully
-		 * DMA'd to the controller */
-		if (!skb->data_len && tx_ring->last_tx_tso &&
-		    !skb_is_gso(skb)) {
-			tx_ring->last_tx_tso = 0;
-			size -= 4;
-		}
-
-		/* Workaround for premature desc write-backs
-		 * in TSO mode.  Append 4-byte sentinel desc */
-		if (unlikely(mss && !nr_frags && size == len && size > 8))
-			size -= 4;
-		/* work-around for errata 10 and it applies
-		 * to all controllers in PCI-X mode
-		 * The fix is to make sure that the first descriptor of a
-		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
-		 */
-		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
-		                (size > 2015) && count == 0))
-		        size = 2015;
-
-		/* Workaround for potential 82544 hang in PCI-X.  Avoid
-		 * terminating buffers within evenly-aligned dwords. */
-		if (unlikely(adapter->pcix_82544 &&
-		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
-		   size > 4))
-			size -= 4;
-
-		buffer_info->length = size;
-		buffer_info->dma =
-			pci_map_single(adapter->pdev,
-				skb->data + offset,
-				size,
-				PCI_DMA_TODEVICE);
-		buffer_info->time_stamp = jiffies;
-		buffer_info->next_to_watch = i;
-
-		len -= size;
-		offset += size;
-		count++;
-		if (unlikely(++i == tx_ring->count)) i = 0;
-	}
-
-	for (f = 0; f < nr_frags; f++) {
-		struct skb_frag_struct *frag;
-
-		frag = &skb_shinfo(skb)->frags[f];
-		len = frag->size;
-		offset = frag->page_offset;
-
-		while (len) {
-			buffer_info = &tx_ring->buffer_info[i];
-			size = min(len, max_per_txd);
-			/* Workaround for premature desc write-backs
-			 * in TSO mode.  Append 4-byte sentinel desc */
-			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
-				size -= 4;
-			/* Workaround for potential 82544 hang in PCI-X.
-			 * Avoid terminating buffers within evenly-aligned
-			 * dwords. */
-			if (unlikely(adapter->pcix_82544 &&
-			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
-			   size > 4))
-				size -= 4;
-
-			buffer_info->length = size;
-			buffer_info->dma =
-				pci_map_page(adapter->pdev,
-					frag->page,
-					offset,
-					size,
-					PCI_DMA_TODEVICE);
-			buffer_info->time_stamp = jiffies;
-			buffer_info->next_to_watch = i;
-
-			len -= size;
-			offset += size;
-			count++;
-			if (unlikely(++i == tx_ring->count)) i = 0;
-		}
-	}
-
-	i = (i == 0) ? tx_ring->count - 1 : i - 1;
-	tx_ring->buffer_info[i].skb = skb;
-	tx_ring->buffer_info[first].next_to_watch = i;
-
-	return count;
-}
-
-static void e1000_tx_queue(struct e1000_adapter *adapter,
-			   struct e1000_tx_ring *tx_ring, int tx_flags,
-			   int count)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct e1000_tx_desc *tx_desc = NULL;
-	struct e1000_buffer *buffer_info;
-	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
-	unsigned int i;
-
-	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
-		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
-		             E1000_TXD_CMD_TSE;
-		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
-
-		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
-			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
-	}
-
-	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
-		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
-		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
-	}
-
-	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
-		txd_lower |= E1000_TXD_CMD_VLE;
-		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
-	}
-
-	i = tx_ring->next_to_use;
-
-	while (count--) {
-		buffer_info = &tx_ring->buffer_info[i];
-		tx_desc = E1000_TX_DESC(*tx_ring, i);
-		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-		tx_desc->lower.data =
-			cpu_to_le32(txd_lower | buffer_info->length);
-		tx_desc->upper.data = cpu_to_le32(txd_upper);
-		if (unlikely(++i == tx_ring->count)) i = 0;
-	}
-
-	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
-
-	/* Force memory writes to complete before letting h/w
-	 * know there are new descriptors to fetch.  (Only
-	 * applicable for weak-ordered memory model archs,
-	 * such as IA-64). */
-	wmb();
-
-	tx_ring->next_to_use = i;
-	writel(i, hw->hw_addr + tx_ring->tdt);
-	/* we need this if more than one processor can write to our tail
-	 * at a time, it syncronizes IO on IA64/Altix systems */
-	mmiowb();
-}
-
-/**
- * 82547 workaround to avoid controller hang in half-duplex environment.
- * The workaround is to avoid queuing a large packet that would span
- * the internal Tx FIFO ring boundary by notifying the stack to resend
- * the packet at a later time.  This gives the Tx FIFO an opportunity to
- * flush all packets.  When that occurs, we reset the Tx FIFO pointers
- * to the beginning of the Tx FIFO.
- **/
-
-#define E1000_FIFO_HDR			0x10
-#define E1000_82547_PAD_LEN		0x3E0
-
-static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
-				       struct sk_buff *skb)
-{
-	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
-	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
-
-	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
-
-	if (adapter->link_duplex != HALF_DUPLEX)
-		goto no_fifo_stall_required;
-
-	if (atomic_read(&adapter->tx_fifo_stall))
-		return 1;
-
-	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
-		atomic_set(&adapter->tx_fifo_stall, 1);
-		return 1;
-	}
-
-no_fifo_stall_required:
-	adapter->tx_fifo_head += skb_fifo_len;
-	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
-		adapter->tx_fifo_head -= adapter->tx_fifo_size;
-	return 0;
-}
-
-#define MINIMUM_DHCP_PACKET_SIZE 282
-static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
-				    struct sk_buff *skb)
-{
-	struct e1000_hw *hw =  &adapter->hw;
-	u16 length, offset;
-	if (vlan_tx_tag_present(skb)) {
-		if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
-			( hw->mng_cookie.status &
-			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
-			return 0;
-	}
-	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
-		struct ethhdr *eth = (struct ethhdr *)skb->data;
-		if ((htons(ETH_P_IP) == eth->h_proto)) {
-			const struct iphdr *ip =
-				(struct iphdr *)((u8 *)skb->data+14);
-			if (IPPROTO_UDP == ip->protocol) {
-				struct udphdr *udp =
-					(struct udphdr *)((u8 *)ip +
-						(ip->ihl << 2));
-				if (ntohs(udp->dest) == 67) {
-					offset = (u8 *)udp + 8 - skb->data;
-					length = skb->len - offset;
-
-					return e1000_mng_write_dhcp_info(hw,
-							(u8 *)udp + 8,
-							length);
-				}
-			}
-		}
-	}
-	return 0;
-}
-
-static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
-
-	netif_stop_queue(netdev);
-	/* Herbert's original patch had:
-	 *  smp_mb__after_netif_stop_queue();
-	 * but since that doesn't exist yet, just open code it. */
-	smp_mb();
-
-	/* We need to check again in a case another CPU has just
-	 * made room available. */
-	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
-		return -EBUSY;
-
-	/* A reprieve! */
-	netif_start_queue(netdev);
-	++adapter->restart_queue;
-	return 0;
-}
-
-static int e1000_maybe_stop_tx(struct net_device *netdev,
-                               struct e1000_tx_ring *tx_ring, int size)
-{
-	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
-		return 0;
-	return __e1000_maybe_stop_tx(netdev, size);
-}
-
-#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
-static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	struct e1000_tx_ring *tx_ring;
-	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
-	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
-	unsigned int tx_flags = 0;
-	unsigned int len = skb->len - skb->data_len;
-	unsigned long flags;
-	unsigned int nr_frags;
-	unsigned int mss;
-	int count = 0;
-	int tso;
-	unsigned int f;
-
-	/* This goes back to the question of how to logically map a tx queue
-	 * to a flow.  Right now, performance is impacted slightly negatively
-	 * if using multiple tx queues.  If the stack breaks away from a
-	 * single qdisc implementation, we can look at this again. */
-	tx_ring = adapter->tx_ring;
-
-	if (unlikely(skb->len <= 0)) {
-		dev_kfree_skb_any(skb);
-		return NETDEV_TX_OK;
-	}
-
-	/* 82571 and newer doesn't need the workaround that limited descriptor
-	 * length to 4kB */
-	if (hw->mac_type >= e1000_82571)
-		max_per_txd = 8192;
-
-	mss = skb_shinfo(skb)->gso_size;
-	/* The controller does a simple calculation to
-	 * make sure there is enough room in the FIFO before
-	 * initiating the DMA for each buffer.  The calc is:
-	 * 4 = ceil(buffer len/mss).  To make sure we don't
-	 * overrun the FIFO, adjust the max buffer len if mss
-	 * drops. */
-	if (mss) {
-		u8 hdr_len;
-		max_per_txd = min(mss << 2, max_per_txd);
-		max_txd_pwr = fls(max_per_txd) - 1;
-
-		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
-		* points to just header, pull a few bytes of payload from
-		* frags into skb->data */
-		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
-		if (skb->data_len && hdr_len == len) {
-			switch (hw->mac_type) {
-				unsigned int pull_size;
-			case e1000_82544:
-				/* Make sure we have room to chop off 4 bytes,
-				 * and that the end alignment will work out to
-				 * this hardware's requirements
-				 * NOTE: this is a TSO only workaround
-				 * if end byte alignment not correct move us
-				 * into the next dword */
-				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
-					break;
-				/* fall through */
-			case e1000_82571:
-			case e1000_82572:
-			case e1000_82573:
-			case e1000_ich8lan:
-				pull_size = min((unsigned int)4, skb->data_len);
-				if (!__pskb_pull_tail(skb, pull_size)) {
-					DPRINTK(DRV, ERR,
-						"__pskb_pull_tail failed.\n");
-					dev_kfree_skb_any(skb);
-					return NETDEV_TX_OK;
-				}
-				len = skb->len - skb->data_len;
-				break;
-			default:
-				/* do nothing */
-				break;
-			}
-		}
-	}
-
-	/* reserve a descriptor for the offload context */
-	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
-		count++;
-	count++;
-
-	/* Controller Erratum workaround */
-	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
-		count++;
-
-	count += TXD_USE_COUNT(len, max_txd_pwr);
-
-	if (adapter->pcix_82544)
-		count++;
-
-	/* work-around for errata 10 and it applies to all controllers
-	 * in PCI-X mode, so add one more descriptor to the count
-	 */
-	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
-			(len > 2015)))
-		count++;
-
-	nr_frags = skb_shinfo(skb)->nr_frags;
-	for (f = 0; f < nr_frags; f++)
-		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
-				       max_txd_pwr);
-	if (adapter->pcix_82544)
-		count += nr_frags;
-
-
-	if (hw->tx_pkt_filtering &&
-	    (hw->mac_type == e1000_82573))
-		e1000_transfer_dhcp_info(adapter, skb);
-
-	if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
-		/* Collision - tell upper layer to requeue */
-		return NETDEV_TX_LOCKED;
-
-	/* need: count + 2 desc gap to keep tail from touching
-	 * head, otherwise try next time */
-	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
-		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
-		return NETDEV_TX_BUSY;
-	}
-
-	if (unlikely(hw->mac_type == e1000_82547)) {
-		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
-			netif_stop_queue(netdev);
-			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
-			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
-			return NETDEV_TX_BUSY;
-		}
-	}
-
-	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
-		tx_flags |= E1000_TX_FLAGS_VLAN;
-		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
-	}
-
-	first = tx_ring->next_to_use;
-
-	tso = e1000_tso(adapter, tx_ring, skb);
-	if (tso < 0) {
-		dev_kfree_skb_any(skb);
-		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
-		return NETDEV_TX_OK;
-	}
-
-	if (likely(tso)) {
-		tx_ring->last_tx_tso = 1;
-		tx_flags |= E1000_TX_FLAGS_TSO;
-	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
-		tx_flags |= E1000_TX_FLAGS_CSUM;
-
-	/* Old method was to assume IPv4 packet by default if TSO was enabled.
-	 * 82571 hardware supports TSO capabilities for IPv6 as well...
-	 * no longer assume, we must. */
-	if (likely(skb->protocol == htons(ETH_P_IP)))
-		tx_flags |= E1000_TX_FLAGS_IPV4;
-
-	e1000_tx_queue(adapter, tx_ring, tx_flags,
-	               e1000_tx_map(adapter, tx_ring, skb, first,
-	                            max_per_txd, nr_frags, mss));
-
-	netdev->trans_start = jiffies;
-
-	/* Make sure there is space in the ring for the next send. */
-	e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
-
-	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
-	return NETDEV_TX_OK;
-}
-
-/**
- * e1000_tx_timeout - Respond to a Tx Hang
- * @netdev: network interface device structure
- **/
-
-static void e1000_tx_timeout(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-
-	/* Do the reset outside of interrupt context */
-	adapter->tx_timeout_count++;
-	schedule_work(&adapter->reset_task);
-}
-
-static void e1000_reset_task(struct work_struct *work)
-{
-	struct e1000_adapter *adapter =
-		container_of(work, struct e1000_adapter, reset_task);
-
-	e1000_reinit_locked(adapter);
-}
-
-/**
- * e1000_get_stats - Get System Network Statistics
- * @netdev: network interface device structure
- *
- * Returns the address of the device statistics structure.
- * The statistics are actually updated from the timer callback.
- **/
-
-static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-
-	/* only return the current stats */
-	return &adapter->net_stats;
-}
-
-/**
- * e1000_change_mtu - Change the Maximum Transfer Unit
- * @netdev: network interface device structure
- * @new_mtu: new value for maximum frame size
- *
- * Returns 0 on success, negative on failure
- **/
-
-static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
-	u16 eeprom_data = 0;
-
-	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
-	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
-		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
-		return -EINVAL;
-	}
-
-	/* Adapter-specific max frame size limits. */
-	switch (hw->mac_type) {
-	case e1000_undefined ... e1000_82542_rev2_1:
-	case e1000_ich8lan:
-		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
-			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
-			return -EINVAL;
-		}
-		break;
-	case e1000_82573:
-		/* Jumbo Frames not supported if:
-		 * - this is not an 82573L device
-		 * - ASPM is enabled in any way (0x1A bits 3:2) */
-		e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
-		                  &eeprom_data);
-		if ((hw->device_id != E1000_DEV_ID_82573L) ||
-		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
-			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
-				DPRINTK(PROBE, ERR,
-			            	"Jumbo Frames not supported.\n");
-				return -EINVAL;
-			}
-			break;
-		}
-		/* ERT will be enabled later to enable wire speed receives */
-
-		/* fall through to get support */
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_80003es2lan:
-#define MAX_STD_JUMBO_FRAME_SIZE 9234
-		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
-			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
-			return -EINVAL;
-		}
-		break;
-	default:
-		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
-		break;
-	}
-
-	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
-	 * means we reserve 2 more, this pushes us to allocate from the next
-	 * larger slab size
-	 * i.e. RXBUFFER_2048 --> size-4096 slab */
-
-	if (max_frame <= E1000_RXBUFFER_256)
-		adapter->rx_buffer_len = E1000_RXBUFFER_256;
-	else if (max_frame <= E1000_RXBUFFER_512)
-		adapter->rx_buffer_len = E1000_RXBUFFER_512;
-	else if (max_frame <= E1000_RXBUFFER_1024)
-		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
-	else if (max_frame <= E1000_RXBUFFER_2048)
-		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
-	else if (max_frame <= E1000_RXBUFFER_4096)
-		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
-	else if (max_frame <= E1000_RXBUFFER_8192)
-		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
-	else if (max_frame <= E1000_RXBUFFER_16384)
-		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
-
-	/* adjust allocation if LPE protects us, and we aren't using SBP */
-	if (!hw->tbi_compatibility_on &&
-	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
-	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
-		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
-
-	netdev->mtu = new_mtu;
-	hw->max_frame_size = max_frame;
-
-	if (netif_running(netdev))
-		e1000_reinit_locked(adapter);
-
-	return 0;
-}
-
-/**
- * e1000_update_stats - Update the board statistics counters
- * @adapter: board private structure
- **/
-
-void e1000_update_stats(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct pci_dev *pdev = adapter->pdev;
-	unsigned long flags;
-	u16 phy_tmp;
-
-#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
-
-	/*
-	 * Prevent stats update while adapter is being reset, or if the pci
-	 * connection is down.
-	 */
-	if (adapter->link_speed == 0)
-		return;
-	if (pci_channel_offline(pdev))
-		return;
-
-	spin_lock_irqsave(&adapter->stats_lock, flags);
-
-	/* these counters are modified from e1000_tbi_adjust_stats,
-	 * called from the interrupt context, so they must only
-	 * be written while holding adapter->stats_lock
-	 */
-
-	adapter->stats.crcerrs += er32(CRCERRS);
-	adapter->stats.gprc += er32(GPRC);
-	adapter->stats.gorcl += er32(GORCL);
-	adapter->stats.gorch += er32(GORCH);
-	adapter->stats.bprc += er32(BPRC);
-	adapter->stats.mprc += er32(MPRC);
-	adapter->stats.roc += er32(ROC);
-
-	if (hw->mac_type != e1000_ich8lan) {
-		adapter->stats.prc64 += er32(PRC64);
-		adapter->stats.prc127 += er32(PRC127);
-		adapter->stats.prc255 += er32(PRC255);
-		adapter->stats.prc511 += er32(PRC511);
-		adapter->stats.prc1023 += er32(PRC1023);
-		adapter->stats.prc1522 += er32(PRC1522);
-	}
-
-	adapter->stats.symerrs += er32(SYMERRS);
-	adapter->stats.mpc += er32(MPC);
-	adapter->stats.scc += er32(SCC);
-	adapter->stats.ecol += er32(ECOL);
-	adapter->stats.mcc += er32(MCC);
-	adapter->stats.latecol += er32(LATECOL);
-	adapter->stats.dc += er32(DC);
-	adapter->stats.sec += er32(SEC);
-	adapter->stats.rlec += er32(RLEC);
-	adapter->stats.xonrxc += er32(XONRXC);
-	adapter->stats.xontxc += er32(XONTXC);
-	adapter->stats.xoffrxc += er32(XOFFRXC);
-	adapter->stats.xofftxc += er32(XOFFTXC);
-	adapter->stats.fcruc += er32(FCRUC);
-	adapter->stats.gptc += er32(GPTC);
-	adapter->stats.gotcl += er32(GOTCL);
-	adapter->stats.gotch += er32(GOTCH);
-	adapter->stats.rnbc += er32(RNBC);
-	adapter->stats.ruc += er32(RUC);
-	adapter->stats.rfc += er32(RFC);
-	adapter->stats.rjc += er32(RJC);
-	adapter->stats.torl += er32(TORL);
-	adapter->stats.torh += er32(TORH);
-	adapter->stats.totl += er32(TOTL);
-	adapter->stats.toth += er32(TOTH);
-	adapter->stats.tpr += er32(TPR);
-
-	if (hw->mac_type != e1000_ich8lan) {
-		adapter->stats.ptc64 += er32(PTC64);
-		adapter->stats.ptc127 += er32(PTC127);
-		adapter->stats.ptc255 += er32(PTC255);
-		adapter->stats.ptc511 += er32(PTC511);
-		adapter->stats.ptc1023 += er32(PTC1023);
-		adapter->stats.ptc1522 += er32(PTC1522);
-	}
-
-	adapter->stats.mptc += er32(MPTC);
-	adapter->stats.bptc += er32(BPTC);
-
-	/* used for adaptive IFS */
-
-	hw->tx_packet_delta = er32(TPT);
-	adapter->stats.tpt += hw->tx_packet_delta;
-	hw->collision_delta = er32(COLC);
-	adapter->stats.colc += hw->collision_delta;
-
-	if (hw->mac_type >= e1000_82543) {
-		adapter->stats.algnerrc += er32(ALGNERRC);
-		adapter->stats.rxerrc += er32(RXERRC);
-		adapter->stats.tncrs += er32(TNCRS);
-		adapter->stats.cexterr += er32(CEXTERR);
-		adapter->stats.tsctc += er32(TSCTC);
-		adapter->stats.tsctfc += er32(TSCTFC);
-	}
-	if (hw->mac_type > e1000_82547_rev_2) {
-		adapter->stats.iac += er32(IAC);
-		adapter->stats.icrxoc += er32(ICRXOC);
-
-		if (hw->mac_type != e1000_ich8lan) {
-			adapter->stats.icrxptc += er32(ICRXPTC);
-			adapter->stats.icrxatc += er32(ICRXATC);
-			adapter->stats.ictxptc += er32(ICTXPTC);
-			adapter->stats.ictxatc += er32(ICTXATC);
-			adapter->stats.ictxqec += er32(ICTXQEC);
-			adapter->stats.ictxqmtc += er32(ICTXQMTC);
-			adapter->stats.icrxdmtc += er32(ICRXDMTC);
-		}
-	}
-
-	/* Fill out the OS statistics structure */
-	adapter->net_stats.multicast = adapter->stats.mprc;
-	adapter->net_stats.collisions = adapter->stats.colc;
-
-	/* Rx Errors */
-
-	/* RLEC on some newer hardware can be incorrect so build
-	* our own version based on RUC and ROC */
-	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
-		adapter->stats.crcerrs + adapter->stats.algnerrc +
-		adapter->stats.ruc + adapter->stats.roc +
-		adapter->stats.cexterr;
-	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
-	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
-	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
-	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
-	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
-
-	/* Tx Errors */
-	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
-	adapter->net_stats.tx_errors = adapter->stats.txerrc;
-	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
-	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
-	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
-	if (hw->bad_tx_carr_stats_fd &&
-	    adapter->link_duplex == FULL_DUPLEX) {
-		adapter->net_stats.tx_carrier_errors = 0;
-		adapter->stats.tncrs = 0;
-	}
-
-	/* Tx Dropped needs to be maintained elsewhere */
-
-	/* Phy Stats */
-	if (hw->media_type == e1000_media_type_copper) {
-		if ((adapter->link_speed == SPEED_1000) &&
-		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
-			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
-			adapter->phy_stats.idle_errors += phy_tmp;
-		}
-
-		if ((hw->mac_type <= e1000_82546) &&
-		   (hw->phy_type == e1000_phy_m88) &&
-		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
-			adapter->phy_stats.receive_errors += phy_tmp;
-	}
-
-	/* Management Stats */
-	if (hw->has_smbus) {
-		adapter->stats.mgptc += er32(MGTPTC);
-		adapter->stats.mgprc += er32(MGTPRC);
-		adapter->stats.mgpdc += er32(MGTPDC);
-	}
-
-	spin_unlock_irqrestore(&adapter->stats_lock, flags);
-}
-
-/**
- * e1000_intr_msi - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-
-static irqreturn_t e1000_intr_msi(int irq, void *data)
-{
-	struct net_device *netdev = data;
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 icr = er32(ICR);
-
-	/* in NAPI mode read ICR disables interrupts using IAM */
-
-	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
-		hw->get_link_status = 1;
-		/* 80003ES2LAN workaround-- For packet buffer work-around on
-		 * link down event; disable receives here in the ISR and reset
-		 * adapter in watchdog */
-		if (netif_carrier_ok(netdev) &&
-		    (hw->mac_type == e1000_80003es2lan)) {
-			/* disable receives */
-			u32 rctl = er32(RCTL);
-			ew32(RCTL, rctl & ~E1000_RCTL_EN);
-		}
-		/* guard against interrupt when we're going down */
-		if (!test_bit(__E1000_DOWN, &adapter->flags))
-			mod_timer(&adapter->watchdog_timer, jiffies + 1);
-	}
-
-	if (likely(netif_rx_schedule_prep(&adapter->napi))) {
-		adapter->total_tx_bytes = 0;
-		adapter->total_tx_packets = 0;
-		adapter->total_rx_bytes = 0;
-		adapter->total_rx_packets = 0;
-		__netif_rx_schedule(&adapter->napi);
-	} else
-		e1000_irq_enable(adapter);
-
-	return IRQ_HANDLED;
-}
-
-/**
- * e1000_intr - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-
-static irqreturn_t e1000_intr(int irq, void *data)
-{
-	struct net_device *netdev = data;
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 rctl, icr = er32(ICR);
-
-	if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
-		return IRQ_NONE;  /* Not our interrupt */
-
-	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
-	 * not set, then the adapter didn't send an interrupt */
-	if (unlikely(hw->mac_type >= e1000_82571 &&
-	             !(icr & E1000_ICR_INT_ASSERTED)))
-		return IRQ_NONE;
-
-	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
-	 * need for the IMC write */
-
-	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
-		hw->get_link_status = 1;
-		/* 80003ES2LAN workaround--
-		 * For packet buffer work-around on link down event;
-		 * disable receives here in the ISR and
-		 * reset adapter in watchdog
-		 */
-		if (netif_carrier_ok(netdev) &&
-		    (hw->mac_type == e1000_80003es2lan)) {
-			/* disable receives */
-			rctl = er32(RCTL);
-			ew32(RCTL, rctl & ~E1000_RCTL_EN);
-		}
-		/* guard against interrupt when we're going down */
-		if (!test_bit(__E1000_DOWN, &adapter->flags))
-			mod_timer(&adapter->watchdog_timer, jiffies + 1);
-	}
-
-	if (unlikely(hw->mac_type < e1000_82571)) {
-		/* disable interrupts, without the synchronize_irq bit */
-		ew32(IMC, ~0);
-		E1000_WRITE_FLUSH();
-	}
-	if (likely(netif_rx_schedule_prep(&adapter->napi))) {
-		adapter->total_tx_bytes = 0;
-		adapter->total_tx_packets = 0;
-		adapter->total_rx_bytes = 0;
-		adapter->total_rx_packets = 0;
-		__netif_rx_schedule(&adapter->napi);
-	} else
-		/* this really should not happen! if it does it is basically a
-		 * bug, but not a hard error, so enable ints and continue */
-		e1000_irq_enable(adapter);
-
-	return IRQ_HANDLED;
-}
-
-/**
- * e1000_clean - NAPI Rx polling callback
- * @adapter: board private structure
- **/
-static int e1000_clean(struct napi_struct *napi, int budget)
-{
-	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
-	struct net_device *poll_dev = adapter->netdev;
-	int tx_cleaned = 0, work_done = 0;
-
-	adapter = netdev_priv(poll_dev);
-
-	/* e1000_clean is called per-cpu.  This lock protects
-	 * tx_ring[0] from being cleaned by multiple cpus
-	 * simultaneously.  A failure obtaining the lock means
-	 * tx_ring[0] is currently being cleaned anyway. */
-	if (spin_trylock(&adapter->tx_queue_lock)) {
-		tx_cleaned = e1000_clean_tx_irq(adapter,
-						&adapter->tx_ring[0]);
-		spin_unlock(&adapter->tx_queue_lock);
-	}
-
-	adapter->clean_rx(adapter, &adapter->rx_ring[0],
-	                  &work_done, budget);
-
-	if (tx_cleaned)
-		work_done = budget;
-
-	/* If budget not fully consumed, exit the polling mode */
-	if (work_done < budget) {
-		if (likely(adapter->itr_setting & 3))
-			e1000_set_itr(adapter);
-		netif_rx_complete(napi);
-		e1000_irq_enable(adapter);
-	}
-
-	return work_done;
-}
-
-/**
- * e1000_clean_tx_irq - Reclaim resources after transmit completes
- * @adapter: board private structure
- **/
-static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
-			       struct e1000_tx_ring *tx_ring)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	struct e1000_tx_desc *tx_desc, *eop_desc;
-	struct e1000_buffer *buffer_info;
-	unsigned int i, eop;
-	unsigned int count = 0;
-	bool cleaned = false;
-	unsigned int total_tx_bytes=0, total_tx_packets=0;
-
-	i = tx_ring->next_to_clean;
-	eop = tx_ring->buffer_info[i].next_to_watch;
-	eop_desc = E1000_TX_DESC(*tx_ring, eop);
-
-	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
-		for (cleaned = false; !cleaned; ) {
-			tx_desc = E1000_TX_DESC(*tx_ring, i);
-			buffer_info = &tx_ring->buffer_info[i];
-			cleaned = (i == eop);
-
-			if (cleaned) {
-				struct sk_buff *skb = buffer_info->skb;
-				unsigned int segs, bytecount;
-				segs = skb_shinfo(skb)->gso_segs ?: 1;
-				/* multiply data chunks by size of headers */
-				bytecount = ((segs - 1) * skb_headlen(skb)) +
-				            skb->len;
-				total_tx_packets += segs;
-				total_tx_bytes += bytecount;
-			}
-			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
-			tx_desc->upper.data = 0;
-
-			if (unlikely(++i == tx_ring->count)) i = 0;
-		}
-
-		eop = tx_ring->buffer_info[i].next_to_watch;
-		eop_desc = E1000_TX_DESC(*tx_ring, eop);
-#define E1000_TX_WEIGHT 64
-		/* weight of a sort for tx, to avoid endless transmit cleanup */
-		if (count++ == E1000_TX_WEIGHT)
-			break;
-	}
-
-	tx_ring->next_to_clean = i;
-
-#define TX_WAKE_THRESHOLD 32
-	if (unlikely(cleaned && netif_carrier_ok(netdev) &&
-		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
-		/* Make sure that anybody stopping the queue after this
-		 * sees the new next_to_clean.
-		 */
-		smp_mb();
-		if (netif_queue_stopped(netdev)) {
-			netif_wake_queue(netdev);
-			++adapter->restart_queue;
-		}
-	}
-
-	if (adapter->detect_tx_hung) {
-		/* Detect a transmit hang in hardware, this serializes the
-		 * check with the clearing of time_stamp and movement of i */
-		adapter->detect_tx_hung = false;
-		if (tx_ring->buffer_info[eop].dma &&
-		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
-		               (adapter->tx_timeout_factor * HZ))
-		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
-
-			/* detected Tx unit hang */
-			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
-					"  Tx Queue             <%lu>\n"
-					"  TDH                  <%x>\n"
-					"  TDT                  <%x>\n"
-					"  next_to_use          <%x>\n"
-					"  next_to_clean        <%x>\n"
-					"buffer_info[next_to_clean]\n"
-					"  time_stamp           <%lx>\n"
-					"  next_to_watch        <%x>\n"
-					"  jiffies              <%lx>\n"
-					"  next_to_watch.status <%x>\n",
-				(unsigned long)((tx_ring - adapter->tx_ring) /
-					sizeof(struct e1000_tx_ring)),
-				readl(hw->hw_addr + tx_ring->tdh),
-				readl(hw->hw_addr + tx_ring->tdt),
-				tx_ring->next_to_use,
-				tx_ring->next_to_clean,
-				tx_ring->buffer_info[eop].time_stamp,
-				eop,
-				jiffies,
-				eop_desc->upper.fields.status);
-			netif_stop_queue(netdev);
-		}
-	}
-	adapter->total_tx_bytes += total_tx_bytes;
-	adapter->total_tx_packets += total_tx_packets;
-	adapter->net_stats.tx_bytes += total_tx_bytes;
-	adapter->net_stats.tx_packets += total_tx_packets;
-	return cleaned;
-}
-
-/**
- * e1000_rx_checksum - Receive Checksum Offload for 82543
- * @adapter:     board private structure
- * @status_err:  receive descriptor status and error fields
- * @csum:        receive descriptor csum field
- * @sk_buff:     socket buffer with received data
- **/
-
-static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
-			      u32 csum, struct sk_buff *skb)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u16 status = (u16)status_err;
-	u8 errors = (u8)(status_err >> 24);
-	skb->ip_summed = CHECKSUM_NONE;
-
-	/* 82543 or newer only */
-	if (unlikely(hw->mac_type < e1000_82543)) return;
-	/* Ignore Checksum bit is set */
-	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
-	/* TCP/UDP checksum error bit is set */
-	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
-		/* let the stack verify checksum errors */
-		adapter->hw_csum_err++;
-		return;
-	}
-	/* TCP/UDP Checksum has not been calculated */
-	if (hw->mac_type <= e1000_82547_rev_2) {
-		if (!(status & E1000_RXD_STAT_TCPCS))
-			return;
-	} else {
-		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
-			return;
-	}
-	/* It must be a TCP or UDP packet with a valid checksum */
-	if (likely(status & E1000_RXD_STAT_TCPCS)) {
-		/* TCP checksum is good */
-		skb->ip_summed = CHECKSUM_UNNECESSARY;
-	} else if (hw->mac_type > e1000_82547_rev_2) {
-		/* IP fragment with UDP payload */
-		/* Hardware complements the payload checksum, so we undo it
-		 * and then put the value in host order for further stack use.
-		 */
-		__sum16 sum = (__force __sum16)htons(csum);
-		skb->csum = csum_unfold(~sum);
-		skb->ip_summed = CHECKSUM_COMPLETE;
-	}
-	adapter->hw_csum_good++;
-}
-
-/**
- * e1000_clean_rx_irq - Send received data up the network stack; legacy
- * @adapter: board private structure
- **/
-static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
-			       struct e1000_rx_ring *rx_ring,
-			       int *work_done, int work_to_do)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	struct pci_dev *pdev = adapter->pdev;
-	struct e1000_rx_desc *rx_desc, *next_rxd;
-	struct e1000_buffer *buffer_info, *next_buffer;
-	unsigned long flags;
-	u32 length;
-	u8 last_byte;
-	unsigned int i;
-	int cleaned_count = 0;
-	bool cleaned = false;
-	unsigned int total_rx_bytes=0, total_rx_packets=0;
-
-	i = rx_ring->next_to_clean;
-	rx_desc = E1000_RX_DESC(*rx_ring, i);
-	buffer_info = &rx_ring->buffer_info[i];
-
-	while (rx_desc->status & E1000_RXD_STAT_DD) {
-		struct sk_buff *skb;
-		u8 status;
-
-		if (*work_done >= work_to_do)
-			break;
-		(*work_done)++;
-
-		status = rx_desc->status;
-		skb = buffer_info->skb;
-		buffer_info->skb = NULL;
-
-		prefetch(skb->data - NET_IP_ALIGN);
-
-		if (++i == rx_ring->count) i = 0;
-		next_rxd = E1000_RX_DESC(*rx_ring, i);
-		prefetch(next_rxd);
-
-		next_buffer = &rx_ring->buffer_info[i];
-
-		cleaned = true;
-		cleaned_count++;
-		pci_unmap_single(pdev,
-		                 buffer_info->dma,
-		                 buffer_info->length,
-		                 PCI_DMA_FROMDEVICE);
-
-		length = le16_to_cpu(rx_desc->length);
-
-		if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
-			/* All receives must fit into a single buffer */
-			E1000_DBG("%s: Receive packet consumed multiple"
-				  " buffers\n", netdev->name);
-			/* recycle */
-			buffer_info->skb = skb;
-			goto next_desc;
-		}
-
-		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
-			last_byte = *(skb->data + length - 1);
-			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
-				       last_byte)) {
-				spin_lock_irqsave(&adapter->stats_lock, flags);
-				e1000_tbi_adjust_stats(hw, &adapter->stats,
-				                       length, skb->data);
-				spin_unlock_irqrestore(&adapter->stats_lock,
-				                       flags);
-				length--;
-			} else {
-				/* recycle */
-				buffer_info->skb = skb;
-				goto next_desc;
-			}
-		}
-
-		/* adjust length to remove Ethernet CRC, this must be
-		 * done after the TBI_ACCEPT workaround above */
-		length -= 4;
-
-		/* probably a little skewed due to removing CRC */
-		total_rx_bytes += length;
-		total_rx_packets++;
-
-		/* code added for copybreak, this should improve
-		 * performance for small packets with large amounts
-		 * of reassembly being done in the stack */
-		if (length < copybreak) {
-			struct sk_buff *new_skb =
-			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
-			if (new_skb) {
-				skb_reserve(new_skb, NET_IP_ALIGN);
-				skb_copy_to_linear_data_offset(new_skb,
-							       -NET_IP_ALIGN,
-							       (skb->data -
-							        NET_IP_ALIGN),
-							       (length +
-							        NET_IP_ALIGN));
-				/* save the skb in buffer_info as good */
-				buffer_info->skb = skb;
-				skb = new_skb;
-			}
-			/* else just continue with the old one */
-		}
-		/* end copybreak code */
-		skb_put(skb, length);
-
-		/* Receive Checksum Offload */
-		e1000_rx_checksum(adapter,
-				  (u32)(status) |
-				  ((u32)(rx_desc->errors) << 24),
-				  le16_to_cpu(rx_desc->csum), skb);
-
-		skb->protocol = eth_type_trans(skb, netdev);
-
-		if (unlikely(adapter->vlgrp &&
-			    (status & E1000_RXD_STAT_VP))) {
-			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
-						 le16_to_cpu(rx_desc->special));
-		} else {
-			netif_receive_skb(skb);
-		}
-
-next_desc:
-		rx_desc->status = 0;
-
-		/* return some buffers to hardware, one at a time is too slow */
-		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
-			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
-			cleaned_count = 0;
-		}
-
-		/* use prefetched values */
-		rx_desc = next_rxd;
-		buffer_info = next_buffer;
-	}
-	rx_ring->next_to_clean = i;
-
-	cleaned_count = E1000_DESC_UNUSED(rx_ring);
-	if (cleaned_count)
-		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
-
-	adapter->total_rx_packets += total_rx_packets;
-	adapter->total_rx_bytes += total_rx_bytes;
-	adapter->net_stats.rx_bytes += total_rx_bytes;
-	adapter->net_stats.rx_packets += total_rx_packets;
-	return cleaned;
-}
-
-/**
- * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
- * @adapter: address of board private structure
- **/
-
-static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
-				   struct e1000_rx_ring *rx_ring,
-				   int cleaned_count)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	struct net_device *netdev = adapter->netdev;
-	struct pci_dev *pdev = adapter->pdev;
-	struct e1000_rx_desc *rx_desc;
-	struct e1000_buffer *buffer_info;
-	struct sk_buff *skb;
-	unsigned int i;
-	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
-
-	i = rx_ring->next_to_use;
-	buffer_info = &rx_ring->buffer_info[i];
-
-	while (cleaned_count--) {
-		skb = buffer_info->skb;
-		if (skb) {
-			skb_trim(skb, 0);
-			goto map_skb;
-		}
-
-		skb = netdev_alloc_skb(netdev, bufsz);
-		if (unlikely(!skb)) {
-			/* Better luck next round */
-			adapter->alloc_rx_buff_failed++;
-			break;
-		}
-
-		/* Fix for errata 23, can't cross 64kB boundary */
-		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
-			struct sk_buff *oldskb = skb;
-			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
-					     "at %p\n", bufsz, skb->data);
-			/* Try again, without freeing the previous */
-			skb = netdev_alloc_skb(netdev, bufsz);
-			/* Failed allocation, critical failure */
-			if (!skb) {
-				dev_kfree_skb(oldskb);
-				break;
-			}
-
-			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
-				/* give up */
-				dev_kfree_skb(skb);
-				dev_kfree_skb(oldskb);
-				break; /* while !buffer_info->skb */
-			}
-
-			/* Use new allocation */
-			dev_kfree_skb(oldskb);
-		}
-		/* Make buffer alignment 2 beyond a 16 byte boundary
-		 * this will result in a 16 byte aligned IP header after
-		 * the 14 byte MAC header is removed
-		 */
-		skb_reserve(skb, NET_IP_ALIGN);
-
-		buffer_info->skb = skb;
-		buffer_info->length = adapter->rx_buffer_len;
-map_skb:
-		buffer_info->dma = pci_map_single(pdev,
-						  skb->data,
-						  adapter->rx_buffer_len,
-						  PCI_DMA_FROMDEVICE);
-
-		/* Fix for errata 23, can't cross 64kB boundary */
-		if (!e1000_check_64k_bound(adapter,
-					(void *)(unsigned long)buffer_info->dma,
-					adapter->rx_buffer_len)) {
-			DPRINTK(RX_ERR, ERR,
-				"dma align check failed: %u bytes at %p\n",
-				adapter->rx_buffer_len,
-				(void *)(unsigned long)buffer_info->dma);
-			dev_kfree_skb(skb);
-			buffer_info->skb = NULL;
-
-			pci_unmap_single(pdev, buffer_info->dma,
-					 adapter->rx_buffer_len,
-					 PCI_DMA_FROMDEVICE);
-
-			break; /* while !buffer_info->skb */
-		}
-		rx_desc = E1000_RX_DESC(*rx_ring, i);
-		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-
-		if (unlikely(++i == rx_ring->count))
-			i = 0;
-		buffer_info = &rx_ring->buffer_info[i];
-	}
-
-	if (likely(rx_ring->next_to_use != i)) {
-		rx_ring->next_to_use = i;
-		if (unlikely(i-- == 0))
-			i = (rx_ring->count - 1);
-
-		/* Force memory writes to complete before letting h/w
-		 * know there are new descriptors to fetch.  (Only
-		 * applicable for weak-ordered memory model archs,
-		 * such as IA-64). */
-		wmb();
-		writel(i, hw->hw_addr + rx_ring->rdt);
-	}
-}
-
-/**
- * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
- * @adapter:
- **/
-
-static void e1000_smartspeed(struct e1000_adapter *adapter)
-{
-	struct e1000_hw *hw = &adapter->hw;
-	u16 phy_status;
-	u16 phy_ctrl;
-
-	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
-	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
-		return;
-
-	if (adapter->smartspeed == 0) {
-		/* If Master/Slave config fault is asserted twice,
-		 * we assume back-to-back */
-		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
-		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
-		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
-		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
-		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
-		if (phy_ctrl & CR_1000T_MS_ENABLE) {
-			phy_ctrl &= ~CR_1000T_MS_ENABLE;
-			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
-					    phy_ctrl);
-			adapter->smartspeed++;
-			if (!e1000_phy_setup_autoneg(hw) &&
-			   !e1000_read_phy_reg(hw, PHY_CTRL,
-				   	       &phy_ctrl)) {
-				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
-					     MII_CR_RESTART_AUTO_NEG);
-				e1000_write_phy_reg(hw, PHY_CTRL,
-						    phy_ctrl);
-			}
-		}
-		return;
-	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
-		/* If still no link, perhaps using 2/3 pair cable */
-		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
-		phy_ctrl |= CR_1000T_MS_ENABLE;
-		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
-		if (!e1000_phy_setup_autoneg(hw) &&
-		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
-			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
-				     MII_CR_RESTART_AUTO_NEG);
-			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
-		}
-	}
-	/* Restart process after E1000_SMARTSPEED_MAX iterations */
-	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
-		adapter->smartspeed = 0;
-}
-
-/**
- * e1000_ioctl -
- * @netdev:
- * @ifreq:
- * @cmd:
- **/
-
-static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
-{
-	switch (cmd) {
-	case SIOCGMIIPHY:
-	case SIOCGMIIREG:
-	case SIOCSMIIREG:
-		return e1000_mii_ioctl(netdev, ifr, cmd);
-	default:
-		return -EOPNOTSUPP;
-	}
-}
-
-/**
- * e1000_mii_ioctl -
- * @netdev:
- * @ifreq:
- * @cmd:
- **/
-
-static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
-			   int cmd)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	struct mii_ioctl_data *data = if_mii(ifr);
-	int retval;
-	u16 mii_reg;
-	u16 spddplx;
-	unsigned long flags;
-
-	if (hw->media_type != e1000_media_type_copper)
-		return -EOPNOTSUPP;
-
-	switch (cmd) {
-	case SIOCGMIIPHY:
-		data->phy_id = hw->phy_addr;
-		break;
-	case SIOCGMIIREG:
-		if (!capable(CAP_NET_ADMIN))
-			return -EPERM;
-		spin_lock_irqsave(&adapter->stats_lock, flags);
-		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
-				   &data->val_out)) {
-			spin_unlock_irqrestore(&adapter->stats_lock, flags);
-			return -EIO;
-		}
-		spin_unlock_irqrestore(&adapter->stats_lock, flags);
-		break;
-	case SIOCSMIIREG:
-		if (!capable(CAP_NET_ADMIN))
-			return -EPERM;
-		if (data->reg_num & ~(0x1F))
-			return -EFAULT;
-		mii_reg = data->val_in;
-		spin_lock_irqsave(&adapter->stats_lock, flags);
-		if (e1000_write_phy_reg(hw, data->reg_num,
-					mii_reg)) {
-			spin_unlock_irqrestore(&adapter->stats_lock, flags);
-			return -EIO;
-		}
-		spin_unlock_irqrestore(&adapter->stats_lock, flags);
-		if (hw->media_type == e1000_media_type_copper) {
-			switch (data->reg_num) {
-			case PHY_CTRL:
-				if (mii_reg & MII_CR_POWER_DOWN)
-					break;
-				if (mii_reg & MII_CR_AUTO_NEG_EN) {
-					hw->autoneg = 1;
-					hw->autoneg_advertised = 0x2F;
-				} else {
-					if (mii_reg & 0x40)
-						spddplx = SPEED_1000;
-					else if (mii_reg & 0x2000)
-						spddplx = SPEED_100;
-					else
-						spddplx = SPEED_10;
-					spddplx += (mii_reg & 0x100)
-						   ? DUPLEX_FULL :
-						   DUPLEX_HALF;
-					retval = e1000_set_spd_dplx(adapter,
-								    spddplx);
-					if (retval)
-						return retval;
-				}
-				if (netif_running(adapter->netdev))
-					e1000_reinit_locked(adapter);
-				else
-					e1000_reset(adapter);
-				break;
-			case M88E1000_PHY_SPEC_CTRL:
-			case M88E1000_EXT_PHY_SPEC_CTRL:
-				if (e1000_phy_reset(hw))
-					return -EIO;
-				break;
-			}
-		} else {
-			switch (data->reg_num) {
-			case PHY_CTRL:
-				if (mii_reg & MII_CR_POWER_DOWN)
-					break;
-				if (netif_running(adapter->netdev))
-					e1000_reinit_locked(adapter);
-				else
-					e1000_reset(adapter);
-				break;
-			}
-		}
-		break;
-	default:
-		return -EOPNOTSUPP;
-	}
-	return E1000_SUCCESS;
-}
-
-void e1000_pci_set_mwi(struct e1000_hw *hw)
-{
-	struct e1000_adapter *adapter = hw->back;
-	int ret_val = pci_set_mwi(adapter->pdev);
-
-	if (ret_val)
-		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
-}
-
-void e1000_pci_clear_mwi(struct e1000_hw *hw)
-{
-	struct e1000_adapter *adapter = hw->back;
-
-	pci_clear_mwi(adapter->pdev);
-}
-
-int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
-{
-	struct e1000_adapter *adapter = hw->back;
-	return pcix_get_mmrbc(adapter->pdev);
-}
-
-void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
-{
-	struct e1000_adapter *adapter = hw->back;
-	pcix_set_mmrbc(adapter->pdev, mmrbc);
-}
-
-s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
-    struct e1000_adapter *adapter = hw->back;
-    u16 cap_offset;
-
-    cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
-    if (!cap_offset)
-        return -E1000_ERR_CONFIG;
-
-    pci_read_config_word(adapter->pdev, cap_offset + reg, value);
-
-    return E1000_SUCCESS;
-}
-
-void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
-{
-	outl(value, port);
-}
-
-static void e1000_vlan_rx_register(struct net_device *netdev,
-				   struct vlan_group *grp)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 ctrl, rctl;
-
-	if (!test_bit(__E1000_DOWN, &adapter->flags))
-		e1000_irq_disable(adapter);
-	adapter->vlgrp = grp;
-
-	if (grp) {
-		/* enable VLAN tag insert/strip */
-		ctrl = er32(CTRL);
-		ctrl |= E1000_CTRL_VME;
-		ew32(CTRL, ctrl);
-
-		if (adapter->hw.mac_type != e1000_ich8lan) {
-			/* enable VLAN receive filtering */
-			rctl = er32(RCTL);
-			rctl &= ~E1000_RCTL_CFIEN;
-			ew32(RCTL, rctl);
-			e1000_update_mng_vlan(adapter);
-		}
-	} else {
-		/* disable VLAN tag insert/strip */
-		ctrl = er32(CTRL);
-		ctrl &= ~E1000_CTRL_VME;
-		ew32(CTRL, ctrl);
-
-		if (adapter->hw.mac_type != e1000_ich8lan) {
-			if (adapter->mng_vlan_id !=
-			    (u16)E1000_MNG_VLAN_NONE) {
-				e1000_vlan_rx_kill_vid(netdev,
-				                       adapter->mng_vlan_id);
-				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
-			}
-		}
-	}
-
-	if (!test_bit(__E1000_DOWN, &adapter->flags))
-		e1000_irq_enable(adapter);
-}
-
-static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 vfta, index;
-
-	if ((hw->mng_cookie.status &
-	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
-	    (vid == adapter->mng_vlan_id))
-		return;
-	/* add VID to filter table */
-	index = (vid >> 5) & 0x7F;
-	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
-	vfta |= (1 << (vid & 0x1F));
-	e1000_write_vfta(hw, index, vfta);
-}
-
-static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 vfta, index;
-
-	if (!test_bit(__E1000_DOWN, &adapter->flags))
-		e1000_irq_disable(adapter);
-	vlan_group_set_device(adapter->vlgrp, vid, NULL);
-	if (!test_bit(__E1000_DOWN, &adapter->flags))
-		e1000_irq_enable(adapter);
-
-	if ((hw->mng_cookie.status &
-	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
-	    (vid == adapter->mng_vlan_id)) {
-		/* release control to f/w */
-		e1000_release_hw_control(adapter);
-		return;
-	}
-
-	/* remove VID from filter table */
-	index = (vid >> 5) & 0x7F;
-	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
-	vfta &= ~(1 << (vid & 0x1F));
-	e1000_write_vfta(hw, index, vfta);
-}
-
-static void e1000_restore_vlan(struct e1000_adapter *adapter)
-{
-	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
-
-	if (adapter->vlgrp) {
-		u16 vid;
-		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
-			if (!vlan_group_get_device(adapter->vlgrp, vid))
-				continue;
-			e1000_vlan_rx_add_vid(adapter->netdev, vid);
-		}
-	}
-}
-
-int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
-{
-	struct e1000_hw *hw = &adapter->hw;
-
-	hw->autoneg = 0;
-
-	/* Fiber NICs only allow 1000 gbps Full duplex */
-	if ((hw->media_type == e1000_media_type_fiber) &&
-		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
-		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
-		return -EINVAL;
-	}
-
-	switch (spddplx) {
-	case SPEED_10 + DUPLEX_HALF:
-		hw->forced_speed_duplex = e1000_10_half;
-		break;
-	case SPEED_10 + DUPLEX_FULL:
-		hw->forced_speed_duplex = e1000_10_full;
-		break;
-	case SPEED_100 + DUPLEX_HALF:
-		hw->forced_speed_duplex = e1000_100_half;
-		break;
-	case SPEED_100 + DUPLEX_FULL:
-		hw->forced_speed_duplex = e1000_100_full;
-		break;
-	case SPEED_1000 + DUPLEX_FULL:
-		hw->autoneg = 1;
-		hw->autoneg_advertised = ADVERTISE_1000_FULL;
-		break;
-	case SPEED_1000 + DUPLEX_HALF: /* not supported */
-	default:
-		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
-		return -EINVAL;
-	}
-	return 0;
-}
-
-static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
-{
-	struct net_device *netdev = pci_get_drvdata(pdev);
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 ctrl, ctrl_ext, rctl, status;
-	u32 wufc = adapter->wol;
-#ifdef CONFIG_PM
-	int retval = 0;
-#endif
-
-	netif_device_detach(netdev);
-
-	if (netif_running(netdev)) {
-		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
-		e1000_down(adapter);
-	}
-
-#ifdef CONFIG_PM
-	retval = pci_save_state(pdev);
-	if (retval)
-		return retval;
-#endif
-
-	status = er32(STATUS);
-	if (status & E1000_STATUS_LU)
-		wufc &= ~E1000_WUFC_LNKC;
-
-	if (wufc) {
-		e1000_setup_rctl(adapter);
-		e1000_set_rx_mode(netdev);
-
-		/* turn on all-multi mode if wake on multicast is enabled */
-		if (wufc & E1000_WUFC_MC) {
-			rctl = er32(RCTL);
-			rctl |= E1000_RCTL_MPE;
-			ew32(RCTL, rctl);
-		}
-
-		if (hw->mac_type >= e1000_82540) {
-			ctrl = er32(CTRL);
-			/* advertise wake from D3Cold */
-			#define E1000_CTRL_ADVD3WUC 0x00100000
-			/* phy power management enable */
-			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
-			ctrl |= E1000_CTRL_ADVD3WUC |
-				E1000_CTRL_EN_PHY_PWR_MGMT;
-			ew32(CTRL, ctrl);
-		}
-
-		if (hw->media_type == e1000_media_type_fiber ||
-		   hw->media_type == e1000_media_type_internal_serdes) {
-			/* keep the laser running in D3 */
-			ctrl_ext = er32(CTRL_EXT);
-			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
-			ew32(CTRL_EXT, ctrl_ext);
-		}
-
-		/* Allow time for pending master requests to run */
-		e1000_disable_pciex_master(hw);
-
-		ew32(WUC, E1000_WUC_PME_EN);
-		ew32(WUFC, wufc);
-		pci_enable_wake(pdev, PCI_D3hot, 1);
-		pci_enable_wake(pdev, PCI_D3cold, 1);
-	} else {
-		ew32(WUC, 0);
-		ew32(WUFC, 0);
-		pci_enable_wake(pdev, PCI_D3hot, 0);
-		pci_enable_wake(pdev, PCI_D3cold, 0);
-	}
-
-	e1000_release_manageability(adapter);
-
-	/* make sure adapter isn't asleep if manageability is enabled */
-	if (adapter->en_mng_pt) {
-		pci_enable_wake(pdev, PCI_D3hot, 1);
-		pci_enable_wake(pdev, PCI_D3cold, 1);
-	}
-
-	if (hw->phy_type == e1000_phy_igp_3)
-		e1000_phy_powerdown_workaround(hw);
-
-	if (netif_running(netdev))
-		e1000_free_irq(adapter);
-
-	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
-	 * would have already happened in close and is redundant. */
-	e1000_release_hw_control(adapter);
-
-	pci_disable_device(pdev);
-
-	pci_set_power_state(pdev, pci_choose_state(pdev, state));
-
-	return 0;
-}
-
-#ifdef CONFIG_PM
-static int e1000_resume(struct pci_dev *pdev)
-{
-	struct net_device *netdev = pci_get_drvdata(pdev);
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	u32 err;
-
-	pci_set_power_state(pdev, PCI_D0);
-	pci_restore_state(pdev);
-
-	if (adapter->need_ioport)
-		err = pci_enable_device(pdev);
-	else
-		err = pci_enable_device_mem(pdev);
-	if (err) {
-		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
-		return err;
-	}
-	pci_set_master(pdev);
-
-	pci_enable_wake(pdev, PCI_D3hot, 0);
-	pci_enable_wake(pdev, PCI_D3cold, 0);
-
-	if (netif_running(netdev)) {
-		err = e1000_request_irq(adapter);
-		if (err)
-			return err;
-	}
-
-	e1000_power_up_phy(adapter);
-	e1000_reset(adapter);
-	ew32(WUS, ~0);
-
-	e1000_init_manageability(adapter);
-
-	if (netif_running(netdev))
-		e1000_up(adapter);
-
-	netif_device_attach(netdev);
-
-	/* If the controller is 82573 and f/w is AMT, do not set
-	 * DRV_LOAD until the interface is up.  For all other cases,
-	 * let the f/w know that the h/w is now under the control
-	 * of the driver. */
-	if (hw->mac_type != e1000_82573 ||
-	    !e1000_check_mng_mode(hw))
-		e1000_get_hw_control(adapter);
-
-	return 0;
-}
-#endif
-
-static void e1000_shutdown(struct pci_dev *pdev)
-{
-	e1000_suspend(pdev, PMSG_SUSPEND);
-}
-
-#ifdef CONFIG_NET_POLL_CONTROLLER
-/*
- * Polling 'interrupt' - used by things like netconsole to send skbs
- * without having to re-enable interrupts. It's not called while
- * the interrupt routine is executing.
- */
-static void e1000_netpoll(struct net_device *netdev)
-{
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-
-	disable_irq(adapter->pdev->irq);
-	e1000_intr(adapter->pdev->irq, netdev);
-	enable_irq(adapter->pdev->irq);
-}
-#endif
-
-/**
- * e1000_io_error_detected - called when PCI error is detected
- * @pdev: Pointer to PCI device
- * @state: The current pci conneection state
- *
- * This function is called after a PCI bus error affecting
- * this device has been detected.
- */
-static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
-						pci_channel_state_t state)
-{
-	struct net_device *netdev = pci_get_drvdata(pdev);
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-
-	netif_device_detach(netdev);
-
-	if (netif_running(netdev))
-		e1000_down(adapter);
-	pci_disable_device(pdev);
-
-	/* Request a slot slot reset. */
-	return PCI_ERS_RESULT_NEED_RESET;
-}
-
-/**
- * e1000_io_slot_reset - called after the pci bus has been reset.
- * @pdev: Pointer to PCI device
- *
- * Restart the card from scratch, as if from a cold-boot. Implementation
- * resembles the first-half of the e1000_resume routine.
- */
-static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
-{
-	struct net_device *netdev = pci_get_drvdata(pdev);
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-	int err;
-
-	if (adapter->need_ioport)
-		err = pci_enable_device(pdev);
-	else
-		err = pci_enable_device_mem(pdev);
-	if (err) {
-		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
-		return PCI_ERS_RESULT_DISCONNECT;
-	}
-	pci_set_master(pdev);
-
-	pci_enable_wake(pdev, PCI_D3hot, 0);
-	pci_enable_wake(pdev, PCI_D3cold, 0);
-
-	e1000_reset(adapter);
-	ew32(WUS, ~0);
-
-	return PCI_ERS_RESULT_RECOVERED;
-}
-
-/**
- * e1000_io_resume - called when traffic can start flowing again.
- * @pdev: Pointer to PCI device
- *
- * This callback is called when the error recovery driver tells us that
- * its OK to resume normal operation. Implementation resembles the
- * second-half of the e1000_resume routine.
- */
-static void e1000_io_resume(struct pci_dev *pdev)
-{
-	struct net_device *netdev = pci_get_drvdata(pdev);
-	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
-
-	e1000_init_manageability(adapter);
-
-	if (netif_running(netdev)) {
-		if (e1000_up(adapter)) {
-			printk("e1000: can't bring device back up after reset\n");
-			return;
-		}
-	}
-
-	netif_device_attach(netdev);
-
-	/* If the controller is 82573 and f/w is AMT, do not set
-	 * DRV_LOAD until the interface is up.  For all other cases,
-	 * let the f/w know that the h/w is now under the control
-	 * of the driver. */
-	if (hw->mac_type != e1000_82573 ||
-	    !e1000_check_mng_mode(hw))
-		e1000_get_hw_control(adapter);
-
-}
-
-/* e1000_main.c */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_main-2.6.29-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,4849 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+#include <net/ip6_checksum.h>
+
+char e1000_driver_name[] = "e1000";
+static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
+#define DRV_VERSION "7.3.21-k3-NAPI"
+const char e1000_driver_version[] = DRV_VERSION;
+static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
+
+/* e1000_pci_tbl - PCI Device ID Table
+ *
+ * Last entry must be all 0s
+ *
+ * Macro expands to...
+ *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+ */
+static struct pci_device_id e1000_pci_tbl[] = {
+	INTEL_E1000_ETHERNET_DEVICE(0x1000),
+	INTEL_E1000_ETHERNET_DEVICE(0x1001),
+	INTEL_E1000_ETHERNET_DEVICE(0x1004),
+	INTEL_E1000_ETHERNET_DEVICE(0x1008),
+	INTEL_E1000_ETHERNET_DEVICE(0x1009),
+	INTEL_E1000_ETHERNET_DEVICE(0x100C),
+	INTEL_E1000_ETHERNET_DEVICE(0x100D),
+	INTEL_E1000_ETHERNET_DEVICE(0x100E),
+	INTEL_E1000_ETHERNET_DEVICE(0x100F),
+	INTEL_E1000_ETHERNET_DEVICE(0x1010),
+	INTEL_E1000_ETHERNET_DEVICE(0x1011),
+	INTEL_E1000_ETHERNET_DEVICE(0x1012),
+	INTEL_E1000_ETHERNET_DEVICE(0x1013),
+	INTEL_E1000_ETHERNET_DEVICE(0x1014),
+	INTEL_E1000_ETHERNET_DEVICE(0x1015),
+	INTEL_E1000_ETHERNET_DEVICE(0x1016),
+	INTEL_E1000_ETHERNET_DEVICE(0x1017),
+	INTEL_E1000_ETHERNET_DEVICE(0x1018),
+	INTEL_E1000_ETHERNET_DEVICE(0x1019),
+	INTEL_E1000_ETHERNET_DEVICE(0x101A),
+	INTEL_E1000_ETHERNET_DEVICE(0x101D),
+	INTEL_E1000_ETHERNET_DEVICE(0x101E),
+	INTEL_E1000_ETHERNET_DEVICE(0x1026),
+	INTEL_E1000_ETHERNET_DEVICE(0x1027),
+	INTEL_E1000_ETHERNET_DEVICE(0x1028),
+	INTEL_E1000_ETHERNET_DEVICE(0x1075),
+	INTEL_E1000_ETHERNET_DEVICE(0x1076),
+	INTEL_E1000_ETHERNET_DEVICE(0x1077),
+	INTEL_E1000_ETHERNET_DEVICE(0x1078),
+	INTEL_E1000_ETHERNET_DEVICE(0x1079),
+	INTEL_E1000_ETHERNET_DEVICE(0x107A),
+	INTEL_E1000_ETHERNET_DEVICE(0x107B),
+	INTEL_E1000_ETHERNET_DEVICE(0x107C),
+	INTEL_E1000_ETHERNET_DEVICE(0x108A),
+	INTEL_E1000_ETHERNET_DEVICE(0x1099),
+	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
+	/* required last entry */
+	{0,}
+};
+
+MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+int e1000_up(struct e1000_adapter *adapter);
+void e1000_down(struct e1000_adapter *adapter);
+void e1000_reinit_locked(struct e1000_adapter *adapter);
+void e1000_reset(struct e1000_adapter *adapter);
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *txdr);
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rxdr);
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *tx_ring);
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring);
+void e1000_update_stats(struct e1000_adapter *adapter);
+
+static int e1000_init_module(void);
+static void e1000_exit_module(void);
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
+static void __devexit e1000_remove(struct pci_dev *pdev);
+static int e1000_alloc_queues(struct e1000_adapter *adapter);
+static int e1000_sw_init(struct e1000_adapter *adapter);
+static int e1000_open(struct net_device *netdev);
+static int e1000_close(struct net_device *netdev);
+static void e1000_configure_tx(struct e1000_adapter *adapter);
+static void e1000_configure_rx(struct e1000_adapter *adapter);
+static void e1000_setup_rctl(struct e1000_adapter *adapter);
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+                                struct e1000_tx_ring *tx_ring);
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+                                struct e1000_rx_ring *rx_ring);
+static void e1000_set_rx_mode(struct net_device *netdev);
+static void e1000_update_phy_info(unsigned long data);
+static void e1000_watchdog(unsigned long data);
+static void e1000_82547_tx_fifo_stall(unsigned long data);
+static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
+static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
+static int e1000_set_mac(struct net_device *netdev, void *p);
+static irqreturn_t e1000_intr(int irq, void *data);
+static irqreturn_t e1000_intr_msi(int irq, void *data);
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring);
+static int e1000_clean(struct napi_struct *napi, int budget);
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do);
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+                                   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count);
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd);
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
+static void e1000_tx_timeout(struct net_device *dev);
+static void e1000_reset_task(struct work_struct *work);
+static void e1000_smartspeed(struct e1000_adapter *adapter);
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+                                       struct sk_buff *skb);
+
+static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
+static void e1000_restore_vlan(struct e1000_adapter *adapter);
+
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
+#ifdef CONFIG_PM
+static int e1000_resume(struct pci_dev *pdev);
+#endif
+static void e1000_shutdown(struct pci_dev *pdev);
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/* for netdump / net console */
+static void e1000_netpoll (struct net_device *netdev);
+#endif
+
+#define COPYBREAK_DEFAULT 256
+static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
+module_param(copybreak, uint, 0644);
+MODULE_PARM_DESC(copybreak,
+	"Maximum size of packet that is copied to a new buffer on receive");
+
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+                     pci_channel_state_t state);
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
+static void e1000_io_resume(struct pci_dev *pdev);
+
+static struct pci_error_handlers e1000_err_handler = {
+	.error_detected = e1000_io_error_detected,
+	.slot_reset = e1000_io_slot_reset,
+	.resume = e1000_io_resume,
+};
+
+static struct pci_driver e1000_driver = {
+	.name     = e1000_driver_name,
+	.id_table = e1000_pci_tbl,
+	.probe    = e1000_probe,
+	.remove   = __devexit_p(e1000_remove),
+#ifdef CONFIG_PM
+	/* Power Managment Hooks */
+	.suspend  = e1000_suspend,
+	.resume   = e1000_resume,
+#endif
+	.shutdown = e1000_shutdown,
+	.err_handler = &e1000_err_handler
+};
+
+MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
+MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+
+static int __init e1000_init_module(void)
+{
+	int ret;
+	printk(KERN_INFO "%s - version %s\n",
+	       e1000_driver_string, e1000_driver_version);
+
+	printk(KERN_INFO "%s\n", e1000_copyright);
+
+	ret = pci_register_driver(&e1000_driver);
+	if (copybreak != COPYBREAK_DEFAULT) {
+		if (copybreak == 0)
+			printk(KERN_INFO "e1000: copybreak disabled\n");
+		else
+			printk(KERN_INFO "e1000: copybreak enabled for "
+			       "packets <= %u bytes\n", copybreak);
+	}
+	return ret;
+}
+
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+
+static void __exit e1000_exit_module(void)
+{
+	pci_unregister_driver(&e1000_driver);
+}
+
+module_exit(e1000_exit_module);
+
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	irq_handler_t handler = e1000_intr;
+	int irq_flags = IRQF_SHARED;
+	int err;
+
+	if (hw->mac_type >= e1000_82571) {
+		adapter->have_msi = !pci_enable_msi(adapter->pdev);
+		if (adapter->have_msi) {
+			handler = e1000_intr_msi;
+			irq_flags = 0;
+		}
+	}
+
+	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
+	                  netdev);
+	if (err) {
+		if (adapter->have_msi)
+			pci_disable_msi(adapter->pdev);
+		DPRINTK(PROBE, ERR,
+		        "Unable to allocate interrupt Error: %d\n", err);
+	}
+
+	return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	free_irq(adapter->pdev->irq, netdev);
+
+	if (adapter->have_msi)
+		pci_disable_msi(adapter->pdev);
+}
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_disable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	ew32(IMC, ~0);
+	E1000_WRITE_FLUSH();
+	synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_enable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	ew32(IMS, IMS_ENABLE_MASK);
+	E1000_WRITE_FLUSH();
+}
+
+static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u16 vid = hw->mng_cookie.vlan_id;
+	u16 old_vid = adapter->mng_vlan_id;
+	if (adapter->vlgrp) {
+		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
+			if (hw->mng_cookie.status &
+				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
+				e1000_vlan_rx_add_vid(netdev, vid);
+				adapter->mng_vlan_id = vid;
+			} else
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+
+			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
+					(vid != old_vid) &&
+			    !vlan_group_get_device(adapter->vlgrp, old_vid))
+				e1000_vlan_rx_kill_vid(netdev, old_vid);
+		} else
+			adapter->mng_vlan_id = vid;
+	}
+}
+
+/**
+ * e1000_release_hw_control - release control of the h/w to f/w
+ * @adapter: address of board private structure
+ *
+ * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT version (only with 82573) i
+ * of the f/w this means that the network i/f is closed.
+ *
+ **/
+
+static void e1000_release_hw_control(struct e1000_adapter *adapter)
+{
+	u32 ctrl_ext;
+	u32 swsm;
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Let firmware taken over control of h/w */
+	switch (hw->mac_type) {
+	case e1000_82573:
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+	case e1000_ich8lan:
+		ctrl_ext = er32(CTRL_EXT);
+		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+		break;
+	default:
+		break;
+	}
+}
+
+/**
+ * e1000_get_hw_control - get control of the h/w from f/w
+ * @adapter: address of board private structure
+ *
+ * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is loaded. For AMT version (only with 82573)
+ * of the f/w this means that the network i/f is open.
+ *
+ **/
+
+static void e1000_get_hw_control(struct e1000_adapter *adapter)
+{
+	u32 ctrl_ext;
+	u32 swsm;
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Let firmware know the driver has taken over */
+	switch (hw->mac_type) {
+	case e1000_82573:
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+	case e1000_ich8lan:
+		ctrl_ext = er32(CTRL_EXT);
+		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+		break;
+	default:
+		break;
+	}
+}
+
+static void e1000_init_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+		/* enable receiving management packets to the host */
+		/* this will probably generate destination unreachable messages
+		 * from the host OS, but the packets will be handled on SMBUS */
+		if (hw->has_manc2h) {
+			u32 manc2h = er32(MANC2H);
+
+			manc |= E1000_MANC_EN_MNG2HOST;
+#define E1000_MNG2HOST_PORT_623 (1 << 5)
+#define E1000_MNG2HOST_PORT_664 (1 << 6)
+			manc2h |= E1000_MNG2HOST_PORT_623;
+			manc2h |= E1000_MNG2HOST_PORT_664;
+			ew32(MANC2H, manc2h);
+		}
+
+		ew32(MANC, manc);
+	}
+}
+
+static void e1000_release_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* re-enable hardware interception of ARP */
+		manc |= E1000_MANC_ARP_EN;
+
+		if (hw->has_manc2h)
+			manc &= ~E1000_MANC_EN_MNG2HOST;
+
+		/* don't explicitly have to mess with MANC2H since
+		 * MANC has an enable disable that gates MANC2H */
+
+		ew32(MANC, manc);
+	}
+}
+
+/**
+ * e1000_configure - configure the hardware for RX and TX
+ * @adapter = private board structure
+ **/
+static void e1000_configure(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int i;
+
+	e1000_set_rx_mode(netdev);
+
+	e1000_restore_vlan(adapter);
+	e1000_init_manageability(adapter);
+
+	e1000_configure_tx(adapter);
+	e1000_setup_rctl(adapter);
+	e1000_configure_rx(adapter);
+	/* call E1000_DESC_UNUSED which always leaves
+	 * at least 1 descriptor unused to make sure
+	 * next_to_use != next_to_clean */
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
+		adapter->alloc_rx_buf(adapter, ring,
+		                      E1000_DESC_UNUSED(ring));
+	}
+
+	adapter->tx_queue_len = netdev->tx_queue_len;
+}
+
+int e1000_up(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* hardware has been reset, we need to reload some things */
+	e1000_configure(adapter);
+
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	/* fire a link change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+	return 0;
+}
+
+/**
+ * e1000_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000_reset ***
+ *
+ **/
+
+void e1000_power_up_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 mii_reg = 0;
+
+	/* Just clear the power down bit to wake the phy back up */
+	if (hw->media_type == e1000_media_type_copper) {
+		/* according to the manual, the phy will retain its
+		 * settings across a power-down/up cycle */
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg &= ~MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+	}
+}
+
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Power down the PHY so no link is implied when interface is down *
+	 * The PHY cannot be powered down if any of the following is true *
+	 * (a) WoL is enabled
+	 * (b) AMT is active
+	 * (c) SoL/IDER session is active */
+	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
+	   hw->media_type == e1000_media_type_copper) {
+		u16 mii_reg = 0;
+
+		switch (hw->mac_type) {
+		case e1000_82540:
+		case e1000_82545:
+		case e1000_82545_rev_3:
+		case e1000_82546:
+		case e1000_82546_rev_3:
+		case e1000_82541:
+		case e1000_82541_rev_2:
+		case e1000_82547:
+		case e1000_82547_rev_2:
+			if (er32(MANC) & E1000_MANC_SMBUS_EN)
+				goto out;
+			break;
+		case e1000_82571:
+		case e1000_82572:
+		case e1000_82573:
+		case e1000_80003es2lan:
+		case e1000_ich8lan:
+			if (e1000_check_mng_mode(hw) ||
+			    e1000_check_phy_reset_block(hw))
+				goto out;
+			break;
+		default:
+			goto out;
+		}
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg |= MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+		mdelay(1);
+	}
+out:
+	return;
+}
+
+void e1000_down(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	/* signal that we're down so the interrupt handler does not
+	 * reschedule our watchdog timer */
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_disable(&adapter->napi);
+
+	e1000_irq_disable(adapter);
+
+	del_timer_sync(&adapter->tx_fifo_stall_timer);
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	netdev->tx_queue_len = adapter->tx_queue_len;
+	adapter->link_speed = 0;
+	adapter->link_duplex = 0;
+	netif_carrier_off(netdev);
+	netif_stop_queue(netdev);
+
+	e1000_reset(adapter);
+	e1000_clean_all_tx_rings(adapter);
+	e1000_clean_all_rx_rings(adapter);
+}
+
+void e1000_reinit_locked(struct e1000_adapter *adapter)
+{
+	WARN_ON(in_interrupt());
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	e1000_down(adapter);
+	e1000_up(adapter);
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+}
+
+void e1000_reset(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
+	u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
+	bool legacy_pba_adjust = false;
+
+	/* Repartition Pba for greater than 9k mtu
+	 * To take effect CTRL.RST is required.
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_30K;
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+		pba = E1000_PBA_38K;
+		break;
+	case e1000_82573:
+		pba = E1000_PBA_20K;
+		break;
+	case e1000_ich8lan:
+		pba = E1000_PBA_8K;
+	case e1000_undefined:
+	case e1000_num_macs:
+		break;
+	}
+
+	if (legacy_pba_adjust) {
+		if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
+			pba -= 8; /* allocate more FIFO for Tx */
+
+		if (hw->mac_type == e1000_82547) {
+			adapter->tx_fifo_head = 0;
+			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
+			adapter->tx_fifo_size =
+				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+		}
+	} else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
+		/* adjust PBA for jumbo frames */
+		ew32(PBA, pba);
+
+		/* To maintain wire speed transmits, the Tx FIFO should be
+		 * large enough to accomodate two full transmit packets,
+		 * rounded up to the next 1KB and expressed in KB.  Likewise,
+		 * the Rx FIFO should be large enough to accomodate at least
+		 * one full receive packet and is similarly rounded up and
+		 * expressed in KB. */
+		pba = er32(PBA);
+		/* upper 16 bits has Tx packet buffer allocation size in KB */
+		tx_space = pba >> 16;
+		/* lower 16 bits has Rx packet buffer allocation size in KB */
+		pba &= 0xffff;
+		/* don't include ethernet FCS because hardware appends/strips */
+		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
+		               VLAN_TAG_SIZE;
+		min_tx_space = min_rx_space;
+		min_tx_space *= 2;
+		min_tx_space = ALIGN(min_tx_space, 1024);
+		min_tx_space >>= 10;
+		min_rx_space = ALIGN(min_rx_space, 1024);
+		min_rx_space >>= 10;
+
+		/* If current Tx allocation is less than the min Tx FIFO size,
+		 * and the min Tx FIFO size is less than the current Rx FIFO
+		 * allocation, take space away from current Rx allocation */
+		if (tx_space < min_tx_space &&
+		    ((min_tx_space - tx_space) < pba)) {
+			pba = pba - (min_tx_space - tx_space);
+
+			/* PCI/PCIx hardware has PBA alignment constraints */
+			switch (hw->mac_type) {
+			case e1000_82545 ... e1000_82546_rev_3:
+				pba &= ~(E1000_PBA_8K - 1);
+				break;
+			default:
+				break;
+			}
+
+			/* if short on rx space, rx wins and must trump tx
+			 * adjustment or use Early Receive if available */
+			if (pba < min_rx_space) {
+				switch (hw->mac_type) {
+				case e1000_82573:
+					/* ERT enabled in e1000_configure_rx */
+					break;
+				default:
+					pba = min_rx_space;
+					break;
+				}
+			}
+		}
+	}
+
+	ew32(PBA, pba);
+
+	/* flow control settings */
+	/* Set the FC high water mark to 90% of the FIFO size.
+	 * Required to clear last 3 LSB */
+	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
+	/* We can't use 90% on small FIFOs because the remainder
+	 * would be less than 1 full frame.  In this case, we size
+	 * it to allow at least a full frame above the high water
+	 *  mark. */
+	if (pba < E1000_PBA_16K)
+		fc_high_water_mark = (pba * 1024) - 1600;
+
+	hw->fc_high_water = fc_high_water_mark;
+	hw->fc_low_water = fc_high_water_mark - 8;
+	if (hw->mac_type == e1000_80003es2lan)
+		hw->fc_pause_time = 0xFFFF;
+	else
+		hw->fc_pause_time = E1000_FC_PAUSE_TIME;
+	hw->fc_send_xon = 1;
+	hw->fc = hw->original_fc;
+
+	/* Allow time for pending master requests to run */
+	e1000_reset_hw(hw);
+	if (hw->mac_type >= e1000_82544)
+		ew32(WUC, 0);
+
+	if (e1000_init_hw(hw))
+		DPRINTK(PROBE, ERR, "Hardware Error\n");
+	e1000_update_mng_vlan(adapter);
+
+	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
+	if (hw->mac_type >= e1000_82544 &&
+	    hw->mac_type <= e1000_82547_rev_2 &&
+	    hw->autoneg == 1 &&
+	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+		u32 ctrl = er32(CTRL);
+		/* clear phy power management bit if we are in gig only mode,
+		 * which if enabled will attempt negotiation to 100Mb, which
+		 * can cause a loss of link at power off or driver unload */
+		ctrl &= ~E1000_CTRL_SWDPIN3;
+		ew32(CTRL, ctrl);
+	}
+
+	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
+
+	e1000_reset_adaptive(hw);
+	e1000_phy_get_info(hw, &adapter->phy_info);
+
+	if (!adapter->smart_power_down &&
+	    (hw->mac_type == e1000_82571 ||
+	     hw->mac_type == e1000_82572)) {
+		u16 phy_data = 0;
+		/* speed up time to link by disabling smart power down, ignore
+		 * the return value of this function because there is nothing
+		 * different we would do if it failed */
+		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+		                   &phy_data);
+		phy_data &= ~IGP02E1000_PM_SPD;
+		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+		                    phy_data);
+	}
+
+	e1000_release_manageability(adapter);
+}
+
+/**
+ *  Dump the eeprom for users having checksum issues
+ **/
+static void e1000_dump_eeprom(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct ethtool_eeprom eeprom;
+	const struct ethtool_ops *ops = netdev->ethtool_ops;
+	u8 *data;
+	int i;
+	u16 csum_old, csum_new = 0;
+
+	eeprom.len = ops->get_eeprom_len(netdev);
+	eeprom.offset = 0;
+
+	data = kmalloc(eeprom.len, GFP_KERNEL);
+	if (!data) {
+		printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
+		       " data\n");
+		return;
+	}
+
+	ops->get_eeprom(netdev, &eeprom, data);
+
+	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
+		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
+	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
+		csum_new += data[i] + (data[i + 1] << 8);
+	csum_new = EEPROM_SUM - csum_new;
+
+	printk(KERN_ERR "/*********************/\n");
+	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
+	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
+
+	printk(KERN_ERR "Offset    Values\n");
+	printk(KERN_ERR "========  ======\n");
+	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
+
+	printk(KERN_ERR "Include this output when contacting your support "
+	       "provider.\n");
+	printk(KERN_ERR "This is not a software error! Something bad "
+	       "happened to your hardware or\n");
+	printk(KERN_ERR "EEPROM image. Ignoring this "
+	       "problem could result in further problems,\n");
+	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
+	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
+	       "which is invalid\n");
+	printk(KERN_ERR "and requires you to set the proper MAC "
+	       "address manually before continuing\n");
+	printk(KERN_ERR "to enable this network device.\n");
+	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
+	       "to your hardware vendor\n");
+	printk(KERN_ERR "or Intel Customer Support.\n");
+	printk(KERN_ERR "/*********************/\n");
+
+	kfree(data);
+}
+
+/**
+ * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
+ * @pdev: PCI device information struct
+ *
+ * Return true if an adapter needs ioport resources
+ **/
+static int e1000_is_need_ioport(struct pci_dev *pdev)
+{
+	switch (pdev->device) {
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541ER_LOM:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		return true;
+	default:
+		return false;
+	}
+}
+
+static const struct net_device_ops e1000_netdev_ops = {
+	.ndo_open		= e1000_open,
+	.ndo_stop		= e1000_close,
+	.ndo_start_xmit		= e1000_xmit_frame,
+	.ndo_get_stats		= e1000_get_stats,
+	.ndo_set_rx_mode	= e1000_set_rx_mode,
+	.ndo_set_mac_address	= e1000_set_mac,
+	.ndo_tx_timeout 	= e1000_tx_timeout,
+	.ndo_change_mtu		= e1000_change_mtu,
+	.ndo_do_ioctl		= e1000_ioctl,
+	.ndo_validate_addr	= eth_validate_addr,
+
+	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
+	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
+	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e1000_netpoll,
+#endif
+};
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+static int __devinit e1000_probe(struct pci_dev *pdev,
+				 const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct e1000_adapter *adapter;
+	struct e1000_hw *hw;
+
+	static int cards_found = 0;
+	static int global_quad_port_a = 0; /* global ksp3 port a indication */
+	int i, err, pci_using_dac;
+	u16 eeprom_data = 0;
+	u16 eeprom_apme_mask = E1000_EEPROM_APME;
+	int bars, need_ioport;
+
+	/* do not allocate ioport bars when not needed */
+	need_ioport = e1000_is_need_ioport(pdev);
+	if (need_ioport) {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
+		err = pci_enable_device(pdev);
+	} else {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM);
+		err = pci_enable_device_mem(pdev);
+	}
+	if (err)
+		return err;
+
+	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
+	    !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
+		pci_using_dac = 1;
+	} else {
+		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
+		if (err) {
+			err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
+			if (err) {
+				E1000_ERR("No usable DMA configuration, "
+					  "aborting\n");
+				goto err_dma;
+			}
+		}
+		pci_using_dac = 0;
+	}
+
+	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
+	if (err)
+		goto err_pci_reg;
+
+	pci_set_master(pdev);
+
+	err = -ENOMEM;
+	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+	if (!netdev)
+		goto err_alloc_etherdev;
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	pci_set_drvdata(pdev, netdev);
+	adapter = netdev_priv(netdev);
+	adapter->netdev = netdev;
+	adapter->pdev = pdev;
+	adapter->msg_enable = (1 << debug) - 1;
+	adapter->bars = bars;
+	adapter->need_ioport = need_ioport;
+
+	hw = &adapter->hw;
+	hw->back = adapter;
+
+	err = -EIO;
+	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
+	if (!hw->hw_addr)
+		goto err_ioremap;
+
+	if (adapter->need_ioport) {
+		for (i = BAR_1; i <= BAR_5; i++) {
+			if (pci_resource_len(pdev, i) == 0)
+				continue;
+			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
+				hw->io_base = pci_resource_start(pdev, i);
+				break;
+			}
+		}
+	}
+
+	netdev->netdev_ops = &e1000_netdev_ops;
+	e1000_set_ethtool_ops(netdev);
+	netdev->watchdog_timeo = 5 * HZ;
+	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
+
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	adapter->bd_number = cards_found;
+
+	/* setup the private structure */
+
+	err = e1000_sw_init(adapter);
+	if (err)
+		goto err_sw_init;
+
+	err = -EIO;
+	/* Flash BAR mapping must happen after e1000_sw_init
+	 * because it depends on mac_type */
+	if ((hw->mac_type == e1000_ich8lan) &&
+	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
+		hw->flash_address = pci_ioremap_bar(pdev, 1);
+		if (!hw->flash_address)
+			goto err_flashmap;
+	}
+
+	if (e1000_check_phy_reset_block(hw))
+		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
+
+	if (hw->mac_type >= e1000_82543) {
+		netdev->features = NETIF_F_SG |
+				   NETIF_F_HW_CSUM |
+				   NETIF_F_HW_VLAN_TX |
+				   NETIF_F_HW_VLAN_RX |
+				   NETIF_F_HW_VLAN_FILTER;
+		if (hw->mac_type == e1000_ich8lan)
+			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
+	}
+
+	if ((hw->mac_type >= e1000_82544) &&
+	   (hw->mac_type != e1000_82547))
+		netdev->features |= NETIF_F_TSO;
+
+	if (hw->mac_type > e1000_82547_rev_2)
+		netdev->features |= NETIF_F_TSO6;
+	if (pci_using_dac)
+		netdev->features |= NETIF_F_HIGHDMA;
+
+	netdev->features |= NETIF_F_LLTX;
+
+	netdev->vlan_features |= NETIF_F_TSO;
+	netdev->vlan_features |= NETIF_F_TSO6;
+	netdev->vlan_features |= NETIF_F_HW_CSUM;
+	netdev->vlan_features |= NETIF_F_SG;
+
+	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
+
+	/* initialize eeprom parameters */
+	if (e1000_init_eeprom_params(hw)) {
+		E1000_ERR("EEPROM initialization failed\n");
+		goto err_eeprom;
+	}
+
+	/* before reading the EEPROM, reset the controller to
+	 * put the device in a known good starting state */
+
+	e1000_reset_hw(hw);
+
+	/* make sure the EEPROM is good */
+	if (e1000_validate_eeprom_checksum(hw) < 0) {
+		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
+		e1000_dump_eeprom(adapter);
+		/*
+		 * set MAC address to all zeroes to invalidate and temporary
+		 * disable this device for the user. This blocks regular
+		 * traffic while still permitting ethtool ioctls from reaching
+		 * the hardware as well as allowing the user to run the
+		 * interface after manually setting a hw addr using
+		 * `ip set address`
+		 */
+		memset(hw->mac_addr, 0, netdev->addr_len);
+	} else {
+		/* copy the MAC address out of the EEPROM */
+		if (e1000_read_mac_addr(hw))
+			DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
+	}
+	/* don't block initalization here due to bad MAC address */
+	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
+	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
+
+	if (!is_valid_ether_addr(netdev->perm_addr))
+		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
+
+	e1000_get_bus_info(hw);
+
+	init_timer(&adapter->tx_fifo_stall_timer);
+	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
+	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
+
+	init_timer(&adapter->watchdog_timer);
+	adapter->watchdog_timer.function = &e1000_watchdog;
+	adapter->watchdog_timer.data = (unsigned long) adapter;
+
+	init_timer(&adapter->phy_info_timer);
+	adapter->phy_info_timer.function = &e1000_update_phy_info;
+	adapter->phy_info_timer.data = (unsigned long)adapter;
+
+	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+
+	e1000_check_options(adapter);
+
+	/* Initial Wake on LAN setting
+	 * If APM wake is enabled in the EEPROM,
+	 * enable the ACPI Magic Packet filter
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		break;
+	case e1000_82544:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+		eeprom_apme_mask = E1000_EEPROM_82544_APM;
+		break;
+	case e1000_ich8lan:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
+		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+	case e1000_82571:
+	case e1000_80003es2lan:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1){
+			e1000_read_eeprom(hw,
+				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+			break;
+		}
+		/* Fall Through */
+	default:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+		break;
+	}
+	if (eeprom_data & eeprom_apme_mask)
+		adapter->eeprom_wol |= E1000_WUFC_MAG;
+
+	/* now that we have the eeprom settings, apply the special cases
+	 * where the eeprom may be wrong or the board simply won't support
+	 * wake on lan on a particular port */
+	switch (pdev->device) {
+	case E1000_DEV_ID_82546GB_PCIE:
+		adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82571EB_FIBER:
+		/* Wake events only supported on port A for dual fiber
+		 * regardless of eeprom setting */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+		/* if quad port adapter, disable WoL on all but port A */
+		if (global_quad_port_a != 0)
+			adapter->eeprom_wol = 0;
+		else
+			adapter->quad_port_a = 1;
+		/* Reset for multiple quad port adapters */
+		if (++global_quad_port_a == 4)
+			global_quad_port_a = 0;
+		break;
+	}
+
+	/* initialize the wol settings based on the eeprom settings */
+	adapter->wol = adapter->eeprom_wol;
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	/* print bus type/speed/width info */
+	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
+		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
+		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
+		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
+		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
+		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
+		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
+		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
+		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
+		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
+		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
+		 "32-bit"));
+
+	printk("%pM\n", netdev->dev_addr);
+
+	if (hw->bus_type == e1000_bus_type_pci_express) {
+		DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
+			"longer be supported by this driver in the future.\n",
+			pdev->vendor, pdev->device);
+		DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
+			"driver instead.\n");
+	}
+
+	/* reset the hardware with the new settings */
+	e1000_reset(adapter);
+
+	/* If the controller is 82573 and f/w is AMT, do not set
+	 * DRV_LOAD until the interface is up.  For all other cases,
+	 * let the f/w know that the h/w is now under the control
+	 * of the driver. */
+	if (hw->mac_type != e1000_82573 ||
+	    !e1000_check_mng_mode(hw))
+		e1000_get_hw_control(adapter);
+
+	/* tell the stack to leave us alone until e1000_open() is called */
+	netif_carrier_off(netdev);
+	netif_stop_queue(netdev);
+
+	strcpy(netdev->name, "eth%d");
+	err = register_netdev(netdev);
+	if (err)
+		goto err_register;
+
+	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
+
+	cards_found++;
+	return 0;
+
+err_register:
+	e1000_release_hw_control(adapter);
+err_eeprom:
+	if (!e1000_check_phy_reset_block(hw))
+		e1000_phy_hw_reset(hw);
+
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+err_flashmap:
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+err_sw_init:
+	iounmap(hw->hw_addr);
+err_ioremap:
+	free_netdev(netdev);
+err_alloc_etherdev:
+	pci_release_selected_regions(pdev, bars);
+err_pci_reg:
+err_dma:
+	pci_disable_device(pdev);
+	return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device.  The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+
+static void __devexit e1000_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	cancel_work_sync(&adapter->reset_task);
+
+	e1000_release_manageability(adapter);
+
+	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
+	 * would have already happened in close and is redundant. */
+	e1000_release_hw_control(adapter);
+
+	unregister_netdev(netdev);
+
+	if (!e1000_check_phy_reset_block(hw))
+		e1000_phy_hw_reset(hw);
+
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+
+	iounmap(hw->hw_addr);
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	pci_release_selected_regions(pdev, adapter->bars);
+
+	free_netdev(netdev);
+
+	pci_disable_device(pdev);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+
+	/* PCI config space info */
+
+	hw->vendor_id = pdev->vendor;
+	hw->device_id = pdev->device;
+	hw->subsystem_vendor_id = pdev->subsystem_vendor;
+	hw->subsystem_id = pdev->subsystem_device;
+	hw->revision_id = pdev->revision;
+
+	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+	hw->max_frame_size = netdev->mtu +
+			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
+
+	/* identify the MAC */
+
+	if (e1000_set_mac_type(hw)) {
+		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
+		return -EIO;
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->phy_init_script = 1;
+		break;
+	}
+
+	e1000_set_media_type(hw);
+
+	hw->wait_autoneg_complete = false;
+	hw->tbi_compatibility_en = true;
+	hw->adaptive_ifs = true;
+
+	/* Copper options */
+
+	if (hw->media_type == e1000_media_type_copper) {
+		hw->mdix = AUTO_ALL_MODES;
+		hw->disable_polarity_correction = false;
+		hw->master_slave = E1000_MASTER_SLAVE;
+	}
+
+	adapter->num_tx_queues = 1;
+	adapter->num_rx_queues = 1;
+
+	if (e1000_alloc_queues(adapter)) {
+		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
+		return -ENOMEM;
+	}
+
+	spin_lock_init(&adapter->tx_queue_lock);
+
+	/* Explicitly disable IRQ since the NIC can be in any state. */
+	e1000_irq_disable(adapter);
+
+	spin_lock_init(&adapter->stats_lock);
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_alloc_queues - Allocate memory for all rings
+ * @adapter: board private structure to initialize
+ *
+ * We allocate one ring per queue at run-time since we don't know the
+ * number of queues at compile-time.
+ **/
+
+static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
+{
+	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
+	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!adapter->tx_ring)
+		return -ENOMEM;
+
+	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
+	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!adapter->rx_ring) {
+		kfree(adapter->tx_ring);
+		return -ENOMEM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP).  At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+
+static int e1000_open(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	/* disallow open during test */
+	if (test_bit(__E1000_TESTING, &adapter->flags))
+		return -EBUSY;
+
+	/* allocate transmit descriptors */
+	err = e1000_setup_all_tx_resources(adapter);
+	if (err)
+		goto err_setup_tx;
+
+	/* allocate receive descriptors */
+	err = e1000_setup_all_rx_resources(adapter);
+	if (err)
+		goto err_setup_rx;
+
+	e1000_power_up_phy(adapter);
+
+	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
+		e1000_update_mng_vlan(adapter);
+	}
+
+	/* If AMT is enabled, let the firmware know that the network
+	 * interface is now open */
+	if (hw->mac_type == e1000_82573 &&
+	    e1000_check_mng_mode(hw))
+		e1000_get_hw_control(adapter);
+
+	/* before we allocate an interrupt, we must be ready to handle it.
+	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
+	 * as soon as we call pci_request_irq, so we have to setup our
+	 * clean_rx handler before we do so.  */
+	e1000_configure(adapter);
+
+	err = e1000_request_irq(adapter);
+	if (err)
+		goto err_req_irq;
+
+	/* From here on the code is the same as e1000_up() */
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_start_queue(netdev);
+
+	/* fire a link status change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+
+	return E1000_SUCCESS;
+
+err_req_irq:
+	e1000_release_hw_control(adapter);
+	e1000_power_down_phy(adapter);
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	e1000_free_all_tx_resources(adapter);
+err_setup_tx:
+	e1000_reset(adapter);
+
+	return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS.  The hardware is still under the drivers control, but
+ * needs to be disabled.  A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+
+static int e1000_close(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+	e1000_down(adapter);
+	e1000_power_down_phy(adapter);
+	e1000_free_irq(adapter);
+
+	e1000_free_all_tx_resources(adapter);
+	e1000_free_all_rx_resources(adapter);
+
+	/* kill manageability vlan ID if supported, but not if a vlan with
+	 * the same ID is registered on the host OS (let 8021q kill it) */
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	     !(adapter->vlgrp &&
+	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
+		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+	}
+
+	/* If AMT is enabled, let the firmware know that the network
+	 * interface is now closed */
+	if (hw->mac_type == e1000_82573 &&
+	    e1000_check_mng_mode(hw))
+		e1000_release_hw_control(adapter);
+
+	return 0;
+}
+
+/**
+ * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
+ * @adapter: address of board private structure
+ * @start: address of beginning of memory
+ * @len: length of memory
+ **/
+static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
+				  unsigned long len)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	unsigned long begin = (unsigned long)start;
+	unsigned long end = begin + len;
+
+	/* First rev 82545 and 82546 need to not allow any memory
+	 * write location to cross 64k boundary due to errata 23 */
+	if (hw->mac_type == e1000_82545 ||
+	    hw->mac_type == e1000_82546) {
+		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
+	}
+
+	return true;
+}
+
+/**
+ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ * @txdr:    tx descriptor ring (for a specific queue) to setup
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *txdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size;
+
+	size = sizeof(struct e1000_buffer) * txdr->count;
+	txdr->buffer_info = vmalloc(size);
+	if (!txdr->buffer_info) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the transmit descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(txdr->buffer_info, 0, size);
+
+	/* round up to nearest 4K */
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+
+	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+	if (!txdr->desc) {
+setup_tx_desc_die:
+		vfree(txdr->buffer_info);
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the transmit descriptor ring\n");
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+		void *olddesc = txdr->desc;
+		dma_addr_t olddma = txdr->dma;
+		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
+				     "at %p\n", txdr->size, txdr->desc);
+		/* Try again, without freeing the previous */
+		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+		/* Failed allocation, critical failure */
+		if (!txdr->desc) {
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+			goto setup_tx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+			/* give up */
+			pci_free_consistent(pdev, txdr->size, txdr->desc,
+					    txdr->dma);
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate aligned memory "
+				"for the transmit descriptor ring\n");
+			vfree(txdr->buffer_info);
+			return -ENOMEM;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+		}
+	}
+	memset(txdr->desc, 0, txdr->size);
+
+	txdr->next_to_use = 0;
+	txdr->next_to_clean = 0;
+	spin_lock_init(&txdr->tx_lock);
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_tx_queues; i++) {
+		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
+		if (err) {
+			DPRINTK(PROBE, ERR,
+				"Allocation for Tx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_tx_resources(adapter,
+							&adapter->tx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_tx(struct e1000_adapter *adapter)
+{
+	u64 tdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tdlen, tctl, tipg, tarc;
+	u32 ipgr1, ipgr2;
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+
+	switch (adapter->num_tx_queues) {
+	case 1:
+	default:
+		tdba = adapter->tx_ring[0].dma;
+		tdlen = adapter->tx_ring[0].count *
+			sizeof(struct e1000_tx_desc);
+		ew32(TDLEN, tdlen);
+		ew32(TDBAH, (tdba >> 32));
+		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
+		ew32(TDT, 0);
+		ew32(TDH, 0);
+		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
+		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
+		break;
+	}
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	if (hw->mac_type <= e1000_82547_rev_2 &&
+	    (hw->media_type == e1000_media_type_fiber ||
+	     hw->media_type == e1000_media_type_internal_serdes))
+		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+	else
+		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		tipg = DEFAULT_82542_TIPG_IPGT;
+		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+		break;
+	case e1000_80003es2lan:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
+		break;
+	default:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+		break;
+	}
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	ew32(TIPG, tipg);
+
+	/* Set the Tx Interrupt Delay register */
+
+	ew32(TIDV, adapter->tx_int_delay);
+	if (hw->mac_type >= e1000_82540)
+		ew32(TADV, adapter->tx_abs_int_delay);
+
+	/* Program the Transmit Control Register */
+
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
+		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
+		tarc = er32(TARC0);
+		/* set the speed mode bit, we'll clear it if we're not at
+		 * gigabit link later */
+		tarc |= (1 << 21);
+		ew32(TARC0, tarc);
+	} else if (hw->mac_type == e1000_80003es2lan) {
+		tarc = er32(TARC0);
+		tarc |= 1;
+		ew32(TARC0, tarc);
+		tarc = er32(TARC1);
+		tarc |= 1;
+		ew32(TARC1, tarc);
+	}
+
+	e1000_config_collision_dist(hw);
+
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* only set IDE if we are delaying interrupts using the timers */
+	if (adapter->tx_int_delay)
+		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+	if (hw->mac_type < e1000_82543)
+		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
+	else
+		adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+	/* Cache if we're 82544 running in PCI-X because we'll
+	 * need this to apply a workaround later in the send path. */
+	if (hw->mac_type == e1000_82544 &&
+	    hw->bus_type == e1000_bus_type_pcix)
+		adapter->pcix_82544 = 1;
+
+	ew32(TCTL, tctl);
+
+}
+
+/**
+ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ * @rxdr:    rx descriptor ring (for a specific queue) to setup
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rxdr)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	int size, desc_len;
+
+	size = sizeof(struct e1000_buffer) * rxdr->count;
+	rxdr->buffer_info = vmalloc(size);
+	if (!rxdr->buffer_info) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the receive descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(rxdr->buffer_info, 0, size);
+
+	if (hw->mac_type <= e1000_82547_rev_2)
+		desc_len = sizeof(struct e1000_rx_desc);
+	else
+		desc_len = sizeof(union e1000_rx_desc_packet_split);
+
+	/* Round up to nearest 4K */
+
+	rxdr->size = rxdr->count * desc_len;
+	rxdr->size = ALIGN(rxdr->size, 4096);
+
+	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+
+	if (!rxdr->desc) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the receive descriptor ring\n");
+setup_rx_desc_die:
+		vfree(rxdr->buffer_info);
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+		void *olddesc = rxdr->desc;
+		dma_addr_t olddma = rxdr->dma;
+		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
+				     "at %p\n", rxdr->size, rxdr->desc);
+		/* Try again, without freeing the previous */
+		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+		/* Failed allocation, critical failure */
+		if (!rxdr->desc) {
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate memory "
+				"for the receive descriptor ring\n");
+			goto setup_rx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+			/* give up */
+			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
+					    rxdr->dma);
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate aligned memory "
+				"for the receive descriptor ring\n");
+			goto setup_rx_desc_die;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+		}
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+
+	rxdr->next_to_clean = 0;
+	rxdr->next_to_use = 0;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
+		if (err) {
+			DPRINTK(PROBE, ERR,
+				"Allocation for Rx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_rx_resources(adapter,
+							&adapter->rx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control registers
+ * @adapter: Board private structure
+ **/
+#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
+			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
+static void e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	if (hw->tbi_compatibility_on == 1)
+		rctl |= E1000_RCTL_SBP;
+	else
+		rctl &= ~E1000_RCTL_SBP;
+
+	if (adapter->netdev->mtu <= ETH_DATA_LEN)
+		rctl &= ~E1000_RCTL_LPE;
+	else
+		rctl |= E1000_RCTL_LPE;
+
+	/* Setup buffer sizes */
+	rctl &= ~E1000_RCTL_SZ_4096;
+	rctl |= E1000_RCTL_BSEX;
+	switch (adapter->rx_buffer_len) {
+		case E1000_RXBUFFER_256:
+			rctl |= E1000_RCTL_SZ_256;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_512:
+			rctl |= E1000_RCTL_SZ_512;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_1024:
+			rctl |= E1000_RCTL_SZ_1024;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_2048:
+		default:
+			rctl |= E1000_RCTL_SZ_2048;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_4096:
+			rctl |= E1000_RCTL_SZ_4096;
+			break;
+		case E1000_RXBUFFER_8192:
+			rctl |= E1000_RCTL_SZ_8192;
+			break;
+		case E1000_RXBUFFER_16384:
+			rctl |= E1000_RCTL_SZ_16384;
+			break;
+	}
+
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_rx(struct e1000_adapter *adapter)
+{
+	u64 rdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rdlen, rctl, rxcsum, ctrl_ext;
+
+	rdlen = adapter->rx_ring[0].count *
+		sizeof(struct e1000_rx_desc);
+	adapter->clean_rx = e1000_clean_rx_irq;
+	adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+
+	/* disable receives while setting up the descriptors */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+
+	/* set the Receive Delay Timer Register */
+	ew32(RDTR, adapter->rx_int_delay);
+
+	if (hw->mac_type >= e1000_82540) {
+		ew32(RADV, adapter->rx_abs_int_delay);
+		if (adapter->itr_setting != 0)
+			ew32(ITR, 1000000000 / (adapter->itr * 256));
+	}
+
+	if (hw->mac_type >= e1000_82571) {
+		ctrl_ext = er32(CTRL_EXT);
+		/* Reset delay timers after every interrupt */
+		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
+		/* Auto-Mask interrupts upon ICR access */
+		ctrl_ext |= E1000_CTRL_EXT_IAME;
+		ew32(IAM, 0xffffffff);
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+	}
+
+	/* Setup the HW Rx Head and Tail Descriptor Pointers and
+	 * the Base and Length of the Rx Descriptor Ring */
+	switch (adapter->num_rx_queues) {
+	case 1:
+	default:
+		rdba = adapter->rx_ring[0].dma;
+		ew32(RDLEN, rdlen);
+		ew32(RDBAH, (rdba >> 32));
+		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
+		ew32(RDT, 0);
+		ew32(RDH, 0);
+		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
+		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
+		break;
+	}
+
+	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
+	if (hw->mac_type >= e1000_82543) {
+		rxcsum = er32(RXCSUM);
+		if (adapter->rx_csum)
+			rxcsum |= E1000_RXCSUM_TUOFL;
+		else
+			/* don't need to clear IPPCSE as it defaults to 0 */
+			rxcsum &= ~E1000_RXCSUM_TUOFL;
+		ew32(RXCSUM, rxcsum);
+	}
+
+	/* Enable Receives */
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_free_tx_resources - Free Tx Resources per Queue
+ * @adapter: board private structure
+ * @tx_ring: Tx descriptor ring for a specific queue
+ *
+ * Free all transmit software resources
+ **/
+
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *tx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_tx_ring(adapter, tx_ring);
+
+	vfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+
+	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
+
+	tx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_tx_resources - Free Tx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
+}
+
+static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
+					     struct e1000_buffer *buffer_info)
+{
+	if (buffer_info->dma) {
+		pci_unmap_page(adapter->pdev,
+				buffer_info->dma,
+				buffer_info->length,
+				PCI_DMA_TODEVICE);
+		buffer_info->dma = 0;
+	}
+	if (buffer_info->skb) {
+		dev_kfree_skb_any(buffer_info->skb);
+		buffer_info->skb = NULL;
+	}
+	/* buffer_info must be completely set up in the transmit path */
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ * @tx_ring: ring to be cleaned
+ **/
+
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+				struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Tx ring sk_buffs */
+
+	for (i = 0; i < tx_ring->count; i++) {
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+	}
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	memset(tx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+
+	memset(tx_ring->desc, 0, tx_ring->size);
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+	tx_ring->last_tx_tso = 0;
+
+	writel(0, hw->hw_addr + tx_ring->tdh);
+	writel(0, hw->hw_addr + tx_ring->tdt);
+}
+
+/**
+ * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
+}
+
+/**
+ * e1000_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ * @rx_ring: ring to clean the resources from
+ *
+ * Free all receive software resources
+ **/
+
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_rx_ring(adapter, rx_ring);
+
+	vfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+
+	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
+
+	rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_rx_resources - Free Rx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers per Queue
+ * @adapter: board private structure
+ * @rx_ring: ring to free buffers from
+ **/
+
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+				struct e1000_rx_ring *rx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Rx ring sk_buffs */
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		if (buffer_info->skb) {
+			pci_unmap_single(pdev,
+					 buffer_info->dma,
+					 buffer_info->length,
+					 PCI_DMA_FROMDEVICE);
+
+			dev_kfree_skb(buffer_info->skb);
+			buffer_info->skb = NULL;
+		}
+	}
+
+	size = sizeof(struct e1000_buffer) * rx_ring->count;
+	memset(rx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+
+	memset(rx_ring->desc, 0, rx_ring->size);
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+
+	writel(0, hw->hw_addr + rx_ring->rdh);
+	writel(0, hw->hw_addr + rx_ring->rdt);
+}
+
+/**
+ * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
+}
+
+/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
+ * and memory write and invalidate disabled for certain operations
+ */
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	e1000_pci_clear_mwi(hw);
+
+	rctl = er32(RCTL);
+	rctl |= E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (netif_running(netdev))
+		e1000_clean_all_rx_rings(adapter);
+}
+
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+	rctl &= ~E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+		e1000_pci_set_mwi(hw);
+
+	if (netif_running(netdev)) {
+		/* No need to loop, because 82542 supports only 1 queue */
+		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
+		e1000_configure_rx(adapter);
+		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
+	}
+}
+
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_set_mac(struct net_device *netdev, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	/* With 82571 controllers, LAA may be overwritten (with the default)
+	 * due to controller reset from the other port. */
+	if (hw->mac_type == e1000_82571) {
+		/* activate the work around */
+		hw->laa_is_present = 1;
+
+		/* Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered  and the time it
+		 * gets fixed (in e1000_watchdog), the actual LAA is in one
+		 * of the RARs and no incoming packets directed to this port
+		 * are dropped. Eventaully the LAA will be in RAR[0] and
+		 * RAR[14] */
+		e1000_rar_set(hw, hw->mac_addr,
+					E1000_RAR_ENTRIES - 1);
+	}
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	return 0;
+}
+
+/**
+ * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_rx_mode entry point is called whenever the unicast or multicast
+ * address lists or the network interface flags are updated. This routine is
+ * responsible for configuring the hardware for proper unicast, multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+
+static void e1000_set_rx_mode(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct dev_addr_list *uc_ptr;
+	struct dev_addr_list *mc_ptr;
+	u32 rctl;
+	u32 hash_value;
+	int i, rar_entries = E1000_RAR_ENTRIES;
+	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
+				E1000_NUM_MTA_REGISTERS_ICH8LAN :
+				E1000_NUM_MTA_REGISTERS;
+
+	if (hw->mac_type == e1000_ich8lan)
+		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
+
+	/* reserve RAR[14] for LAA over-write work-around */
+	if (hw->mac_type == e1000_82571)
+		rar_entries--;
+
+	/* Check for Promiscuous and All Multicast modes */
+
+	rctl = er32(RCTL);
+
+	if (netdev->flags & IFF_PROMISC) {
+		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		rctl &= ~E1000_RCTL_VFE;
+	} else {
+		if (netdev->flags & IFF_ALLMULTI) {
+			rctl |= E1000_RCTL_MPE;
+		} else {
+			rctl &= ~E1000_RCTL_MPE;
+		}
+		if (adapter->hw.mac_type != e1000_ich8lan)
+			rctl |= E1000_RCTL_VFE;
+	}
+
+	uc_ptr = NULL;
+	if (netdev->uc_count > rar_entries - 1) {
+		rctl |= E1000_RCTL_UPE;
+	} else if (!(netdev->flags & IFF_PROMISC)) {
+		rctl &= ~E1000_RCTL_UPE;
+		uc_ptr = netdev->uc_list;
+	}
+
+	ew32(RCTL, rctl);
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	/* load the first 14 addresses into the exact filters 1-14. Unicast
+	 * addresses take precedence to avoid disabling unicast filtering
+	 * when possible.
+	 *
+	 * RAR 0 is used for the station MAC adddress
+	 * if there are not 14 addresses, go ahead and clear the filters
+	 * -- with 82571 controllers only 0-13 entries are filled here
+	 */
+	mc_ptr = netdev->mc_list;
+
+	for (i = 1; i < rar_entries; i++) {
+		if (uc_ptr) {
+			e1000_rar_set(hw, uc_ptr->da_addr, i);
+			uc_ptr = uc_ptr->next;
+		} else if (mc_ptr) {
+			e1000_rar_set(hw, mc_ptr->da_addr, i);
+			mc_ptr = mc_ptr->next;
+		} else {
+			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
+			E1000_WRITE_FLUSH();
+			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
+			E1000_WRITE_FLUSH();
+		}
+	}
+	WARN_ON(uc_ptr != NULL);
+
+	/* clear the old settings from the multicast hash table */
+
+	for (i = 0; i < mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+		E1000_WRITE_FLUSH();
+	}
+
+	/* load any remaining addresses into the hash table */
+
+	for (; mc_ptr; mc_ptr = mc_ptr->next) {
+		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
+		e1000_mta_set(hw, hash_value);
+	}
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+}
+
+/* Need to wait a few seconds after link up to get diagnostic information from
+ * the phy */
+
+static void e1000_update_phy_info(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_phy_get_info(hw, &adapter->phy_info);
+}
+
+/**
+ * e1000_82547_tx_fifo_stall - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+
+static void e1000_82547_tx_fifo_stall(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 tctl;
+
+	if (atomic_read(&adapter->tx_fifo_stall)) {
+		if ((er32(TDT) == er32(TDH)) &&
+		   (er32(TDFT) == er32(TDFH)) &&
+		   (er32(TDFTS) == er32(TDFHS))) {
+			tctl = er32(TCTL);
+			ew32(TCTL, tctl & ~E1000_TCTL_EN);
+			ew32(TDFT, adapter->tx_head_addr);
+			ew32(TDFH, adapter->tx_head_addr);
+			ew32(TDFTS, adapter->tx_head_addr);
+			ew32(TDFHS, adapter->tx_head_addr);
+			ew32(TCTL, tctl);
+			E1000_WRITE_FLUSH();
+
+			adapter->tx_fifo_head = 0;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+			netif_wake_queue(netdev);
+		} else {
+			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+		}
+	}
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void e1000_watchdog(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	u32 link, tctl;
+	s32 ret_val;
+
+	ret_val = e1000_check_for_link(hw);
+	if ((ret_val == E1000_ERR_PHY) &&
+	    (hw->phy_type == e1000_phy_igp_3) &&
+	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
+		/* See e1000_kumeran_lock_loss_workaround() */
+		DPRINTK(LINK, INFO,
+			"Gigabit has been disabled, downgrading speed\n");
+	}
+
+	if (hw->mac_type == e1000_82573) {
+		e1000_enable_tx_pkt_filtering(hw);
+		if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
+			e1000_update_mng_vlan(adapter);
+	}
+
+	if ((hw->media_type == e1000_media_type_internal_serdes) &&
+	   !(er32(TXCW) & E1000_TXCW_ANE))
+		link = !hw->serdes_link_down;
+	else
+		link = er32(STATUS) & E1000_STATUS_LU;
+
+	if (link) {
+		if (!netif_carrier_ok(netdev)) {
+			u32 ctrl;
+			bool txb2b = true;
+			e1000_get_speed_and_duplex(hw,
+			                           &adapter->link_speed,
+			                           &adapter->link_duplex);
+
+			ctrl = er32(CTRL);
+			printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
+			       "Flow Control: %s\n",
+			       netdev->name,
+			       adapter->link_speed,
+			       adapter->link_duplex == FULL_DUPLEX ?
+			        "Full Duplex" : "Half Duplex",
+			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
+			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
+			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
+			        E1000_CTRL_TFCE) ? "TX" : "None" )));
+
+			/* tweak tx_queue_len according to speed/duplex
+			 * and adjust the timeout factor */
+			netdev->tx_queue_len = adapter->tx_queue_len;
+			adapter->tx_timeout_factor = 1;
+			switch (adapter->link_speed) {
+			case SPEED_10:
+				txb2b = false;
+				netdev->tx_queue_len = 10;
+				adapter->tx_timeout_factor = 8;
+				break;
+			case SPEED_100:
+				txb2b = false;
+				netdev->tx_queue_len = 100;
+				/* maybe add some timeout factor ? */
+				break;
+			}
+
+			if ((hw->mac_type == e1000_82571 ||
+			     hw->mac_type == e1000_82572) &&
+			    !txb2b) {
+				u32 tarc0;
+				tarc0 = er32(TARC0);
+				tarc0 &= ~(1 << 21);
+				ew32(TARC0, tarc0);
+			}
+
+			/* disable TSO for pcie and 10/100 speeds, to avoid
+			 * some hardware issues */
+			if (!adapter->tso_force &&
+			    hw->bus_type == e1000_bus_type_pci_express){
+				switch (adapter->link_speed) {
+				case SPEED_10:
+				case SPEED_100:
+					DPRINTK(PROBE,INFO,
+				        "10/100 speed: disabling TSO\n");
+					netdev->features &= ~NETIF_F_TSO;
+					netdev->features &= ~NETIF_F_TSO6;
+					break;
+				case SPEED_1000:
+					netdev->features |= NETIF_F_TSO;
+					netdev->features |= NETIF_F_TSO6;
+					break;
+				default:
+					/* oops */
+					break;
+				}
+			}
+
+			/* enable transmits in the hardware, need to do this
+			 * after setting TARC0 */
+			tctl = er32(TCTL);
+			tctl |= E1000_TCTL_EN;
+			ew32(TCTL, tctl);
+
+			netif_carrier_on(netdev);
+			netif_wake_queue(netdev);
+			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
+			adapter->smartspeed = 0;
+		} else {
+			/* make sure the receive unit is started */
+			if (hw->rx_needs_kicking) {
+				u32 rctl = er32(RCTL);
+				ew32(RCTL, rctl | E1000_RCTL_EN);
+			}
+		}
+	} else {
+		if (netif_carrier_ok(netdev)) {
+			adapter->link_speed = 0;
+			adapter->link_duplex = 0;
+			printk(KERN_INFO "e1000: %s NIC Link is Down\n",
+			       netdev->name);
+			netif_carrier_off(netdev);
+			netif_stop_queue(netdev);
+			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
+
+			/* 80003ES2LAN workaround--
+			 * For packet buffer work-around on link down event;
+			 * disable receives in the ISR and
+			 * reset device here in the watchdog
+			 */
+			if (hw->mac_type == e1000_80003es2lan)
+				/* reset device */
+				schedule_work(&adapter->reset_task);
+		}
+
+		e1000_smartspeed(adapter);
+	}
+
+	e1000_update_stats(adapter);
+
+	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+	adapter->tpt_old = adapter->stats.tpt;
+	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
+	adapter->colc_old = adapter->stats.colc;
+
+	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
+	adapter->gorcl_old = adapter->stats.gorcl;
+	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
+	adapter->gotcl_old = adapter->stats.gotcl;
+
+	e1000_update_adaptive(hw);
+
+	if (!netif_carrier_ok(netdev)) {
+		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
+			/* We've lost link, so the controller stops DMA,
+			 * but we've got queued Tx work that's never going
+			 * to get done, so reset controller to flush Tx.
+			 * (Do the reset outside of interrupt context). */
+			adapter->tx_timeout_count++;
+			schedule_work(&adapter->reset_task);
+		}
+	}
+
+	/* Cause software interrupt to ensure rx ring is cleaned */
+	ew32(ICS, E1000_ICS_RXDMT0);
+
+	/* Force detection of hung controller every watchdog period */
+	adapter->detect_tx_hung = true;
+
+	/* With 82571 controllers, LAA may be overwritten due to controller
+	 * reset from the other port. Set the appropriate LAA in RAR[0] */
+	if (hw->mac_type == e1000_82571 && hw->laa_is_present)
+		e1000_rar_set(hw, hw->mac_addr, 0);
+
+	/* Reset the timer */
+	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
+}
+
+enum latency_range {
+	lowest_latency = 0,
+	low_latency = 1,
+	bulk_latency = 2,
+	latency_invalid = 255
+};
+
+/**
+ * e1000_update_itr - update the dynamic ITR value based on statistics
+ *      Stores a new ITR value based on packets and byte
+ *      counts during the last interrupt.  The advantage of per interrupt
+ *      computation is faster updates and more accurate ITR for the current
+ *      traffic pattern.  Constants in this function were computed
+ *      based on theoretical maximum wire speed and thresholds were set based
+ *      on testing data as well as attempting to minimize response time
+ *      while increasing bulk throughput.
+ *      this functionality is controlled by the InterruptThrottleRate module
+ *      parameter (see e1000_param.c)
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ **/
+static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
+				     u16 itr_setting, int packets, int bytes)
+{
+	unsigned int retval = itr_setting;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		goto update_itr_done;
+
+	if (packets == 0)
+		goto update_itr_done;
+
+	switch (itr_setting) {
+	case lowest_latency:
+		/* jumbo frames get bulk treatment*/
+		if (bytes/packets > 8000)
+			retval = bulk_latency;
+		else if ((packets < 5) && (bytes > 512))
+			retval = low_latency;
+		break;
+	case low_latency:  /* 50 usec aka 20000 ints/s */
+		if (bytes > 10000) {
+			/* jumbo frames need bulk latency setting */
+			if (bytes/packets > 8000)
+				retval = bulk_latency;
+			else if ((packets < 10) || ((bytes/packets) > 1200))
+				retval = bulk_latency;
+			else if ((packets > 35))
+				retval = lowest_latency;
+		} else if (bytes/packets > 2000)
+			retval = bulk_latency;
+		else if (packets <= 2 && bytes < 512)
+			retval = lowest_latency;
+		break;
+	case bulk_latency: /* 250 usec aka 4000 ints/s */
+		if (bytes > 25000) {
+			if (packets > 35)
+				retval = low_latency;
+		} else if (bytes < 6000) {
+			retval = low_latency;
+		}
+		break;
+	}
+
+update_itr_done:
+	return retval;
+}
+
+static void e1000_set_itr(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 current_itr;
+	u32 new_itr = adapter->itr;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		return;
+
+	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
+	if (unlikely(adapter->link_speed != SPEED_1000)) {
+		current_itr = 0;
+		new_itr = 4000;
+		goto set_itr_now;
+	}
+
+	adapter->tx_itr = e1000_update_itr(adapter,
+	                            adapter->tx_itr,
+	                            adapter->total_tx_packets,
+	                            adapter->total_tx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
+		adapter->tx_itr = low_latency;
+
+	adapter->rx_itr = e1000_update_itr(adapter,
+	                            adapter->rx_itr,
+	                            adapter->total_rx_packets,
+	                            adapter->total_rx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
+		adapter->rx_itr = low_latency;
+
+	current_itr = max(adapter->rx_itr, adapter->tx_itr);
+
+	switch (current_itr) {
+	/* counts and packets in update_itr are dependent on these numbers */
+	case lowest_latency:
+		new_itr = 70000;
+		break;
+	case low_latency:
+		new_itr = 20000; /* aka hwitr = ~200 */
+		break;
+	case bulk_latency:
+		new_itr = 4000;
+		break;
+	default:
+		break;
+	}
+
+set_itr_now:
+	if (new_itr != adapter->itr) {
+		/* this attempts to bias the interrupt rate towards Bulk
+		 * by adding intermediate steps when interrupt rate is
+		 * increasing */
+		new_itr = new_itr > adapter->itr ?
+		             min(adapter->itr + (new_itr >> 2), new_itr) :
+		             new_itr;
+		adapter->itr = new_itr;
+		ew32(ITR, 1000000000 / (new_itr * 256));
+	}
+
+	return;
+}
+
+#define E1000_TX_FLAGS_CSUM		0x00000001
+#define E1000_TX_FLAGS_VLAN		0x00000002
+#define E1000_TX_FLAGS_TSO		0x00000004
+#define E1000_TX_FLAGS_IPV4		0x00000008
+#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT	16
+
+static int e1000_tso(struct e1000_adapter *adapter,
+		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u32 cmd_length = 0;
+	u16 ipcse = 0, tucse, mss;
+	u8 ipcss, ipcso, tucss, tucso, hdr_len;
+	int err;
+
+	if (skb_is_gso(skb)) {
+		if (skb_header_cloned(skb)) {
+			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+			if (err)
+				return err;
+		}
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		mss = skb_shinfo(skb)->gso_size;
+		if (skb->protocol == htons(ETH_P_IP)) {
+			struct iphdr *iph = ip_hdr(skb);
+			iph->tot_len = 0;
+			iph->check = 0;
+			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+								 iph->daddr, 0,
+								 IPPROTO_TCP,
+								 0);
+			cmd_length = E1000_TXD_CMD_IP;
+			ipcse = skb_transport_offset(skb) - 1;
+		} else if (skb->protocol == htons(ETH_P_IPV6)) {
+			ipv6_hdr(skb)->payload_len = 0;
+			tcp_hdr(skb)->check =
+				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+						 &ipv6_hdr(skb)->daddr,
+						 0, IPPROTO_TCP, 0);
+			ipcse = 0;
+		}
+		ipcss = skb_network_offset(skb);
+		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
+		tucss = skb_transport_offset(skb);
+		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
+		tucse = 0;
+
+		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
+
+		i = tx_ring->next_to_use;
+		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+		buffer_info = &tx_ring->buffer_info[i];
+
+		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
+		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
+		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
+		context_desc->upper_setup.tcp_fields.tucss = tucss;
+		context_desc->upper_setup.tcp_fields.tucso = tucso;
+		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
+		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+
+		if (++i == tx_ring->count) i = 0;
+		tx_ring->next_to_use = i;
+
+		return true;
+	}
+	return false;
+}
+
+static bool e1000_tx_csum(struct e1000_adapter *adapter,
+			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u8 css;
+	u32 cmd_len = E1000_TXD_CMD_DEXT;
+
+	if (skb->ip_summed != CHECKSUM_PARTIAL)
+		return false;
+
+	switch (skb->protocol) {
+	case __constant_htons(ETH_P_IP):
+		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	case __constant_htons(ETH_P_IPV6):
+		/* XXX not handling all IPV6 headers */
+		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	default:
+		if (unlikely(net_ratelimit()))
+			DPRINTK(DRV, WARNING,
+			        "checksum_partial proto=%x!\n", skb->protocol);
+		break;
+	}
+
+	css = skb_transport_offset(skb);
+
+	i = tx_ring->next_to_use;
+	buffer_info = &tx_ring->buffer_info[i];
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+
+	context_desc->lower_setup.ip_config = 0;
+	context_desc->upper_setup.tcp_fields.tucss = css;
+	context_desc->upper_setup.tcp_fields.tucso =
+		css + skb->csum_offset;
+	context_desc->upper_setup.tcp_fields.tucse = 0;
+	context_desc->tcp_seg_setup.data = 0;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	if (unlikely(++i == tx_ring->count)) i = 0;
+	tx_ring->next_to_use = i;
+
+	return true;
+}
+
+#define E1000_MAX_TXD_PWR	12
+#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
+
+static int e1000_tx_map(struct e1000_adapter *adapter,
+			struct e1000_tx_ring *tx_ring,
+			struct sk_buff *skb, unsigned int first,
+			unsigned int max_per_txd, unsigned int nr_frags,
+			unsigned int mss)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned int len = skb->len;
+	unsigned int offset = 0, size, count = 0, i;
+	unsigned int f;
+	len -= skb->data_len;
+
+	i = tx_ring->next_to_use;
+
+	while (len) {
+		buffer_info = &tx_ring->buffer_info[i];
+		size = min(len, max_per_txd);
+		/* Workaround for Controller erratum --
+		 * descriptor for non-tso packet in a linear SKB that follows a
+		 * tso gets written back prematurely before the data is fully
+		 * DMA'd to the controller */
+		if (!skb->data_len && tx_ring->last_tx_tso &&
+		    !skb_is_gso(skb)) {
+			tx_ring->last_tx_tso = 0;
+			size -= 4;
+		}
+
+		/* Workaround for premature desc write-backs
+		 * in TSO mode.  Append 4-byte sentinel desc */
+		if (unlikely(mss && !nr_frags && size == len && size > 8))
+			size -= 4;
+		/* work-around for errata 10 and it applies
+		 * to all controllers in PCI-X mode
+		 * The fix is to make sure that the first descriptor of a
+		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
+		 */
+		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+		                (size > 2015) && count == 0))
+		        size = 2015;
+
+		/* Workaround for potential 82544 hang in PCI-X.  Avoid
+		 * terminating buffers within evenly-aligned dwords. */
+		if (unlikely(adapter->pcix_82544 &&
+		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
+		   size > 4))
+			size -= 4;
+
+		buffer_info->length = size;
+		buffer_info->dma =
+			pci_map_single(adapter->pdev,
+				skb->data + offset,
+				size,
+				PCI_DMA_TODEVICE);
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+
+		len -= size;
+		offset += size;
+		count++;
+		if (unlikely(++i == tx_ring->count)) i = 0;
+	}
+
+	for (f = 0; f < nr_frags; f++) {
+		struct skb_frag_struct *frag;
+
+		frag = &skb_shinfo(skb)->frags[f];
+		len = frag->size;
+		offset = frag->page_offset;
+
+		while (len) {
+			buffer_info = &tx_ring->buffer_info[i];
+			size = min(len, max_per_txd);
+			/* Workaround for premature desc write-backs
+			 * in TSO mode.  Append 4-byte sentinel desc */
+			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
+				size -= 4;
+			/* Workaround for potential 82544 hang in PCI-X.
+			 * Avoid terminating buffers within evenly-aligned
+			 * dwords. */
+			if (unlikely(adapter->pcix_82544 &&
+			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
+			   size > 4))
+				size -= 4;
+
+			buffer_info->length = size;
+			buffer_info->dma =
+				pci_map_page(adapter->pdev,
+					frag->page,
+					offset,
+					size,
+					PCI_DMA_TODEVICE);
+			buffer_info->time_stamp = jiffies;
+			buffer_info->next_to_watch = i;
+
+			len -= size;
+			offset += size;
+			count++;
+			if (unlikely(++i == tx_ring->count)) i = 0;
+		}
+	}
+
+	i = (i == 0) ? tx_ring->count - 1 : i - 1;
+	tx_ring->buffer_info[i].skb = skb;
+	tx_ring->buffer_info[first].next_to_watch = i;
+
+	return count;
+}
+
+static void e1000_tx_queue(struct e1000_adapter *adapter,
+			   struct e1000_tx_ring *tx_ring, int tx_flags,
+			   int count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_desc *tx_desc = NULL;
+	struct e1000_buffer *buffer_info;
+	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+	unsigned int i;
+
+	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+		             E1000_TXD_CMD_TSE;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
+			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+	}
+
+	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+	}
+
+	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
+		txd_lower |= E1000_TXD_CMD_VLE;
+		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+	}
+
+	i = tx_ring->next_to_use;
+
+	while (count--) {
+		buffer_info = &tx_ring->buffer_info[i];
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+		tx_desc->lower.data =
+			cpu_to_le32(txd_lower | buffer_info->length);
+		tx_desc->upper.data = cpu_to_le32(txd_upper);
+		if (unlikely(++i == tx_ring->count)) i = 0;
+	}
+
+	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+	/* Force memory writes to complete before letting h/w
+	 * know there are new descriptors to fetch.  (Only
+	 * applicable for weak-ordered memory model archs,
+	 * such as IA-64). */
+	wmb();
+
+	tx_ring->next_to_use = i;
+	writel(i, hw->hw_addr + tx_ring->tdt);
+	/* we need this if more than one processor can write to our tail
+	 * at a time, it syncronizes IO on IA64/Altix systems */
+	mmiowb();
+}
+
+/**
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary by notifying the stack to resend
+ * the packet at a later time.  This gives the Tx FIFO an opportunity to
+ * flush all packets.  When that occurs, we reset the Tx FIFO pointers
+ * to the beginning of the Tx FIFO.
+ **/
+
+#define E1000_FIFO_HDR			0x10
+#define E1000_82547_PAD_LEN		0x3E0
+
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+				       struct sk_buff *skb)
+{
+	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
+	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
+
+	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
+
+	if (adapter->link_duplex != HALF_DUPLEX)
+		goto no_fifo_stall_required;
+
+	if (atomic_read(&adapter->tx_fifo_stall))
+		return 1;
+
+	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
+		atomic_set(&adapter->tx_fifo_stall, 1);
+		return 1;
+	}
+
+no_fifo_stall_required:
+	adapter->tx_fifo_head += skb_fifo_len;
+	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
+		adapter->tx_fifo_head -= adapter->tx_fifo_size;
+	return 0;
+}
+
+#define MINIMUM_DHCP_PACKET_SIZE 282
+static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
+				    struct sk_buff *skb)
+{
+	struct e1000_hw *hw =  &adapter->hw;
+	u16 length, offset;
+	if (vlan_tx_tag_present(skb)) {
+		if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
+			( hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
+			return 0;
+	}
+	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
+		struct ethhdr *eth = (struct ethhdr *)skb->data;
+		if ((htons(ETH_P_IP) == eth->h_proto)) {
+			const struct iphdr *ip =
+				(struct iphdr *)((u8 *)skb->data+14);
+			if (IPPROTO_UDP == ip->protocol) {
+				struct udphdr *udp =
+					(struct udphdr *)((u8 *)ip +
+						(ip->ihl << 2));
+				if (ntohs(udp->dest) == 67) {
+					offset = (u8 *)udp + 8 - skb->data;
+					length = skb->len - offset;
+
+					return e1000_mng_write_dhcp_info(hw,
+							(u8 *)udp + 8,
+							length);
+				}
+			}
+		}
+	}
+	return 0;
+}
+
+static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+
+	netif_stop_queue(netdev);
+	/* Herbert's original patch had:
+	 *  smp_mb__after_netif_stop_queue();
+	 * but since that doesn't exist yet, just open code it. */
+	smp_mb();
+
+	/* We need to check again in a case another CPU has just
+	 * made room available. */
+	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
+		return -EBUSY;
+
+	/* A reprieve! */
+	netif_start_queue(netdev);
+	++adapter->restart_queue;
+	return 0;
+}
+
+static int e1000_maybe_stop_tx(struct net_device *netdev,
+                               struct e1000_tx_ring *tx_ring, int size)
+{
+	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
+		return 0;
+	return __e1000_maybe_stop_tx(netdev, size);
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *tx_ring;
+	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
+	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+	unsigned int tx_flags = 0;
+	unsigned int len = skb->len - skb->data_len;
+	unsigned long flags;
+	unsigned int nr_frags;
+	unsigned int mss;
+	int count = 0;
+	int tso;
+	unsigned int f;
+
+	/* This goes back to the question of how to logically map a tx queue
+	 * to a flow.  Right now, performance is impacted slightly negatively
+	 * if using multiple tx queues.  If the stack breaks away from a
+	 * single qdisc implementation, we can look at this again. */
+	tx_ring = adapter->tx_ring;
+
+	if (unlikely(skb->len <= 0)) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	/* 82571 and newer doesn't need the workaround that limited descriptor
+	 * length to 4kB */
+	if (hw->mac_type >= e1000_82571)
+		max_per_txd = 8192;
+
+	mss = skb_shinfo(skb)->gso_size;
+	/* The controller does a simple calculation to
+	 * make sure there is enough room in the FIFO before
+	 * initiating the DMA for each buffer.  The calc is:
+	 * 4 = ceil(buffer len/mss).  To make sure we don't
+	 * overrun the FIFO, adjust the max buffer len if mss
+	 * drops. */
+	if (mss) {
+		u8 hdr_len;
+		max_per_txd = min(mss << 2, max_per_txd);
+		max_txd_pwr = fls(max_per_txd) - 1;
+
+		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
+		* points to just header, pull a few bytes of payload from
+		* frags into skb->data */
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		if (skb->data_len && hdr_len == len) {
+			switch (hw->mac_type) {
+				unsigned int pull_size;
+			case e1000_82544:
+				/* Make sure we have room to chop off 4 bytes,
+				 * and that the end alignment will work out to
+				 * this hardware's requirements
+				 * NOTE: this is a TSO only workaround
+				 * if end byte alignment not correct move us
+				 * into the next dword */
+				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
+					break;
+				/* fall through */
+			case e1000_82571:
+			case e1000_82572:
+			case e1000_82573:
+			case e1000_ich8lan:
+				pull_size = min((unsigned int)4, skb->data_len);
+				if (!__pskb_pull_tail(skb, pull_size)) {
+					DPRINTK(DRV, ERR,
+						"__pskb_pull_tail failed.\n");
+					dev_kfree_skb_any(skb);
+					return NETDEV_TX_OK;
+				}
+				len = skb->len - skb->data_len;
+				break;
+			default:
+				/* do nothing */
+				break;
+			}
+		}
+	}
+
+	/* reserve a descriptor for the offload context */
+	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
+		count++;
+	count++;
+
+	/* Controller Erratum workaround */
+	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
+		count++;
+
+	count += TXD_USE_COUNT(len, max_txd_pwr);
+
+	if (adapter->pcix_82544)
+		count++;
+
+	/* work-around for errata 10 and it applies to all controllers
+	 * in PCI-X mode, so add one more descriptor to the count
+	 */
+	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+			(len > 2015)))
+		count++;
+
+	nr_frags = skb_shinfo(skb)->nr_frags;
+	for (f = 0; f < nr_frags; f++)
+		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+				       max_txd_pwr);
+	if (adapter->pcix_82544)
+		count += nr_frags;
+
+
+	if (hw->tx_pkt_filtering &&
+	    (hw->mac_type == e1000_82573))
+		e1000_transfer_dhcp_info(adapter, skb);
+
+	if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
+		/* Collision - tell upper layer to requeue */
+		return NETDEV_TX_LOCKED;
+
+	/* need: count + 2 desc gap to keep tail from touching
+	 * head, otherwise try next time */
+	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
+		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
+		return NETDEV_TX_BUSY;
+	}
+
+	if (unlikely(hw->mac_type == e1000_82547)) {
+		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
+			netif_stop_queue(netdev);
+			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
+			return NETDEV_TX_BUSY;
+		}
+	}
+
+	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
+		tx_flags |= E1000_TX_FLAGS_VLAN;
+		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+	}
+
+	first = tx_ring->next_to_use;
+
+	tso = e1000_tso(adapter, tx_ring, skb);
+	if (tso < 0) {
+		dev_kfree_skb_any(skb);
+		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
+		return NETDEV_TX_OK;
+	}
+
+	if (likely(tso)) {
+		tx_ring->last_tx_tso = 1;
+		tx_flags |= E1000_TX_FLAGS_TSO;
+	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
+		tx_flags |= E1000_TX_FLAGS_CSUM;
+
+	/* Old method was to assume IPv4 packet by default if TSO was enabled.
+	 * 82571 hardware supports TSO capabilities for IPv6 as well...
+	 * no longer assume, we must. */
+	if (likely(skb->protocol == htons(ETH_P_IP)))
+		tx_flags |= E1000_TX_FLAGS_IPV4;
+
+	e1000_tx_queue(adapter, tx_ring, tx_flags,
+	               e1000_tx_map(adapter, tx_ring, skb, first,
+	                            max_per_txd, nr_frags, mss));
+
+	netdev->trans_start = jiffies;
+
+	/* Make sure there is space in the ring for the next send. */
+	e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
+
+	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
+	return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+
+static void e1000_tx_timeout(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Do the reset outside of interrupt context */
+	adapter->tx_timeout_count++;
+	schedule_work(&adapter->reset_task);
+}
+
+static void e1000_reset_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter =
+		container_of(work, struct e1000_adapter, reset_task);
+
+	e1000_reinit_locked(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+
+static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* only return the current stats */
+	return &adapter->net_stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+	u16 eeprom_data = 0;
+
+	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
+	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
+		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
+		return -EINVAL;
+	}
+
+	/* Adapter-specific max frame size limits. */
+	switch (hw->mac_type) {
+	case e1000_undefined ... e1000_82542_rev2_1:
+	case e1000_ich8lan:
+		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
+			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
+			return -EINVAL;
+		}
+		break;
+	case e1000_82573:
+		/* Jumbo Frames not supported if:
+		 * - this is not an 82573L device
+		 * - ASPM is enabled in any way (0x1A bits 3:2) */
+		e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
+		                  &eeprom_data);
+		if ((hw->device_id != E1000_DEV_ID_82573L) ||
+		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
+			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
+				DPRINTK(PROBE, ERR,
+			            	"Jumbo Frames not supported.\n");
+				return -EINVAL;
+			}
+			break;
+		}
+		/* ERT will be enabled later to enable wire speed receives */
+
+		/* fall through to get support */
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+#define MAX_STD_JUMBO_FRAME_SIZE 9234
+		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
+			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
+			return -EINVAL;
+		}
+		break;
+	default:
+		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
+		break;
+	}
+
+	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+	 * means we reserve 2 more, this pushes us to allocate from the next
+	 * larger slab size
+	 * i.e. RXBUFFER_2048 --> size-4096 slab */
+
+	if (max_frame <= E1000_RXBUFFER_256)
+		adapter->rx_buffer_len = E1000_RXBUFFER_256;
+	else if (max_frame <= E1000_RXBUFFER_512)
+		adapter->rx_buffer_len = E1000_RXBUFFER_512;
+	else if (max_frame <= E1000_RXBUFFER_1024)
+		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
+	else if (max_frame <= E1000_RXBUFFER_2048)
+		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+	else if (max_frame <= E1000_RXBUFFER_4096)
+		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
+	else if (max_frame <= E1000_RXBUFFER_8192)
+		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
+	else if (max_frame <= E1000_RXBUFFER_16384)
+		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+
+	/* adjust allocation if LPE protects us, and we aren't using SBP */
+	if (!hw->tbi_compatibility_on &&
+	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
+	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
+		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+
+	netdev->mtu = new_mtu;
+	hw->max_frame_size = max_frame;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+
+	return 0;
+}
+
+/**
+ * e1000_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+
+void e1000_update_stats(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long flags;
+	u16 phy_tmp;
+
+#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
+
+	/*
+	 * Prevent stats update while adapter is being reset, or if the pci
+	 * connection is down.
+	 */
+	if (adapter->link_speed == 0)
+		return;
+	if (pci_channel_offline(pdev))
+		return;
+
+	spin_lock_irqsave(&adapter->stats_lock, flags);
+
+	/* these counters are modified from e1000_tbi_adjust_stats,
+	 * called from the interrupt context, so they must only
+	 * be written while holding adapter->stats_lock
+	 */
+
+	adapter->stats.crcerrs += er32(CRCERRS);
+	adapter->stats.gprc += er32(GPRC);
+	adapter->stats.gorcl += er32(GORCL);
+	adapter->stats.gorch += er32(GORCH);
+	adapter->stats.bprc += er32(BPRC);
+	adapter->stats.mprc += er32(MPRC);
+	adapter->stats.roc += er32(ROC);
+
+	if (hw->mac_type != e1000_ich8lan) {
+		adapter->stats.prc64 += er32(PRC64);
+		adapter->stats.prc127 += er32(PRC127);
+		adapter->stats.prc255 += er32(PRC255);
+		adapter->stats.prc511 += er32(PRC511);
+		adapter->stats.prc1023 += er32(PRC1023);
+		adapter->stats.prc1522 += er32(PRC1522);
+	}
+
+	adapter->stats.symerrs += er32(SYMERRS);
+	adapter->stats.mpc += er32(MPC);
+	adapter->stats.scc += er32(SCC);
+	adapter->stats.ecol += er32(ECOL);
+	adapter->stats.mcc += er32(MCC);
+	adapter->stats.latecol += er32(LATECOL);
+	adapter->stats.dc += er32(DC);
+	adapter->stats.sec += er32(SEC);
+	adapter->stats.rlec += er32(RLEC);
+	adapter->stats.xonrxc += er32(XONRXC);
+	adapter->stats.xontxc += er32(XONTXC);
+	adapter->stats.xoffrxc += er32(XOFFRXC);
+	adapter->stats.xofftxc += er32(XOFFTXC);
+	adapter->stats.fcruc += er32(FCRUC);
+	adapter->stats.gptc += er32(GPTC);
+	adapter->stats.gotcl += er32(GOTCL);
+	adapter->stats.gotch += er32(GOTCH);
+	adapter->stats.rnbc += er32(RNBC);
+	adapter->stats.ruc += er32(RUC);
+	adapter->stats.rfc += er32(RFC);
+	adapter->stats.rjc += er32(RJC);
+	adapter->stats.torl += er32(TORL);
+	adapter->stats.torh += er32(TORH);
+	adapter->stats.totl += er32(TOTL);
+	adapter->stats.toth += er32(TOTH);
+	adapter->stats.tpr += er32(TPR);
+
+	if (hw->mac_type != e1000_ich8lan) {
+		adapter->stats.ptc64 += er32(PTC64);
+		adapter->stats.ptc127 += er32(PTC127);
+		adapter->stats.ptc255 += er32(PTC255);
+		adapter->stats.ptc511 += er32(PTC511);
+		adapter->stats.ptc1023 += er32(PTC1023);
+		adapter->stats.ptc1522 += er32(PTC1522);
+	}
+
+	adapter->stats.mptc += er32(MPTC);
+	adapter->stats.bptc += er32(BPTC);
+
+	/* used for adaptive IFS */
+
+	hw->tx_packet_delta = er32(TPT);
+	adapter->stats.tpt += hw->tx_packet_delta;
+	hw->collision_delta = er32(COLC);
+	adapter->stats.colc += hw->collision_delta;
+
+	if (hw->mac_type >= e1000_82543) {
+		adapter->stats.algnerrc += er32(ALGNERRC);
+		adapter->stats.rxerrc += er32(RXERRC);
+		adapter->stats.tncrs += er32(TNCRS);
+		adapter->stats.cexterr += er32(CEXTERR);
+		adapter->stats.tsctc += er32(TSCTC);
+		adapter->stats.tsctfc += er32(TSCTFC);
+	}
+	if (hw->mac_type > e1000_82547_rev_2) {
+		adapter->stats.iac += er32(IAC);
+		adapter->stats.icrxoc += er32(ICRXOC);
+
+		if (hw->mac_type != e1000_ich8lan) {
+			adapter->stats.icrxptc += er32(ICRXPTC);
+			adapter->stats.icrxatc += er32(ICRXATC);
+			adapter->stats.ictxptc += er32(ICTXPTC);
+			adapter->stats.ictxatc += er32(ICTXATC);
+			adapter->stats.ictxqec += er32(ICTXQEC);
+			adapter->stats.ictxqmtc += er32(ICTXQMTC);
+			adapter->stats.icrxdmtc += er32(ICRXDMTC);
+		}
+	}
+
+	/* Fill out the OS statistics structure */
+	adapter->net_stats.multicast = adapter->stats.mprc;
+	adapter->net_stats.collisions = adapter->stats.colc;
+
+	/* Rx Errors */
+
+	/* RLEC on some newer hardware can be incorrect so build
+	* our own version based on RUC and ROC */
+	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
+		adapter->stats.crcerrs + adapter->stats.algnerrc +
+		adapter->stats.ruc + adapter->stats.roc +
+		adapter->stats.cexterr;
+	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
+	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
+	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
+	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
+	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
+
+	/* Tx Errors */
+	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
+	adapter->net_stats.tx_errors = adapter->stats.txerrc;
+	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
+	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
+	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
+	if (hw->bad_tx_carr_stats_fd &&
+	    adapter->link_duplex == FULL_DUPLEX) {
+		adapter->net_stats.tx_carrier_errors = 0;
+		adapter->stats.tncrs = 0;
+	}
+
+	/* Tx Dropped needs to be maintained elsewhere */
+
+	/* Phy Stats */
+	if (hw->media_type == e1000_media_type_copper) {
+		if ((adapter->link_speed == SPEED_1000) &&
+		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
+			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
+			adapter->phy_stats.idle_errors += phy_tmp;
+		}
+
+		if ((hw->mac_type <= e1000_82546) &&
+		   (hw->phy_type == e1000_phy_m88) &&
+		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
+			adapter->phy_stats.receive_errors += phy_tmp;
+	}
+
+	/* Management Stats */
+	if (hw->has_smbus) {
+		adapter->stats.mgptc += er32(MGTPTC);
+		adapter->stats.mgprc += er32(MGTPRC);
+		adapter->stats.mgpdc += er32(MGTPDC);
+	}
+
+	spin_unlock_irqrestore(&adapter->stats_lock, flags);
+}
+
+/**
+ * e1000_intr_msi - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+
+static irqreturn_t e1000_intr_msi(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	/* in NAPI mode read ICR disables interrupts using IAM */
+
+	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+		hw->get_link_status = 1;
+		/* 80003ES2LAN workaround-- For packet buffer work-around on
+		 * link down event; disable receives here in the ISR and reset
+		 * adapter in watchdog */
+		if (netif_carrier_ok(netdev) &&
+		    (hw->mac_type == e1000_80003es2lan)) {
+			/* disable receives */
+			u32 rctl = er32(RCTL);
+			ew32(RCTL, rctl & ~E1000_RCTL_EN);
+		}
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	if (likely(netif_rx_schedule_prep(&adapter->napi))) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__netif_rx_schedule(&adapter->napi);
+	} else
+		e1000_irq_enable(adapter);
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+
+static irqreturn_t e1000_intr(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl, icr = er32(ICR);
+
+	if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
+		return IRQ_NONE;  /* Not our interrupt */
+
+	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
+	 * not set, then the adapter didn't send an interrupt */
+	if (unlikely(hw->mac_type >= e1000_82571 &&
+	             !(icr & E1000_ICR_INT_ASSERTED)))
+		return IRQ_NONE;
+
+	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
+	 * need for the IMC write */
+
+	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
+		hw->get_link_status = 1;
+		/* 80003ES2LAN workaround--
+		 * For packet buffer work-around on link down event;
+		 * disable receives here in the ISR and
+		 * reset adapter in watchdog
+		 */
+		if (netif_carrier_ok(netdev) &&
+		    (hw->mac_type == e1000_80003es2lan)) {
+			/* disable receives */
+			rctl = er32(RCTL);
+			ew32(RCTL, rctl & ~E1000_RCTL_EN);
+		}
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	if (unlikely(hw->mac_type < e1000_82571)) {
+		/* disable interrupts, without the synchronize_irq bit */
+		ew32(IMC, ~0);
+		E1000_WRITE_FLUSH();
+	}
+	if (likely(netif_rx_schedule_prep(&adapter->napi))) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__netif_rx_schedule(&adapter->napi);
+	} else
+		/* this really should not happen! if it does it is basically a
+		 * bug, but not a hard error, so enable ints and continue */
+		e1000_irq_enable(adapter);
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @adapter: board private structure
+ **/
+static int e1000_clean(struct napi_struct *napi, int budget)
+{
+	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
+	struct net_device *poll_dev = adapter->netdev;
+	int tx_cleaned = 0, work_done = 0;
+
+	adapter = netdev_priv(poll_dev);
+
+	/* e1000_clean is called per-cpu.  This lock protects
+	 * tx_ring[0] from being cleaned by multiple cpus
+	 * simultaneously.  A failure obtaining the lock means
+	 * tx_ring[0] is currently being cleaned anyway. */
+	if (spin_trylock(&adapter->tx_queue_lock)) {
+		tx_cleaned = e1000_clean_tx_irq(adapter,
+						&adapter->tx_ring[0]);
+		spin_unlock(&adapter->tx_queue_lock);
+	}
+
+	adapter->clean_rx(adapter, &adapter->rx_ring[0],
+	                  &work_done, budget);
+
+	if (tx_cleaned)
+		work_done = budget;
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		if (likely(adapter->itr_setting & 3))
+			e1000_set_itr(adapter);
+		netif_rx_complete(napi);
+		e1000_irq_enable(adapter);
+	}
+
+	return work_done;
+}
+
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ **/
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_desc *tx_desc, *eop_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i, eop;
+	unsigned int count = 0;
+	bool cleaned = false;
+	unsigned int total_tx_bytes=0, total_tx_packets=0;
+
+	i = tx_ring->next_to_clean;
+	eop = tx_ring->buffer_info[i].next_to_watch;
+	eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
+		for (cleaned = false; !cleaned; ) {
+			tx_desc = E1000_TX_DESC(*tx_ring, i);
+			buffer_info = &tx_ring->buffer_info[i];
+			cleaned = (i == eop);
+
+			if (cleaned) {
+				struct sk_buff *skb = buffer_info->skb;
+				unsigned int segs, bytecount;
+				segs = skb_shinfo(skb)->gso_segs ?: 1;
+				/* multiply data chunks by size of headers */
+				bytecount = ((segs - 1) * skb_headlen(skb)) +
+				            skb->len;
+				total_tx_packets += segs;
+				total_tx_bytes += bytecount;
+			}
+			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+			tx_desc->upper.data = 0;
+
+			if (unlikely(++i == tx_ring->count)) i = 0;
+		}
+
+		eop = tx_ring->buffer_info[i].next_to_watch;
+		eop_desc = E1000_TX_DESC(*tx_ring, eop);
+#define E1000_TX_WEIGHT 64
+		/* weight of a sort for tx, to avoid endless transmit cleanup */
+		if (count++ == E1000_TX_WEIGHT)
+			break;
+	}
+
+	tx_ring->next_to_clean = i;
+
+#define TX_WAKE_THRESHOLD 32
+	if (unlikely(cleaned && netif_carrier_ok(netdev) &&
+		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
+		/* Make sure that anybody stopping the queue after this
+		 * sees the new next_to_clean.
+		 */
+		smp_mb();
+		if (netif_queue_stopped(netdev)) {
+			netif_wake_queue(netdev);
+			++adapter->restart_queue;
+		}
+	}
+
+	if (adapter->detect_tx_hung) {
+		/* Detect a transmit hang in hardware, this serializes the
+		 * check with the clearing of time_stamp and movement of i */
+		adapter->detect_tx_hung = false;
+		if (tx_ring->buffer_info[eop].dma &&
+		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
+		               (adapter->tx_timeout_factor * HZ))
+		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
+
+			/* detected Tx unit hang */
+			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
+					"  Tx Queue             <%lu>\n"
+					"  TDH                  <%x>\n"
+					"  TDT                  <%x>\n"
+					"  next_to_use          <%x>\n"
+					"  next_to_clean        <%x>\n"
+					"buffer_info[next_to_clean]\n"
+					"  time_stamp           <%lx>\n"
+					"  next_to_watch        <%x>\n"
+					"  jiffies              <%lx>\n"
+					"  next_to_watch.status <%x>\n",
+				(unsigned long)((tx_ring - adapter->tx_ring) /
+					sizeof(struct e1000_tx_ring)),
+				readl(hw->hw_addr + tx_ring->tdh),
+				readl(hw->hw_addr + tx_ring->tdt),
+				tx_ring->next_to_use,
+				tx_ring->next_to_clean,
+				tx_ring->buffer_info[eop].time_stamp,
+				eop,
+				jiffies,
+				eop_desc->upper.fields.status);
+			netif_stop_queue(netdev);
+		}
+	}
+	adapter->total_tx_bytes += total_tx_bytes;
+	adapter->total_tx_packets += total_tx_packets;
+	adapter->net_stats.tx_bytes += total_tx_bytes;
+	adapter->net_stats.tx_packets += total_tx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter:     board private structure
+ * @status_err:  receive descriptor status and error fields
+ * @csum:        receive descriptor csum field
+ * @sk_buff:     socket buffer with received data
+ **/
+
+static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
+			      u32 csum, struct sk_buff *skb)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 status = (u16)status_err;
+	u8 errors = (u8)(status_err >> 24);
+	skb->ip_summed = CHECKSUM_NONE;
+
+	/* 82543 or newer only */
+	if (unlikely(hw->mac_type < e1000_82543)) return;
+	/* Ignore Checksum bit is set */
+	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
+	/* TCP/UDP checksum error bit is set */
+	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
+		/* let the stack verify checksum errors */
+		adapter->hw_csum_err++;
+		return;
+	}
+	/* TCP/UDP Checksum has not been calculated */
+	if (hw->mac_type <= e1000_82547_rev_2) {
+		if (!(status & E1000_RXD_STAT_TCPCS))
+			return;
+	} else {
+		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
+			return;
+	}
+	/* It must be a TCP or UDP packet with a valid checksum */
+	if (likely(status & E1000_RXD_STAT_TCPCS)) {
+		/* TCP checksum is good */
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	} else if (hw->mac_type > e1000_82547_rev_2) {
+		/* IP fragment with UDP payload */
+		/* Hardware complements the payload checksum, so we undo it
+		 * and then put the value in host order for further stack use.
+		 */
+		__sum16 sum = (__force __sum16)htons(csum);
+		skb->csum = csum_unfold(~sum);
+		skb->ip_summed = CHECKSUM_COMPLETE;
+	}
+	adapter->hw_csum_good++;
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ **/
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long flags;
+	u32 length;
+	u8 last_byte;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		buffer_info->skb = NULL;
+
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		pci_unmap_single(pdev,
+		                 buffer_info->dma,
+		                 buffer_info->length,
+		                 PCI_DMA_FROMDEVICE);
+
+		length = le16_to_cpu(rx_desc->length);
+
+		if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
+			/* All receives must fit into a single buffer */
+			E1000_DBG("%s: Receive packet consumed multiple"
+				  " buffers\n", netdev->name);
+			/* recycle */
+			buffer_info->skb = skb;
+			goto next_desc;
+		}
+
+		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
+			last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock, flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       flags);
+				length--;
+			} else {
+				/* recycle */
+				buffer_info->skb = skb;
+				goto next_desc;
+			}
+		}
+
+		/* adjust length to remove Ethernet CRC, this must be
+		 * done after the TBI_ACCEPT workaround above */
+		length -= 4;
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += length;
+		total_rx_packets++;
+
+		/* code added for copybreak, this should improve
+		 * performance for small packets with large amounts
+		 * of reassembly being done in the stack */
+		if (length < copybreak) {
+			struct sk_buff *new_skb =
+			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
+			if (new_skb) {
+				skb_reserve(new_skb, NET_IP_ALIGN);
+				skb_copy_to_linear_data_offset(new_skb,
+							       -NET_IP_ALIGN,
+							       (skb->data -
+							        NET_IP_ALIGN),
+							       (length +
+							        NET_IP_ALIGN));
+				/* save the skb in buffer_info as good */
+				buffer_info->skb = skb;
+				skb = new_skb;
+			}
+			/* else just continue with the old one */
+		}
+		/* end copybreak code */
+		skb_put(skb, length);
+
+		/* Receive Checksum Offload */
+		e1000_rx_checksum(adapter,
+				  (u32)(status) |
+				  ((u32)(rx_desc->errors) << 24),
+				  le16_to_cpu(rx_desc->csum), skb);
+
+		skb->protocol = eth_type_trans(skb, netdev);
+
+		if (unlikely(adapter->vlgrp &&
+			    (status & E1000_RXD_STAT_VP))) {
+			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
+						 le16_to_cpu(rx_desc->special));
+		} else {
+			netif_receive_skb(skb);
+		}
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
+ * @adapter: address of board private structure
+ **/
+
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto map_skb;
+		}
+
+		skb = netdev_alloc_skb(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
+					     "at %p\n", bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				break; /* while !buffer_info->skb */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		/* Make buffer alignment 2 beyond a 16 byte boundary
+		 * this will result in a 16 byte aligned IP header after
+		 * the 14 byte MAC header is removed
+		 */
+		skb_reserve(skb, NET_IP_ALIGN);
+
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+map_skb:
+		buffer_info->dma = pci_map_single(pdev,
+						  skb->data,
+						  adapter->rx_buffer_len,
+						  PCI_DMA_FROMDEVICE);
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter,
+					(void *)(unsigned long)buffer_info->dma,
+					adapter->rx_buffer_len)) {
+			DPRINTK(RX_ERR, ERR,
+				"dma align check failed: %u bytes at %p\n",
+				adapter->rx_buffer_len,
+				(void *)(unsigned long)buffer_info->dma);
+			dev_kfree_skb(skb);
+			buffer_info->skb = NULL;
+
+			pci_unmap_single(pdev, buffer_info->dma,
+					 adapter->rx_buffer_len,
+					 PCI_DMA_FROMDEVICE);
+
+			break; /* while !buffer_info->skb */
+		}
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, hw->hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
+ * @adapter:
+ **/
+
+static void e1000_smartspeed(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_status;
+	u16 phy_ctrl;
+
+	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
+	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
+		return;
+
+	if (adapter->smartspeed == 0) {
+		/* If Master/Slave config fault is asserted twice,
+		 * we assume back-to-back */
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		if (phy_ctrl & CR_1000T_MS_ENABLE) {
+			phy_ctrl &= ~CR_1000T_MS_ENABLE;
+			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+					    phy_ctrl);
+			adapter->smartspeed++;
+			if (!e1000_phy_setup_autoneg(hw) &&
+			   !e1000_read_phy_reg(hw, PHY_CTRL,
+				   	       &phy_ctrl)) {
+				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+					     MII_CR_RESTART_AUTO_NEG);
+				e1000_write_phy_reg(hw, PHY_CTRL,
+						    phy_ctrl);
+			}
+		}
+		return;
+	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
+		/* If still no link, perhaps using 2/3 pair cable */
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		phy_ctrl |= CR_1000T_MS_ENABLE;
+		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
+		if (!e1000_phy_setup_autoneg(hw) &&
+		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
+			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+				     MII_CR_RESTART_AUTO_NEG);
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
+		}
+	}
+	/* Restart process after E1000_SMARTSPEED_MAX iterations */
+	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
+		adapter->smartspeed = 0;
+}
+
+/**
+ * e1000_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+	case SIOCSMIIREG:
+		return e1000_mii_ioctl(netdev, ifr, cmd);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+/**
+ * e1000_mii_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct mii_ioctl_data *data = if_mii(ifr);
+	int retval;
+	u16 mii_reg;
+	u16 spddplx;
+	unsigned long flags;
+
+	if (hw->media_type != e1000_media_type_copper)
+		return -EOPNOTSUPP;
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = hw->phy_addr;
+		break;
+	case SIOCGMIIREG:
+		if (!capable(CAP_NET_ADMIN))
+			return -EPERM;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
+				   &data->val_out)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		break;
+	case SIOCSMIIREG:
+		if (!capable(CAP_NET_ADMIN))
+			return -EPERM;
+		if (data->reg_num & ~(0x1F))
+			return -EFAULT;
+		mii_reg = data->val_in;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_write_phy_reg(hw, data->reg_num,
+					mii_reg)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		if (hw->media_type == e1000_media_type_copper) {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (mii_reg & MII_CR_AUTO_NEG_EN) {
+					hw->autoneg = 1;
+					hw->autoneg_advertised = 0x2F;
+				} else {
+					if (mii_reg & 0x40)
+						spddplx = SPEED_1000;
+					else if (mii_reg & 0x2000)
+						spddplx = SPEED_100;
+					else
+						spddplx = SPEED_10;
+					spddplx += (mii_reg & 0x100)
+						   ? DUPLEX_FULL :
+						   DUPLEX_HALF;
+					retval = e1000_set_spd_dplx(adapter,
+								    spddplx);
+					if (retval)
+						return retval;
+				}
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			case M88E1000_PHY_SPEC_CTRL:
+			case M88E1000_EXT_PHY_SPEC_CTRL:
+				if (e1000_phy_reset(hw))
+					return -EIO;
+				break;
+			}
+		} else {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			}
+		}
+		break;
+	default:
+		return -EOPNOTSUPP;
+	}
+	return E1000_SUCCESS;
+}
+
+void e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	int ret_val = pci_set_mwi(adapter->pdev);
+
+	if (ret_val)
+		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
+}
+
+void e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+
+	pci_clear_mwi(adapter->pdev);
+}
+
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	return pcix_get_mmrbc(adapter->pdev);
+}
+
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
+{
+	struct e1000_adapter *adapter = hw->back;
+	pcix_set_mmrbc(adapter->pdev, mmrbc);
+}
+
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+    struct e1000_adapter *adapter = hw->back;
+    u16 cap_offset;
+
+    cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
+    if (!cap_offset)
+        return -E1000_ERR_CONFIG;
+
+    pci_read_config_word(adapter->pdev, cap_offset + reg, value);
+
+    return E1000_SUCCESS;
+}
+
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
+{
+	outl(value, port);
+}
+
+static void e1000_vlan_rx_register(struct net_device *netdev,
+				   struct vlan_group *grp)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, rctl;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	adapter->vlgrp = grp;
+
+	if (grp) {
+		/* enable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		if (adapter->hw.mac_type != e1000_ich8lan) {
+			/* enable VLAN receive filtering */
+			rctl = er32(RCTL);
+			rctl &= ~E1000_RCTL_CFIEN;
+			ew32(RCTL, rctl);
+			e1000_update_mng_vlan(adapter);
+		}
+	} else {
+		/* disable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		if (adapter->hw.mac_type != e1000_ich8lan) {
+			if (adapter->mng_vlan_id !=
+			    (u16)E1000_MNG_VLAN_NONE) {
+				e1000_vlan_rx_kill_vid(netdev,
+				                       adapter->mng_vlan_id);
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+			}
+		}
+	}
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+}
+
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if ((hw->mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	    (vid == adapter->mng_vlan_id))
+		return;
+	/* add VID to filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta |= (1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	vlan_group_set_device(adapter->vlgrp, vid, NULL);
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+
+	if ((hw->mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	    (vid == adapter->mng_vlan_id)) {
+		/* release control to f/w */
+		e1000_release_hw_control(adapter);
+		return;
+	}
+
+	/* remove VID from filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta &= ~(1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+	if (adapter->vlgrp) {
+		u16 vid;
+		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+			if (!vlan_group_get_device(adapter->vlgrp, vid))
+				continue;
+			e1000_vlan_rx_add_vid(adapter->netdev, vid);
+		}
+	}
+}
+
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	hw->autoneg = 0;
+
+	/* Fiber NICs only allow 1000 gbps Full duplex */
+	if ((hw->media_type == e1000_media_type_fiber) &&
+		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
+		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+
+	switch (spddplx) {
+	case SPEED_10 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_10_half;
+		break;
+	case SPEED_10 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_10_full;
+		break;
+	case SPEED_100 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_100_half;
+		break;
+	case SPEED_100 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_100_full;
+		break;
+	case SPEED_1000 + DUPLEX_FULL:
+		hw->autoneg = 1;
+		hw->autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_HALF: /* not supported */
+	default:
+		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, ctrl_ext, rctl, status;
+	u32 wufc = adapter->wol;
+#ifdef CONFIG_PM
+	int retval = 0;
+#endif
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev)) {
+		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+		e1000_down(adapter);
+	}
+
+#ifdef CONFIG_PM
+	retval = pci_save_state(pdev);
+	if (retval)
+		return retval;
+#endif
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU)
+		wufc &= ~E1000_WUFC_LNKC;
+
+	if (wufc) {
+		e1000_setup_rctl(adapter);
+		e1000_set_rx_mode(netdev);
+
+		/* turn on all-multi mode if wake on multicast is enabled */
+		if (wufc & E1000_WUFC_MC) {
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_MPE;
+			ew32(RCTL, rctl);
+		}
+
+		if (hw->mac_type >= e1000_82540) {
+			ctrl = er32(CTRL);
+			/* advertise wake from D3Cold */
+			#define E1000_CTRL_ADVD3WUC 0x00100000
+			/* phy power management enable */
+			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+			ctrl |= E1000_CTRL_ADVD3WUC |
+				E1000_CTRL_EN_PHY_PWR_MGMT;
+			ew32(CTRL, ctrl);
+		}
+
+		if (hw->media_type == e1000_media_type_fiber ||
+		   hw->media_type == e1000_media_type_internal_serdes) {
+			/* keep the laser running in D3 */
+			ctrl_ext = er32(CTRL_EXT);
+			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
+			ew32(CTRL_EXT, ctrl_ext);
+		}
+
+		/* Allow time for pending master requests to run */
+		e1000_disable_pciex_master(hw);
+
+		ew32(WUC, E1000_WUC_PME_EN);
+		ew32(WUFC, wufc);
+		pci_enable_wake(pdev, PCI_D3hot, 1);
+		pci_enable_wake(pdev, PCI_D3cold, 1);
+	} else {
+		ew32(WUC, 0);
+		ew32(WUFC, 0);
+		pci_enable_wake(pdev, PCI_D3hot, 0);
+		pci_enable_wake(pdev, PCI_D3cold, 0);
+	}
+
+	e1000_release_manageability(adapter);
+
+	/* make sure adapter isn't asleep if manageability is enabled */
+	if (adapter->en_mng_pt) {
+		pci_enable_wake(pdev, PCI_D3hot, 1);
+		pci_enable_wake(pdev, PCI_D3cold, 1);
+	}
+
+	if (hw->phy_type == e1000_phy_igp_3)
+		e1000_phy_powerdown_workaround(hw);
+
+	if (netif_running(netdev))
+		e1000_free_irq(adapter);
+
+	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
+	 * would have already happened in close and is redundant. */
+	e1000_release_hw_control(adapter);
+
+	pci_disable_device(pdev);
+
+	pci_set_power_state(pdev, pci_choose_state(pdev, state));
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int e1000_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 err;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
+		return err;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	if (netif_running(netdev)) {
+		err = e1000_request_irq(adapter);
+		if (err)
+			return err;
+	}
+
+	e1000_power_up_phy(adapter);
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+
+	netif_device_attach(netdev);
+
+	/* If the controller is 82573 and f/w is AMT, do not set
+	 * DRV_LOAD until the interface is up.  For all other cases,
+	 * let the f/w know that the h/w is now under the control
+	 * of the driver. */
+	if (hw->mac_type != e1000_82573 ||
+	    !e1000_check_mng_mode(hw))
+		e1000_get_hw_control(adapter);
+
+	return 0;
+}
+#endif
+
+static void e1000_shutdown(struct pci_dev *pdev)
+{
+	e1000_suspend(pdev, PMSG_SUSPEND);
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void e1000_netpoll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	disable_irq(adapter->pdev->irq);
+	e1000_intr(adapter->pdev->irq, netdev);
+	enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/**
+ * e1000_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci conneection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+						pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev))
+		e1000_down(adapter);
+	pci_disable_device(pdev);
+
+	/* Request a slot slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e1000_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot. Implementation
+ * resembles the first-half of the e1000_resume routine.
+ */
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * e1000_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells us that
+ * its OK to resume normal operation. Implementation resembles the
+ * second-half of the e1000_resume routine.
+ */
+static void e1000_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev)) {
+		if (e1000_up(adapter)) {
+			printk("e1000: can't bring device back up after reset\n");
+			return;
+		}
+	}
+
+	netif_device_attach(netdev);
+
+	/* If the controller is 82573 and f/w is AMT, do not set
+	 * DRV_LOAD until the interface is up.  For all other cases,
+	 * let the f/w know that the h/w is now under the control
+	 * of the driver. */
+	if (hw->mac_type != e1000_82573 ||
+	    !e1000_check_mng_mode(hw))
+		e1000_get_hw_control(adapter);
+
+}
+
+/* e1000_main.c */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_main-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,4926 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+ 
+  vim: noexpandtab
+
+*******************************************************************************/
+
+#include "e1000-2.6.35-ethercat.h"
+#include <net/ip6_checksum.h>
+
+char e1000_driver_name[] = "ec_e1000";
+static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
+#define DRV_VERSION "7.3.21-k6-NAPI"
+const char e1000_driver_version[] = DRV_VERSION;
+static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
+
+/* e1000_pci_tbl - PCI Device ID Table
+ *
+ * Last entry must be all 0s
+ *
+ * Macro expands to...
+ *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+ */
+static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
+	INTEL_E1000_ETHERNET_DEVICE(0x1000),
+	INTEL_E1000_ETHERNET_DEVICE(0x1001),
+	INTEL_E1000_ETHERNET_DEVICE(0x1004),
+	INTEL_E1000_ETHERNET_DEVICE(0x1008),
+	INTEL_E1000_ETHERNET_DEVICE(0x1009),
+	INTEL_E1000_ETHERNET_DEVICE(0x100C),
+	INTEL_E1000_ETHERNET_DEVICE(0x100D),
+	INTEL_E1000_ETHERNET_DEVICE(0x100E),
+	INTEL_E1000_ETHERNET_DEVICE(0x100F),
+	INTEL_E1000_ETHERNET_DEVICE(0x1010),
+	INTEL_E1000_ETHERNET_DEVICE(0x1011),
+	INTEL_E1000_ETHERNET_DEVICE(0x1012),
+	INTEL_E1000_ETHERNET_DEVICE(0x1013),
+	INTEL_E1000_ETHERNET_DEVICE(0x1014),
+	INTEL_E1000_ETHERNET_DEVICE(0x1015),
+	INTEL_E1000_ETHERNET_DEVICE(0x1016),
+	INTEL_E1000_ETHERNET_DEVICE(0x1017),
+	INTEL_E1000_ETHERNET_DEVICE(0x1018),
+	INTEL_E1000_ETHERNET_DEVICE(0x1019),
+	INTEL_E1000_ETHERNET_DEVICE(0x101A),
+	INTEL_E1000_ETHERNET_DEVICE(0x101D),
+	INTEL_E1000_ETHERNET_DEVICE(0x101E),
+	INTEL_E1000_ETHERNET_DEVICE(0x1026),
+	INTEL_E1000_ETHERNET_DEVICE(0x1027),
+	INTEL_E1000_ETHERNET_DEVICE(0x1028),
+	INTEL_E1000_ETHERNET_DEVICE(0x1075),
+	INTEL_E1000_ETHERNET_DEVICE(0x1076),
+	INTEL_E1000_ETHERNET_DEVICE(0x1077),
+	INTEL_E1000_ETHERNET_DEVICE(0x1078),
+	INTEL_E1000_ETHERNET_DEVICE(0x1079),
+	INTEL_E1000_ETHERNET_DEVICE(0x107A),
+	INTEL_E1000_ETHERNET_DEVICE(0x107B),
+	INTEL_E1000_ETHERNET_DEVICE(0x107C),
+	INTEL_E1000_ETHERNET_DEVICE(0x108A),
+	INTEL_E1000_ETHERNET_DEVICE(0x1099),
+	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
+	/* required last entry */
+	{0,}
+};
+
+// do not auto-load driver
+// MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+int e1000_up(struct e1000_adapter *adapter);
+void e1000_down(struct e1000_adapter *adapter);
+void e1000_reinit_locked(struct e1000_adapter *adapter);
+void e1000_reset(struct e1000_adapter *adapter);
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *txdr);
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rxdr);
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *tx_ring);
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring);
+void e1000_update_stats(struct e1000_adapter *adapter);
+
+static int e1000_init_module(void);
+static void e1000_exit_module(void);
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
+static void __devexit e1000_remove(struct pci_dev *pdev);
+static int e1000_alloc_queues(struct e1000_adapter *adapter);
+static int e1000_sw_init(struct e1000_adapter *adapter);
+static int e1000_open(struct net_device *netdev);
+static int e1000_close(struct net_device *netdev);
+static void e1000_configure_tx(struct e1000_adapter *adapter);
+static void e1000_configure_rx(struct e1000_adapter *adapter);
+static void e1000_setup_rctl(struct e1000_adapter *adapter);
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+                                struct e1000_tx_ring *tx_ring);
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+                                struct e1000_rx_ring *rx_ring);
+static void e1000_set_rx_mode(struct net_device *netdev);
+static void e1000_update_phy_info(unsigned long data);
+static void e1000_watchdog(unsigned long data);
+static void e1000_82547_tx_fifo_stall(unsigned long data);
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev);
+static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
+static int e1000_set_mac(struct net_device *netdev, void *p);
+void ec_poll(struct net_device *);
+static irqreturn_t e1000_intr(int irq, void *data);
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring);
+static int e1000_clean(struct napi_struct *napi, int budget);
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do);
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do);
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count);
+static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+					 struct e1000_rx_ring *rx_ring,
+					 int cleaned_count);
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd);
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
+static void e1000_tx_timeout(struct net_device *dev);
+static void e1000_reset_task(struct work_struct *work);
+static void e1000_smartspeed(struct e1000_adapter *adapter);
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+                                       struct sk_buff *skb);
+
+static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
+static void e1000_restore_vlan(struct e1000_adapter *adapter);
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
+static int e1000_resume(struct pci_dev *pdev);
+#endif
+static void e1000_shutdown(struct pci_dev *pdev);
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/* for netdump / net console */
+static void e1000_netpoll (struct net_device *netdev);
+#endif
+
+#define COPYBREAK_DEFAULT 256
+static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
+module_param(copybreak, uint, 0644);
+MODULE_PARM_DESC(copybreak,
+	"Maximum size of packet that is copied to a new buffer on receive");
+
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+                     pci_channel_state_t state);
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
+static void e1000_io_resume(struct pci_dev *pdev);
+
+static struct pci_error_handlers e1000_err_handler = {
+	.error_detected = e1000_io_error_detected,
+	.slot_reset = e1000_io_slot_reset,
+	.resume = e1000_io_resume,
+};
+
+static struct pci_driver e1000_driver = {
+	.name     = e1000_driver_name,
+	.id_table = e1000_pci_tbl,
+	.probe    = e1000_probe,
+	.remove   = __devexit_p(e1000_remove),
+#ifdef CONFIG_PM
+	/* Power Managment Hooks */
+	.suspend  = e1000_suspend,
+	.resume   = e1000_resume,
+#endif
+	.shutdown = e1000_shutdown,
+	.err_handler = &e1000_err_handler
+};
+
+MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>");
+MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+/**
+ * e1000_get_hw_dev - return device
+ * used by hardware layer to print debugging information
+ *
+ **/
+struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	return adapter->netdev;
+}
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+
+static int __init e1000_init_module(void)
+{
+	int ret;
+	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
+
+	pr_info("%s\n", e1000_copyright);
+
+	ret = pci_register_driver(&e1000_driver);
+	if (copybreak != COPYBREAK_DEFAULT) {
+		if (copybreak == 0)
+			pr_info("copybreak disabled\n");
+		else
+			pr_info("copybreak enabled for "
+				   "packets <= %u bytes\n", copybreak);
+	}
+	return ret;
+}
+
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+
+static void __exit e1000_exit_module(void)
+{
+	pci_unregister_driver(&e1000_driver);
+}
+
+module_exit(e1000_exit_module);
+
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	irq_handler_t handler = e1000_intr;
+	int irq_flags = IRQF_SHARED;
+	int err;
+
+	if (adapter->ecdev)
+		return 0;
+
+	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
+	                  netdev);
+	if (err) {
+		e_err("Unable to allocate interrupt Error: %d\n", err);
+	}
+
+	return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	if (adapter->ecdev)
+		return;
+
+	free_irq(adapter->pdev->irq, netdev);
+}
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_disable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return;
+
+	ew32(IMC, ~0);
+	E1000_WRITE_FLUSH();
+	synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_enable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return;
+ 
+	ew32(IMS, IMS_ENABLE_MASK);
+	E1000_WRITE_FLUSH();
+}
+
+static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u16 vid = hw->mng_cookie.vlan_id;
+	u16 old_vid = adapter->mng_vlan_id;
+	if (adapter->vlgrp) {
+		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
+			if (hw->mng_cookie.status &
+				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
+				e1000_vlan_rx_add_vid(netdev, vid);
+				adapter->mng_vlan_id = vid;
+			} else
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+
+			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
+					(vid != old_vid) &&
+			    !vlan_group_get_device(adapter->vlgrp, old_vid))
+				e1000_vlan_rx_kill_vid(netdev, old_vid);
+		} else
+			adapter->mng_vlan_id = vid;
+	}
+}
+
+static void e1000_init_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+		ew32(MANC, manc);
+	}
+}
+
+static void e1000_release_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* re-enable hardware interception of ARP */
+		manc |= E1000_MANC_ARP_EN;
+
+		ew32(MANC, manc);
+	}
+}
+
+/**
+ * e1000_configure - configure the hardware for RX and TX
+ * @adapter = private board structure
+ **/
+static void e1000_configure(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int i;
+
+	e1000_set_rx_mode(netdev);
+
+	e1000_restore_vlan(adapter);
+	e1000_init_manageability(adapter);
+
+	e1000_configure_tx(adapter);
+	e1000_setup_rctl(adapter);
+	e1000_configure_rx(adapter);
+	/* call E1000_DESC_UNUSED which always leaves
+	 * at least 1 descriptor unused to make sure
+	 * next_to_use != next_to_clean */
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
+		if (adapter->ecdev) {
+			/* fill rx ring completely! */
+			adapter->alloc_rx_buf(adapter, ring, ring->count);
+		} else {
+			/* this one leaves the last ring element unallocated! */
+			adapter->alloc_rx_buf(adapter, ring,
+					E1000_DESC_UNUSED(ring));
+		}
+	}
+}
+
+int e1000_up(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* hardware has been reset, we need to reload some things */
+	e1000_configure(adapter);
+
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	if (!adapter->ecdev) {
+		napi_enable(&adapter->napi);
+
+		e1000_irq_enable(adapter);
+
+		netif_wake_queue(adapter->netdev);
+
+		/* fire a link change interrupt to start the watchdog */
+		ew32(ICS, E1000_ICS_LSC);
+	}
+	return 0;
+}
+
+/**
+ * e1000_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000_reset ***
+ *
+ **/
+
+void e1000_power_up_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 mii_reg = 0;
+
+	/* Just clear the power down bit to wake the phy back up */
+	if (hw->media_type == e1000_media_type_copper) {
+		/* according to the manual, the phy will retain its
+		 * settings across a power-down/up cycle */
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg &= ~MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+	}
+}
+
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Power down the PHY so no link is implied when interface is down *
+	 * The PHY cannot be powered down if any of the following is true *
+	 * (a) WoL is enabled
+	 * (b) AMT is active
+	 * (c) SoL/IDER session is active */
+	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
+	   hw->media_type == e1000_media_type_copper) {
+		u16 mii_reg = 0;
+
+		switch (hw->mac_type) {
+		case e1000_82540:
+		case e1000_82545:
+		case e1000_82545_rev_3:
+		case e1000_82546:
+		case e1000_82546_rev_3:
+		case e1000_82541:
+		case e1000_82541_rev_2:
+		case e1000_82547:
+		case e1000_82547_rev_2:
+			if (er32(MANC) & E1000_MANC_SMBUS_EN)
+				goto out;
+			break;
+		default:
+			goto out;
+		}
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg |= MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+		mdelay(1);
+	}
+out:
+	return;
+}
+
+void e1000_down(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl, tctl;
+
+	/* signal that we're down so the interrupt handler does not
+	 * reschedule our watchdog timer */
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	/* disable receives in the hardware */	
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+
+	if (!adapter->ecdev) {
+		/* flush and sleep below */
+		netif_tx_disable(netdev);
+	}
+
+	/* disable transmits in the hardware */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_EN;
+	ew32(TCTL, tctl);
+	/* flush both disables and wait for them to finish */
+	E1000_WRITE_FLUSH();
+	msleep(10);
+
+	if (!adapter->ecdev) {
+		napi_disable(&adapter->napi);
+
+		e1000_irq_disable(adapter);
+	}
+
+	if (!adapter->ecdev) {
+		del_timer_sync(&adapter->tx_fifo_stall_timer);
+		del_timer_sync(&adapter->watchdog_timer);
+		del_timer_sync(&adapter->phy_info_timer);
+	}
+
+	adapter->link_speed = 0;
+	adapter->link_duplex = 0;
+	if (!adapter->ecdev) {
+		netif_carrier_off(netdev);
+	}
+
+	e1000_reset(adapter);
+	e1000_clean_all_tx_rings(adapter);
+	e1000_clean_all_rx_rings(adapter);
+}
+
+void e1000_reinit_locked(struct e1000_adapter *adapter)
+{
+	WARN_ON(in_interrupt());
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	e1000_down(adapter);
+	e1000_up(adapter);
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+}
+
+void e1000_reset(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
+	bool legacy_pba_adjust = false;
+	u16 hwm;
+
+	/* Repartition Pba for greater than 9k mtu
+	 * To take effect CTRL.RST is required.
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_30K;
+		break;
+	case e1000_undefined:
+	case e1000_num_macs:
+		break;
+	}
+
+	if (legacy_pba_adjust) {
+		if (hw->max_frame_size > E1000_RXBUFFER_8192)
+			pba -= 8; /* allocate more FIFO for Tx */
+
+		if (hw->mac_type == e1000_82547) {
+			adapter->tx_fifo_head = 0;
+			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
+			adapter->tx_fifo_size =
+				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+		}
+	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
+		/* adjust PBA for jumbo frames */
+		ew32(PBA, pba);
+
+		/* To maintain wire speed transmits, the Tx FIFO should be
+		 * large enough to accommodate two full transmit packets,
+		 * rounded up to the next 1KB and expressed in KB.  Likewise,
+		 * the Rx FIFO should be large enough to accommodate at least
+		 * one full receive packet and is similarly rounded up and
+		 * expressed in KB. */
+		pba = er32(PBA);
+		/* upper 16 bits has Tx packet buffer allocation size in KB */
+		tx_space = pba >> 16;
+		/* lower 16 bits has Rx packet buffer allocation size in KB */
+		pba &= 0xffff;
+		/*
+		 * the tx fifo also stores 16 bytes of information about the tx
+		 * but don't include ethernet FCS because hardware appends it
+		 */
+		min_tx_space = (hw->max_frame_size +
+		                sizeof(struct e1000_tx_desc) -
+		                ETH_FCS_LEN) * 2;
+		min_tx_space = ALIGN(min_tx_space, 1024);
+		min_tx_space >>= 10;
+		/* software strips receive CRC, so leave room for it */
+		min_rx_space = hw->max_frame_size;
+		min_rx_space = ALIGN(min_rx_space, 1024);
+		min_rx_space >>= 10;
+
+		/* If current Tx allocation is less than the min Tx FIFO size,
+		 * and the min Tx FIFO size is less than the current Rx FIFO
+		 * allocation, take space away from current Rx allocation */
+		if (tx_space < min_tx_space &&
+		    ((min_tx_space - tx_space) < pba)) {
+			pba = pba - (min_tx_space - tx_space);
+
+			/* PCI/PCIx hardware has PBA alignment constraints */
+			switch (hw->mac_type) {
+			case e1000_82545 ... e1000_82546_rev_3:
+				pba &= ~(E1000_PBA_8K - 1);
+				break;
+			default:
+				break;
+			}
+
+			/* if short on rx space, rx wins and must trump tx
+			 * adjustment or use Early Receive if available */
+			if (pba < min_rx_space)
+				pba = min_rx_space;
+		}
+	}
+
+	ew32(PBA, pba);
+
+	/*
+	 * flow control settings:
+	 * The high water mark must be low enough to fit one full frame
+	 * (or the size used for early receive) above it in the Rx FIFO.
+	 * Set it to the lower of:
+	 * - 90% of the Rx FIFO size, and
+	 * - the full Rx FIFO size minus the early receive size (for parts
+	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
+	 * - the full Rx FIFO size minus one full frame
+	 */
+	hwm = min(((pba << 10) * 9 / 10),
+		  ((pba << 10) - hw->max_frame_size));
+
+	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
+	hw->fc_low_water = hw->fc_high_water - 8;
+	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
+	hw->fc_send_xon = 1;
+	hw->fc = hw->original_fc;
+
+	/* Allow time for pending master requests to run */
+	e1000_reset_hw(hw);
+	if (hw->mac_type >= e1000_82544)
+		ew32(WUC, 0);
+
+	if (e1000_init_hw(hw))
+		e_err("Hardware Error\n");
+	e1000_update_mng_vlan(adapter);
+
+	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
+	if (hw->mac_type >= e1000_82544 &&
+	    hw->autoneg == 1 &&
+	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+		u32 ctrl = er32(CTRL);
+		/* clear phy power management bit if we are in gig only mode,
+		 * which if enabled will attempt negotiation to 100Mb, which
+		 * can cause a loss of link at power off or driver unload */
+		ctrl &= ~E1000_CTRL_SWDPIN3;
+		ew32(CTRL, ctrl);
+	}
+
+	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
+
+	e1000_reset_adaptive(hw);
+	e1000_phy_get_info(hw, &adapter->phy_info);
+
+	e1000_release_manageability(adapter);
+}
+
+/**
+ *  Dump the eeprom for users having checksum issues
+ **/
+static void e1000_dump_eeprom(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct ethtool_eeprom eeprom;
+	const struct ethtool_ops *ops = netdev->ethtool_ops;
+	u8 *data;
+	int i;
+	u16 csum_old, csum_new = 0;
+
+	eeprom.len = ops->get_eeprom_len(netdev);
+	eeprom.offset = 0;
+
+	data = kmalloc(eeprom.len, GFP_KERNEL);
+	if (!data) {
+		pr_err("Unable to allocate memory to dump EEPROM data\n");
+		return;
+	}
+
+	ops->get_eeprom(netdev, &eeprom, data);
+
+	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
+		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
+	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
+		csum_new += data[i] + (data[i + 1] << 8);
+	csum_new = EEPROM_SUM - csum_new;
+
+	pr_err("/*********************/\n");
+	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
+	pr_err("Calculated              : 0x%04x\n", csum_new);
+
+	pr_err("Offset    Values\n");
+	pr_err("========  ======\n");
+	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
+
+	pr_err("Include this output when contacting your support provider.\n");
+	pr_err("This is not a software error! Something bad happened to\n");
+	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
+	pr_err("result in further problems, possibly loss of data,\n");
+	pr_err("corruption or system hangs!\n");
+	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
+	pr_err("which is invalid and requires you to set the proper MAC\n");
+	pr_err("address manually before continuing to enable this network\n");
+	pr_err("device. Please inspect the EEPROM dump and report the\n");
+	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
+	pr_err("/*********************/\n");
+
+	kfree(data);
+}
+
+/**
+ * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
+ * @pdev: PCI device information struct
+ *
+ * Return true if an adapter needs ioport resources
+ **/
+static int e1000_is_need_ioport(struct pci_dev *pdev)
+{
+	switch (pdev->device) {
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541ER_LOM:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		return true;
+	default:
+		return false;
+	}
+}
+
+static const struct net_device_ops e1000_netdev_ops = {
+	.ndo_open		= e1000_open,
+	.ndo_stop		= e1000_close,
+	.ndo_start_xmit		= e1000_xmit_frame,
+	.ndo_get_stats		= e1000_get_stats,
+	.ndo_set_rx_mode	= e1000_set_rx_mode,
+	.ndo_set_mac_address	= e1000_set_mac,
+	.ndo_tx_timeout 	= e1000_tx_timeout,
+	.ndo_change_mtu		= e1000_change_mtu,
+	.ndo_do_ioctl		= e1000_ioctl,
+	.ndo_validate_addr	= eth_validate_addr,
+
+	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
+	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
+	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e1000_netpoll,
+#endif
+};
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+static int __devinit e1000_probe(struct pci_dev *pdev,
+				 const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct e1000_adapter *adapter;
+	struct e1000_hw *hw;
+
+	static int cards_found = 0;
+	static int global_quad_port_a = 0; /* global ksp3 port a indication */
+	int i, err, pci_using_dac;
+	u16 eeprom_data = 0;
+	u16 eeprom_apme_mask = E1000_EEPROM_APME;
+	int bars, need_ioport;
+
+	/* do not allocate ioport bars when not needed */
+	need_ioport = e1000_is_need_ioport(pdev);
+	if (need_ioport) {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
+		err = pci_enable_device(pdev);
+	} else {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM);
+		err = pci_enable_device_mem(pdev);
+	}
+	if (err)
+		return err;
+
+	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
+	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
+		pci_using_dac = 1;
+	} else {
+		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
+		if (err) {
+			err = dma_set_coherent_mask(&pdev->dev,
+						    DMA_BIT_MASK(32));
+			if (err) {
+				pr_err("No usable DMA config, aborting\n");
+				goto err_dma;
+			}
+		}
+		pci_using_dac = 0;
+	}
+
+	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
+	if (err)
+		goto err_pci_reg;
+
+	pci_set_master(pdev);
+	err = pci_save_state(pdev);
+	if (err)
+		goto err_alloc_etherdev;
+
+	err = -ENOMEM;
+	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+	if (!netdev)
+		goto err_alloc_etherdev;
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	pci_set_drvdata(pdev, netdev);
+	adapter = netdev_priv(netdev);
+	adapter->netdev = netdev;
+	adapter->pdev = pdev;
+	adapter->msg_enable = (1 << debug) - 1;
+	adapter->bars = bars;
+	adapter->need_ioport = need_ioport;
+
+	hw = &adapter->hw;
+	hw->back = adapter;
+
+	err = -EIO;
+	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
+	if (!hw->hw_addr)
+		goto err_ioremap;
+
+	if (adapter->need_ioport) {
+		for (i = BAR_1; i <= BAR_5; i++) {
+			if (pci_resource_len(pdev, i) == 0)
+				continue;
+			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
+				hw->io_base = pci_resource_start(pdev, i);
+				break;
+			}
+		}
+	}
+
+	netdev->netdev_ops = &e1000_netdev_ops;
+	e1000_set_ethtool_ops(netdev);
+	netdev->watchdog_timeo = 5 * HZ;
+	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
+
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	adapter->bd_number = cards_found;
+
+	/* setup the private structure */
+
+	err = e1000_sw_init(adapter);
+	if (err)
+		goto err_sw_init;
+
+	err = -EIO;
+
+	if (hw->mac_type >= e1000_82543) {
+		netdev->features = NETIF_F_SG |
+				   NETIF_F_HW_CSUM |
+				   NETIF_F_HW_VLAN_TX |
+				   NETIF_F_HW_VLAN_RX |
+				   NETIF_F_HW_VLAN_FILTER;
+	}
+
+	if ((hw->mac_type >= e1000_82544) &&
+	   (hw->mac_type != e1000_82547))
+		netdev->features |= NETIF_F_TSO;
+
+	if (pci_using_dac)
+		netdev->features |= NETIF_F_HIGHDMA;
+
+	netdev->vlan_features |= NETIF_F_TSO;
+	netdev->vlan_features |= NETIF_F_HW_CSUM;
+	netdev->vlan_features |= NETIF_F_SG;
+
+	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
+
+	/* initialize eeprom parameters */
+	if (e1000_init_eeprom_params(hw)) {
+		e_err("EEPROM initialization failed\n");
+		goto err_eeprom;
+	}
+
+	/* before reading the EEPROM, reset the controller to
+	 * put the device in a known good starting state */
+
+	e1000_reset_hw(hw);
+
+	/* make sure the EEPROM is good */
+	if (e1000_validate_eeprom_checksum(hw) < 0) {
+		e_err("The EEPROM Checksum Is Not Valid\n");
+		e1000_dump_eeprom(adapter);
+		/*
+		 * set MAC address to all zeroes to invalidate and temporary
+		 * disable this device for the user. This blocks regular
+		 * traffic while still permitting ethtool ioctls from reaching
+		 * the hardware as well as allowing the user to run the
+		 * interface after manually setting a hw addr using
+		 * `ip set address`
+		 */
+		memset(hw->mac_addr, 0, netdev->addr_len);
+	} else {
+		/* copy the MAC address out of the EEPROM */
+		if (e1000_read_mac_addr(hw))
+			e_err("EEPROM Read Error\n");
+	}
+	/* don't block initalization here due to bad MAC address */
+	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
+	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
+
+	if (!is_valid_ether_addr(netdev->perm_addr))
+		e_err("Invalid MAC Address\n");
+
+	e1000_get_bus_info(hw);
+
+	init_timer(&adapter->tx_fifo_stall_timer);
+	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
+	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
+
+	init_timer(&adapter->watchdog_timer);
+	adapter->watchdog_timer.function = &e1000_watchdog;
+	adapter->watchdog_timer.data = (unsigned long) adapter;
+
+	init_timer(&adapter->phy_info_timer);
+	adapter->phy_info_timer.function = &e1000_update_phy_info;
+	adapter->phy_info_timer.data = (unsigned long)adapter;
+
+	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+
+	e1000_check_options(adapter);
+
+	/* Initial Wake on LAN setting
+	 * If APM wake is enabled in the EEPROM,
+	 * enable the ACPI Magic Packet filter
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		break;
+	case e1000_82544:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+		eeprom_apme_mask = E1000_EEPROM_82544_APM;
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1){
+			e1000_read_eeprom(hw,
+				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+			break;
+		}
+		/* Fall Through */
+	default:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+		break;
+	}
+	if (eeprom_data & eeprom_apme_mask)
+		adapter->eeprom_wol |= E1000_WUFC_MAG;
+
+	/* now that we have the eeprom settings, apply the special cases
+	 * where the eeprom may be wrong or the board simply won't support
+	 * wake on lan on a particular port */
+	switch (pdev->device) {
+	case E1000_DEV_ID_82546GB_PCIE:
+		adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events only supported on port A for dual fiber
+		 * regardless of eeprom setting */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* if quad port adapter, disable WoL on all but port A */
+		if (global_quad_port_a != 0)
+			adapter->eeprom_wol = 0;
+		else
+			adapter->quad_port_a = 1;
+		/* Reset for multiple quad port adapters */
+		if (++global_quad_port_a == 4)
+			global_quad_port_a = 0;
+		break;
+	}
+
+	/* initialize the wol settings based on the eeprom settings */
+	adapter->wol = adapter->eeprom_wol;
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	/* reset the hardware with the new settings */
+	e1000_reset(adapter);
+
+	// offer device to EtherCAT master module
+	adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE);
+	if (adapter->ecdev) {
+		if (ecdev_open(adapter->ecdev)) {
+			ecdev_withdraw(adapter->ecdev);
+			goto err_register;
+		}
+	} else {
+		strcpy(netdev->name, "eth%d");
+		err = register_netdev(netdev);
+		if (err)
+			goto err_register;
+	}
+
+	/* print bus type/speed/width info */
+	e_info("(PCI%s:%dMHz:%d-bit) %pM\n",
+	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
+	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
+		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
+		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
+		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
+	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
+	       netdev->dev_addr);
+
+	if (!adapter->ecdev) {
+		/* carrier off reporting is important to ethtool even BEFORE open */
+		netif_carrier_off(netdev);
+	}
+
+	e_info("Intel(R) PRO/1000 Network Connection\n");
+
+	cards_found++;
+	return 0;
+
+err_register:
+err_eeprom:
+	e1000_phy_hw_reset(hw);
+
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+err_sw_init:
+	iounmap(hw->hw_addr);
+err_ioremap:
+	free_netdev(netdev);
+err_alloc_etherdev:
+	pci_release_selected_regions(pdev, bars);
+err_pci_reg:
+err_dma:
+	pci_disable_device(pdev);
+	return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device.  The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+
+static void __devexit e1000_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	if (!adapter->ecdev) {
+		del_timer_sync(&adapter->tx_fifo_stall_timer);
+		del_timer_sync(&adapter->watchdog_timer);
+		del_timer_sync(&adapter->phy_info_timer);
+	}
+
+	cancel_work_sync(&adapter->reset_task);
+
+	e1000_release_manageability(adapter);
+
+	if (adapter->ecdev) {
+		ecdev_close(adapter->ecdev);
+		ecdev_withdraw(adapter->ecdev);
+	} else {
+		unregister_netdev(netdev);
+	}
+
+	e1000_phy_hw_reset(hw);
+
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+
+	iounmap(hw->hw_addr);
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	pci_release_selected_regions(pdev, adapter->bars);
+
+	free_netdev(netdev);
+
+	pci_disable_device(pdev);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+
+	/* PCI config space info */
+
+	hw->vendor_id = pdev->vendor;
+	hw->device_id = pdev->device;
+	hw->subsystem_vendor_id = pdev->subsystem_vendor;
+	hw->subsystem_id = pdev->subsystem_device;
+	hw->revision_id = pdev->revision;
+
+	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+	hw->max_frame_size = netdev->mtu +
+			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
+
+	/* identify the MAC */
+
+	if (e1000_set_mac_type(hw)) {
+		e_err("Unknown MAC Type\n");
+		return -EIO;
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->phy_init_script = 1;
+		break;
+	}
+
+	e1000_set_media_type(hw);
+
+	hw->wait_autoneg_complete = false;
+	hw->tbi_compatibility_en = true;
+	hw->adaptive_ifs = true;
+
+	/* Copper options */
+
+	if (hw->media_type == e1000_media_type_copper) {
+		hw->mdix = AUTO_ALL_MODES;
+		hw->disable_polarity_correction = false;
+		hw->master_slave = E1000_MASTER_SLAVE;
+	}
+
+	adapter->num_tx_queues = 1;
+	adapter->num_rx_queues = 1;
+
+	if (e1000_alloc_queues(adapter)) {
+		e_err("Unable to allocate memory for queues\n");
+		return -ENOMEM;
+	}
+
+	/* Explicitly disable IRQ since the NIC can be in any state. */
+	e1000_irq_disable(adapter);
+
+	spin_lock_init(&adapter->stats_lock);
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_alloc_queues - Allocate memory for all rings
+ * @adapter: board private structure to initialize
+ *
+ * We allocate one ring per queue at run-time since we don't know the
+ * number of queues at compile-time.
+ **/
+
+static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
+{
+	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
+	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!adapter->tx_ring)
+		return -ENOMEM;
+
+	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
+	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!adapter->rx_ring) {
+		kfree(adapter->tx_ring);
+		return -ENOMEM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP).  At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+
+static int e1000_open(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	/* disallow open during test */
+	if (test_bit(__E1000_TESTING, &adapter->flags))
+		return -EBUSY;
+
+	netif_carrier_off(netdev);
+
+	/* allocate transmit descriptors */
+	err = e1000_setup_all_tx_resources(adapter);
+	if (err)
+		goto err_setup_tx;
+
+	/* allocate receive descriptors */
+	err = e1000_setup_all_rx_resources(adapter);
+	if (err)
+		goto err_setup_rx;
+
+	e1000_power_up_phy(adapter);
+
+	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
+		e1000_update_mng_vlan(adapter);
+	}
+
+	/* before we allocate an interrupt, we must be ready to handle it.
+	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
+	 * as soon as we call pci_request_irq, so we have to setup our
+	 * clean_rx handler before we do so.  */
+	e1000_configure(adapter);
+
+	err = e1000_request_irq(adapter);
+	if (err)
+		goto err_req_irq;
+
+	/* From here on the code is the same as e1000_up() */
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_start_queue(netdev);
+
+	/* fire a link status change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+
+	return E1000_SUCCESS;
+
+err_req_irq:
+	e1000_power_down_phy(adapter);
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	e1000_free_all_tx_resources(adapter);
+err_setup_tx:
+	e1000_reset(adapter);
+
+	return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS.  The hardware is still under the drivers control, but
+ * needs to be disabled.  A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+
+static int e1000_close(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+	e1000_down(adapter);
+	e1000_power_down_phy(adapter);
+	e1000_free_irq(adapter);
+
+	e1000_free_all_tx_resources(adapter);
+	e1000_free_all_rx_resources(adapter);
+
+	/* kill manageability vlan ID if supported, but not if a vlan with
+	 * the same ID is registered on the host OS (let 8021q kill it) */
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	     !(adapter->vlgrp &&
+	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
+		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+	}
+
+	return 0;
+}
+
+/**
+ * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
+ * @adapter: address of board private structure
+ * @start: address of beginning of memory
+ * @len: length of memory
+ **/
+static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
+				  unsigned long len)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	unsigned long begin = (unsigned long)start;
+	unsigned long end = begin + len;
+
+	/* First rev 82545 and 82546 need to not allow any memory
+	 * write location to cross 64k boundary due to errata 23 */
+	if (hw->mac_type == e1000_82545 ||
+	    hw->mac_type == e1000_82546) {
+		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
+	}
+
+	return true;
+}
+
+/**
+ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ * @txdr:    tx descriptor ring (for a specific queue) to setup
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *txdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size;
+
+	size = sizeof(struct e1000_buffer) * txdr->count;
+	txdr->buffer_info = vmalloc(size);
+	if (!txdr->buffer_info) {
+		e_err("Unable to allocate memory for the Tx descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(txdr->buffer_info, 0, size);
+
+	/* round up to nearest 4K */
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+
+	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
+					GFP_KERNEL);
+	if (!txdr->desc) {
+setup_tx_desc_die:
+		vfree(txdr->buffer_info);
+		e_err("Unable to allocate memory for the Tx descriptor ring\n");
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+		void *olddesc = txdr->desc;
+		dma_addr_t olddma = txdr->dma;
+		e_err("txdr align check failed: %u bytes at %p\n",
+		      txdr->size, txdr->desc);
+		/* Try again, without freeing the previous */
+		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
+						&txdr->dma, GFP_KERNEL);
+		/* Failed allocation, critical failure */
+		if (!txdr->desc) {
+			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
+					  olddma);
+			goto setup_tx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+			/* give up */
+			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
+					  txdr->dma);
+			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
+					  olddma);
+			e_err("Unable to allocate aligned memory "
+			      "for the transmit descriptor ring\n");
+			vfree(txdr->buffer_info);
+			return -ENOMEM;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
+					  olddma);
+		}
+	}
+	memset(txdr->desc, 0, txdr->size);
+
+	txdr->next_to_use = 0;
+	txdr->next_to_clean = 0;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_tx_queues; i++) {
+		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
+		if (err) {
+			e_err("Allocation for Tx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_tx_resources(adapter,
+							&adapter->tx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_tx(struct e1000_adapter *adapter)
+{
+	u64 tdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tdlen, tctl, tipg;
+	u32 ipgr1, ipgr2;
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+
+	switch (adapter->num_tx_queues) {
+	case 1:
+	default:
+		tdba = adapter->tx_ring[0].dma;
+		tdlen = adapter->tx_ring[0].count *
+			sizeof(struct e1000_tx_desc);
+		ew32(TDLEN, tdlen);
+		ew32(TDBAH, (tdba >> 32));
+		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
+		ew32(TDT, 0);
+		ew32(TDH, 0);
+		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
+		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
+		break;
+	}
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	if ((hw->media_type == e1000_media_type_fiber ||
+	     hw->media_type == e1000_media_type_internal_serdes))
+		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+	else
+		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		tipg = DEFAULT_82542_TIPG_IPGT;
+		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+		break;
+	default:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+		break;
+	}
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	ew32(TIPG, tipg);
+
+	/* Set the Tx Interrupt Delay register */
+
+	ew32(TIDV, adapter->tx_int_delay);
+	if (hw->mac_type >= e1000_82540)
+		ew32(TADV, adapter->tx_abs_int_delay);
+
+	/* Program the Transmit Control Register */
+
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
+		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	e1000_config_collision_dist(hw);
+
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* only set IDE if we are delaying interrupts using the timers */
+	if (adapter->tx_int_delay)
+		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+	if (hw->mac_type < e1000_82543)
+		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
+	else
+		adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+	/* Cache if we're 82544 running in PCI-X because we'll
+	 * need this to apply a workaround later in the send path. */
+	if (hw->mac_type == e1000_82544 &&
+	    hw->bus_type == e1000_bus_type_pcix)
+		adapter->pcix_82544 = 1;
+
+	ew32(TCTL, tctl);
+
+}
+
+/**
+ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ * @rxdr:    rx descriptor ring (for a specific queue) to setup
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rxdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size, desc_len;
+
+	size = sizeof(struct e1000_buffer) * rxdr->count;
+	rxdr->buffer_info = vmalloc(size);
+	if (!rxdr->buffer_info) {
+		e_err("Unable to allocate memory for the Rx descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(rxdr->buffer_info, 0, size);
+
+	desc_len = sizeof(struct e1000_rx_desc);
+
+	/* Round up to nearest 4K */
+
+	rxdr->size = rxdr->count * desc_len;
+	rxdr->size = ALIGN(rxdr->size, 4096);
+
+	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
+					GFP_KERNEL);
+
+	if (!rxdr->desc) {
+		e_err("Unable to allocate memory for the Rx descriptor ring\n");
+setup_rx_desc_die:
+		vfree(rxdr->buffer_info);
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+		void *olddesc = rxdr->desc;
+		dma_addr_t olddma = rxdr->dma;
+		e_err("rxdr align check failed: %u bytes at %p\n",
+		      rxdr->size, rxdr->desc);
+		/* Try again, without freeing the previous */
+		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
+						&rxdr->dma, GFP_KERNEL);
+		/* Failed allocation, critical failure */
+		if (!rxdr->desc) {
+			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
+					  olddma);
+			e_err("Unable to allocate memory for the Rx descriptor "
+			      "ring\n");
+			goto setup_rx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+			/* give up */
+			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
+					  rxdr->dma);
+			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
+					  olddma);
+			e_err("Unable to allocate aligned memory for the Rx "
+			      "descriptor ring\n");
+			goto setup_rx_desc_die;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
+					  olddma);
+		}
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+
+	rxdr->next_to_clean = 0;
+	rxdr->next_to_use = 0;
+	rxdr->rx_skb_top = NULL;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
+		if (err) {
+			e_err("Allocation for Rx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_rx_resources(adapter,
+							&adapter->rx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control registers
+ * @adapter: Board private structure
+ **/
+static void e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	if (hw->tbi_compatibility_on == 1)
+		rctl |= E1000_RCTL_SBP;
+	else
+		rctl &= ~E1000_RCTL_SBP;
+
+	if (adapter->netdev->mtu <= ETH_DATA_LEN)
+		rctl &= ~E1000_RCTL_LPE;
+	else
+		rctl |= E1000_RCTL_LPE;
+
+	/* Setup buffer sizes */
+	rctl &= ~E1000_RCTL_SZ_4096;
+	rctl |= E1000_RCTL_BSEX;
+	switch (adapter->rx_buffer_len) {
+		case E1000_RXBUFFER_2048:
+		default:
+			rctl |= E1000_RCTL_SZ_2048;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_4096:
+			rctl |= E1000_RCTL_SZ_4096;
+			break;
+		case E1000_RXBUFFER_8192:
+			rctl |= E1000_RCTL_SZ_8192;
+			break;
+		case E1000_RXBUFFER_16384:
+			rctl |= E1000_RCTL_SZ_16384;
+			break;
+	}
+
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_rx(struct e1000_adapter *adapter)
+{
+	u64 rdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rdlen, rctl, rxcsum;
+
+	if (adapter->netdev->mtu > ETH_DATA_LEN) {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
+	} else {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+	}
+
+	/* disable receives while setting up the descriptors */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+
+	/* set the Receive Delay Timer Register */
+	ew32(RDTR, adapter->rx_int_delay);
+
+	if (hw->mac_type >= e1000_82540) {
+		ew32(RADV, adapter->rx_abs_int_delay);
+		if (adapter->itr_setting != 0)
+			ew32(ITR, 1000000000 / (adapter->itr * 256));
+	}
+
+	/* Setup the HW Rx Head and Tail Descriptor Pointers and
+	 * the Base and Length of the Rx Descriptor Ring */
+	switch (adapter->num_rx_queues) {
+	case 1:
+	default:
+		rdba = adapter->rx_ring[0].dma;
+		ew32(RDLEN, rdlen);
+		ew32(RDBAH, (rdba >> 32));
+		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
+		ew32(RDT, 0);
+		ew32(RDH, 0);
+		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
+		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
+		break;
+	}
+
+	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
+	if (hw->mac_type >= e1000_82543) {
+		rxcsum = er32(RXCSUM);
+		if (adapter->rx_csum)
+			rxcsum |= E1000_RXCSUM_TUOFL;
+		else
+			/* don't need to clear IPPCSE as it defaults to 0 */
+			rxcsum &= ~E1000_RXCSUM_TUOFL;
+		ew32(RXCSUM, rxcsum);
+	}
+
+	/* Enable Receives */
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_free_tx_resources - Free Tx Resources per Queue
+ * @adapter: board private structure
+ * @tx_ring: Tx descriptor ring for a specific queue
+ *
+ * Free all transmit software resources
+ **/
+
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *tx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_tx_ring(adapter, tx_ring);
+
+	vfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
+			  tx_ring->dma);
+
+	tx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_tx_resources - Free Tx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
+}
+
+static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
+					     struct e1000_buffer *buffer_info)
+{
+	if (adapter->ecdev)
+		return;
+
+	if (buffer_info->dma) {
+		if (buffer_info->mapped_as_page)
+			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
+				       buffer_info->length, DMA_TO_DEVICE);
+		else
+			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
+					 buffer_info->length,
+					 DMA_TO_DEVICE);
+		buffer_info->dma = 0;
+	}
+	if (buffer_info->skb) {
+		dev_kfree_skb_any(buffer_info->skb);
+		buffer_info->skb = NULL;
+	}
+	buffer_info->time_stamp = 0;
+	/* buffer_info must be completely set up in the transmit path */
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ * @tx_ring: ring to be cleaned
+ **/
+
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+				struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Tx ring sk_buffs */
+
+	for (i = 0; i < tx_ring->count; i++) {
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+	}
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	memset(tx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+
+	memset(tx_ring->desc, 0, tx_ring->size);
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+	tx_ring->last_tx_tso = 0;
+
+	writel(0, hw->hw_addr + tx_ring->tdh);
+	writel(0, hw->hw_addr + tx_ring->tdt);
+}
+
+/**
+ * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
+}
+
+/**
+ * e1000_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ * @rx_ring: ring to clean the resources from
+ *
+ * Free all receive software resources
+ **/
+
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_rx_ring(adapter, rx_ring);
+
+	vfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
+			  rx_ring->dma);
+
+	rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_rx_resources - Free Rx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers per Queue
+ * @adapter: board private structure
+ * @rx_ring: ring to free buffers from
+ **/
+
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+				struct e1000_rx_ring *rx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Rx ring sk_buffs */
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		if (buffer_info->dma &&
+		    adapter->clean_rx == e1000_clean_rx_irq) {
+			dma_unmap_single(&pdev->dev, buffer_info->dma,
+			                 buffer_info->length,
+					 DMA_FROM_DEVICE);
+		} else if (buffer_info->dma &&
+		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
+			dma_unmap_page(&pdev->dev, buffer_info->dma,
+				       buffer_info->length,
+				       DMA_FROM_DEVICE);
+		}
+
+		buffer_info->dma = 0;
+		if (buffer_info->page) {
+			put_page(buffer_info->page);
+			buffer_info->page = NULL;
+		}
+		if (buffer_info->skb) {
+			dev_kfree_skb(buffer_info->skb);
+			buffer_info->skb = NULL;
+		}
+	}
+
+	/* there also may be some cached data from a chained receive */
+	if (rx_ring->rx_skb_top) {
+		dev_kfree_skb(rx_ring->rx_skb_top);
+		rx_ring->rx_skb_top = NULL;
+	}
+
+	size = sizeof(struct e1000_buffer) * rx_ring->count;
+	memset(rx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+	memset(rx_ring->desc, 0, rx_ring->size);
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+
+	writel(0, hw->hw_addr + rx_ring->rdh);
+	writel(0, hw->hw_addr + rx_ring->rdt);
+}
+
+/**
+ * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
+}
+
+/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
+ * and memory write and invalidate disabled for certain operations
+ */
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	e1000_pci_clear_mwi(hw);
+
+	rctl = er32(RCTL);
+	rctl |= E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (!adapter->ecdev && netif_running(netdev))
+		e1000_clean_all_rx_rings(adapter);
+}
+
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+	rctl &= ~E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+		e1000_pci_set_mwi(hw);
+
+	if (!adapter->netdev && netif_running(netdev)) {
+		/* No need to loop, because 82542 supports only 1 queue */
+		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
+		e1000_configure_rx(adapter);
+		if (adapter->ecdev) { 
+			/* fill rx ring completely! */
+			adapter->alloc_rx_buf(adapter, ring, ring->count);
+		} else {
+			/* this one leaves the last ring element unallocated! */
+			adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
+		}
+
+	}
+}
+
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_set_mac(struct net_device *netdev, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	return 0;
+}
+
+/**
+ * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_rx_mode entry point is called whenever the unicast or multicast
+ * address lists or the network interface flags are updated. This routine is
+ * responsible for configuring the hardware for proper unicast, multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+
+static void e1000_set_rx_mode(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct netdev_hw_addr *ha;
+	bool use_uc = false;
+	u32 rctl;
+	u32 hash_value;
+	int i, rar_entries = E1000_RAR_ENTRIES;
+	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
+	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
+
+	if (!mcarray) {
+		e_err("memory allocation failed\n");
+		return;
+	}
+
+	/* Check for Promiscuous and All Multicast modes */
+
+	rctl = er32(RCTL);
+
+	if (netdev->flags & IFF_PROMISC) {
+		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		rctl &= ~E1000_RCTL_VFE;
+	} else {
+		if (netdev->flags & IFF_ALLMULTI)
+			rctl |= E1000_RCTL_MPE;
+		else
+			rctl &= ~E1000_RCTL_MPE;
+		/* Enable VLAN filter if there is a VLAN */
+		if (adapter->vlgrp)
+			rctl |= E1000_RCTL_VFE;
+	}
+
+	if (netdev_uc_count(netdev) > rar_entries - 1) {
+		rctl |= E1000_RCTL_UPE;
+	} else if (!(netdev->flags & IFF_PROMISC)) {
+		rctl &= ~E1000_RCTL_UPE;
+		use_uc = true;
+	}
+
+	ew32(RCTL, rctl);
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	/* load the first 14 addresses into the exact filters 1-14. Unicast
+	 * addresses take precedence to avoid disabling unicast filtering
+	 * when possible.
+	 *
+	 * RAR 0 is used for the station MAC adddress
+	 * if there are not 14 addresses, go ahead and clear the filters
+	 */
+	i = 1;
+	if (use_uc)
+		netdev_for_each_uc_addr(ha, netdev) {
+			if (i == rar_entries)
+				break;
+			e1000_rar_set(hw, ha->addr, i++);
+		}
+
+	netdev_for_each_mc_addr(ha, netdev) {
+		if (i == rar_entries) {
+			/* load any remaining addresses into the hash table */
+			u32 hash_reg, hash_bit, mta;
+			hash_value = e1000_hash_mc_addr(hw, ha->addr);
+			hash_reg = (hash_value >> 5) & 0x7F;
+			hash_bit = hash_value & 0x1F;
+			mta = (1 << hash_bit);
+			mcarray[hash_reg] |= mta;
+		} else {
+			e1000_rar_set(hw, ha->addr, i++);
+		}
+	}
+
+	for (; i < rar_entries; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
+		E1000_WRITE_FLUSH();
+	}
+
+	/* write the hash table completely, write from bottom to avoid
+	 * both stupid write combining chipsets, and flushing each write */
+	for (i = mta_reg_count - 1; i >= 0 ; i--) {
+		/*
+		 * If we are on an 82544 has an errata where writing odd
+		 * offsets overwrites the previous even offset, but writing
+		 * backwards over the range solves the issue by always
+		 * writing the odd offset first
+		 */
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
+	}
+	E1000_WRITE_FLUSH();
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	kfree(mcarray);
+}
+
+/* Need to wait a few seconds after link up to get diagnostic information from
+ * the phy */
+
+static void e1000_update_phy_info(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_phy_get_info(hw, &adapter->phy_info);
+}
+
+/**
+ * e1000_82547_tx_fifo_stall - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+
+static void e1000_82547_tx_fifo_stall(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 tctl;
+
+	if (atomic_read(&adapter->tx_fifo_stall)) {
+		if ((er32(TDT) == er32(TDH)) &&
+		   (er32(TDFT) == er32(TDFH)) &&
+		   (er32(TDFTS) == er32(TDFHS))) {
+			tctl = er32(TCTL);
+			ew32(TCTL, tctl & ~E1000_TCTL_EN);
+			ew32(TDFT, adapter->tx_head_addr);
+			ew32(TDFH, adapter->tx_head_addr);
+			ew32(TDFTS, adapter->tx_head_addr);
+			ew32(TDFHS, adapter->tx_head_addr);
+			ew32(TCTL, tctl);
+			E1000_WRITE_FLUSH();
+
+			adapter->tx_fifo_head = 0;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+			if (!adapter->ecdev)
+				netif_wake_queue(netdev);
+		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
+			if (!adapter->ecdev) 
+				mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+		}
+	}
+}
+
+bool e1000_has_link(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	bool link_active = false;
+
+	/* get_link_status is set on LSC (link status) interrupt or
+	 * rx sequence error interrupt.  get_link_status will stay
+	 * false until the e1000_check_for_link establishes link
+	 * for copper adapters ONLY
+	 */
+	switch (hw->media_type) {
+	case e1000_media_type_copper:
+		if (hw->get_link_status) {
+			e1000_check_for_link(hw);
+			link_active = !hw->get_link_status;
+		} else {
+			link_active = true;
+		}
+		break;
+	case e1000_media_type_fiber:
+		e1000_check_for_link(hw);
+		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
+		break;
+	case e1000_media_type_internal_serdes:
+		e1000_check_for_link(hw);
+		link_active = hw->serdes_has_link;
+		break;
+	default:
+		break;
+	}
+
+	return link_active;
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void e1000_watchdog(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	u32 link, tctl;
+
+	link = e1000_has_link(adapter);
+	if (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)
+		goto link_up;
+
+	if (link) {
+		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
+				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
+			u32 ctrl;
+			bool txb2b __attribute__ ((unused)) = true;
+			/* update snapshot of PHY registers on LSC */
+			e1000_get_speed_and_duplex(hw,
+			                           &adapter->link_speed,
+			                           &adapter->link_duplex);
+
+			ctrl = er32(CTRL);
+			pr_info("%s NIC Link is Up %d Mbps %s, "
+				"Flow Control: %s\n",
+				netdev->name,
+				adapter->link_speed,
+				adapter->link_duplex == FULL_DUPLEX ?
+				"Full Duplex" : "Half Duplex",
+				((ctrl & E1000_CTRL_TFCE) && (ctrl &
+				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
+				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
+				E1000_CTRL_TFCE) ? "TX" : "None")));
+
+			/* adjust timeout factor according to speed/duplex */
+			adapter->tx_timeout_factor = 1;
+			switch (adapter->link_speed) {
+			case SPEED_10:
+				txb2b = false;
+				adapter->tx_timeout_factor = 16;
+				break;
+			case SPEED_100:
+				txb2b = false;
+				/* maybe add some timeout factor ? */
+				break;
+			}
+
+			/* enable transmits in the hardware */
+			tctl = er32(TCTL);
+			tctl |= E1000_TCTL_EN;
+			ew32(TCTL, tctl);
+
+			if (adapter->ecdev) {
+				ecdev_set_link(adapter->ecdev, 1);
+			} else {
+				netif_carrier_on(netdev);
+				if (!test_bit(__E1000_DOWN, &adapter->flags))
+					mod_timer(&adapter->phy_info_timer,
+							round_jiffies(jiffies + 2 * HZ));
+			}
+			adapter->smartspeed = 0;
+		}
+	} else {
+		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
+				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
+			adapter->link_speed = 0;
+			adapter->link_duplex = 0;
+			pr_info("%s NIC Link is Down\n",
+				netdev->name);
+			if (adapter->ecdev) {
+				ecdev_set_link(adapter->ecdev, 0);
+			} else {
+				netif_carrier_off(netdev);
+
+				if (!test_bit(__E1000_DOWN, &adapter->flags))
+					mod_timer(&adapter->phy_info_timer,
+							round_jiffies(jiffies + 2 * HZ));
+			}
+		}
+
+		e1000_smartspeed(adapter);
+	}
+
+link_up:
+	e1000_update_stats(adapter);
+
+	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+	adapter->tpt_old = adapter->stats.tpt;
+	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
+	adapter->colc_old = adapter->stats.colc;
+
+	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
+	adapter->gorcl_old = adapter->stats.gorcl;
+	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
+	adapter->gotcl_old = adapter->stats.gotcl;
+
+	e1000_update_adaptive(hw);
+
+	if (!adapter->ecdev && !netif_carrier_ok(netdev)) {
+		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
+			/* We've lost link, so the controller stops DMA,
+			 * but we've got queued Tx work that's never going
+			 * to get done, so reset controller to flush Tx.
+			 * (Do the reset outside of interrupt context). */
+			adapter->tx_timeout_count++;
+			schedule_work(&adapter->reset_task);
+			/* return immediately since reset is imminent */
+			return;
+		}
+	}
+
+	/* Simple mode for Interrupt Throttle Rate (ITR) */
+	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
+		/*
+		 * Symmetric Tx/Rx gets a reduced ITR=2000;
+		 * Total asymmetrical Tx or Rx gets ITR=8000;
+		 * everyone else is between 2000-8000.
+		 */
+		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
+		u32 dif = (adapter->gotcl > adapter->gorcl ?
+			    adapter->gotcl - adapter->gorcl :
+			    adapter->gorcl - adapter->gotcl) / 10000;
+		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
+
+		ew32(ITR, 1000000000 / (itr * 256));
+	}
+
+	/* Cause software interrupt to ensure rx ring is cleaned */
+	ew32(ICS, E1000_ICS_RXDMT0);
+
+	/* Force detection of hung controller every watchdog period */
+	if (!adapter->ecdev)
+		adapter->detect_tx_hung = true;
+
+	/* Reset the timer */
+	if (!adapter->ecdev) {
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer,
+			          round_jiffies(jiffies + 2 * HZ));
+	}
+}
+
+enum latency_range {
+	lowest_latency = 0,
+	low_latency = 1,
+	bulk_latency = 2,
+	latency_invalid = 255
+};
+
+/**
+ * e1000_update_itr - update the dynamic ITR value based on statistics
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ *
+ *      Stores a new ITR value based on packets and byte
+ *      counts during the last interrupt.  The advantage of per interrupt
+ *      computation is faster updates and more accurate ITR for the current
+ *      traffic pattern.  Constants in this function were computed
+ *      based on theoretical maximum wire speed and thresholds were set based
+ *      on testing data as well as attempting to minimize response time
+ *      while increasing bulk throughput.
+ *      this functionality is controlled by the InterruptThrottleRate module
+ *      parameter (see e1000_param.c)
+ **/
+static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
+				     u16 itr_setting, int packets, int bytes)
+{
+	unsigned int retval = itr_setting;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		goto update_itr_done;
+
+	if (packets == 0)
+		goto update_itr_done;
+
+	switch (itr_setting) {
+	case lowest_latency:
+		/* jumbo frames get bulk treatment*/
+		if (bytes/packets > 8000)
+			retval = bulk_latency;
+		else if ((packets < 5) && (bytes > 512))
+			retval = low_latency;
+		break;
+	case low_latency:  /* 50 usec aka 20000 ints/s */
+		if (bytes > 10000) {
+			/* jumbo frames need bulk latency setting */
+			if (bytes/packets > 8000)
+				retval = bulk_latency;
+			else if ((packets < 10) || ((bytes/packets) > 1200))
+				retval = bulk_latency;
+			else if ((packets > 35))
+				retval = lowest_latency;
+		} else if (bytes/packets > 2000)
+			retval = bulk_latency;
+		else if (packets <= 2 && bytes < 512)
+			retval = lowest_latency;
+		break;
+	case bulk_latency: /* 250 usec aka 4000 ints/s */
+		if (bytes > 25000) {
+			if (packets > 35)
+				retval = low_latency;
+		} else if (bytes < 6000) {
+			retval = low_latency;
+		}
+		break;
+	}
+
+update_itr_done:
+	return retval;
+}
+
+static void e1000_set_itr(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 current_itr;
+	u32 new_itr = adapter->itr;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		return;
+
+	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
+	if (unlikely(adapter->link_speed != SPEED_1000)) {
+		current_itr = 0;
+		new_itr = 4000;
+		goto set_itr_now;
+	}
+
+	adapter->tx_itr = e1000_update_itr(adapter,
+	                            adapter->tx_itr,
+	                            adapter->total_tx_packets,
+	                            adapter->total_tx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
+		adapter->tx_itr = low_latency;
+
+	adapter->rx_itr = e1000_update_itr(adapter,
+	                            adapter->rx_itr,
+	                            adapter->total_rx_packets,
+	                            adapter->total_rx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
+		adapter->rx_itr = low_latency;
+
+	current_itr = max(adapter->rx_itr, adapter->tx_itr);
+
+	switch (current_itr) {
+	/* counts and packets in update_itr are dependent on these numbers */
+	case lowest_latency:
+		new_itr = 70000;
+		break;
+	case low_latency:
+		new_itr = 20000; /* aka hwitr = ~200 */
+		break;
+	case bulk_latency:
+		new_itr = 4000;
+		break;
+	default:
+		break;
+	}
+
+set_itr_now:
+	if (new_itr != adapter->itr) {
+		/* this attempts to bias the interrupt rate towards Bulk
+		 * by adding intermediate steps when interrupt rate is
+		 * increasing */
+		new_itr = new_itr > adapter->itr ?
+		             min(adapter->itr + (new_itr >> 2), new_itr) :
+		             new_itr;
+		adapter->itr = new_itr;
+		ew32(ITR, 1000000000 / (new_itr * 256));
+	}
+}
+
+#define E1000_TX_FLAGS_CSUM		0x00000001
+#define E1000_TX_FLAGS_VLAN		0x00000002
+#define E1000_TX_FLAGS_TSO		0x00000004
+#define E1000_TX_FLAGS_IPV4		0x00000008
+#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT	16
+
+static int e1000_tso(struct e1000_adapter *adapter,
+		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u32 cmd_length = 0;
+	u16 ipcse = 0, tucse, mss;
+	u8 ipcss, ipcso, tucss, tucso, hdr_len;
+	int err;
+
+	if (skb_is_gso(skb)) {
+		if (skb_header_cloned(skb)) {
+			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+			if (err)
+				return err;
+		}
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		mss = skb_shinfo(skb)->gso_size;
+		if (skb->protocol == htons(ETH_P_IP)) {
+			struct iphdr *iph = ip_hdr(skb);
+			iph->tot_len = 0;
+			iph->check = 0;
+			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+								 iph->daddr, 0,
+								 IPPROTO_TCP,
+								 0);
+			cmd_length = E1000_TXD_CMD_IP;
+			ipcse = skb_transport_offset(skb) - 1;
+		} else if (skb->protocol == htons(ETH_P_IPV6)) {
+			ipv6_hdr(skb)->payload_len = 0;
+			tcp_hdr(skb)->check =
+				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+						 &ipv6_hdr(skb)->daddr,
+						 0, IPPROTO_TCP, 0);
+			ipcse = 0;
+		}
+		ipcss = skb_network_offset(skb);
+		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
+		tucss = skb_transport_offset(skb);
+		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
+		tucse = 0;
+
+		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
+
+		i = tx_ring->next_to_use;
+		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+		buffer_info = &tx_ring->buffer_info[i];
+
+		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
+		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
+		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
+		context_desc->upper_setup.tcp_fields.tucss = tucss;
+		context_desc->upper_setup.tcp_fields.tucso = tucso;
+		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
+		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+
+		if (++i == tx_ring->count) i = 0;
+		tx_ring->next_to_use = i;
+
+		return true;
+	}
+	return false;
+}
+
+static bool e1000_tx_csum(struct e1000_adapter *adapter,
+			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u8 css;
+	u32 cmd_len = E1000_TXD_CMD_DEXT;
+
+	if (skb->ip_summed != CHECKSUM_PARTIAL)
+		return false;
+
+	switch (skb->protocol) {
+	case cpu_to_be16(ETH_P_IP):
+		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	case cpu_to_be16(ETH_P_IPV6):
+		/* XXX not handling all IPV6 headers */
+		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	default:
+		if (unlikely(net_ratelimit()))
+			e_warn("checksum_partial proto=%x!\n", skb->protocol);
+		break;
+	}
+
+	css = skb_transport_offset(skb);
+
+	i = tx_ring->next_to_use;
+	buffer_info = &tx_ring->buffer_info[i];
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+
+	context_desc->lower_setup.ip_config = 0;
+	context_desc->upper_setup.tcp_fields.tucss = css;
+	context_desc->upper_setup.tcp_fields.tucso =
+		css + skb->csum_offset;
+	context_desc->upper_setup.tcp_fields.tucse = 0;
+	context_desc->tcp_seg_setup.data = 0;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	if (unlikely(++i == tx_ring->count)) i = 0;
+	tx_ring->next_to_use = i;
+
+	return true;
+}
+
+#define E1000_MAX_TXD_PWR	12
+#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
+
+static int e1000_tx_map(struct e1000_adapter *adapter,
+			struct e1000_tx_ring *tx_ring,
+			struct sk_buff *skb, unsigned int first,
+			unsigned int max_per_txd, unsigned int nr_frags,
+			unsigned int mss)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_buffer *buffer_info;
+	unsigned int len = skb_headlen(skb);
+	unsigned int offset = 0, size, count = 0, i;
+	unsigned int f;
+
+	i = tx_ring->next_to_use;
+
+	while (len) {
+		buffer_info = &tx_ring->buffer_info[i];
+		size = min(len, max_per_txd);
+		/* Workaround for Controller erratum --
+		 * descriptor for non-tso packet in a linear SKB that follows a
+		 * tso gets written back prematurely before the data is fully
+		 * DMA'd to the controller */
+		if (!skb->data_len && tx_ring->last_tx_tso &&
+		    !skb_is_gso(skb)) {
+			tx_ring->last_tx_tso = 0;
+			size -= 4;
+		}
+
+		/* Workaround for premature desc write-backs
+		 * in TSO mode.  Append 4-byte sentinel desc */
+		if (unlikely(mss && !nr_frags && size == len && size > 8))
+			size -= 4;
+		/* work-around for errata 10 and it applies
+		 * to all controllers in PCI-X mode
+		 * The fix is to make sure that the first descriptor of a
+		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
+		 */
+		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+		                (size > 2015) && count == 0))
+		        size = 2015;
+
+		/* Workaround for potential 82544 hang in PCI-X.  Avoid
+		 * terminating buffers within evenly-aligned dwords. */
+		if (unlikely(adapter->pcix_82544 &&
+		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
+		   size > 4))
+			size -= 4;
+
+		buffer_info->length = size;
+		/* set time_stamp *before* dma to help avoid a possible race */
+		buffer_info->time_stamp = jiffies;
+		buffer_info->mapped_as_page = false;
+		buffer_info->dma = dma_map_single(&pdev->dev,
+						  skb->data + offset,
+						  size,	DMA_TO_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+			goto dma_error;
+		buffer_info->next_to_watch = i;
+
+		len -= size;
+		offset += size;
+		count++;
+		if (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+		}
+	}
+
+	for (f = 0; f < nr_frags; f++) {
+		struct skb_frag_struct *frag;
+
+		frag = &skb_shinfo(skb)->frags[f];
+		len = frag->size;
+		offset = frag->page_offset;
+
+		while (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+
+			buffer_info = &tx_ring->buffer_info[i];
+			size = min(len, max_per_txd);
+			/* Workaround for premature desc write-backs
+			 * in TSO mode.  Append 4-byte sentinel desc */
+			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
+				size -= 4;
+			/* Workaround for potential 82544 hang in PCI-X.
+			 * Avoid terminating buffers within evenly-aligned
+			 * dwords. */
+			if (unlikely(adapter->pcix_82544 &&
+			    !((unsigned long)(page_to_phys(frag->page) + offset
+			                      + size - 1) & 4) &&
+			    size > 4))
+				size -= 4;
+
+			buffer_info->length = size;
+			buffer_info->time_stamp = jiffies;
+			buffer_info->mapped_as_page = true;
+			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
+							offset,	size,
+							DMA_TO_DEVICE);
+			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+				goto dma_error;
+			buffer_info->next_to_watch = i;
+
+			len -= size;
+			offset += size;
+			count++;
+		}
+	}
+
+	tx_ring->buffer_info[i].skb = skb;
+	tx_ring->buffer_info[first].next_to_watch = i;
+
+	return count;
+
+dma_error:
+	dev_err(&pdev->dev, "TX DMA map failed\n");
+	buffer_info->dma = 0;
+	if (count)
+		count--;
+
+	while (count--) {
+		if (i==0)
+			i += tx_ring->count;
+		i--;
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+	}
+
+	return 0;
+}
+
+static void e1000_tx_queue(struct e1000_adapter *adapter,
+			   struct e1000_tx_ring *tx_ring, int tx_flags,
+			   int count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_desc *tx_desc = NULL;
+	struct e1000_buffer *buffer_info;
+	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+	unsigned int i;
+
+	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+		             E1000_TXD_CMD_TSE;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
+			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+	}
+
+	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+	}
+
+	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
+		txd_lower |= E1000_TXD_CMD_VLE;
+		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+	}
+
+	i = tx_ring->next_to_use;
+
+	while (count--) {
+		buffer_info = &tx_ring->buffer_info[i];
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+		tx_desc->lower.data =
+			cpu_to_le32(txd_lower | buffer_info->length);
+		tx_desc->upper.data = cpu_to_le32(txd_upper);
+		if (unlikely(++i == tx_ring->count)) i = 0;
+	}
+
+	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+	/* Force memory writes to complete before letting h/w
+	 * know there are new descriptors to fetch.  (Only
+	 * applicable for weak-ordered memory model archs,
+	 * such as IA-64). */
+	wmb();
+
+	tx_ring->next_to_use = i;
+	writel(i, hw->hw_addr + tx_ring->tdt);
+	/* we need this if more than one processor can write to our tail
+	 * at a time, it syncronizes IO on IA64/Altix systems */
+	mmiowb();
+}
+
+/**
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary by notifying the stack to resend
+ * the packet at a later time.  This gives the Tx FIFO an opportunity to
+ * flush all packets.  When that occurs, we reset the Tx FIFO pointers
+ * to the beginning of the Tx FIFO.
+ **/
+
+#define E1000_FIFO_HDR			0x10
+#define E1000_82547_PAD_LEN		0x3E0
+
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+				       struct sk_buff *skb)
+{
+	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
+	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
+
+	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
+
+	if (adapter->link_duplex != HALF_DUPLEX)
+		goto no_fifo_stall_required;
+
+	if (atomic_read(&adapter->tx_fifo_stall))
+		return 1;
+
+	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
+		atomic_set(&adapter->tx_fifo_stall, 1);
+		return 1;
+	}
+
+no_fifo_stall_required:
+	adapter->tx_fifo_head += skb_fifo_len;
+	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
+		adapter->tx_fifo_head -= adapter->tx_fifo_size;
+	return 0;
+}
+
+static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+
+	netif_stop_queue(netdev);
+	/* Herbert's original patch had:
+	 *  smp_mb__after_netif_stop_queue();
+	 * but since that doesn't exist yet, just open code it. */
+	smp_mb();
+
+	/* We need to check again in a case another CPU has just
+	 * made room available. */
+	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
+		return -EBUSY;
+
+	/* A reprieve! */
+	netif_start_queue(netdev);
+	++adapter->restart_queue;
+	return 0;
+}
+
+static int e1000_maybe_stop_tx(struct net_device *netdev,
+                               struct e1000_tx_ring *tx_ring, int size)
+{
+	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
+		return 0;
+	return __e1000_maybe_stop_tx(netdev, size);
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *tx_ring;
+	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
+	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+	unsigned int tx_flags = 0;
+	unsigned int len = skb_headlen(skb);
+	unsigned int nr_frags;
+	unsigned int mss;
+	int count = 0;
+	int tso;
+	unsigned int f;
+
+	/* This goes back to the question of how to logically map a tx queue
+	 * to a flow.  Right now, performance is impacted slightly negatively
+	 * if using multiple tx queues.  If the stack breaks away from a
+	 * single qdisc implementation, we can look at this again. */
+	tx_ring = adapter->tx_ring;
+
+	if (unlikely(skb->len <= 0)) {
+		if (!adapter->ecdev)
+			dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	mss = skb_shinfo(skb)->gso_size;
+	/* The controller does a simple calculation to
+	 * make sure there is enough room in the FIFO before
+	 * initiating the DMA for each buffer.  The calc is:
+	 * 4 = ceil(buffer len/mss).  To make sure we don't
+	 * overrun the FIFO, adjust the max buffer len if mss
+	 * drops. */
+	if (mss) {
+		u8 hdr_len;
+		max_per_txd = min(mss << 2, max_per_txd);
+		max_txd_pwr = fls(max_per_txd) - 1;
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		if (skb->data_len && hdr_len == len) {
+			switch (hw->mac_type) {
+				unsigned int pull_size;
+			case e1000_82544:
+				/* Make sure we have room to chop off 4 bytes,
+				 * and that the end alignment will work out to
+				 * this hardware's requirements
+				 * NOTE: this is a TSO only workaround
+				 * if end byte alignment not correct move us
+				 * into the next dword */
+				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
+					break;
+				/* fall through */
+				pull_size = min((unsigned int)4, skb->data_len);
+				if (!__pskb_pull_tail(skb, pull_size)) {
+					e_err("__pskb_pull_tail failed.\n");
+					dev_kfree_skb_any(skb);
+					return NETDEV_TX_OK;
+				}
+				len = skb_headlen(skb);
+				break;
+			default:
+				/* do nothing */
+				break;
+			}
+		}
+	}
+
+	/* reserve a descriptor for the offload context */
+	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
+		count++;
+	count++;
+
+	/* Controller Erratum workaround */
+	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
+		count++;
+
+	count += TXD_USE_COUNT(len, max_txd_pwr);
+
+	if (adapter->pcix_82544)
+		count++;
+
+	/* work-around for errata 10 and it applies to all controllers
+	 * in PCI-X mode, so add one more descriptor to the count
+	 */
+	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+			(len > 2015)))
+		count++;
+
+	nr_frags = skb_shinfo(skb)->nr_frags;
+	for (f = 0; f < nr_frags; f++)
+		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+				       max_txd_pwr);
+	if (adapter->pcix_82544)
+		count += nr_frags;
+
+	/* need: count + 2 desc gap to keep tail from touching
+	 * head, otherwise try next time */
+	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
+		return NETDEV_TX_BUSY;
+
+	if (unlikely(hw->mac_type == e1000_82547)) {
+		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
+			if (!adapter->ecdev) {
+				netif_stop_queue(netdev);
+				if (!test_bit(__E1000_DOWN, &adapter->flags))
+					mod_timer(&adapter->tx_fifo_stall_timer,
+					          jiffies + 1);
+			}
+			return NETDEV_TX_BUSY;
+		}
+	}
+
+	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
+		tx_flags |= E1000_TX_FLAGS_VLAN;
+		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+	}
+
+	first = tx_ring->next_to_use;
+
+	tso = e1000_tso(adapter, tx_ring, skb);
+	if (tso < 0) {
+		if (!adapter->ecdev) {
+			dev_kfree_skb_any(skb);
+		}
+		return NETDEV_TX_OK;
+	}
+
+	if (likely(tso)) {
+		if (likely(hw->mac_type != e1000_82544))
+			tx_ring->last_tx_tso = 1;
+		tx_flags |= E1000_TX_FLAGS_TSO;
+	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
+		tx_flags |= E1000_TX_FLAGS_CSUM;
+
+	if (likely(skb->protocol == htons(ETH_P_IP)))
+		tx_flags |= E1000_TX_FLAGS_IPV4;
+
+	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
+	                     nr_frags, mss);
+
+	if (count) {
+		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
+		if (!adapter->ecdev) {
+			/* Make sure there is space in the ring for the next send. */
+			e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
+		}
+
+	} else {
+		if (!adapter->ecdev)
+			dev_kfree_skb_any(skb);
+		tx_ring->buffer_info[first].time_stamp = 0;
+		tx_ring->next_to_use = first;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+
+static void e1000_tx_timeout(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Do the reset outside of interrupt context */
+	adapter->tx_timeout_count++;
+	schedule_work(&adapter->reset_task);
+}
+
+static void e1000_reset_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter =
+		container_of(work, struct e1000_adapter, reset_task);
+
+	e1000_reinit_locked(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+
+static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
+{
+	/* only return the current stats */
+	return &netdev->stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
+	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
+		e_err("Invalid MTU setting\n");
+		return -EINVAL;
+	}
+
+	/* Adapter-specific max frame size limits. */
+	switch (hw->mac_type) {
+	case e1000_undefined ... e1000_82542_rev2_1:
+		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
+			e_err("Jumbo Frames not supported.\n");
+			return -EINVAL;
+		}
+		break;
+	default:
+		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
+		break;
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	/* e1000_down has a dependency on max_frame_size */
+	hw->max_frame_size = max_frame;
+	if (netif_running(netdev))
+		e1000_down(adapter);
+
+	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+	 * means we reserve 2 more, this pushes us to allocate from the next
+	 * larger slab size.
+	 * i.e. RXBUFFER_2048 --> size-4096 slab
+	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
+	 *  fragmented skbs */
+
+	if (max_frame <= E1000_RXBUFFER_2048)
+		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+	else
+#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
+		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
+		adapter->rx_buffer_len = PAGE_SIZE;
+#endif
+
+	/* adjust allocation if LPE protects us, and we aren't using SBP */
+	if (!hw->tbi_compatibility_on &&
+	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
+	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
+		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+
+	pr_info("%s changing MTU from %d to %d\n",
+		netdev->name, netdev->mtu, new_mtu);
+	netdev->mtu = new_mtu;
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+	else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+
+void e1000_update_stats(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long flags = 0;
+	u16 phy_tmp;
+
+#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
+
+	/*
+	 * Prevent stats update while adapter is being reset, or if the pci
+	 * connection is down.
+	 */
+	if (adapter->link_speed == 0)
+		return;
+	if (pci_channel_offline(pdev))
+		return;
+
+	if (!adapter->ecdev)
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+
+	/* these counters are modified from e1000_tbi_adjust_stats,
+	 * called from the interrupt context, so they must only
+	 * be written while holding adapter->stats_lock
+	 */
+
+	adapter->stats.crcerrs += er32(CRCERRS);
+	adapter->stats.gprc += er32(GPRC);
+	adapter->stats.gorcl += er32(GORCL);
+	adapter->stats.gorch += er32(GORCH);
+	adapter->stats.bprc += er32(BPRC);
+	adapter->stats.mprc += er32(MPRC);
+	adapter->stats.roc += er32(ROC);
+
+	adapter->stats.prc64 += er32(PRC64);
+	adapter->stats.prc127 += er32(PRC127);
+	adapter->stats.prc255 += er32(PRC255);
+	adapter->stats.prc511 += er32(PRC511);
+	adapter->stats.prc1023 += er32(PRC1023);
+	adapter->stats.prc1522 += er32(PRC1522);
+
+	adapter->stats.symerrs += er32(SYMERRS);
+	adapter->stats.mpc += er32(MPC);
+	adapter->stats.scc += er32(SCC);
+	adapter->stats.ecol += er32(ECOL);
+	adapter->stats.mcc += er32(MCC);
+	adapter->stats.latecol += er32(LATECOL);
+	adapter->stats.dc += er32(DC);
+	adapter->stats.sec += er32(SEC);
+	adapter->stats.rlec += er32(RLEC);
+	adapter->stats.xonrxc += er32(XONRXC);
+	adapter->stats.xontxc += er32(XONTXC);
+	adapter->stats.xoffrxc += er32(XOFFRXC);
+	adapter->stats.xofftxc += er32(XOFFTXC);
+	adapter->stats.fcruc += er32(FCRUC);
+	adapter->stats.gptc += er32(GPTC);
+	adapter->stats.gotcl += er32(GOTCL);
+	adapter->stats.gotch += er32(GOTCH);
+	adapter->stats.rnbc += er32(RNBC);
+	adapter->stats.ruc += er32(RUC);
+	adapter->stats.rfc += er32(RFC);
+	adapter->stats.rjc += er32(RJC);
+	adapter->stats.torl += er32(TORL);
+	adapter->stats.torh += er32(TORH);
+	adapter->stats.totl += er32(TOTL);
+	adapter->stats.toth += er32(TOTH);
+	adapter->stats.tpr += er32(TPR);
+
+	adapter->stats.ptc64 += er32(PTC64);
+	adapter->stats.ptc127 += er32(PTC127);
+	adapter->stats.ptc255 += er32(PTC255);
+	adapter->stats.ptc511 += er32(PTC511);
+	adapter->stats.ptc1023 += er32(PTC1023);
+	adapter->stats.ptc1522 += er32(PTC1522);
+
+	adapter->stats.mptc += er32(MPTC);
+	adapter->stats.bptc += er32(BPTC);
+
+	/* used for adaptive IFS */
+
+	hw->tx_packet_delta = er32(TPT);
+	adapter->stats.tpt += hw->tx_packet_delta;
+	hw->collision_delta = er32(COLC);
+	adapter->stats.colc += hw->collision_delta;
+
+	if (hw->mac_type >= e1000_82543) {
+		adapter->stats.algnerrc += er32(ALGNERRC);
+		adapter->stats.rxerrc += er32(RXERRC);
+		adapter->stats.tncrs += er32(TNCRS);
+		adapter->stats.cexterr += er32(CEXTERR);
+		adapter->stats.tsctc += er32(TSCTC);
+		adapter->stats.tsctfc += er32(TSCTFC);
+	}
+
+	/* Fill out the OS statistics structure */
+	netdev->stats.multicast = adapter->stats.mprc;
+	netdev->stats.collisions = adapter->stats.colc;
+
+	/* Rx Errors */
+
+	/* RLEC on some newer hardware can be incorrect so build
+	* our own version based on RUC and ROC */
+	netdev->stats.rx_errors = adapter->stats.rxerrc +
+		adapter->stats.crcerrs + adapter->stats.algnerrc +
+		adapter->stats.ruc + adapter->stats.roc +
+		adapter->stats.cexterr;
+	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
+	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
+	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
+	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
+	netdev->stats.rx_missed_errors = adapter->stats.mpc;
+
+	/* Tx Errors */
+	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
+	netdev->stats.tx_errors = adapter->stats.txerrc;
+	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
+	netdev->stats.tx_window_errors = adapter->stats.latecol;
+	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
+	if (hw->bad_tx_carr_stats_fd &&
+	    adapter->link_duplex == FULL_DUPLEX) {
+		netdev->stats.tx_carrier_errors = 0;
+		adapter->stats.tncrs = 0;
+	}
+
+	/* Tx Dropped needs to be maintained elsewhere */
+
+	/* Phy Stats */
+	if (hw->media_type == e1000_media_type_copper) {
+		if ((adapter->link_speed == SPEED_1000) &&
+		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
+			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
+			adapter->phy_stats.idle_errors += phy_tmp;
+		}
+
+		if ((hw->mac_type <= e1000_82546) &&
+		   (hw->phy_type == e1000_phy_m88) &&
+		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
+			adapter->phy_stats.receive_errors += phy_tmp;
+	}
+
+	/* Management Stats */
+	if (hw->has_smbus) {
+		adapter->stats.mgptc += er32(MGTPTC);
+		adapter->stats.mgprc += er32(MGTPRC);
+		adapter->stats.mgpdc += er32(MGTPDC);
+	}
+
+	if (!adapter->ecdev)
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+}
+
+void ec_poll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
+		e1000_watchdog((unsigned long) adapter);
+		adapter->ec_watchdog_jiffies = jiffies;
+	}
+
+	e1000_intr(0, netdev);
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+
+static irqreturn_t e1000_intr(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
+		return IRQ_NONE;  /* Not our interrupt */
+
+	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
+		hw->get_link_status = 1;
+		/* guard against interrupt when we're going down */
+		if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	if (adapter->ecdev) {
+		int i, ec_work_done = 0;
+		for (i = 0; i < E1000_MAX_INTR; i++) {
+			if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring,
+							&ec_work_done, 100) &&
+						!e1000_clean_tx_irq(adapter, adapter->tx_ring))) {
+				break;
+			}
+		}
+	} else {
+		/* disable interrupts, without the synchronize_irq bit */
+		ew32(IMC, ~0);
+		E1000_WRITE_FLUSH();
+
+		if (likely(napi_schedule_prep(&adapter->napi))) {
+			adapter->total_tx_bytes = 0;
+			adapter->total_tx_packets = 0;
+			adapter->total_rx_bytes = 0;
+			adapter->total_rx_packets = 0;
+			__napi_schedule(&adapter->napi);
+		} else {
+			/* this really should not happen! if it does it is basically a
+			 * bug, but not a hard error, so enable ints and continue */
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				e1000_irq_enable(adapter);
+		}
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @adapter: board private structure
+ * EtherCAT: never called
+ **/
+static int e1000_clean(struct napi_struct *napi, int budget)
+{
+	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
+	int tx_clean_complete = 0, work_done = 0;
+
+	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
+
+	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
+
+	if (!tx_clean_complete)
+		work_done = budget;
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		if (likely(adapter->itr_setting & 3))
+			e1000_set_itr(adapter);
+		napi_complete(napi);
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			e1000_irq_enable(adapter);
+	}
+
+	return work_done;
+}
+
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ **/
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_desc *tx_desc, *eop_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i, eop;
+	unsigned int count = 0;
+	unsigned int total_tx_bytes=0, total_tx_packets=0;
+
+	i = tx_ring->next_to_clean;
+	eop = tx_ring->buffer_info[i].next_to_watch;
+	eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
+	       (count < tx_ring->count)) {
+		bool cleaned = false;
+		rmb();	/* read buffer_info after eop_desc */
+		for ( ; !cleaned; count++) {
+			tx_desc = E1000_TX_DESC(*tx_ring, i);
+			buffer_info = &tx_ring->buffer_info[i];
+			cleaned = (i == eop);
+
+			if (cleaned) {
+				struct sk_buff *skb = buffer_info->skb;
+				unsigned int segs, bytecount;
+				segs = skb_shinfo(skb)->gso_segs ?: 1;
+				/* multiply data chunks by size of headers */
+				bytecount = ((segs - 1) * skb_headlen(skb)) +
+				            skb->len;
+				total_tx_packets += segs;
+				total_tx_bytes += bytecount;
+			}
+			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+			tx_desc->upper.data = 0;
+
+			if (unlikely(++i == tx_ring->count)) i = 0;
+		}
+
+		eop = tx_ring->buffer_info[i].next_to_watch;
+		eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	}
+
+	tx_ring->next_to_clean = i;
+
+#define TX_WAKE_THRESHOLD 32
+	if (!adapter->ecdev && unlikely(count && netif_carrier_ok(netdev) &&
+		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
+		/* Make sure that anybody stopping the queue after this
+		 * sees the new next_to_clean.
+		 */
+		smp_mb();
+
+		if (netif_queue_stopped(netdev) &&
+		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
+			netif_wake_queue(netdev);
+			++adapter->restart_queue;
+		}
+	}
+
+	if (!adapter->ecdev && adapter->detect_tx_hung) {
+		/* Detect a transmit hang in hardware, this serializes the
+		 * check with the clearing of time_stamp and movement of i */
+		adapter->detect_tx_hung = false;
+		if (tx_ring->buffer_info[eop].time_stamp &&
+		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
+		               (adapter->tx_timeout_factor * HZ)) &&
+		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
+
+			/* detected Tx unit hang */
+			e_err("Detected Tx Unit Hang\n"
+			      "  Tx Queue             <%lu>\n"
+			      "  TDH                  <%x>\n"
+			      "  TDT                  <%x>\n"
+			      "  next_to_use          <%x>\n"
+			      "  next_to_clean        <%x>\n"
+			      "buffer_info[next_to_clean]\n"
+			      "  time_stamp           <%lx>\n"
+			      "  next_to_watch        <%x>\n"
+			      "  jiffies              <%lx>\n"
+			      "  next_to_watch.status <%x>\n",
+				(unsigned long)((tx_ring - adapter->tx_ring) /
+					sizeof(struct e1000_tx_ring)),
+				readl(hw->hw_addr + tx_ring->tdh),
+				readl(hw->hw_addr + tx_ring->tdt),
+				tx_ring->next_to_use,
+				tx_ring->next_to_clean,
+				tx_ring->buffer_info[eop].time_stamp,
+				eop,
+				jiffies,
+				eop_desc->upper.fields.status);
+			netif_stop_queue(netdev);
+		}
+	}
+	adapter->total_tx_bytes += total_tx_bytes;
+	adapter->total_tx_packets += total_tx_packets;
+	netdev->stats.tx_bytes += total_tx_bytes;
+	netdev->stats.tx_packets += total_tx_packets;
+	return (count < tx_ring->count);
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter:     board private structure
+ * @status_err:  receive descriptor status and error fields
+ * @csum:        receive descriptor csum field
+ * @sk_buff:     socket buffer with received data
+ **/
+
+static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
+			      u32 csum, struct sk_buff *skb)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 status = (u16)status_err;
+	u8 errors = (u8)(status_err >> 24);
+	skb->ip_summed = CHECKSUM_NONE;
+
+	/* 82543 or newer only */
+	if (unlikely(hw->mac_type < e1000_82543)) return;
+	/* Ignore Checksum bit is set */
+	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
+	/* TCP/UDP checksum error bit is set */
+	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
+		/* let the stack verify checksum errors */
+		adapter->hw_csum_err++;
+		return;
+	}
+	/* TCP/UDP Checksum has not been calculated */
+	if (!(status & E1000_RXD_STAT_TCPCS))
+		return;
+
+	/* It must be a TCP or UDP packet with a valid checksum */
+	if (likely(status & E1000_RXD_STAT_TCPCS)) {
+		/* TCP checksum is good */
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	}
+	adapter->hw_csum_good++;
+}
+
+/**
+ * e1000_consume_page - helper function
+ **/
+static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
+                               u16 length)
+{
+	bi->page = NULL;
+	skb->len += length;
+	skb->data_len += length;
+	skb->truesize += length;
+}
+
+/**
+ * e1000_receive_skb - helper function to handle rx indications
+ * @adapter: board private structure
+ * @status: descriptor status field as written by hardware
+ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
+ * @skb: pointer to sk_buff to be indicated to stack
+ */
+static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
+			      __le16 vlan, struct sk_buff *skb)
+{
+	if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
+		vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
+		                         le16_to_cpu(vlan) &
+		                         E1000_RXD_SPC_VLAN_MASK);
+	} else {
+		netif_receive_skb(skb);
+	}
+}
+
+/**
+ * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ */
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long irq_flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb(); /* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		if (!adapter->ecdev)
+			buffer_info->skb = NULL;
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		dma_unmap_page(&pdev->dev, buffer_info->dma,
+			       buffer_info->length, DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/* errors is only valid for DD + EOP descriptors */
+		if (!adapter->ecdev &&
+		    unlikely((status & E1000_RXD_STAT_EOP) &&
+		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock,
+				                  irq_flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       irq_flags);
+				length--;
+			} else {
+				/* recycle both page and skb */
+				buffer_info->skb = skb;
+				/* an error means any chain goes out the window
+				 * too */
+				if (rx_ring->rx_skb_top)
+					dev_kfree_skb(rx_ring->rx_skb_top);
+				rx_ring->rx_skb_top = NULL;
+				goto next_desc;
+			}
+		}
+
+#define rxtop rx_ring->rx_skb_top
+		if (!(status & E1000_RXD_STAT_EOP)) {
+			/* this descriptor is only the beginning (or middle) */
+			if (!rxtop) {
+				/* this is the beginning of a chain */
+				rxtop = skb;
+				skb_fill_page_desc(rxtop, 0, buffer_info->page,
+				                   0, length);
+			} else {
+				/* this is the middle of a chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the skb, only consumed the page */
+				buffer_info->skb = skb;
+			}
+			e1000_consume_page(buffer_info, rxtop, length);
+			goto next_desc;
+		} else {
+			if (rxtop) {
+				/* end of the chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the current skb, we only consumed the
+				 * page */
+				buffer_info->skb = skb;
+				skb = rxtop;
+				rxtop = NULL;
+				e1000_consume_page(buffer_info, skb, length);
+			} else {
+				/* no chain, got EOP, this buf is the packet
+				 * copybreak to save the put_page/alloc_page */
+				if (length <= copybreak &&
+				    skb_tailroom(skb) >= length) {
+					u8 *vaddr;
+					vaddr = kmap_atomic(buffer_info->page,
+					                    KM_SKB_DATA_SOFTIRQ);
+					memcpy(skb_tail_pointer(skb), vaddr, length);
+					kunmap_atomic(vaddr,
+					              KM_SKB_DATA_SOFTIRQ);
+					/* re-use the page, so don't erase
+					 * buffer_info->page */
+					skb_put(skb, length);
+				} else {
+					skb_fill_page_desc(skb, 0,
+					                   buffer_info->page, 0,
+				                           length);
+					e1000_consume_page(buffer_info, skb,
+					                   length);
+				}
+			}
+		}
+
+		/* Receive Checksum Offload XXX recompute due to CRC strip? */
+		e1000_rx_checksum(adapter,
+		                  (u32)(status) |
+		                  ((u32)(rx_desc->errors) << 24),
+		                  le16_to_cpu(rx_desc->csum), skb);
+
+		pskb_trim(skb, skb->len - 4);
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		/* eth type trans needs skb->data to point to something */
+		if (!pskb_may_pull(skb, ETH_HLEN)) {
+			e_err("pskb_may_pull failed.\n");
+			if (!adapter->ecdev) {
+				dev_kfree_skb(skb);
+			}
+			goto next_desc;
+		}
+
+		skb->protocol = eth_type_trans(skb, netdev);
+
+		if (adapter->ecdev) {
+			ecdev_receive(adapter->ecdev, skb->data, length);
+
+			// No need to detect link status as
+			// long as frames are received: Reset watchdog.
+			adapter->ec_watchdog_jiffies = jiffies;
+		} else {
+			e1000_receive_skb(adapter, status, rx_desc->special, skb);
+		}
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/*
+ * this should improve performance for small packets with large amounts
+ * of reassembly being done in the stack
+ */
+static void e1000_check_copybreak(struct net_device *netdev,
+				 struct e1000_buffer *buffer_info,
+				 u32 length, struct sk_buff **skb)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct sk_buff *new_skb;
+
+	if (adapter->ecdev || length > copybreak)
+		return;
+
+	new_skb = netdev_alloc_skb_ip_align(netdev, length);
+	if (!new_skb)
+		return;
+
+	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
+				       (*skb)->data - NET_IP_ALIGN,
+				       length + NET_IP_ALIGN);
+	/* save the skb in buffer_info as good */
+	buffer_info->skb = *skb;
+	*skb = new_skb;
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ */
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb(); /* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		if (!adapter->ecdev)
+			buffer_info->skb = NULL;
+
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		dma_unmap_single(&pdev->dev, buffer_info->dma,
+				 buffer_info->length, DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+		/* !EOP means multiple descriptors were used to store a single
+		 * packet, if thats the case we need to toss it.  In fact, we
+		 * to toss every packet with the EOP bit clear and the next
+		 * frame that _does_ have the EOP bit set, as it is by
+		 * definition only a frame fragment
+		 */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
+			adapter->discarding = true;
+
+		if (adapter->discarding) {
+			/* All receives must fit into a single buffer */
+			e_info("Receive packet consumed multiple buffers\n");
+			/* recycle */
+			buffer_info->skb = skb;
+			if (status & E1000_RXD_STAT_EOP)
+				adapter->discarding = false;
+			goto next_desc;
+		}
+
+		if (!adapter->ecdev &&
+		    unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock, flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       flags);
+				length--;
+			} else {
+				/* recycle */
+				buffer_info->skb = skb;
+				goto next_desc;
+			}
+		}
+
+		/* adjust length to remove Ethernet CRC, this must be
+		 * done after the TBI_ACCEPT workaround above */
+		length -= 4;
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += length;
+		total_rx_packets++;
+
+		e1000_check_copybreak(netdev, buffer_info, length, &skb);
+
+		skb_put(skb, length);
+
+		/* Receive Checksum Offload */
+		e1000_rx_checksum(adapter,
+				  (u32)(status) |
+				  ((u32)(rx_desc->errors) << 24),
+				  le16_to_cpu(rx_desc->csum), skb);
+
+		skb->protocol = eth_type_trans(skb, netdev);
+
+		if (adapter->ecdev) {
+			ecdev_receive(adapter->ecdev, skb->data, length);
+
+			// No need to detect link status as
+			// long as frames are received: Reset watchdog.
+			adapter->ec_watchdog_jiffies = jiffies;
+		} else {
+			e1000_receive_skb(adapter, status, rx_desc->special, skb);
+		}
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
+ * @adapter: address of board private structure
+ * @rx_ring: pointer to receive ring structure
+ * @cleaned_count: number of buffers to allocate this pass
+ **/
+
+static void
+e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring, int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto check_page;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			e_err("skb align check failed: %u bytes at %p\n",
+			      bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				break; /* while (cleaned_count--) */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+check_page:
+		/* allocate a new page if necessary */
+		if (!buffer_info->page) {
+			buffer_info->page = alloc_page(GFP_ATOMIC);
+			if (unlikely(!buffer_info->page)) {
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+		}
+
+		if (!buffer_info->dma) {
+			buffer_info->dma = dma_map_page(&pdev->dev,
+			                                buffer_info->page, 0,
+							buffer_info->length,
+							DMA_FROM_DEVICE);
+			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+				put_page(buffer_info->page);
+				dev_kfree_skb(skb);
+				buffer_info->page = NULL;
+				buffer_info->skb = NULL;
+				buffer_info->dma = 0;
+				adapter->alloc_rx_buff_failed++;
+				break; /* while !buffer_info->skb */
+			}
+		}
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
+ * @adapter: address of board private structure
+ **/
+
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = adapter->rx_buffer_len;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto map_skb;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			e_err("skb align check failed: %u bytes at %p\n",
+			      bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break; /* while !buffer_info->skb */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+map_skb:
+		buffer_info->dma = dma_map_single(&pdev->dev,
+						  skb->data,
+						  buffer_info->length,
+						  DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+			dev_kfree_skb(skb);
+			buffer_info->skb = NULL;
+			buffer_info->dma = 0;
+			adapter->alloc_rx_buff_failed++;
+			break; /* while !buffer_info->skb */
+		}
+
+		/*
+		 * XXX if it was allocated cleanly it will never map to a
+		 * boundary crossing
+		 */
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter,
+					(void *)(unsigned long)buffer_info->dma,
+					adapter->rx_buffer_len)) {
+			e_err("dma align check failed: %u bytes at %p\n",
+			      adapter->rx_buffer_len,
+			      (void *)(unsigned long)buffer_info->dma);
+			dev_kfree_skb(skb);
+			buffer_info->skb = NULL;
+
+			dma_unmap_single(&pdev->dev, buffer_info->dma,
+					 adapter->rx_buffer_len,
+					 DMA_FROM_DEVICE);
+			buffer_info->dma = 0;
+
+			adapter->alloc_rx_buff_failed++;
+			break; /* while !buffer_info->skb */
+		}
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, hw->hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
+ * @adapter:
+ **/
+
+static void e1000_smartspeed(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_status;
+	u16 phy_ctrl;
+
+	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
+	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
+		return;
+
+	if (adapter->smartspeed == 0) {
+		/* If Master/Slave config fault is asserted twice,
+		 * we assume back-to-back */
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		if (phy_ctrl & CR_1000T_MS_ENABLE) {
+			phy_ctrl &= ~CR_1000T_MS_ENABLE;
+			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+					    phy_ctrl);
+			adapter->smartspeed++;
+			if (!e1000_phy_setup_autoneg(hw) &&
+			   !e1000_read_phy_reg(hw, PHY_CTRL,
+				   	       &phy_ctrl)) {
+				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+					     MII_CR_RESTART_AUTO_NEG);
+				e1000_write_phy_reg(hw, PHY_CTRL,
+						    phy_ctrl);
+			}
+		}
+		return;
+	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
+		/* If still no link, perhaps using 2/3 pair cable */
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		phy_ctrl |= CR_1000T_MS_ENABLE;
+		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
+		if (!e1000_phy_setup_autoneg(hw) &&
+		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
+			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+				     MII_CR_RESTART_AUTO_NEG);
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
+		}
+	}
+	/* Restart process after E1000_SMARTSPEED_MAX iterations */
+	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
+		adapter->smartspeed = 0;
+}
+
+/**
+ * e1000_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+	case SIOCSMIIREG:
+		return e1000_mii_ioctl(netdev, ifr, cmd);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+/**
+ * e1000_mii_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct mii_ioctl_data *data = if_mii(ifr);
+	int retval;
+	u16 mii_reg;
+	u16 spddplx;
+	unsigned long flags;
+
+	if (hw->media_type != e1000_media_type_copper)
+		return -EOPNOTSUPP;
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = hw->phy_addr;
+		break;
+	case SIOCGMIIREG:
+		if (adapter->ecdev)
+			return -EPERM;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
+				   &data->val_out)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		break;
+	case SIOCSMIIREG:
+		if (adapter->ecdev)
+			return -EPERM;
+		if (data->reg_num & ~(0x1F))
+			return -EFAULT;
+		mii_reg = data->val_in;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_write_phy_reg(hw, data->reg_num,
+					mii_reg)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		if (hw->media_type == e1000_media_type_copper) {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (mii_reg & MII_CR_AUTO_NEG_EN) {
+					hw->autoneg = 1;
+					hw->autoneg_advertised = 0x2F;
+				} else {
+					if (mii_reg & 0x40)
+						spddplx = SPEED_1000;
+					else if (mii_reg & 0x2000)
+						spddplx = SPEED_100;
+					else
+						spddplx = SPEED_10;
+					spddplx += (mii_reg & 0x100)
+						   ? DUPLEX_FULL :
+						   DUPLEX_HALF;
+					retval = e1000_set_spd_dplx(adapter,
+								    spddplx);
+					if (retval)
+						return retval;
+				}
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			case M88E1000_PHY_SPEC_CTRL:
+			case M88E1000_EXT_PHY_SPEC_CTRL:
+				if (e1000_phy_reset(hw))
+					return -EIO;
+				break;
+			}
+		} else {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			}
+		}
+		break;
+	default:
+		return -EOPNOTSUPP;
+	}
+	return E1000_SUCCESS;
+}
+
+void e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	int ret_val = pci_set_mwi(adapter->pdev);
+
+	if (ret_val)
+		e_err("Error in setting MWI\n");
+}
+
+void e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+
+	pci_clear_mwi(adapter->pdev);
+}
+
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	return pcix_get_mmrbc(adapter->pdev);
+}
+
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
+{
+	struct e1000_adapter *adapter = hw->back;
+	pcix_set_mmrbc(adapter->pdev, mmrbc);
+}
+
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
+{
+	outl(value, port);
+}
+
+static void e1000_vlan_rx_register(struct net_device *netdev,
+				   struct vlan_group *grp)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, rctl;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	adapter->vlgrp = grp;
+
+	if (grp) {
+		/* enable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* enable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_CFIEN;
+		if (!(netdev->flags & IFF_PROMISC))
+			rctl |= E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+		e1000_update_mng_vlan(adapter);
+	} else {
+		/* disable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* disable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+
+		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
+			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+		}
+	}
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+}
+
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if ((hw->mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	    (vid == adapter->mng_vlan_id))
+		return;
+	/* add VID to filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta |= (1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	vlan_group_set_device(adapter->vlgrp, vid, NULL);
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+
+	/* remove VID from filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta &= ~(1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+	if (adapter->vlgrp) {
+		u16 vid;
+		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+			if (!vlan_group_get_device(adapter->vlgrp, vid))
+				continue;
+			e1000_vlan_rx_add_vid(adapter->netdev, vid);
+		}
+	}
+}
+
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	hw->autoneg = 0;
+
+	/* Fiber NICs only allow 1000 gbps Full duplex */
+	if ((hw->media_type == e1000_media_type_fiber) &&
+		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+
+	switch (spddplx) {
+	case SPEED_10 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_10_half;
+		break;
+	case SPEED_10 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_10_full;
+		break;
+	case SPEED_100 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_100_half;
+		break;
+	case SPEED_100 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_100_full;
+		break;
+	case SPEED_1000 + DUPLEX_FULL:
+		hw->autoneg = 1;
+		hw->autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_HALF: /* not supported */
+	default:
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, ctrl_ext, rctl, status;
+	u32 wufc = adapter->wol;
+#ifdef CONFIG_PM
+	int retval = 0;
+#endif
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev)) {
+		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+		e1000_down(adapter);
+	}
+
+#ifdef CONFIG_PM
+	retval = pci_save_state(pdev);
+	if (retval)
+		return retval;
+#endif
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU)
+		wufc &= ~E1000_WUFC_LNKC;
+
+	if (wufc) {
+		e1000_setup_rctl(adapter);
+		e1000_set_rx_mode(netdev);
+
+		/* turn on all-multi mode if wake on multicast is enabled */
+		if (wufc & E1000_WUFC_MC) {
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_MPE;
+			ew32(RCTL, rctl);
+		}
+
+		if (hw->mac_type >= e1000_82540) {
+			ctrl = er32(CTRL);
+			/* advertise wake from D3Cold */
+			#define E1000_CTRL_ADVD3WUC 0x00100000
+			/* phy power management enable */
+			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+			ctrl |= E1000_CTRL_ADVD3WUC |
+				E1000_CTRL_EN_PHY_PWR_MGMT;
+			ew32(CTRL, ctrl);
+		}
+
+		if (hw->media_type == e1000_media_type_fiber ||
+		    hw->media_type == e1000_media_type_internal_serdes) {
+			/* keep the laser running in D3 */
+			ctrl_ext = er32(CTRL_EXT);
+			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
+			ew32(CTRL_EXT, ctrl_ext);
+		}
+
+		ew32(WUC, E1000_WUC_PME_EN);
+		ew32(WUFC, wufc);
+	} else {
+		ew32(WUC, 0);
+		ew32(WUFC, 0);
+	}
+
+	e1000_release_manageability(adapter);
+
+	*enable_wake = !!wufc;
+
+	/* make sure adapter isn't asleep if manageability is enabled */
+	if (adapter->en_mng_pt)
+		*enable_wake = true;
+
+	if (netif_running(netdev))
+		e1000_free_irq(adapter);
+
+	pci_disable_device(pdev);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	int retval;
+	bool wake;
+
+	retval = __e1000_shutdown(pdev, &wake);
+	if (retval)
+		return retval;
+
+	if (wake) {
+		pci_prepare_to_sleep(pdev);
+	} else {
+		pci_wake_from_d3(pdev, false);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+
+	return 0;
+}
+
+static int e1000_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 err;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	pci_save_state(pdev);
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		pr_err("Cannot enable PCI device from suspend\n");
+		return err;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	if (netif_running(netdev)) {
+		err = e1000_request_irq(adapter);
+		if (err)
+			return err;
+	}
+
+	e1000_power_up_phy(adapter);
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+
+	if (!adapter->ecdev)
+		netif_device_attach(netdev);
+
+	return 0;
+}
+#endif
+
+static void e1000_shutdown(struct pci_dev *pdev)
+{
+	bool wake;
+
+	__e1000_shutdown(pdev, &wake);
+
+	if (system_state == SYSTEM_POWER_OFF) {
+		pci_wake_from_d3(pdev, wake);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void e1000_netpoll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	disable_irq(adapter->pdev->irq);
+	e1000_intr(adapter->pdev->irq, netdev);
+	enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/**
+ * e1000_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+						pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e1000_down(adapter);
+	pci_disable_device(pdev);
+
+	/* Request a slot slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e1000_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot. Implementation
+ * resembles the first-half of the e1000_resume routine.
+ */
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		pr_err("Cannot re-enable PCI device after reset.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * e1000_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells us that
+ * its OK to resume normal operation. Implementation resembles the
+ * second-half of the e1000_resume routine.
+ */
+static void e1000_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev)) {
+		if (e1000_up(adapter)) {
+			pr_info("can't bring device back up after reset\n");
+			return;
+		}
+	}
+
+	netif_device_attach(netdev);
+}
+
+/* e1000_main.c */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_main-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,4780 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+#include <net/ip6_checksum.h>
+
+char e1000_driver_name[] = "e1000";
+static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
+#define DRV_VERSION "7.3.21-k6-NAPI"
+const char e1000_driver_version[] = DRV_VERSION;
+static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
+
+/* e1000_pci_tbl - PCI Device ID Table
+ *
+ * Last entry must be all 0s
+ *
+ * Macro expands to...
+ *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+ */
+static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
+	INTEL_E1000_ETHERNET_DEVICE(0x1000),
+	INTEL_E1000_ETHERNET_DEVICE(0x1001),
+	INTEL_E1000_ETHERNET_DEVICE(0x1004),
+	INTEL_E1000_ETHERNET_DEVICE(0x1008),
+	INTEL_E1000_ETHERNET_DEVICE(0x1009),
+	INTEL_E1000_ETHERNET_DEVICE(0x100C),
+	INTEL_E1000_ETHERNET_DEVICE(0x100D),
+	INTEL_E1000_ETHERNET_DEVICE(0x100E),
+	INTEL_E1000_ETHERNET_DEVICE(0x100F),
+	INTEL_E1000_ETHERNET_DEVICE(0x1010),
+	INTEL_E1000_ETHERNET_DEVICE(0x1011),
+	INTEL_E1000_ETHERNET_DEVICE(0x1012),
+	INTEL_E1000_ETHERNET_DEVICE(0x1013),
+	INTEL_E1000_ETHERNET_DEVICE(0x1014),
+	INTEL_E1000_ETHERNET_DEVICE(0x1015),
+	INTEL_E1000_ETHERNET_DEVICE(0x1016),
+	INTEL_E1000_ETHERNET_DEVICE(0x1017),
+	INTEL_E1000_ETHERNET_DEVICE(0x1018),
+	INTEL_E1000_ETHERNET_DEVICE(0x1019),
+	INTEL_E1000_ETHERNET_DEVICE(0x101A),
+	INTEL_E1000_ETHERNET_DEVICE(0x101D),
+	INTEL_E1000_ETHERNET_DEVICE(0x101E),
+	INTEL_E1000_ETHERNET_DEVICE(0x1026),
+	INTEL_E1000_ETHERNET_DEVICE(0x1027),
+	INTEL_E1000_ETHERNET_DEVICE(0x1028),
+	INTEL_E1000_ETHERNET_DEVICE(0x1075),
+	INTEL_E1000_ETHERNET_DEVICE(0x1076),
+	INTEL_E1000_ETHERNET_DEVICE(0x1077),
+	INTEL_E1000_ETHERNET_DEVICE(0x1078),
+	INTEL_E1000_ETHERNET_DEVICE(0x1079),
+	INTEL_E1000_ETHERNET_DEVICE(0x107A),
+	INTEL_E1000_ETHERNET_DEVICE(0x107B),
+	INTEL_E1000_ETHERNET_DEVICE(0x107C),
+	INTEL_E1000_ETHERNET_DEVICE(0x108A),
+	INTEL_E1000_ETHERNET_DEVICE(0x1099),
+	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
+	/* required last entry */
+	{0,}
+};
+
+MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+int e1000_up(struct e1000_adapter *adapter);
+void e1000_down(struct e1000_adapter *adapter);
+void e1000_reinit_locked(struct e1000_adapter *adapter);
+void e1000_reset(struct e1000_adapter *adapter);
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *txdr);
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rxdr);
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *tx_ring);
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring);
+void e1000_update_stats(struct e1000_adapter *adapter);
+
+static int e1000_init_module(void);
+static void e1000_exit_module(void);
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
+static void __devexit e1000_remove(struct pci_dev *pdev);
+static int e1000_alloc_queues(struct e1000_adapter *adapter);
+static int e1000_sw_init(struct e1000_adapter *adapter);
+static int e1000_open(struct net_device *netdev);
+static int e1000_close(struct net_device *netdev);
+static void e1000_configure_tx(struct e1000_adapter *adapter);
+static void e1000_configure_rx(struct e1000_adapter *adapter);
+static void e1000_setup_rctl(struct e1000_adapter *adapter);
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+                                struct e1000_tx_ring *tx_ring);
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+                                struct e1000_rx_ring *rx_ring);
+static void e1000_set_rx_mode(struct net_device *netdev);
+static void e1000_update_phy_info(unsigned long data);
+static void e1000_watchdog(unsigned long data);
+static void e1000_82547_tx_fifo_stall(unsigned long data);
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev);
+static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
+static int e1000_set_mac(struct net_device *netdev, void *p);
+static irqreturn_t e1000_intr(int irq, void *data);
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring);
+static int e1000_clean(struct napi_struct *napi, int budget);
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do);
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do);
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count);
+static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+					 struct e1000_rx_ring *rx_ring,
+					 int cleaned_count);
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd);
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
+static void e1000_tx_timeout(struct net_device *dev);
+static void e1000_reset_task(struct work_struct *work);
+static void e1000_smartspeed(struct e1000_adapter *adapter);
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+                                       struct sk_buff *skb);
+
+static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
+static void e1000_restore_vlan(struct e1000_adapter *adapter);
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
+static int e1000_resume(struct pci_dev *pdev);
+#endif
+static void e1000_shutdown(struct pci_dev *pdev);
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/* for netdump / net console */
+static void e1000_netpoll (struct net_device *netdev);
+#endif
+
+#define COPYBREAK_DEFAULT 256
+static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
+module_param(copybreak, uint, 0644);
+MODULE_PARM_DESC(copybreak,
+	"Maximum size of packet that is copied to a new buffer on receive");
+
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+                     pci_channel_state_t state);
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
+static void e1000_io_resume(struct pci_dev *pdev);
+
+static struct pci_error_handlers e1000_err_handler = {
+	.error_detected = e1000_io_error_detected,
+	.slot_reset = e1000_io_slot_reset,
+	.resume = e1000_io_resume,
+};
+
+static struct pci_driver e1000_driver = {
+	.name     = e1000_driver_name,
+	.id_table = e1000_pci_tbl,
+	.probe    = e1000_probe,
+	.remove   = __devexit_p(e1000_remove),
+#ifdef CONFIG_PM
+	/* Power Managment Hooks */
+	.suspend  = e1000_suspend,
+	.resume   = e1000_resume,
+#endif
+	.shutdown = e1000_shutdown,
+	.err_handler = &e1000_err_handler
+};
+
+MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
+MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+/**
+ * e1000_get_hw_dev - return device
+ * used by hardware layer to print debugging information
+ *
+ **/
+struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	return adapter->netdev;
+}
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+
+static int __init e1000_init_module(void)
+{
+	int ret;
+	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
+
+	pr_info("%s\n", e1000_copyright);
+
+	ret = pci_register_driver(&e1000_driver);
+	if (copybreak != COPYBREAK_DEFAULT) {
+		if (copybreak == 0)
+			pr_info("copybreak disabled\n");
+		else
+			pr_info("copybreak enabled for "
+				   "packets <= %u bytes\n", copybreak);
+	}
+	return ret;
+}
+
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+
+static void __exit e1000_exit_module(void)
+{
+	pci_unregister_driver(&e1000_driver);
+}
+
+module_exit(e1000_exit_module);
+
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	irq_handler_t handler = e1000_intr;
+	int irq_flags = IRQF_SHARED;
+	int err;
+
+	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
+	                  netdev);
+	if (err) {
+		e_err("Unable to allocate interrupt Error: %d\n", err);
+	}
+
+	return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	free_irq(adapter->pdev->irq, netdev);
+}
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_disable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	ew32(IMC, ~0);
+	E1000_WRITE_FLUSH();
+	synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_enable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	ew32(IMS, IMS_ENABLE_MASK);
+	E1000_WRITE_FLUSH();
+}
+
+static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u16 vid = hw->mng_cookie.vlan_id;
+	u16 old_vid = adapter->mng_vlan_id;
+	if (adapter->vlgrp) {
+		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
+			if (hw->mng_cookie.status &
+				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
+				e1000_vlan_rx_add_vid(netdev, vid);
+				adapter->mng_vlan_id = vid;
+			} else
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+
+			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
+					(vid != old_vid) &&
+			    !vlan_group_get_device(adapter->vlgrp, old_vid))
+				e1000_vlan_rx_kill_vid(netdev, old_vid);
+		} else
+			adapter->mng_vlan_id = vid;
+	}
+}
+
+static void e1000_init_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+		ew32(MANC, manc);
+	}
+}
+
+static void e1000_release_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* re-enable hardware interception of ARP */
+		manc |= E1000_MANC_ARP_EN;
+
+		ew32(MANC, manc);
+	}
+}
+
+/**
+ * e1000_configure - configure the hardware for RX and TX
+ * @adapter = private board structure
+ **/
+static void e1000_configure(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int i;
+
+	e1000_set_rx_mode(netdev);
+
+	e1000_restore_vlan(adapter);
+	e1000_init_manageability(adapter);
+
+	e1000_configure_tx(adapter);
+	e1000_setup_rctl(adapter);
+	e1000_configure_rx(adapter);
+	/* call E1000_DESC_UNUSED which always leaves
+	 * at least 1 descriptor unused to make sure
+	 * next_to_use != next_to_clean */
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
+		adapter->alloc_rx_buf(adapter, ring,
+		                      E1000_DESC_UNUSED(ring));
+	}
+}
+
+int e1000_up(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* hardware has been reset, we need to reload some things */
+	e1000_configure(adapter);
+
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_wake_queue(adapter->netdev);
+
+	/* fire a link change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+	return 0;
+}
+
+/**
+ * e1000_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000_reset ***
+ *
+ **/
+
+void e1000_power_up_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 mii_reg = 0;
+
+	/* Just clear the power down bit to wake the phy back up */
+	if (hw->media_type == e1000_media_type_copper) {
+		/* according to the manual, the phy will retain its
+		 * settings across a power-down/up cycle */
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg &= ~MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+	}
+}
+
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Power down the PHY so no link is implied when interface is down *
+	 * The PHY cannot be powered down if any of the following is true *
+	 * (a) WoL is enabled
+	 * (b) AMT is active
+	 * (c) SoL/IDER session is active */
+	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
+	   hw->media_type == e1000_media_type_copper) {
+		u16 mii_reg = 0;
+
+		switch (hw->mac_type) {
+		case e1000_82540:
+		case e1000_82545:
+		case e1000_82545_rev_3:
+		case e1000_82546:
+		case e1000_82546_rev_3:
+		case e1000_82541:
+		case e1000_82541_rev_2:
+		case e1000_82547:
+		case e1000_82547_rev_2:
+			if (er32(MANC) & E1000_MANC_SMBUS_EN)
+				goto out;
+			break;
+		default:
+			goto out;
+		}
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg |= MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+		mdelay(1);
+	}
+out:
+	return;
+}
+
+void e1000_down(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl, tctl;
+
+	/* signal that we're down so the interrupt handler does not
+	 * reschedule our watchdog timer */
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	/* disable receives in the hardware */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	/* flush and sleep below */
+
+	netif_tx_disable(netdev);
+
+	/* disable transmits in the hardware */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_EN;
+	ew32(TCTL, tctl);
+	/* flush both disables and wait for them to finish */
+	E1000_WRITE_FLUSH();
+	msleep(10);
+
+	napi_disable(&adapter->napi);
+
+	e1000_irq_disable(adapter);
+
+	del_timer_sync(&adapter->tx_fifo_stall_timer);
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	adapter->link_speed = 0;
+	adapter->link_duplex = 0;
+	netif_carrier_off(netdev);
+
+	e1000_reset(adapter);
+	e1000_clean_all_tx_rings(adapter);
+	e1000_clean_all_rx_rings(adapter);
+}
+
+void e1000_reinit_locked(struct e1000_adapter *adapter)
+{
+	WARN_ON(in_interrupt());
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	e1000_down(adapter);
+	e1000_up(adapter);
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+}
+
+void e1000_reset(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
+	bool legacy_pba_adjust = false;
+	u16 hwm;
+
+	/* Repartition Pba for greater than 9k mtu
+	 * To take effect CTRL.RST is required.
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_30K;
+		break;
+	case e1000_undefined:
+	case e1000_num_macs:
+		break;
+	}
+
+	if (legacy_pba_adjust) {
+		if (hw->max_frame_size > E1000_RXBUFFER_8192)
+			pba -= 8; /* allocate more FIFO for Tx */
+
+		if (hw->mac_type == e1000_82547) {
+			adapter->tx_fifo_head = 0;
+			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
+			adapter->tx_fifo_size =
+				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+		}
+	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
+		/* adjust PBA for jumbo frames */
+		ew32(PBA, pba);
+
+		/* To maintain wire speed transmits, the Tx FIFO should be
+		 * large enough to accommodate two full transmit packets,
+		 * rounded up to the next 1KB and expressed in KB.  Likewise,
+		 * the Rx FIFO should be large enough to accommodate at least
+		 * one full receive packet and is similarly rounded up and
+		 * expressed in KB. */
+		pba = er32(PBA);
+		/* upper 16 bits has Tx packet buffer allocation size in KB */
+		tx_space = pba >> 16;
+		/* lower 16 bits has Rx packet buffer allocation size in KB */
+		pba &= 0xffff;
+		/*
+		 * the tx fifo also stores 16 bytes of information about the tx
+		 * but don't include ethernet FCS because hardware appends it
+		 */
+		min_tx_space = (hw->max_frame_size +
+		                sizeof(struct e1000_tx_desc) -
+		                ETH_FCS_LEN) * 2;
+		min_tx_space = ALIGN(min_tx_space, 1024);
+		min_tx_space >>= 10;
+		/* software strips receive CRC, so leave room for it */
+		min_rx_space = hw->max_frame_size;
+		min_rx_space = ALIGN(min_rx_space, 1024);
+		min_rx_space >>= 10;
+
+		/* If current Tx allocation is less than the min Tx FIFO size,
+		 * and the min Tx FIFO size is less than the current Rx FIFO
+		 * allocation, take space away from current Rx allocation */
+		if (tx_space < min_tx_space &&
+		    ((min_tx_space - tx_space) < pba)) {
+			pba = pba - (min_tx_space - tx_space);
+
+			/* PCI/PCIx hardware has PBA alignment constraints */
+			switch (hw->mac_type) {
+			case e1000_82545 ... e1000_82546_rev_3:
+				pba &= ~(E1000_PBA_8K - 1);
+				break;
+			default:
+				break;
+			}
+
+			/* if short on rx space, rx wins and must trump tx
+			 * adjustment or use Early Receive if available */
+			if (pba < min_rx_space)
+				pba = min_rx_space;
+		}
+	}
+
+	ew32(PBA, pba);
+
+	/*
+	 * flow control settings:
+	 * The high water mark must be low enough to fit one full frame
+	 * (or the size used for early receive) above it in the Rx FIFO.
+	 * Set it to the lower of:
+	 * - 90% of the Rx FIFO size, and
+	 * - the full Rx FIFO size minus the early receive size (for parts
+	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
+	 * - the full Rx FIFO size minus one full frame
+	 */
+	hwm = min(((pba << 10) * 9 / 10),
+		  ((pba << 10) - hw->max_frame_size));
+
+	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
+	hw->fc_low_water = hw->fc_high_water - 8;
+	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
+	hw->fc_send_xon = 1;
+	hw->fc = hw->original_fc;
+
+	/* Allow time for pending master requests to run */
+	e1000_reset_hw(hw);
+	if (hw->mac_type >= e1000_82544)
+		ew32(WUC, 0);
+
+	if (e1000_init_hw(hw))
+		e_err("Hardware Error\n");
+	e1000_update_mng_vlan(adapter);
+
+	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
+	if (hw->mac_type >= e1000_82544 &&
+	    hw->autoneg == 1 &&
+	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+		u32 ctrl = er32(CTRL);
+		/* clear phy power management bit if we are in gig only mode,
+		 * which if enabled will attempt negotiation to 100Mb, which
+		 * can cause a loss of link at power off or driver unload */
+		ctrl &= ~E1000_CTRL_SWDPIN3;
+		ew32(CTRL, ctrl);
+	}
+
+	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
+
+	e1000_reset_adaptive(hw);
+	e1000_phy_get_info(hw, &adapter->phy_info);
+
+	e1000_release_manageability(adapter);
+}
+
+/**
+ *  Dump the eeprom for users having checksum issues
+ **/
+static void e1000_dump_eeprom(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct ethtool_eeprom eeprom;
+	const struct ethtool_ops *ops = netdev->ethtool_ops;
+	u8 *data;
+	int i;
+	u16 csum_old, csum_new = 0;
+
+	eeprom.len = ops->get_eeprom_len(netdev);
+	eeprom.offset = 0;
+
+	data = kmalloc(eeprom.len, GFP_KERNEL);
+	if (!data) {
+		pr_err("Unable to allocate memory to dump EEPROM data\n");
+		return;
+	}
+
+	ops->get_eeprom(netdev, &eeprom, data);
+
+	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
+		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
+	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
+		csum_new += data[i] + (data[i + 1] << 8);
+	csum_new = EEPROM_SUM - csum_new;
+
+	pr_err("/*********************/\n");
+	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
+	pr_err("Calculated              : 0x%04x\n", csum_new);
+
+	pr_err("Offset    Values\n");
+	pr_err("========  ======\n");
+	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
+
+	pr_err("Include this output when contacting your support provider.\n");
+	pr_err("This is not a software error! Something bad happened to\n");
+	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
+	pr_err("result in further problems, possibly loss of data,\n");
+	pr_err("corruption or system hangs!\n");
+	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
+	pr_err("which is invalid and requires you to set the proper MAC\n");
+	pr_err("address manually before continuing to enable this network\n");
+	pr_err("device. Please inspect the EEPROM dump and report the\n");
+	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
+	pr_err("/*********************/\n");
+
+	kfree(data);
+}
+
+/**
+ * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
+ * @pdev: PCI device information struct
+ *
+ * Return true if an adapter needs ioport resources
+ **/
+static int e1000_is_need_ioport(struct pci_dev *pdev)
+{
+	switch (pdev->device) {
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541ER_LOM:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		return true;
+	default:
+		return false;
+	}
+}
+
+static const struct net_device_ops e1000_netdev_ops = {
+	.ndo_open		= e1000_open,
+	.ndo_stop		= e1000_close,
+	.ndo_start_xmit		= e1000_xmit_frame,
+	.ndo_get_stats		= e1000_get_stats,
+	.ndo_set_rx_mode	= e1000_set_rx_mode,
+	.ndo_set_mac_address	= e1000_set_mac,
+	.ndo_tx_timeout 	= e1000_tx_timeout,
+	.ndo_change_mtu		= e1000_change_mtu,
+	.ndo_do_ioctl		= e1000_ioctl,
+	.ndo_validate_addr	= eth_validate_addr,
+
+	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
+	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
+	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e1000_netpoll,
+#endif
+};
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+static int __devinit e1000_probe(struct pci_dev *pdev,
+				 const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct e1000_adapter *adapter;
+	struct e1000_hw *hw;
+
+	static int cards_found = 0;
+	static int global_quad_port_a = 0; /* global ksp3 port a indication */
+	int i, err, pci_using_dac;
+	u16 eeprom_data = 0;
+	u16 eeprom_apme_mask = E1000_EEPROM_APME;
+	int bars, need_ioport;
+
+	/* do not allocate ioport bars when not needed */
+	need_ioport = e1000_is_need_ioport(pdev);
+	if (need_ioport) {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
+		err = pci_enable_device(pdev);
+	} else {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM);
+		err = pci_enable_device_mem(pdev);
+	}
+	if (err)
+		return err;
+
+	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
+	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
+		pci_using_dac = 1;
+	} else {
+		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
+		if (err) {
+			err = dma_set_coherent_mask(&pdev->dev,
+						    DMA_BIT_MASK(32));
+			if (err) {
+				pr_err("No usable DMA config, aborting\n");
+				goto err_dma;
+			}
+		}
+		pci_using_dac = 0;
+	}
+
+	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
+	if (err)
+		goto err_pci_reg;
+
+	pci_set_master(pdev);
+	err = pci_save_state(pdev);
+	if (err)
+		goto err_alloc_etherdev;
+
+	err = -ENOMEM;
+	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+	if (!netdev)
+		goto err_alloc_etherdev;
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	pci_set_drvdata(pdev, netdev);
+	adapter = netdev_priv(netdev);
+	adapter->netdev = netdev;
+	adapter->pdev = pdev;
+	adapter->msg_enable = (1 << debug) - 1;
+	adapter->bars = bars;
+	adapter->need_ioport = need_ioport;
+
+	hw = &adapter->hw;
+	hw->back = adapter;
+
+	err = -EIO;
+	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
+	if (!hw->hw_addr)
+		goto err_ioremap;
+
+	if (adapter->need_ioport) {
+		for (i = BAR_1; i <= BAR_5; i++) {
+			if (pci_resource_len(pdev, i) == 0)
+				continue;
+			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
+				hw->io_base = pci_resource_start(pdev, i);
+				break;
+			}
+		}
+	}
+
+	netdev->netdev_ops = &e1000_netdev_ops;
+	e1000_set_ethtool_ops(netdev);
+	netdev->watchdog_timeo = 5 * HZ;
+	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
+
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	adapter->bd_number = cards_found;
+
+	/* setup the private structure */
+
+	err = e1000_sw_init(adapter);
+	if (err)
+		goto err_sw_init;
+
+	err = -EIO;
+
+	if (hw->mac_type >= e1000_82543) {
+		netdev->features = NETIF_F_SG |
+				   NETIF_F_HW_CSUM |
+				   NETIF_F_HW_VLAN_TX |
+				   NETIF_F_HW_VLAN_RX |
+				   NETIF_F_HW_VLAN_FILTER;
+	}
+
+	if ((hw->mac_type >= e1000_82544) &&
+	   (hw->mac_type != e1000_82547))
+		netdev->features |= NETIF_F_TSO;
+
+	if (pci_using_dac)
+		netdev->features |= NETIF_F_HIGHDMA;
+
+	netdev->vlan_features |= NETIF_F_TSO;
+	netdev->vlan_features |= NETIF_F_HW_CSUM;
+	netdev->vlan_features |= NETIF_F_SG;
+
+	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
+
+	/* initialize eeprom parameters */
+	if (e1000_init_eeprom_params(hw)) {
+		e_err("EEPROM initialization failed\n");
+		goto err_eeprom;
+	}
+
+	/* before reading the EEPROM, reset the controller to
+	 * put the device in a known good starting state */
+
+	e1000_reset_hw(hw);
+
+	/* make sure the EEPROM is good */
+	if (e1000_validate_eeprom_checksum(hw) < 0) {
+		e_err("The EEPROM Checksum Is Not Valid\n");
+		e1000_dump_eeprom(adapter);
+		/*
+		 * set MAC address to all zeroes to invalidate and temporary
+		 * disable this device for the user. This blocks regular
+		 * traffic while still permitting ethtool ioctls from reaching
+		 * the hardware as well as allowing the user to run the
+		 * interface after manually setting a hw addr using
+		 * `ip set address`
+		 */
+		memset(hw->mac_addr, 0, netdev->addr_len);
+	} else {
+		/* copy the MAC address out of the EEPROM */
+		if (e1000_read_mac_addr(hw))
+			e_err("EEPROM Read Error\n");
+	}
+	/* don't block initalization here due to bad MAC address */
+	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
+	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
+
+	if (!is_valid_ether_addr(netdev->perm_addr))
+		e_err("Invalid MAC Address\n");
+
+	e1000_get_bus_info(hw);
+
+	init_timer(&adapter->tx_fifo_stall_timer);
+	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
+	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
+
+	init_timer(&adapter->watchdog_timer);
+	adapter->watchdog_timer.function = &e1000_watchdog;
+	adapter->watchdog_timer.data = (unsigned long) adapter;
+
+	init_timer(&adapter->phy_info_timer);
+	adapter->phy_info_timer.function = &e1000_update_phy_info;
+	adapter->phy_info_timer.data = (unsigned long)adapter;
+
+	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+
+	e1000_check_options(adapter);
+
+	/* Initial Wake on LAN setting
+	 * If APM wake is enabled in the EEPROM,
+	 * enable the ACPI Magic Packet filter
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		break;
+	case e1000_82544:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+		eeprom_apme_mask = E1000_EEPROM_82544_APM;
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1){
+			e1000_read_eeprom(hw,
+				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+			break;
+		}
+		/* Fall Through */
+	default:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+		break;
+	}
+	if (eeprom_data & eeprom_apme_mask)
+		adapter->eeprom_wol |= E1000_WUFC_MAG;
+
+	/* now that we have the eeprom settings, apply the special cases
+	 * where the eeprom may be wrong or the board simply won't support
+	 * wake on lan on a particular port */
+	switch (pdev->device) {
+	case E1000_DEV_ID_82546GB_PCIE:
+		adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events only supported on port A for dual fiber
+		 * regardless of eeprom setting */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* if quad port adapter, disable WoL on all but port A */
+		if (global_quad_port_a != 0)
+			adapter->eeprom_wol = 0;
+		else
+			adapter->quad_port_a = 1;
+		/* Reset for multiple quad port adapters */
+		if (++global_quad_port_a == 4)
+			global_quad_port_a = 0;
+		break;
+	}
+
+	/* initialize the wol settings based on the eeprom settings */
+	adapter->wol = adapter->eeprom_wol;
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	/* reset the hardware with the new settings */
+	e1000_reset(adapter);
+
+	strcpy(netdev->name, "eth%d");
+	err = register_netdev(netdev);
+	if (err)
+		goto err_register;
+
+	/* print bus type/speed/width info */
+	e_info("(PCI%s:%dMHz:%d-bit) %pM\n",
+	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
+	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
+		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
+		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
+		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
+	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
+	       netdev->dev_addr);
+
+	/* carrier off reporting is important to ethtool even BEFORE open */
+	netif_carrier_off(netdev);
+
+	e_info("Intel(R) PRO/1000 Network Connection\n");
+
+	cards_found++;
+	return 0;
+
+err_register:
+err_eeprom:
+	e1000_phy_hw_reset(hw);
+
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+err_sw_init:
+	iounmap(hw->hw_addr);
+err_ioremap:
+	free_netdev(netdev);
+err_alloc_etherdev:
+	pci_release_selected_regions(pdev, bars);
+err_pci_reg:
+err_dma:
+	pci_disable_device(pdev);
+	return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device.  The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+
+static void __devexit e1000_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+	del_timer_sync(&adapter->tx_fifo_stall_timer);
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	cancel_work_sync(&adapter->reset_task);
+
+	e1000_release_manageability(adapter);
+
+	unregister_netdev(netdev);
+
+	e1000_phy_hw_reset(hw);
+
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+
+	iounmap(hw->hw_addr);
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	pci_release_selected_regions(pdev, adapter->bars);
+
+	free_netdev(netdev);
+
+	pci_disable_device(pdev);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+
+	/* PCI config space info */
+
+	hw->vendor_id = pdev->vendor;
+	hw->device_id = pdev->device;
+	hw->subsystem_vendor_id = pdev->subsystem_vendor;
+	hw->subsystem_id = pdev->subsystem_device;
+	hw->revision_id = pdev->revision;
+
+	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+	hw->max_frame_size = netdev->mtu +
+			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
+
+	/* identify the MAC */
+
+	if (e1000_set_mac_type(hw)) {
+		e_err("Unknown MAC Type\n");
+		return -EIO;
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->phy_init_script = 1;
+		break;
+	}
+
+	e1000_set_media_type(hw);
+
+	hw->wait_autoneg_complete = false;
+	hw->tbi_compatibility_en = true;
+	hw->adaptive_ifs = true;
+
+	/* Copper options */
+
+	if (hw->media_type == e1000_media_type_copper) {
+		hw->mdix = AUTO_ALL_MODES;
+		hw->disable_polarity_correction = false;
+		hw->master_slave = E1000_MASTER_SLAVE;
+	}
+
+	adapter->num_tx_queues = 1;
+	adapter->num_rx_queues = 1;
+
+	if (e1000_alloc_queues(adapter)) {
+		e_err("Unable to allocate memory for queues\n");
+		return -ENOMEM;
+	}
+
+	/* Explicitly disable IRQ since the NIC can be in any state. */
+	e1000_irq_disable(adapter);
+
+	spin_lock_init(&adapter->stats_lock);
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_alloc_queues - Allocate memory for all rings
+ * @adapter: board private structure to initialize
+ *
+ * We allocate one ring per queue at run-time since we don't know the
+ * number of queues at compile-time.
+ **/
+
+static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
+{
+	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
+	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!adapter->tx_ring)
+		return -ENOMEM;
+
+	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
+	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!adapter->rx_ring) {
+		kfree(adapter->tx_ring);
+		return -ENOMEM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP).  At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+
+static int e1000_open(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	/* disallow open during test */
+	if (test_bit(__E1000_TESTING, &adapter->flags))
+		return -EBUSY;
+
+	netif_carrier_off(netdev);
+
+	/* allocate transmit descriptors */
+	err = e1000_setup_all_tx_resources(adapter);
+	if (err)
+		goto err_setup_tx;
+
+	/* allocate receive descriptors */
+	err = e1000_setup_all_rx_resources(adapter);
+	if (err)
+		goto err_setup_rx;
+
+	e1000_power_up_phy(adapter);
+
+	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
+		e1000_update_mng_vlan(adapter);
+	}
+
+	/* before we allocate an interrupt, we must be ready to handle it.
+	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
+	 * as soon as we call pci_request_irq, so we have to setup our
+	 * clean_rx handler before we do so.  */
+	e1000_configure(adapter);
+
+	err = e1000_request_irq(adapter);
+	if (err)
+		goto err_req_irq;
+
+	/* From here on the code is the same as e1000_up() */
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_start_queue(netdev);
+
+	/* fire a link status change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+
+	return E1000_SUCCESS;
+
+err_req_irq:
+	e1000_power_down_phy(adapter);
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	e1000_free_all_tx_resources(adapter);
+err_setup_tx:
+	e1000_reset(adapter);
+
+	return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS.  The hardware is still under the drivers control, but
+ * needs to be disabled.  A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+
+static int e1000_close(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+	e1000_down(adapter);
+	e1000_power_down_phy(adapter);
+	e1000_free_irq(adapter);
+
+	e1000_free_all_tx_resources(adapter);
+	e1000_free_all_rx_resources(adapter);
+
+	/* kill manageability vlan ID if supported, but not if a vlan with
+	 * the same ID is registered on the host OS (let 8021q kill it) */
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	     !(adapter->vlgrp &&
+	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
+		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+	}
+
+	return 0;
+}
+
+/**
+ * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
+ * @adapter: address of board private structure
+ * @start: address of beginning of memory
+ * @len: length of memory
+ **/
+static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
+				  unsigned long len)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	unsigned long begin = (unsigned long)start;
+	unsigned long end = begin + len;
+
+	/* First rev 82545 and 82546 need to not allow any memory
+	 * write location to cross 64k boundary due to errata 23 */
+	if (hw->mac_type == e1000_82545 ||
+	    hw->mac_type == e1000_82546) {
+		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
+	}
+
+	return true;
+}
+
+/**
+ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ * @txdr:    tx descriptor ring (for a specific queue) to setup
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *txdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size;
+
+	size = sizeof(struct e1000_buffer) * txdr->count;
+	txdr->buffer_info = vmalloc(size);
+	if (!txdr->buffer_info) {
+		e_err("Unable to allocate memory for the Tx descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(txdr->buffer_info, 0, size);
+
+	/* round up to nearest 4K */
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+
+	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
+					GFP_KERNEL);
+	if (!txdr->desc) {
+setup_tx_desc_die:
+		vfree(txdr->buffer_info);
+		e_err("Unable to allocate memory for the Tx descriptor ring\n");
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+		void *olddesc = txdr->desc;
+		dma_addr_t olddma = txdr->dma;
+		e_err("txdr align check failed: %u bytes at %p\n",
+		      txdr->size, txdr->desc);
+		/* Try again, without freeing the previous */
+		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
+						&txdr->dma, GFP_KERNEL);
+		/* Failed allocation, critical failure */
+		if (!txdr->desc) {
+			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
+					  olddma);
+			goto setup_tx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+			/* give up */
+			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
+					  txdr->dma);
+			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
+					  olddma);
+			e_err("Unable to allocate aligned memory "
+			      "for the transmit descriptor ring\n");
+			vfree(txdr->buffer_info);
+			return -ENOMEM;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
+					  olddma);
+		}
+	}
+	memset(txdr->desc, 0, txdr->size);
+
+	txdr->next_to_use = 0;
+	txdr->next_to_clean = 0;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_tx_queues; i++) {
+		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
+		if (err) {
+			e_err("Allocation for Tx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_tx_resources(adapter,
+							&adapter->tx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_tx(struct e1000_adapter *adapter)
+{
+	u64 tdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tdlen, tctl, tipg;
+	u32 ipgr1, ipgr2;
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+
+	switch (adapter->num_tx_queues) {
+	case 1:
+	default:
+		tdba = adapter->tx_ring[0].dma;
+		tdlen = adapter->tx_ring[0].count *
+			sizeof(struct e1000_tx_desc);
+		ew32(TDLEN, tdlen);
+		ew32(TDBAH, (tdba >> 32));
+		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
+		ew32(TDT, 0);
+		ew32(TDH, 0);
+		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
+		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
+		break;
+	}
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	if ((hw->media_type == e1000_media_type_fiber ||
+	     hw->media_type == e1000_media_type_internal_serdes))
+		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+	else
+		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		tipg = DEFAULT_82542_TIPG_IPGT;
+		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+		break;
+	default:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+		break;
+	}
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	ew32(TIPG, tipg);
+
+	/* Set the Tx Interrupt Delay register */
+
+	ew32(TIDV, adapter->tx_int_delay);
+	if (hw->mac_type >= e1000_82540)
+		ew32(TADV, adapter->tx_abs_int_delay);
+
+	/* Program the Transmit Control Register */
+
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
+		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	e1000_config_collision_dist(hw);
+
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* only set IDE if we are delaying interrupts using the timers */
+	if (adapter->tx_int_delay)
+		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+	if (hw->mac_type < e1000_82543)
+		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
+	else
+		adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+	/* Cache if we're 82544 running in PCI-X because we'll
+	 * need this to apply a workaround later in the send path. */
+	if (hw->mac_type == e1000_82544 &&
+	    hw->bus_type == e1000_bus_type_pcix)
+		adapter->pcix_82544 = 1;
+
+	ew32(TCTL, tctl);
+
+}
+
+/**
+ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ * @rxdr:    rx descriptor ring (for a specific queue) to setup
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rxdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size, desc_len;
+
+	size = sizeof(struct e1000_buffer) * rxdr->count;
+	rxdr->buffer_info = vmalloc(size);
+	if (!rxdr->buffer_info) {
+		e_err("Unable to allocate memory for the Rx descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(rxdr->buffer_info, 0, size);
+
+	desc_len = sizeof(struct e1000_rx_desc);
+
+	/* Round up to nearest 4K */
+
+	rxdr->size = rxdr->count * desc_len;
+	rxdr->size = ALIGN(rxdr->size, 4096);
+
+	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
+					GFP_KERNEL);
+
+	if (!rxdr->desc) {
+		e_err("Unable to allocate memory for the Rx descriptor ring\n");
+setup_rx_desc_die:
+		vfree(rxdr->buffer_info);
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+		void *olddesc = rxdr->desc;
+		dma_addr_t olddma = rxdr->dma;
+		e_err("rxdr align check failed: %u bytes at %p\n",
+		      rxdr->size, rxdr->desc);
+		/* Try again, without freeing the previous */
+		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
+						&rxdr->dma, GFP_KERNEL);
+		/* Failed allocation, critical failure */
+		if (!rxdr->desc) {
+			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
+					  olddma);
+			e_err("Unable to allocate memory for the Rx descriptor "
+			      "ring\n");
+			goto setup_rx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+			/* give up */
+			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
+					  rxdr->dma);
+			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
+					  olddma);
+			e_err("Unable to allocate aligned memory for the Rx "
+			      "descriptor ring\n");
+			goto setup_rx_desc_die;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
+					  olddma);
+		}
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+
+	rxdr->next_to_clean = 0;
+	rxdr->next_to_use = 0;
+	rxdr->rx_skb_top = NULL;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
+		if (err) {
+			e_err("Allocation for Rx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_rx_resources(adapter,
+							&adapter->rx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control registers
+ * @adapter: Board private structure
+ **/
+static void e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	if (hw->tbi_compatibility_on == 1)
+		rctl |= E1000_RCTL_SBP;
+	else
+		rctl &= ~E1000_RCTL_SBP;
+
+	if (adapter->netdev->mtu <= ETH_DATA_LEN)
+		rctl &= ~E1000_RCTL_LPE;
+	else
+		rctl |= E1000_RCTL_LPE;
+
+	/* Setup buffer sizes */
+	rctl &= ~E1000_RCTL_SZ_4096;
+	rctl |= E1000_RCTL_BSEX;
+	switch (adapter->rx_buffer_len) {
+		case E1000_RXBUFFER_2048:
+		default:
+			rctl |= E1000_RCTL_SZ_2048;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_4096:
+			rctl |= E1000_RCTL_SZ_4096;
+			break;
+		case E1000_RXBUFFER_8192:
+			rctl |= E1000_RCTL_SZ_8192;
+			break;
+		case E1000_RXBUFFER_16384:
+			rctl |= E1000_RCTL_SZ_16384;
+			break;
+	}
+
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_rx(struct e1000_adapter *adapter)
+{
+	u64 rdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rdlen, rctl, rxcsum;
+
+	if (adapter->netdev->mtu > ETH_DATA_LEN) {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
+	} else {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+	}
+
+	/* disable receives while setting up the descriptors */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+
+	/* set the Receive Delay Timer Register */
+	ew32(RDTR, adapter->rx_int_delay);
+
+	if (hw->mac_type >= e1000_82540) {
+		ew32(RADV, adapter->rx_abs_int_delay);
+		if (adapter->itr_setting != 0)
+			ew32(ITR, 1000000000 / (adapter->itr * 256));
+	}
+
+	/* Setup the HW Rx Head and Tail Descriptor Pointers and
+	 * the Base and Length of the Rx Descriptor Ring */
+	switch (adapter->num_rx_queues) {
+	case 1:
+	default:
+		rdba = adapter->rx_ring[0].dma;
+		ew32(RDLEN, rdlen);
+		ew32(RDBAH, (rdba >> 32));
+		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
+		ew32(RDT, 0);
+		ew32(RDH, 0);
+		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
+		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
+		break;
+	}
+
+	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
+	if (hw->mac_type >= e1000_82543) {
+		rxcsum = er32(RXCSUM);
+		if (adapter->rx_csum)
+			rxcsum |= E1000_RXCSUM_TUOFL;
+		else
+			/* don't need to clear IPPCSE as it defaults to 0 */
+			rxcsum &= ~E1000_RXCSUM_TUOFL;
+		ew32(RXCSUM, rxcsum);
+	}
+
+	/* Enable Receives */
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_free_tx_resources - Free Tx Resources per Queue
+ * @adapter: board private structure
+ * @tx_ring: Tx descriptor ring for a specific queue
+ *
+ * Free all transmit software resources
+ **/
+
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *tx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_tx_ring(adapter, tx_ring);
+
+	vfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
+			  tx_ring->dma);
+
+	tx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_tx_resources - Free Tx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
+}
+
+static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
+					     struct e1000_buffer *buffer_info)
+{
+	if (buffer_info->dma) {
+		if (buffer_info->mapped_as_page)
+			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
+				       buffer_info->length, DMA_TO_DEVICE);
+		else
+			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
+					 buffer_info->length,
+					 DMA_TO_DEVICE);
+		buffer_info->dma = 0;
+	}
+	if (buffer_info->skb) {
+		dev_kfree_skb_any(buffer_info->skb);
+		buffer_info->skb = NULL;
+	}
+	buffer_info->time_stamp = 0;
+	/* buffer_info must be completely set up in the transmit path */
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ * @tx_ring: ring to be cleaned
+ **/
+
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+				struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Tx ring sk_buffs */
+
+	for (i = 0; i < tx_ring->count; i++) {
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+	}
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	memset(tx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+
+	memset(tx_ring->desc, 0, tx_ring->size);
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+	tx_ring->last_tx_tso = 0;
+
+	writel(0, hw->hw_addr + tx_ring->tdh);
+	writel(0, hw->hw_addr + tx_ring->tdt);
+}
+
+/**
+ * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
+}
+
+/**
+ * e1000_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ * @rx_ring: ring to clean the resources from
+ *
+ * Free all receive software resources
+ **/
+
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_rx_ring(adapter, rx_ring);
+
+	vfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
+			  rx_ring->dma);
+
+	rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_rx_resources - Free Rx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers per Queue
+ * @adapter: board private structure
+ * @rx_ring: ring to free buffers from
+ **/
+
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+				struct e1000_rx_ring *rx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Rx ring sk_buffs */
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		if (buffer_info->dma &&
+		    adapter->clean_rx == e1000_clean_rx_irq) {
+			dma_unmap_single(&pdev->dev, buffer_info->dma,
+			                 buffer_info->length,
+					 DMA_FROM_DEVICE);
+		} else if (buffer_info->dma &&
+		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
+			dma_unmap_page(&pdev->dev, buffer_info->dma,
+				       buffer_info->length,
+				       DMA_FROM_DEVICE);
+		}
+
+		buffer_info->dma = 0;
+		if (buffer_info->page) {
+			put_page(buffer_info->page);
+			buffer_info->page = NULL;
+		}
+		if (buffer_info->skb) {
+			dev_kfree_skb(buffer_info->skb);
+			buffer_info->skb = NULL;
+		}
+	}
+
+	/* there also may be some cached data from a chained receive */
+	if (rx_ring->rx_skb_top) {
+		dev_kfree_skb(rx_ring->rx_skb_top);
+		rx_ring->rx_skb_top = NULL;
+	}
+
+	size = sizeof(struct e1000_buffer) * rx_ring->count;
+	memset(rx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+	memset(rx_ring->desc, 0, rx_ring->size);
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+
+	writel(0, hw->hw_addr + rx_ring->rdh);
+	writel(0, hw->hw_addr + rx_ring->rdt);
+}
+
+/**
+ * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
+}
+
+/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
+ * and memory write and invalidate disabled for certain operations
+ */
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	e1000_pci_clear_mwi(hw);
+
+	rctl = er32(RCTL);
+	rctl |= E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (netif_running(netdev))
+		e1000_clean_all_rx_rings(adapter);
+}
+
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+	rctl &= ~E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+		e1000_pci_set_mwi(hw);
+
+	if (netif_running(netdev)) {
+		/* No need to loop, because 82542 supports only 1 queue */
+		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
+		e1000_configure_rx(adapter);
+		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
+	}
+}
+
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_set_mac(struct net_device *netdev, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	return 0;
+}
+
+/**
+ * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_rx_mode entry point is called whenever the unicast or multicast
+ * address lists or the network interface flags are updated. This routine is
+ * responsible for configuring the hardware for proper unicast, multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+
+static void e1000_set_rx_mode(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct netdev_hw_addr *ha;
+	bool use_uc = false;
+	u32 rctl;
+	u32 hash_value;
+	int i, rar_entries = E1000_RAR_ENTRIES;
+	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
+	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
+
+	if (!mcarray) {
+		e_err("memory allocation failed\n");
+		return;
+	}
+
+	/* Check for Promiscuous and All Multicast modes */
+
+	rctl = er32(RCTL);
+
+	if (netdev->flags & IFF_PROMISC) {
+		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		rctl &= ~E1000_RCTL_VFE;
+	} else {
+		if (netdev->flags & IFF_ALLMULTI)
+			rctl |= E1000_RCTL_MPE;
+		else
+			rctl &= ~E1000_RCTL_MPE;
+		/* Enable VLAN filter if there is a VLAN */
+		if (adapter->vlgrp)
+			rctl |= E1000_RCTL_VFE;
+	}
+
+	if (netdev_uc_count(netdev) > rar_entries - 1) {
+		rctl |= E1000_RCTL_UPE;
+	} else if (!(netdev->flags & IFF_PROMISC)) {
+		rctl &= ~E1000_RCTL_UPE;
+		use_uc = true;
+	}
+
+	ew32(RCTL, rctl);
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	/* load the first 14 addresses into the exact filters 1-14. Unicast
+	 * addresses take precedence to avoid disabling unicast filtering
+	 * when possible.
+	 *
+	 * RAR 0 is used for the station MAC adddress
+	 * if there are not 14 addresses, go ahead and clear the filters
+	 */
+	i = 1;
+	if (use_uc)
+		netdev_for_each_uc_addr(ha, netdev) {
+			if (i == rar_entries)
+				break;
+			e1000_rar_set(hw, ha->addr, i++);
+		}
+
+	netdev_for_each_mc_addr(ha, netdev) {
+		if (i == rar_entries) {
+			/* load any remaining addresses into the hash table */
+			u32 hash_reg, hash_bit, mta;
+			hash_value = e1000_hash_mc_addr(hw, ha->addr);
+			hash_reg = (hash_value >> 5) & 0x7F;
+			hash_bit = hash_value & 0x1F;
+			mta = (1 << hash_bit);
+			mcarray[hash_reg] |= mta;
+		} else {
+			e1000_rar_set(hw, ha->addr, i++);
+		}
+	}
+
+	for (; i < rar_entries; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
+		E1000_WRITE_FLUSH();
+	}
+
+	/* write the hash table completely, write from bottom to avoid
+	 * both stupid write combining chipsets, and flushing each write */
+	for (i = mta_reg_count - 1; i >= 0 ; i--) {
+		/*
+		 * If we are on an 82544 has an errata where writing odd
+		 * offsets overwrites the previous even offset, but writing
+		 * backwards over the range solves the issue by always
+		 * writing the odd offset first
+		 */
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
+	}
+	E1000_WRITE_FLUSH();
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	kfree(mcarray);
+}
+
+/* Need to wait a few seconds after link up to get diagnostic information from
+ * the phy */
+
+static void e1000_update_phy_info(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_phy_get_info(hw, &adapter->phy_info);
+}
+
+/**
+ * e1000_82547_tx_fifo_stall - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+
+static void e1000_82547_tx_fifo_stall(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 tctl;
+
+	if (atomic_read(&adapter->tx_fifo_stall)) {
+		if ((er32(TDT) == er32(TDH)) &&
+		   (er32(TDFT) == er32(TDFH)) &&
+		   (er32(TDFTS) == er32(TDFHS))) {
+			tctl = er32(TCTL);
+			ew32(TCTL, tctl & ~E1000_TCTL_EN);
+			ew32(TDFT, adapter->tx_head_addr);
+			ew32(TDFH, adapter->tx_head_addr);
+			ew32(TDFTS, adapter->tx_head_addr);
+			ew32(TDFHS, adapter->tx_head_addr);
+			ew32(TCTL, tctl);
+			E1000_WRITE_FLUSH();
+
+			adapter->tx_fifo_head = 0;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+			netif_wake_queue(netdev);
+		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
+			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+		}
+	}
+}
+
+bool e1000_has_link(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	bool link_active = false;
+
+	/* get_link_status is set on LSC (link status) interrupt or
+	 * rx sequence error interrupt.  get_link_status will stay
+	 * false until the e1000_check_for_link establishes link
+	 * for copper adapters ONLY
+	 */
+	switch (hw->media_type) {
+	case e1000_media_type_copper:
+		if (hw->get_link_status) {
+			e1000_check_for_link(hw);
+			link_active = !hw->get_link_status;
+		} else {
+			link_active = true;
+		}
+		break;
+	case e1000_media_type_fiber:
+		e1000_check_for_link(hw);
+		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
+		break;
+	case e1000_media_type_internal_serdes:
+		e1000_check_for_link(hw);
+		link_active = hw->serdes_has_link;
+		break;
+	default:
+		break;
+	}
+
+	return link_active;
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void e1000_watchdog(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	u32 link, tctl;
+
+	link = e1000_has_link(adapter);
+	if ((netif_carrier_ok(netdev)) && link)
+		goto link_up;
+
+	if (link) {
+		if (!netif_carrier_ok(netdev)) {
+			u32 ctrl;
+			bool txb2b = true;
+			/* update snapshot of PHY registers on LSC */
+			e1000_get_speed_and_duplex(hw,
+			                           &adapter->link_speed,
+			                           &adapter->link_duplex);
+
+			ctrl = er32(CTRL);
+			pr_info("%s NIC Link is Up %d Mbps %s, "
+				"Flow Control: %s\n",
+				netdev->name,
+				adapter->link_speed,
+				adapter->link_duplex == FULL_DUPLEX ?
+				"Full Duplex" : "Half Duplex",
+				((ctrl & E1000_CTRL_TFCE) && (ctrl &
+				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
+				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
+				E1000_CTRL_TFCE) ? "TX" : "None")));
+
+			/* adjust timeout factor according to speed/duplex */
+			adapter->tx_timeout_factor = 1;
+			switch (adapter->link_speed) {
+			case SPEED_10:
+				txb2b = false;
+				adapter->tx_timeout_factor = 16;
+				break;
+			case SPEED_100:
+				txb2b = false;
+				/* maybe add some timeout factor ? */
+				break;
+			}
+
+			/* enable transmits in the hardware */
+			tctl = er32(TCTL);
+			tctl |= E1000_TCTL_EN;
+			ew32(TCTL, tctl);
+
+			netif_carrier_on(netdev);
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				mod_timer(&adapter->phy_info_timer,
+				          round_jiffies(jiffies + 2 * HZ));
+			adapter->smartspeed = 0;
+		}
+	} else {
+		if (netif_carrier_ok(netdev)) {
+			adapter->link_speed = 0;
+			adapter->link_duplex = 0;
+			pr_info("%s NIC Link is Down\n",
+				netdev->name);
+			netif_carrier_off(netdev);
+
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				mod_timer(&adapter->phy_info_timer,
+				          round_jiffies(jiffies + 2 * HZ));
+		}
+
+		e1000_smartspeed(adapter);
+	}
+
+link_up:
+	e1000_update_stats(adapter);
+
+	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+	adapter->tpt_old = adapter->stats.tpt;
+	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
+	adapter->colc_old = adapter->stats.colc;
+
+	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
+	adapter->gorcl_old = adapter->stats.gorcl;
+	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
+	adapter->gotcl_old = adapter->stats.gotcl;
+
+	e1000_update_adaptive(hw);
+
+	if (!netif_carrier_ok(netdev)) {
+		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
+			/* We've lost link, so the controller stops DMA,
+			 * but we've got queued Tx work that's never going
+			 * to get done, so reset controller to flush Tx.
+			 * (Do the reset outside of interrupt context). */
+			adapter->tx_timeout_count++;
+			schedule_work(&adapter->reset_task);
+			/* return immediately since reset is imminent */
+			return;
+		}
+	}
+
+	/* Simple mode for Interrupt Throttle Rate (ITR) */
+	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
+		/*
+		 * Symmetric Tx/Rx gets a reduced ITR=2000;
+		 * Total asymmetrical Tx or Rx gets ITR=8000;
+		 * everyone else is between 2000-8000.
+		 */
+		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
+		u32 dif = (adapter->gotcl > adapter->gorcl ?
+			    adapter->gotcl - adapter->gorcl :
+			    adapter->gorcl - adapter->gotcl) / 10000;
+		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
+
+		ew32(ITR, 1000000000 / (itr * 256));
+	}
+
+	/* Cause software interrupt to ensure rx ring is cleaned */
+	ew32(ICS, E1000_ICS_RXDMT0);
+
+	/* Force detection of hung controller every watchdog period */
+	adapter->detect_tx_hung = true;
+
+	/* Reset the timer */
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		mod_timer(&adapter->watchdog_timer,
+		          round_jiffies(jiffies + 2 * HZ));
+}
+
+enum latency_range {
+	lowest_latency = 0,
+	low_latency = 1,
+	bulk_latency = 2,
+	latency_invalid = 255
+};
+
+/**
+ * e1000_update_itr - update the dynamic ITR value based on statistics
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ *
+ *      Stores a new ITR value based on packets and byte
+ *      counts during the last interrupt.  The advantage of per interrupt
+ *      computation is faster updates and more accurate ITR for the current
+ *      traffic pattern.  Constants in this function were computed
+ *      based on theoretical maximum wire speed and thresholds were set based
+ *      on testing data as well as attempting to minimize response time
+ *      while increasing bulk throughput.
+ *      this functionality is controlled by the InterruptThrottleRate module
+ *      parameter (see e1000_param.c)
+ **/
+static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
+				     u16 itr_setting, int packets, int bytes)
+{
+	unsigned int retval = itr_setting;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		goto update_itr_done;
+
+	if (packets == 0)
+		goto update_itr_done;
+
+	switch (itr_setting) {
+	case lowest_latency:
+		/* jumbo frames get bulk treatment*/
+		if (bytes/packets > 8000)
+			retval = bulk_latency;
+		else if ((packets < 5) && (bytes > 512))
+			retval = low_latency;
+		break;
+	case low_latency:  /* 50 usec aka 20000 ints/s */
+		if (bytes > 10000) {
+			/* jumbo frames need bulk latency setting */
+			if (bytes/packets > 8000)
+				retval = bulk_latency;
+			else if ((packets < 10) || ((bytes/packets) > 1200))
+				retval = bulk_latency;
+			else if ((packets > 35))
+				retval = lowest_latency;
+		} else if (bytes/packets > 2000)
+			retval = bulk_latency;
+		else if (packets <= 2 && bytes < 512)
+			retval = lowest_latency;
+		break;
+	case bulk_latency: /* 250 usec aka 4000 ints/s */
+		if (bytes > 25000) {
+			if (packets > 35)
+				retval = low_latency;
+		} else if (bytes < 6000) {
+			retval = low_latency;
+		}
+		break;
+	}
+
+update_itr_done:
+	return retval;
+}
+
+static void e1000_set_itr(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 current_itr;
+	u32 new_itr = adapter->itr;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		return;
+
+	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
+	if (unlikely(adapter->link_speed != SPEED_1000)) {
+		current_itr = 0;
+		new_itr = 4000;
+		goto set_itr_now;
+	}
+
+	adapter->tx_itr = e1000_update_itr(adapter,
+	                            adapter->tx_itr,
+	                            adapter->total_tx_packets,
+	                            adapter->total_tx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
+		adapter->tx_itr = low_latency;
+
+	adapter->rx_itr = e1000_update_itr(adapter,
+	                            adapter->rx_itr,
+	                            adapter->total_rx_packets,
+	                            adapter->total_rx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
+		adapter->rx_itr = low_latency;
+
+	current_itr = max(adapter->rx_itr, adapter->tx_itr);
+
+	switch (current_itr) {
+	/* counts and packets in update_itr are dependent on these numbers */
+	case lowest_latency:
+		new_itr = 70000;
+		break;
+	case low_latency:
+		new_itr = 20000; /* aka hwitr = ~200 */
+		break;
+	case bulk_latency:
+		new_itr = 4000;
+		break;
+	default:
+		break;
+	}
+
+set_itr_now:
+	if (new_itr != adapter->itr) {
+		/* this attempts to bias the interrupt rate towards Bulk
+		 * by adding intermediate steps when interrupt rate is
+		 * increasing */
+		new_itr = new_itr > adapter->itr ?
+		             min(adapter->itr + (new_itr >> 2), new_itr) :
+		             new_itr;
+		adapter->itr = new_itr;
+		ew32(ITR, 1000000000 / (new_itr * 256));
+	}
+}
+
+#define E1000_TX_FLAGS_CSUM		0x00000001
+#define E1000_TX_FLAGS_VLAN		0x00000002
+#define E1000_TX_FLAGS_TSO		0x00000004
+#define E1000_TX_FLAGS_IPV4		0x00000008
+#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT	16
+
+static int e1000_tso(struct e1000_adapter *adapter,
+		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u32 cmd_length = 0;
+	u16 ipcse = 0, tucse, mss;
+	u8 ipcss, ipcso, tucss, tucso, hdr_len;
+	int err;
+
+	if (skb_is_gso(skb)) {
+		if (skb_header_cloned(skb)) {
+			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+			if (err)
+				return err;
+		}
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		mss = skb_shinfo(skb)->gso_size;
+		if (skb->protocol == htons(ETH_P_IP)) {
+			struct iphdr *iph = ip_hdr(skb);
+			iph->tot_len = 0;
+			iph->check = 0;
+			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+								 iph->daddr, 0,
+								 IPPROTO_TCP,
+								 0);
+			cmd_length = E1000_TXD_CMD_IP;
+			ipcse = skb_transport_offset(skb) - 1;
+		} else if (skb->protocol == htons(ETH_P_IPV6)) {
+			ipv6_hdr(skb)->payload_len = 0;
+			tcp_hdr(skb)->check =
+				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+						 &ipv6_hdr(skb)->daddr,
+						 0, IPPROTO_TCP, 0);
+			ipcse = 0;
+		}
+		ipcss = skb_network_offset(skb);
+		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
+		tucss = skb_transport_offset(skb);
+		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
+		tucse = 0;
+
+		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
+
+		i = tx_ring->next_to_use;
+		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+		buffer_info = &tx_ring->buffer_info[i];
+
+		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
+		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
+		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
+		context_desc->upper_setup.tcp_fields.tucss = tucss;
+		context_desc->upper_setup.tcp_fields.tucso = tucso;
+		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
+		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+
+		if (++i == tx_ring->count) i = 0;
+		tx_ring->next_to_use = i;
+
+		return true;
+	}
+	return false;
+}
+
+static bool e1000_tx_csum(struct e1000_adapter *adapter,
+			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u8 css;
+	u32 cmd_len = E1000_TXD_CMD_DEXT;
+
+	if (skb->ip_summed != CHECKSUM_PARTIAL)
+		return false;
+
+	switch (skb->protocol) {
+	case cpu_to_be16(ETH_P_IP):
+		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	case cpu_to_be16(ETH_P_IPV6):
+		/* XXX not handling all IPV6 headers */
+		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	default:
+		if (unlikely(net_ratelimit()))
+			e_warn("checksum_partial proto=%x!\n", skb->protocol);
+		break;
+	}
+
+	css = skb_transport_offset(skb);
+
+	i = tx_ring->next_to_use;
+	buffer_info = &tx_ring->buffer_info[i];
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+
+	context_desc->lower_setup.ip_config = 0;
+	context_desc->upper_setup.tcp_fields.tucss = css;
+	context_desc->upper_setup.tcp_fields.tucso =
+		css + skb->csum_offset;
+	context_desc->upper_setup.tcp_fields.tucse = 0;
+	context_desc->tcp_seg_setup.data = 0;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	if (unlikely(++i == tx_ring->count)) i = 0;
+	tx_ring->next_to_use = i;
+
+	return true;
+}
+
+#define E1000_MAX_TXD_PWR	12
+#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
+
+static int e1000_tx_map(struct e1000_adapter *adapter,
+			struct e1000_tx_ring *tx_ring,
+			struct sk_buff *skb, unsigned int first,
+			unsigned int max_per_txd, unsigned int nr_frags,
+			unsigned int mss)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_buffer *buffer_info;
+	unsigned int len = skb_headlen(skb);
+	unsigned int offset = 0, size, count = 0, i;
+	unsigned int f;
+
+	i = tx_ring->next_to_use;
+
+	while (len) {
+		buffer_info = &tx_ring->buffer_info[i];
+		size = min(len, max_per_txd);
+		/* Workaround for Controller erratum --
+		 * descriptor for non-tso packet in a linear SKB that follows a
+		 * tso gets written back prematurely before the data is fully
+		 * DMA'd to the controller */
+		if (!skb->data_len && tx_ring->last_tx_tso &&
+		    !skb_is_gso(skb)) {
+			tx_ring->last_tx_tso = 0;
+			size -= 4;
+		}
+
+		/* Workaround for premature desc write-backs
+		 * in TSO mode.  Append 4-byte sentinel desc */
+		if (unlikely(mss && !nr_frags && size == len && size > 8))
+			size -= 4;
+		/* work-around for errata 10 and it applies
+		 * to all controllers in PCI-X mode
+		 * The fix is to make sure that the first descriptor of a
+		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
+		 */
+		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+		                (size > 2015) && count == 0))
+		        size = 2015;
+
+		/* Workaround for potential 82544 hang in PCI-X.  Avoid
+		 * terminating buffers within evenly-aligned dwords. */
+		if (unlikely(adapter->pcix_82544 &&
+		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
+		   size > 4))
+			size -= 4;
+
+		buffer_info->length = size;
+		/* set time_stamp *before* dma to help avoid a possible race */
+		buffer_info->time_stamp = jiffies;
+		buffer_info->mapped_as_page = false;
+		buffer_info->dma = dma_map_single(&pdev->dev,
+						  skb->data + offset,
+						  size,	DMA_TO_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+			goto dma_error;
+		buffer_info->next_to_watch = i;
+
+		len -= size;
+		offset += size;
+		count++;
+		if (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+		}
+	}
+
+	for (f = 0; f < nr_frags; f++) {
+		struct skb_frag_struct *frag;
+
+		frag = &skb_shinfo(skb)->frags[f];
+		len = frag->size;
+		offset = frag->page_offset;
+
+		while (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+
+			buffer_info = &tx_ring->buffer_info[i];
+			size = min(len, max_per_txd);
+			/* Workaround for premature desc write-backs
+			 * in TSO mode.  Append 4-byte sentinel desc */
+			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
+				size -= 4;
+			/* Workaround for potential 82544 hang in PCI-X.
+			 * Avoid terminating buffers within evenly-aligned
+			 * dwords. */
+			if (unlikely(adapter->pcix_82544 &&
+			    !((unsigned long)(page_to_phys(frag->page) + offset
+			                      + size - 1) & 4) &&
+			    size > 4))
+				size -= 4;
+
+			buffer_info->length = size;
+			buffer_info->time_stamp = jiffies;
+			buffer_info->mapped_as_page = true;
+			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
+							offset,	size,
+							DMA_TO_DEVICE);
+			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+				goto dma_error;
+			buffer_info->next_to_watch = i;
+
+			len -= size;
+			offset += size;
+			count++;
+		}
+	}
+
+	tx_ring->buffer_info[i].skb = skb;
+	tx_ring->buffer_info[first].next_to_watch = i;
+
+	return count;
+
+dma_error:
+	dev_err(&pdev->dev, "TX DMA map failed\n");
+	buffer_info->dma = 0;
+	if (count)
+		count--;
+
+	while (count--) {
+		if (i==0)
+			i += tx_ring->count;
+		i--;
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+	}
+
+	return 0;
+}
+
+static void e1000_tx_queue(struct e1000_adapter *adapter,
+			   struct e1000_tx_ring *tx_ring, int tx_flags,
+			   int count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_desc *tx_desc = NULL;
+	struct e1000_buffer *buffer_info;
+	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+	unsigned int i;
+
+	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+		             E1000_TXD_CMD_TSE;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
+			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+	}
+
+	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+	}
+
+	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
+		txd_lower |= E1000_TXD_CMD_VLE;
+		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+	}
+
+	i = tx_ring->next_to_use;
+
+	while (count--) {
+		buffer_info = &tx_ring->buffer_info[i];
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+		tx_desc->lower.data =
+			cpu_to_le32(txd_lower | buffer_info->length);
+		tx_desc->upper.data = cpu_to_le32(txd_upper);
+		if (unlikely(++i == tx_ring->count)) i = 0;
+	}
+
+	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+	/* Force memory writes to complete before letting h/w
+	 * know there are new descriptors to fetch.  (Only
+	 * applicable for weak-ordered memory model archs,
+	 * such as IA-64). */
+	wmb();
+
+	tx_ring->next_to_use = i;
+	writel(i, hw->hw_addr + tx_ring->tdt);
+	/* we need this if more than one processor can write to our tail
+	 * at a time, it syncronizes IO on IA64/Altix systems */
+	mmiowb();
+}
+
+/**
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary by notifying the stack to resend
+ * the packet at a later time.  This gives the Tx FIFO an opportunity to
+ * flush all packets.  When that occurs, we reset the Tx FIFO pointers
+ * to the beginning of the Tx FIFO.
+ **/
+
+#define E1000_FIFO_HDR			0x10
+#define E1000_82547_PAD_LEN		0x3E0
+
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+				       struct sk_buff *skb)
+{
+	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
+	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
+
+	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
+
+	if (adapter->link_duplex != HALF_DUPLEX)
+		goto no_fifo_stall_required;
+
+	if (atomic_read(&adapter->tx_fifo_stall))
+		return 1;
+
+	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
+		atomic_set(&adapter->tx_fifo_stall, 1);
+		return 1;
+	}
+
+no_fifo_stall_required:
+	adapter->tx_fifo_head += skb_fifo_len;
+	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
+		adapter->tx_fifo_head -= adapter->tx_fifo_size;
+	return 0;
+}
+
+static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+
+	netif_stop_queue(netdev);
+	/* Herbert's original patch had:
+	 *  smp_mb__after_netif_stop_queue();
+	 * but since that doesn't exist yet, just open code it. */
+	smp_mb();
+
+	/* We need to check again in a case another CPU has just
+	 * made room available. */
+	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
+		return -EBUSY;
+
+	/* A reprieve! */
+	netif_start_queue(netdev);
+	++adapter->restart_queue;
+	return 0;
+}
+
+static int e1000_maybe_stop_tx(struct net_device *netdev,
+                               struct e1000_tx_ring *tx_ring, int size)
+{
+	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
+		return 0;
+	return __e1000_maybe_stop_tx(netdev, size);
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *tx_ring;
+	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
+	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+	unsigned int tx_flags = 0;
+	unsigned int len = skb_headlen(skb);
+	unsigned int nr_frags;
+	unsigned int mss;
+	int count = 0;
+	int tso;
+	unsigned int f;
+
+	/* This goes back to the question of how to logically map a tx queue
+	 * to a flow.  Right now, performance is impacted slightly negatively
+	 * if using multiple tx queues.  If the stack breaks away from a
+	 * single qdisc implementation, we can look at this again. */
+	tx_ring = adapter->tx_ring;
+
+	if (unlikely(skb->len <= 0)) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	mss = skb_shinfo(skb)->gso_size;
+	/* The controller does a simple calculation to
+	 * make sure there is enough room in the FIFO before
+	 * initiating the DMA for each buffer.  The calc is:
+	 * 4 = ceil(buffer len/mss).  To make sure we don't
+	 * overrun the FIFO, adjust the max buffer len if mss
+	 * drops. */
+	if (mss) {
+		u8 hdr_len;
+		max_per_txd = min(mss << 2, max_per_txd);
+		max_txd_pwr = fls(max_per_txd) - 1;
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		if (skb->data_len && hdr_len == len) {
+			switch (hw->mac_type) {
+				unsigned int pull_size;
+			case e1000_82544:
+				/* Make sure we have room to chop off 4 bytes,
+				 * and that the end alignment will work out to
+				 * this hardware's requirements
+				 * NOTE: this is a TSO only workaround
+				 * if end byte alignment not correct move us
+				 * into the next dword */
+				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
+					break;
+				/* fall through */
+				pull_size = min((unsigned int)4, skb->data_len);
+				if (!__pskb_pull_tail(skb, pull_size)) {
+					e_err("__pskb_pull_tail failed.\n");
+					dev_kfree_skb_any(skb);
+					return NETDEV_TX_OK;
+				}
+				len = skb_headlen(skb);
+				break;
+			default:
+				/* do nothing */
+				break;
+			}
+		}
+	}
+
+	/* reserve a descriptor for the offload context */
+	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
+		count++;
+	count++;
+
+	/* Controller Erratum workaround */
+	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
+		count++;
+
+	count += TXD_USE_COUNT(len, max_txd_pwr);
+
+	if (adapter->pcix_82544)
+		count++;
+
+	/* work-around for errata 10 and it applies to all controllers
+	 * in PCI-X mode, so add one more descriptor to the count
+	 */
+	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+			(len > 2015)))
+		count++;
+
+	nr_frags = skb_shinfo(skb)->nr_frags;
+	for (f = 0; f < nr_frags; f++)
+		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+				       max_txd_pwr);
+	if (adapter->pcix_82544)
+		count += nr_frags;
+
+	/* need: count + 2 desc gap to keep tail from touching
+	 * head, otherwise try next time */
+	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
+		return NETDEV_TX_BUSY;
+
+	if (unlikely(hw->mac_type == e1000_82547)) {
+		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
+			netif_stop_queue(netdev);
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				mod_timer(&adapter->tx_fifo_stall_timer,
+				          jiffies + 1);
+			return NETDEV_TX_BUSY;
+		}
+	}
+
+	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
+		tx_flags |= E1000_TX_FLAGS_VLAN;
+		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+	}
+
+	first = tx_ring->next_to_use;
+
+	tso = e1000_tso(adapter, tx_ring, skb);
+	if (tso < 0) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	if (likely(tso)) {
+		if (likely(hw->mac_type != e1000_82544))
+			tx_ring->last_tx_tso = 1;
+		tx_flags |= E1000_TX_FLAGS_TSO;
+	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
+		tx_flags |= E1000_TX_FLAGS_CSUM;
+
+	if (likely(skb->protocol == htons(ETH_P_IP)))
+		tx_flags |= E1000_TX_FLAGS_IPV4;
+
+	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
+	                     nr_frags, mss);
+
+	if (count) {
+		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
+		/* Make sure there is space in the ring for the next send. */
+		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
+
+	} else {
+		dev_kfree_skb_any(skb);
+		tx_ring->buffer_info[first].time_stamp = 0;
+		tx_ring->next_to_use = first;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+
+static void e1000_tx_timeout(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Do the reset outside of interrupt context */
+	adapter->tx_timeout_count++;
+	schedule_work(&adapter->reset_task);
+}
+
+static void e1000_reset_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter =
+		container_of(work, struct e1000_adapter, reset_task);
+
+	e1000_reinit_locked(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+
+static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
+{
+	/* only return the current stats */
+	return &netdev->stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+
+	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
+	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
+		e_err("Invalid MTU setting\n");
+		return -EINVAL;
+	}
+
+	/* Adapter-specific max frame size limits. */
+	switch (hw->mac_type) {
+	case e1000_undefined ... e1000_82542_rev2_1:
+		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
+			e_err("Jumbo Frames not supported.\n");
+			return -EINVAL;
+		}
+		break;
+	default:
+		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
+		break;
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	/* e1000_down has a dependency on max_frame_size */
+	hw->max_frame_size = max_frame;
+	if (netif_running(netdev))
+		e1000_down(adapter);
+
+	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+	 * means we reserve 2 more, this pushes us to allocate from the next
+	 * larger slab size.
+	 * i.e. RXBUFFER_2048 --> size-4096 slab
+	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
+	 *  fragmented skbs */
+
+	if (max_frame <= E1000_RXBUFFER_2048)
+		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+	else
+#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
+		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
+		adapter->rx_buffer_len = PAGE_SIZE;
+#endif
+
+	/* adjust allocation if LPE protects us, and we aren't using SBP */
+	if (!hw->tbi_compatibility_on &&
+	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
+	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
+		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+
+	pr_info("%s changing MTU from %d to %d\n",
+		netdev->name, netdev->mtu, new_mtu);
+	netdev->mtu = new_mtu;
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+	else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+
+void e1000_update_stats(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long flags;
+	u16 phy_tmp;
+
+#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
+
+	/*
+	 * Prevent stats update while adapter is being reset, or if the pci
+	 * connection is down.
+	 */
+	if (adapter->link_speed == 0)
+		return;
+	if (pci_channel_offline(pdev))
+		return;
+
+	spin_lock_irqsave(&adapter->stats_lock, flags);
+
+	/* these counters are modified from e1000_tbi_adjust_stats,
+	 * called from the interrupt context, so they must only
+	 * be written while holding adapter->stats_lock
+	 */
+
+	adapter->stats.crcerrs += er32(CRCERRS);
+	adapter->stats.gprc += er32(GPRC);
+	adapter->stats.gorcl += er32(GORCL);
+	adapter->stats.gorch += er32(GORCH);
+	adapter->stats.bprc += er32(BPRC);
+	adapter->stats.mprc += er32(MPRC);
+	adapter->stats.roc += er32(ROC);
+
+	adapter->stats.prc64 += er32(PRC64);
+	adapter->stats.prc127 += er32(PRC127);
+	adapter->stats.prc255 += er32(PRC255);
+	adapter->stats.prc511 += er32(PRC511);
+	adapter->stats.prc1023 += er32(PRC1023);
+	adapter->stats.prc1522 += er32(PRC1522);
+
+	adapter->stats.symerrs += er32(SYMERRS);
+	adapter->stats.mpc += er32(MPC);
+	adapter->stats.scc += er32(SCC);
+	adapter->stats.ecol += er32(ECOL);
+	adapter->stats.mcc += er32(MCC);
+	adapter->stats.latecol += er32(LATECOL);
+	adapter->stats.dc += er32(DC);
+	adapter->stats.sec += er32(SEC);
+	adapter->stats.rlec += er32(RLEC);
+	adapter->stats.xonrxc += er32(XONRXC);
+	adapter->stats.xontxc += er32(XONTXC);
+	adapter->stats.xoffrxc += er32(XOFFRXC);
+	adapter->stats.xofftxc += er32(XOFFTXC);
+	adapter->stats.fcruc += er32(FCRUC);
+	adapter->stats.gptc += er32(GPTC);
+	adapter->stats.gotcl += er32(GOTCL);
+	adapter->stats.gotch += er32(GOTCH);
+	adapter->stats.rnbc += er32(RNBC);
+	adapter->stats.ruc += er32(RUC);
+	adapter->stats.rfc += er32(RFC);
+	adapter->stats.rjc += er32(RJC);
+	adapter->stats.torl += er32(TORL);
+	adapter->stats.torh += er32(TORH);
+	adapter->stats.totl += er32(TOTL);
+	adapter->stats.toth += er32(TOTH);
+	adapter->stats.tpr += er32(TPR);
+
+	adapter->stats.ptc64 += er32(PTC64);
+	adapter->stats.ptc127 += er32(PTC127);
+	adapter->stats.ptc255 += er32(PTC255);
+	adapter->stats.ptc511 += er32(PTC511);
+	adapter->stats.ptc1023 += er32(PTC1023);
+	adapter->stats.ptc1522 += er32(PTC1522);
+
+	adapter->stats.mptc += er32(MPTC);
+	adapter->stats.bptc += er32(BPTC);
+
+	/* used for adaptive IFS */
+
+	hw->tx_packet_delta = er32(TPT);
+	adapter->stats.tpt += hw->tx_packet_delta;
+	hw->collision_delta = er32(COLC);
+	adapter->stats.colc += hw->collision_delta;
+
+	if (hw->mac_type >= e1000_82543) {
+		adapter->stats.algnerrc += er32(ALGNERRC);
+		adapter->stats.rxerrc += er32(RXERRC);
+		adapter->stats.tncrs += er32(TNCRS);
+		adapter->stats.cexterr += er32(CEXTERR);
+		adapter->stats.tsctc += er32(TSCTC);
+		adapter->stats.tsctfc += er32(TSCTFC);
+	}
+
+	/* Fill out the OS statistics structure */
+	netdev->stats.multicast = adapter->stats.mprc;
+	netdev->stats.collisions = adapter->stats.colc;
+
+	/* Rx Errors */
+
+	/* RLEC on some newer hardware can be incorrect so build
+	* our own version based on RUC and ROC */
+	netdev->stats.rx_errors = adapter->stats.rxerrc +
+		adapter->stats.crcerrs + adapter->stats.algnerrc +
+		adapter->stats.ruc + adapter->stats.roc +
+		adapter->stats.cexterr;
+	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
+	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
+	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
+	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
+	netdev->stats.rx_missed_errors = adapter->stats.mpc;
+
+	/* Tx Errors */
+	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
+	netdev->stats.tx_errors = adapter->stats.txerrc;
+	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
+	netdev->stats.tx_window_errors = adapter->stats.latecol;
+	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
+	if (hw->bad_tx_carr_stats_fd &&
+	    adapter->link_duplex == FULL_DUPLEX) {
+		netdev->stats.tx_carrier_errors = 0;
+		adapter->stats.tncrs = 0;
+	}
+
+	/* Tx Dropped needs to be maintained elsewhere */
+
+	/* Phy Stats */
+	if (hw->media_type == e1000_media_type_copper) {
+		if ((adapter->link_speed == SPEED_1000) &&
+		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
+			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
+			adapter->phy_stats.idle_errors += phy_tmp;
+		}
+
+		if ((hw->mac_type <= e1000_82546) &&
+		   (hw->phy_type == e1000_phy_m88) &&
+		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
+			adapter->phy_stats.receive_errors += phy_tmp;
+	}
+
+	/* Management Stats */
+	if (hw->has_smbus) {
+		adapter->stats.mgptc += er32(MGTPTC);
+		adapter->stats.mgprc += er32(MGTPRC);
+		adapter->stats.mgpdc += er32(MGTPDC);
+	}
+
+	spin_unlock_irqrestore(&adapter->stats_lock, flags);
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+
+static irqreturn_t e1000_intr(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
+		return IRQ_NONE;  /* Not our interrupt */
+
+	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
+		hw->get_link_status = 1;
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	/* disable interrupts, without the synchronize_irq bit */
+	ew32(IMC, ~0);
+	E1000_WRITE_FLUSH();
+
+	if (likely(napi_schedule_prep(&adapter->napi))) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__napi_schedule(&adapter->napi);
+	} else {
+		/* this really should not happen! if it does it is basically a
+		 * bug, but not a hard error, so enable ints and continue */
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			e1000_irq_enable(adapter);
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @adapter: board private structure
+ **/
+static int e1000_clean(struct napi_struct *napi, int budget)
+{
+	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
+	int tx_clean_complete = 0, work_done = 0;
+
+	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
+
+	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
+
+	if (!tx_clean_complete)
+		work_done = budget;
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		if (likely(adapter->itr_setting & 3))
+			e1000_set_itr(adapter);
+		napi_complete(napi);
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			e1000_irq_enable(adapter);
+	}
+
+	return work_done;
+}
+
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ **/
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_desc *tx_desc, *eop_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i, eop;
+	unsigned int count = 0;
+	unsigned int total_tx_bytes=0, total_tx_packets=0;
+
+	i = tx_ring->next_to_clean;
+	eop = tx_ring->buffer_info[i].next_to_watch;
+	eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
+	       (count < tx_ring->count)) {
+		bool cleaned = false;
+		rmb();	/* read buffer_info after eop_desc */
+		for ( ; !cleaned; count++) {
+			tx_desc = E1000_TX_DESC(*tx_ring, i);
+			buffer_info = &tx_ring->buffer_info[i];
+			cleaned = (i == eop);
+
+			if (cleaned) {
+				struct sk_buff *skb = buffer_info->skb;
+				unsigned int segs, bytecount;
+				segs = skb_shinfo(skb)->gso_segs ?: 1;
+				/* multiply data chunks by size of headers */
+				bytecount = ((segs - 1) * skb_headlen(skb)) +
+				            skb->len;
+				total_tx_packets += segs;
+				total_tx_bytes += bytecount;
+			}
+			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+			tx_desc->upper.data = 0;
+
+			if (unlikely(++i == tx_ring->count)) i = 0;
+		}
+
+		eop = tx_ring->buffer_info[i].next_to_watch;
+		eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	}
+
+	tx_ring->next_to_clean = i;
+
+#define TX_WAKE_THRESHOLD 32
+	if (unlikely(count && netif_carrier_ok(netdev) &&
+		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
+		/* Make sure that anybody stopping the queue after this
+		 * sees the new next_to_clean.
+		 */
+		smp_mb();
+
+		if (netif_queue_stopped(netdev) &&
+		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
+			netif_wake_queue(netdev);
+			++adapter->restart_queue;
+		}
+	}
+
+	if (adapter->detect_tx_hung) {
+		/* Detect a transmit hang in hardware, this serializes the
+		 * check with the clearing of time_stamp and movement of i */
+		adapter->detect_tx_hung = false;
+		if (tx_ring->buffer_info[eop].time_stamp &&
+		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
+		               (adapter->tx_timeout_factor * HZ)) &&
+		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
+
+			/* detected Tx unit hang */
+			e_err("Detected Tx Unit Hang\n"
+			      "  Tx Queue             <%lu>\n"
+			      "  TDH                  <%x>\n"
+			      "  TDT                  <%x>\n"
+			      "  next_to_use          <%x>\n"
+			      "  next_to_clean        <%x>\n"
+			      "buffer_info[next_to_clean]\n"
+			      "  time_stamp           <%lx>\n"
+			      "  next_to_watch        <%x>\n"
+			      "  jiffies              <%lx>\n"
+			      "  next_to_watch.status <%x>\n",
+				(unsigned long)((tx_ring - adapter->tx_ring) /
+					sizeof(struct e1000_tx_ring)),
+				readl(hw->hw_addr + tx_ring->tdh),
+				readl(hw->hw_addr + tx_ring->tdt),
+				tx_ring->next_to_use,
+				tx_ring->next_to_clean,
+				tx_ring->buffer_info[eop].time_stamp,
+				eop,
+				jiffies,
+				eop_desc->upper.fields.status);
+			netif_stop_queue(netdev);
+		}
+	}
+	adapter->total_tx_bytes += total_tx_bytes;
+	adapter->total_tx_packets += total_tx_packets;
+	netdev->stats.tx_bytes += total_tx_bytes;
+	netdev->stats.tx_packets += total_tx_packets;
+	return (count < tx_ring->count);
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter:     board private structure
+ * @status_err:  receive descriptor status and error fields
+ * @csum:        receive descriptor csum field
+ * @sk_buff:     socket buffer with received data
+ **/
+
+static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
+			      u32 csum, struct sk_buff *skb)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 status = (u16)status_err;
+	u8 errors = (u8)(status_err >> 24);
+	skb->ip_summed = CHECKSUM_NONE;
+
+	/* 82543 or newer only */
+	if (unlikely(hw->mac_type < e1000_82543)) return;
+	/* Ignore Checksum bit is set */
+	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
+	/* TCP/UDP checksum error bit is set */
+	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
+		/* let the stack verify checksum errors */
+		adapter->hw_csum_err++;
+		return;
+	}
+	/* TCP/UDP Checksum has not been calculated */
+	if (!(status & E1000_RXD_STAT_TCPCS))
+		return;
+
+	/* It must be a TCP or UDP packet with a valid checksum */
+	if (likely(status & E1000_RXD_STAT_TCPCS)) {
+		/* TCP checksum is good */
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	}
+	adapter->hw_csum_good++;
+}
+
+/**
+ * e1000_consume_page - helper function
+ **/
+static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
+                               u16 length)
+{
+	bi->page = NULL;
+	skb->len += length;
+	skb->data_len += length;
+	skb->truesize += length;
+}
+
+/**
+ * e1000_receive_skb - helper function to handle rx indications
+ * @adapter: board private structure
+ * @status: descriptor status field as written by hardware
+ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
+ * @skb: pointer to sk_buff to be indicated to stack
+ */
+static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
+			      __le16 vlan, struct sk_buff *skb)
+{
+	if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
+		vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
+		                         le16_to_cpu(vlan) &
+		                         E1000_RXD_SPC_VLAN_MASK);
+	} else {
+		netif_receive_skb(skb);
+	}
+}
+
+/**
+ * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ */
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long irq_flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb(); /* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		buffer_info->skb = NULL;
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		dma_unmap_page(&pdev->dev, buffer_info->dma,
+			       buffer_info->length, DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/* errors is only valid for DD + EOP descriptors */
+		if (unlikely((status & E1000_RXD_STAT_EOP) &&
+		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock,
+				                  irq_flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       irq_flags);
+				length--;
+			} else {
+				/* recycle both page and skb */
+				buffer_info->skb = skb;
+				/* an error means any chain goes out the window
+				 * too */
+				if (rx_ring->rx_skb_top)
+					dev_kfree_skb(rx_ring->rx_skb_top);
+				rx_ring->rx_skb_top = NULL;
+				goto next_desc;
+			}
+		}
+
+#define rxtop rx_ring->rx_skb_top
+		if (!(status & E1000_RXD_STAT_EOP)) {
+			/* this descriptor is only the beginning (or middle) */
+			if (!rxtop) {
+				/* this is the beginning of a chain */
+				rxtop = skb;
+				skb_fill_page_desc(rxtop, 0, buffer_info->page,
+				                   0, length);
+			} else {
+				/* this is the middle of a chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the skb, only consumed the page */
+				buffer_info->skb = skb;
+			}
+			e1000_consume_page(buffer_info, rxtop, length);
+			goto next_desc;
+		} else {
+			if (rxtop) {
+				/* end of the chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the current skb, we only consumed the
+				 * page */
+				buffer_info->skb = skb;
+				skb = rxtop;
+				rxtop = NULL;
+				e1000_consume_page(buffer_info, skb, length);
+			} else {
+				/* no chain, got EOP, this buf is the packet
+				 * copybreak to save the put_page/alloc_page */
+				if (length <= copybreak &&
+				    skb_tailroom(skb) >= length) {
+					u8 *vaddr;
+					vaddr = kmap_atomic(buffer_info->page,
+					                    KM_SKB_DATA_SOFTIRQ);
+					memcpy(skb_tail_pointer(skb), vaddr, length);
+					kunmap_atomic(vaddr,
+					              KM_SKB_DATA_SOFTIRQ);
+					/* re-use the page, so don't erase
+					 * buffer_info->page */
+					skb_put(skb, length);
+				} else {
+					skb_fill_page_desc(skb, 0,
+					                   buffer_info->page, 0,
+				                           length);
+					e1000_consume_page(buffer_info, skb,
+					                   length);
+				}
+			}
+		}
+
+		/* Receive Checksum Offload XXX recompute due to CRC strip? */
+		e1000_rx_checksum(adapter,
+		                  (u32)(status) |
+		                  ((u32)(rx_desc->errors) << 24),
+		                  le16_to_cpu(rx_desc->csum), skb);
+
+		pskb_trim(skb, skb->len - 4);
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		/* eth type trans needs skb->data to point to something */
+		if (!pskb_may_pull(skb, ETH_HLEN)) {
+			e_err("pskb_may_pull failed.\n");
+			dev_kfree_skb(skb);
+			goto next_desc;
+		}
+
+		skb->protocol = eth_type_trans(skb, netdev);
+
+		e1000_receive_skb(adapter, status, rx_desc->special, skb);
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/*
+ * this should improve performance for small packets with large amounts
+ * of reassembly being done in the stack
+ */
+static void e1000_check_copybreak(struct net_device *netdev,
+				 struct e1000_buffer *buffer_info,
+				 u32 length, struct sk_buff **skb)
+{
+	struct sk_buff *new_skb;
+
+	if (length > copybreak)
+		return;
+
+	new_skb = netdev_alloc_skb_ip_align(netdev, length);
+	if (!new_skb)
+		return;
+
+	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
+				       (*skb)->data - NET_IP_ALIGN,
+				       length + NET_IP_ALIGN);
+	/* save the skb in buffer_info as good */
+	buffer_info->skb = *skb;
+	*skb = new_skb;
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ */
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb(); /* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		buffer_info->skb = NULL;
+
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		dma_unmap_single(&pdev->dev, buffer_info->dma,
+				 buffer_info->length, DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+		/* !EOP means multiple descriptors were used to store a single
+		 * packet, if thats the case we need to toss it.  In fact, we
+		 * to toss every packet with the EOP bit clear and the next
+		 * frame that _does_ have the EOP bit set, as it is by
+		 * definition only a frame fragment
+		 */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
+			adapter->discarding = true;
+
+		if (adapter->discarding) {
+			/* All receives must fit into a single buffer */
+			e_info("Receive packet consumed multiple buffers\n");
+			/* recycle */
+			buffer_info->skb = skb;
+			if (status & E1000_RXD_STAT_EOP)
+				adapter->discarding = false;
+			goto next_desc;
+		}
+
+		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock, flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       flags);
+				length--;
+			} else {
+				/* recycle */
+				buffer_info->skb = skb;
+				goto next_desc;
+			}
+		}
+
+		/* adjust length to remove Ethernet CRC, this must be
+		 * done after the TBI_ACCEPT workaround above */
+		length -= 4;
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += length;
+		total_rx_packets++;
+
+		e1000_check_copybreak(netdev, buffer_info, length, &skb);
+
+		skb_put(skb, length);
+
+		/* Receive Checksum Offload */
+		e1000_rx_checksum(adapter,
+				  (u32)(status) |
+				  ((u32)(rx_desc->errors) << 24),
+				  le16_to_cpu(rx_desc->csum), skb);
+
+		skb->protocol = eth_type_trans(skb, netdev);
+
+		e1000_receive_skb(adapter, status, rx_desc->special, skb);
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
+ * @adapter: address of board private structure
+ * @rx_ring: pointer to receive ring structure
+ * @cleaned_count: number of buffers to allocate this pass
+ **/
+
+static void
+e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring, int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto check_page;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			e_err("skb align check failed: %u bytes at %p\n",
+			      bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				break; /* while (cleaned_count--) */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+check_page:
+		/* allocate a new page if necessary */
+		if (!buffer_info->page) {
+			buffer_info->page = alloc_page(GFP_ATOMIC);
+			if (unlikely(!buffer_info->page)) {
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+		}
+
+		if (!buffer_info->dma) {
+			buffer_info->dma = dma_map_page(&pdev->dev,
+			                                buffer_info->page, 0,
+							buffer_info->length,
+							DMA_FROM_DEVICE);
+			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+				put_page(buffer_info->page);
+				dev_kfree_skb(skb);
+				buffer_info->page = NULL;
+				buffer_info->skb = NULL;
+				buffer_info->dma = 0;
+				adapter->alloc_rx_buff_failed++;
+				break; /* while !buffer_info->skb */
+			}
+		}
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
+ * @adapter: address of board private structure
+ **/
+
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = adapter->rx_buffer_len;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto map_skb;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			e_err("skb align check failed: %u bytes at %p\n",
+			      bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break; /* while !buffer_info->skb */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+map_skb:
+		buffer_info->dma = dma_map_single(&pdev->dev,
+						  skb->data,
+						  buffer_info->length,
+						  DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+			dev_kfree_skb(skb);
+			buffer_info->skb = NULL;
+			buffer_info->dma = 0;
+			adapter->alloc_rx_buff_failed++;
+			break; /* while !buffer_info->skb */
+		}
+
+		/*
+		 * XXX if it was allocated cleanly it will never map to a
+		 * boundary crossing
+		 */
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter,
+					(void *)(unsigned long)buffer_info->dma,
+					adapter->rx_buffer_len)) {
+			e_err("dma align check failed: %u bytes at %p\n",
+			      adapter->rx_buffer_len,
+			      (void *)(unsigned long)buffer_info->dma);
+			dev_kfree_skb(skb);
+			buffer_info->skb = NULL;
+
+			dma_unmap_single(&pdev->dev, buffer_info->dma,
+					 adapter->rx_buffer_len,
+					 DMA_FROM_DEVICE);
+			buffer_info->dma = 0;
+
+			adapter->alloc_rx_buff_failed++;
+			break; /* while !buffer_info->skb */
+		}
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, hw->hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
+ * @adapter:
+ **/
+
+static void e1000_smartspeed(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_status;
+	u16 phy_ctrl;
+
+	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
+	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
+		return;
+
+	if (adapter->smartspeed == 0) {
+		/* If Master/Slave config fault is asserted twice,
+		 * we assume back-to-back */
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		if (phy_ctrl & CR_1000T_MS_ENABLE) {
+			phy_ctrl &= ~CR_1000T_MS_ENABLE;
+			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+					    phy_ctrl);
+			adapter->smartspeed++;
+			if (!e1000_phy_setup_autoneg(hw) &&
+			   !e1000_read_phy_reg(hw, PHY_CTRL,
+				   	       &phy_ctrl)) {
+				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+					     MII_CR_RESTART_AUTO_NEG);
+				e1000_write_phy_reg(hw, PHY_CTRL,
+						    phy_ctrl);
+			}
+		}
+		return;
+	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
+		/* If still no link, perhaps using 2/3 pair cable */
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		phy_ctrl |= CR_1000T_MS_ENABLE;
+		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
+		if (!e1000_phy_setup_autoneg(hw) &&
+		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
+			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+				     MII_CR_RESTART_AUTO_NEG);
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
+		}
+	}
+	/* Restart process after E1000_SMARTSPEED_MAX iterations */
+	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
+		adapter->smartspeed = 0;
+}
+
+/**
+ * e1000_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+	case SIOCSMIIREG:
+		return e1000_mii_ioctl(netdev, ifr, cmd);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+/**
+ * e1000_mii_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct mii_ioctl_data *data = if_mii(ifr);
+	int retval;
+	u16 mii_reg;
+	u16 spddplx;
+	unsigned long flags;
+
+	if (hw->media_type != e1000_media_type_copper)
+		return -EOPNOTSUPP;
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = hw->phy_addr;
+		break;
+	case SIOCGMIIREG:
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
+				   &data->val_out)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		break;
+	case SIOCSMIIREG:
+		if (data->reg_num & ~(0x1F))
+			return -EFAULT;
+		mii_reg = data->val_in;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_write_phy_reg(hw, data->reg_num,
+					mii_reg)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		if (hw->media_type == e1000_media_type_copper) {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (mii_reg & MII_CR_AUTO_NEG_EN) {
+					hw->autoneg = 1;
+					hw->autoneg_advertised = 0x2F;
+				} else {
+					if (mii_reg & 0x40)
+						spddplx = SPEED_1000;
+					else if (mii_reg & 0x2000)
+						spddplx = SPEED_100;
+					else
+						spddplx = SPEED_10;
+					spddplx += (mii_reg & 0x100)
+						   ? DUPLEX_FULL :
+						   DUPLEX_HALF;
+					retval = e1000_set_spd_dplx(adapter,
+								    spddplx);
+					if (retval)
+						return retval;
+				}
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			case M88E1000_PHY_SPEC_CTRL:
+			case M88E1000_EXT_PHY_SPEC_CTRL:
+				if (e1000_phy_reset(hw))
+					return -EIO;
+				break;
+			}
+		} else {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			}
+		}
+		break;
+	default:
+		return -EOPNOTSUPP;
+	}
+	return E1000_SUCCESS;
+}
+
+void e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	int ret_val = pci_set_mwi(adapter->pdev);
+
+	if (ret_val)
+		e_err("Error in setting MWI\n");
+}
+
+void e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+
+	pci_clear_mwi(adapter->pdev);
+}
+
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	return pcix_get_mmrbc(adapter->pdev);
+}
+
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
+{
+	struct e1000_adapter *adapter = hw->back;
+	pcix_set_mmrbc(adapter->pdev, mmrbc);
+}
+
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
+{
+	outl(value, port);
+}
+
+static void e1000_vlan_rx_register(struct net_device *netdev,
+				   struct vlan_group *grp)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, rctl;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	adapter->vlgrp = grp;
+
+	if (grp) {
+		/* enable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* enable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_CFIEN;
+		if (!(netdev->flags & IFF_PROMISC))
+			rctl |= E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+		e1000_update_mng_vlan(adapter);
+	} else {
+		/* disable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* disable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+
+		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
+			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+		}
+	}
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+}
+
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if ((hw->mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	    (vid == adapter->mng_vlan_id))
+		return;
+	/* add VID to filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta |= (1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	vlan_group_set_device(adapter->vlgrp, vid, NULL);
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+
+	/* remove VID from filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta &= ~(1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+	if (adapter->vlgrp) {
+		u16 vid;
+		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+			if (!vlan_group_get_device(adapter->vlgrp, vid))
+				continue;
+			e1000_vlan_rx_add_vid(adapter->netdev, vid);
+		}
+	}
+}
+
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	hw->autoneg = 0;
+
+	/* Fiber NICs only allow 1000 gbps Full duplex */
+	if ((hw->media_type == e1000_media_type_fiber) &&
+		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+
+	switch (spddplx) {
+	case SPEED_10 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_10_half;
+		break;
+	case SPEED_10 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_10_full;
+		break;
+	case SPEED_100 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_100_half;
+		break;
+	case SPEED_100 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_100_full;
+		break;
+	case SPEED_1000 + DUPLEX_FULL:
+		hw->autoneg = 1;
+		hw->autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_HALF: /* not supported */
+	default:
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, ctrl_ext, rctl, status;
+	u32 wufc = adapter->wol;
+#ifdef CONFIG_PM
+	int retval = 0;
+#endif
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev)) {
+		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+		e1000_down(adapter);
+	}
+
+#ifdef CONFIG_PM
+	retval = pci_save_state(pdev);
+	if (retval)
+		return retval;
+#endif
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU)
+		wufc &= ~E1000_WUFC_LNKC;
+
+	if (wufc) {
+		e1000_setup_rctl(adapter);
+		e1000_set_rx_mode(netdev);
+
+		/* turn on all-multi mode if wake on multicast is enabled */
+		if (wufc & E1000_WUFC_MC) {
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_MPE;
+			ew32(RCTL, rctl);
+		}
+
+		if (hw->mac_type >= e1000_82540) {
+			ctrl = er32(CTRL);
+			/* advertise wake from D3Cold */
+			#define E1000_CTRL_ADVD3WUC 0x00100000
+			/* phy power management enable */
+			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+			ctrl |= E1000_CTRL_ADVD3WUC |
+				E1000_CTRL_EN_PHY_PWR_MGMT;
+			ew32(CTRL, ctrl);
+		}
+
+		if (hw->media_type == e1000_media_type_fiber ||
+		    hw->media_type == e1000_media_type_internal_serdes) {
+			/* keep the laser running in D3 */
+			ctrl_ext = er32(CTRL_EXT);
+			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
+			ew32(CTRL_EXT, ctrl_ext);
+		}
+
+		ew32(WUC, E1000_WUC_PME_EN);
+		ew32(WUFC, wufc);
+	} else {
+		ew32(WUC, 0);
+		ew32(WUFC, 0);
+	}
+
+	e1000_release_manageability(adapter);
+
+	*enable_wake = !!wufc;
+
+	/* make sure adapter isn't asleep if manageability is enabled */
+	if (adapter->en_mng_pt)
+		*enable_wake = true;
+
+	if (netif_running(netdev))
+		e1000_free_irq(adapter);
+
+	pci_disable_device(pdev);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	int retval;
+	bool wake;
+
+	retval = __e1000_shutdown(pdev, &wake);
+	if (retval)
+		return retval;
+
+	if (wake) {
+		pci_prepare_to_sleep(pdev);
+	} else {
+		pci_wake_from_d3(pdev, false);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+
+	return 0;
+}
+
+static int e1000_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 err;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	pci_save_state(pdev);
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		pr_err("Cannot enable PCI device from suspend\n");
+		return err;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	if (netif_running(netdev)) {
+		err = e1000_request_irq(adapter);
+		if (err)
+			return err;
+	}
+
+	e1000_power_up_phy(adapter);
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+
+	netif_device_attach(netdev);
+
+	return 0;
+}
+#endif
+
+static void e1000_shutdown(struct pci_dev *pdev)
+{
+	bool wake;
+
+	__e1000_shutdown(pdev, &wake);
+
+	if (system_state == SYSTEM_POWER_OFF) {
+		pci_wake_from_d3(pdev, wake);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void e1000_netpoll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	disable_irq(adapter->pdev->irq);
+	e1000_intr(adapter->pdev->irq, netdev);
+	enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/**
+ * e1000_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+						pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e1000_down(adapter);
+	pci_disable_device(pdev);
+
+	/* Request a slot slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e1000_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot. Implementation
+ * resembles the first-half of the e1000_resume routine.
+ */
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		pr_err("Cannot re-enable PCI device after reset.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * e1000_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells us that
+ * its OK to resume normal operation. Implementation resembles the
+ * second-half of the e1000_resume routine.
+ */
+static void e1000_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev)) {
+		if (e1000_up(adapter)) {
+			pr_info("can't bring device back up after reset\n");
+			return;
+		}
+	}
+
+	netif_device_attach(netdev);
+}
+
+/* e1000_main.c */
--- a/devices/e1000/e1000_main-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000/e1000_main-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -278,8 +278,9 @@
 	int irq_flags = IRQF_SHARED;
 	int err;
 
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return 0;
+	}
 
 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 	                  netdev);
@@ -294,8 +295,9 @@
 {
 	struct net_device *netdev = adapter->netdev;
 
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return;
+	}
 
 	free_irq(adapter->pdev->irq, netdev);
 }
@@ -309,8 +311,9 @@
 {
 	struct e1000_hw *hw = &adapter->hw;
 
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return;
+	}
 
 	ew32(IMC, ~0);
 	E1000_WRITE_FLUSH();
@@ -326,8 +329,9 @@
 {
 	struct e1000_hw *hw = &adapter->hw;
 
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return;
+	}
  
 	ew32(IMS, IMS_ENABLE_MASK);
 	E1000_WRITE_FLUSH();
@@ -1933,8 +1937,9 @@
 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
 					     struct e1000_buffer *buffer_info)
 {
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return;
+	}
 
 	if (buffer_info->dma) {
 		if (buffer_info->mapped_as_page)
@@ -2372,10 +2377,13 @@
 
 			adapter->tx_fifo_head = 0;
 			atomic_set(&adapter->tx_fifo_stall, 0);
-			if (!adapter->ecdev) netif_wake_queue(netdev);
+			if (!adapter->ecdev) {
+				netif_wake_queue(netdev);
+			}
 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
-			if (!adapter->ecdev) 
+			if (!adapter->ecdev) {
 				mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+			}
 		}
 	}
 	rtnl_unlock();
@@ -2435,7 +2443,7 @@
 		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
 				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
 			u32 ctrl;
-			bool txb2b = true;
+			bool txb2b __attribute__ ((unused)) = true;
 			/* update snapshot of PHY registers on LSC */
 			e1000_get_speed_and_duplex(hw,
 			                           &adapter->link_speed,
@@ -2550,7 +2558,9 @@
 	ew32(ICS, E1000_ICS_RXDMT0);
 
 	/* Force detection of hung controller every watchdog period */
-	if (!adapter->ecdev) adapter->detect_tx_hung = true;
+	if (!adapter->ecdev) {
+		adapter->detect_tx_hung = true;
+	}
 
 	/* Reset the timer */
 	if (!adapter->ecdev) {
@@ -3110,8 +3120,9 @@
 	tx_ring = adapter->tx_ring;
 
 	if (unlikely(skb->len <= 0)) {
-		if (!adapter->ecdev)
+		if (!adapter->ecdev) {
 			dev_kfree_skb_any(skb);
+		}
 		return NETDEV_TX_OK;
 	}
 
@@ -3238,7 +3249,9 @@
 		}
 
 	} else {
-		if (!adapter->ecdev) dev_kfree_skb_any(skb);
+		if (!adapter->ecdev) {
+			dev_kfree_skb_any(skb);
+		}
 		tx_ring->buffer_info[first].time_stamp = 0;
 		tx_ring->next_to_use = first;
 	}
@@ -3296,8 +3309,9 @@
 	struct e1000_hw *hw = &adapter->hw;
 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return -EBUSY;
+	}
 
 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
@@ -3385,8 +3399,9 @@
 	if (pci_channel_offline(pdev))
 		return;
 
-	if (!adapter->ecdev)
+	if (!adapter->ecdev) {
 		spin_lock_irqsave(&adapter->stats_lock, flags);
+	}
 
 	/* these counters are modified from e1000_tbi_adjust_stats,
 	 * called from the interrupt context, so they must only
@@ -3514,8 +3529,9 @@
 		adapter->stats.mgpdc += er32(MGTPDC);
 	}
 
-	if (!adapter->ecdev)
+	if (!adapter->ecdev) {
 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+	}
 }
 
 void ec_poll(struct net_device *netdev)
@@ -3830,7 +3846,9 @@
 
 		status = rx_desc->status;
 		skb = buffer_info->skb;
-		if (!adapter->ecdev) buffer_info->skb = NULL;
+		if (!adapter->ecdev) {
+			buffer_info->skb = NULL;
+		}
 
 		if (++i == rx_ring->count) i = 0;
 		next_rxd = E1000_RX_DESC(*rx_ring, i);
@@ -4047,7 +4065,9 @@
 
 		status = rx_desc->status;
 		skb = buffer_info->skb;
-		if (!adapter->ecdev) buffer_info->skb = NULL;
+		if (!adapter->ecdev) {
+			buffer_info->skb = NULL;
+		}
 
 		prefetch(skb->data - NET_IP_ALIGN);
 
@@ -4485,7 +4505,9 @@
 		data->phy_id = hw->phy_addr;
 		break;
 	case SIOCGMIIREG:
-		if (adapter->ecdev) return -EPERM;
+		if (adapter->ecdev) {
+			return -EPERM;
+		}
 		spin_lock_irqsave(&adapter->stats_lock, flags);
 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
 				   &data->val_out)) {
@@ -4495,7 +4517,9 @@
 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
 		break;
 	case SIOCSMIIREG:
-		if (adapter->ecdev) return -EPERM;
+		if (adapter->ecdev) {
+			return -EPERM;
+		}
 		if (data->reg_num & ~(0x1F))
 			return -EFAULT;
 		mii_reg = data->val_in;
@@ -4736,8 +4760,9 @@
 	int retval = 0;
 #endif
 
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return -EBUSY;
+	}
 
 	netif_device_detach(netdev);
 
@@ -4836,8 +4861,9 @@
 	struct e1000_hw *hw = &adapter->hw;
 	u32 err;
 
-	if (adapter->ecdev)
+	if (adapter->ecdev) {
 		return -EBUSY;
+	}
 
 	pci_set_power_state(pdev, PCI_D0);
 	pci_restore_state(pdev);
@@ -4871,7 +4897,9 @@
 	if (netif_running(netdev))
 		e1000_up(adapter);
 
-	if (!adapter->ecdev) netif_device_attach(netdev);
+	if (!adapter->ecdev) {
+		netif_device_attach(netdev);
+	}
 
 	return 0;
 }
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_osdep-2.6.35-ethercat.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,99 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* glue for the OS independent part of e1000
+ * includes register access macros
+ */
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+
+#define er32(reg)							\
+	(readl(hw->hw_addr + ((hw->mac_type >= e1000_82543)		\
+			       ? E1000_##reg : E1000_82542_##reg)))
+
+#define ew32(reg, value)						\
+	(writel((value), (hw->hw_addr + ((hw->mac_type >= e1000_82543)	\
+					 ? E1000_##reg : E1000_82542_##reg))))
+
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
+    writel((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2))))
+
+#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
+    readl((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2)))
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \
+    writew((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1))))
+
+#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \
+    readw((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1)))
+
+#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \
+    writeb((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset))))
+
+#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \
+    readb((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset)))
+
+#define E1000_WRITE_FLUSH() er32(STATUS)
+
+#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \
+    writel((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG(a, reg) ( \
+    readl((a)->flash_address + reg))
+
+#define E1000_WRITE_ICH_FLASH_REG16(a, reg, value) ( \
+    writew((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG16(a, reg) ( \
+    readw((a)->flash_address + reg))
+
+#endif /* _E1000_OSDEP_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_osdep-2.6.35-orig.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,99 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* glue for the OS independent part of e1000
+ * includes register access macros
+ */
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+
+#define er32(reg)							\
+	(readl(hw->hw_addr + ((hw->mac_type >= e1000_82543)		\
+			       ? E1000_##reg : E1000_82542_##reg)))
+
+#define ew32(reg, value)						\
+	(writel((value), (hw->hw_addr + ((hw->mac_type >= e1000_82543)	\
+					 ? E1000_##reg : E1000_82542_##reg))))
+
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
+    writel((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2))))
+
+#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
+    readl((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2)))
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \
+    writew((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1))))
+
+#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \
+    readw((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1)))
+
+#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \
+    writeb((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset))))
+
+#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \
+    readb((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset)))
+
+#define E1000_WRITE_FLUSH() er32(STATUS)
+
+#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \
+    writel((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG(a, reg) ( \
+    readl((a)->flash_address + reg))
+
+#define E1000_WRITE_ICH_FLASH_REG16(a, reg, value) ( \
+    writew((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG16(a, reg) ( \
+    readw((a)->flash_address + reg))
+
+#endif /* _E1000_OSDEP_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_param-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,754 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000-2.6.35-ethercat.h"
+
+/* This is the only thing that needs to be changed to adjust the
+ * maximum number of ports that the driver can manage.
+ */
+
+#define E1000_MAX_NIC 32
+
+#define OPTION_UNSET   -1
+#define OPTION_DISABLED 0
+#define OPTION_ENABLED  1
+
+/* All parameters are treated the same, as an integer array of values.
+ * This macro just reduces the need to repeat the same declaration code
+ * over and over (plus this helps to avoid typo bugs).
+ */
+
+#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+#define E1000_PARAM(X, desc) \
+	static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
+	static unsigned int num_##X; \
+	module_param_array_named(X, X, int, &num_##X, 0); \
+	MODULE_PARM_DESC(X, desc);
+
+/* Transmit Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(TxDescriptors, "Number of transmit descriptors");
+
+/* Receive Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(RxDescriptors, "Number of receive descriptors");
+
+/* User Specified Speed Override
+ *
+ * Valid Range: 0, 10, 100, 1000
+ *  - 0    - auto-negotiate at all supported speeds
+ *  - 10   - only link at 10 Mbps
+ *  - 100  - only link at 100 Mbps
+ *  - 1000 - only link at 1000 Mbps
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Speed, "Speed setting");
+
+/* User Specified Duplex Override
+ *
+ * Valid Range: 0-2
+ *  - 0 - auto-negotiate for duplex
+ *  - 1 - only link at half duplex
+ *  - 2 - only link at full duplex
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Duplex, "Duplex setting");
+
+/* Auto-negotiation Advertisement Override
+ *
+ * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber)
+ *
+ * The AutoNeg value is a bit mask describing which speed and duplex
+ * combinations should be advertised during auto-negotiation.
+ * The supported speed and duplex modes are listed below
+ *
+ * Bit           7     6     5      4      3     2     1      0
+ * Speed (Mbps)  N/A   N/A   1000   N/A    100   100   10     10
+ * Duplex                    Full          Full  Half  Full   Half
+ *
+ * Default Value: 0x2F (copper); 0x20 (fiber)
+ */
+E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting");
+#define AUTONEG_ADV_DEFAULT  0x2F
+#define AUTONEG_ADV_MASK     0x2F
+
+/* User Specified Flow Control Override
+ *
+ * Valid Range: 0-3
+ *  - 0 - No Flow Control
+ *  - 1 - Rx only, respond to PAUSE frames but do not generate them
+ *  - 2 - Tx only, generate PAUSE frames but ignore them on receive
+ *  - 3 - Full Flow Control Support
+ *
+ * Default Value: Read flow control settings from the EEPROM
+ */
+E1000_PARAM(FlowControl, "Flow Control setting");
+#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
+
+/* XsumRX - Receive Checksum Offload Enable/Disable
+ *
+ * Valid Range: 0, 1
+ *  - 0 - disables all checksum offload
+ *  - 1 - enables receive IP/TCP/UDP checksum offload
+ *        on 82543 and newer -based NICs
+ *
+ * Default Value: 1
+ */
+E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
+
+/* Transmit Interrupt Delay in units of 1.024 microseconds
+ *  Tx interrupt delay needs to typically be set to something non zero
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
+#define DEFAULT_TIDV                   8
+#define MAX_TXDELAY               0xFFFF
+#define MIN_TXDELAY                    0
+
+/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
+#define DEFAULT_TADV                  32
+#define MAX_TXABSDELAY            0xFFFF
+#define MIN_TXABSDELAY                 0
+
+/* Receive Interrupt Delay in units of 1.024 microseconds
+ *   hardware will likely hang if you set this to anything but zero.
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
+#define DEFAULT_RDTR                   0
+#define MAX_RXDELAY               0xFFFF
+#define MIN_RXDELAY                    0
+
+/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
+#define DEFAULT_RADV                   8
+#define MAX_RXABSDELAY            0xFFFF
+#define MIN_RXABSDELAY                 0
+
+/* Interrupt Throttle Rate (interrupts/sec)
+ *
+ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
+ */
+E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
+#define DEFAULT_ITR                    3
+#define MAX_ITR                   100000
+#define MIN_ITR                      100
+
+/* Enable Smart Power Down of the PHY
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 0 (disabled)
+ */
+E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
+
+struct e1000_option {
+	enum { enable_option, range_option, list_option } type;
+	const char *name;
+	const char *err;
+	int def;
+	union {
+		struct { /* range_option info */
+			int min;
+			int max;
+		} r;
+		struct { /* list_option info */
+			int nr;
+			const struct e1000_opt_list { int i; char *str; } *p;
+		} l;
+	} arg;
+};
+
+static int __devinit e1000_validate_option(unsigned int *value,
+					   const struct e1000_option *opt,
+					   struct e1000_adapter *adapter)
+{
+	if (*value == OPTION_UNSET) {
+		*value = opt->def;
+		return 0;
+	}
+
+	switch (opt->type) {
+	case enable_option:
+		switch (*value) {
+		case OPTION_ENABLED:
+			e_dev_info("%s Enabled\n", opt->name);
+			return 0;
+		case OPTION_DISABLED:
+			e_dev_info("%s Disabled\n", opt->name);
+			return 0;
+		}
+		break;
+	case range_option:
+		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
+			e_dev_info("%s set to %i\n", opt->name, *value);
+			return 0;
+		}
+		break;
+	case list_option: {
+		int i;
+		const struct e1000_opt_list *ent;
+
+		for (i = 0; i < opt->arg.l.nr; i++) {
+			ent = &opt->arg.l.p[i];
+			if (*value == ent->i) {
+				if (ent->str[0] != '\0')
+					e_dev_info("%s\n", ent->str);
+				return 0;
+			}
+		}
+	}
+		break;
+	default:
+		BUG();
+	}
+
+	e_dev_info("Invalid %s value specified (%i) %s\n",
+	       opt->name, *value, opt->err);
+	*value = opt->def;
+	return -1;
+}
+
+static void e1000_check_fiber_options(struct e1000_adapter *adapter);
+static void e1000_check_copper_options(struct e1000_adapter *adapter);
+
+/**
+ * e1000_check_options - Range Checking for Command Line Parameters
+ * @adapter: board private structure
+ *
+ * This routine checks all command line parameters for valid user
+ * input.  If an invalid value is given, or if no user specified
+ * value exists, a default value is used.  The final value is stored
+ * in a variable in the adapter structure.
+ **/
+
+void __devinit e1000_check_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	int bd = adapter->bd_number;
+
+	if (bd >= E1000_MAX_NIC) {
+		e_dev_warn("Warning: no configuration for board #%i "
+			   "using defaults for all values\n", bd);
+	}
+
+	{ /* Transmit Descriptor Count */
+		struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_TXD),
+			.def  = E1000_DEFAULT_TXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_TXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD
+				}}
+		};
+
+		if (num_TxDescriptors > bd) {
+			tx_ring->count = TxDescriptors[bd];
+			e1000_validate_option(&tx_ring->count, &opt, adapter);
+			tx_ring->count = ALIGN(tx_ring->count,
+						REQ_TX_DESCRIPTOR_MULTIPLE);
+		} else {
+			tx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_tx_queues; i++)
+			tx_ring[i].count = tx_ring->count;
+	}
+	{ /* Receive Descriptor Count */
+		struct e1000_rx_ring *rx_ring = adapter->rx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_RXD),
+			.def  = E1000_DEFAULT_RXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_RXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD
+			}}
+		};
+
+		if (num_RxDescriptors > bd) {
+			rx_ring->count = RxDescriptors[bd];
+			e1000_validate_option(&rx_ring->count, &opt, adapter);
+			rx_ring->count = ALIGN(rx_ring->count,
+						REQ_RX_DESCRIPTOR_MULTIPLE);
+		} else {
+			rx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_rx_queues; i++)
+			rx_ring[i].count = rx_ring->count;
+	}
+	{ /* Checksum Offload Enable/Disable */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "Checksum Offload",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_XsumRX > bd) {
+			unsigned int rx_csum = XsumRX[bd];
+			e1000_validate_option(&rx_csum, &opt, adapter);
+			adapter->rx_csum = rx_csum;
+		} else {
+			adapter->rx_csum = opt.def;
+		}
+	}
+	{ /* Flow Control */
+
+		struct e1000_opt_list fc_list[] =
+			{{ E1000_FC_NONE,    "Flow Control Disabled" },
+			 { E1000_FC_RX_PAUSE,"Flow Control Receive Only" },
+			 { E1000_FC_TX_PAUSE,"Flow Control Transmit Only" },
+			 { E1000_FC_FULL,    "Flow Control Enabled" },
+			 { E1000_FC_DEFAULT, "Flow Control Hardware Default" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Flow Control",
+			.err  = "reading default settings from EEPROM",
+			.def  = E1000_FC_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(fc_list),
+					 .p = fc_list }}
+		};
+
+		if (num_FlowControl > bd) {
+			unsigned int fc = FlowControl[bd];
+			e1000_validate_option(&fc, &opt, adapter);
+			adapter->hw.fc = adapter->hw.original_fc = fc;
+		} else {
+			adapter->hw.fc = adapter->hw.original_fc = opt.def;
+		}
+	}
+	{ /* Transmit Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TIDV),
+			.def  = DEFAULT_TIDV,
+			.arg  = { .r = { .min = MIN_TXDELAY,
+					 .max = MAX_TXDELAY }}
+		};
+
+		if (num_TxIntDelay > bd) {
+			adapter->tx_int_delay = TxIntDelay[bd];
+			e1000_validate_option(&adapter->tx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_int_delay = opt.def;
+		}
+	}
+	{ /* Transmit Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TADV),
+			.def  = DEFAULT_TADV,
+			.arg  = { .r = { .min = MIN_TXABSDELAY,
+					 .max = MAX_TXABSDELAY }}
+		};
+
+		if (num_TxAbsIntDelay > bd) {
+			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RDTR),
+			.def  = DEFAULT_RDTR,
+			.arg  = { .r = { .min = MIN_RXDELAY,
+					 .max = MAX_RXDELAY }}
+		};
+
+		if (num_RxIntDelay > bd) {
+			adapter->rx_int_delay = RxIntDelay[bd];
+			e1000_validate_option(&adapter->rx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RADV),
+			.def  = DEFAULT_RADV,
+			.arg  = { .r = { .min = MIN_RXABSDELAY,
+					 .max = MAX_RXABSDELAY }}
+		};
+
+		if (num_RxAbsIntDelay > bd) {
+			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Interrupt Throttling Rate */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Interrupt Throttling Rate (ints/sec)",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_ITR),
+			.def  = DEFAULT_ITR,
+			.arg  = { .r = { .min = MIN_ITR,
+					 .max = MAX_ITR }}
+		};
+
+		if (num_InterruptThrottleRate > bd) {
+			adapter->itr = InterruptThrottleRate[bd];
+			switch (adapter->itr) {
+			case 0:
+				e_dev_info("%s turned off\n", opt.name);
+				break;
+			case 1:
+				e_dev_info("%s set to dynamic mode\n",
+					   opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 3:
+				e_dev_info("%s set to dynamic conservative "
+					   "mode\n", opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 4:
+				e_dev_info("%s set to simplified "
+				           "(2000-8000) ints mode\n", opt.name);
+				adapter->itr_setting = adapter->itr;
+				break;
+			default:
+				e1000_validate_option(&adapter->itr, &opt,
+				        adapter);
+				/* save the setting, because the dynamic bits
+				 * change itr.
+				 * clear the lower two bits because they are
+				 * used as control */
+				adapter->itr_setting = adapter->itr & ~3;
+				break;
+			}
+		} else {
+			adapter->itr_setting = opt.def;
+			adapter->itr = 20000;
+		}
+	}
+	{ /* Smart Power Down */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "PHY Smart Power Down",
+			.err  = "defaulting to Disabled",
+			.def  = OPTION_DISABLED
+		};
+
+		if (num_SmartPowerDownEnable > bd) {
+			unsigned int spd = SmartPowerDownEnable[bd];
+			e1000_validate_option(&spd, &opt, adapter);
+			adapter->smart_power_down = spd;
+		} else {
+			adapter->smart_power_down = opt.def;
+		}
+	}
+
+	switch (adapter->hw.media_type) {
+	case e1000_media_type_fiber:
+	case e1000_media_type_internal_serdes:
+		e1000_check_fiber_options(adapter);
+		break;
+	case e1000_media_type_copper:
+		e1000_check_copper_options(adapter);
+		break;
+	default:
+		BUG();
+	}
+}
+
+/**
+ * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on fiber adapters
+ **/
+
+static void __devinit e1000_check_fiber_options(struct e1000_adapter *adapter)
+{
+	int bd = adapter->bd_number;
+	if (num_Speed > bd) {
+		e_dev_info("Speed not valid for fiber adapters, parameter "
+			   "ignored\n");
+	}
+
+	if (num_Duplex > bd) {
+		e_dev_info("Duplex not valid for fiber adapters, parameter "
+			   "ignored\n");
+	}
+
+	if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
+		e_dev_info("AutoNeg other than 1000/Full is not valid for fiber"
+			   "adapters, parameter ignored\n");
+	}
+}
+
+/**
+ * e1000_check_copper_options - Range Checking for Link Options, Copper Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on copper adapters
+ **/
+
+static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	unsigned int speed, dplx, an;
+	int bd = adapter->bd_number;
+
+	{ /* Speed */
+		static const struct e1000_opt_list speed_list[] = {
+			{          0, "" },
+			{   SPEED_10, "" },
+			{  SPEED_100, "" },
+			{ SPEED_1000, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Speed",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(speed_list),
+					 .p = speed_list }}
+		};
+
+		if (num_Speed > bd) {
+			speed = Speed[bd];
+			e1000_validate_option(&speed, &opt, adapter);
+		} else {
+			speed = opt.def;
+		}
+	}
+	{ /* Duplex */
+		static const struct e1000_opt_list dplx_list[] = {
+			{           0, "" },
+			{ HALF_DUPLEX, "" },
+			{ FULL_DUPLEX, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Duplex",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(dplx_list),
+					 .p = dplx_list }}
+		};
+
+		if (num_Duplex > bd) {
+			dplx = Duplex[bd];
+			e1000_validate_option(&dplx, &opt, adapter);
+		} else {
+			dplx = opt.def;
+		}
+	}
+
+	if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
+		e_dev_info("AutoNeg specified along with Speed or Duplex, "
+			   "parameter ignored\n");
+		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+	} else { /* Autoneg */
+		static const struct e1000_opt_list an_list[] =
+			#define AA "AutoNeg advertising "
+			{{ 0x01, AA "10/HD" },
+			 { 0x02, AA "10/FD" },
+			 { 0x03, AA "10/FD, 10/HD" },
+			 { 0x04, AA "100/HD" },
+			 { 0x05, AA "100/HD, 10/HD" },
+			 { 0x06, AA "100/HD, 10/FD" },
+			 { 0x07, AA "100/HD, 10/FD, 10/HD" },
+			 { 0x08, AA "100/FD" },
+			 { 0x09, AA "100/FD, 10/HD" },
+			 { 0x0a, AA "100/FD, 10/FD" },
+			 { 0x0b, AA "100/FD, 10/FD, 10/HD" },
+			 { 0x0c, AA "100/FD, 100/HD" },
+			 { 0x0d, AA "100/FD, 100/HD, 10/HD" },
+			 { 0x0e, AA "100/FD, 100/HD, 10/FD" },
+			 { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x20, AA "1000/FD" },
+			 { 0x21, AA "1000/FD, 10/HD" },
+			 { 0x22, AA "1000/FD, 10/FD" },
+			 { 0x23, AA "1000/FD, 10/FD, 10/HD" },
+			 { 0x24, AA "1000/FD, 100/HD" },
+			 { 0x25, AA "1000/FD, 100/HD, 10/HD" },
+			 { 0x26, AA "1000/FD, 100/HD, 10/FD" },
+			 { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x28, AA "1000/FD, 100/FD" },
+			 { 0x29, AA "1000/FD, 100/FD, 10/HD" },
+			 { 0x2a, AA "1000/FD, 100/FD, 10/FD" },
+			 { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" },
+			 { 0x2c, AA "1000/FD, 100/FD, 100/HD" },
+			 { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" },
+			 { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" },
+			 { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "AutoNeg",
+			.err  = "parameter ignored",
+			.def  = AUTONEG_ADV_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(an_list),
+					 .p = an_list }}
+		};
+
+		if (num_AutoNeg > bd) {
+			an = AutoNeg[bd];
+			e1000_validate_option(&an, &opt, adapter);
+		} else {
+			an = opt.def;
+		}
+		adapter->hw.autoneg_advertised = an;
+	}
+
+	switch (speed + dplx) {
+	case 0:
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		if ((num_Speed > bd) && (speed != 0 || dplx != 0))
+			e_dev_info("Speed and duplex autonegotiation "
+				   "enabled\n");
+		break;
+	case HALF_DUPLEX:
+		e_dev_info("Half Duplex specified without Speed\n");
+		e_dev_info("Using Autonegotiation at Half Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_100_HALF;
+		break;
+	case FULL_DUPLEX:
+		e_dev_info("Full Duplex specified without Speed\n");
+		e_dev_info("Using Autonegotiation at Full Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_FULL |
+		                                 ADVERTISE_100_FULL |
+		                                 ADVERTISE_1000_FULL;
+		break;
+	case SPEED_10:
+		e_dev_info("10 Mbps Speed specified without Duplex\n");
+		e_dev_info("Using Autonegotiation at 10 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_10_FULL;
+		break;
+	case SPEED_10 + HALF_DUPLEX:
+		e_dev_info("Forcing to 10 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_10 + FULL_DUPLEX:
+		e_dev_info("Forcing to 10 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100:
+		e_dev_info("100 Mbps Speed specified without Duplex\n");
+		e_dev_info("Using Autonegotiation at 100 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_100_HALF |
+		                                 ADVERTISE_100_FULL;
+		break;
+	case SPEED_100 + HALF_DUPLEX:
+		e_dev_info("Forcing to 100 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100 + FULL_DUPLEX:
+		e_dev_info("Forcing to 100 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_1000:
+		e_dev_info("1000 Mbps Speed specified without Duplex\n");
+		goto full_duplex_only;
+	case SPEED_1000 + HALF_DUPLEX:
+		e_dev_info("Half Duplex is not supported at 1000 Mbps\n");
+		/* fall through */
+	case SPEED_1000 + FULL_DUPLEX:
+full_duplex_only:
+		e_dev_info("Using Autonegotiation at 1000 Mbps Full Duplex "
+			   "only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	default:
+		BUG();
+	}
+
+	/* Speed, AutoNeg and MDI/MDI-X must all play nice */
+	if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) {
+		e_dev_info("Speed, AutoNeg and MDI-X specs are incompatible. "
+			   "Setting MDI-X to a compatible value.\n");
+	}
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_param-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,754 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+
+/* This is the only thing that needs to be changed to adjust the
+ * maximum number of ports that the driver can manage.
+ */
+
+#define E1000_MAX_NIC 32
+
+#define OPTION_UNSET   -1
+#define OPTION_DISABLED 0
+#define OPTION_ENABLED  1
+
+/* All parameters are treated the same, as an integer array of values.
+ * This macro just reduces the need to repeat the same declaration code
+ * over and over (plus this helps to avoid typo bugs).
+ */
+
+#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+#define E1000_PARAM(X, desc) \
+	static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
+	static unsigned int num_##X; \
+	module_param_array_named(X, X, int, &num_##X, 0); \
+	MODULE_PARM_DESC(X, desc);
+
+/* Transmit Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(TxDescriptors, "Number of transmit descriptors");
+
+/* Receive Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(RxDescriptors, "Number of receive descriptors");
+
+/* User Specified Speed Override
+ *
+ * Valid Range: 0, 10, 100, 1000
+ *  - 0    - auto-negotiate at all supported speeds
+ *  - 10   - only link at 10 Mbps
+ *  - 100  - only link at 100 Mbps
+ *  - 1000 - only link at 1000 Mbps
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Speed, "Speed setting");
+
+/* User Specified Duplex Override
+ *
+ * Valid Range: 0-2
+ *  - 0 - auto-negotiate for duplex
+ *  - 1 - only link at half duplex
+ *  - 2 - only link at full duplex
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Duplex, "Duplex setting");
+
+/* Auto-negotiation Advertisement Override
+ *
+ * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber)
+ *
+ * The AutoNeg value is a bit mask describing which speed and duplex
+ * combinations should be advertised during auto-negotiation.
+ * The supported speed and duplex modes are listed below
+ *
+ * Bit           7     6     5      4      3     2     1      0
+ * Speed (Mbps)  N/A   N/A   1000   N/A    100   100   10     10
+ * Duplex                    Full          Full  Half  Full   Half
+ *
+ * Default Value: 0x2F (copper); 0x20 (fiber)
+ */
+E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting");
+#define AUTONEG_ADV_DEFAULT  0x2F
+#define AUTONEG_ADV_MASK     0x2F
+
+/* User Specified Flow Control Override
+ *
+ * Valid Range: 0-3
+ *  - 0 - No Flow Control
+ *  - 1 - Rx only, respond to PAUSE frames but do not generate them
+ *  - 2 - Tx only, generate PAUSE frames but ignore them on receive
+ *  - 3 - Full Flow Control Support
+ *
+ * Default Value: Read flow control settings from the EEPROM
+ */
+E1000_PARAM(FlowControl, "Flow Control setting");
+#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
+
+/* XsumRX - Receive Checksum Offload Enable/Disable
+ *
+ * Valid Range: 0, 1
+ *  - 0 - disables all checksum offload
+ *  - 1 - enables receive IP/TCP/UDP checksum offload
+ *        on 82543 and newer -based NICs
+ *
+ * Default Value: 1
+ */
+E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
+
+/* Transmit Interrupt Delay in units of 1.024 microseconds
+ *  Tx interrupt delay needs to typically be set to something non zero
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
+#define DEFAULT_TIDV                   8
+#define MAX_TXDELAY               0xFFFF
+#define MIN_TXDELAY                    0
+
+/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
+#define DEFAULT_TADV                  32
+#define MAX_TXABSDELAY            0xFFFF
+#define MIN_TXABSDELAY                 0
+
+/* Receive Interrupt Delay in units of 1.024 microseconds
+ *   hardware will likely hang if you set this to anything but zero.
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
+#define DEFAULT_RDTR                   0
+#define MAX_RXDELAY               0xFFFF
+#define MIN_RXDELAY                    0
+
+/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
+#define DEFAULT_RADV                   8
+#define MAX_RXABSDELAY            0xFFFF
+#define MIN_RXABSDELAY                 0
+
+/* Interrupt Throttle Rate (interrupts/sec)
+ *
+ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
+ */
+E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
+#define DEFAULT_ITR                    3
+#define MAX_ITR                   100000
+#define MIN_ITR                      100
+
+/* Enable Smart Power Down of the PHY
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 0 (disabled)
+ */
+E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
+
+struct e1000_option {
+	enum { enable_option, range_option, list_option } type;
+	const char *name;
+	const char *err;
+	int def;
+	union {
+		struct { /* range_option info */
+			int min;
+			int max;
+		} r;
+		struct { /* list_option info */
+			int nr;
+			const struct e1000_opt_list { int i; char *str; } *p;
+		} l;
+	} arg;
+};
+
+static int __devinit e1000_validate_option(unsigned int *value,
+					   const struct e1000_option *opt,
+					   struct e1000_adapter *adapter)
+{
+	if (*value == OPTION_UNSET) {
+		*value = opt->def;
+		return 0;
+	}
+
+	switch (opt->type) {
+	case enable_option:
+		switch (*value) {
+		case OPTION_ENABLED:
+			e_dev_info("%s Enabled\n", opt->name);
+			return 0;
+		case OPTION_DISABLED:
+			e_dev_info("%s Disabled\n", opt->name);
+			return 0;
+		}
+		break;
+	case range_option:
+		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
+			e_dev_info("%s set to %i\n", opt->name, *value);
+			return 0;
+		}
+		break;
+	case list_option: {
+		int i;
+		const struct e1000_opt_list *ent;
+
+		for (i = 0; i < opt->arg.l.nr; i++) {
+			ent = &opt->arg.l.p[i];
+			if (*value == ent->i) {
+				if (ent->str[0] != '\0')
+					e_dev_info("%s\n", ent->str);
+				return 0;
+			}
+		}
+	}
+		break;
+	default:
+		BUG();
+	}
+
+	e_dev_info("Invalid %s value specified (%i) %s\n",
+	       opt->name, *value, opt->err);
+	*value = opt->def;
+	return -1;
+}
+
+static void e1000_check_fiber_options(struct e1000_adapter *adapter);
+static void e1000_check_copper_options(struct e1000_adapter *adapter);
+
+/**
+ * e1000_check_options - Range Checking for Command Line Parameters
+ * @adapter: board private structure
+ *
+ * This routine checks all command line parameters for valid user
+ * input.  If an invalid value is given, or if no user specified
+ * value exists, a default value is used.  The final value is stored
+ * in a variable in the adapter structure.
+ **/
+
+void __devinit e1000_check_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	int bd = adapter->bd_number;
+
+	if (bd >= E1000_MAX_NIC) {
+		e_dev_warn("Warning: no configuration for board #%i "
+			   "using defaults for all values\n", bd);
+	}
+
+	{ /* Transmit Descriptor Count */
+		struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_TXD),
+			.def  = E1000_DEFAULT_TXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_TXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD
+				}}
+		};
+
+		if (num_TxDescriptors > bd) {
+			tx_ring->count = TxDescriptors[bd];
+			e1000_validate_option(&tx_ring->count, &opt, adapter);
+			tx_ring->count = ALIGN(tx_ring->count,
+						REQ_TX_DESCRIPTOR_MULTIPLE);
+		} else {
+			tx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_tx_queues; i++)
+			tx_ring[i].count = tx_ring->count;
+	}
+	{ /* Receive Descriptor Count */
+		struct e1000_rx_ring *rx_ring = adapter->rx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_RXD),
+			.def  = E1000_DEFAULT_RXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_RXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD
+			}}
+		};
+
+		if (num_RxDescriptors > bd) {
+			rx_ring->count = RxDescriptors[bd];
+			e1000_validate_option(&rx_ring->count, &opt, adapter);
+			rx_ring->count = ALIGN(rx_ring->count,
+						REQ_RX_DESCRIPTOR_MULTIPLE);
+		} else {
+			rx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_rx_queues; i++)
+			rx_ring[i].count = rx_ring->count;
+	}
+	{ /* Checksum Offload Enable/Disable */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "Checksum Offload",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_XsumRX > bd) {
+			unsigned int rx_csum = XsumRX[bd];
+			e1000_validate_option(&rx_csum, &opt, adapter);
+			adapter->rx_csum = rx_csum;
+		} else {
+			adapter->rx_csum = opt.def;
+		}
+	}
+	{ /* Flow Control */
+
+		struct e1000_opt_list fc_list[] =
+			{{ E1000_FC_NONE,    "Flow Control Disabled" },
+			 { E1000_FC_RX_PAUSE,"Flow Control Receive Only" },
+			 { E1000_FC_TX_PAUSE,"Flow Control Transmit Only" },
+			 { E1000_FC_FULL,    "Flow Control Enabled" },
+			 { E1000_FC_DEFAULT, "Flow Control Hardware Default" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Flow Control",
+			.err  = "reading default settings from EEPROM",
+			.def  = E1000_FC_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(fc_list),
+					 .p = fc_list }}
+		};
+
+		if (num_FlowControl > bd) {
+			unsigned int fc = FlowControl[bd];
+			e1000_validate_option(&fc, &opt, adapter);
+			adapter->hw.fc = adapter->hw.original_fc = fc;
+		} else {
+			adapter->hw.fc = adapter->hw.original_fc = opt.def;
+		}
+	}
+	{ /* Transmit Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TIDV),
+			.def  = DEFAULT_TIDV,
+			.arg  = { .r = { .min = MIN_TXDELAY,
+					 .max = MAX_TXDELAY }}
+		};
+
+		if (num_TxIntDelay > bd) {
+			adapter->tx_int_delay = TxIntDelay[bd];
+			e1000_validate_option(&adapter->tx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_int_delay = opt.def;
+		}
+	}
+	{ /* Transmit Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TADV),
+			.def  = DEFAULT_TADV,
+			.arg  = { .r = { .min = MIN_TXABSDELAY,
+					 .max = MAX_TXABSDELAY }}
+		};
+
+		if (num_TxAbsIntDelay > bd) {
+			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RDTR),
+			.def  = DEFAULT_RDTR,
+			.arg  = { .r = { .min = MIN_RXDELAY,
+					 .max = MAX_RXDELAY }}
+		};
+
+		if (num_RxIntDelay > bd) {
+			adapter->rx_int_delay = RxIntDelay[bd];
+			e1000_validate_option(&adapter->rx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RADV),
+			.def  = DEFAULT_RADV,
+			.arg  = { .r = { .min = MIN_RXABSDELAY,
+					 .max = MAX_RXABSDELAY }}
+		};
+
+		if (num_RxAbsIntDelay > bd) {
+			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Interrupt Throttling Rate */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Interrupt Throttling Rate (ints/sec)",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_ITR),
+			.def  = DEFAULT_ITR,
+			.arg  = { .r = { .min = MIN_ITR,
+					 .max = MAX_ITR }}
+		};
+
+		if (num_InterruptThrottleRate > bd) {
+			adapter->itr = InterruptThrottleRate[bd];
+			switch (adapter->itr) {
+			case 0:
+				e_dev_info("%s turned off\n", opt.name);
+				break;
+			case 1:
+				e_dev_info("%s set to dynamic mode\n",
+					   opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 3:
+				e_dev_info("%s set to dynamic conservative "
+					   "mode\n", opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 4:
+				e_dev_info("%s set to simplified "
+				           "(2000-8000) ints mode\n", opt.name);
+				adapter->itr_setting = adapter->itr;
+				break;
+			default:
+				e1000_validate_option(&adapter->itr, &opt,
+				        adapter);
+				/* save the setting, because the dynamic bits
+				 * change itr.
+				 * clear the lower two bits because they are
+				 * used as control */
+				adapter->itr_setting = adapter->itr & ~3;
+				break;
+			}
+		} else {
+			adapter->itr_setting = opt.def;
+			adapter->itr = 20000;
+		}
+	}
+	{ /* Smart Power Down */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "PHY Smart Power Down",
+			.err  = "defaulting to Disabled",
+			.def  = OPTION_DISABLED
+		};
+
+		if (num_SmartPowerDownEnable > bd) {
+			unsigned int spd = SmartPowerDownEnable[bd];
+			e1000_validate_option(&spd, &opt, adapter);
+			adapter->smart_power_down = spd;
+		} else {
+			adapter->smart_power_down = opt.def;
+		}
+	}
+
+	switch (adapter->hw.media_type) {
+	case e1000_media_type_fiber:
+	case e1000_media_type_internal_serdes:
+		e1000_check_fiber_options(adapter);
+		break;
+	case e1000_media_type_copper:
+		e1000_check_copper_options(adapter);
+		break;
+	default:
+		BUG();
+	}
+}
+
+/**
+ * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on fiber adapters
+ **/
+
+static void __devinit e1000_check_fiber_options(struct e1000_adapter *adapter)
+{
+	int bd = adapter->bd_number;
+	if (num_Speed > bd) {
+		e_dev_info("Speed not valid for fiber adapters, parameter "
+			   "ignored\n");
+	}
+
+	if (num_Duplex > bd) {
+		e_dev_info("Duplex not valid for fiber adapters, parameter "
+			   "ignored\n");
+	}
+
+	if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
+		e_dev_info("AutoNeg other than 1000/Full is not valid for fiber"
+			   "adapters, parameter ignored\n");
+	}
+}
+
+/**
+ * e1000_check_copper_options - Range Checking for Link Options, Copper Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on copper adapters
+ **/
+
+static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	unsigned int speed, dplx, an;
+	int bd = adapter->bd_number;
+
+	{ /* Speed */
+		static const struct e1000_opt_list speed_list[] = {
+			{          0, "" },
+			{   SPEED_10, "" },
+			{  SPEED_100, "" },
+			{ SPEED_1000, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Speed",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(speed_list),
+					 .p = speed_list }}
+		};
+
+		if (num_Speed > bd) {
+			speed = Speed[bd];
+			e1000_validate_option(&speed, &opt, adapter);
+		} else {
+			speed = opt.def;
+		}
+	}
+	{ /* Duplex */
+		static const struct e1000_opt_list dplx_list[] = {
+			{           0, "" },
+			{ HALF_DUPLEX, "" },
+			{ FULL_DUPLEX, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Duplex",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(dplx_list),
+					 .p = dplx_list }}
+		};
+
+		if (num_Duplex > bd) {
+			dplx = Duplex[bd];
+			e1000_validate_option(&dplx, &opt, adapter);
+		} else {
+			dplx = opt.def;
+		}
+	}
+
+	if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
+		e_dev_info("AutoNeg specified along with Speed or Duplex, "
+			   "parameter ignored\n");
+		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+	} else { /* Autoneg */
+		static const struct e1000_opt_list an_list[] =
+			#define AA "AutoNeg advertising "
+			{{ 0x01, AA "10/HD" },
+			 { 0x02, AA "10/FD" },
+			 { 0x03, AA "10/FD, 10/HD" },
+			 { 0x04, AA "100/HD" },
+			 { 0x05, AA "100/HD, 10/HD" },
+			 { 0x06, AA "100/HD, 10/FD" },
+			 { 0x07, AA "100/HD, 10/FD, 10/HD" },
+			 { 0x08, AA "100/FD" },
+			 { 0x09, AA "100/FD, 10/HD" },
+			 { 0x0a, AA "100/FD, 10/FD" },
+			 { 0x0b, AA "100/FD, 10/FD, 10/HD" },
+			 { 0x0c, AA "100/FD, 100/HD" },
+			 { 0x0d, AA "100/FD, 100/HD, 10/HD" },
+			 { 0x0e, AA "100/FD, 100/HD, 10/FD" },
+			 { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x20, AA "1000/FD" },
+			 { 0x21, AA "1000/FD, 10/HD" },
+			 { 0x22, AA "1000/FD, 10/FD" },
+			 { 0x23, AA "1000/FD, 10/FD, 10/HD" },
+			 { 0x24, AA "1000/FD, 100/HD" },
+			 { 0x25, AA "1000/FD, 100/HD, 10/HD" },
+			 { 0x26, AA "1000/FD, 100/HD, 10/FD" },
+			 { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x28, AA "1000/FD, 100/FD" },
+			 { 0x29, AA "1000/FD, 100/FD, 10/HD" },
+			 { 0x2a, AA "1000/FD, 100/FD, 10/FD" },
+			 { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" },
+			 { 0x2c, AA "1000/FD, 100/FD, 100/HD" },
+			 { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" },
+			 { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" },
+			 { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "AutoNeg",
+			.err  = "parameter ignored",
+			.def  = AUTONEG_ADV_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(an_list),
+					 .p = an_list }}
+		};
+
+		if (num_AutoNeg > bd) {
+			an = AutoNeg[bd];
+			e1000_validate_option(&an, &opt, adapter);
+		} else {
+			an = opt.def;
+		}
+		adapter->hw.autoneg_advertised = an;
+	}
+
+	switch (speed + dplx) {
+	case 0:
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		if ((num_Speed > bd) && (speed != 0 || dplx != 0))
+			e_dev_info("Speed and duplex autonegotiation "
+				   "enabled\n");
+		break;
+	case HALF_DUPLEX:
+		e_dev_info("Half Duplex specified without Speed\n");
+		e_dev_info("Using Autonegotiation at Half Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_100_HALF;
+		break;
+	case FULL_DUPLEX:
+		e_dev_info("Full Duplex specified without Speed\n");
+		e_dev_info("Using Autonegotiation at Full Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_FULL |
+		                                 ADVERTISE_100_FULL |
+		                                 ADVERTISE_1000_FULL;
+		break;
+	case SPEED_10:
+		e_dev_info("10 Mbps Speed specified without Duplex\n");
+		e_dev_info("Using Autonegotiation at 10 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_10_FULL;
+		break;
+	case SPEED_10 + HALF_DUPLEX:
+		e_dev_info("Forcing to 10 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_10 + FULL_DUPLEX:
+		e_dev_info("Forcing to 10 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100:
+		e_dev_info("100 Mbps Speed specified without Duplex\n");
+		e_dev_info("Using Autonegotiation at 100 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_100_HALF |
+		                                 ADVERTISE_100_FULL;
+		break;
+	case SPEED_100 + HALF_DUPLEX:
+		e_dev_info("Forcing to 100 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100 + FULL_DUPLEX:
+		e_dev_info("Forcing to 100 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_1000:
+		e_dev_info("1000 Mbps Speed specified without Duplex\n");
+		goto full_duplex_only;
+	case SPEED_1000 + HALF_DUPLEX:
+		e_dev_info("Half Duplex is not supported at 1000 Mbps\n");
+		/* fall through */
+	case SPEED_1000 + FULL_DUPLEX:
+full_duplex_only:
+		e_dev_info("Using Autonegotiation at 1000 Mbps Full Duplex "
+			   "only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	default:
+		BUG();
+	}
+
+	/* Speed, AutoNeg and MDI/MDI-X must all play nice */
+	if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) {
+		e_dev_info("Speed, AutoNeg and MDI-X specs are incompatible. "
+			   "Setting MDI-X to a compatible value.\n");
+	}
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/82571-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,1884 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ * 82571EB Gigabit Ethernet Controller
+ * 82571EB Gigabit Ethernet Controller (Copper)
+ * 82571EB Gigabit Ethernet Controller (Fiber)
+ * 82571EB Dual Port Gigabit Mezzanine Adapter
+ * 82571EB Quad Port Gigabit Mezzanine Adapter
+ * 82571PT Gigabit PT Quad Port Server ExpressModule
+ * 82572EI Gigabit Ethernet Controller (Copper)
+ * 82572EI Gigabit Ethernet Controller (Fiber)
+ * 82572EI Gigabit Ethernet Controller
+ * 82573V Gigabit Ethernet Controller (Copper)
+ * 82573E Gigabit Ethernet Controller (Copper)
+ * 82573L Gigabit Ethernet Controller
+ * 82574L Gigabit Network Connection
+ * 82583V Gigabit Network Connection
+ */
+
+#include "e1000-2.6.35-ethercat.h"
+
+#define ID_LED_RESERVED_F746 0xF746
+#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
+			      (ID_LED_OFF1_ON2  <<  8) | \
+			      (ID_LED_DEF1_DEF2 <<  4) | \
+			      (ID_LED_DEF1_DEF2))
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+
+#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
+
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+				      u16 words, u16 *data);
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+static s32 e1000_setup_link_82571(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+static void e1000_clear_vfta_82571(struct e1000_hw *hw);
+static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
+static s32 e1000_led_on_82574(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_phy_params_82571 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		return 0;
+	}
+
+	phy->addr			 = 1;
+	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us		 = 100;
+
+	phy->ops.power_up		 = e1000_power_up_phy_copper;
+	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		phy->type		 = e1000_phy_igp_2;
+		break;
+	case e1000_82573:
+		phy->type		 = e1000_phy_m88;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		phy->type		 = e1000_phy_bm;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000_get_phy_id_82571(hw);
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		if (phy->id != IGP01E1000_I_PHY_ID)
+			return -E1000_ERR_PHY;
+		break;
+	case e1000_82573:
+		if (phy->id != M88E1111_I_PHY_ID)
+			return -E1000_ERR_PHY;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		if (phy->id != BME1000_E_PHY_ID_R2)
+			return -E1000_ERR_PHY;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u16 size;
+
+	nvm->opcode_bits = 8;
+	nvm->delay_usec = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (((eecd >> 15) & 0x3) == 0x3) {
+			nvm->type = e1000_nvm_flash_hw;
+			nvm->word_size = 2048;
+			/*
+			 * Autonomous Flash update bit must be cleared due
+			 * to Flash update issue.
+			 */
+			eecd &= ~E1000_EECD_AUPDEN;
+			ew32(EECD, eecd);
+			break;
+		}
+		/* Fall Through */
+	default:
+		nvm->type = e1000_nvm_eeprom_spi;
+		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+				  E1000_EECD_SIZE_EX_SHIFT);
+		/*
+		 * Added to a constant, "size" becomes the left-shift value
+		 * for setting word_size.
+		 */
+		size += NVM_WORD_SIZE_BASE_SHIFT;
+
+		/* EEPROM access above 16k is unsupported */
+		if (size > 14)
+			size = 14;
+		nvm->word_size	= 1 << size;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_mac_params_82571 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_mac_operations *func = &mac->ops;
+	u32 swsm = 0;
+	u32 swsm2 = 0;
+	bool force_clear_smbi = false;
+
+	/* Set media type */
+	switch (adapter->pdev->device) {
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		break;
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82572EI_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Adaptive IFS supported */
+	mac->adaptive_ifs = true;
+
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		func->setup_physical_interface = e1000_setup_copper_link_82571;
+		func->check_for_link = e1000e_check_for_copper_link;
+		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
+		break;
+	case e1000_media_type_fiber:
+		func->setup_physical_interface =
+			e1000_setup_fiber_serdes_link_82571;
+		func->check_for_link = e1000e_check_for_fiber_link;
+		func->get_link_up_info =
+			e1000e_get_speed_and_duplex_fiber_serdes;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->setup_physical_interface =
+			e1000_setup_fiber_serdes_link_82571;
+		func->check_for_link = e1000_check_for_serdes_link_82571;
+		func->get_link_up_info =
+			e1000e_get_speed_and_duplex_fiber_serdes;
+		break;
+	default:
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+		func->set_lan_id = e1000_set_lan_id_single_port;
+		func->check_mng_mode = e1000e_check_mng_mode_generic;
+		func->led_on = e1000e_led_on_generic;
+
+		/* FWSM register */
+		mac->has_fwsm = true;
+		/*
+		 * ARC supported; valid only if manageability features are
+		 * enabled.
+		 */
+		mac->arc_subsystem_valid =
+			(er32(FWSM) & E1000_FWSM_MODE_MASK)
+			? true : false;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		func->set_lan_id = e1000_set_lan_id_single_port;
+		func->check_mng_mode = e1000_check_mng_mode_82574;
+		func->led_on = e1000_led_on_82574;
+		break;
+	default:
+		func->check_mng_mode = e1000e_check_mng_mode_generic;
+		func->led_on = e1000e_led_on_generic;
+
+		/* FWSM register */
+		mac->has_fwsm = true;
+		break;
+	}
+
+	/*
+	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
+	 * first NVM or PHY acess. This should be done for single-port
+	 * devices, and for one port only on dual-port devices so that
+	 * for those devices we can still use the SMBI lock to synchronize
+	 * inter-port accesses to the PHY & NVM.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		swsm2 = er32(SWSM2);
+
+		if (!(swsm2 & E1000_SWSM2_LOCK)) {
+			/* Only do this for the first interface on this card */
+			ew32(SWSM2,
+			    swsm2 | E1000_SWSM2_LOCK);
+			force_clear_smbi = true;
+		} else
+			force_clear_smbi = false;
+		break;
+	default:
+		force_clear_smbi = true;
+		break;
+	}
+
+	if (force_clear_smbi) {
+		/* Make sure SWSM.SMBI is clear */
+		swsm = er32(SWSM);
+		if (swsm & E1000_SWSM_SMBI) {
+			/* This bit should not be set on a first interface, and
+			 * indicates that the bootagent or EFI code has
+			 * improperly left this bit enabled
+			 */
+			e_dbg("Please update your 82571 Bootagent\n");
+		}
+		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
+	}
+
+	/*
+	 * Initialize device specific counter of SMBI acquisition
+	 * timeouts.
+	 */
+	 hw->dev_spec.e82571.smb_counter = 0;
+
+	return 0;
+}
+
+static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	static int global_quad_port_a; /* global port a indication */
+	struct pci_dev *pdev = adapter->pdev;
+	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
+	s32 rc;
+
+	rc = e1000_init_mac_params_82571(adapter);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_nvm_params_82571(hw);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_phy_params_82571(hw);
+	if (rc)
+		return rc;
+
+	/* tag quad port adapters first, it's used below */
+	switch (pdev->device) {
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+		adapter->flags |= FLAG_IS_QUAD_PORT;
+		/* mark the first port */
+		if (global_quad_port_a == 0)
+			adapter->flags |= FLAG_IS_QUAD_PORT_A;
+		/* Reset for multiple quad port adapters */
+		global_quad_port_a++;
+		if (global_quad_port_a == 4)
+			global_quad_port_a = 0;
+		break;
+	default:
+		break;
+	}
+
+	switch (adapter->hw.mac.type) {
+	case e1000_82571:
+		/* these dual ports don't have WoL on port B at all */
+		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
+		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
+		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
+		    (is_port_b))
+			adapter->flags &= ~FLAG_HAS_WOL;
+		/* quad ports only support WoL on port A */
+		if (adapter->flags & FLAG_IS_QUAD_PORT &&
+		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
+			adapter->flags &= ~FLAG_HAS_WOL;
+		/* Does not support WoL on any port */
+		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
+			adapter->flags &= ~FLAG_HAS_WOL;
+		break;
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		/* Disable ASPM L0s due to hardware errata */
+		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
+
+		if (pdev->device == E1000_DEV_ID_82573L) {
+			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
+			adapter->max_hw_frame_size = DEFAULT_JUMBO;
+		}
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_id = 0;
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * The 82571 firmware may still be configuring the PHY.
+		 * In this case, we cannot access the PHY until the
+		 * configuration is done.  So we explicitly set the
+		 * PHY ID.
+		 */
+		phy->id = IGP01E1000_I_PHY_ID;
+		break;
+	case e1000_82573:
+		return e1000e_get_phy_id(hw);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id = (u32)(phy_id << 16);
+		udelay(20);
+		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id |= (u32)(phy_id);
+		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 sw_timeout = hw->nvm.word_size + 1;
+	s32 fw_timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	/*
+	 * If we have timedout 3 times on trying to acquire
+	 * the inter-port SMBI semaphore, there is old code
+	 * operating on the other port, and it is not
+	 * releasing SMBI. Modify the number of times that
+	 * we try for the semaphore to interwork with this
+	 * older code.
+	 */
+	if (hw->dev_spec.e82571.smb_counter > 2)
+		sw_timeout = 1;
+
+	/* Get the SW semaphore */
+	while (i < sw_timeout) {
+		swsm = er32(SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		udelay(50);
+		i++;
+	}
+
+	if (i == sw_timeout) {
+		e_dbg("Driver can't access device - SMBI bit is set.\n");
+		hw->dev_spec.e82571.smb_counter++;
+	}
+	/* Get the FW semaphore. */
+	for (i = 0; i < fw_timeout; i++) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (er32(SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		udelay(50);
+	}
+
+	if (i == fw_timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_82571(hw);
+		e_dbg("Driver can't access the NVM\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	swsm = er32(SWSM);
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+	ew32(SWSM, swsm);
+}
+
+/**
+ *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ *  Then for non-82573 hardware, set the EEPROM access request bit and wait
+ *  for EEPROM access grant bit.  If the access grant bit is not set, release
+ *  hardware semaphore.
+ **/
+static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	ret_val = e1000_get_hw_semaphore_82571(hw);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		break;
+	default:
+		ret_val = e1000e_acquire_nvm(hw);
+		break;
+	}
+
+	if (ret_val)
+		e1000_put_hw_semaphore_82571(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+static void e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+	e1000e_release_nvm(hw);
+	e1000_put_hw_semaphore_82571(hw);
+}
+
+/**
+ *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000e_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
+{
+	s32 ret_val;
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
+		break;
+	default:
+		ret_val = -E1000_ERR_NVM;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	u32 eecd;
+	s32 ret_val;
+	u16 i;
+
+	ret_val = e1000e_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * If our nvm is an EEPROM, then we're done
+	 * otherwise, commit the checksum to the flash NVM.
+	 */
+	if (hw->nvm.type != e1000_nvm_flash_hw)
+		return ret_val;
+
+	/* Check for pending operations. */
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msleep(1);
+		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES)
+		return -E1000_ERR_NVM;
+
+	/* Reset the firmware if using STM opcode. */
+	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+		/*
+		 * The enabling of and the actual reset must be done
+		 * in two write cycles.
+		 */
+		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
+		e1e_flush();
+		ew32(HICR, E1000_HICR_FW_RESET);
+	}
+
+	/* Commit the write to flash */
+	eecd = er32(EECD) | E1000_EECD_FLUPD;
+	ew32(EECD, eecd);
+
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msleep(1);
+		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES)
+		return -E1000_ERR_NVM;
+
+	return 0;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	if (hw->nvm.type == e1000_nvm_flash_hw)
+		e1000_fix_nvm_checksum_82571(hw);
+
+	return e1000e_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  After checking for invalid values, poll the EEPROM to ensure the previous
+ *  command has completed before trying to write the next word.  After write
+ *  poll for completion.
+ *
+ *  If e1000e_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+				      u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eewr = 0;
+	s32 ret_val = 0;
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	for (i = 0; i < words; i++) {
+		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
+		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+		       E1000_NVM_RW_REG_START;
+
+		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+
+		ew32(EEWR, eewr);
+
+		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cfg_done_82571 - Poll for configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the management control register for the config done bit to be set.
+ **/
+static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+
+	while (timeout) {
+		if (er32(EEMNGCTL) &
+		    E1000_NVM_CFG_DONE_PORT_0)
+			break;
+		msleep(1);
+		timeout--;
+	}
+	if (!timeout) {
+		e_dbg("MNG configuration cycle has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
+ *  this function also disables smart speed and vice versa.  LPLU will not be
+ *  activated unless the device autonegotiation advertisement meets standards
+ *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
+ *  pointer entry point only called by PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (active) {
+		data |= IGP02E1000_PM_D0_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		if (ret_val)
+			return ret_val;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		data &= ~IGP02E1000_PM_D0_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_reset_hw_82571 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
+	s32 ret_val;
+	u16 i = 0;
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000e_disable_pcie_master(hw);
+	if (ret_val)
+		e_dbg("PCI-E Master disable polling has failed.\n");
+
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	e1e_flush();
+
+	msleep(10);
+
+	/*
+	 * Must acquire the MDIO ownership before MAC reset.
+	 * Ownership defaults to firmware after a reset.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+		do {
+			ew32(EXTCNF_CTRL, extcnf_ctrl);
+			extcnf_ctrl = er32(EXTCNF_CTRL);
+
+			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+				break;
+
+			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+			msleep(2);
+			i++;
+		} while (i < MDIO_OWNERSHIP_TIMEOUT);
+		break;
+	default:
+		break;
+	}
+
+	ctrl = er32(CTRL);
+
+	e_dbg("Issuing a global reset to MAC\n");
+	ew32(CTRL, ctrl | E1000_CTRL_RST);
+
+	if (hw->nvm.type == e1000_nvm_flash_hw) {
+		udelay(10);
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		ew32(CTRL_EXT, ctrl_ext);
+		e1e_flush();
+	}
+
+	ret_val = e1000e_get_auto_rd_done(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		return ret_val;
+
+	/*
+	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+	 * Need to wait for Phy configuration completion before accessing
+	 * NVM and Phy.
+	 */
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		msleep(25);
+		break;
+	default:
+		break;
+	}
+
+	/* Clear any pending interrupt events. */
+	ew32(IMC, 0xffffffff);
+	icr = er32(ICR);
+
+	if (hw->mac.type == e1000_82571) {
+		/* Install any alternate MAC address into RAR0 */
+		ret_val = e1000_check_alt_mac_addr_generic(hw);
+		if (ret_val)
+			return ret_val;
+
+		e1000e_set_laa_state_82571(hw, true);
+	}
+
+	/* Reinitialize the 82571 serdes link state machine */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes)
+		hw->mac.serdes_link_state = e1000_serdes_link_down;
+
+	return 0;
+}
+
+/**
+ *  e1000_init_hw_82571 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i, rar_count = mac->rar_entry_count;
+
+	e1000_initialize_hw_bits_82571(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000e_id_led_init(hw);
+	if (ret_val)
+		e_dbg("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+
+	/* Disabling VLAN filtering */
+	e_dbg("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	/*
+	 * If, however, a locally administered address was assigned to the
+	 * 82571, we must reserve a RAR for it to work around an issue where
+	 * resetting one port will reload the MAC on the other port.
+	 */
+	if (e1000e_get_laa_state_82571(hw))
+		rar_count--;
+	e1000e_init_rx_addrs(hw, rar_count);
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_82571(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = er32(TXDCTL(0));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		   E1000_TXDCTL_FULL_TX_DESC_WB |
+		   E1000_TXDCTL_COUNT_DESC;
+	ew32(TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	switch (mac->type) {
+	case e1000_82573:
+		e1000e_enable_tx_pkt_filtering(hw);
+		/* fall through */
+	case e1000_82574:
+	case e1000_82583:
+		reg_data = er32(GCR);
+		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+		ew32(GCR, reg_data);
+		break;
+	default:
+		reg_data = er32(TXDCTL(1));
+		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+			   E1000_TXDCTL_FULL_TX_DESC_WB |
+			   E1000_TXDCTL_COUNT_DESC;
+		ew32(TXDCTL(1), reg_data);
+		break;
+	}
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82571(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	/* Transmit Descriptor Control 0 */
+	reg = er32(TXDCTL(0));
+	reg |= (1 << 22);
+	ew32(TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = er32(TXDCTL(1));
+	reg |= (1 << 22);
+	ew32(TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = er32(TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+		break;
+	default:
+		break;
+	}
+	ew32(TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = er32(TARC(1));
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg &= ~((1 << 29) | (1 << 30));
+		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+		if (er32(TCTL) & E1000_TCTL_MULR)
+			reg &= ~(1 << 28);
+		else
+			reg |= (1 << 28);
+		ew32(TARC(1), reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Device Control */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		reg = er32(CTRL);
+		reg &= ~(1 << 29);
+		ew32(CTRL, reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Extended Device Control */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		reg = er32(CTRL_EXT);
+		reg &= ~(1 << 23);
+		reg |= (1 << 22);
+		ew32(CTRL_EXT, reg);
+		break;
+	default:
+		break;
+	}
+
+	if (hw->mac.type == e1000_82571) {
+		reg = er32(PBA_ECC);
+		reg |= E1000_PBA_ECC_CORR_EN;
+		ew32(PBA_ECC, reg);
+	}
+	/*
+	 * Workaround for hardware errata.
+	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
+	 */
+
+        if ((hw->mac.type == e1000_82571) ||
+           (hw->mac.type == e1000_82572)) {
+                reg = er32(CTRL_EXT);
+                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
+                ew32(CTRL_EXT, reg);
+        }
+
+
+	/* PCI-Ex Control Registers */
+	switch (hw->mac.type) {
+	case e1000_82574:
+	case e1000_82583:
+		reg = er32(GCR);
+		reg |= (1 << 22);
+		ew32(GCR, reg);
+
+		/*
+		 * Workaround for hardware errata.
+		 * apply workaround for hardware errata documented in errata
+		 * docs Fixes issue where some error prone or unreliable PCIe
+		 * completions are occurring, particularly with ASPM enabled.
+		 * Without fix, issue can cause tx timeouts.
+		 */
+		reg = er32(GCR2);
+		reg |= 1;
+		ew32(GCR2, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+/**
+ *  e1000_clear_vfta_82571 - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+static void e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (hw->mng_cookie.vlan_id != 0) {
+			/*
+			 * The VFTA is a 4096b bit-field, each identifying
+			 * a single VLAN ID.  The following operations
+			 * determine which 32b entry (i.e. offset) into the
+			 * array we want to set the VLAN ID (i.e. bit) of
+			 * the manageability unit.
+			 */
+			vfta_offset = (hw->mng_cookie.vlan_id >>
+				       E1000_VFTA_ENTRY_SHIFT) &
+				      E1000_VFTA_ENTRY_MASK;
+			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+		}
+		break;
+	default:
+		break;
+	}
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/*
+		 * If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of
+		 * the manageability unit.
+		 */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+		e1e_flush();
+	}
+}
+
+/**
+ *  e1000_check_mng_mode_82574 - Check manageability is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the NVM Initialization Control Word 2 and returns true
+ *  (>0) if any manageability is enabled, else false (0).
+ **/
+static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
+{
+	u16 data;
+
+	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
+}
+
+/**
+ *  e1000_led_on_82574 - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+static s32 e1000_led_on_82574(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 i;
+
+	ctrl = hw->mac.ledctl_mode2;
+	if (!(E1000_STATUS_LU & er32(STATUS))) {
+		/*
+		 * If no link, then turn LED on by setting the invert bit
+		 * for each LED that's "on" (0x0E) in ledctl_mode2.
+		 */
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
+	}
+	ew32(LEDCTL, ctrl);
+
+	return 0;
+}
+
+/**
+ *  e1000_setup_link_82571 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_82571(struct e1000_hw *hw)
+{
+	/*
+	 * 82573 does not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (hw->fc.requested_mode == e1000_fc_default)
+			hw->fc.requested_mode = e1000_fc_full;
+		break;
+	default:
+		break;
+	}
+
+	return e1000e_setup_link(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_82571 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ew32(CTRL, ctrl);
+
+	switch (hw->phy.type) {
+	case e1000_phy_m88:
+	case e1000_phy_bm:
+		ret_val = e1000e_copper_link_setup_m88(hw);
+		break;
+	case e1000_phy_igp_2:
+		ret_val = e1000e_copper_link_setup_igp(hw);
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_setup_copper_link(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes links.
+ *  Upon successful setup, poll for link.
+ **/
+static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * If SerDes loopback mode is entered, there is no form
+		 * of reset to take the adapter out of that mode.  So we
+		 * have to explicitly take the adapter out of loopback
+		 * mode.  This prevents drivers from twiddling their thumbs
+		 * if another tool failed to take it out of loopback mode.
+		 */
+		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+		break;
+	default:
+		break;
+	}
+
+	return e1000e_setup_fiber_serdes_link(hw);
+}
+
+/**
+ *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Reports the link state as up or down.
+ *
+ *  If autonegotiation is supported by the link partner, the link state is
+ *  determined by the result of autonegotiation. This is the most likely case.
+ *  If autonegotiation is not supported by the link partner, and the link
+ *  has a valid signal, force the link up.
+ *
+ *  The link state is represented internally here by 4 states:
+ *
+ *  1) down
+ *  2) autoneg_progress
+ *  3) autoneg_complete (the link successfully autonegotiated)
+ *  4) forced_up (the link has been forced up, it did not autonegotiate)
+ *
+ **/
+static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = 0;
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
+
+		/* Receiver is synchronized with no invalid bits.  */
+		switch (mac->serdes_link_state) {
+		case e1000_serdes_link_autoneg_complete:
+			if (!(status & E1000_STATUS_LU)) {
+				/*
+				 * We have lost link, retry autoneg before
+				 * reporting link failure
+				 */
+				mac->serdes_link_state =
+				    e1000_serdes_link_autoneg_progress;
+				mac->serdes_has_link = false;
+				e_dbg("AN_UP     -> AN_PROG\n");
+			}
+		break;
+
+		case e1000_serdes_link_forced_up:
+			/*
+			 * If we are receiving /C/ ordered sets, re-enable
+			 * auto-negotiation in the TXCW register and disable
+			 * forced link in the Device Control register in an
+			 * attempt to auto-negotiate with our link partner.
+			 */
+			if (rxcw & E1000_RXCW_C) {
+				/* Enable autoneg, and unforce link up */
+				ew32(TXCW, mac->txcw);
+				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+				mac->serdes_link_state =
+				    e1000_serdes_link_autoneg_progress;
+				mac->serdes_has_link = false;
+				e_dbg("FORCED_UP -> AN_PROG\n");
+			}
+			break;
+
+		case e1000_serdes_link_autoneg_progress:
+			if (rxcw & E1000_RXCW_C) {
+				/*
+				 * We received /C/ ordered sets, meaning the
+				 * link partner has autonegotiated, and we can
+				 * trust the Link Up (LU) status bit.
+				 */
+				if (status & E1000_STATUS_LU) {
+					mac->serdes_link_state =
+					    e1000_serdes_link_autoneg_complete;
+					e_dbg("AN_PROG   -> AN_UP\n");
+					mac->serdes_has_link = true;
+				} else {
+					/* Autoneg completed, but failed. */
+					mac->serdes_link_state =
+					    e1000_serdes_link_down;
+					e_dbg("AN_PROG   -> DOWN\n");
+				}
+			} else {
+				/*
+				 * The link partner did not autoneg.
+				 * Force link up and full duplex, and change
+				 * state to forced.
+				 */
+				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+				ew32(CTRL, ctrl);
+
+				/* Configure Flow Control after link up. */
+				ret_val = e1000e_config_fc_after_link_up(hw);
+				if (ret_val) {
+					e_dbg("Error config flow control\n");
+					break;
+				}
+				mac->serdes_link_state =
+				    e1000_serdes_link_forced_up;
+				mac->serdes_has_link = true;
+				e_dbg("AN_PROG   -> FORCED_UP\n");
+			}
+			break;
+
+		case e1000_serdes_link_down:
+		default:
+			/*
+			 * The link was down but the receiver has now gained
+			 * valid sync, so lets see if we can bring the link
+			 * up.
+			 */
+			ew32(TXCW, mac->txcw);
+			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+			mac->serdes_link_state =
+			    e1000_serdes_link_autoneg_progress;
+			e_dbg("DOWN      -> AN_PROG\n");
+			break;
+		}
+	} else {
+		if (!(rxcw & E1000_RXCW_SYNCH)) {
+			mac->serdes_has_link = false;
+			mac->serdes_link_state = e1000_serdes_link_down;
+			e_dbg("ANYSTATE  -> DOWN\n");
+		} else {
+			/*
+			 * We have sync, and can tolerate one invalid (IV)
+			 * codeword before declaring link down, so reread
+			 * to look again.
+			 */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_IV) {
+				mac->serdes_link_state = e1000_serdes_link_down;
+				mac->serdes_has_link = false;
+				e_dbg("ANYSTATE  -> DOWN\n");
+			}
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_led_default_82571 - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (*data == ID_LED_RESERVED_F746)
+			*data = ID_LED_DEFAULT_82573;
+		break;
+	default:
+		if (*data == ID_LED_RESERVED_0000 ||
+		    *data == ID_LED_RESERVED_FFFF)
+			*data = ID_LED_DEFAULT;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_laa_state_82571 - Get locally administered address state
+ *  @hw: pointer to the HW structure
+ *
+ *  Retrieve and return the current locally administered address state.
+ **/
+bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
+{
+	if (hw->mac.type != e1000_82571)
+		return false;
+
+	return hw->dev_spec.e82571.laa_is_present;
+}
+
+/**
+ *  e1000e_set_laa_state_82571 - Set locally administered address state
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable locally administered address
+ *
+ *  Enable/Disable the current locally administered address state.
+ **/
+void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
+{
+	if (hw->mac.type != e1000_82571)
+		return;
+
+	hw->dev_spec.e82571.laa_is_present = state;
+
+	/* If workaround is activated... */
+	if (state)
+		/*
+		 * Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered and the time it
+		 * gets fixed, the actual LAA is in one of the RARs and no
+		 * incoming packets directed to this port are dropped.
+		 * Eventually the LAA will be in RAR[0] and RAR[14].
+		 */
+		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
+}
+
+/**
+ *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies that the EEPROM has completed the update.  After updating the
+ *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
+ *  the checksum fix is not implemented, we need to set the bit and update
+ *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
+ *  we need to return bad checksum.
+ **/
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u16 data;
+
+	if (nvm->type != e1000_nvm_flash_hw)
+		return 0;
+
+	/*
+	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
+	 * 10h-12h.  Checksum may need to be fixed.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (!(data & 0x10)) {
+		/*
+		 * Read 0x23 and check bit 15.  This bit is a 1
+		 * when the checksum has already been fixed.  If
+		 * the checksum is still wrong and this bit is a
+		 * 1, we need to return bad checksum.  Otherwise,
+		 * we need to set this bit to a 1 and update the
+		 * checksum.
+		 */
+		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(data & 0x8000)) {
+			data |= 0x8000;
+			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000e_update_nvm_checksum(hw);
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_read_mac_addr_82571 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	if (hw->mac.type == e1000_82571) {
+		/*
+		 * If there's an alternate MAC address place it in RAR0
+		 * so that it will override the Si installed default perm
+		 * address.
+		 */
+		ret_val = e1000_check_alt_mac_addr_generic(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_mac_info *mac = &hw->mac;
+
+	if (!(phy->ops.check_reset_block))
+		return;
+
+	/* If the management interface is not enabled, then power down */
+	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+	e1000e_clear_hw_cntrs_base(hw);
+
+	er32(PRC64);
+	er32(PRC127);
+	er32(PRC255);
+	er32(PRC511);
+	er32(PRC1023);
+	er32(PRC1522);
+	er32(PTC64);
+	er32(PTC127);
+	er32(PTC255);
+	er32(PTC511);
+	er32(PTC1023);
+	er32(PTC1522);
+
+	er32(ALGNERRC);
+	er32(RXERRC);
+	er32(TNCRS);
+	er32(CEXTERR);
+	er32(TSCTC);
+	er32(TSCTFC);
+
+	er32(MGTPRC);
+	er32(MGTPDC);
+	er32(MGTPTC);
+
+	er32(IAC);
+	er32(ICRXOC);
+
+	er32(ICRXPTC);
+	er32(ICRXATC);
+	er32(ICTXPTC);
+	er32(ICTXATC);
+	er32(ICTXQEC);
+	er32(ICTXQMTC);
+	er32(ICRXDMTC);
+}
+
+static struct e1000_mac_operations e82571_mac_ops = {
+	/* .check_mng_mode: mac type dependent */
+	/* .check_for_link: media type dependent */
+	.id_led_init		= e1000e_id_led_init,
+	.cleanup_led		= e1000e_cleanup_led_generic,
+	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
+	.get_bus_info		= e1000e_get_bus_info_pcie,
+	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
+	/* .get_link_up_info: media type dependent */
+	/* .led_on: mac type dependent */
+	.led_off		= e1000e_led_off_generic,
+	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
+	.write_vfta		= e1000_write_vfta_generic,
+	.clear_vfta		= e1000_clear_vfta_82571,
+	.reset_hw		= e1000_reset_hw_82571,
+	.init_hw		= e1000_init_hw_82571,
+	.setup_link		= e1000_setup_link_82571,
+	/* .setup_physical_interface: media type dependent */
+	.setup_led		= e1000e_setup_led_generic,
+	.read_mac_addr		= e1000_read_mac_addr_82571,
+};
+
+static struct e1000_phy_operations e82_phy_ops_igp = {
+	.acquire		= e1000_get_hw_semaphore_82571,
+	.check_polarity		= e1000_check_polarity_igp,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit			= NULL,
+	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
+	.get_cfg_done		= e1000_get_cfg_done_82571,
+	.get_cable_length	= e1000e_get_cable_length_igp_2,
+	.get_info		= e1000e_get_phy_info_igp,
+	.read_reg		= e1000e_read_phy_reg_igp,
+	.release		= e1000_put_hw_semaphore_82571,
+	.reset			= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
+	.write_reg		= e1000e_write_phy_reg_igp,
+	.cfg_on_link_up      	= NULL,
+};
+
+static struct e1000_phy_operations e82_phy_ops_m88 = {
+	.acquire		= e1000_get_hw_semaphore_82571,
+	.check_polarity		= e1000_check_polarity_m88,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit			= e1000e_phy_sw_reset,
+	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
+	.get_cfg_done		= e1000e_get_cfg_done,
+	.get_cable_length	= e1000e_get_cable_length_m88,
+	.get_info		= e1000e_get_phy_info_m88,
+	.read_reg		= e1000e_read_phy_reg_m88,
+	.release		= e1000_put_hw_semaphore_82571,
+	.reset			= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
+	.write_reg		= e1000e_write_phy_reg_m88,
+	.cfg_on_link_up      	= NULL,
+};
+
+static struct e1000_phy_operations e82_phy_ops_bm = {
+	.acquire		= e1000_get_hw_semaphore_82571,
+	.check_polarity		= e1000_check_polarity_m88,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit			= e1000e_phy_sw_reset,
+	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
+	.get_cfg_done		= e1000e_get_cfg_done,
+	.get_cable_length	= e1000e_get_cable_length_m88,
+	.get_info		= e1000e_get_phy_info_m88,
+	.read_reg		= e1000e_read_phy_reg_bm2,
+	.release		= e1000_put_hw_semaphore_82571,
+	.reset			= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
+	.write_reg		= e1000e_write_phy_reg_bm2,
+	.cfg_on_link_up      	= NULL,
+};
+
+static struct e1000_nvm_operations e82571_nvm_ops = {
+	.acquire		= e1000_acquire_nvm_82571,
+	.read			= e1000e_read_nvm_eerd,
+	.release		= e1000_release_nvm_82571,
+	.update			= e1000_update_nvm_checksum_82571,
+	.valid_led_default	= e1000_valid_led_default_82571,
+	.validate		= e1000_validate_nvm_checksum_82571,
+	.write			= e1000_write_nvm_82571,
+};
+
+struct e1000_info e1000_82571_info = {
+	.mac			= e1000_82571,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_RESET_OVERWRITES_LAA /* errata */
+				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
+				  | FLAG_APME_CHECK_PORT_B,
+	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
+	.pba			= 38,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_igp,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82572_info = {
+	.mac			= e1000_82572,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
+	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
+	.pba			= 38,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_igp,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82573_info = {
+	.mac			= e1000_82573,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_SWSM_ON_LOAD,
+	.flags2			= FLAG2_DISABLE_ASPM_L1,
+	.pba			= 20,
+	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_m88,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82574_info = {
+	.mac			= e1000_82574,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_MSIX
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_CTRLEXT_ON_LOAD,
+	.pba			= 36,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_bm,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82583_info = {
+	.mac			= e1000_82583,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_CTRLEXT_ON_LOAD,
+	.pba			= 36,
+	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_bm,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/82571-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,1884 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ * 82571EB Gigabit Ethernet Controller
+ * 82571EB Gigabit Ethernet Controller (Copper)
+ * 82571EB Gigabit Ethernet Controller (Fiber)
+ * 82571EB Dual Port Gigabit Mezzanine Adapter
+ * 82571EB Quad Port Gigabit Mezzanine Adapter
+ * 82571PT Gigabit PT Quad Port Server ExpressModule
+ * 82572EI Gigabit Ethernet Controller (Copper)
+ * 82572EI Gigabit Ethernet Controller (Fiber)
+ * 82572EI Gigabit Ethernet Controller
+ * 82573V Gigabit Ethernet Controller (Copper)
+ * 82573E Gigabit Ethernet Controller (Copper)
+ * 82573L Gigabit Ethernet Controller
+ * 82574L Gigabit Network Connection
+ * 82583V Gigabit Network Connection
+ */
+
+#include "e1000.h"
+
+#define ID_LED_RESERVED_F746 0xF746
+#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
+			      (ID_LED_OFF1_ON2  <<  8) | \
+			      (ID_LED_DEF1_DEF2 <<  4) | \
+			      (ID_LED_DEF1_DEF2))
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+
+#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
+
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+				      u16 words, u16 *data);
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+static s32 e1000_setup_link_82571(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+static void e1000_clear_vfta_82571(struct e1000_hw *hw);
+static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
+static s32 e1000_led_on_82574(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_phy_params_82571 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		return 0;
+	}
+
+	phy->addr			 = 1;
+	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us		 = 100;
+
+	phy->ops.power_up		 = e1000_power_up_phy_copper;
+	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		phy->type		 = e1000_phy_igp_2;
+		break;
+	case e1000_82573:
+		phy->type		 = e1000_phy_m88;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		phy->type		 = e1000_phy_bm;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000_get_phy_id_82571(hw);
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		if (phy->id != IGP01E1000_I_PHY_ID)
+			return -E1000_ERR_PHY;
+		break;
+	case e1000_82573:
+		if (phy->id != M88E1111_I_PHY_ID)
+			return -E1000_ERR_PHY;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		if (phy->id != BME1000_E_PHY_ID_R2)
+			return -E1000_ERR_PHY;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u16 size;
+
+	nvm->opcode_bits = 8;
+	nvm->delay_usec = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (((eecd >> 15) & 0x3) == 0x3) {
+			nvm->type = e1000_nvm_flash_hw;
+			nvm->word_size = 2048;
+			/*
+			 * Autonomous Flash update bit must be cleared due
+			 * to Flash update issue.
+			 */
+			eecd &= ~E1000_EECD_AUPDEN;
+			ew32(EECD, eecd);
+			break;
+		}
+		/* Fall Through */
+	default:
+		nvm->type = e1000_nvm_eeprom_spi;
+		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+				  E1000_EECD_SIZE_EX_SHIFT);
+		/*
+		 * Added to a constant, "size" becomes the left-shift value
+		 * for setting word_size.
+		 */
+		size += NVM_WORD_SIZE_BASE_SHIFT;
+
+		/* EEPROM access above 16k is unsupported */
+		if (size > 14)
+			size = 14;
+		nvm->word_size	= 1 << size;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_mac_params_82571 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_mac_operations *func = &mac->ops;
+	u32 swsm = 0;
+	u32 swsm2 = 0;
+	bool force_clear_smbi = false;
+
+	/* Set media type */
+	switch (adapter->pdev->device) {
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		break;
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82572EI_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Adaptive IFS supported */
+	mac->adaptive_ifs = true;
+
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		func->setup_physical_interface = e1000_setup_copper_link_82571;
+		func->check_for_link = e1000e_check_for_copper_link;
+		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
+		break;
+	case e1000_media_type_fiber:
+		func->setup_physical_interface =
+			e1000_setup_fiber_serdes_link_82571;
+		func->check_for_link = e1000e_check_for_fiber_link;
+		func->get_link_up_info =
+			e1000e_get_speed_and_duplex_fiber_serdes;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->setup_physical_interface =
+			e1000_setup_fiber_serdes_link_82571;
+		func->check_for_link = e1000_check_for_serdes_link_82571;
+		func->get_link_up_info =
+			e1000e_get_speed_and_duplex_fiber_serdes;
+		break;
+	default:
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+		func->set_lan_id = e1000_set_lan_id_single_port;
+		func->check_mng_mode = e1000e_check_mng_mode_generic;
+		func->led_on = e1000e_led_on_generic;
+
+		/* FWSM register */
+		mac->has_fwsm = true;
+		/*
+		 * ARC supported; valid only if manageability features are
+		 * enabled.
+		 */
+		mac->arc_subsystem_valid =
+			(er32(FWSM) & E1000_FWSM_MODE_MASK)
+			? true : false;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		func->set_lan_id = e1000_set_lan_id_single_port;
+		func->check_mng_mode = e1000_check_mng_mode_82574;
+		func->led_on = e1000_led_on_82574;
+		break;
+	default:
+		func->check_mng_mode = e1000e_check_mng_mode_generic;
+		func->led_on = e1000e_led_on_generic;
+
+		/* FWSM register */
+		mac->has_fwsm = true;
+		break;
+	}
+
+	/*
+	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
+	 * first NVM or PHY acess. This should be done for single-port
+	 * devices, and for one port only on dual-port devices so that
+	 * for those devices we can still use the SMBI lock to synchronize
+	 * inter-port accesses to the PHY & NVM.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		swsm2 = er32(SWSM2);
+
+		if (!(swsm2 & E1000_SWSM2_LOCK)) {
+			/* Only do this for the first interface on this card */
+			ew32(SWSM2,
+			    swsm2 | E1000_SWSM2_LOCK);
+			force_clear_smbi = true;
+		} else
+			force_clear_smbi = false;
+		break;
+	default:
+		force_clear_smbi = true;
+		break;
+	}
+
+	if (force_clear_smbi) {
+		/* Make sure SWSM.SMBI is clear */
+		swsm = er32(SWSM);
+		if (swsm & E1000_SWSM_SMBI) {
+			/* This bit should not be set on a first interface, and
+			 * indicates that the bootagent or EFI code has
+			 * improperly left this bit enabled
+			 */
+			e_dbg("Please update your 82571 Bootagent\n");
+		}
+		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
+	}
+
+	/*
+	 * Initialize device specific counter of SMBI acquisition
+	 * timeouts.
+	 */
+	 hw->dev_spec.e82571.smb_counter = 0;
+
+	return 0;
+}
+
+static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	static int global_quad_port_a; /* global port a indication */
+	struct pci_dev *pdev = adapter->pdev;
+	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
+	s32 rc;
+
+	rc = e1000_init_mac_params_82571(adapter);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_nvm_params_82571(hw);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_phy_params_82571(hw);
+	if (rc)
+		return rc;
+
+	/* tag quad port adapters first, it's used below */
+	switch (pdev->device) {
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+		adapter->flags |= FLAG_IS_QUAD_PORT;
+		/* mark the first port */
+		if (global_quad_port_a == 0)
+			adapter->flags |= FLAG_IS_QUAD_PORT_A;
+		/* Reset for multiple quad port adapters */
+		global_quad_port_a++;
+		if (global_quad_port_a == 4)
+			global_quad_port_a = 0;
+		break;
+	default:
+		break;
+	}
+
+	switch (adapter->hw.mac.type) {
+	case e1000_82571:
+		/* these dual ports don't have WoL on port B at all */
+		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
+		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
+		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
+		    (is_port_b))
+			adapter->flags &= ~FLAG_HAS_WOL;
+		/* quad ports only support WoL on port A */
+		if (adapter->flags & FLAG_IS_QUAD_PORT &&
+		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
+			adapter->flags &= ~FLAG_HAS_WOL;
+		/* Does not support WoL on any port */
+		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
+			adapter->flags &= ~FLAG_HAS_WOL;
+		break;
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		/* Disable ASPM L0s due to hardware errata */
+		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
+
+		if (pdev->device == E1000_DEV_ID_82573L) {
+			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
+			adapter->max_hw_frame_size = DEFAULT_JUMBO;
+		}
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_id = 0;
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * The 82571 firmware may still be configuring the PHY.
+		 * In this case, we cannot access the PHY until the
+		 * configuration is done.  So we explicitly set the
+		 * PHY ID.
+		 */
+		phy->id = IGP01E1000_I_PHY_ID;
+		break;
+	case e1000_82573:
+		return e1000e_get_phy_id(hw);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id = (u32)(phy_id << 16);
+		udelay(20);
+		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id |= (u32)(phy_id);
+		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 sw_timeout = hw->nvm.word_size + 1;
+	s32 fw_timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	/*
+	 * If we have timedout 3 times on trying to acquire
+	 * the inter-port SMBI semaphore, there is old code
+	 * operating on the other port, and it is not
+	 * releasing SMBI. Modify the number of times that
+	 * we try for the semaphore to interwork with this
+	 * older code.
+	 */
+	if (hw->dev_spec.e82571.smb_counter > 2)
+		sw_timeout = 1;
+
+	/* Get the SW semaphore */
+	while (i < sw_timeout) {
+		swsm = er32(SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		udelay(50);
+		i++;
+	}
+
+	if (i == sw_timeout) {
+		e_dbg("Driver can't access device - SMBI bit is set.\n");
+		hw->dev_spec.e82571.smb_counter++;
+	}
+	/* Get the FW semaphore. */
+	for (i = 0; i < fw_timeout; i++) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (er32(SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		udelay(50);
+	}
+
+	if (i == fw_timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_82571(hw);
+		e_dbg("Driver can't access the NVM\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	swsm = er32(SWSM);
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+	ew32(SWSM, swsm);
+}
+
+/**
+ *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ *  Then for non-82573 hardware, set the EEPROM access request bit and wait
+ *  for EEPROM access grant bit.  If the access grant bit is not set, release
+ *  hardware semaphore.
+ **/
+static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	ret_val = e1000_get_hw_semaphore_82571(hw);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		break;
+	default:
+		ret_val = e1000e_acquire_nvm(hw);
+		break;
+	}
+
+	if (ret_val)
+		e1000_put_hw_semaphore_82571(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+static void e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+	e1000e_release_nvm(hw);
+	e1000_put_hw_semaphore_82571(hw);
+}
+
+/**
+ *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000e_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
+{
+	s32 ret_val;
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
+		break;
+	default:
+		ret_val = -E1000_ERR_NVM;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	u32 eecd;
+	s32 ret_val;
+	u16 i;
+
+	ret_val = e1000e_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * If our nvm is an EEPROM, then we're done
+	 * otherwise, commit the checksum to the flash NVM.
+	 */
+	if (hw->nvm.type != e1000_nvm_flash_hw)
+		return ret_val;
+
+	/* Check for pending operations. */
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msleep(1);
+		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES)
+		return -E1000_ERR_NVM;
+
+	/* Reset the firmware if using STM opcode. */
+	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+		/*
+		 * The enabling of and the actual reset must be done
+		 * in two write cycles.
+		 */
+		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
+		e1e_flush();
+		ew32(HICR, E1000_HICR_FW_RESET);
+	}
+
+	/* Commit the write to flash */
+	eecd = er32(EECD) | E1000_EECD_FLUPD;
+	ew32(EECD, eecd);
+
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msleep(1);
+		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES)
+		return -E1000_ERR_NVM;
+
+	return 0;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	if (hw->nvm.type == e1000_nvm_flash_hw)
+		e1000_fix_nvm_checksum_82571(hw);
+
+	return e1000e_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  After checking for invalid values, poll the EEPROM to ensure the previous
+ *  command has completed before trying to write the next word.  After write
+ *  poll for completion.
+ *
+ *  If e1000e_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+				      u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eewr = 0;
+	s32 ret_val = 0;
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	for (i = 0; i < words; i++) {
+		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
+		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+		       E1000_NVM_RW_REG_START;
+
+		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+
+		ew32(EEWR, eewr);
+
+		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cfg_done_82571 - Poll for configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the management control register for the config done bit to be set.
+ **/
+static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+
+	while (timeout) {
+		if (er32(EEMNGCTL) &
+		    E1000_NVM_CFG_DONE_PORT_0)
+			break;
+		msleep(1);
+		timeout--;
+	}
+	if (!timeout) {
+		e_dbg("MNG configuration cycle has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
+ *  this function also disables smart speed and vice versa.  LPLU will not be
+ *  activated unless the device autonegotiation advertisement meets standards
+ *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
+ *  pointer entry point only called by PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (active) {
+		data |= IGP02E1000_PM_D0_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		if (ret_val)
+			return ret_val;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		data &= ~IGP02E1000_PM_D0_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_reset_hw_82571 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
+	s32 ret_val;
+	u16 i = 0;
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000e_disable_pcie_master(hw);
+	if (ret_val)
+		e_dbg("PCI-E Master disable polling has failed.\n");
+
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	e1e_flush();
+
+	msleep(10);
+
+	/*
+	 * Must acquire the MDIO ownership before MAC reset.
+	 * Ownership defaults to firmware after a reset.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+		do {
+			ew32(EXTCNF_CTRL, extcnf_ctrl);
+			extcnf_ctrl = er32(EXTCNF_CTRL);
+
+			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+				break;
+
+			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+			msleep(2);
+			i++;
+		} while (i < MDIO_OWNERSHIP_TIMEOUT);
+		break;
+	default:
+		break;
+	}
+
+	ctrl = er32(CTRL);
+
+	e_dbg("Issuing a global reset to MAC\n");
+	ew32(CTRL, ctrl | E1000_CTRL_RST);
+
+	if (hw->nvm.type == e1000_nvm_flash_hw) {
+		udelay(10);
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		ew32(CTRL_EXT, ctrl_ext);
+		e1e_flush();
+	}
+
+	ret_val = e1000e_get_auto_rd_done(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		return ret_val;
+
+	/*
+	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+	 * Need to wait for Phy configuration completion before accessing
+	 * NVM and Phy.
+	 */
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		msleep(25);
+		break;
+	default:
+		break;
+	}
+
+	/* Clear any pending interrupt events. */
+	ew32(IMC, 0xffffffff);
+	icr = er32(ICR);
+
+	if (hw->mac.type == e1000_82571) {
+		/* Install any alternate MAC address into RAR0 */
+		ret_val = e1000_check_alt_mac_addr_generic(hw);
+		if (ret_val)
+			return ret_val;
+
+		e1000e_set_laa_state_82571(hw, true);
+	}
+
+	/* Reinitialize the 82571 serdes link state machine */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes)
+		hw->mac.serdes_link_state = e1000_serdes_link_down;
+
+	return 0;
+}
+
+/**
+ *  e1000_init_hw_82571 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i, rar_count = mac->rar_entry_count;
+
+	e1000_initialize_hw_bits_82571(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000e_id_led_init(hw);
+	if (ret_val)
+		e_dbg("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+
+	/* Disabling VLAN filtering */
+	e_dbg("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	/*
+	 * If, however, a locally administered address was assigned to the
+	 * 82571, we must reserve a RAR for it to work around an issue where
+	 * resetting one port will reload the MAC on the other port.
+	 */
+	if (e1000e_get_laa_state_82571(hw))
+		rar_count--;
+	e1000e_init_rx_addrs(hw, rar_count);
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_82571(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = er32(TXDCTL(0));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		   E1000_TXDCTL_FULL_TX_DESC_WB |
+		   E1000_TXDCTL_COUNT_DESC;
+	ew32(TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	switch (mac->type) {
+	case e1000_82573:
+		e1000e_enable_tx_pkt_filtering(hw);
+		/* fall through */
+	case e1000_82574:
+	case e1000_82583:
+		reg_data = er32(GCR);
+		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+		ew32(GCR, reg_data);
+		break;
+	default:
+		reg_data = er32(TXDCTL(1));
+		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+			   E1000_TXDCTL_FULL_TX_DESC_WB |
+			   E1000_TXDCTL_COUNT_DESC;
+		ew32(TXDCTL(1), reg_data);
+		break;
+	}
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82571(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	/* Transmit Descriptor Control 0 */
+	reg = er32(TXDCTL(0));
+	reg |= (1 << 22);
+	ew32(TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = er32(TXDCTL(1));
+	reg |= (1 << 22);
+	ew32(TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = er32(TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+		break;
+	default:
+		break;
+	}
+	ew32(TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = er32(TARC(1));
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg &= ~((1 << 29) | (1 << 30));
+		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+		if (er32(TCTL) & E1000_TCTL_MULR)
+			reg &= ~(1 << 28);
+		else
+			reg |= (1 << 28);
+		ew32(TARC(1), reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Device Control */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		reg = er32(CTRL);
+		reg &= ~(1 << 29);
+		ew32(CTRL, reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Extended Device Control */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		reg = er32(CTRL_EXT);
+		reg &= ~(1 << 23);
+		reg |= (1 << 22);
+		ew32(CTRL_EXT, reg);
+		break;
+	default:
+		break;
+	}
+
+	if (hw->mac.type == e1000_82571) {
+		reg = er32(PBA_ECC);
+		reg |= E1000_PBA_ECC_CORR_EN;
+		ew32(PBA_ECC, reg);
+	}
+	/*
+	 * Workaround for hardware errata.
+	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
+	 */
+
+        if ((hw->mac.type == e1000_82571) ||
+           (hw->mac.type == e1000_82572)) {
+                reg = er32(CTRL_EXT);
+                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
+                ew32(CTRL_EXT, reg);
+        }
+
+
+	/* PCI-Ex Control Registers */
+	switch (hw->mac.type) {
+	case e1000_82574:
+	case e1000_82583:
+		reg = er32(GCR);
+		reg |= (1 << 22);
+		ew32(GCR, reg);
+
+		/*
+		 * Workaround for hardware errata.
+		 * apply workaround for hardware errata documented in errata
+		 * docs Fixes issue where some error prone or unreliable PCIe
+		 * completions are occurring, particularly with ASPM enabled.
+		 * Without fix, issue can cause tx timeouts.
+		 */
+		reg = er32(GCR2);
+		reg |= 1;
+		ew32(GCR2, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+/**
+ *  e1000_clear_vfta_82571 - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+static void e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (hw->mng_cookie.vlan_id != 0) {
+			/*
+			 * The VFTA is a 4096b bit-field, each identifying
+			 * a single VLAN ID.  The following operations
+			 * determine which 32b entry (i.e. offset) into the
+			 * array we want to set the VLAN ID (i.e. bit) of
+			 * the manageability unit.
+			 */
+			vfta_offset = (hw->mng_cookie.vlan_id >>
+				       E1000_VFTA_ENTRY_SHIFT) &
+				      E1000_VFTA_ENTRY_MASK;
+			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+		}
+		break;
+	default:
+		break;
+	}
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/*
+		 * If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of
+		 * the manageability unit.
+		 */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+		e1e_flush();
+	}
+}
+
+/**
+ *  e1000_check_mng_mode_82574 - Check manageability is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the NVM Initialization Control Word 2 and returns true
+ *  (>0) if any manageability is enabled, else false (0).
+ **/
+static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
+{
+	u16 data;
+
+	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
+}
+
+/**
+ *  e1000_led_on_82574 - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+static s32 e1000_led_on_82574(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 i;
+
+	ctrl = hw->mac.ledctl_mode2;
+	if (!(E1000_STATUS_LU & er32(STATUS))) {
+		/*
+		 * If no link, then turn LED on by setting the invert bit
+		 * for each LED that's "on" (0x0E) in ledctl_mode2.
+		 */
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
+	}
+	ew32(LEDCTL, ctrl);
+
+	return 0;
+}
+
+/**
+ *  e1000_setup_link_82571 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_82571(struct e1000_hw *hw)
+{
+	/*
+	 * 82573 does not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (hw->fc.requested_mode == e1000_fc_default)
+			hw->fc.requested_mode = e1000_fc_full;
+		break;
+	default:
+		break;
+	}
+
+	return e1000e_setup_link(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_82571 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ew32(CTRL, ctrl);
+
+	switch (hw->phy.type) {
+	case e1000_phy_m88:
+	case e1000_phy_bm:
+		ret_val = e1000e_copper_link_setup_m88(hw);
+		break;
+	case e1000_phy_igp_2:
+		ret_val = e1000e_copper_link_setup_igp(hw);
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_setup_copper_link(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes links.
+ *  Upon successful setup, poll for link.
+ **/
+static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/*
+		 * If SerDes loopback mode is entered, there is no form
+		 * of reset to take the adapter out of that mode.  So we
+		 * have to explicitly take the adapter out of loopback
+		 * mode.  This prevents drivers from twiddling their thumbs
+		 * if another tool failed to take it out of loopback mode.
+		 */
+		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+		break;
+	default:
+		break;
+	}
+
+	return e1000e_setup_fiber_serdes_link(hw);
+}
+
+/**
+ *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Reports the link state as up or down.
+ *
+ *  If autonegotiation is supported by the link partner, the link state is
+ *  determined by the result of autonegotiation. This is the most likely case.
+ *  If autonegotiation is not supported by the link partner, and the link
+ *  has a valid signal, force the link up.
+ *
+ *  The link state is represented internally here by 4 states:
+ *
+ *  1) down
+ *  2) autoneg_progress
+ *  3) autoneg_complete (the link successfully autonegotiated)
+ *  4) forced_up (the link has been forced up, it did not autonegotiate)
+ *
+ **/
+static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = 0;
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
+
+		/* Receiver is synchronized with no invalid bits.  */
+		switch (mac->serdes_link_state) {
+		case e1000_serdes_link_autoneg_complete:
+			if (!(status & E1000_STATUS_LU)) {
+				/*
+				 * We have lost link, retry autoneg before
+				 * reporting link failure
+				 */
+				mac->serdes_link_state =
+				    e1000_serdes_link_autoneg_progress;
+				mac->serdes_has_link = false;
+				e_dbg("AN_UP     -> AN_PROG\n");
+			}
+		break;
+
+		case e1000_serdes_link_forced_up:
+			/*
+			 * If we are receiving /C/ ordered sets, re-enable
+			 * auto-negotiation in the TXCW register and disable
+			 * forced link in the Device Control register in an
+			 * attempt to auto-negotiate with our link partner.
+			 */
+			if (rxcw & E1000_RXCW_C) {
+				/* Enable autoneg, and unforce link up */
+				ew32(TXCW, mac->txcw);
+				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+				mac->serdes_link_state =
+				    e1000_serdes_link_autoneg_progress;
+				mac->serdes_has_link = false;
+				e_dbg("FORCED_UP -> AN_PROG\n");
+			}
+			break;
+
+		case e1000_serdes_link_autoneg_progress:
+			if (rxcw & E1000_RXCW_C) {
+				/*
+				 * We received /C/ ordered sets, meaning the
+				 * link partner has autonegotiated, and we can
+				 * trust the Link Up (LU) status bit.
+				 */
+				if (status & E1000_STATUS_LU) {
+					mac->serdes_link_state =
+					    e1000_serdes_link_autoneg_complete;
+					e_dbg("AN_PROG   -> AN_UP\n");
+					mac->serdes_has_link = true;
+				} else {
+					/* Autoneg completed, but failed. */
+					mac->serdes_link_state =
+					    e1000_serdes_link_down;
+					e_dbg("AN_PROG   -> DOWN\n");
+				}
+			} else {
+				/*
+				 * The link partner did not autoneg.
+				 * Force link up and full duplex, and change
+				 * state to forced.
+				 */
+				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+				ew32(CTRL, ctrl);
+
+				/* Configure Flow Control after link up. */
+				ret_val = e1000e_config_fc_after_link_up(hw);
+				if (ret_val) {
+					e_dbg("Error config flow control\n");
+					break;
+				}
+				mac->serdes_link_state =
+				    e1000_serdes_link_forced_up;
+				mac->serdes_has_link = true;
+				e_dbg("AN_PROG   -> FORCED_UP\n");
+			}
+			break;
+
+		case e1000_serdes_link_down:
+		default:
+			/*
+			 * The link was down but the receiver has now gained
+			 * valid sync, so lets see if we can bring the link
+			 * up.
+			 */
+			ew32(TXCW, mac->txcw);
+			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+			mac->serdes_link_state =
+			    e1000_serdes_link_autoneg_progress;
+			e_dbg("DOWN      -> AN_PROG\n");
+			break;
+		}
+	} else {
+		if (!(rxcw & E1000_RXCW_SYNCH)) {
+			mac->serdes_has_link = false;
+			mac->serdes_link_state = e1000_serdes_link_down;
+			e_dbg("ANYSTATE  -> DOWN\n");
+		} else {
+			/*
+			 * We have sync, and can tolerate one invalid (IV)
+			 * codeword before declaring link down, so reread
+			 * to look again.
+			 */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_IV) {
+				mac->serdes_link_state = e1000_serdes_link_down;
+				mac->serdes_has_link = false;
+				e_dbg("ANYSTATE  -> DOWN\n");
+			}
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_led_default_82571 - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (*data == ID_LED_RESERVED_F746)
+			*data = ID_LED_DEFAULT_82573;
+		break;
+	default:
+		if (*data == ID_LED_RESERVED_0000 ||
+		    *data == ID_LED_RESERVED_FFFF)
+			*data = ID_LED_DEFAULT;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_laa_state_82571 - Get locally administered address state
+ *  @hw: pointer to the HW structure
+ *
+ *  Retrieve and return the current locally administered address state.
+ **/
+bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
+{
+	if (hw->mac.type != e1000_82571)
+		return false;
+
+	return hw->dev_spec.e82571.laa_is_present;
+}
+
+/**
+ *  e1000e_set_laa_state_82571 - Set locally administered address state
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable locally administered address
+ *
+ *  Enable/Disable the current locally administered address state.
+ **/
+void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
+{
+	if (hw->mac.type != e1000_82571)
+		return;
+
+	hw->dev_spec.e82571.laa_is_present = state;
+
+	/* If workaround is activated... */
+	if (state)
+		/*
+		 * Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered and the time it
+		 * gets fixed, the actual LAA is in one of the RARs and no
+		 * incoming packets directed to this port are dropped.
+		 * Eventually the LAA will be in RAR[0] and RAR[14].
+		 */
+		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
+}
+
+/**
+ *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies that the EEPROM has completed the update.  After updating the
+ *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
+ *  the checksum fix is not implemented, we need to set the bit and update
+ *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
+ *  we need to return bad checksum.
+ **/
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u16 data;
+
+	if (nvm->type != e1000_nvm_flash_hw)
+		return 0;
+
+	/*
+	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
+	 * 10h-12h.  Checksum may need to be fixed.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (!(data & 0x10)) {
+		/*
+		 * Read 0x23 and check bit 15.  This bit is a 1
+		 * when the checksum has already been fixed.  If
+		 * the checksum is still wrong and this bit is a
+		 * 1, we need to return bad checksum.  Otherwise,
+		 * we need to set this bit to a 1 and update the
+		 * checksum.
+		 */
+		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(data & 0x8000)) {
+			data |= 0x8000;
+			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000e_update_nvm_checksum(hw);
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_read_mac_addr_82571 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	if (hw->mac.type == e1000_82571) {
+		/*
+		 * If there's an alternate MAC address place it in RAR0
+		 * so that it will override the Si installed default perm
+		 * address.
+		 */
+		ret_val = e1000_check_alt_mac_addr_generic(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_mac_info *mac = &hw->mac;
+
+	if (!(phy->ops.check_reset_block))
+		return;
+
+	/* If the management interface is not enabled, then power down */
+	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+	e1000e_clear_hw_cntrs_base(hw);
+
+	er32(PRC64);
+	er32(PRC127);
+	er32(PRC255);
+	er32(PRC511);
+	er32(PRC1023);
+	er32(PRC1522);
+	er32(PTC64);
+	er32(PTC127);
+	er32(PTC255);
+	er32(PTC511);
+	er32(PTC1023);
+	er32(PTC1522);
+
+	er32(ALGNERRC);
+	er32(RXERRC);
+	er32(TNCRS);
+	er32(CEXTERR);
+	er32(TSCTC);
+	er32(TSCTFC);
+
+	er32(MGTPRC);
+	er32(MGTPDC);
+	er32(MGTPTC);
+
+	er32(IAC);
+	er32(ICRXOC);
+
+	er32(ICRXPTC);
+	er32(ICRXATC);
+	er32(ICTXPTC);
+	er32(ICTXATC);
+	er32(ICTXQEC);
+	er32(ICTXQMTC);
+	er32(ICRXDMTC);
+}
+
+static struct e1000_mac_operations e82571_mac_ops = {
+	/* .check_mng_mode: mac type dependent */
+	/* .check_for_link: media type dependent */
+	.id_led_init		= e1000e_id_led_init,
+	.cleanup_led		= e1000e_cleanup_led_generic,
+	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
+	.get_bus_info		= e1000e_get_bus_info_pcie,
+	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
+	/* .get_link_up_info: media type dependent */
+	/* .led_on: mac type dependent */
+	.led_off		= e1000e_led_off_generic,
+	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
+	.write_vfta		= e1000_write_vfta_generic,
+	.clear_vfta		= e1000_clear_vfta_82571,
+	.reset_hw		= e1000_reset_hw_82571,
+	.init_hw		= e1000_init_hw_82571,
+	.setup_link		= e1000_setup_link_82571,
+	/* .setup_physical_interface: media type dependent */
+	.setup_led		= e1000e_setup_led_generic,
+	.read_mac_addr		= e1000_read_mac_addr_82571,
+};
+
+static struct e1000_phy_operations e82_phy_ops_igp = {
+	.acquire		= e1000_get_hw_semaphore_82571,
+	.check_polarity		= e1000_check_polarity_igp,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit			= NULL,
+	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
+	.get_cfg_done		= e1000_get_cfg_done_82571,
+	.get_cable_length	= e1000e_get_cable_length_igp_2,
+	.get_info		= e1000e_get_phy_info_igp,
+	.read_reg		= e1000e_read_phy_reg_igp,
+	.release		= e1000_put_hw_semaphore_82571,
+	.reset			= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
+	.write_reg		= e1000e_write_phy_reg_igp,
+	.cfg_on_link_up      	= NULL,
+};
+
+static struct e1000_phy_operations e82_phy_ops_m88 = {
+	.acquire		= e1000_get_hw_semaphore_82571,
+	.check_polarity		= e1000_check_polarity_m88,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit			= e1000e_phy_sw_reset,
+	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
+	.get_cfg_done		= e1000e_get_cfg_done,
+	.get_cable_length	= e1000e_get_cable_length_m88,
+	.get_info		= e1000e_get_phy_info_m88,
+	.read_reg		= e1000e_read_phy_reg_m88,
+	.release		= e1000_put_hw_semaphore_82571,
+	.reset			= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
+	.write_reg		= e1000e_write_phy_reg_m88,
+	.cfg_on_link_up      	= NULL,
+};
+
+static struct e1000_phy_operations e82_phy_ops_bm = {
+	.acquire		= e1000_get_hw_semaphore_82571,
+	.check_polarity		= e1000_check_polarity_m88,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit			= e1000e_phy_sw_reset,
+	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
+	.get_cfg_done		= e1000e_get_cfg_done,
+	.get_cable_length	= e1000e_get_cable_length_m88,
+	.get_info		= e1000e_get_phy_info_m88,
+	.read_reg		= e1000e_read_phy_reg_bm2,
+	.release		= e1000_put_hw_semaphore_82571,
+	.reset			= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
+	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
+	.write_reg		= e1000e_write_phy_reg_bm2,
+	.cfg_on_link_up      	= NULL,
+};
+
+static struct e1000_nvm_operations e82571_nvm_ops = {
+	.acquire		= e1000_acquire_nvm_82571,
+	.read			= e1000e_read_nvm_eerd,
+	.release		= e1000_release_nvm_82571,
+	.update			= e1000_update_nvm_checksum_82571,
+	.valid_led_default	= e1000_valid_led_default_82571,
+	.validate		= e1000_validate_nvm_checksum_82571,
+	.write			= e1000_write_nvm_82571,
+};
+
+struct e1000_info e1000_82571_info = {
+	.mac			= e1000_82571,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_RESET_OVERWRITES_LAA /* errata */
+				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
+				  | FLAG_APME_CHECK_PORT_B,
+	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
+	.pba			= 38,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_igp,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82572_info = {
+	.mac			= e1000_82572,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
+	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
+	.pba			= 38,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_igp,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82573_info = {
+	.mac			= e1000_82573,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_SWSM_ON_LOAD,
+	.flags2			= FLAG2_DISABLE_ASPM_L1,
+	.pba			= 20,
+	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_m88,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82574_info = {
+	.mac			= e1000_82574,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_MSIX
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_CTRLEXT_ON_LOAD,
+	.pba			= 36,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_bm,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
+struct e1000_info e1000_82583_info = {
+	.mac			= e1000_82583,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_SMART_POWER_DOWN
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_CTRLEXT_ON_LOAD,
+	.pba			= 36,
+	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
+	.get_variants		= e1000_get_variants_82571,
+	.mac_ops		= &e82571_mac_ops,
+	.phy_ops		= &e82_phy_ops_bm,
+	.nvm_ops		= &e82571_nvm_ops,
+};
+
--- a/devices/e1000e/82571-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000e/82571-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -82,7 +82,7 @@
 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
 {
 	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
+	s32 ret_val __attribute__ ((unused));
 
 	if (hw->phy.media_type != e1000_media_type_copper) {
 		phy->type = e1000_phy_none;
@@ -853,7 +853,7 @@
  **/
 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
 {
-	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
+	u32 ctrl, extcnf_ctrl, ctrl_ext, icr __attribute__ ((unused));
 	s32 ret_val;
 	u16 i = 0;
 
--- a/devices/e1000e/Makefile.am	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000e/Makefile.am	Tue Apr 10 19:10:56 2012 +0200
@@ -34,6 +34,8 @@
 	82571-2.6.33-orig.c \
 	82571-2.6.34-ethercat.c \
 	82571-2.6.34-orig.c \
+	82571-2.6.35-ethercat.c \
+	82571-2.6.35-orig.c \
 	82571-2.6.37-ethercat.c \
 	82571-2.6.37-orig.c \
 	Kbuild.in \
@@ -43,6 +45,8 @@
 	defines-2.6.33-orig.h \
 	defines-2.6.34-ethercat.h \
 	defines-2.6.34-orig.h \
+	defines-2.6.35-ethercat.h \
+	defines-2.6.35-orig.h \
 	defines-2.6.37-ethercat.h \
 	defines-2.6.37-orig.h \
 	e1000-2.6.32-ethercat.h \
@@ -51,6 +55,8 @@
 	e1000-2.6.33-orig.h \
 	e1000-2.6.34-ethercat.h \
 	e1000-2.6.34-orig.h \
+	e1000-2.6.35-ethercat.h \
+	e1000-2.6.35-orig.h \
 	e1000-2.6.37-ethercat.h \
 	e1000-2.6.37-orig.h \
 	es2lan-2.6.32-ethercat.c \
@@ -59,6 +65,8 @@
 	es2lan-2.6.33-orig.c \
 	es2lan-2.6.34-ethercat.c \
 	es2lan-2.6.34-orig.c \
+	es2lan-2.6.35-ethercat.c \
+	es2lan-2.6.35-orig.c \
 	es2lan-2.6.37-ethercat.c \
 	es2lan-2.6.37-orig.c \
 	ethtool-2.6.32-ethercat.c \
@@ -67,6 +75,8 @@
 	ethtool-2.6.33-orig.c \
 	ethtool-2.6.34-ethercat.c \
 	ethtool-2.6.34-orig.c \
+	ethtool-2.6.35-ethercat.c \
+	ethtool-2.6.35-orig.c \
 	ethtool-2.6.37-ethercat.c \
 	ethtool-2.6.37-orig.c \
 	hw-2.6.32-ethercat.h \
@@ -75,6 +85,8 @@
 	hw-2.6.33-orig.h \
 	hw-2.6.34-ethercat.h \
 	hw-2.6.34-orig.h \
+	hw-2.6.35-ethercat.h \
+	hw-2.6.35-orig.h \
 	hw-2.6.37-ethercat.h \
 	hw-2.6.37-orig.h \
 	ich8lan-2.6.32-ethercat.c \
@@ -83,6 +95,8 @@
 	ich8lan-2.6.33-orig.c \
 	ich8lan-2.6.34-ethercat.c \
 	ich8lan-2.6.34-orig.c \
+	ich8lan-2.6.35-ethercat.c \
+	ich8lan-2.6.35-orig.c \
 	ich8lan-2.6.37-ethercat.c \
 	ich8lan-2.6.37-orig.c \
 	lib-2.6.32-ethercat.c \
@@ -91,6 +105,8 @@
 	lib-2.6.33-orig.c \
 	lib-2.6.34-ethercat.c \
 	lib-2.6.34-orig.c \
+	lib-2.6.35-ethercat.c \
+	lib-2.6.35-orig.c \
 	lib-2.6.37-ethercat.c \
 	lib-2.6.37-orig.c \
 	netdev-2.6.32-ethercat.c \
@@ -99,6 +115,8 @@
 	netdev-2.6.33-orig.c \
 	netdev-2.6.34-ethercat.c \
 	netdev-2.6.34-orig.c \
+	netdev-2.6.35-ethercat.c \
+	netdev-2.6.35-orig.c \
 	netdev-2.6.37-ethercat.c \
 	netdev-2.6.37-orig.c \
 	param-2.6.32-ethercat.c \
@@ -107,6 +125,8 @@
 	param-2.6.33-orig.c \
 	param-2.6.34-ethercat.c \
 	param-2.6.34-orig.c \
+	param-2.6.35-ethercat.c \
+	param-2.6.35-orig.c \
 	param-2.6.37-ethercat.c \
 	param-2.6.37-orig.c \
 	phy-2.6.32-ethercat.c \
@@ -115,6 +135,8 @@
 	phy-2.6.33-orig.c \
 	phy-2.6.34-ethercat.c \
 	phy-2.6.34-orig.c \
+	phy-2.6.35-ethercat.c \
+	phy-2.6.35-orig.c \
 	phy-2.6.37-ethercat.c \
 	phy-2.6.37-orig.c
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/defines-2.6.35-ethercat.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,832 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#ifndef _E1000_DEFINES_H_
+#define _E1000_DEFINES_H_
+
+#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME       0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002 /* PME Enable */
+#define E1000_WUC_PHY_WAKE   0x00000100 /* if PHY supports wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG  0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX   0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC   0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC   0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP  0x00000020 /* ARP Request Packet Wakeup Enable */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC         E1000_WUFC_LNKC
+#define E1000_WUS_MAG          E1000_WUFC_MAG
+#define E1000_WUS_EX           E1000_WUFC_EX
+#define E1000_WUS_MC           E1000_WUFC_MC
+#define E1000_WUS_BC           E1000_WUFC_BC
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
+#define E1000_CTRL_EXT_EE_RST    0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES  0x00C00000
+#define E1000_CTRL_EXT_EIAME          0x01000000
+#define E1000_CTRL_EXT_DRV_LOAD       0x10000000 /* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME           0x08000000 /* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000 /* Clear Interrupt timers after IMS clear */
+#define E1000_CTRL_EXT_PBA_CLR        0x80000000 /* PBA Clear */
+#define E1000_CTRL_EXT_PHYPDEN        0x00100000
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD       0x01    /* Descriptor Done */
+#define E1000_RXD_STAT_EOP      0x02    /* End of Packet */
+#define E1000_RXD_STAT_IXSM     0x04    /* Ignore checksum */
+#define E1000_RXD_STAT_VP       0x08    /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS    0x10    /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS    0x20    /* TCP xsum calculated */
+#define E1000_RXD_ERR_CE        0x01    /* CRC Error */
+#define E1000_RXD_ERR_SE        0x02    /* Symbol Error */
+#define E1000_RXD_ERR_SEQ       0x04    /* Sequence Error */
+#define E1000_RXD_ERR_CXE       0x10    /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE      0x20    /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_RXE       0x80    /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF  /* VLAN ID is in lower 12 bits */
+
+#define E1000_RXDEXT_STATERR_CE    0x01000000
+#define E1000_RXDEXT_STATERR_SE    0x02000000
+#define E1000_RXDEXT_STATERR_SEQ   0x04000000
+#define E1000_RXDEXT_STATERR_CXE   0x10000000
+#define E1000_RXDEXT_STATERR_RXE   0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |                \
+    E1000_RXD_ERR_SE  |                \
+    E1000_RXD_ERR_SEQ |                \
+    E1000_RXD_ERR_CXE |                \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  |            \
+    E1000_RXDEXT_STATERR_SE  |            \
+    E1000_RXDEXT_STATERR_SEQ |            \
+    E1000_RXDEXT_STATERR_CXE |            \
+    E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_RXDPS_HDRSTAT_HDRSP              0x00008000
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN      0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN        0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_ARP_EN        0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_RCV_TCO_EN    0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST   0x00200000
+
+#define E1000_MANC2H_PORT_623    0x00000020 /* Port 0x26f */
+#define E1000_MANC2H_PORT_664    0x00000040 /* Port 0x298 */
+#define E1000_MDEF_PORT_623      0x00000800 /* Port 0x26f */
+#define E1000_MDEF_PORT_664      0x00000400 /* Port 0x298 */
+
+/* Receive Control */
+#define E1000_RCTL_EN             0x00000002    /* enable */
+#define E1000_RCTL_SBP            0x00000004    /* store bad packet */
+#define E1000_RCTL_UPE            0x00000008    /* unicast promiscuous enable */
+#define E1000_RCTL_MPE            0x00000010    /* multicast promiscuous enab */
+#define E1000_RCTL_LPE            0x00000020    /* long packet enable */
+#define E1000_RCTL_LBM_NO         0x00000000    /* no loopback mode */
+#define E1000_RCTL_LBM_MAC        0x00000040    /* MAC loopback mode */
+#define E1000_RCTL_LBM_TCVR       0x000000C0    /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_PS        0x00000400    /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF     0x00000000    /* Rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT       12            /* multicast offset shift */
+#define E1000_RCTL_MO_3           0x00003000    /* multicast offset 15:4 */
+#define E1000_RCTL_BAM            0x00008000    /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048        0x00000000    /* Rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024        0x00010000    /* Rx buffer size 1024 */
+#define E1000_RCTL_SZ_512         0x00020000    /* Rx buffer size 512 */
+#define E1000_RCTL_SZ_256         0x00030000    /* Rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384       0x00010000    /* Rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192        0x00020000    /* Rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096        0x00030000    /* Rx buffer size 4096 */
+#define E1000_RCTL_VFE            0x00040000    /* vlan filter enable */
+#define E1000_RCTL_CFIEN          0x00080000    /* canonical form enable */
+#define E1000_RCTL_CFI            0x00100000    /* canonical form indicator */
+#define E1000_RCTL_PMCF           0x00800000    /* pass MAC control frames */
+#define E1000_RCTL_BSEX           0x02000000    /* Buffer size extension */
+#define E1000_RCTL_SECRC          0x04000000    /* Strip Ethernet CRC */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE0_MASK) |
+ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE1_MASK) |
+ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE2_MASK) |
+ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *                  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT  7            /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT  2            /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT  6            /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14            /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM   0x1
+#define E1000_SWFW_PHY0_SM  0x2
+#define E1000_SWFW_PHY1_SM  0x4
+#define E1000_SWFW_CSR_SM   0x8
+
+/* Device Control */
+#define E1000_CTRL_FD       0x00000001  /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
+#define E1000_CTRL_LRST     0x00000008  /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_ASDE     0x00000020  /* Auto-speed detect enable */
+#define E1000_CTRL_SLU      0x00000040  /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080  /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300  /* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000  /* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100  /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200  /* Force 1Gb */
+#define E1000_CTRL_FRCSPD   0x00000800  /* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000  /* Force Duplex */
+#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
+#define E1000_CTRL_LANPHYPC_VALUE    0x00020000 /* SW value of LANPHYPC */
+#define E1000_CTRL_SWDPIN0  0x00040000  /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000  /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIO0  0x00400000  /* SWDPIN 0 Input or output */
+#define E1000_CTRL_RST      0x04000000  /* Global reset */
+#define E1000_CTRL_RFCE     0x08000000  /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000  /* Transmit flow control enable */
+#define E1000_CTRL_VME      0x40000000  /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000  /* PHY Reset */
+
+/*
+ * Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+
+/* Device Status */
+#define E1000_STATUS_FD         0x00000001      /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU         0x00000002      /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK  0x0000000C      /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_1     0x00000004      /* Function 1 */
+#define E1000_STATUS_TXOFF      0x00000010      /* transmission paused */
+#define E1000_STATUS_SPEED_10   0x00000000      /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100  0x00000040      /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080      /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200   /* Lan Init Completion by NVM */
+#define E1000_STATUS_PHYRA      0x00000400      /* PHY Reset Asserted */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+
+#define ADVERTISE_10_HALF                 0x0001
+#define ADVERTISE_10_FULL                 0x0002
+#define ADVERTISE_100_HALF                0x0004
+#define ADVERTISE_100_FULL                0x0008
+#define ADVERTISE_1000_HALF               0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL               0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
+				ADVERTISE_100_HALF |  ADVERTISE_100_FULL | \
+						     ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG      ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
+				ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED    (ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED      (ADVERTISE_10_HALF |   ADVERTISE_10_FULL)
+#define E1000_ALL_HALF_DUPLEX   (ADVERTISE_10_HALF |  ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT   E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_PHY_LED0_MODE_MASK          0x00000007
+#define E1000_PHY_LED0_IVRT               0x00000008
+#define E1000_PHY_LED0_MASK               0x0000001F
+
+#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT      0
+#define E1000_LEDCTL_LED0_IVRT            0x00000040
+#define E1000_LEDCTL_LED0_BLINK           0x00000080
+
+#define E1000_LEDCTL_MODE_LINK_UP       0x2
+#define E1000_LEDCTL_MODE_LED_ON        0xE
+#define E1000_LEDCTL_MODE_LED_OFF       0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000 /* Data Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
+
+/* Transmit Control */
+#define E1000_TCTL_EN     0x00000002    /* enable Tx */
+#define E1000_TCTL_PSP    0x00000008    /* pad short packets */
+#define E1000_TCTL_CT     0x00000ff0    /* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000    /* collision distance */
+#define E1000_TCTL_RTLC   0x01000000    /* Re-transmit on late collision */
+#define E1000_TCTL_MULR   0x10000000    /* Multiple request support */
+
+/* Transmit Arbitration Count */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_TUOFL     0x00000200   /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPPCSE    0x00001000   /* IP payload checksum enable */
+
+/* Header split receive */
+#define E1000_RFCTL_NFSW_DIS            0x00000040
+#define E1000_RFCTL_NFSR_DIS            0x00000080
+#define E1000_RFCTL_ACK_DIS             0x00001000
+#define E1000_RFCTL_EXTEN               0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD       15
+#define E1000_CT_SHIFT                  4
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLD_SHIFT                12
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT  10
+
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT  20
+
+#define MAX_JUMBO_FRAME_SIZE    0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP      0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE       0x00000001
+#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE       0x00000008
+#define E1000_EXTCNF_CTRL_SWFLAG                 0x00000020
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK   0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT          16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK   0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT          16
+
+#define E1000_PHY_CTRL_D0A_LPLU           0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU        0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE        0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS           0x00050000
+
+/* PBA constants */
+#define E1000_PBA_8K  0x0008    /* 8KB */
+#define E1000_PBA_16K 0x0010    /* 16KB */
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+#define IFS_MAX       80
+#define IFS_MIN       40
+#define IFS_RATIO     4
+#define IFS_STEP      10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI         0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI      0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_DRV_LOAD     0x00000008 /* Driver Loaded Bit */
+
+#define E1000_SWSM2_LOCK        0x00000002 /* Secondary driver semaphore bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW          0x00000001 /* Transmit desc written back */
+#define E1000_ICR_LSC           0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ         0x00000008 /* Rx sequence error */
+#define E1000_ICR_RXDMT0        0x00000010 /* Rx desc min. threshold (0) */
+#define E1000_ICR_RXT0          0x00000080 /* Rx timer intr (ring 0) */
+#define E1000_ICR_INT_ASSERTED  0x80000000 /* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXQ0          0x00100000 /* Rx Queue 0 Interrupt */
+#define E1000_ICR_RXQ1          0x00200000 /* Rx Queue 1 Interrupt */
+#define E1000_ICR_TXQ0          0x00400000 /* Tx Queue 0 Interrupt */
+#define E1000_ICR_TXQ1          0x00800000 /* Tx Queue 1 Interrupt */
+#define E1000_ICR_OTHER         0x01000000 /* Other Interrupts */
+
+/* PBA ECC Register */
+#define E1000_PBA_ECC_COUNTER_MASK  0xFFF00000 /* ECC counter mask */
+#define E1000_PBA_ECC_COUNTER_SHIFT 20         /* ECC counter shift value */
+#define E1000_PBA_ECC_CORR_EN       0x00000001 /* ECC correction enable */
+#define E1000_PBA_ECC_STAT_CLR      0x00000002 /* Clear ECC error counter */
+#define E1000_PBA_ECC_INT_EN        0x00000004 /* Enable ICR bit 5 for ECC */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   |    \
+    E1000_IMS_TXDW   |    \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ  |    \
+    E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
+#define E1000_IMS_LSC       E1000_ICR_LSC       /* Link Status Change */
+#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ     /* Rx sequence error */
+#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0    /* Rx desc min. threshold */
+#define E1000_IMS_RXT0      E1000_ICR_RXT0      /* Rx timer intr */
+#define E1000_IMS_RXQ0      E1000_ICR_RXQ0      /* Rx Queue 0 Interrupt */
+#define E1000_IMS_RXQ1      E1000_ICR_RXQ1      /* Rx Queue 1 Interrupt */
+#define E1000_IMS_TXQ0      E1000_ICR_TXQ0      /* Tx Queue 0 Interrupt */
+#define E1000_IMS_TXQ1      E1000_ICR_TXQ1      /* Tx Queue 1 Interrupt */
+#define E1000_IMS_OTHER     E1000_ICR_OTHER     /* Other Interrupts */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_LSC       E1000_ICR_LSC       /* Link Status Change */
+#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ     /* Rx sequence error */
+#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0    /* Rx desc min. threshold */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of desc. still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE         0x8808
+
+/* 802.1q VLAN Packet Size */
+#define E1000_VLAN_FILTER_TBL_SIZE 128  /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots.  However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES     15
+#define E1000_RAH_AV  0x80000000        /* Receive descriptor valid */
+#define E1000_RAL_MAC_ADDR_LEN 4
+#define E1000_RAH_MAC_ADDR_LEN 2
+
+/* Error Codes */
+#define E1000_ERR_NVM      1
+#define E1000_ERR_PHY      2
+#define E1000_ERR_CONFIG   3
+#define E1000_ERR_PARAM    4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET   9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET   12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT               50
+#define COPPER_LINK_UP_LIMIT              10
+#define PHY_AUTO_NEG_LIMIT                45
+#define PHY_FORCE_LIMIT                   20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT      800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT      10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT      10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8     /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTL_RTL  0x0000FFF8     /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000     /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD         0x00000020        /* TXCW full duplex */
+#define E1000_TXCW_PAUSE      0x00000080        /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100        /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180        /* TXCW pause request mask */
+#define E1000_TXCW_ANE        0x80000000        /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_IV         0x08000000        /* Receive config invalid */
+#define E1000_RXCW_C          0x20000000        /* Receive config */
+#define E1000_RXCW_SYNCH      0x40000000        /* Receive config synch */
+
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP          0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
+#define E1000_GCR_TXD_NO_SNOOP          0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
+			   E1000_GCR_RXDSCW_NO_SNOOP      | \
+			   E1000_GCR_RXDSCR_NO_SNOOP      | \
+			   E1000_GCR_TXD_NO_SNOOP         | \
+			   E1000_GCR_TXDSCW_NO_SNOOP      | \
+			   E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define MII_CR_FULL_DUPLEX      0x0100  /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200  /* Restart auto negotiation */
+#define MII_CR_POWER_DOWN       0x0800  /* Power down */
+#define MII_CR_AUTO_NEG_EN      0x1000  /* Auto Neg Enable */
+#define MII_CR_LOOPBACK         0x4000  /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET            0x8000  /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000       0x0040
+#define MII_CR_SPEED_100        0x2000
+#define MII_CR_SPEED_10         0x0000
+
+/* PHY Status Register */
+#define MII_SR_LINK_STATUS       0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_COMPLETE  0x0020 /* Auto Neg Complete */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_10T_HD_CAPS      0x0020   /* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS      0x0040   /* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS    0x0080   /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS    0x0100   /* 100TX Full Duplex Capable */
+#define NWAY_AR_PAUSE            0x0400   /* Pause operation desired */
+#define NWAY_AR_ASM_DIR          0x0800   /* Asymmetric Pause Direction bit */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_PAUSE          0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR        0x0800 /* LP Asymmetric Pause Direction bit */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS     0x0001 /* LP has Auto Neg Capability */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_HD_CAPS         0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS         0x0200 /* Advertise 1000T FD capability  */
+					/* 0=DTE device */
+#define CR_1000T_MS_VALUE        0x0800 /* 1=Configure PHY as Master */
+					/* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE       0x1000 /* 1=Master/Slave manual config value */
+					/* 0=Automatic Master/Slave config */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS  0x2000 /* Local receiver OK */
+
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL      0x00 /* Control Register */
+#define PHY_STATUS       0x01 /* Status Register */
+#define PHY_ID1          0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2          0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV  0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY   0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP  0x06 /* Autoneg Expansion Reg */
+#define PHY_1000T_CTRL   0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS   0x0F /* Extended Status Reg */
+
+#define PHY_CONTROL_LB   0x4000 /* PHY Loopback bit */
+
+/* NVM Control */
+#define E1000_EECD_SK        0x00000001 /* NVM Clock */
+#define E1000_EECD_CS        0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI        0x00000004 /* NVM Data In */
+#define E1000_EECD_DO        0x00000008 /* NVM Data Out */
+#define E1000_EECD_REQ       0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT       0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES      0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE      0x00000200 /* NVM Size (0=64 word 1=256 word) */
+/* NVM Addressing bits based on type (0-small, 1-large) */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_NVM_GRANT_ATTEMPTS   1000 /* NVM # attempts to gain grant */
+#define E1000_EECD_AUTO_RD          0x00000200  /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800  /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT     11
+#define E1000_EECD_FLUPD     0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SEC1VAL   0x00400000 /* Sector One Valid */
+#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
+
+#define E1000_NVM_RW_REG_DATA   16   /* Offset to data in NVM read/write registers */
+#define E1000_NVM_RW_REG_DONE   2    /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START  1    /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2    /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE    1    /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ     0    /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES  2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT                 0x0003
+#define NVM_ID_LED_SETTINGS        0x0004
+#define NVM_INIT_CONTROL2_REG      0x000F
+#define NVM_INIT_CONTROL3_PORT_B   0x0014
+#define NVM_INIT_3GIO_3            0x001A
+#define NVM_INIT_CONTROL3_PORT_A   0x0024
+#define NVM_CFG                    0x0012
+#define NVM_ALT_MAC_ADDR_PTR       0x0037
+#define NVM_CHECKSUM_REG           0x003F
+
+#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
+
+#define E1000_NVM_CFG_DONE_PORT_0  0x40000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1  0x80000 /* ...for second port */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK       0x3000
+#define NVM_WORD0F_PAUSE            0x1000
+#define NVM_WORD0F_ASM_DIR          0x2000
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK  0x000C
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define NVM_COMPAT_LOM    0x0800
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM                    0xBABA
+
+/* PBA (printed board assembly) number words */
+#define NVM_PBA_OFFSET_0           8
+#define NVM_PBA_OFFSET_1           9
+
+#define NVM_WORD_SIZE_BASE_SHIFT   6
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI          5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI        0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI       0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI          0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI        0x06 /* NVM set Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI        0x05 /* NVM read Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI         0x01
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2  << 12) | \
+			      (ID_LED_OFF1_OFF2 <<  8) | \
+			      (ID_LED_DEF1_DEF2 <<  4) | \
+			      (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2       0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCI_HEADER_TYPE_REGISTER     0x0E
+#define PCIE_LINK_STATUS             0x12
+
+#define PCI_HEADER_TYPE_MULTIFUNC    0x80
+#define PCIE_LINK_WIDTH_MASK         0x3F0
+#define PCIE_LINK_WIDTH_SHIFT        4
+
+#define PHY_REVISION_MASK      0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS    0x1F  /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID    0x01410C50
+#define M88E1000_I_PHY_ID    0x01410C30
+#define M88E1011_I_PHY_ID    0x01410C20
+#define IGP01E1000_I_PHY_ID  0x02A80380
+#define M88E1111_I_PHY_ID    0x01410CC0
+#define GG82563_E_PHY_ID     0x01410CA0
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+#define BME1000_E_PHY_ID     0x01410CB0
+#define BME1000_E_PHY_ID_R2  0x01410CB1
+#define I82577_E_PHY_ID      0x01540050
+#define I82578_E_PHY_ID      0x004DD040
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL     0x10  /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS   0x11  /* PHY Specific Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14  /* Extended PHY Specific Control */
+
+#define M88E1000_PHY_PAGE_SELECT   0x1D  /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E  /* Its meaning depends on reg 29 */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000  /* MDI Crossover Mode bits 6:5 */
+					       /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020  /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T     0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE      0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold)
+ * 0=Normal 10BASE-T Rx Threshold
+ */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_REV_POLARITY       0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT          0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX               0x0040 /* 1=MDIX; 0=MDI */
+/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */
+#define M88E1000_PSSR_CABLE_LENGTH       0x0380
+#define M88E1000_PSSR_SPEED              0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_1000MBS            0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_TX_CLK_25      0x0070 /* 25  MHz TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+
+#define I82578_EPSCR_DOWNSHIFT_ENABLE          0x0020
+#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK    0x001C
+
+/* BME1000 PHY Specific Control Register */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT   0x0800 /* 1 = enable downshift */
+
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+                           ((reg) & MAX_PHY_REG_ADDRESS))
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT        5
+#define GG82563_REG(page, reg)    \
+	(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG       30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL           \
+	GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_PAGE_SELECT         \
+	GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2         \
+	GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT     \
+	GG82563_REG(0, 29) /* Alternate Page Select */
+
+#define GG82563_PHY_MAC_SPEC_CTRL       \
+	GG82563_REG(2, 21) /* MAC Specific Control Register */
+
+#define GG82563_PHY_DSP_DISTANCE    \
+	GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL   \
+	GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PWR_MGMT_CTRL       \
+	GG82563_REG(193, 20) /* Power Management Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_INBAND_CTRL         \
+	GG82563_REG(194, 18) /* Inband Control */
+
+/* MDI Control */
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_ERROR     0x40000000
+
+/* SerDes Control */
+#define E1000_GEN_POLL_TIMEOUT          640
+
+#endif /* _E1000_DEFINES_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/defines-2.6.35-orig.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,832 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#ifndef _E1000_DEFINES_H_
+#define _E1000_DEFINES_H_
+
+#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME       0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002 /* PME Enable */
+#define E1000_WUC_PHY_WAKE   0x00000100 /* if PHY supports wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG  0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX   0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC   0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC   0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP  0x00000020 /* ARP Request Packet Wakeup Enable */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC         E1000_WUFC_LNKC
+#define E1000_WUS_MAG          E1000_WUFC_MAG
+#define E1000_WUS_EX           E1000_WUFC_EX
+#define E1000_WUS_MC           E1000_WUFC_MC
+#define E1000_WUS_BC           E1000_WUFC_BC
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
+#define E1000_CTRL_EXT_EE_RST    0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES  0x00C00000
+#define E1000_CTRL_EXT_EIAME          0x01000000
+#define E1000_CTRL_EXT_DRV_LOAD       0x10000000 /* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME           0x08000000 /* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000 /* Clear Interrupt timers after IMS clear */
+#define E1000_CTRL_EXT_PBA_CLR        0x80000000 /* PBA Clear */
+#define E1000_CTRL_EXT_PHYPDEN        0x00100000
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD       0x01    /* Descriptor Done */
+#define E1000_RXD_STAT_EOP      0x02    /* End of Packet */
+#define E1000_RXD_STAT_IXSM     0x04    /* Ignore checksum */
+#define E1000_RXD_STAT_VP       0x08    /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS    0x10    /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS    0x20    /* TCP xsum calculated */
+#define E1000_RXD_ERR_CE        0x01    /* CRC Error */
+#define E1000_RXD_ERR_SE        0x02    /* Symbol Error */
+#define E1000_RXD_ERR_SEQ       0x04    /* Sequence Error */
+#define E1000_RXD_ERR_CXE       0x10    /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE      0x20    /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_RXE       0x80    /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF  /* VLAN ID is in lower 12 bits */
+
+#define E1000_RXDEXT_STATERR_CE    0x01000000
+#define E1000_RXDEXT_STATERR_SE    0x02000000
+#define E1000_RXDEXT_STATERR_SEQ   0x04000000
+#define E1000_RXDEXT_STATERR_CXE   0x10000000
+#define E1000_RXDEXT_STATERR_RXE   0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |                \
+    E1000_RXD_ERR_SE  |                \
+    E1000_RXD_ERR_SEQ |                \
+    E1000_RXD_ERR_CXE |                \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  |            \
+    E1000_RXDEXT_STATERR_SE  |            \
+    E1000_RXDEXT_STATERR_SEQ |            \
+    E1000_RXDEXT_STATERR_CXE |            \
+    E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_RXDPS_HDRSTAT_HDRSP              0x00008000
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN      0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN        0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_ARP_EN        0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_RCV_TCO_EN    0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST   0x00200000
+
+#define E1000_MANC2H_PORT_623    0x00000020 /* Port 0x26f */
+#define E1000_MANC2H_PORT_664    0x00000040 /* Port 0x298 */
+#define E1000_MDEF_PORT_623      0x00000800 /* Port 0x26f */
+#define E1000_MDEF_PORT_664      0x00000400 /* Port 0x298 */
+
+/* Receive Control */
+#define E1000_RCTL_EN             0x00000002    /* enable */
+#define E1000_RCTL_SBP            0x00000004    /* store bad packet */
+#define E1000_RCTL_UPE            0x00000008    /* unicast promiscuous enable */
+#define E1000_RCTL_MPE            0x00000010    /* multicast promiscuous enab */
+#define E1000_RCTL_LPE            0x00000020    /* long packet enable */
+#define E1000_RCTL_LBM_NO         0x00000000    /* no loopback mode */
+#define E1000_RCTL_LBM_MAC        0x00000040    /* MAC loopback mode */
+#define E1000_RCTL_LBM_TCVR       0x000000C0    /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_PS        0x00000400    /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF     0x00000000    /* Rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT       12            /* multicast offset shift */
+#define E1000_RCTL_MO_3           0x00003000    /* multicast offset 15:4 */
+#define E1000_RCTL_BAM            0x00008000    /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048        0x00000000    /* Rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024        0x00010000    /* Rx buffer size 1024 */
+#define E1000_RCTL_SZ_512         0x00020000    /* Rx buffer size 512 */
+#define E1000_RCTL_SZ_256         0x00030000    /* Rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384       0x00010000    /* Rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192        0x00020000    /* Rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096        0x00030000    /* Rx buffer size 4096 */
+#define E1000_RCTL_VFE            0x00040000    /* vlan filter enable */
+#define E1000_RCTL_CFIEN          0x00080000    /* canonical form enable */
+#define E1000_RCTL_CFI            0x00100000    /* canonical form indicator */
+#define E1000_RCTL_PMCF           0x00800000    /* pass MAC control frames */
+#define E1000_RCTL_BSEX           0x02000000    /* Buffer size extension */
+#define E1000_RCTL_SECRC          0x04000000    /* Strip Ethernet CRC */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE0_MASK) |
+ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE1_MASK) |
+ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE2_MASK) |
+ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *                  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT  7            /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT  2            /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT  6            /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14            /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM   0x1
+#define E1000_SWFW_PHY0_SM  0x2
+#define E1000_SWFW_PHY1_SM  0x4
+#define E1000_SWFW_CSR_SM   0x8
+
+/* Device Control */
+#define E1000_CTRL_FD       0x00000001  /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
+#define E1000_CTRL_LRST     0x00000008  /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_ASDE     0x00000020  /* Auto-speed detect enable */
+#define E1000_CTRL_SLU      0x00000040  /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080  /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300  /* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000  /* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100  /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200  /* Force 1Gb */
+#define E1000_CTRL_FRCSPD   0x00000800  /* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000  /* Force Duplex */
+#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
+#define E1000_CTRL_LANPHYPC_VALUE    0x00020000 /* SW value of LANPHYPC */
+#define E1000_CTRL_SWDPIN0  0x00040000  /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000  /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIO0  0x00400000  /* SWDPIN 0 Input or output */
+#define E1000_CTRL_RST      0x04000000  /* Global reset */
+#define E1000_CTRL_RFCE     0x08000000  /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000  /* Transmit flow control enable */
+#define E1000_CTRL_VME      0x40000000  /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000  /* PHY Reset */
+
+/*
+ * Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+
+/* Device Status */
+#define E1000_STATUS_FD         0x00000001      /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU         0x00000002      /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK  0x0000000C      /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_1     0x00000004      /* Function 1 */
+#define E1000_STATUS_TXOFF      0x00000010      /* transmission paused */
+#define E1000_STATUS_SPEED_10   0x00000000      /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100  0x00000040      /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080      /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200   /* Lan Init Completion by NVM */
+#define E1000_STATUS_PHYRA      0x00000400      /* PHY Reset Asserted */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+
+#define ADVERTISE_10_HALF                 0x0001
+#define ADVERTISE_10_FULL                 0x0002
+#define ADVERTISE_100_HALF                0x0004
+#define ADVERTISE_100_FULL                0x0008
+#define ADVERTISE_1000_HALF               0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL               0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
+				ADVERTISE_100_HALF |  ADVERTISE_100_FULL | \
+						     ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG      ( ADVERTISE_10_HALF |   ADVERTISE_10_FULL | \
+				ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED    (ADVERTISE_100_HALF |  ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED      (ADVERTISE_10_HALF |   ADVERTISE_10_FULL)
+#define E1000_ALL_HALF_DUPLEX   (ADVERTISE_10_HALF |  ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT   E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_PHY_LED0_MODE_MASK          0x00000007
+#define E1000_PHY_LED0_IVRT               0x00000008
+#define E1000_PHY_LED0_MASK               0x0000001F
+
+#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT      0
+#define E1000_LEDCTL_LED0_IVRT            0x00000040
+#define E1000_LEDCTL_LED0_BLINK           0x00000080
+
+#define E1000_LEDCTL_MODE_LINK_UP       0x2
+#define E1000_LEDCTL_MODE_LED_ON        0xE
+#define E1000_LEDCTL_MODE_LED_OFF       0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000 /* Data Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01       /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02       /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004 /* Tx Underrun */
+
+/* Transmit Control */
+#define E1000_TCTL_EN     0x00000002    /* enable Tx */
+#define E1000_TCTL_PSP    0x00000008    /* pad short packets */
+#define E1000_TCTL_CT     0x00000ff0    /* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000    /* collision distance */
+#define E1000_TCTL_RTLC   0x01000000    /* Re-transmit on late collision */
+#define E1000_TCTL_MULR   0x10000000    /* Multiple request support */
+
+/* Transmit Arbitration Count */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_TUOFL     0x00000200   /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPPCSE    0x00001000   /* IP payload checksum enable */
+
+/* Header split receive */
+#define E1000_RFCTL_NFSW_DIS            0x00000040
+#define E1000_RFCTL_NFSR_DIS            0x00000080
+#define E1000_RFCTL_ACK_DIS             0x00001000
+#define E1000_RFCTL_EXTEN               0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD       15
+#define E1000_CT_SHIFT                  4
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLD_SHIFT                12
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT  10
+
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT  20
+
+#define MAX_JUMBO_FRAME_SIZE    0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP      0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE       0x00000001
+#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE       0x00000008
+#define E1000_EXTCNF_CTRL_SWFLAG                 0x00000020
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK   0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT          16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK   0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT          16
+
+#define E1000_PHY_CTRL_D0A_LPLU           0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU        0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE        0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS           0x00050000
+
+/* PBA constants */
+#define E1000_PBA_8K  0x0008    /* 8KB */
+#define E1000_PBA_16K 0x0010    /* 16KB */
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+#define IFS_MAX       80
+#define IFS_MIN       40
+#define IFS_RATIO     4
+#define IFS_STEP      10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI         0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI      0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_DRV_LOAD     0x00000008 /* Driver Loaded Bit */
+
+#define E1000_SWSM2_LOCK        0x00000002 /* Secondary driver semaphore bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW          0x00000001 /* Transmit desc written back */
+#define E1000_ICR_LSC           0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ         0x00000008 /* Rx sequence error */
+#define E1000_ICR_RXDMT0        0x00000010 /* Rx desc min. threshold (0) */
+#define E1000_ICR_RXT0          0x00000080 /* Rx timer intr (ring 0) */
+#define E1000_ICR_INT_ASSERTED  0x80000000 /* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXQ0          0x00100000 /* Rx Queue 0 Interrupt */
+#define E1000_ICR_RXQ1          0x00200000 /* Rx Queue 1 Interrupt */
+#define E1000_ICR_TXQ0          0x00400000 /* Tx Queue 0 Interrupt */
+#define E1000_ICR_TXQ1          0x00800000 /* Tx Queue 1 Interrupt */
+#define E1000_ICR_OTHER         0x01000000 /* Other Interrupts */
+
+/* PBA ECC Register */
+#define E1000_PBA_ECC_COUNTER_MASK  0xFFF00000 /* ECC counter mask */
+#define E1000_PBA_ECC_COUNTER_SHIFT 20         /* ECC counter shift value */
+#define E1000_PBA_ECC_CORR_EN       0x00000001 /* ECC correction enable */
+#define E1000_PBA_ECC_STAT_CLR      0x00000002 /* Clear ECC error counter */
+#define E1000_PBA_ECC_INT_EN        0x00000004 /* Enable ICR bit 5 for ECC */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   |    \
+    E1000_IMS_TXDW   |    \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ  |    \
+    E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
+#define E1000_IMS_LSC       E1000_ICR_LSC       /* Link Status Change */
+#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ     /* Rx sequence error */
+#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0    /* Rx desc min. threshold */
+#define E1000_IMS_RXT0      E1000_ICR_RXT0      /* Rx timer intr */
+#define E1000_IMS_RXQ0      E1000_ICR_RXQ0      /* Rx Queue 0 Interrupt */
+#define E1000_IMS_RXQ1      E1000_ICR_RXQ1      /* Rx Queue 1 Interrupt */
+#define E1000_IMS_TXQ0      E1000_ICR_TXQ0      /* Tx Queue 0 Interrupt */
+#define E1000_IMS_TXQ1      E1000_ICR_TXQ1      /* Tx Queue 1 Interrupt */
+#define E1000_IMS_OTHER     E1000_ICR_OTHER     /* Other Interrupts */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_LSC       E1000_ICR_LSC       /* Link Status Change */
+#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ     /* Rx sequence error */
+#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0    /* Rx desc min. threshold */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of desc. still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE         0x8808
+
+/* 802.1q VLAN Packet Size */
+#define E1000_VLAN_FILTER_TBL_SIZE 128  /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots.  However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES     15
+#define E1000_RAH_AV  0x80000000        /* Receive descriptor valid */
+#define E1000_RAL_MAC_ADDR_LEN 4
+#define E1000_RAH_MAC_ADDR_LEN 2
+
+/* Error Codes */
+#define E1000_ERR_NVM      1
+#define E1000_ERR_PHY      2
+#define E1000_ERR_CONFIG   3
+#define E1000_ERR_PARAM    4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET   9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET   12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT               50
+#define COPPER_LINK_UP_LIMIT              10
+#define PHY_AUTO_NEG_LIMIT                45
+#define PHY_FORCE_LIMIT                   20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT      800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT      10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT      10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8     /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTL_RTL  0x0000FFF8     /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000     /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD         0x00000020        /* TXCW full duplex */
+#define E1000_TXCW_PAUSE      0x00000080        /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100        /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180        /* TXCW pause request mask */
+#define E1000_TXCW_ANE        0x80000000        /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_IV         0x08000000        /* Receive config invalid */
+#define E1000_RXCW_C          0x20000000        /* Receive config */
+#define E1000_RXCW_SYNCH      0x40000000        /* Receive config synch */
+
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP          0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
+#define E1000_GCR_TXD_NO_SNOOP          0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
+			   E1000_GCR_RXDSCW_NO_SNOOP      | \
+			   E1000_GCR_RXDSCR_NO_SNOOP      | \
+			   E1000_GCR_TXD_NO_SNOOP         | \
+			   E1000_GCR_TXDSCW_NO_SNOOP      | \
+			   E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define MII_CR_FULL_DUPLEX      0x0100  /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200  /* Restart auto negotiation */
+#define MII_CR_POWER_DOWN       0x0800  /* Power down */
+#define MII_CR_AUTO_NEG_EN      0x1000  /* Auto Neg Enable */
+#define MII_CR_LOOPBACK         0x4000  /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET            0x8000  /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000       0x0040
+#define MII_CR_SPEED_100        0x2000
+#define MII_CR_SPEED_10         0x0000
+
+/* PHY Status Register */
+#define MII_SR_LINK_STATUS       0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_COMPLETE  0x0020 /* Auto Neg Complete */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_10T_HD_CAPS      0x0020   /* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS      0x0040   /* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS    0x0080   /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS    0x0100   /* 100TX Full Duplex Capable */
+#define NWAY_AR_PAUSE            0x0400   /* Pause operation desired */
+#define NWAY_AR_ASM_DIR          0x0800   /* Asymmetric Pause Direction bit */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_PAUSE          0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR        0x0800 /* LP Asymmetric Pause Direction bit */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS     0x0001 /* LP has Auto Neg Capability */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_HD_CAPS         0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS         0x0200 /* Advertise 1000T FD capability  */
+					/* 0=DTE device */
+#define CR_1000T_MS_VALUE        0x0800 /* 1=Configure PHY as Master */
+					/* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE       0x1000 /* 1=Master/Slave manual config value */
+					/* 0=Automatic Master/Slave config */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS  0x2000 /* Local receiver OK */
+
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL      0x00 /* Control Register */
+#define PHY_STATUS       0x01 /* Status Register */
+#define PHY_ID1          0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2          0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV  0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY   0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP  0x06 /* Autoneg Expansion Reg */
+#define PHY_1000T_CTRL   0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS   0x0F /* Extended Status Reg */
+
+#define PHY_CONTROL_LB   0x4000 /* PHY Loopback bit */
+
+/* NVM Control */
+#define E1000_EECD_SK        0x00000001 /* NVM Clock */
+#define E1000_EECD_CS        0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI        0x00000004 /* NVM Data In */
+#define E1000_EECD_DO        0x00000008 /* NVM Data Out */
+#define E1000_EECD_REQ       0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT       0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES      0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE      0x00000200 /* NVM Size (0=64 word 1=256 word) */
+/* NVM Addressing bits based on type (0-small, 1-large) */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_NVM_GRANT_ATTEMPTS   1000 /* NVM # attempts to gain grant */
+#define E1000_EECD_AUTO_RD          0x00000200  /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800  /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT     11
+#define E1000_EECD_FLUPD     0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SEC1VAL   0x00400000 /* Sector One Valid */
+#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
+
+#define E1000_NVM_RW_REG_DATA   16   /* Offset to data in NVM read/write registers */
+#define E1000_NVM_RW_REG_DONE   2    /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START  1    /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2    /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE    1    /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ     0    /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES  2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT                 0x0003
+#define NVM_ID_LED_SETTINGS        0x0004
+#define NVM_INIT_CONTROL2_REG      0x000F
+#define NVM_INIT_CONTROL3_PORT_B   0x0014
+#define NVM_INIT_3GIO_3            0x001A
+#define NVM_INIT_CONTROL3_PORT_A   0x0024
+#define NVM_CFG                    0x0012
+#define NVM_ALT_MAC_ADDR_PTR       0x0037
+#define NVM_CHECKSUM_REG           0x003F
+
+#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
+
+#define E1000_NVM_CFG_DONE_PORT_0  0x40000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1  0x80000 /* ...for second port */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK       0x3000
+#define NVM_WORD0F_PAUSE            0x1000
+#define NVM_WORD0F_ASM_DIR          0x2000
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK  0x000C
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define NVM_COMPAT_LOM    0x0800
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM                    0xBABA
+
+/* PBA (printed board assembly) number words */
+#define NVM_PBA_OFFSET_0           8
+#define NVM_PBA_OFFSET_1           9
+
+#define NVM_WORD_SIZE_BASE_SHIFT   6
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI          5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI        0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI       0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI          0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI        0x06 /* NVM set Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI        0x05 /* NVM read Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI         0x01
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2  << 12) | \
+			      (ID_LED_OFF1_OFF2 <<  8) | \
+			      (ID_LED_DEF1_DEF2 <<  4) | \
+			      (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2       0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCI_HEADER_TYPE_REGISTER     0x0E
+#define PCIE_LINK_STATUS             0x12
+
+#define PCI_HEADER_TYPE_MULTIFUNC    0x80
+#define PCIE_LINK_WIDTH_MASK         0x3F0
+#define PCIE_LINK_WIDTH_SHIFT        4
+
+#define PHY_REVISION_MASK      0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS    0x1F  /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID    0x01410C50
+#define M88E1000_I_PHY_ID    0x01410C30
+#define M88E1011_I_PHY_ID    0x01410C20
+#define IGP01E1000_I_PHY_ID  0x02A80380
+#define M88E1111_I_PHY_ID    0x01410CC0
+#define GG82563_E_PHY_ID     0x01410CA0
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+#define BME1000_E_PHY_ID     0x01410CB0
+#define BME1000_E_PHY_ID_R2  0x01410CB1
+#define I82577_E_PHY_ID      0x01540050
+#define I82578_E_PHY_ID      0x004DD040
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL     0x10  /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS   0x11  /* PHY Specific Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14  /* Extended PHY Specific Control */
+
+#define M88E1000_PHY_PAGE_SELECT   0x1D  /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E  /* Its meaning depends on reg 29 */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000  /* MDI Crossover Mode bits 6:5 */
+					       /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020  /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T     0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE      0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold)
+ * 0=Normal 10BASE-T Rx Threshold
+ */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_REV_POLARITY       0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT          0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX               0x0040 /* 1=MDIX; 0=MDI */
+/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */
+#define M88E1000_PSSR_CABLE_LENGTH       0x0380
+#define M88E1000_PSSR_SPEED              0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_1000MBS            0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_TX_CLK_25      0x0070 /* 25  MHz TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+
+#define I82578_EPSCR_DOWNSHIFT_ENABLE          0x0020
+#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK    0x001C
+
+/* BME1000 PHY Specific Control Register */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT   0x0800 /* 1 = enable downshift */
+
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+                           ((reg) & MAX_PHY_REG_ADDRESS))
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT        5
+#define GG82563_REG(page, reg)    \
+	(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG       30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL           \
+	GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_PAGE_SELECT         \
+	GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2         \
+	GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT     \
+	GG82563_REG(0, 29) /* Alternate Page Select */
+
+#define GG82563_PHY_MAC_SPEC_CTRL       \
+	GG82563_REG(2, 21) /* MAC Specific Control Register */
+
+#define GG82563_PHY_DSP_DISTANCE    \
+	GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL   \
+	GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PWR_MGMT_CTRL       \
+	GG82563_REG(193, 20) /* Power Management Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_INBAND_CTRL         \
+	GG82563_REG(194, 18) /* Inband Control */
+
+/* MDI Control */
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_ERROR     0x40000000
+
+/* SerDes Control */
+#define E1000_GEN_POLL_TIMEOUT          640
+
+#endif /* _E1000_DEFINES_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/e1000-2.6.35-ethercat.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,694 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* Linux PRO/1000 Ethernet Driver main header file */
+
+#ifndef _E1000_H_
+#define _E1000_H_
+
+#include <linux/types.h>
+#include <linux/timer.h>
+#include <linux/workqueue.h>
+#include <linux/io.h>
+#include <linux/netdevice.h>
+#include <linux/pci.h>
+#include <linux/pci-aspm.h>
+
+#include "hw-2.6.35-ethercat.h"
+
+/* EtherCAT header file */
+#include "../ecdev.h"
+
+struct e1000_info;
+
+#define e_dbg(format, arg...) \
+	netdev_dbg(hw->adapter->netdev, format, ## arg)
+#define e_err(format, arg...) \
+	netdev_err(adapter->netdev, format, ## arg)
+#define e_info(format, arg...) \
+	netdev_info(adapter->netdev, format, ## arg)
+#define e_warn(format, arg...) \
+	netdev_warn(adapter->netdev, format, ## arg)
+#define e_notice(format, arg...) \
+	netdev_notice(adapter->netdev, format, ## arg)
+
+
+/* Interrupt modes, as used by the IntMode parameter */
+#define E1000E_INT_MODE_LEGACY		0
+#define E1000E_INT_MODE_MSI		1
+#define E1000E_INT_MODE_MSIX		2
+
+/* Tx/Rx descriptor defines */
+#define E1000_DEFAULT_TXD		256
+#define E1000_MAX_TXD			4096
+#define E1000_MIN_TXD			64
+
+#define E1000_DEFAULT_RXD		256
+#define E1000_MAX_RXD			4096
+#define E1000_MIN_RXD			64
+
+#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
+#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
+
+/* Early Receive defines */
+#define E1000_ERT_2048			0x100
+
+#define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
+
+/* How many Tx Descriptors do we need to call netif_wake_queue ? */
+/* How many Rx Buffers do we bundle into one write to the hardware ? */
+#define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
+
+#define AUTO_ALL_MODES			0
+#define E1000_EEPROM_APME		0x0400
+
+#define E1000_MNG_VLAN_NONE		(-1)
+
+/* Number of packet split data buffers (not including the header buffer) */
+#define PS_PAGE_BUFFERS			(MAX_PS_BUFFERS - 1)
+
+#define DEFAULT_JUMBO			9234
+
+/* BM/HV Specific Registers */
+#define BM_PORT_CTRL_PAGE                 769
+
+#define PHY_UPPER_SHIFT                   21
+#define BM_PHY_REG(page, reg) \
+	(((reg) & MAX_PHY_REG_ADDRESS) |\
+	 (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
+	 (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
+
+/* PHY Wakeup Registers and defines */
+#define BM_RCTL         PHY_REG(BM_WUC_PAGE, 0)
+#define BM_WUC          PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC         PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS          PHY_REG(BM_WUC_PAGE, 3)
+#define BM_RAR_L(_i)    (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
+#define BM_RAR_M(_i)    (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
+#define BM_RAR_H(_i)    (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
+#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
+#define BM_MTA(_i)      (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
+
+#define BM_RCTL_UPE           0x0001          /* Unicast Promiscuous Mode */
+#define BM_RCTL_MPE           0x0002          /* Multicast Promiscuous Mode */
+#define BM_RCTL_MO_SHIFT      3               /* Multicast Offset Shift */
+#define BM_RCTL_MO_MASK       (3 << 3)        /* Multicast Offset Mask */
+#define BM_RCTL_BAM           0x0020          /* Broadcast Accept Mode */
+#define BM_RCTL_PMCF          0x0040          /* Pass MAC Control Frames */
+#define BM_RCTL_RFCE          0x0080          /* Rx Flow Control Enable */
+
+#define HV_SCC_UPPER		PHY_REG(778, 16) /* Single Collision Count */
+#define HV_SCC_LOWER		PHY_REG(778, 17)
+#define HV_ECOL_UPPER		PHY_REG(778, 18) /* Excessive Collision Count */
+#define HV_ECOL_LOWER		PHY_REG(778, 19)
+#define HV_MCC_UPPER		PHY_REG(778, 20) /* Multiple Collision Count */
+#define HV_MCC_LOWER		PHY_REG(778, 21)
+#define HV_LATECOL_UPPER	PHY_REG(778, 23) /* Late Collision Count */
+#define HV_LATECOL_LOWER	PHY_REG(778, 24)
+#define HV_COLC_UPPER		PHY_REG(778, 25) /* Collision Count */
+#define HV_COLC_LOWER		PHY_REG(778, 26)
+#define HV_DC_UPPER		PHY_REG(778, 27) /* Defer Count */
+#define HV_DC_LOWER		PHY_REG(778, 28)
+#define HV_TNCRS_UPPER		PHY_REG(778, 29) /* Transmit with no CRS */
+#define HV_TNCRS_LOWER		PHY_REG(778, 30)
+
+#define E1000_FCRTV_PCH     0x05F40 /* PCH Flow Control Refresh Timer Value */
+
+/* BM PHY Copper Specific Status */
+#define BM_CS_STATUS                      17
+#define BM_CS_STATUS_LINK_UP              0x0400
+#define BM_CS_STATUS_RESOLVED             0x0800
+#define BM_CS_STATUS_SPEED_MASK           0xC000
+#define BM_CS_STATUS_SPEED_1000           0x8000
+
+/* 82577 Mobile Phy Status Register */
+#define HV_M_STATUS                       26
+#define HV_M_STATUS_AUTONEG_COMPLETE      0x1000
+#define HV_M_STATUS_SPEED_MASK            0x0300
+#define HV_M_STATUS_SPEED_1000            0x0200
+#define HV_M_STATUS_LINK_UP               0x0040
+
+/* Time to wait before putting the device into D3 if there's no link (in ms). */
+#define LINK_TIMEOUT		100
+
+enum e1000_boards {
+	board_82571,
+	board_82572,
+	board_82573,
+	board_82574,
+	board_82583,
+	board_80003es2lan,
+	board_ich8lan,
+	board_ich9lan,
+	board_ich10lan,
+	board_pchlan,
+};
+
+struct e1000_queue_stats {
+	u64 packets;
+	u64 bytes;
+};
+
+struct e1000_ps_page {
+	struct page *page;
+	u64 dma; /* must be u64 - written to hw */
+};
+
+/*
+ * wrappers around a pointer to a socket buffer,
+ * so a DMA handle can be stored along with the buffer
+ */
+struct e1000_buffer {
+	dma_addr_t dma;
+	struct sk_buff *skb;
+	union {
+		/* Tx */
+		struct {
+			unsigned long time_stamp;
+			u16 length;
+			u16 next_to_watch;
+			unsigned int segs;
+			unsigned int bytecount;
+			u16 mapped_as_page;
+		};
+		/* Rx */
+		struct {
+			/* arrays of page information for packet split */
+			struct e1000_ps_page *ps_pages;
+			struct page *page;
+		};
+	};
+};
+
+struct e1000_ring {
+	void *desc;			/* pointer to ring memory  */
+	dma_addr_t dma;			/* phys address of ring    */
+	unsigned int size;		/* length of ring in bytes */
+	unsigned int count;		/* number of desc. in ring */
+
+	u16 next_to_use;
+	u16 next_to_clean;
+
+	u16 head;
+	u16 tail;
+
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+
+	char name[IFNAMSIZ + 5];
+	u32 ims_val;
+	u32 itr_val;
+	u16 itr_register;
+	int set_itr;
+
+	struct sk_buff *rx_skb_top;
+
+	struct e1000_queue_stats stats;
+};
+
+/* PHY register snapshot values */
+struct e1000_phy_regs {
+	u16 bmcr;		/* basic mode control register    */
+	u16 bmsr;		/* basic mode status register     */
+	u16 advertise;		/* auto-negotiation advertisement */
+	u16 lpa;		/* link partner ability register  */
+	u16 expansion;		/* auto-negotiation expansion reg */
+	u16 ctrl1000;		/* 1000BASE-T control register    */
+	u16 stat1000;		/* 1000BASE-T status register     */
+	u16 estatus;		/* extended status register       */
+};
+
+/* board specific private data structure */
+struct e1000_adapter {
+	struct timer_list watchdog_timer;
+	struct timer_list phy_info_timer;
+	struct timer_list blink_timer;
+
+	struct work_struct reset_task;
+	struct work_struct watchdog_task;
+
+	const struct e1000_info *ei;
+
+	struct vlan_group *vlgrp;
+	u32 bd_number;
+	u32 rx_buffer_len;
+	u16 mng_vlan_id;
+	u16 link_speed;
+	u16 link_duplex;
+	u16 eeprom_vers;
+
+	/* track device up/down/testing state */
+	unsigned long state;
+
+	/* Interrupt Throttle Rate */
+	u32 itr;
+	u32 itr_setting;
+	u16 tx_itr;
+	u16 rx_itr;
+
+	/*
+	 * Tx
+	 */
+	struct e1000_ring *tx_ring /* One per active queue */
+						____cacheline_aligned_in_smp;
+
+	struct napi_struct napi;
+
+	unsigned int restart_queue;
+	u32 txd_cmd;
+
+	bool detect_tx_hung;
+	u8 tx_timeout_factor;
+
+	u32 tx_int_delay;
+	u32 tx_abs_int_delay;
+
+	unsigned int total_tx_bytes;
+	unsigned int total_tx_packets;
+	unsigned int total_rx_bytes;
+	unsigned int total_rx_packets;
+
+	/* Tx stats */
+	u64 tpt_old;
+	u64 colc_old;
+	u32 gotc;
+	u64 gotc_old;
+	u32 tx_timeout_count;
+	u32 tx_fifo_head;
+	u32 tx_head_addr;
+	u32 tx_fifo_size;
+	u32 tx_dma_failed;
+
+	/*
+	 * Rx
+	 */
+	bool (*clean_rx) (struct e1000_adapter *adapter,
+			  int *work_done, int work_to_do)
+						____cacheline_aligned_in_smp;
+	void (*alloc_rx_buf) (struct e1000_adapter *adapter,
+			      int cleaned_count);
+	struct e1000_ring *rx_ring;
+
+	u32 rx_int_delay;
+	u32 rx_abs_int_delay;
+
+	/* Rx stats */
+	u64 hw_csum_err;
+	u64 hw_csum_good;
+	u64 rx_hdr_split;
+	u32 gorc;
+	u64 gorc_old;
+	u32 alloc_rx_buff_failed;
+	u32 rx_dma_failed;
+
+	unsigned int rx_ps_pages;
+	u16 rx_ps_bsize0;
+	u32 max_frame_size;
+	u32 min_frame_size;
+
+	/* OS defined structs */
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+
+	/* structs defined in e1000_hw.h */
+	struct e1000_hw hw;
+
+	struct e1000_hw_stats stats;
+	struct e1000_phy_info phy_info;
+	struct e1000_phy_stats phy_stats;
+
+	/* Snapshot of PHY registers */
+	struct e1000_phy_regs phy_regs;
+
+	struct e1000_ring test_tx_ring;
+	struct e1000_ring test_rx_ring;
+	u32 test_icr;
+
+	u32 msg_enable;
+	struct msix_entry *msix_entries;
+	int int_mode;
+	u32 eiac_mask;
+
+	u32 eeprom_wol;
+	u32 wol;
+	u32 pba;
+	u32 max_hw_frame_size;
+
+	bool fc_autoneg;
+
+	unsigned long led_status;
+
+	unsigned int flags;
+	unsigned int flags2;
+	struct work_struct downshift_task;
+	struct work_struct update_phy_task;
+	struct work_struct led_blink_task;
+	struct work_struct print_hang_task;
+
+	bool idle_check;
+
+	/* EtherCAT device variables */
+	ec_device_t *ecdev;
+	unsigned long ec_watchdog_jiffies;
+};
+
+struct e1000_info {
+	enum e1000_mac_type	mac;
+	unsigned int		flags;
+	unsigned int		flags2;
+	u32			pba;
+	u32			max_hw_frame_size;
+	s32			(*get_variants)(struct e1000_adapter *);
+	struct e1000_mac_operations *mac_ops;
+	struct e1000_phy_operations *phy_ops;
+	struct e1000_nvm_operations *nvm_ops;
+};
+
+/* hardware capability, feature, and workaround flags */
+#define FLAG_HAS_AMT                      (1 << 0)
+#define FLAG_HAS_FLASH                    (1 << 1)
+#define FLAG_HAS_HW_VLAN_FILTER           (1 << 2)
+#define FLAG_HAS_WOL                      (1 << 3)
+#define FLAG_HAS_ERT                      (1 << 4)
+#define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
+#define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
+#define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
+#define FLAG_READ_ONLY_NVM                (1 << 8)
+#define FLAG_IS_ICH                       (1 << 9)
+#define FLAG_HAS_MSIX                     (1 << 10)
+#define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
+#define FLAG_IS_QUAD_PORT_A               (1 << 12)
+#define FLAG_IS_QUAD_PORT                 (1 << 13)
+#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN   (1 << 14)
+#define FLAG_APME_IN_WUC                  (1 << 15)
+#define FLAG_APME_IN_CTRL3                (1 << 16)
+#define FLAG_APME_CHECK_PORT_B            (1 << 17)
+#define FLAG_DISABLE_FC_PAUSE_TIME        (1 << 18)
+#define FLAG_NO_WAKE_UCAST                (1 << 19)
+#define FLAG_MNG_PT_ENABLED               (1 << 20)
+#define FLAG_RESET_OVERWRITES_LAA         (1 << 21)
+#define FLAG_TARC_SPEED_MODE_BIT          (1 << 22)
+#define FLAG_TARC_SET_BIT_ZERO            (1 << 23)
+#define FLAG_RX_NEEDS_RESTART             (1 << 24)
+#define FLAG_LSC_GIG_SPEED_DROP           (1 << 25)
+#define FLAG_SMART_POWER_DOWN             (1 << 26)
+#define FLAG_MSI_ENABLED                  (1 << 27)
+#define FLAG_RX_CSUM_ENABLED              (1 << 28)
+#define FLAG_TSO_FORCE                    (1 << 29)
+#define FLAG_RX_RESTART_NOW               (1 << 30)
+#define FLAG_MSI_TEST_FAILED              (1 << 31)
+
+/* CRC Stripping defines */
+#define FLAG2_CRC_STRIPPING               (1 << 0)
+#define FLAG2_HAS_PHY_WAKEUP              (1 << 1)
+#define FLAG2_IS_DISCARDING               (1 << 2)
+#define FLAG2_DISABLE_ASPM_L1             (1 << 3)
+
+#define E1000_RX_DESC_PS(R, i)	    \
+	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
+#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
+#define E1000_RX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_rx_desc)
+#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
+#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
+
+enum e1000_state_t {
+	__E1000_TESTING,
+	__E1000_RESETTING,
+	__E1000_DOWN
+};
+
+enum latency_range {
+	lowest_latency = 0,
+	low_latency = 1,
+	bulk_latency = 2,
+	latency_invalid = 255
+};
+
+extern char e1000e_driver_name[];
+extern const char e1000e_driver_version[];
+
+extern void e1000e_check_options(struct e1000_adapter *adapter);
+extern void e1000e_set_ethtool_ops(struct net_device *netdev);
+
+extern int e1000e_up(struct e1000_adapter *adapter);
+extern void e1000e_down(struct e1000_adapter *adapter);
+extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
+extern void e1000e_reset(struct e1000_adapter *adapter);
+extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
+extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter);
+extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter);
+extern void e1000e_free_rx_resources(struct e1000_adapter *adapter);
+extern void e1000e_free_tx_resources(struct e1000_adapter *adapter);
+extern void e1000e_update_stats(struct e1000_adapter *adapter);
+extern bool e1000e_has_link(struct e1000_adapter *adapter);
+extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
+extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
+extern void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
+
+extern unsigned int copybreak;
+
+extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw);
+
+extern struct e1000_info e1000_82571_info;
+extern struct e1000_info e1000_82572_info;
+extern struct e1000_info e1000_82573_info;
+extern struct e1000_info e1000_82574_info;
+extern struct e1000_info e1000_82583_info;
+extern struct e1000_info e1000_ich8_info;
+extern struct e1000_info e1000_ich9_info;
+extern struct e1000_info e1000_ich10_info;
+extern struct e1000_info e1000_pch_info;
+extern struct e1000_info e1000_es2_info;
+
+extern s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num);
+
+extern s32  e1000e_commit_phy(struct e1000_hw *hw);
+
+extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
+
+extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw);
+extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state);
+
+extern void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw);
+extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+						 bool state);
+extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+extern void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw);
+extern s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
+
+extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
+extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
+extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw);
+extern s32 e1000e_setup_led_generic(struct e1000_hw *hw);
+extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw);
+extern s32 e1000e_led_on_generic(struct e1000_hw *hw);
+extern s32 e1000e_led_off_generic(struct e1000_hw *hw);
+extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw);
+extern void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+extern void e1000_set_lan_id_single_port(struct e1000_hw *hw);
+extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw);
+extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw);
+extern s32 e1000e_id_led_init(struct e1000_hw *hw);
+extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw);
+extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw);
+extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
+extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
+extern s32 e1000e_setup_link(struct e1000_hw *hw);
+extern void e1000_clear_vfta_generic(struct e1000_hw *hw);
+extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
+extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
+					       u8 *mc_addr_list,
+					       u32 mc_addr_count);
+extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
+extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
+extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw);
+extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
+extern void e1000e_config_collision_dist(struct e1000_hw *hw);
+extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw);
+extern s32 e1000e_force_mac_fc(struct e1000_hw *hw);
+extern s32 e1000e_blink_led(struct e1000_hw *hw);
+extern void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+extern s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+extern void e1000e_reset_adaptive(struct e1000_hw *hw);
+extern void e1000e_update_adaptive(struct e1000_hw *hw);
+
+extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
+extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
+extern void e1000e_put_hw_semaphore(struct e1000_hw *hw);
+extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
+extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
+extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
+extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
+                                          u16 *data);
+extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
+extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
+                                           u16 data);
+extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
+extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
+extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
+extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
+extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw);
+extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
+extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
+extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
+extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
+                                        u16 data);
+extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
+                                       u16 *data);
+extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+			       u32 usec_interval, bool *success);
+extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
+extern void e1000_power_up_phy_copper(struct e1000_hw *hw);
+extern void e1000_power_down_phy_copper(struct e1000_hw *hw);
+extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_check_downshift(struct e1000_hw *hw);
+extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
+                                        u16 *data);
+extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
+                                         u16 data);
+extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
+extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
+extern s32 e1000_check_polarity_82577(struct e1000_hw *hw);
+extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
+extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
+extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
+
+extern s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
+extern s32 e1000_check_polarity_ife(struct e1000_hw *hw);
+extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
+extern s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+
+static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	return hw->phy.ops.reset(hw);
+}
+
+static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+	return hw->phy.ops.check_reset_block(hw);
+}
+
+static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return hw->phy.ops.read_reg(hw, offset, data);
+}
+
+static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return hw->phy.ops.write_reg(hw, offset, data);
+}
+
+static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+	return hw->phy.ops.get_cable_length(hw);
+}
+
+extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
+extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
+extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
+extern void e1000e_release_nvm(struct e1000_hw *hw);
+extern void e1000e_reload_nvm(struct e1000_hw *hw);
+extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+
+static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.read_mac_addr)
+		return hw->mac.ops.read_mac_addr(hw);
+
+	return e1000_read_mac_addr_generic(hw);
+}
+
+static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+	return hw->nvm.ops.validate(hw);
+}
+
+static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
+{
+	return hw->nvm.ops.update(hw);
+}
+
+static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	return hw->nvm.ops.read(hw, offset, words, data);
+}
+
+static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	return hw->nvm.ops.write(hw, offset, words, data);
+}
+
+static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+	return hw->phy.ops.get_info(hw);
+}
+
+static inline s32 e1000e_check_mng_mode(struct e1000_hw *hw)
+{
+	return hw->mac.ops.check_mng_mode(hw);
+}
+
+extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw);
+extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
+extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
+
+static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
+{
+	return readl(hw->hw_addr + reg);
+}
+
+static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
+{
+	writel(val, hw->hw_addr + reg);
+}
+
+#endif /* _E1000_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/e1000-2.6.35-orig.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,687 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* Linux PRO/1000 Ethernet Driver main header file */
+
+#ifndef _E1000_H_
+#define _E1000_H_
+
+#include <linux/types.h>
+#include <linux/timer.h>
+#include <linux/workqueue.h>
+#include <linux/io.h>
+#include <linux/netdevice.h>
+#include <linux/pci.h>
+#include <linux/pci-aspm.h>
+
+#include "hw.h"
+
+struct e1000_info;
+
+#define e_dbg(format, arg...) \
+	netdev_dbg(hw->adapter->netdev, format, ## arg)
+#define e_err(format, arg...) \
+	netdev_err(adapter->netdev, format, ## arg)
+#define e_info(format, arg...) \
+	netdev_info(adapter->netdev, format, ## arg)
+#define e_warn(format, arg...) \
+	netdev_warn(adapter->netdev, format, ## arg)
+#define e_notice(format, arg...) \
+	netdev_notice(adapter->netdev, format, ## arg)
+
+
+/* Interrupt modes, as used by the IntMode parameter */
+#define E1000E_INT_MODE_LEGACY		0
+#define E1000E_INT_MODE_MSI		1
+#define E1000E_INT_MODE_MSIX		2
+
+/* Tx/Rx descriptor defines */
+#define E1000_DEFAULT_TXD		256
+#define E1000_MAX_TXD			4096
+#define E1000_MIN_TXD			64
+
+#define E1000_DEFAULT_RXD		256
+#define E1000_MAX_RXD			4096
+#define E1000_MIN_RXD			64
+
+#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
+#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
+
+/* Early Receive defines */
+#define E1000_ERT_2048			0x100
+
+#define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
+
+/* How many Tx Descriptors do we need to call netif_wake_queue ? */
+/* How many Rx Buffers do we bundle into one write to the hardware ? */
+#define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
+
+#define AUTO_ALL_MODES			0
+#define E1000_EEPROM_APME		0x0400
+
+#define E1000_MNG_VLAN_NONE		(-1)
+
+/* Number of packet split data buffers (not including the header buffer) */
+#define PS_PAGE_BUFFERS			(MAX_PS_BUFFERS - 1)
+
+#define DEFAULT_JUMBO			9234
+
+/* BM/HV Specific Registers */
+#define BM_PORT_CTRL_PAGE                 769
+
+#define PHY_UPPER_SHIFT                   21
+#define BM_PHY_REG(page, reg) \
+	(((reg) & MAX_PHY_REG_ADDRESS) |\
+	 (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
+	 (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
+
+/* PHY Wakeup Registers and defines */
+#define BM_RCTL         PHY_REG(BM_WUC_PAGE, 0)
+#define BM_WUC          PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC         PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS          PHY_REG(BM_WUC_PAGE, 3)
+#define BM_RAR_L(_i)    (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
+#define BM_RAR_M(_i)    (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
+#define BM_RAR_H(_i)    (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
+#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
+#define BM_MTA(_i)      (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
+
+#define BM_RCTL_UPE           0x0001          /* Unicast Promiscuous Mode */
+#define BM_RCTL_MPE           0x0002          /* Multicast Promiscuous Mode */
+#define BM_RCTL_MO_SHIFT      3               /* Multicast Offset Shift */
+#define BM_RCTL_MO_MASK       (3 << 3)        /* Multicast Offset Mask */
+#define BM_RCTL_BAM           0x0020          /* Broadcast Accept Mode */
+#define BM_RCTL_PMCF          0x0040          /* Pass MAC Control Frames */
+#define BM_RCTL_RFCE          0x0080          /* Rx Flow Control Enable */
+
+#define HV_SCC_UPPER		PHY_REG(778, 16) /* Single Collision Count */
+#define HV_SCC_LOWER		PHY_REG(778, 17)
+#define HV_ECOL_UPPER		PHY_REG(778, 18) /* Excessive Collision Count */
+#define HV_ECOL_LOWER		PHY_REG(778, 19)
+#define HV_MCC_UPPER		PHY_REG(778, 20) /* Multiple Collision Count */
+#define HV_MCC_LOWER		PHY_REG(778, 21)
+#define HV_LATECOL_UPPER	PHY_REG(778, 23) /* Late Collision Count */
+#define HV_LATECOL_LOWER	PHY_REG(778, 24)
+#define HV_COLC_UPPER		PHY_REG(778, 25) /* Collision Count */
+#define HV_COLC_LOWER		PHY_REG(778, 26)
+#define HV_DC_UPPER		PHY_REG(778, 27) /* Defer Count */
+#define HV_DC_LOWER		PHY_REG(778, 28)
+#define HV_TNCRS_UPPER		PHY_REG(778, 29) /* Transmit with no CRS */
+#define HV_TNCRS_LOWER		PHY_REG(778, 30)
+
+#define E1000_FCRTV_PCH     0x05F40 /* PCH Flow Control Refresh Timer Value */
+
+/* BM PHY Copper Specific Status */
+#define BM_CS_STATUS                      17
+#define BM_CS_STATUS_LINK_UP              0x0400
+#define BM_CS_STATUS_RESOLVED             0x0800
+#define BM_CS_STATUS_SPEED_MASK           0xC000
+#define BM_CS_STATUS_SPEED_1000           0x8000
+
+/* 82577 Mobile Phy Status Register */
+#define HV_M_STATUS                       26
+#define HV_M_STATUS_AUTONEG_COMPLETE      0x1000
+#define HV_M_STATUS_SPEED_MASK            0x0300
+#define HV_M_STATUS_SPEED_1000            0x0200
+#define HV_M_STATUS_LINK_UP               0x0040
+
+/* Time to wait before putting the device into D3 if there's no link (in ms). */
+#define LINK_TIMEOUT		100
+
+enum e1000_boards {
+	board_82571,
+	board_82572,
+	board_82573,
+	board_82574,
+	board_82583,
+	board_80003es2lan,
+	board_ich8lan,
+	board_ich9lan,
+	board_ich10lan,
+	board_pchlan,
+};
+
+struct e1000_queue_stats {
+	u64 packets;
+	u64 bytes;
+};
+
+struct e1000_ps_page {
+	struct page *page;
+	u64 dma; /* must be u64 - written to hw */
+};
+
+/*
+ * wrappers around a pointer to a socket buffer,
+ * so a DMA handle can be stored along with the buffer
+ */
+struct e1000_buffer {
+	dma_addr_t dma;
+	struct sk_buff *skb;
+	union {
+		/* Tx */
+		struct {
+			unsigned long time_stamp;
+			u16 length;
+			u16 next_to_watch;
+			unsigned int segs;
+			unsigned int bytecount;
+			u16 mapped_as_page;
+		};
+		/* Rx */
+		struct {
+			/* arrays of page information for packet split */
+			struct e1000_ps_page *ps_pages;
+			struct page *page;
+		};
+	};
+};
+
+struct e1000_ring {
+	void *desc;			/* pointer to ring memory  */
+	dma_addr_t dma;			/* phys address of ring    */
+	unsigned int size;		/* length of ring in bytes */
+	unsigned int count;		/* number of desc. in ring */
+
+	u16 next_to_use;
+	u16 next_to_clean;
+
+	u16 head;
+	u16 tail;
+
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+
+	char name[IFNAMSIZ + 5];
+	u32 ims_val;
+	u32 itr_val;
+	u16 itr_register;
+	int set_itr;
+
+	struct sk_buff *rx_skb_top;
+
+	struct e1000_queue_stats stats;
+};
+
+/* PHY register snapshot values */
+struct e1000_phy_regs {
+	u16 bmcr;		/* basic mode control register    */
+	u16 bmsr;		/* basic mode status register     */
+	u16 advertise;		/* auto-negotiation advertisement */
+	u16 lpa;		/* link partner ability register  */
+	u16 expansion;		/* auto-negotiation expansion reg */
+	u16 ctrl1000;		/* 1000BASE-T control register    */
+	u16 stat1000;		/* 1000BASE-T status register     */
+	u16 estatus;		/* extended status register       */
+};
+
+/* board specific private data structure */
+struct e1000_adapter {
+	struct timer_list watchdog_timer;
+	struct timer_list phy_info_timer;
+	struct timer_list blink_timer;
+
+	struct work_struct reset_task;
+	struct work_struct watchdog_task;
+
+	const struct e1000_info *ei;
+
+	struct vlan_group *vlgrp;
+	u32 bd_number;
+	u32 rx_buffer_len;
+	u16 mng_vlan_id;
+	u16 link_speed;
+	u16 link_duplex;
+	u16 eeprom_vers;
+
+	/* track device up/down/testing state */
+	unsigned long state;
+
+	/* Interrupt Throttle Rate */
+	u32 itr;
+	u32 itr_setting;
+	u16 tx_itr;
+	u16 rx_itr;
+
+	/*
+	 * Tx
+	 */
+	struct e1000_ring *tx_ring /* One per active queue */
+						____cacheline_aligned_in_smp;
+
+	struct napi_struct napi;
+
+	unsigned int restart_queue;
+	u32 txd_cmd;
+
+	bool detect_tx_hung;
+	u8 tx_timeout_factor;
+
+	u32 tx_int_delay;
+	u32 tx_abs_int_delay;
+
+	unsigned int total_tx_bytes;
+	unsigned int total_tx_packets;
+	unsigned int total_rx_bytes;
+	unsigned int total_rx_packets;
+
+	/* Tx stats */
+	u64 tpt_old;
+	u64 colc_old;
+	u32 gotc;
+	u64 gotc_old;
+	u32 tx_timeout_count;
+	u32 tx_fifo_head;
+	u32 tx_head_addr;
+	u32 tx_fifo_size;
+	u32 tx_dma_failed;
+
+	/*
+	 * Rx
+	 */
+	bool (*clean_rx) (struct e1000_adapter *adapter,
+			  int *work_done, int work_to_do)
+						____cacheline_aligned_in_smp;
+	void (*alloc_rx_buf) (struct e1000_adapter *adapter,
+			      int cleaned_count);
+	struct e1000_ring *rx_ring;
+
+	u32 rx_int_delay;
+	u32 rx_abs_int_delay;
+
+	/* Rx stats */
+	u64 hw_csum_err;
+	u64 hw_csum_good;
+	u64 rx_hdr_split;
+	u32 gorc;
+	u64 gorc_old;
+	u32 alloc_rx_buff_failed;
+	u32 rx_dma_failed;
+
+	unsigned int rx_ps_pages;
+	u16 rx_ps_bsize0;
+	u32 max_frame_size;
+	u32 min_frame_size;
+
+	/* OS defined structs */
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+
+	/* structs defined in e1000_hw.h */
+	struct e1000_hw hw;
+
+	struct e1000_hw_stats stats;
+	struct e1000_phy_info phy_info;
+	struct e1000_phy_stats phy_stats;
+
+	/* Snapshot of PHY registers */
+	struct e1000_phy_regs phy_regs;
+
+	struct e1000_ring test_tx_ring;
+	struct e1000_ring test_rx_ring;
+	u32 test_icr;
+
+	u32 msg_enable;
+	struct msix_entry *msix_entries;
+	int int_mode;
+	u32 eiac_mask;
+
+	u32 eeprom_wol;
+	u32 wol;
+	u32 pba;
+	u32 max_hw_frame_size;
+
+	bool fc_autoneg;
+
+	unsigned long led_status;
+
+	unsigned int flags;
+	unsigned int flags2;
+	struct work_struct downshift_task;
+	struct work_struct update_phy_task;
+	struct work_struct led_blink_task;
+	struct work_struct print_hang_task;
+
+	bool idle_check;
+};
+
+struct e1000_info {
+	enum e1000_mac_type	mac;
+	unsigned int		flags;
+	unsigned int		flags2;
+	u32			pba;
+	u32			max_hw_frame_size;
+	s32			(*get_variants)(struct e1000_adapter *);
+	struct e1000_mac_operations *mac_ops;
+	struct e1000_phy_operations *phy_ops;
+	struct e1000_nvm_operations *nvm_ops;
+};
+
+/* hardware capability, feature, and workaround flags */
+#define FLAG_HAS_AMT                      (1 << 0)
+#define FLAG_HAS_FLASH                    (1 << 1)
+#define FLAG_HAS_HW_VLAN_FILTER           (1 << 2)
+#define FLAG_HAS_WOL                      (1 << 3)
+#define FLAG_HAS_ERT                      (1 << 4)
+#define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
+#define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
+#define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
+#define FLAG_READ_ONLY_NVM                (1 << 8)
+#define FLAG_IS_ICH                       (1 << 9)
+#define FLAG_HAS_MSIX                     (1 << 10)
+#define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
+#define FLAG_IS_QUAD_PORT_A               (1 << 12)
+#define FLAG_IS_QUAD_PORT                 (1 << 13)
+#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN   (1 << 14)
+#define FLAG_APME_IN_WUC                  (1 << 15)
+#define FLAG_APME_IN_CTRL3                (1 << 16)
+#define FLAG_APME_CHECK_PORT_B            (1 << 17)
+#define FLAG_DISABLE_FC_PAUSE_TIME        (1 << 18)
+#define FLAG_NO_WAKE_UCAST                (1 << 19)
+#define FLAG_MNG_PT_ENABLED               (1 << 20)
+#define FLAG_RESET_OVERWRITES_LAA         (1 << 21)
+#define FLAG_TARC_SPEED_MODE_BIT          (1 << 22)
+#define FLAG_TARC_SET_BIT_ZERO            (1 << 23)
+#define FLAG_RX_NEEDS_RESTART             (1 << 24)
+#define FLAG_LSC_GIG_SPEED_DROP           (1 << 25)
+#define FLAG_SMART_POWER_DOWN             (1 << 26)
+#define FLAG_MSI_ENABLED                  (1 << 27)
+#define FLAG_RX_CSUM_ENABLED              (1 << 28)
+#define FLAG_TSO_FORCE                    (1 << 29)
+#define FLAG_RX_RESTART_NOW               (1 << 30)
+#define FLAG_MSI_TEST_FAILED              (1 << 31)
+
+/* CRC Stripping defines */
+#define FLAG2_CRC_STRIPPING               (1 << 0)
+#define FLAG2_HAS_PHY_WAKEUP              (1 << 1)
+#define FLAG2_IS_DISCARDING               (1 << 2)
+#define FLAG2_DISABLE_ASPM_L1             (1 << 3)
+
+#define E1000_RX_DESC_PS(R, i)	    \
+	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
+#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
+#define E1000_RX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_rx_desc)
+#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
+#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
+
+enum e1000_state_t {
+	__E1000_TESTING,
+	__E1000_RESETTING,
+	__E1000_DOWN
+};
+
+enum latency_range {
+	lowest_latency = 0,
+	low_latency = 1,
+	bulk_latency = 2,
+	latency_invalid = 255
+};
+
+extern char e1000e_driver_name[];
+extern const char e1000e_driver_version[];
+
+extern void e1000e_check_options(struct e1000_adapter *adapter);
+extern void e1000e_set_ethtool_ops(struct net_device *netdev);
+
+extern int e1000e_up(struct e1000_adapter *adapter);
+extern void e1000e_down(struct e1000_adapter *adapter);
+extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
+extern void e1000e_reset(struct e1000_adapter *adapter);
+extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
+extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter);
+extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter);
+extern void e1000e_free_rx_resources(struct e1000_adapter *adapter);
+extern void e1000e_free_tx_resources(struct e1000_adapter *adapter);
+extern void e1000e_update_stats(struct e1000_adapter *adapter);
+extern bool e1000e_has_link(struct e1000_adapter *adapter);
+extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
+extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
+extern void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
+
+extern unsigned int copybreak;
+
+extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw);
+
+extern struct e1000_info e1000_82571_info;
+extern struct e1000_info e1000_82572_info;
+extern struct e1000_info e1000_82573_info;
+extern struct e1000_info e1000_82574_info;
+extern struct e1000_info e1000_82583_info;
+extern struct e1000_info e1000_ich8_info;
+extern struct e1000_info e1000_ich9_info;
+extern struct e1000_info e1000_ich10_info;
+extern struct e1000_info e1000_pch_info;
+extern struct e1000_info e1000_es2_info;
+
+extern s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num);
+
+extern s32  e1000e_commit_phy(struct e1000_hw *hw);
+
+extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
+
+extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw);
+extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state);
+
+extern void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw);
+extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+						 bool state);
+extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+extern void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw);
+extern s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
+
+extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
+extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
+extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw);
+extern s32 e1000e_setup_led_generic(struct e1000_hw *hw);
+extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw);
+extern s32 e1000e_led_on_generic(struct e1000_hw *hw);
+extern s32 e1000e_led_off_generic(struct e1000_hw *hw);
+extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw);
+extern void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+extern void e1000_set_lan_id_single_port(struct e1000_hw *hw);
+extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw);
+extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw);
+extern s32 e1000e_id_led_init(struct e1000_hw *hw);
+extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw);
+extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw);
+extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
+extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
+extern s32 e1000e_setup_link(struct e1000_hw *hw);
+extern void e1000_clear_vfta_generic(struct e1000_hw *hw);
+extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
+extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
+					       u8 *mc_addr_list,
+					       u32 mc_addr_count);
+extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
+extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
+extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw);
+extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
+extern void e1000e_config_collision_dist(struct e1000_hw *hw);
+extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw);
+extern s32 e1000e_force_mac_fc(struct e1000_hw *hw);
+extern s32 e1000e_blink_led(struct e1000_hw *hw);
+extern void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+extern s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+extern void e1000e_reset_adaptive(struct e1000_hw *hw);
+extern void e1000e_update_adaptive(struct e1000_hw *hw);
+
+extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
+extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
+extern void e1000e_put_hw_semaphore(struct e1000_hw *hw);
+extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
+extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
+extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
+extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
+                                          u16 *data);
+extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
+extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
+                                           u16 data);
+extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
+extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
+extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
+extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
+extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw);
+extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
+extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
+extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
+extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
+                                        u16 data);
+extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
+                                       u16 *data);
+extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+			       u32 usec_interval, bool *success);
+extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
+extern void e1000_power_up_phy_copper(struct e1000_hw *hw);
+extern void e1000_power_down_phy_copper(struct e1000_hw *hw);
+extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_check_downshift(struct e1000_hw *hw);
+extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
+extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
+                                        u16 *data);
+extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
+                                         u16 data);
+extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
+extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
+extern s32 e1000_check_polarity_82577(struct e1000_hw *hw);
+extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
+extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
+extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
+
+extern s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
+extern s32 e1000_check_polarity_ife(struct e1000_hw *hw);
+extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
+extern s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+
+static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	return hw->phy.ops.reset(hw);
+}
+
+static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+	return hw->phy.ops.check_reset_block(hw);
+}
+
+static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return hw->phy.ops.read_reg(hw, offset, data);
+}
+
+static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return hw->phy.ops.write_reg(hw, offset, data);
+}
+
+static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+	return hw->phy.ops.get_cable_length(hw);
+}
+
+extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
+extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
+extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
+extern void e1000e_release_nvm(struct e1000_hw *hw);
+extern void e1000e_reload_nvm(struct e1000_hw *hw);
+extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+
+static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.read_mac_addr)
+		return hw->mac.ops.read_mac_addr(hw);
+
+	return e1000_read_mac_addr_generic(hw);
+}
+
+static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+	return hw->nvm.ops.validate(hw);
+}
+
+static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
+{
+	return hw->nvm.ops.update(hw);
+}
+
+static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	return hw->nvm.ops.read(hw, offset, words, data);
+}
+
+static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	return hw->nvm.ops.write(hw, offset, words, data);
+}
+
+static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+	return hw->phy.ops.get_info(hw);
+}
+
+static inline s32 e1000e_check_mng_mode(struct e1000_hw *hw)
+{
+	return hw->mac.ops.check_mng_mode(hw);
+}
+
+extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw);
+extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
+extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
+
+static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
+{
+	return readl(hw->hw_addr + reg);
+}
+
+static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
+{
+	writel(val, hw->hw_addr + reg);
+}
+
+#endif /* _E1000_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/es2lan-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,1504 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ * 80003ES2LAN Gigabit Ethernet Controller (Copper)
+ * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
+ */
+
+#include "e1000-2.6.35-ethercat.h"
+
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
+
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
+
+#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
+
+#define E1000_KMRNCTRLSTA_OPMODE_MASK		 0x000C
+#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	 0x0004
+
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
+
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
+						/* 1=Reverse Auto-Negotiation */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK		 0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+#define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
+							   1 = 50-80M
+							   2 = 80-110M
+							   3 = 110-140M
+							   4 = >140M */
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define GG82563_MAX_KMRN_RETRY  0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
+					   /* 1=Enable SERDES Electrical Idle */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
+
+/*
+ * A table for the GG82563 cable length where the range is defined
+ * with a lower bound at "index" and the upper bound at
+ * "index + 5".
+ */
+static const u16 e1000_gg82563_cable_length_table[] =
+	 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+#define GG82563_CABLE_LENGTH_TABLE_SIZE \
+		ARRAY_SIZE(e1000_gg82563_cable_length_table)
+
+static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
+static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+                                            u16 *data);
+static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+                                             u16 data);
+static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type	= e1000_phy_none;
+		return 0;
+	} else {
+		phy->ops.power_up = e1000_power_up_phy_copper;
+		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
+	}
+
+	phy->addr		= 1;
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us      = 100;
+	phy->type		= e1000_phy_gg82563;
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000e_get_phy_id(hw);
+
+	/* Verify phy id */
+	if (phy->id != GG82563_E_PHY_ID)
+		return -E1000_ERR_PHY;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u16 size;
+
+	nvm->opcode_bits	= 8;
+	nvm->delay_usec	 = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size    = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size    = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	nvm->type = e1000_nvm_eeprom_spi;
+
+	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+			  E1000_EECD_SIZE_EX_SHIFT);
+
+	/*
+	 * Added to a constant, "size" becomes the left-shift value
+	 * for setting word_size.
+	 */
+	size += NVM_WORD_SIZE_BASE_SHIFT;
+
+	/* EEPROM access above 16k is unsupported */
+	if (size > 14)
+		size = 14;
+	nvm->word_size	= 1 << size;
+
+	return 0;
+}
+
+/**
+ *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_mac_operations *func = &mac->ops;
+
+	/* Set media type */
+	switch (adapter->pdev->device) {
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC supported; valid only if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+	        (er32(FWSM) & E1000_FWSM_MODE_MASK)
+	                ? true : false;
+	/* Adaptive IFS not supported */
+	mac->adaptive_ifs = false;
+
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
+		func->check_for_link = e1000e_check_for_copper_link;
+		break;
+	case e1000_media_type_fiber:
+		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
+		func->check_for_link = e1000e_check_for_fiber_link;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
+		func->check_for_link = e1000e_check_for_serdes_link;
+		break;
+	default:
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* set lan id for port to determine which phy lock to use */
+	hw->mac.ops.set_lan_id(hw);
+
+	return 0;
+}
+
+static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	s32 rc;
+
+	rc = e1000_init_mac_params_80003es2lan(adapter);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_nvm_params_80003es2lan(hw);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_phy_params_80003es2lan(hw);
+	if (rc)
+		return rc;
+
+	return 0;
+}
+
+/**
+ *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to acquire access rights to the correct PHY.
+ **/
+static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_release_phy_80003es2lan - Release rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to release access rights to the correct PHY.
+ **/
+static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the semaphore to access the Kumeran interface.
+ *
+ **/
+static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = E1000_SWFW_CSR_SM;
+
+	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
+ *  @hw: pointer to the HW structure
+ *
+ *  Release the semaphore used to access the Kumeran interface
+ **/
+static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = E1000_SWFW_CSR_SM;
+
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the semaphore to access the EEPROM.
+ **/
+static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_acquire_nvm(hw);
+
+	if (ret_val)
+		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Release the semaphore used to access the EEPROM.
+ **/
+static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	e1000e_release_nvm(hw);
+	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 i = 0;
+	s32 timeout = 50;
+
+	while (i < timeout) {
+		if (e1000e_get_hw_semaphore(hw))
+			return -E1000_ERR_SWFW_SYNC;
+
+		swfw_sync = er32(SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/*
+		 * Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000e_put_hw_semaphore(hw);
+		mdelay(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		return -E1000_ERR_SWFW_SYNC;
+	}
+
+	swfw_sync |= swmask;
+	ew32(SW_FW_SYNC, swfw_sync);
+
+	e1000e_put_hw_semaphore(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	while (e1000e_get_hw_semaphore(hw) != 0);
+	/* Empty */
+
+	swfw_sync = er32(SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	ew32(SW_FW_SYNC, swfw_sync);
+
+	e1000e_put_hw_semaphore(hw);
+}
+
+/**
+ *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: pointer to the data returned from the operation
+ *
+ *  Read the GG82563 PHY register.
+ **/
+static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						  u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
+	if (ret_val) {
+		e1000_release_phy_80003es2lan(hw);
+		return ret_val;
+	}
+
+	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
+		/*
+		 * The "ready" bit in the MDIC register may be incorrectly set
+		 * before the device has completed the "Page Select" MDI
+		 * transaction.  So we wait 200us after each MDI command...
+		 */
+		udelay(200);
+
+		/* ...and verify the command was successful. */
+		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
+
+		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+			ret_val = -E1000_ERR_PHY;
+			e1000_release_phy_80003es2lan(hw);
+			return ret_val;
+		}
+
+		udelay(200);
+
+		ret_val = e1000e_read_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+
+		udelay(200);
+	} else {
+		ret_val = e1000e_read_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+	}
+
+	e1000_release_phy_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: value to write to the register
+ *
+ *  Write to the GG82563 PHY register.
+ **/
+static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						   u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
+	if (ret_val) {
+		e1000_release_phy_80003es2lan(hw);
+		return ret_val;
+	}
+
+	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
+		/*
+		 * The "ready" bit in the MDIC register may be incorrectly set
+		 * before the device has completed the "Page Select" MDI
+		 * transaction.  So we wait 200us after each MDI command...
+		 */
+		udelay(200);
+
+		/* ...and verify the command was successful. */
+		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
+
+		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+			e1000_release_phy_80003es2lan(hw);
+			return -E1000_ERR_PHY;
+		}
+
+		udelay(200);
+
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+
+		udelay(200);
+	} else {
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+	}
+
+	e1000_release_phy_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @words: number of words to write
+ *  @data: buffer of data to write to the NVM
+ *
+ *  Write "words" of data to the ESB2 NVM.
+ **/
+static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+				       u16 words, u16 *data)
+{
+	return e1000e_write_nvm_spi(hw, offset, words, data);
+}
+
+/**
+ *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ *  @hw: pointer to the HW structure
+ *
+ *  Wait a specific amount of time for manageability processes to complete.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+	if (hw->bus.func == 1)
+		mask = E1000_NVM_CFG_DONE_PORT_1;
+
+	while (timeout) {
+		if (er32(EEMNGCTL) & mask)
+			break;
+		msleep(1);
+		timeout--;
+	}
+	if (!timeout) {
+		e_dbg("MNG configuration cycle has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the speed and duplex settings onto the PHY.  This is a
+ *  function pointer entry point called by the phy module.
+ **/
+static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("GG82563 PSCR: %X\n", phy_data);
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	/* Reset the phy to commit changes. */
+	phy_data |= MII_CR_RESET;
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	if (hw->phy.autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link "
+			 "on GG82563 phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link) {
+			/*
+			 * We didn't get link.
+			 * Reset the DSP and cross our fingers.
+			 */
+			ret_val = e1000e_phy_reset_dsp(hw);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Resetting the phy means we need to verify the TX_CLK corresponds
+	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
+	 */
+	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+	else
+		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_80003es2lan - Set approximate cable length
+ *  @hw: pointer to the HW structure
+ *
+ *  Find the approximate cable length as measured by the GG82563 PHY.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = 0;
+	u16 phy_data, index;
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+
+	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to speed buffer
+ *  @duplex: pointer to duplex buffer
+ *
+ *  Retrieve the current speed and duplex configuration.
+ **/
+static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+					      u16 *duplex)
+{
+	s32 ret_val;
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		ret_val = e1000e_get_speed_and_duplex_copper(hw,
+								    speed,
+								    duplex);
+		hw->phy.ops.cfg_on_link_up(hw);
+	} else {
+		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
+								  speed,
+								  duplex);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Perform a global reset to the ESB2 controller.
+ **/
+static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl, icr;
+	s32 ret_val;
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000e_disable_pcie_master(hw);
+	if (ret_val)
+		e_dbg("PCI-E Master disable polling has failed.\n");
+
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	e1e_flush();
+
+	msleep(10);
+
+	ctrl = er32(CTRL);
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	e_dbg("Issuing a global reset to MAC\n");
+	ew32(CTRL, ctrl | E1000_CTRL_RST);
+	e1000_release_phy_80003es2lan(hw);
+
+	ret_val = e1000e_get_auto_rd_done(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		return ret_val;
+
+	/* Clear any pending interrupt events. */
+	ew32(IMC, 0xffffffff);
+	icr = er32(ICR);
+
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ **/
+static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i;
+
+	e1000_initialize_hw_bits_80003es2lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000e_id_led_init(hw);
+	if (ret_val)
+		e_dbg("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+
+	/* Disabling VLAN filtering */
+	e_dbg("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000e_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = er32(TXDCTL(0));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	ew32(TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	reg_data = er32(TXDCTL(1));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	ew32(TXDCTL(1), reg_data);
+
+	/* Enable retransmit on late collisions */
+	reg_data = er32(TCTL);
+	reg_data |= E1000_TCTL_RTLC;
+	ew32(TCTL, reg_data);
+
+	/* Configure Gigabit Carry Extend Padding */
+	reg_data = er32(TCTL_EXT);
+	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+	ew32(TCTL_EXT, reg_data);
+
+	/* Configure Transmit Inter-Packet Gap */
+	reg_data = er32(TIPG);
+	reg_data &= ~E1000_TIPG_IPGT_MASK;
+	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	ew32(TIPG, reg_data);
+
+	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+	reg_data &= ~0x00100000;
+	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+	/* default to true to enable the MDIC W/A */
+	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
+
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+	                              E1000_KMRNCTRLSTA_OFFSET >>
+	                              E1000_KMRNCTRLSTA_OFFSET_SHIFT,
+	                              &i);
+	if (!ret_val) {
+		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
+		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
+			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
+	}
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	/* Transmit Descriptor Control 0 */
+	reg = er32(TXDCTL(0));
+	reg |= (1 << 22);
+	ew32(TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = er32(TXDCTL(1));
+	reg |= (1 << 22);
+	ew32(TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = er32(TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	if (hw->phy.media_type != e1000_media_type_copper)
+		reg &= ~(1 << 20);
+	ew32(TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = er32(TARC(1));
+	if (er32(TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	ew32(TARC(1), reg);
+}
+
+/**
+ *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ *  @hw: pointer to the HW structure
+ *
+ *  Setup some GG82563 PHY registers for obtaining link
+ **/
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 ctrl_ext;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+	switch (phy->mdix) {
+	case 1:
+		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+		break;
+	case 2:
+		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+		break;
+	case 0:
+	default:
+		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+		break;
+	}
+
+	/*
+	 * Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+	if (phy->disable_polarity_correction)
+		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000e_commit_phy(hw);
+	if (ret_val) {
+		e_dbg("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Bypass Rx and Tx FIFO's */
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
+					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+				       &data);
+	if (ret_val)
+		return ret_val;
+	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+					data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
+	if (ret_val)
+		return ret_val;
+
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+	ew32(CTRL_EXT, ctrl_ext);
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Do not init these registers when the HW is in IAMT mode, since the
+	 * firmware will have already initialized them.  We only initialize
+	 * them if the HW is not in IAMT mode.
+	 */
+	if (!e1000e_check_mng_mode(hw)) {
+		/* Enable Electrical Idle on the PHY */
+		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/*
+	 * Workaround: Disable padding in Kumeran interface in the MAC
+	 * and in the PHY to avoid CRC errors.
+	 */
+	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= GG82563_ICR_DIS_PADDING;
+	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	return 0;
+}
+
+/**
+ *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Essentially a wrapper for setting up all things "copper" related.
+ *  This is a function pointer entry point called by the mac module.
+ **/
+static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ew32(CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each
+	 * iteration and increase the max iterations when
+	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
+	                                           0xFFFF);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+	                                          &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+	                                           reg_data);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+				      &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+					reg_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_setup_copper_link(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
+ *  @hw: pointer to the HW structure
+ *  @duplex: current duplex setting
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  10/100 operation.
+ **/
+static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 speed;
+	u16 duplex;
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
+		                                             &duplex);
+		if (ret_val)
+			return ret_val;
+
+		if (speed == SPEED_1000)
+			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+		else
+			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ *  @hw: pointer to the HW structure
+ *  @duplex: current duplex setting
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  10/100 operation.
+ **/
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+	s32 ret_val;
+	u32 tipg;
+	u32 i = 0;
+	u16 reg_data, reg_data2;
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	                               reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = er32(TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+	ew32(TIPG, tipg);
+
+	do {
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
+		if (ret_val)
+			return ret_val;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	if (duplex == HALF_DUPLEX)
+		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+	else
+		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+	return 0;
+}
+
+/**
+ *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  gigabit operation.
+ **/
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 reg_data, reg_data2;
+	u32 tipg;
+	u32 i = 0;
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	                               reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = er32(TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	ew32(TIPG, tipg);
+
+	do {
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
+		if (ret_val)
+			return ret_val;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquire semaphore, then read the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release the semaphore before exiting.
+ **/
+static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					   u16 *data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	kmrnctrlsta = er32(KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	e1000_release_mac_csr_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquire semaphore, then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release semaphore
+ *  before exiting.
+ **/
+static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					    u16 data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	               E1000_KMRNCTRLSTA_OFFSET) | data;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	e1000_release_mac_csr_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_mac_addr_80003es2lan - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	/*
+	 * If there's an alternate MAC address place it in RAR0
+	 * so that it will override the Si installed default perm
+	 * address.
+	 */
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(hw->mac.ops.check_mng_mode(hw) ||
+	      hw->phy.ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+}
+
+/**
+ *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+	e1000e_clear_hw_cntrs_base(hw);
+
+	er32(PRC64);
+	er32(PRC127);
+	er32(PRC255);
+	er32(PRC511);
+	er32(PRC1023);
+	er32(PRC1522);
+	er32(PTC64);
+	er32(PTC127);
+	er32(PTC255);
+	er32(PTC511);
+	er32(PTC1023);
+	er32(PTC1522);
+
+	er32(ALGNERRC);
+	er32(RXERRC);
+	er32(TNCRS);
+	er32(CEXTERR);
+	er32(TSCTC);
+	er32(TSCTFC);
+
+	er32(MGTPRC);
+	er32(MGTPDC);
+	er32(MGTPTC);
+
+	er32(IAC);
+	er32(ICRXOC);
+
+	er32(ICRXPTC);
+	er32(ICRXATC);
+	er32(ICTXPTC);
+	er32(ICTXATC);
+	er32(ICTXQEC);
+	er32(ICTXQMTC);
+	er32(ICRXDMTC);
+}
+
+static struct e1000_mac_operations es2_mac_ops = {
+	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
+	.id_led_init		= e1000e_id_led_init,
+	.check_mng_mode		= e1000e_check_mng_mode_generic,
+	/* check_for_link dependent on media type */
+	.cleanup_led		= e1000e_cleanup_led_generic,
+	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
+	.get_bus_info		= e1000e_get_bus_info_pcie,
+	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
+	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
+	.led_on			= e1000e_led_on_generic,
+	.led_off		= e1000e_led_off_generic,
+	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
+	.write_vfta		= e1000_write_vfta_generic,
+	.clear_vfta		= e1000_clear_vfta_generic,
+	.reset_hw		= e1000_reset_hw_80003es2lan,
+	.init_hw		= e1000_init_hw_80003es2lan,
+	.setup_link		= e1000e_setup_link,
+	/* setup_physical_interface dependent on media type */
+	.setup_led		= e1000e_setup_led_generic,
+};
+
+static struct e1000_phy_operations es2_phy_ops = {
+	.acquire		= e1000_acquire_phy_80003es2lan,
+	.check_polarity		= e1000_check_polarity_m88,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit		 	= e1000e_phy_sw_reset,
+	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
+	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
+	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
+	.get_info       	= e1000e_get_phy_info_m88,
+	.read_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
+	.release		= e1000_release_phy_80003es2lan,
+	.reset		  	= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state  	= NULL,
+	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
+	.write_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
+	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
+};
+
+static struct e1000_nvm_operations es2_nvm_ops = {
+	.acquire		= e1000_acquire_nvm_80003es2lan,
+	.read			= e1000e_read_nvm_eerd,
+	.release		= e1000_release_nvm_80003es2lan,
+	.update			= e1000e_update_nvm_checksum_generic,
+	.valid_led_default	= e1000e_valid_led_default,
+	.validate		= e1000e_validate_nvm_checksum_generic,
+	.write			= e1000_write_nvm_80003es2lan,
+};
+
+struct e1000_info e1000_es2_info = {
+	.mac			= e1000_80003es2lan,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_RX_NEEDS_RESTART /* errata */
+				  | FLAG_TARC_SET_BIT_ZERO /* errata */
+				  | FLAG_APME_CHECK_PORT_B
+				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
+				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
+	.pba			= 38,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_80003es2lan,
+	.mac_ops		= &es2_mac_ops,
+	.phy_ops		= &es2_phy_ops,
+	.nvm_ops		= &es2_nvm_ops,
+};
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/es2lan-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,1504 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ * 80003ES2LAN Gigabit Ethernet Controller (Copper)
+ * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
+ */
+
+#include "e1000.h"
+
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
+
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
+
+#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
+
+#define E1000_KMRNCTRLSTA_OPMODE_MASK		 0x000C
+#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	 0x0004
+
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
+
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
+						/* 1=Reverse Auto-Negotiation */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK		 0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+#define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
+							   1 = 50-80M
+							   2 = 80-110M
+							   3 = 110-140M
+							   4 = >140M */
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define GG82563_MAX_KMRN_RETRY  0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
+					   /* 1=Enable SERDES Electrical Idle */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
+
+/*
+ * A table for the GG82563 cable length where the range is defined
+ * with a lower bound at "index" and the upper bound at
+ * "index + 5".
+ */
+static const u16 e1000_gg82563_cable_length_table[] =
+	 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+#define GG82563_CABLE_LENGTH_TABLE_SIZE \
+		ARRAY_SIZE(e1000_gg82563_cable_length_table)
+
+static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
+static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+                                            u16 *data);
+static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+                                             u16 data);
+static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type	= e1000_phy_none;
+		return 0;
+	} else {
+		phy->ops.power_up = e1000_power_up_phy_copper;
+		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
+	}
+
+	phy->addr		= 1;
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us      = 100;
+	phy->type		= e1000_phy_gg82563;
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000e_get_phy_id(hw);
+
+	/* Verify phy id */
+	if (phy->id != GG82563_E_PHY_ID)
+		return -E1000_ERR_PHY;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u16 size;
+
+	nvm->opcode_bits	= 8;
+	nvm->delay_usec	 = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size    = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size    = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	nvm->type = e1000_nvm_eeprom_spi;
+
+	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+			  E1000_EECD_SIZE_EX_SHIFT);
+
+	/*
+	 * Added to a constant, "size" becomes the left-shift value
+	 * for setting word_size.
+	 */
+	size += NVM_WORD_SIZE_BASE_SHIFT;
+
+	/* EEPROM access above 16k is unsupported */
+	if (size > 14)
+		size = 14;
+	nvm->word_size	= 1 << size;
+
+	return 0;
+}
+
+/**
+ *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_mac_operations *func = &mac->ops;
+
+	/* Set media type */
+	switch (adapter->pdev->device) {
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC supported; valid only if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+	        (er32(FWSM) & E1000_FWSM_MODE_MASK)
+	                ? true : false;
+	/* Adaptive IFS not supported */
+	mac->adaptive_ifs = false;
+
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
+		func->check_for_link = e1000e_check_for_copper_link;
+		break;
+	case e1000_media_type_fiber:
+		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
+		func->check_for_link = e1000e_check_for_fiber_link;
+		break;
+	case e1000_media_type_internal_serdes:
+		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
+		func->check_for_link = e1000e_check_for_serdes_link;
+		break;
+	default:
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* set lan id for port to determine which phy lock to use */
+	hw->mac.ops.set_lan_id(hw);
+
+	return 0;
+}
+
+static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	s32 rc;
+
+	rc = e1000_init_mac_params_80003es2lan(adapter);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_nvm_params_80003es2lan(hw);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_phy_params_80003es2lan(hw);
+	if (rc)
+		return rc;
+
+	return 0;
+}
+
+/**
+ *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to acquire access rights to the correct PHY.
+ **/
+static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_release_phy_80003es2lan - Release rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to release access rights to the correct PHY.
+ **/
+static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the semaphore to access the Kumeran interface.
+ *
+ **/
+static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = E1000_SWFW_CSR_SM;
+
+	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
+ *  @hw: pointer to the HW structure
+ *
+ *  Release the semaphore used to access the Kumeran interface
+ **/
+static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	mask = E1000_SWFW_CSR_SM;
+
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the semaphore to access the EEPROM.
+ **/
+static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_acquire_nvm(hw);
+
+	if (ret_val)
+		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Release the semaphore used to access the EEPROM.
+ **/
+static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	e1000e_release_nvm(hw);
+	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 i = 0;
+	s32 timeout = 50;
+
+	while (i < timeout) {
+		if (e1000e_get_hw_semaphore(hw))
+			return -E1000_ERR_SWFW_SYNC;
+
+		swfw_sync = er32(SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/*
+		 * Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000e_put_hw_semaphore(hw);
+		mdelay(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		return -E1000_ERR_SWFW_SYNC;
+	}
+
+	swfw_sync |= swmask;
+	ew32(SW_FW_SYNC, swfw_sync);
+
+	e1000e_put_hw_semaphore(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	while (e1000e_get_hw_semaphore(hw) != 0);
+	/* Empty */
+
+	swfw_sync = er32(SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	ew32(SW_FW_SYNC, swfw_sync);
+
+	e1000e_put_hw_semaphore(hw);
+}
+
+/**
+ *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: pointer to the data returned from the operation
+ *
+ *  Read the GG82563 PHY register.
+ **/
+static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						  u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
+	if (ret_val) {
+		e1000_release_phy_80003es2lan(hw);
+		return ret_val;
+	}
+
+	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
+		/*
+		 * The "ready" bit in the MDIC register may be incorrectly set
+		 * before the device has completed the "Page Select" MDI
+		 * transaction.  So we wait 200us after each MDI command...
+		 */
+		udelay(200);
+
+		/* ...and verify the command was successful. */
+		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
+
+		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+			ret_val = -E1000_ERR_PHY;
+			e1000_release_phy_80003es2lan(hw);
+			return ret_val;
+		}
+
+		udelay(200);
+
+		ret_val = e1000e_read_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+
+		udelay(200);
+	} else {
+		ret_val = e1000e_read_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+	}
+
+	e1000_release_phy_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: value to write to the register
+ *
+ *  Write to the GG82563 PHY register.
+ **/
+static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						   u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/*
+		 * Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
+	if (ret_val) {
+		e1000_release_phy_80003es2lan(hw);
+		return ret_val;
+	}
+
+	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
+		/*
+		 * The "ready" bit in the MDIC register may be incorrectly set
+		 * before the device has completed the "Page Select" MDI
+		 * transaction.  So we wait 200us after each MDI command...
+		 */
+		udelay(200);
+
+		/* ...and verify the command was successful. */
+		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
+
+		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+			e1000_release_phy_80003es2lan(hw);
+			return -E1000_ERR_PHY;
+		}
+
+		udelay(200);
+
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+
+		udelay(200);
+	} else {
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+		                                  MAX_PHY_REG_ADDRESS & offset,
+		                                  data);
+	}
+
+	e1000_release_phy_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @words: number of words to write
+ *  @data: buffer of data to write to the NVM
+ *
+ *  Write "words" of data to the ESB2 NVM.
+ **/
+static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+				       u16 words, u16 *data)
+{
+	return e1000e_write_nvm_spi(hw, offset, words, data);
+}
+
+/**
+ *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ *  @hw: pointer to the HW structure
+ *
+ *  Wait a specific amount of time for manageability processes to complete.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+	if (hw->bus.func == 1)
+		mask = E1000_NVM_CFG_DONE_PORT_1;
+
+	while (timeout) {
+		if (er32(EEMNGCTL) & mask)
+			break;
+		msleep(1);
+		timeout--;
+	}
+	if (!timeout) {
+		e_dbg("MNG configuration cycle has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the speed and duplex settings onto the PHY.  This is a
+ *  function pointer entry point called by the phy module.
+ **/
+static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("GG82563 PSCR: %X\n", phy_data);
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	/* Reset the phy to commit changes. */
+	phy_data |= MII_CR_RESET;
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	if (hw->phy.autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link "
+			 "on GG82563 phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link) {
+			/*
+			 * We didn't get link.
+			 * Reset the DSP and cross our fingers.
+			 */
+			ret_val = e1000e_phy_reset_dsp(hw);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Resetting the phy means we need to verify the TX_CLK corresponds
+	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
+	 */
+	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+	else
+		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_80003es2lan - Set approximate cable length
+ *  @hw: pointer to the HW structure
+ *
+ *  Find the approximate cable length as measured by the GG82563 PHY.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = 0;
+	u16 phy_data, index;
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+
+	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to speed buffer
+ *  @duplex: pointer to duplex buffer
+ *
+ *  Retrieve the current speed and duplex configuration.
+ **/
+static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+					      u16 *duplex)
+{
+	s32 ret_val;
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		ret_val = e1000e_get_speed_and_duplex_copper(hw,
+								    speed,
+								    duplex);
+		hw->phy.ops.cfg_on_link_up(hw);
+	} else {
+		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
+								  speed,
+								  duplex);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Perform a global reset to the ESB2 controller.
+ **/
+static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl, icr;
+	s32 ret_val;
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000e_disable_pcie_master(hw);
+	if (ret_val)
+		e_dbg("PCI-E Master disable polling has failed.\n");
+
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	e1e_flush();
+
+	msleep(10);
+
+	ctrl = er32(CTRL);
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	e_dbg("Issuing a global reset to MAC\n");
+	ew32(CTRL, ctrl | E1000_CTRL_RST);
+	e1000_release_phy_80003es2lan(hw);
+
+	ret_val = e1000e_get_auto_rd_done(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		return ret_val;
+
+	/* Clear any pending interrupt events. */
+	ew32(IMC, 0xffffffff);
+	icr = er32(ICR);
+
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ **/
+static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i;
+
+	e1000_initialize_hw_bits_80003es2lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = e1000e_id_led_init(hw);
+	if (ret_val)
+		e_dbg("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+
+	/* Disabling VLAN filtering */
+	e_dbg("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = e1000e_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = er32(TXDCTL(0));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	ew32(TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	reg_data = er32(TXDCTL(1));
+	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+	ew32(TXDCTL(1), reg_data);
+
+	/* Enable retransmit on late collisions */
+	reg_data = er32(TCTL);
+	reg_data |= E1000_TCTL_RTLC;
+	ew32(TCTL, reg_data);
+
+	/* Configure Gigabit Carry Extend Padding */
+	reg_data = er32(TCTL_EXT);
+	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+	ew32(TCTL_EXT, reg_data);
+
+	/* Configure Transmit Inter-Packet Gap */
+	reg_data = er32(TIPG);
+	reg_data &= ~E1000_TIPG_IPGT_MASK;
+	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	ew32(TIPG, reg_data);
+
+	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+	reg_data &= ~0x00100000;
+	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+	/* default to true to enable the MDIC W/A */
+	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
+
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+	                              E1000_KMRNCTRLSTA_OFFSET >>
+	                              E1000_KMRNCTRLSTA_OFFSET_SHIFT,
+	                              &i);
+	if (!ret_val) {
+		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
+		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
+			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
+	}
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	/* Transmit Descriptor Control 0 */
+	reg = er32(TXDCTL(0));
+	reg |= (1 << 22);
+	ew32(TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = er32(TXDCTL(1));
+	reg |= (1 << 22);
+	ew32(TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = er32(TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	if (hw->phy.media_type != e1000_media_type_copper)
+		reg &= ~(1 << 20);
+	ew32(TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = er32(TARC(1));
+	if (er32(TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	ew32(TARC(1), reg);
+}
+
+/**
+ *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ *  @hw: pointer to the HW structure
+ *
+ *  Setup some GG82563 PHY registers for obtaining link
+ **/
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 ctrl_ext;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+	switch (phy->mdix) {
+	case 1:
+		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+		break;
+	case 2:
+		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+		break;
+	case 0:
+	default:
+		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+		break;
+	}
+
+	/*
+	 * Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+	if (phy->disable_polarity_correction)
+		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000e_commit_phy(hw);
+	if (ret_val) {
+		e_dbg("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Bypass Rx and Tx FIFO's */
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
+					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+				       &data);
+	if (ret_val)
+		return ret_val;
+	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+					data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
+	if (ret_val)
+		return ret_val;
+
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+	ew32(CTRL_EXT, ctrl_ext);
+
+	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Do not init these registers when the HW is in IAMT mode, since the
+	 * firmware will have already initialized them.  We only initialize
+	 * them if the HW is not in IAMT mode.
+	 */
+	if (!e1000e_check_mng_mode(hw)) {
+		/* Enable Electrical Idle on the PHY */
+		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/*
+	 * Workaround: Disable padding in Kumeran interface in the MAC
+	 * and in the PHY to avoid CRC errors.
+	 */
+	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= GG82563_ICR_DIS_PADDING;
+	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	return 0;
+}
+
+/**
+ *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Essentially a wrapper for setting up all things "copper" related.
+ *  This is a function pointer entry point called by the mac module.
+ **/
+static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ew32(CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each
+	 * iteration and increase the max iterations when
+	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
+	                                           0xFFFF);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+	                                          &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+	                                           reg_data);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+				      &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+					reg_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_setup_copper_link(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
+ *  @hw: pointer to the HW structure
+ *  @duplex: current duplex setting
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  10/100 operation.
+ **/
+static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 speed;
+	u16 duplex;
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
+		                                             &duplex);
+		if (ret_val)
+			return ret_val;
+
+		if (speed == SPEED_1000)
+			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+		else
+			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ *  @hw: pointer to the HW structure
+ *  @duplex: current duplex setting
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  10/100 operation.
+ **/
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+	s32 ret_val;
+	u32 tipg;
+	u32 i = 0;
+	u16 reg_data, reg_data2;
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	                               reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = er32(TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+	ew32(TIPG, tipg);
+
+	do {
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
+		if (ret_val)
+			return ret_val;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	if (duplex == HALF_DUPLEX)
+		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+	else
+		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+	return 0;
+}
+
+/**
+ *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  gigabit operation.
+ **/
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 reg_data, reg_data2;
+	u32 tipg;
+	u32 i = 0;
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+	                               reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = er32(TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	ew32(TIPG, tipg);
+
+	do {
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
+		if (ret_val)
+			return ret_val;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquire semaphore, then read the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release the semaphore before exiting.
+ **/
+static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					   u16 *data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	kmrnctrlsta = er32(KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	e1000_release_mac_csr_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquire semaphore, then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release semaphore
+ *  before exiting.
+ **/
+static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					    u16 data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+	               E1000_KMRNCTRLSTA_OFFSET) | data;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	e1000_release_mac_csr_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_mac_addr_80003es2lan - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	/*
+	 * If there's an alternate MAC address place it in RAR0
+	 * so that it will override the Si installed default perm
+	 * address.
+	 */
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(hw->mac.ops.check_mng_mode(hw) ||
+	      hw->phy.ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+}
+
+/**
+ *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+	e1000e_clear_hw_cntrs_base(hw);
+
+	er32(PRC64);
+	er32(PRC127);
+	er32(PRC255);
+	er32(PRC511);
+	er32(PRC1023);
+	er32(PRC1522);
+	er32(PTC64);
+	er32(PTC127);
+	er32(PTC255);
+	er32(PTC511);
+	er32(PTC1023);
+	er32(PTC1522);
+
+	er32(ALGNERRC);
+	er32(RXERRC);
+	er32(TNCRS);
+	er32(CEXTERR);
+	er32(TSCTC);
+	er32(TSCTFC);
+
+	er32(MGTPRC);
+	er32(MGTPDC);
+	er32(MGTPTC);
+
+	er32(IAC);
+	er32(ICRXOC);
+
+	er32(ICRXPTC);
+	er32(ICRXATC);
+	er32(ICTXPTC);
+	er32(ICTXATC);
+	er32(ICTXQEC);
+	er32(ICTXQMTC);
+	er32(ICRXDMTC);
+}
+
+static struct e1000_mac_operations es2_mac_ops = {
+	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
+	.id_led_init		= e1000e_id_led_init,
+	.check_mng_mode		= e1000e_check_mng_mode_generic,
+	/* check_for_link dependent on media type */
+	.cleanup_led		= e1000e_cleanup_led_generic,
+	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
+	.get_bus_info		= e1000e_get_bus_info_pcie,
+	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
+	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
+	.led_on			= e1000e_led_on_generic,
+	.led_off		= e1000e_led_off_generic,
+	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
+	.write_vfta		= e1000_write_vfta_generic,
+	.clear_vfta		= e1000_clear_vfta_generic,
+	.reset_hw		= e1000_reset_hw_80003es2lan,
+	.init_hw		= e1000_init_hw_80003es2lan,
+	.setup_link		= e1000e_setup_link,
+	/* setup_physical_interface dependent on media type */
+	.setup_led		= e1000e_setup_led_generic,
+};
+
+static struct e1000_phy_operations es2_phy_ops = {
+	.acquire		= e1000_acquire_phy_80003es2lan,
+	.check_polarity		= e1000_check_polarity_m88,
+	.check_reset_block	= e1000e_check_reset_block_generic,
+	.commit		 	= e1000e_phy_sw_reset,
+	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
+	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
+	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
+	.get_info       	= e1000e_get_phy_info_m88,
+	.read_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
+	.release		= e1000_release_phy_80003es2lan,
+	.reset		  	= e1000e_phy_hw_reset_generic,
+	.set_d0_lplu_state  	= NULL,
+	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
+	.write_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
+	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
+};
+
+static struct e1000_nvm_operations es2_nvm_ops = {
+	.acquire		= e1000_acquire_nvm_80003es2lan,
+	.read			= e1000e_read_nvm_eerd,
+	.release		= e1000_release_nvm_80003es2lan,
+	.update			= e1000e_update_nvm_checksum_generic,
+	.valid_led_default	= e1000e_valid_led_default,
+	.validate		= e1000e_validate_nvm_checksum_generic,
+	.write			= e1000_write_nvm_80003es2lan,
+};
+
+struct e1000_info e1000_es2_info = {
+	.mac			= e1000_80003es2lan,
+	.flags			= FLAG_HAS_HW_VLAN_FILTER
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_HAS_WOL
+				  | FLAG_APME_IN_CTRL3
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_RX_NEEDS_RESTART /* errata */
+				  | FLAG_TARC_SET_BIT_ZERO /* errata */
+				  | FLAG_APME_CHECK_PORT_B
+				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
+				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
+	.pba			= 38,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_80003es2lan,
+	.mac_ops		= &es2_mac_ops,
+	.phy_ops		= &es2_phy_ops,
+	.nvm_ops		= &es2_nvm_ops,
+};
+
--- a/devices/e1000e/es2lan-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000e/es2lan-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -784,7 +784,7 @@
  **/
 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 {
-	u32 ctrl, icr;
+	u32 ctrl, icr __attribute__ ((unused));
 	s32 ret_val;
 
 	/*
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/ethtool-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,2056 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include <linux/netdevice.h>
+#include <linux/ethtool.h>
+#include <linux/pci.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+
+#include "e1000-2.6.35-ethercat.h"
+
+enum {NETDEV_STATS, E1000_STATS};
+
+struct e1000_stats {
+	char stat_string[ETH_GSTRING_LEN];
+	int type;
+	int sizeof_stat;
+	int stat_offset;
+};
+
+#define E1000_STAT(m)		E1000_STATS, \
+				sizeof(((struct e1000_adapter *)0)->m), \
+		      		offsetof(struct e1000_adapter, m)
+#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
+				sizeof(((struct net_device *)0)->m), \
+				offsetof(struct net_device, m)
+
+static const struct e1000_stats e1000_gstrings_stats[] = {
+	{ "rx_packets", E1000_STAT(stats.gprc) },
+	{ "tx_packets", E1000_STAT(stats.gptc) },
+	{ "rx_bytes", E1000_STAT(stats.gorc) },
+	{ "tx_bytes", E1000_STAT(stats.gotc) },
+	{ "rx_broadcast", E1000_STAT(stats.bprc) },
+	{ "tx_broadcast", E1000_STAT(stats.bptc) },
+	{ "rx_multicast", E1000_STAT(stats.mprc) },
+	{ "tx_multicast", E1000_STAT(stats.mptc) },
+	{ "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
+	{ "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
+	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
+	{ "multicast", E1000_STAT(stats.mprc) },
+	{ "collisions", E1000_STAT(stats.colc) },
+	{ "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
+	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
+	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
+	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
+	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
+	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
+	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
+	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
+	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
+	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
+	{ "tx_window_errors", E1000_STAT(stats.latecol) },
+	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
+	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
+	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
+	{ "tx_restart_queue", E1000_STAT(restart_queue) },
+	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
+	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
+	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
+	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+	{ "rx_long_byte_count", E1000_STAT(stats.gorc) },
+	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
+	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
+	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
+	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
+	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
+	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
+};
+
+#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
+#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Register test  (offline)", "Eeprom test    (offline)",
+	"Interrupt test (offline)", "Loopback test  (offline)",
+	"Link test   (on/offline)"
+};
+#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
+
+static int e1000_get_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 status;
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+
+		ecmd->supported = (SUPPORTED_10baseT_Half |
+				   SUPPORTED_10baseT_Full |
+				   SUPPORTED_100baseT_Half |
+				   SUPPORTED_100baseT_Full |
+				   SUPPORTED_1000baseT_Full |
+				   SUPPORTED_Autoneg |
+				   SUPPORTED_TP);
+		if (hw->phy.type == e1000_phy_ife)
+			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
+		ecmd->advertising = ADVERTISED_TP;
+
+		if (hw->mac.autoneg == 1) {
+			ecmd->advertising |= ADVERTISED_Autoneg;
+			/* the e1000 autoneg seems to match ethtool nicely */
+			ecmd->advertising |= hw->phy.autoneg_advertised;
+		}
+
+		ecmd->port = PORT_TP;
+		ecmd->phy_address = hw->phy.addr;
+		ecmd->transceiver = XCVR_INTERNAL;
+
+	} else {
+		ecmd->supported   = (SUPPORTED_1000baseT_Full |
+				     SUPPORTED_FIBRE |
+				     SUPPORTED_Autoneg);
+
+		ecmd->advertising = (ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg);
+
+		ecmd->port = PORT_FIBRE;
+		ecmd->transceiver = XCVR_EXTERNAL;
+	}
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU) {
+		if (status & E1000_STATUS_SPEED_1000)
+			ecmd->speed = 1000;
+		else if (status & E1000_STATUS_SPEED_100)
+			ecmd->speed = 100;
+		else
+			ecmd->speed = 10;
+
+		if (status & E1000_STATUS_FD)
+			ecmd->duplex = DUPLEX_FULL;
+		else
+			ecmd->duplex = DUPLEX_HALF;
+	} else {
+		ecmd->speed = -1;
+		ecmd->duplex = -1;
+	}
+
+	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
+			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+
+	/* MDI-X => 2; MDI =>1; Invalid =>0 */
+	if ((hw->phy.media_type == e1000_media_type_copper) &&
+	    !hw->mac.get_link_status)
+		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
+		                                      ETH_TP_MDI;
+	else
+		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
+
+	return 0;
+}
+
+static u32 e1000_get_link(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+
+	/*
+	 * If the link is not reported up to netdev, interrupts are disabled,
+	 * and so the physical link state may have changed since we last
+	 * looked. Set get_link_status to make sure that the true link
+	 * state is interrogated, rather than pulling a cached and possibly
+	 * stale link state from the driver.
+	 */
+	if (!netif_carrier_ok(netdev))
+		mac->get_link_status = 1;
+
+	return e1000e_has_link(adapter);
+}
+
+static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
+{
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+
+	mac->autoneg = 0;
+
+	/* Fiber NICs only allow 1000 gbps Full duplex */
+	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
+		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+
+	switch (spddplx) {
+	case SPEED_10 + DUPLEX_HALF:
+		mac->forced_speed_duplex = ADVERTISE_10_HALF;
+		break;
+	case SPEED_10 + DUPLEX_FULL:
+		mac->forced_speed_duplex = ADVERTISE_10_FULL;
+		break;
+	case SPEED_100 + DUPLEX_HALF:
+		mac->forced_speed_duplex = ADVERTISE_100_HALF;
+		break;
+	case SPEED_100 + DUPLEX_FULL:
+		mac->forced_speed_duplex = ADVERTISE_100_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_FULL:
+		mac->autoneg = 1;
+		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_HALF: /* not supported */
+	default:
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+static int e1000_set_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	/*
+	 * When SoL/IDER sessions are active, autoneg/speed/duplex
+	 * cannot be changed
+	 */
+	if (e1000_check_reset_block(hw)) {
+		e_err("Cannot change link characteristics when SoL/IDER is "
+		      "active.\n");
+		return -EINVAL;
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+
+	if (ecmd->autoneg == AUTONEG_ENABLE) {
+		hw->mac.autoneg = 1;
+		if (hw->phy.media_type == e1000_media_type_fiber)
+			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
+						     ADVERTISED_FIBRE |
+						     ADVERTISED_Autoneg;
+		else
+			hw->phy.autoneg_advertised = ecmd->advertising |
+						     ADVERTISED_TP |
+						     ADVERTISED_Autoneg;
+		ecmd->advertising = hw->phy.autoneg_advertised;
+		if (adapter->fc_autoneg)
+			hw->fc.requested_mode = e1000_fc_default;
+	} else {
+		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
+			clear_bit(__E1000_RESETTING, &adapter->state);
+			return -EINVAL;
+		}
+	}
+
+	/* reset the link */
+
+	if (netif_running(adapter->netdev)) {
+		e1000e_down(adapter);
+		e1000e_up(adapter);
+	} else {
+		e1000e_reset(adapter);
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return 0;
+}
+
+static void e1000_get_pauseparam(struct net_device *netdev,
+				 struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	pause->autoneg =
+		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+	if (hw->fc.current_mode == e1000_fc_rx_pause) {
+		pause->rx_pause = 1;
+	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
+		pause->tx_pause = 1;
+	} else if (hw->fc.current_mode == e1000_fc_full) {
+		pause->rx_pause = 1;
+		pause->tx_pause = 1;
+	}
+}
+
+static int e1000_set_pauseparam(struct net_device *netdev,
+				struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 0;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	adapter->fc_autoneg = pause->autoneg;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+
+	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+		hw->fc.requested_mode = e1000_fc_default;
+		if (netif_running(adapter->netdev)) {
+			e1000e_down(adapter);
+			e1000e_up(adapter);
+		} else {
+			e1000e_reset(adapter);
+		}
+	} else {
+		if (pause->rx_pause && pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_full;
+		else if (pause->rx_pause && !pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_rx_pause;
+		else if (!pause->rx_pause && pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_tx_pause;
+		else if (!pause->rx_pause && !pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_none;
+
+		hw->fc.current_mode = hw->fc.requested_mode;
+
+		if (hw->phy.media_type == e1000_media_type_fiber) {
+			retval = hw->mac.ops.setup_link(hw);
+			/* implicit goto out */
+		} else {
+			retval = e1000e_force_mac_fc(hw);
+			if (retval)
+				goto out;
+			e1000e_set_fc_watermarks(hw);
+		}
+	}
+
+out:
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return retval;
+}
+
+static u32 e1000_get_rx_csum(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
+}
+
+static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if (data)
+		adapter->flags |= FLAG_RX_CSUM_ENABLED;
+	else
+		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
+
+	if (netif_running(netdev))
+		e1000e_reinit_locked(adapter);
+	else
+		e1000e_reset(adapter);
+	return 0;
+}
+
+static u32 e1000_get_tx_csum(struct net_device *netdev)
+{
+	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
+}
+
+static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
+{
+	if (data)
+		netdev->features |= NETIF_F_HW_CSUM;
+	else
+		netdev->features &= ~NETIF_F_HW_CSUM;
+
+	return 0;
+}
+
+static int e1000_set_tso(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (data) {
+		netdev->features |= NETIF_F_TSO;
+		netdev->features |= NETIF_F_TSO6;
+	} else {
+		netdev->features &= ~NETIF_F_TSO;
+		netdev->features &= ~NETIF_F_TSO6;
+	}
+
+	adapter->flags |= FLAG_TSO_FORCE;
+	return 0;
+}
+
+static u32 e1000_get_msglevel(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->msg_enable;
+}
+
+static void e1000_set_msglevel(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->msg_enable = data;
+}
+
+static int e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32 /* overestimate */
+	return E1000_REGS_LEN * sizeof(u32);
+}
+
+static void e1000_get_regs(struct net_device *netdev,
+			   struct ethtool_regs *regs, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 *regs_buff = p;
+	u16 phy_data;
+	u8 revision_id;
+
+	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
+
+	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
+
+	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
+
+	regs_buff[0]  = er32(CTRL);
+	regs_buff[1]  = er32(STATUS);
+
+	regs_buff[2]  = er32(RCTL);
+	regs_buff[3]  = er32(RDLEN);
+	regs_buff[4]  = er32(RDH);
+	regs_buff[5]  = er32(RDT);
+	regs_buff[6]  = er32(RDTR);
+
+	regs_buff[7]  = er32(TCTL);
+	regs_buff[8]  = er32(TDLEN);
+	regs_buff[9]  = er32(TDH);
+	regs_buff[10] = er32(TDT);
+	regs_buff[11] = er32(TIDV);
+
+	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
+
+	/* ethtool doesn't use anything past this point, so all this
+	 * code is likely legacy junk for apps that may or may not
+	 * exist */
+	if (hw->phy.type == e1000_phy_m88) {
+		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
+		regs_buff[18] = regs_buff[13]; /* cable polarity */
+		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[20] = regs_buff[17]; /* polarity correction */
+		/* phy receive errors */
+		regs_buff[22] = adapter->phy_stats.receive_errors;
+		regs_buff[23] = regs_buff[13]; /* mdix mode */
+	}
+	regs_buff[21] = 0; /* was idle_errors */
+	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
+	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
+	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
+}
+
+static int e1000_get_eeprom_len(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->hw.nvm.word_size * 2;
+}
+
+static int e1000_get_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	int first_word;
+	int last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EINVAL;
+
+	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+	eeprom_buff = kmalloc(sizeof(u16) *
+			(last_word - first_word + 1), GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+		ret_val = e1000_read_nvm(hw, first_word,
+					 last_word - first_word + 1,
+					 eeprom_buff);
+	} else {
+		for (i = 0; i < last_word - first_word + 1; i++) {
+			ret_val = e1000_read_nvm(hw, first_word + i, 1,
+						      &eeprom_buff[i]);
+			if (ret_val)
+				break;
+		}
+	}
+
+	if (ret_val) {
+		/* a read error occurred, throw away the result */
+		memset(eeprom_buff, 0xff, sizeof(u16) *
+		       (last_word - first_word + 1));
+	} else {
+		/* Device's eeprom is always little-endian, word addressable */
+		for (i = 0; i < last_word - first_word + 1; i++)
+			le16_to_cpus(&eeprom_buff[i]);
+	}
+
+	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
+	kfree(eeprom_buff);
+
+	return ret_val;
+}
+
+static int e1000_set_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	void *ptr;
+	int max_len;
+	int first_word;
+	int last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EOPNOTSUPP;
+
+	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
+		return -EFAULT;
+
+	if (adapter->flags & FLAG_READ_ONLY_NVM)
+		return -EINVAL;
+
+	max_len = hw->nvm.word_size * 2;
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	ptr = (void *)eeprom_buff;
+
+	if (eeprom->offset & 1) {
+		/* need read/modify/write of first changed EEPROM word */
+		/* only the second byte of the word is being modified */
+		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
+		ptr++;
+	}
+	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
+		/* need read/modify/write of last changed EEPROM word */
+		/* only the first byte of the word is being modified */
+		ret_val = e1000_read_nvm(hw, last_word, 1,
+				  &eeprom_buff[last_word - first_word]);
+
+	if (ret_val)
+		goto out;
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(ptr, bytes, eeprom->len);
+
+	for (i = 0; i < last_word - first_word + 1; i++)
+		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+	ret_val = e1000_write_nvm(hw, first_word,
+				  last_word - first_word + 1, eeprom_buff);
+
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Update the checksum over the first part of the EEPROM if needed
+	 * and flush shadow RAM for applicable controllers
+	 */
+	if ((first_word <= NVM_CHECKSUM_REG) ||
+	    (hw->mac.type == e1000_82583) ||
+	    (hw->mac.type == e1000_82574) ||
+	    (hw->mac.type == e1000_82573))
+		ret_val = e1000e_update_nvm_checksum(hw);
+
+out:
+	kfree(eeprom_buff);
+	return ret_val;
+}
+
+static void e1000_get_drvinfo(struct net_device *netdev,
+			      struct ethtool_drvinfo *drvinfo)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	char firmware_version[32];
+
+	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
+	strncpy(drvinfo->version, e1000e_driver_version, 32);
+
+	/*
+	 * EEPROM image version # is reported as firmware version # for
+	 * PCI-E controllers
+	 */
+	sprintf(firmware_version, "%d.%d-%d",
+		(adapter->eeprom_vers & 0xF000) >> 12,
+		(adapter->eeprom_vers & 0x0FF0) >> 4,
+		(adapter->eeprom_vers & 0x000F));
+
+	strncpy(drvinfo->fw_version, firmware_version, 32);
+	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+	drvinfo->regdump_len = e1000_get_regs_len(netdev);
+	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void e1000_get_ringparam(struct net_device *netdev,
+				struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+
+	ring->rx_max_pending = E1000_MAX_RXD;
+	ring->tx_max_pending = E1000_MAX_TXD;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rx_ring->count;
+	ring->tx_pending = tx_ring->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e1000_set_ringparam(struct net_device *netdev,
+			       struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_ring *tx_ring, *tx_old;
+	struct e1000_ring *rx_ring, *rx_old;
+	int err;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+
+	if (netif_running(adapter->netdev))
+		e1000e_down(adapter);
+
+	tx_old = adapter->tx_ring;
+	rx_old = adapter->rx_ring;
+
+	err = -ENOMEM;
+	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!tx_ring)
+		goto err_alloc_tx;
+	/*
+	 * use a memcpy to save any previously configured
+	 * items like napi structs from having to be
+	 * reinitialized
+	 */
+	memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
+
+	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!rx_ring)
+		goto err_alloc_rx;
+	memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
+
+	adapter->tx_ring = tx_ring;
+	adapter->rx_ring = rx_ring;
+
+	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
+	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
+	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
+	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
+	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+	if (netif_running(adapter->netdev)) {
+		/* Try to get new resources before deleting old */
+		err = e1000e_setup_rx_resources(adapter);
+		if (err)
+			goto err_setup_rx;
+		err = e1000e_setup_tx_resources(adapter);
+		if (err)
+			goto err_setup_tx;
+
+		/*
+		 * restore the old in order to free it,
+		 * then add in the new
+		 */
+		adapter->rx_ring = rx_old;
+		adapter->tx_ring = tx_old;
+		e1000e_free_rx_resources(adapter);
+		e1000e_free_tx_resources(adapter);
+		kfree(tx_old);
+		kfree(rx_old);
+		adapter->rx_ring = rx_ring;
+		adapter->tx_ring = tx_ring;
+		err = e1000e_up(adapter);
+		if (err)
+			goto err_setup;
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return 0;
+err_setup_tx:
+	e1000e_free_rx_resources(adapter);
+err_setup_rx:
+	adapter->rx_ring = rx_old;
+	adapter->tx_ring = tx_old;
+	kfree(rx_ring);
+err_alloc_rx:
+	kfree(tx_ring);
+err_alloc_tx:
+	e1000e_up(adapter);
+err_setup:
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return err;
+}
+
+static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
+			     int reg, int offset, u32 mask, u32 write)
+{
+	u32 pat, val;
+	static const u32 test[] =
+		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
+	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
+		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
+				      (test[pat] & write));
+		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
+		if (val != (test[pat] & write & mask)) {
+			e_err("pattern test reg %04X failed: got 0x%08X "
+			      "expected 0x%08X\n", reg + offset, val,
+			      (test[pat] & write & mask));
+			*data = reg;
+			return 1;
+		}
+	}
+	return 0;
+}
+
+static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
+			      int reg, u32 mask, u32 write)
+{
+	u32 val;
+	__ew32(&adapter->hw, reg, write & mask);
+	val = __er32(&adapter->hw, reg);
+	if ((write & mask) != (val & mask)) {
+		e_err("set/check reg %04X test failed: got 0x%08X "
+		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
+		*data = reg;
+		return 1;
+	}
+	return 0;
+}
+#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
+	do {                                                                   \
+		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
+			return 1;                                              \
+	} while (0)
+#define REG_PATTERN_TEST(reg, mask, write)                                     \
+	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
+
+#define REG_SET_AND_CHECK(reg, mask, write)                                    \
+	do {                                                                   \
+		if (reg_set_and_check(adapter, data, reg, mask, write))        \
+			return 1;                                              \
+	} while (0)
+
+static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+	u32 value;
+	u32 before;
+	u32 after;
+	u32 i;
+	u32 toggle;
+	u32 mask;
+
+	/*
+	 * The status register is Read Only, so a write should fail.
+	 * Some bits that get toggled are ignored.
+	 */
+	switch (mac->type) {
+	/* there are several bits on newer hardware that are r/w */
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+		toggle = 0x7FFFF3FF;
+		break;
+        default:
+		toggle = 0x7FFFF033;
+		break;
+	}
+
+	before = er32(STATUS);
+	value = (er32(STATUS) & toggle);
+	ew32(STATUS, toggle);
+	after = er32(STATUS) & toggle;
+	if (value != after) {
+		e_err("failed STATUS register test got: 0x%08X expected: "
+		      "0x%08X\n", after, value);
+		*data = 1;
+		return 1;
+	}
+	/* restore previous status */
+	ew32(STATUS, before);
+
+	if (!(adapter->flags & FLAG_IS_ICH)) {
+		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
+	}
+
+	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
+	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
+	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
+
+	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
+
+	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
+	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
+	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
+
+	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+	if (!(adapter->flags & FLAG_IS_ICH))
+		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
+	mask = 0x8003FFFF;
+	switch (mac->type) {
+	case e1000_ich10lan:
+	case e1000_pchlan:
+		mask |= (1 << 18);
+		break;
+	default:
+		break;
+	}
+	for (i = 0; i < mac->rar_entry_count; i++)
+		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
+		                       mask, 0xFFFFFFFF);
+
+	for (i = 0; i < mac->mta_reg_count; i++)
+		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
+
+	*data = 0;
+	return 0;
+}
+
+static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
+{
+	u16 temp;
+	u16 checksum = 0;
+	u16 i;
+
+	*data = 0;
+	/* Read and add up the contents of the EEPROM */
+	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
+			*data = 1;
+			return *data;
+		}
+		checksum += temp;
+	}
+
+	/* If Checksum is not Correct return error else test passed */
+	if ((checksum != (u16) NVM_SUM) && !(*data))
+		*data = 2;
+
+	return *data;
+}
+
+static irqreturn_t e1000_test_intr(int irq, void *data)
+{
+	struct net_device *netdev = (struct net_device *) data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	adapter->test_icr |= er32(ICR);
+
+	return IRQ_HANDLED;
+}
+
+static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 mask;
+	u32 shared_int = 1;
+	u32 irq = adapter->pdev->irq;
+	int i;
+	int ret_val = 0;
+	int int_mode = E1000E_INT_MODE_LEGACY;
+
+	*data = 0;
+
+	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
+	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
+		int_mode = adapter->int_mode;
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = E1000E_INT_MODE_LEGACY;
+		e1000e_set_interrupt_capability(adapter);
+	}
+	/* Hook up test interrupt handler just for this test */
+	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
+			 netdev)) {
+		shared_int = 0;
+	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
+		 netdev->name, netdev)) {
+		*data = 1;
+		ret_val = -1;
+		goto out;
+	}
+	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Test each interrupt */
+	for (i = 0; i < 10; i++) {
+		/* Interrupt to test */
+		mask = 1 << i;
+
+		if (adapter->flags & FLAG_IS_ICH) {
+			switch (mask) {
+			case E1000_ICR_RXSEQ:
+				continue;
+			case 0x00000100:
+				if (adapter->hw.mac.type == e1000_ich8lan ||
+				    adapter->hw.mac.type == e1000_ich9lan)
+					continue;
+				break;
+			default:
+				break;
+			}
+		}
+
+		if (!shared_int) {
+			/*
+			 * Disable the interrupt to be reported in
+			 * the cause register and then force the same
+			 * interrupt and see if one gets posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, mask);
+			ew32(ICS, mask);
+			msleep(10);
+
+			if (adapter->test_icr & mask) {
+				*data = 3;
+				break;
+			}
+		}
+
+		/*
+		 * Enable the interrupt to be reported in
+		 * the cause register and then force the same
+		 * interrupt and see if one gets posted.  If
+		 * an interrupt was not posted to the bus, the
+		 * test failed.
+		 */
+		adapter->test_icr = 0;
+		ew32(IMS, mask);
+		ew32(ICS, mask);
+		msleep(10);
+
+		if (!(adapter->test_icr & mask)) {
+			*data = 4;
+			break;
+		}
+
+		if (!shared_int) {
+			/*
+			 * Disable the other interrupts to be reported in
+			 * the cause register and then force the other
+			 * interrupts and see if any get posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, ~mask & 0x00007FFF);
+			ew32(ICS, ~mask & 0x00007FFF);
+			msleep(10);
+
+			if (adapter->test_icr) {
+				*data = 5;
+				break;
+			}
+		}
+	}
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Unhook test interrupt handler */
+	free_irq(irq, netdev);
+
+out:
+	if (int_mode == E1000E_INT_MODE_MSIX) {
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = int_mode;
+		e1000e_set_interrupt_capability(adapter);
+	}
+
+	return ret_val;
+}
+
+static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
+	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i;
+
+	if (tx_ring->desc && tx_ring->buffer_info) {
+		for (i = 0; i < tx_ring->count; i++) {
+			if (tx_ring->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+					tx_ring->buffer_info[i].dma,
+					tx_ring->buffer_info[i].length,
+					DMA_TO_DEVICE);
+			if (tx_ring->buffer_info[i].skb)
+				dev_kfree_skb(tx_ring->buffer_info[i].skb);
+		}
+	}
+
+	if (rx_ring->desc && rx_ring->buffer_info) {
+		for (i = 0; i < rx_ring->count; i++) {
+			if (rx_ring->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+					rx_ring->buffer_info[i].dma,
+					2048, DMA_FROM_DEVICE);
+			if (rx_ring->buffer_info[i].skb)
+				dev_kfree_skb(rx_ring->buffer_info[i].skb);
+		}
+	}
+
+	if (tx_ring->desc) {
+		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
+				  tx_ring->dma);
+		tx_ring->desc = NULL;
+	}
+	if (rx_ring->desc) {
+		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
+				  rx_ring->dma);
+		rx_ring->desc = NULL;
+	}
+
+	kfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+	kfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+}
+
+static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
+	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	int i;
+	int ret_val;
+
+	/* Setup Tx descriptor ring and Tx buffers */
+
+	if (!tx_ring->count)
+		tx_ring->count = E1000_DEFAULT_TXD;
+
+	tx_ring->buffer_info = kcalloc(tx_ring->count,
+				       sizeof(struct e1000_buffer),
+				       GFP_KERNEL);
+	if (!(tx_ring->buffer_info)) {
+		ret_val = 1;
+		goto err_nomem;
+	}
+
+	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
+	tx_ring->size = ALIGN(tx_ring->size, 4096);
+	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
+					   &tx_ring->dma, GFP_KERNEL);
+	if (!tx_ring->desc) {
+		ret_val = 2;
+		goto err_nomem;
+	}
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+
+	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
+	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
+	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
+	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+	for (i = 0; i < tx_ring->count; i++) {
+		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
+		struct sk_buff *skb;
+		unsigned int skb_size = 1024;
+
+		skb = alloc_skb(skb_size, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 3;
+			goto err_nomem;
+		}
+		skb_put(skb, skb_size);
+		tx_ring->buffer_info[i].skb = skb;
+		tx_ring->buffer_info[i].length = skb->len;
+		tx_ring->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data, skb->len,
+				       DMA_TO_DEVICE);
+		if (dma_mapping_error(&pdev->dev,
+				      tx_ring->buffer_info[i].dma)) {
+			ret_val = 4;
+			goto err_nomem;
+		}
+		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
+		tx_desc->lower.data = cpu_to_le32(skb->len);
+		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+						   E1000_TXD_CMD_IFCS |
+						   E1000_TXD_CMD_RS);
+		tx_desc->upper.data = 0;
+	}
+
+	/* Setup Rx descriptor ring and Rx buffers */
+
+	if (!rx_ring->count)
+		rx_ring->count = E1000_DEFAULT_RXD;
+
+	rx_ring->buffer_info = kcalloc(rx_ring->count,
+				       sizeof(struct e1000_buffer),
+				       GFP_KERNEL);
+	if (!(rx_ring->buffer_info)) {
+		ret_val = 5;
+		goto err_nomem;
+	}
+
+	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
+	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
+					   &rx_ring->dma, GFP_KERNEL);
+	if (!rx_ring->desc) {
+		ret_val = 6;
+		goto err_nomem;
+	}
+	rx_ring->next_to_use = 0;
+	rx_ring->next_to_clean = 0;
+
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
+	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
+	ew32(RDLEN, rx_ring->size);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
+		E1000_RCTL_SBP | E1000_RCTL_SECRC |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+	ew32(RCTL, rctl);
+
+	for (i = 0; i < rx_ring->count; i++) {
+		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
+		struct sk_buff *skb;
+
+		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 7;
+			goto err_nomem;
+		}
+		skb_reserve(skb, NET_IP_ALIGN);
+		rx_ring->buffer_info[i].skb = skb;
+		rx_ring->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data, 2048,
+				       DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev,
+				      rx_ring->buffer_info[i].dma)) {
+			ret_val = 8;
+			goto err_nomem;
+		}
+		rx_desc->buffer_addr =
+			cpu_to_le64(rx_ring->buffer_info[i].dma);
+		memset(skb->data, 0x00, skb->len);
+	}
+
+	return 0;
+
+err_nomem:
+	e1000_free_desc_rings(adapter);
+	return ret_val;
+}
+
+static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1e_wphy(&adapter->hw, 29, 0x001F);
+	e1e_wphy(&adapter->hw, 30, 0x8FFC);
+	e1e_wphy(&adapter->hw, 29, 0x001A);
+	e1e_wphy(&adapter->hw, 30, 0x8FF0);
+}
+
+static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg = 0;
+	u32 stat_reg = 0;
+	u16 phy_reg = 0;
+
+	hw->mac.autoneg = 0;
+
+	/* Workaround: K1 must be disabled for stable 1Gbps operation */
+	if (hw->mac.type == e1000_pchlan)
+		e1000_configure_k1_ich8lan(hw, false);
+
+	if (hw->phy.type == e1000_phy_m88) {
+		/* Auto-MDI/MDIX Off */
+		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
+		/* reset to update Auto-MDI/MDIX */
+		e1e_wphy(hw, PHY_CONTROL, 0x9140);
+		/* autoneg off */
+		e1e_wphy(hw, PHY_CONTROL, 0x8140);
+	} else if (hw->phy.type == e1000_phy_gg82563)
+		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
+
+	ctrl_reg = er32(CTRL);
+
+	switch (hw->phy.type) {
+	case e1000_phy_ife:
+		/* force 100, set loopback */
+		e1e_wphy(hw, PHY_CONTROL, 0x6100);
+
+		/* Now set up the MAC to the same speed/duplex as the PHY. */
+		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
+			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
+		break;
+	case e1000_phy_bm:
+		/* Set Default MAC Interface speed to 1GB */
+		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
+		phy_reg &= ~0x0007;
+		phy_reg |= 0x006;
+		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
+		/* Assert SW reset for above settings to take effect */
+		e1000e_commit_phy(hw);
+		mdelay(1);
+		/* Force Full Duplex */
+		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
+		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
+		/* Set Link Up (in force link) */
+		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
+		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
+		/* Force Link */
+		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
+		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
+		/* Set Early Link Enable */
+		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
+		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
+		/* fall through */
+	default:
+		/* force 1000, set loopback */
+		e1e_wphy(hw, PHY_CONTROL, 0x4140);
+		mdelay(250);
+
+		/* Now set up the MAC to the same speed/duplex as the PHY. */
+		ctrl_reg = er32(CTRL);
+		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
+
+		if (adapter->flags & FLAG_IS_ICH)
+			ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
+	}
+
+	if (hw->phy.media_type == e1000_media_type_copper &&
+	    hw->phy.type == e1000_phy_m88) {
+		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+	} else {
+		/*
+		 * Set the ILOS bit on the fiber Nic if half duplex link is
+		 * detected.
+		 */
+		stat_reg = er32(STATUS);
+		if ((stat_reg & E1000_STATUS_FD) == 0)
+			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+	}
+
+	ew32(CTRL, ctrl_reg);
+
+	/*
+	 * Disable the receiver on the PHY so when a cable is plugged in, the
+	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+	 */
+	if (hw->phy.type == e1000_phy_m88)
+		e1000_phy_disable_receiver(adapter);
+
+	udelay(500);
+
+	return 0;
+}
+
+static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl = er32(CTRL);
+	int link = 0;
+
+	/* special requirements for 82571/82572 fiber adapters */
+
+	/*
+	 * jump through hoops to make sure link is up because serdes
+	 * link is hardwired up
+	 */
+	ctrl |= E1000_CTRL_SLU;
+	ew32(CTRL, ctrl);
+
+	/* disable autoneg */
+	ctrl = er32(TXCW);
+	ctrl &= ~(1 << 31);
+	ew32(TXCW, ctrl);
+
+	link = (er32(STATUS) & E1000_STATUS_LU);
+
+	if (!link) {
+		/* set invert loss of signal */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_ILOS;
+		ew32(CTRL, ctrl);
+	}
+
+	/*
+	 * special write to serdes control register to enable SerDes analog
+	 * loopback
+	 */
+#define E1000_SERDES_LB_ON 0x410
+	ew32(SCTL, E1000_SERDES_LB_ON);
+	msleep(10);
+
+	return 0;
+}
+
+/* only call this for fiber/serdes connections to es2lan */
+static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrlext = er32(CTRL_EXT);
+	u32 ctrl = er32(CTRL);
+
+	/*
+	 * save CTRL_EXT to restore later, reuse an empty variable (unused
+	 * on mac_type 80003es2lan)
+	 */
+	adapter->tx_fifo_head = ctrlext;
+
+	/* clear the serdes mode bits, putting the device into mac loopback */
+	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
+	ew32(CTRL_EXT, ctrlext);
+
+	/* force speed to 1000/FD, link up */
+	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
+		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
+	ew32(CTRL, ctrl);
+
+	/* set mac loopback */
+	ctrl = er32(RCTL);
+	ctrl |= E1000_RCTL_LBM_MAC;
+	ew32(RCTL, ctrl);
+
+	/* set testing mode parameters (no need to reset later) */
+#define KMRNCTRLSTA_OPMODE (0x1F << 16)
+#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
+	ew32(KMRNCTRLSTA,
+	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
+
+	return 0;
+}
+
+static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	if (hw->phy.media_type == e1000_media_type_fiber ||
+	    hw->phy.media_type == e1000_media_type_internal_serdes) {
+		switch (hw->mac.type) {
+		case e1000_80003es2lan:
+			return e1000_set_es2lan_mac_loopback(adapter);
+			break;
+		case e1000_82571:
+		case e1000_82572:
+			return e1000_set_82571_fiber_loopback(adapter);
+			break;
+		default:
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_LBM_TCVR;
+			ew32(RCTL, rctl);
+			return 0;
+		}
+	} else if (hw->phy.media_type == e1000_media_type_copper) {
+		return e1000_integrated_phy_loopback(adapter);
+	}
+
+	return 7;
+}
+
+static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	u16 phy_reg;
+
+	rctl = er32(RCTL);
+	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+	ew32(RCTL, rctl);
+
+	switch (hw->mac.type) {
+	case e1000_80003es2lan:
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes) {
+			/* restore CTRL_EXT, stealing space from tx_fifo_head */
+			ew32(CTRL_EXT, adapter->tx_fifo_head);
+			adapter->tx_fifo_head = 0;
+		}
+		/* fall through */
+	case e1000_82571:
+	case e1000_82572:
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes) {
+#define E1000_SERDES_LB_OFF 0x400
+			ew32(SCTL, E1000_SERDES_LB_OFF);
+			msleep(10);
+			break;
+		}
+		/* Fall Through */
+	default:
+		hw->mac.autoneg = 1;
+		if (hw->phy.type == e1000_phy_gg82563)
+			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
+		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
+		if (phy_reg & MII_CR_LOOPBACK) {
+			phy_reg &= ~MII_CR_LOOPBACK;
+			e1e_wphy(hw, PHY_CONTROL, phy_reg);
+			e1000e_commit_phy(hw);
+		}
+		break;
+	}
+}
+
+static void e1000_create_lbtest_frame(struct sk_buff *skb,
+				      unsigned int frame_size)
+{
+	memset(skb->data, 0xFF, frame_size);
+	frame_size &= ~1;
+	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int e1000_check_lbtest_frame(struct sk_buff *skb,
+				    unsigned int frame_size)
+{
+	frame_size &= ~1;
+	if (*(skb->data + 3) == 0xFF)
+		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
+			return 0;
+	return 13;
+}
+
+static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
+	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_hw *hw = &adapter->hw;
+	int i, j, k, l;
+	int lc;
+	int good_cnt;
+	int ret_val = 0;
+	unsigned long time;
+
+	ew32(RDT, rx_ring->count - 1);
+
+	/*
+	 * Calculate the loop count based on the largest descriptor ring
+	 * The idea is to wrap the largest ring a number of times using 64
+	 * send/receive pairs during each loop
+	 */
+
+	if (rx_ring->count <= tx_ring->count)
+		lc = ((tx_ring->count / 64) * 2) + 1;
+	else
+		lc = ((rx_ring->count / 64) * 2) + 1;
+
+	k = 0;
+	l = 0;
+	for (j = 0; j <= lc; j++) { /* loop count loop */
+		for (i = 0; i < 64; i++) { /* send the packets */
+			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
+						  1024);
+			dma_sync_single_for_device(&pdev->dev,
+					tx_ring->buffer_info[k].dma,
+					tx_ring->buffer_info[k].length,
+					DMA_TO_DEVICE);
+			k++;
+			if (k == tx_ring->count)
+				k = 0;
+		}
+		ew32(TDT, k);
+		msleep(200);
+		time = jiffies; /* set the start time for the receive */
+		good_cnt = 0;
+		do { /* receive the sent packets */
+			dma_sync_single_for_cpu(&pdev->dev,
+					rx_ring->buffer_info[l].dma, 2048,
+					DMA_FROM_DEVICE);
+
+			ret_val = e1000_check_lbtest_frame(
+					rx_ring->buffer_info[l].skb, 1024);
+			if (!ret_val)
+				good_cnt++;
+			l++;
+			if (l == rx_ring->count)
+				l = 0;
+			/*
+			 * time + 20 msecs (200 msecs on 2.4) is more than
+			 * enough time to complete the receives, if it's
+			 * exceeded, break and error off
+			 */
+		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
+		if (good_cnt != 64) {
+			ret_val = 13; /* ret_val is the same as mis-compare */
+			break;
+		}
+		if (jiffies >= (time + 20)) {
+			ret_val = 14; /* error code for time out error */
+			break;
+		}
+	} /* end loop count loop */
+	return ret_val;
+}
+
+static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
+{
+	/*
+	 * PHY loopback cannot be performed if SoL/IDER
+	 * sessions are active
+	 */
+	if (e1000_check_reset_block(&adapter->hw)) {
+		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
+		*data = 0;
+		goto out;
+	}
+
+	*data = e1000_setup_desc_rings(adapter);
+	if (*data)
+		goto out;
+
+	*data = e1000_setup_loopback_test(adapter);
+	if (*data)
+		goto err_loopback;
+
+	*data = e1000_run_loopback_test(adapter);
+	e1000_loopback_cleanup(adapter);
+
+err_loopback:
+	e1000_free_desc_rings(adapter);
+out:
+	return *data;
+}
+
+static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	*data = 0;
+	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
+		int i = 0;
+		hw->mac.serdes_has_link = false;
+
+		/*
+		 * On some blade server designs, link establishment
+		 * could take as long as 2-3 minutes
+		 */
+		do {
+			hw->mac.ops.check_for_link(hw);
+			if (hw->mac.serdes_has_link)
+				return *data;
+			msleep(20);
+		} while (i++ < 3750);
+
+		*data = 1;
+	} else {
+		hw->mac.ops.check_for_link(hw);
+		if (hw->mac.autoneg)
+			msleep(4000);
+
+		if (!(er32(STATUS) &
+		      E1000_STATUS_LU))
+			*data = 1;
+	}
+	return *data;
+}
+
+static int e1000e_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E1000_TEST_LEN;
+	case ETH_SS_STATS:
+		return E1000_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e1000_diag_test(struct net_device *netdev,
+			    struct ethtool_test *eth_test, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	u16 autoneg_advertised;
+	u8 forced_speed_duplex;
+	u8 autoneg;
+	bool if_running = 0;
+
+	if (adapter->ecdev)
+		return;
+
+	if_running = netif_running(netdev);
+
+	set_bit(__E1000_TESTING, &adapter->state);
+	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline tests */
+
+		/* save speed, duplex, autoneg settings */
+		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
+		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
+		autoneg = adapter->hw.mac.autoneg;
+
+		e_info("offline testing starting\n");
+
+		/*
+		 * Link test performed before hardware reset so autoneg doesn't
+		 * interfere with test result
+		 */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		if (if_running)
+			/* indicate we're in test mode */
+			dev_close(netdev);
+		else
+			e1000e_reset(adapter);
+
+		if (e1000_reg_test(adapter, &data[0]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000e_reset(adapter);
+		if (e1000_eeprom_test(adapter, &data[1]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000e_reset(adapter);
+		if (e1000_intr_test(adapter, &data[2]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000e_reset(adapter);
+		/* make sure the phy is powered up */
+		e1000e_power_up_phy(adapter);
+		if (e1000_loopback_test(adapter, &data[3]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* restore speed, duplex, autoneg settings */
+		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
+		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
+		adapter->hw.mac.autoneg = autoneg;
+
+		/* force this routine to wait until autoneg complete/timeout */
+		adapter->hw.phy.autoneg_wait_to_complete = 1;
+		e1000e_reset(adapter);
+		adapter->hw.phy.autoneg_wait_to_complete = 0;
+
+		clear_bit(__E1000_TESTING, &adapter->state);
+		if (if_running)
+			dev_open(netdev);
+	} else {
+		if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
+			clear_bit(__E1000_TESTING, &adapter->state);
+			dev_open(netdev);
+			set_bit(__E1000_TESTING, &adapter->state);
+		}
+
+		e_info("online testing starting\n");
+		/* Online tests */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* Online tests aren't run; pass by default */
+		data[0] = 0;
+		data[1] = 0;
+		data[2] = 0;
+		data[3] = 0;
+
+		if (!if_running && (adapter->flags & FLAG_HAS_AMT))
+			dev_close(netdev);
+
+		clear_bit(__E1000_TESTING, &adapter->state);
+	}
+	msleep_interruptible(4 * 1000);
+}
+
+static void e1000_get_wol(struct net_device *netdev,
+			  struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	wol->supported = 0;
+	wol->wolopts = 0;
+
+	if (!(adapter->flags & FLAG_HAS_WOL) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return;
+
+	wol->supported = WAKE_UCAST | WAKE_MCAST |
+	                 WAKE_BCAST | WAKE_MAGIC |
+	                 WAKE_PHY | WAKE_ARP;
+
+	/* apply any specific unsupported masks here */
+	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
+		wol->supported &= ~WAKE_UCAST;
+
+		if (adapter->wol & E1000_WUFC_EX)
+			e_err("Interface does not support directed (unicast) "
+			      "frame wake-up packets\n");
+	}
+
+	if (adapter->wol & E1000_WUFC_EX)
+		wol->wolopts |= WAKE_UCAST;
+	if (adapter->wol & E1000_WUFC_MC)
+		wol->wolopts |= WAKE_MCAST;
+	if (adapter->wol & E1000_WUFC_BC)
+		wol->wolopts |= WAKE_BCAST;
+	if (adapter->wol & E1000_WUFC_MAG)
+		wol->wolopts |= WAKE_MAGIC;
+	if (adapter->wol & E1000_WUFC_LNKC)
+		wol->wolopts |= WAKE_PHY;
+	if (adapter->wol & E1000_WUFC_ARP)
+		wol->wolopts |= WAKE_ARP;
+}
+
+static int e1000_set_wol(struct net_device *netdev,
+			 struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (!(adapter->flags & FLAG_HAS_WOL) ||
+	    !device_can_wakeup(&adapter->pdev->dev) ||
+	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
+	                      WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
+		return -EOPNOTSUPP;
+
+	/* these settings will always override what we currently have */
+	adapter->wol = 0;
+
+	if (wol->wolopts & WAKE_UCAST)
+		adapter->wol |= E1000_WUFC_EX;
+	if (wol->wolopts & WAKE_MCAST)
+		adapter->wol |= E1000_WUFC_MC;
+	if (wol->wolopts & WAKE_BCAST)
+		adapter->wol |= E1000_WUFC_BC;
+	if (wol->wolopts & WAKE_MAGIC)
+		adapter->wol |= E1000_WUFC_MAG;
+	if (wol->wolopts & WAKE_PHY)
+		adapter->wol |= E1000_WUFC_LNKC;
+	if (wol->wolopts & WAKE_ARP)
+		adapter->wol |= E1000_WUFC_ARP;
+
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL	(HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON		0
+
+static void e1000e_led_blink_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+	                                struct e1000_adapter, led_blink_task);
+
+	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+		adapter->hw.mac.ops.led_off(&adapter->hw);
+	else
+		adapter->hw.mac.ops.led_on(&adapter->hw);
+}
+
+static void e1000_led_blink_callback(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+
+	schedule_work(&adapter->led_blink_task);
+	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int e1000_phys_id(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (!data)
+		data = INT_MAX;
+
+	if ((hw->phy.type == e1000_phy_ife) ||
+	    (hw->mac.type == e1000_pchlan) ||
+	    (hw->mac.type == e1000_82583) ||
+	    (hw->mac.type == e1000_82574)) {
+		INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
+		if (!adapter->blink_timer.function) {
+			init_timer(&adapter->blink_timer);
+			adapter->blink_timer.function =
+				e1000_led_blink_callback;
+			adapter->blink_timer.data = (unsigned long) adapter;
+		}
+		mod_timer(&adapter->blink_timer, jiffies);
+		msleep_interruptible(data * 1000);
+		del_timer_sync(&adapter->blink_timer);
+		if (hw->phy.type == e1000_phy_ife)
+			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+	} else {
+		e1000e_blink_led(hw);
+		msleep_interruptible(data * 1000);
+	}
+
+	hw->mac.ops.led_off(hw);
+	clear_bit(E1000_LED_ON, &adapter->led_status);
+	hw->mac.ops.cleanup_led(hw);
+
+	return 0;
+}
+
+static int e1000_get_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->itr_setting <= 4)
+		ec->rx_coalesce_usecs = adapter->itr_setting;
+	else
+		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
+
+	return 0;
+}
+
+static int e1000_set_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
+	    ((ec->rx_coalesce_usecs > 4) &&
+	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
+	    (ec->rx_coalesce_usecs == 2))
+		return -EINVAL;
+
+	if (ec->rx_coalesce_usecs == 4) {
+		adapter->itr = adapter->itr_setting = 4;
+	} else if (ec->rx_coalesce_usecs <= 3) {
+		adapter->itr = 20000;
+		adapter->itr_setting = ec->rx_coalesce_usecs;
+	} else {
+		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
+		adapter->itr_setting = adapter->itr & ~3;
+	}
+
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+	else
+		ew32(ITR, 0);
+
+	return 0;
+}
+
+static int e1000_nway_reset(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if (netif_running(netdev))
+		e1000e_reinit_locked(adapter);
+	return 0;
+}
+
+static void e1000_get_ethtool_stats(struct net_device *netdev,
+				    struct ethtool_stats *stats,
+				    u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int i;
+	char *p = NULL;
+
+	e1000e_update_stats(adapter);
+	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+		switch (e1000_gstrings_stats[i].type) {
+		case NETDEV_STATS:
+			p = (char *) netdev +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		case E1000_STATS:
+			p = (char *) adapter +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		}
+
+		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
+	}
+}
+
+static void e1000_get_strings(struct net_device *netdev, u32 stringset,
+			      u8 *data)
+{
+	u8 *p = data;
+	int i;
+
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+			memcpy(p, e1000_gstrings_stats[i].stat_string,
+			       ETH_GSTRING_LEN);
+			p += ETH_GSTRING_LEN;
+		}
+		break;
+	}
+}
+
+static const struct ethtool_ops e1000_ethtool_ops = {
+	.get_settings		= e1000_get_settings,
+	.set_settings		= e1000_set_settings,
+	.get_drvinfo		= e1000_get_drvinfo,
+	.get_regs_len		= e1000_get_regs_len,
+	.get_regs		= e1000_get_regs,
+	.get_wol		= e1000_get_wol,
+	.set_wol		= e1000_set_wol,
+	.get_msglevel		= e1000_get_msglevel,
+	.set_msglevel		= e1000_set_msglevel,
+	.nway_reset		= e1000_nway_reset,
+	.get_link		= e1000_get_link,
+	.get_eeprom_len		= e1000_get_eeprom_len,
+	.get_eeprom		= e1000_get_eeprom,
+	.set_eeprom		= e1000_set_eeprom,
+	.get_ringparam		= e1000_get_ringparam,
+	.set_ringparam		= e1000_set_ringparam,
+	.get_pauseparam		= e1000_get_pauseparam,
+	.set_pauseparam		= e1000_set_pauseparam,
+	.get_rx_csum		= e1000_get_rx_csum,
+	.set_rx_csum		= e1000_set_rx_csum,
+	.get_tx_csum		= e1000_get_tx_csum,
+	.set_tx_csum		= e1000_set_tx_csum,
+	.get_sg			= ethtool_op_get_sg,
+	.set_sg			= ethtool_op_set_sg,
+	.get_tso		= ethtool_op_get_tso,
+	.set_tso		= e1000_set_tso,
+	.self_test		= e1000_diag_test,
+	.get_strings		= e1000_get_strings,
+	.phys_id		= e1000_phys_id,
+	.get_ethtool_stats	= e1000_get_ethtool_stats,
+	.get_sset_count		= e1000e_get_sset_count,
+	.get_coalesce		= e1000_get_coalesce,
+	.set_coalesce		= e1000_set_coalesce,
+	.get_flags		= ethtool_op_get_flags,
+	.set_flags		= ethtool_op_set_flags,
+};
+
+void e1000e_set_ethtool_ops(struct net_device *netdev)
+{
+	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/ethtool-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,2035 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include <linux/netdevice.h>
+#include <linux/ethtool.h>
+#include <linux/pci.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+
+#include "e1000.h"
+
+enum {NETDEV_STATS, E1000_STATS};
+
+struct e1000_stats {
+	char stat_string[ETH_GSTRING_LEN];
+	int type;
+	int sizeof_stat;
+	int stat_offset;
+};
+
+#define E1000_STAT(m)		E1000_STATS, \
+				sizeof(((struct e1000_adapter *)0)->m), \
+		      		offsetof(struct e1000_adapter, m)
+#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
+				sizeof(((struct net_device *)0)->m), \
+				offsetof(struct net_device, m)
+
+static const struct e1000_stats e1000_gstrings_stats[] = {
+	{ "rx_packets", E1000_STAT(stats.gprc) },
+	{ "tx_packets", E1000_STAT(stats.gptc) },
+	{ "rx_bytes", E1000_STAT(stats.gorc) },
+	{ "tx_bytes", E1000_STAT(stats.gotc) },
+	{ "rx_broadcast", E1000_STAT(stats.bprc) },
+	{ "tx_broadcast", E1000_STAT(stats.bptc) },
+	{ "rx_multicast", E1000_STAT(stats.mprc) },
+	{ "tx_multicast", E1000_STAT(stats.mptc) },
+	{ "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
+	{ "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
+	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
+	{ "multicast", E1000_STAT(stats.mprc) },
+	{ "collisions", E1000_STAT(stats.colc) },
+	{ "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
+	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
+	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
+	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
+	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
+	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
+	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
+	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
+	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
+	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
+	{ "tx_window_errors", E1000_STAT(stats.latecol) },
+	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
+	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
+	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
+	{ "tx_restart_queue", E1000_STAT(restart_queue) },
+	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
+	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
+	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
+	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+	{ "rx_long_byte_count", E1000_STAT(stats.gorc) },
+	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
+	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
+	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
+	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
+	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
+	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
+};
+
+#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
+#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Register test  (offline)", "Eeprom test    (offline)",
+	"Interrupt test (offline)", "Loopback test  (offline)",
+	"Link test   (on/offline)"
+};
+#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
+
+static int e1000_get_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 status;
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+
+		ecmd->supported = (SUPPORTED_10baseT_Half |
+				   SUPPORTED_10baseT_Full |
+				   SUPPORTED_100baseT_Half |
+				   SUPPORTED_100baseT_Full |
+				   SUPPORTED_1000baseT_Full |
+				   SUPPORTED_Autoneg |
+				   SUPPORTED_TP);
+		if (hw->phy.type == e1000_phy_ife)
+			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
+		ecmd->advertising = ADVERTISED_TP;
+
+		if (hw->mac.autoneg == 1) {
+			ecmd->advertising |= ADVERTISED_Autoneg;
+			/* the e1000 autoneg seems to match ethtool nicely */
+			ecmd->advertising |= hw->phy.autoneg_advertised;
+		}
+
+		ecmd->port = PORT_TP;
+		ecmd->phy_address = hw->phy.addr;
+		ecmd->transceiver = XCVR_INTERNAL;
+
+	} else {
+		ecmd->supported   = (SUPPORTED_1000baseT_Full |
+				     SUPPORTED_FIBRE |
+				     SUPPORTED_Autoneg);
+
+		ecmd->advertising = (ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg);
+
+		ecmd->port = PORT_FIBRE;
+		ecmd->transceiver = XCVR_EXTERNAL;
+	}
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU) {
+		if (status & E1000_STATUS_SPEED_1000)
+			ecmd->speed = 1000;
+		else if (status & E1000_STATUS_SPEED_100)
+			ecmd->speed = 100;
+		else
+			ecmd->speed = 10;
+
+		if (status & E1000_STATUS_FD)
+			ecmd->duplex = DUPLEX_FULL;
+		else
+			ecmd->duplex = DUPLEX_HALF;
+	} else {
+		ecmd->speed = -1;
+		ecmd->duplex = -1;
+	}
+
+	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
+			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+
+	/* MDI-X => 2; MDI =>1; Invalid =>0 */
+	if ((hw->phy.media_type == e1000_media_type_copper) &&
+	    !hw->mac.get_link_status)
+		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
+		                                      ETH_TP_MDI;
+	else
+		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
+
+	return 0;
+}
+
+static u32 e1000_get_link(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+
+	/*
+	 * If the link is not reported up to netdev, interrupts are disabled,
+	 * and so the physical link state may have changed since we last
+	 * looked. Set get_link_status to make sure that the true link
+	 * state is interrogated, rather than pulling a cached and possibly
+	 * stale link state from the driver.
+	 */
+	if (!netif_carrier_ok(netdev))
+		mac->get_link_status = 1;
+
+	return e1000e_has_link(adapter);
+}
+
+static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
+{
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+
+	mac->autoneg = 0;
+
+	/* Fiber NICs only allow 1000 gbps Full duplex */
+	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
+		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+
+	switch (spddplx) {
+	case SPEED_10 + DUPLEX_HALF:
+		mac->forced_speed_duplex = ADVERTISE_10_HALF;
+		break;
+	case SPEED_10 + DUPLEX_FULL:
+		mac->forced_speed_duplex = ADVERTISE_10_FULL;
+		break;
+	case SPEED_100 + DUPLEX_HALF:
+		mac->forced_speed_duplex = ADVERTISE_100_HALF;
+		break;
+	case SPEED_100 + DUPLEX_FULL:
+		mac->forced_speed_duplex = ADVERTISE_100_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_FULL:
+		mac->autoneg = 1;
+		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_HALF: /* not supported */
+	default:
+		e_err("Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+static int e1000_set_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	/*
+	 * When SoL/IDER sessions are active, autoneg/speed/duplex
+	 * cannot be changed
+	 */
+	if (e1000_check_reset_block(hw)) {
+		e_err("Cannot change link characteristics when SoL/IDER is "
+		      "active.\n");
+		return -EINVAL;
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+
+	if (ecmd->autoneg == AUTONEG_ENABLE) {
+		hw->mac.autoneg = 1;
+		if (hw->phy.media_type == e1000_media_type_fiber)
+			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
+						     ADVERTISED_FIBRE |
+						     ADVERTISED_Autoneg;
+		else
+			hw->phy.autoneg_advertised = ecmd->advertising |
+						     ADVERTISED_TP |
+						     ADVERTISED_Autoneg;
+		ecmd->advertising = hw->phy.autoneg_advertised;
+		if (adapter->fc_autoneg)
+			hw->fc.requested_mode = e1000_fc_default;
+	} else {
+		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
+			clear_bit(__E1000_RESETTING, &adapter->state);
+			return -EINVAL;
+		}
+	}
+
+	/* reset the link */
+
+	if (netif_running(adapter->netdev)) {
+		e1000e_down(adapter);
+		e1000e_up(adapter);
+	} else {
+		e1000e_reset(adapter);
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return 0;
+}
+
+static void e1000_get_pauseparam(struct net_device *netdev,
+				 struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	pause->autoneg =
+		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+	if (hw->fc.current_mode == e1000_fc_rx_pause) {
+		pause->rx_pause = 1;
+	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
+		pause->tx_pause = 1;
+	} else if (hw->fc.current_mode == e1000_fc_full) {
+		pause->rx_pause = 1;
+		pause->tx_pause = 1;
+	}
+}
+
+static int e1000_set_pauseparam(struct net_device *netdev,
+				struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 0;
+
+	adapter->fc_autoneg = pause->autoneg;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+
+	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+		hw->fc.requested_mode = e1000_fc_default;
+		if (netif_running(adapter->netdev)) {
+			e1000e_down(adapter);
+			e1000e_up(adapter);
+		} else {
+			e1000e_reset(adapter);
+		}
+	} else {
+		if (pause->rx_pause && pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_full;
+		else if (pause->rx_pause && !pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_rx_pause;
+		else if (!pause->rx_pause && pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_tx_pause;
+		else if (!pause->rx_pause && !pause->tx_pause)
+			hw->fc.requested_mode = e1000_fc_none;
+
+		hw->fc.current_mode = hw->fc.requested_mode;
+
+		if (hw->phy.media_type == e1000_media_type_fiber) {
+			retval = hw->mac.ops.setup_link(hw);
+			/* implicit goto out */
+		} else {
+			retval = e1000e_force_mac_fc(hw);
+			if (retval)
+				goto out;
+			e1000e_set_fc_watermarks(hw);
+		}
+	}
+
+out:
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return retval;
+}
+
+static u32 e1000_get_rx_csum(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
+}
+
+static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (data)
+		adapter->flags |= FLAG_RX_CSUM_ENABLED;
+	else
+		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
+
+	if (netif_running(netdev))
+		e1000e_reinit_locked(adapter);
+	else
+		e1000e_reset(adapter);
+	return 0;
+}
+
+static u32 e1000_get_tx_csum(struct net_device *netdev)
+{
+	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
+}
+
+static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
+{
+	if (data)
+		netdev->features |= NETIF_F_HW_CSUM;
+	else
+		netdev->features &= ~NETIF_F_HW_CSUM;
+
+	return 0;
+}
+
+static int e1000_set_tso(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (data) {
+		netdev->features |= NETIF_F_TSO;
+		netdev->features |= NETIF_F_TSO6;
+	} else {
+		netdev->features &= ~NETIF_F_TSO;
+		netdev->features &= ~NETIF_F_TSO6;
+	}
+
+	adapter->flags |= FLAG_TSO_FORCE;
+	return 0;
+}
+
+static u32 e1000_get_msglevel(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->msg_enable;
+}
+
+static void e1000_set_msglevel(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->msg_enable = data;
+}
+
+static int e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32 /* overestimate */
+	return E1000_REGS_LEN * sizeof(u32);
+}
+
+static void e1000_get_regs(struct net_device *netdev,
+			   struct ethtool_regs *regs, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 *regs_buff = p;
+	u16 phy_data;
+	u8 revision_id;
+
+	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
+
+	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
+
+	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
+
+	regs_buff[0]  = er32(CTRL);
+	regs_buff[1]  = er32(STATUS);
+
+	regs_buff[2]  = er32(RCTL);
+	regs_buff[3]  = er32(RDLEN);
+	regs_buff[4]  = er32(RDH);
+	regs_buff[5]  = er32(RDT);
+	regs_buff[6]  = er32(RDTR);
+
+	regs_buff[7]  = er32(TCTL);
+	regs_buff[8]  = er32(TDLEN);
+	regs_buff[9]  = er32(TDH);
+	regs_buff[10] = er32(TDT);
+	regs_buff[11] = er32(TIDV);
+
+	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
+
+	/* ethtool doesn't use anything past this point, so all this
+	 * code is likely legacy junk for apps that may or may not
+	 * exist */
+	if (hw->phy.type == e1000_phy_m88) {
+		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
+		regs_buff[18] = regs_buff[13]; /* cable polarity */
+		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[20] = regs_buff[17]; /* polarity correction */
+		/* phy receive errors */
+		regs_buff[22] = adapter->phy_stats.receive_errors;
+		regs_buff[23] = regs_buff[13]; /* mdix mode */
+	}
+	regs_buff[21] = 0; /* was idle_errors */
+	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
+	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
+	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
+}
+
+static int e1000_get_eeprom_len(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->hw.nvm.word_size * 2;
+}
+
+static int e1000_get_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	int first_word;
+	int last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EINVAL;
+
+	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+	eeprom_buff = kmalloc(sizeof(u16) *
+			(last_word - first_word + 1), GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+		ret_val = e1000_read_nvm(hw, first_word,
+					 last_word - first_word + 1,
+					 eeprom_buff);
+	} else {
+		for (i = 0; i < last_word - first_word + 1; i++) {
+			ret_val = e1000_read_nvm(hw, first_word + i, 1,
+						      &eeprom_buff[i]);
+			if (ret_val)
+				break;
+		}
+	}
+
+	if (ret_val) {
+		/* a read error occurred, throw away the result */
+		memset(eeprom_buff, 0xff, sizeof(u16) *
+		       (last_word - first_word + 1));
+	} else {
+		/* Device's eeprom is always little-endian, word addressable */
+		for (i = 0; i < last_word - first_word + 1; i++)
+			le16_to_cpus(&eeprom_buff[i]);
+	}
+
+	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
+	kfree(eeprom_buff);
+
+	return ret_val;
+}
+
+static int e1000_set_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	void *ptr;
+	int max_len;
+	int first_word;
+	int last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EOPNOTSUPP;
+
+	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
+		return -EFAULT;
+
+	if (adapter->flags & FLAG_READ_ONLY_NVM)
+		return -EINVAL;
+
+	max_len = hw->nvm.word_size * 2;
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	ptr = (void *)eeprom_buff;
+
+	if (eeprom->offset & 1) {
+		/* need read/modify/write of first changed EEPROM word */
+		/* only the second byte of the word is being modified */
+		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
+		ptr++;
+	}
+	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
+		/* need read/modify/write of last changed EEPROM word */
+		/* only the first byte of the word is being modified */
+		ret_val = e1000_read_nvm(hw, last_word, 1,
+				  &eeprom_buff[last_word - first_word]);
+
+	if (ret_val)
+		goto out;
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(ptr, bytes, eeprom->len);
+
+	for (i = 0; i < last_word - first_word + 1; i++)
+		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+	ret_val = e1000_write_nvm(hw, first_word,
+				  last_word - first_word + 1, eeprom_buff);
+
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Update the checksum over the first part of the EEPROM if needed
+	 * and flush shadow RAM for applicable controllers
+	 */
+	if ((first_word <= NVM_CHECKSUM_REG) ||
+	    (hw->mac.type == e1000_82583) ||
+	    (hw->mac.type == e1000_82574) ||
+	    (hw->mac.type == e1000_82573))
+		ret_val = e1000e_update_nvm_checksum(hw);
+
+out:
+	kfree(eeprom_buff);
+	return ret_val;
+}
+
+static void e1000_get_drvinfo(struct net_device *netdev,
+			      struct ethtool_drvinfo *drvinfo)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	char firmware_version[32];
+
+	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
+	strncpy(drvinfo->version, e1000e_driver_version, 32);
+
+	/*
+	 * EEPROM image version # is reported as firmware version # for
+	 * PCI-E controllers
+	 */
+	sprintf(firmware_version, "%d.%d-%d",
+		(adapter->eeprom_vers & 0xF000) >> 12,
+		(adapter->eeprom_vers & 0x0FF0) >> 4,
+		(adapter->eeprom_vers & 0x000F));
+
+	strncpy(drvinfo->fw_version, firmware_version, 32);
+	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+	drvinfo->regdump_len = e1000_get_regs_len(netdev);
+	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void e1000_get_ringparam(struct net_device *netdev,
+				struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+
+	ring->rx_max_pending = E1000_MAX_RXD;
+	ring->tx_max_pending = E1000_MAX_TXD;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rx_ring->count;
+	ring->tx_pending = tx_ring->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e1000_set_ringparam(struct net_device *netdev,
+			       struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_ring *tx_ring, *tx_old;
+	struct e1000_ring *rx_ring, *rx_old;
+	int err;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+
+	if (netif_running(adapter->netdev))
+		e1000e_down(adapter);
+
+	tx_old = adapter->tx_ring;
+	rx_old = adapter->rx_ring;
+
+	err = -ENOMEM;
+	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!tx_ring)
+		goto err_alloc_tx;
+	/*
+	 * use a memcpy to save any previously configured
+	 * items like napi structs from having to be
+	 * reinitialized
+	 */
+	memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
+
+	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!rx_ring)
+		goto err_alloc_rx;
+	memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
+
+	adapter->tx_ring = tx_ring;
+	adapter->rx_ring = rx_ring;
+
+	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
+	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
+	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
+	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
+	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+	if (netif_running(adapter->netdev)) {
+		/* Try to get new resources before deleting old */
+		err = e1000e_setup_rx_resources(adapter);
+		if (err)
+			goto err_setup_rx;
+		err = e1000e_setup_tx_resources(adapter);
+		if (err)
+			goto err_setup_tx;
+
+		/*
+		 * restore the old in order to free it,
+		 * then add in the new
+		 */
+		adapter->rx_ring = rx_old;
+		adapter->tx_ring = tx_old;
+		e1000e_free_rx_resources(adapter);
+		e1000e_free_tx_resources(adapter);
+		kfree(tx_old);
+		kfree(rx_old);
+		adapter->rx_ring = rx_ring;
+		adapter->tx_ring = tx_ring;
+		err = e1000e_up(adapter);
+		if (err)
+			goto err_setup;
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return 0;
+err_setup_tx:
+	e1000e_free_rx_resources(adapter);
+err_setup_rx:
+	adapter->rx_ring = rx_old;
+	adapter->tx_ring = tx_old;
+	kfree(rx_ring);
+err_alloc_rx:
+	kfree(tx_ring);
+err_alloc_tx:
+	e1000e_up(adapter);
+err_setup:
+	clear_bit(__E1000_RESETTING, &adapter->state);
+	return err;
+}
+
+static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
+			     int reg, int offset, u32 mask, u32 write)
+{
+	u32 pat, val;
+	static const u32 test[] =
+		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
+	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
+		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
+				      (test[pat] & write));
+		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
+		if (val != (test[pat] & write & mask)) {
+			e_err("pattern test reg %04X failed: got 0x%08X "
+			      "expected 0x%08X\n", reg + offset, val,
+			      (test[pat] & write & mask));
+			*data = reg;
+			return 1;
+		}
+	}
+	return 0;
+}
+
+static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
+			      int reg, u32 mask, u32 write)
+{
+	u32 val;
+	__ew32(&adapter->hw, reg, write & mask);
+	val = __er32(&adapter->hw, reg);
+	if ((write & mask) != (val & mask)) {
+		e_err("set/check reg %04X test failed: got 0x%08X "
+		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
+		*data = reg;
+		return 1;
+	}
+	return 0;
+}
+#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
+	do {                                                                   \
+		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
+			return 1;                                              \
+	} while (0)
+#define REG_PATTERN_TEST(reg, mask, write)                                     \
+	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
+
+#define REG_SET_AND_CHECK(reg, mask, write)                                    \
+	do {                                                                   \
+		if (reg_set_and_check(adapter, data, reg, mask, write))        \
+			return 1;                                              \
+	} while (0)
+
+static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+	u32 value;
+	u32 before;
+	u32 after;
+	u32 i;
+	u32 toggle;
+	u32 mask;
+
+	/*
+	 * The status register is Read Only, so a write should fail.
+	 * Some bits that get toggled are ignored.
+	 */
+	switch (mac->type) {
+	/* there are several bits on newer hardware that are r/w */
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_80003es2lan:
+		toggle = 0x7FFFF3FF;
+		break;
+        default:
+		toggle = 0x7FFFF033;
+		break;
+	}
+
+	before = er32(STATUS);
+	value = (er32(STATUS) & toggle);
+	ew32(STATUS, toggle);
+	after = er32(STATUS) & toggle;
+	if (value != after) {
+		e_err("failed STATUS register test got: 0x%08X expected: "
+		      "0x%08X\n", after, value);
+		*data = 1;
+		return 1;
+	}
+	/* restore previous status */
+	ew32(STATUS, before);
+
+	if (!(adapter->flags & FLAG_IS_ICH)) {
+		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
+		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
+	}
+
+	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
+	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
+	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
+
+	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
+
+	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
+	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
+	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
+
+	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+	if (!(adapter->flags & FLAG_IS_ICH))
+		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
+	mask = 0x8003FFFF;
+	switch (mac->type) {
+	case e1000_ich10lan:
+	case e1000_pchlan:
+		mask |= (1 << 18);
+		break;
+	default:
+		break;
+	}
+	for (i = 0; i < mac->rar_entry_count; i++)
+		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
+		                       mask, 0xFFFFFFFF);
+
+	for (i = 0; i < mac->mta_reg_count; i++)
+		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
+
+	*data = 0;
+	return 0;
+}
+
+static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
+{
+	u16 temp;
+	u16 checksum = 0;
+	u16 i;
+
+	*data = 0;
+	/* Read and add up the contents of the EEPROM */
+	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
+			*data = 1;
+			return *data;
+		}
+		checksum += temp;
+	}
+
+	/* If Checksum is not Correct return error else test passed */
+	if ((checksum != (u16) NVM_SUM) && !(*data))
+		*data = 2;
+
+	return *data;
+}
+
+static irqreturn_t e1000_test_intr(int irq, void *data)
+{
+	struct net_device *netdev = (struct net_device *) data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	adapter->test_icr |= er32(ICR);
+
+	return IRQ_HANDLED;
+}
+
+static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 mask;
+	u32 shared_int = 1;
+	u32 irq = adapter->pdev->irq;
+	int i;
+	int ret_val = 0;
+	int int_mode = E1000E_INT_MODE_LEGACY;
+
+	*data = 0;
+
+	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
+	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
+		int_mode = adapter->int_mode;
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = E1000E_INT_MODE_LEGACY;
+		e1000e_set_interrupt_capability(adapter);
+	}
+	/* Hook up test interrupt handler just for this test */
+	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
+			 netdev)) {
+		shared_int = 0;
+	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
+		 netdev->name, netdev)) {
+		*data = 1;
+		ret_val = -1;
+		goto out;
+	}
+	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Test each interrupt */
+	for (i = 0; i < 10; i++) {
+		/* Interrupt to test */
+		mask = 1 << i;
+
+		if (adapter->flags & FLAG_IS_ICH) {
+			switch (mask) {
+			case E1000_ICR_RXSEQ:
+				continue;
+			case 0x00000100:
+				if (adapter->hw.mac.type == e1000_ich8lan ||
+				    adapter->hw.mac.type == e1000_ich9lan)
+					continue;
+				break;
+			default:
+				break;
+			}
+		}
+
+		if (!shared_int) {
+			/*
+			 * Disable the interrupt to be reported in
+			 * the cause register and then force the same
+			 * interrupt and see if one gets posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, mask);
+			ew32(ICS, mask);
+			msleep(10);
+
+			if (adapter->test_icr & mask) {
+				*data = 3;
+				break;
+			}
+		}
+
+		/*
+		 * Enable the interrupt to be reported in
+		 * the cause register and then force the same
+		 * interrupt and see if one gets posted.  If
+		 * an interrupt was not posted to the bus, the
+		 * test failed.
+		 */
+		adapter->test_icr = 0;
+		ew32(IMS, mask);
+		ew32(ICS, mask);
+		msleep(10);
+
+		if (!(adapter->test_icr & mask)) {
+			*data = 4;
+			break;
+		}
+
+		if (!shared_int) {
+			/*
+			 * Disable the other interrupts to be reported in
+			 * the cause register and then force the other
+			 * interrupts and see if any get posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, ~mask & 0x00007FFF);
+			ew32(ICS, ~mask & 0x00007FFF);
+			msleep(10);
+
+			if (adapter->test_icr) {
+				*data = 5;
+				break;
+			}
+		}
+	}
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Unhook test interrupt handler */
+	free_irq(irq, netdev);
+
+out:
+	if (int_mode == E1000E_INT_MODE_MSIX) {
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = int_mode;
+		e1000e_set_interrupt_capability(adapter);
+	}
+
+	return ret_val;
+}
+
+static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
+	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i;
+
+	if (tx_ring->desc && tx_ring->buffer_info) {
+		for (i = 0; i < tx_ring->count; i++) {
+			if (tx_ring->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+					tx_ring->buffer_info[i].dma,
+					tx_ring->buffer_info[i].length,
+					DMA_TO_DEVICE);
+			if (tx_ring->buffer_info[i].skb)
+				dev_kfree_skb(tx_ring->buffer_info[i].skb);
+		}
+	}
+
+	if (rx_ring->desc && rx_ring->buffer_info) {
+		for (i = 0; i < rx_ring->count; i++) {
+			if (rx_ring->buffer_info[i].dma)
+				dma_unmap_single(&pdev->dev,
+					rx_ring->buffer_info[i].dma,
+					2048, DMA_FROM_DEVICE);
+			if (rx_ring->buffer_info[i].skb)
+				dev_kfree_skb(rx_ring->buffer_info[i].skb);
+		}
+	}
+
+	if (tx_ring->desc) {
+		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
+				  tx_ring->dma);
+		tx_ring->desc = NULL;
+	}
+	if (rx_ring->desc) {
+		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
+				  rx_ring->dma);
+		rx_ring->desc = NULL;
+	}
+
+	kfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+	kfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+}
+
+static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
+	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	int i;
+	int ret_val;
+
+	/* Setup Tx descriptor ring and Tx buffers */
+
+	if (!tx_ring->count)
+		tx_ring->count = E1000_DEFAULT_TXD;
+
+	tx_ring->buffer_info = kcalloc(tx_ring->count,
+				       sizeof(struct e1000_buffer),
+				       GFP_KERNEL);
+	if (!(tx_ring->buffer_info)) {
+		ret_val = 1;
+		goto err_nomem;
+	}
+
+	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
+	tx_ring->size = ALIGN(tx_ring->size, 4096);
+	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
+					   &tx_ring->dma, GFP_KERNEL);
+	if (!tx_ring->desc) {
+		ret_val = 2;
+		goto err_nomem;
+	}
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+
+	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
+	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
+	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
+	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+	for (i = 0; i < tx_ring->count; i++) {
+		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
+		struct sk_buff *skb;
+		unsigned int skb_size = 1024;
+
+		skb = alloc_skb(skb_size, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 3;
+			goto err_nomem;
+		}
+		skb_put(skb, skb_size);
+		tx_ring->buffer_info[i].skb = skb;
+		tx_ring->buffer_info[i].length = skb->len;
+		tx_ring->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data, skb->len,
+				       DMA_TO_DEVICE);
+		if (dma_mapping_error(&pdev->dev,
+				      tx_ring->buffer_info[i].dma)) {
+			ret_val = 4;
+			goto err_nomem;
+		}
+		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
+		tx_desc->lower.data = cpu_to_le32(skb->len);
+		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+						   E1000_TXD_CMD_IFCS |
+						   E1000_TXD_CMD_RS);
+		tx_desc->upper.data = 0;
+	}
+
+	/* Setup Rx descriptor ring and Rx buffers */
+
+	if (!rx_ring->count)
+		rx_ring->count = E1000_DEFAULT_RXD;
+
+	rx_ring->buffer_info = kcalloc(rx_ring->count,
+				       sizeof(struct e1000_buffer),
+				       GFP_KERNEL);
+	if (!(rx_ring->buffer_info)) {
+		ret_val = 5;
+		goto err_nomem;
+	}
+
+	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
+	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
+					   &rx_ring->dma, GFP_KERNEL);
+	if (!rx_ring->desc) {
+		ret_val = 6;
+		goto err_nomem;
+	}
+	rx_ring->next_to_use = 0;
+	rx_ring->next_to_clean = 0;
+
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
+	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
+	ew32(RDLEN, rx_ring->size);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
+		E1000_RCTL_SBP | E1000_RCTL_SECRC |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+	ew32(RCTL, rctl);
+
+	for (i = 0; i < rx_ring->count; i++) {
+		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
+		struct sk_buff *skb;
+
+		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 7;
+			goto err_nomem;
+		}
+		skb_reserve(skb, NET_IP_ALIGN);
+		rx_ring->buffer_info[i].skb = skb;
+		rx_ring->buffer_info[i].dma =
+			dma_map_single(&pdev->dev, skb->data, 2048,
+				       DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev,
+				      rx_ring->buffer_info[i].dma)) {
+			ret_val = 8;
+			goto err_nomem;
+		}
+		rx_desc->buffer_addr =
+			cpu_to_le64(rx_ring->buffer_info[i].dma);
+		memset(skb->data, 0x00, skb->len);
+	}
+
+	return 0;
+
+err_nomem:
+	e1000_free_desc_rings(adapter);
+	return ret_val;
+}
+
+static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1e_wphy(&adapter->hw, 29, 0x001F);
+	e1e_wphy(&adapter->hw, 30, 0x8FFC);
+	e1e_wphy(&adapter->hw, 29, 0x001A);
+	e1e_wphy(&adapter->hw, 30, 0x8FF0);
+}
+
+static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg = 0;
+	u32 stat_reg = 0;
+	u16 phy_reg = 0;
+
+	hw->mac.autoneg = 0;
+
+	/* Workaround: K1 must be disabled for stable 1Gbps operation */
+	if (hw->mac.type == e1000_pchlan)
+		e1000_configure_k1_ich8lan(hw, false);
+
+	if (hw->phy.type == e1000_phy_m88) {
+		/* Auto-MDI/MDIX Off */
+		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
+		/* reset to update Auto-MDI/MDIX */
+		e1e_wphy(hw, PHY_CONTROL, 0x9140);
+		/* autoneg off */
+		e1e_wphy(hw, PHY_CONTROL, 0x8140);
+	} else if (hw->phy.type == e1000_phy_gg82563)
+		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
+
+	ctrl_reg = er32(CTRL);
+
+	switch (hw->phy.type) {
+	case e1000_phy_ife:
+		/* force 100, set loopback */
+		e1e_wphy(hw, PHY_CONTROL, 0x6100);
+
+		/* Now set up the MAC to the same speed/duplex as the PHY. */
+		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
+			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
+		break;
+	case e1000_phy_bm:
+		/* Set Default MAC Interface speed to 1GB */
+		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
+		phy_reg &= ~0x0007;
+		phy_reg |= 0x006;
+		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
+		/* Assert SW reset for above settings to take effect */
+		e1000e_commit_phy(hw);
+		mdelay(1);
+		/* Force Full Duplex */
+		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
+		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
+		/* Set Link Up (in force link) */
+		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
+		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
+		/* Force Link */
+		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
+		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
+		/* Set Early Link Enable */
+		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
+		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
+		/* fall through */
+	default:
+		/* force 1000, set loopback */
+		e1e_wphy(hw, PHY_CONTROL, 0x4140);
+		mdelay(250);
+
+		/* Now set up the MAC to the same speed/duplex as the PHY. */
+		ctrl_reg = er32(CTRL);
+		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
+
+		if (adapter->flags & FLAG_IS_ICH)
+			ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
+	}
+
+	if (hw->phy.media_type == e1000_media_type_copper &&
+	    hw->phy.type == e1000_phy_m88) {
+		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+	} else {
+		/*
+		 * Set the ILOS bit on the fiber Nic if half duplex link is
+		 * detected.
+		 */
+		stat_reg = er32(STATUS);
+		if ((stat_reg & E1000_STATUS_FD) == 0)
+			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+	}
+
+	ew32(CTRL, ctrl_reg);
+
+	/*
+	 * Disable the receiver on the PHY so when a cable is plugged in, the
+	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+	 */
+	if (hw->phy.type == e1000_phy_m88)
+		e1000_phy_disable_receiver(adapter);
+
+	udelay(500);
+
+	return 0;
+}
+
+static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl = er32(CTRL);
+	int link = 0;
+
+	/* special requirements for 82571/82572 fiber adapters */
+
+	/*
+	 * jump through hoops to make sure link is up because serdes
+	 * link is hardwired up
+	 */
+	ctrl |= E1000_CTRL_SLU;
+	ew32(CTRL, ctrl);
+
+	/* disable autoneg */
+	ctrl = er32(TXCW);
+	ctrl &= ~(1 << 31);
+	ew32(TXCW, ctrl);
+
+	link = (er32(STATUS) & E1000_STATUS_LU);
+
+	if (!link) {
+		/* set invert loss of signal */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_ILOS;
+		ew32(CTRL, ctrl);
+	}
+
+	/*
+	 * special write to serdes control register to enable SerDes analog
+	 * loopback
+	 */
+#define E1000_SERDES_LB_ON 0x410
+	ew32(SCTL, E1000_SERDES_LB_ON);
+	msleep(10);
+
+	return 0;
+}
+
+/* only call this for fiber/serdes connections to es2lan */
+static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrlext = er32(CTRL_EXT);
+	u32 ctrl = er32(CTRL);
+
+	/*
+	 * save CTRL_EXT to restore later, reuse an empty variable (unused
+	 * on mac_type 80003es2lan)
+	 */
+	adapter->tx_fifo_head = ctrlext;
+
+	/* clear the serdes mode bits, putting the device into mac loopback */
+	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
+	ew32(CTRL_EXT, ctrlext);
+
+	/* force speed to 1000/FD, link up */
+	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
+		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
+	ew32(CTRL, ctrl);
+
+	/* set mac loopback */
+	ctrl = er32(RCTL);
+	ctrl |= E1000_RCTL_LBM_MAC;
+	ew32(RCTL, ctrl);
+
+	/* set testing mode parameters (no need to reset later) */
+#define KMRNCTRLSTA_OPMODE (0x1F << 16)
+#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
+	ew32(KMRNCTRLSTA,
+	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
+
+	return 0;
+}
+
+static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	if (hw->phy.media_type == e1000_media_type_fiber ||
+	    hw->phy.media_type == e1000_media_type_internal_serdes) {
+		switch (hw->mac.type) {
+		case e1000_80003es2lan:
+			return e1000_set_es2lan_mac_loopback(adapter);
+			break;
+		case e1000_82571:
+		case e1000_82572:
+			return e1000_set_82571_fiber_loopback(adapter);
+			break;
+		default:
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_LBM_TCVR;
+			ew32(RCTL, rctl);
+			return 0;
+		}
+	} else if (hw->phy.media_type == e1000_media_type_copper) {
+		return e1000_integrated_phy_loopback(adapter);
+	}
+
+	return 7;
+}
+
+static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	u16 phy_reg;
+
+	rctl = er32(RCTL);
+	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+	ew32(RCTL, rctl);
+
+	switch (hw->mac.type) {
+	case e1000_80003es2lan:
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes) {
+			/* restore CTRL_EXT, stealing space from tx_fifo_head */
+			ew32(CTRL_EXT, adapter->tx_fifo_head);
+			adapter->tx_fifo_head = 0;
+		}
+		/* fall through */
+	case e1000_82571:
+	case e1000_82572:
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes) {
+#define E1000_SERDES_LB_OFF 0x400
+			ew32(SCTL, E1000_SERDES_LB_OFF);
+			msleep(10);
+			break;
+		}
+		/* Fall Through */
+	default:
+		hw->mac.autoneg = 1;
+		if (hw->phy.type == e1000_phy_gg82563)
+			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
+		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
+		if (phy_reg & MII_CR_LOOPBACK) {
+			phy_reg &= ~MII_CR_LOOPBACK;
+			e1e_wphy(hw, PHY_CONTROL, phy_reg);
+			e1000e_commit_phy(hw);
+		}
+		break;
+	}
+}
+
+static void e1000_create_lbtest_frame(struct sk_buff *skb,
+				      unsigned int frame_size)
+{
+	memset(skb->data, 0xFF, frame_size);
+	frame_size &= ~1;
+	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int e1000_check_lbtest_frame(struct sk_buff *skb,
+				    unsigned int frame_size)
+{
+	frame_size &= ~1;
+	if (*(skb->data + 3) == 0xFF)
+		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
+			return 0;
+	return 13;
+}
+
+static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
+	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_hw *hw = &adapter->hw;
+	int i, j, k, l;
+	int lc;
+	int good_cnt;
+	int ret_val = 0;
+	unsigned long time;
+
+	ew32(RDT, rx_ring->count - 1);
+
+	/*
+	 * Calculate the loop count based on the largest descriptor ring
+	 * The idea is to wrap the largest ring a number of times using 64
+	 * send/receive pairs during each loop
+	 */
+
+	if (rx_ring->count <= tx_ring->count)
+		lc = ((tx_ring->count / 64) * 2) + 1;
+	else
+		lc = ((rx_ring->count / 64) * 2) + 1;
+
+	k = 0;
+	l = 0;
+	for (j = 0; j <= lc; j++) { /* loop count loop */
+		for (i = 0; i < 64; i++) { /* send the packets */
+			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
+						  1024);
+			dma_sync_single_for_device(&pdev->dev,
+					tx_ring->buffer_info[k].dma,
+					tx_ring->buffer_info[k].length,
+					DMA_TO_DEVICE);
+			k++;
+			if (k == tx_ring->count)
+				k = 0;
+		}
+		ew32(TDT, k);
+		msleep(200);
+		time = jiffies; /* set the start time for the receive */
+		good_cnt = 0;
+		do { /* receive the sent packets */
+			dma_sync_single_for_cpu(&pdev->dev,
+					rx_ring->buffer_info[l].dma, 2048,
+					DMA_FROM_DEVICE);
+
+			ret_val = e1000_check_lbtest_frame(
+					rx_ring->buffer_info[l].skb, 1024);
+			if (!ret_val)
+				good_cnt++;
+			l++;
+			if (l == rx_ring->count)
+				l = 0;
+			/*
+			 * time + 20 msecs (200 msecs on 2.4) is more than
+			 * enough time to complete the receives, if it's
+			 * exceeded, break and error off
+			 */
+		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
+		if (good_cnt != 64) {
+			ret_val = 13; /* ret_val is the same as mis-compare */
+			break;
+		}
+		if (jiffies >= (time + 20)) {
+			ret_val = 14; /* error code for time out error */
+			break;
+		}
+	} /* end loop count loop */
+	return ret_val;
+}
+
+static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
+{
+	/*
+	 * PHY loopback cannot be performed if SoL/IDER
+	 * sessions are active
+	 */
+	if (e1000_check_reset_block(&adapter->hw)) {
+		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
+		*data = 0;
+		goto out;
+	}
+
+	*data = e1000_setup_desc_rings(adapter);
+	if (*data)
+		goto out;
+
+	*data = e1000_setup_loopback_test(adapter);
+	if (*data)
+		goto err_loopback;
+
+	*data = e1000_run_loopback_test(adapter);
+	e1000_loopback_cleanup(adapter);
+
+err_loopback:
+	e1000_free_desc_rings(adapter);
+out:
+	return *data;
+}
+
+static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	*data = 0;
+	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
+		int i = 0;
+		hw->mac.serdes_has_link = false;
+
+		/*
+		 * On some blade server designs, link establishment
+		 * could take as long as 2-3 minutes
+		 */
+		do {
+			hw->mac.ops.check_for_link(hw);
+			if (hw->mac.serdes_has_link)
+				return *data;
+			msleep(20);
+		} while (i++ < 3750);
+
+		*data = 1;
+	} else {
+		hw->mac.ops.check_for_link(hw);
+		if (hw->mac.autoneg)
+			msleep(4000);
+
+		if (!(er32(STATUS) &
+		      E1000_STATUS_LU))
+			*data = 1;
+	}
+	return *data;
+}
+
+static int e1000e_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E1000_TEST_LEN;
+	case ETH_SS_STATS:
+		return E1000_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e1000_diag_test(struct net_device *netdev,
+			    struct ethtool_test *eth_test, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	u16 autoneg_advertised;
+	u8 forced_speed_duplex;
+	u8 autoneg;
+	bool if_running = netif_running(netdev);
+
+	set_bit(__E1000_TESTING, &adapter->state);
+	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline tests */
+
+		/* save speed, duplex, autoneg settings */
+		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
+		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
+		autoneg = adapter->hw.mac.autoneg;
+
+		e_info("offline testing starting\n");
+
+		/*
+		 * Link test performed before hardware reset so autoneg doesn't
+		 * interfere with test result
+		 */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		if (if_running)
+			/* indicate we're in test mode */
+			dev_close(netdev);
+		else
+			e1000e_reset(adapter);
+
+		if (e1000_reg_test(adapter, &data[0]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000e_reset(adapter);
+		if (e1000_eeprom_test(adapter, &data[1]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000e_reset(adapter);
+		if (e1000_intr_test(adapter, &data[2]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000e_reset(adapter);
+		/* make sure the phy is powered up */
+		e1000e_power_up_phy(adapter);
+		if (e1000_loopback_test(adapter, &data[3]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* restore speed, duplex, autoneg settings */
+		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
+		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
+		adapter->hw.mac.autoneg = autoneg;
+
+		/* force this routine to wait until autoneg complete/timeout */
+		adapter->hw.phy.autoneg_wait_to_complete = 1;
+		e1000e_reset(adapter);
+		adapter->hw.phy.autoneg_wait_to_complete = 0;
+
+		clear_bit(__E1000_TESTING, &adapter->state);
+		if (if_running)
+			dev_open(netdev);
+	} else {
+		if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
+			clear_bit(__E1000_TESTING, &adapter->state);
+			dev_open(netdev);
+			set_bit(__E1000_TESTING, &adapter->state);
+		}
+
+		e_info("online testing starting\n");
+		/* Online tests */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* Online tests aren't run; pass by default */
+		data[0] = 0;
+		data[1] = 0;
+		data[2] = 0;
+		data[3] = 0;
+
+		if (!if_running && (adapter->flags & FLAG_HAS_AMT))
+			dev_close(netdev);
+
+		clear_bit(__E1000_TESTING, &adapter->state);
+	}
+	msleep_interruptible(4 * 1000);
+}
+
+static void e1000_get_wol(struct net_device *netdev,
+			  struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	wol->supported = 0;
+	wol->wolopts = 0;
+
+	if (!(adapter->flags & FLAG_HAS_WOL) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return;
+
+	wol->supported = WAKE_UCAST | WAKE_MCAST |
+	                 WAKE_BCAST | WAKE_MAGIC |
+	                 WAKE_PHY | WAKE_ARP;
+
+	/* apply any specific unsupported masks here */
+	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
+		wol->supported &= ~WAKE_UCAST;
+
+		if (adapter->wol & E1000_WUFC_EX)
+			e_err("Interface does not support directed (unicast) "
+			      "frame wake-up packets\n");
+	}
+
+	if (adapter->wol & E1000_WUFC_EX)
+		wol->wolopts |= WAKE_UCAST;
+	if (adapter->wol & E1000_WUFC_MC)
+		wol->wolopts |= WAKE_MCAST;
+	if (adapter->wol & E1000_WUFC_BC)
+		wol->wolopts |= WAKE_BCAST;
+	if (adapter->wol & E1000_WUFC_MAG)
+		wol->wolopts |= WAKE_MAGIC;
+	if (adapter->wol & E1000_WUFC_LNKC)
+		wol->wolopts |= WAKE_PHY;
+	if (adapter->wol & E1000_WUFC_ARP)
+		wol->wolopts |= WAKE_ARP;
+}
+
+static int e1000_set_wol(struct net_device *netdev,
+			 struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (!(adapter->flags & FLAG_HAS_WOL) ||
+	    !device_can_wakeup(&adapter->pdev->dev) ||
+	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
+	                      WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
+		return -EOPNOTSUPP;
+
+	/* these settings will always override what we currently have */
+	adapter->wol = 0;
+
+	if (wol->wolopts & WAKE_UCAST)
+		adapter->wol |= E1000_WUFC_EX;
+	if (wol->wolopts & WAKE_MCAST)
+		adapter->wol |= E1000_WUFC_MC;
+	if (wol->wolopts & WAKE_BCAST)
+		adapter->wol |= E1000_WUFC_BC;
+	if (wol->wolopts & WAKE_MAGIC)
+		adapter->wol |= E1000_WUFC_MAG;
+	if (wol->wolopts & WAKE_PHY)
+		adapter->wol |= E1000_WUFC_LNKC;
+	if (wol->wolopts & WAKE_ARP)
+		adapter->wol |= E1000_WUFC_ARP;
+
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL	(HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON		0
+
+static void e1000e_led_blink_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+	                                struct e1000_adapter, led_blink_task);
+
+	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+		adapter->hw.mac.ops.led_off(&adapter->hw);
+	else
+		adapter->hw.mac.ops.led_on(&adapter->hw);
+}
+
+static void e1000_led_blink_callback(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+
+	schedule_work(&adapter->led_blink_task);
+	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int e1000_phys_id(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (!data)
+		data = INT_MAX;
+
+	if ((hw->phy.type == e1000_phy_ife) ||
+	    (hw->mac.type == e1000_pchlan) ||
+	    (hw->mac.type == e1000_82583) ||
+	    (hw->mac.type == e1000_82574)) {
+		INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
+		if (!adapter->blink_timer.function) {
+			init_timer(&adapter->blink_timer);
+			adapter->blink_timer.function =
+				e1000_led_blink_callback;
+			adapter->blink_timer.data = (unsigned long) adapter;
+		}
+		mod_timer(&adapter->blink_timer, jiffies);
+		msleep_interruptible(data * 1000);
+		del_timer_sync(&adapter->blink_timer);
+		if (hw->phy.type == e1000_phy_ife)
+			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+	} else {
+		e1000e_blink_led(hw);
+		msleep_interruptible(data * 1000);
+	}
+
+	hw->mac.ops.led_off(hw);
+	clear_bit(E1000_LED_ON, &adapter->led_status);
+	hw->mac.ops.cleanup_led(hw);
+
+	return 0;
+}
+
+static int e1000_get_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->itr_setting <= 4)
+		ec->rx_coalesce_usecs = adapter->itr_setting;
+	else
+		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
+
+	return 0;
+}
+
+static int e1000_set_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
+	    ((ec->rx_coalesce_usecs > 4) &&
+	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
+	    (ec->rx_coalesce_usecs == 2))
+		return -EINVAL;
+
+	if (ec->rx_coalesce_usecs == 4) {
+		adapter->itr = adapter->itr_setting = 4;
+	} else if (ec->rx_coalesce_usecs <= 3) {
+		adapter->itr = 20000;
+		adapter->itr_setting = ec->rx_coalesce_usecs;
+	} else {
+		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
+		adapter->itr_setting = adapter->itr & ~3;
+	}
+
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+	else
+		ew32(ITR, 0);
+
+	return 0;
+}
+
+static int e1000_nway_reset(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	if (netif_running(netdev))
+		e1000e_reinit_locked(adapter);
+	return 0;
+}
+
+static void e1000_get_ethtool_stats(struct net_device *netdev,
+				    struct ethtool_stats *stats,
+				    u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int i;
+	char *p = NULL;
+
+	e1000e_update_stats(adapter);
+	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+		switch (e1000_gstrings_stats[i].type) {
+		case NETDEV_STATS:
+			p = (char *) netdev +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		case E1000_STATS:
+			p = (char *) adapter +
+					e1000_gstrings_stats[i].stat_offset;
+			break;
+		}
+
+		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
+	}
+}
+
+static void e1000_get_strings(struct net_device *netdev, u32 stringset,
+			      u8 *data)
+{
+	u8 *p = data;
+	int i;
+
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+			memcpy(p, e1000_gstrings_stats[i].stat_string,
+			       ETH_GSTRING_LEN);
+			p += ETH_GSTRING_LEN;
+		}
+		break;
+	}
+}
+
+static const struct ethtool_ops e1000_ethtool_ops = {
+	.get_settings		= e1000_get_settings,
+	.set_settings		= e1000_set_settings,
+	.get_drvinfo		= e1000_get_drvinfo,
+	.get_regs_len		= e1000_get_regs_len,
+	.get_regs		= e1000_get_regs,
+	.get_wol		= e1000_get_wol,
+	.set_wol		= e1000_set_wol,
+	.get_msglevel		= e1000_get_msglevel,
+	.set_msglevel		= e1000_set_msglevel,
+	.nway_reset		= e1000_nway_reset,
+	.get_link		= e1000_get_link,
+	.get_eeprom_len		= e1000_get_eeprom_len,
+	.get_eeprom		= e1000_get_eeprom,
+	.set_eeprom		= e1000_set_eeprom,
+	.get_ringparam		= e1000_get_ringparam,
+	.set_ringparam		= e1000_set_ringparam,
+	.get_pauseparam		= e1000_get_pauseparam,
+	.set_pauseparam		= e1000_set_pauseparam,
+	.get_rx_csum		= e1000_get_rx_csum,
+	.set_rx_csum		= e1000_set_rx_csum,
+	.get_tx_csum		= e1000_get_tx_csum,
+	.set_tx_csum		= e1000_set_tx_csum,
+	.get_sg			= ethtool_op_get_sg,
+	.set_sg			= ethtool_op_set_sg,
+	.get_tso		= ethtool_op_get_tso,
+	.set_tso		= e1000_set_tso,
+	.self_test		= e1000_diag_test,
+	.get_strings		= e1000_get_strings,
+	.phys_id		= e1000_phys_id,
+	.get_ethtool_stats	= e1000_get_ethtool_stats,
+	.get_sset_count		= e1000e_get_sset_count,
+	.get_coalesce		= e1000_get_coalesce,
+	.set_coalesce		= e1000_set_coalesce,
+	.get_flags		= ethtool_op_get_flags,
+	.set_flags		= ethtool_op_set_flags,
+};
+
+void e1000e_set_ethtool_ops(struct net_device *netdev)
+{
+	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/hw-2.6.35-ethercat.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,954 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include <linux/types.h>
+
+struct e1000_hw;
+struct e1000_adapter;
+
+#include "defines-2.6.35-ethercat.h"
+
+#define er32(reg)	__er32(hw, E1000_##reg)
+#define ew32(reg,val)	__ew32(hw, E1000_##reg, (val))
+#define e1e_flush()	er32(STATUS)
+
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
+	(writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
+
+#define E1000_READ_REG_ARRAY(a, reg, offset) \
+	(readl((a)->hw_addr + reg + ((offset) << 2)))
+
+enum e1e_registers {
+	E1000_CTRL     = 0x00000, /* Device Control - RW */
+	E1000_STATUS   = 0x00008, /* Device Status - RO */
+	E1000_EECD     = 0x00010, /* EEPROM/Flash Control - RW */
+	E1000_EERD     = 0x00014, /* EEPROM Read - RW */
+	E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
+	E1000_FLA      = 0x0001C, /* Flash Access - RW */
+	E1000_MDIC     = 0x00020, /* MDI Control - RW */
+	E1000_SCTL     = 0x00024, /* SerDes Control - RW */
+	E1000_FCAL     = 0x00028, /* Flow Control Address Low - RW */
+	E1000_FCAH     = 0x0002C, /* Flow Control Address High -RW */
+	E1000_FEXTNVM  = 0x00028, /* Future Extended NVM - RW */
+	E1000_FCT      = 0x00030, /* Flow Control Type - RW */
+	E1000_VET      = 0x00038, /* VLAN Ether Type - RW */
+	E1000_ICR      = 0x000C0, /* Interrupt Cause Read - R/clr */
+	E1000_ITR      = 0x000C4, /* Interrupt Throttling Rate - RW */
+	E1000_ICS      = 0x000C8, /* Interrupt Cause Set - WO */
+	E1000_IMS      = 0x000D0, /* Interrupt Mask Set - RW */
+	E1000_IMC      = 0x000D8, /* Interrupt Mask Clear - WO */
+	E1000_EIAC_82574 = 0x000DC, /* Ext. Interrupt Auto Clear - RW */
+	E1000_IAM      = 0x000E0, /* Interrupt Acknowledge Auto Mask */
+	E1000_IVAR     = 0x000E4, /* Interrupt Vector Allocation - RW */
+	E1000_EITR_82574_BASE = 0x000E8, /* Interrupt Throttling - RW */
+#define E1000_EITR_82574(_n) (E1000_EITR_82574_BASE + (_n << 2))
+	E1000_RCTL     = 0x00100, /* Rx Control - RW */
+	E1000_FCTTV    = 0x00170, /* Flow Control Transmit Timer Value - RW */
+	E1000_TXCW     = 0x00178, /* Tx Configuration Word - RW */
+	E1000_RXCW     = 0x00180, /* Rx Configuration Word - RO */
+	E1000_TCTL     = 0x00400, /* Tx Control - RW */
+	E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */
+	E1000_TIPG     = 0x00410, /* Tx Inter-packet gap -RW */
+	E1000_AIT      = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */
+	E1000_LEDCTL   = 0x00E00, /* LED Control - RW */
+	E1000_EXTCNF_CTRL  = 0x00F00, /* Extended Configuration Control */
+	E1000_EXTCNF_SIZE  = 0x00F08, /* Extended Configuration Size */
+	E1000_PHY_CTRL     = 0x00F10, /* PHY Control Register in CSR */
+	E1000_PBA      = 0x01000, /* Packet Buffer Allocation - RW */
+	E1000_PBS      = 0x01008, /* Packet Buffer Size */
+	E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
+	E1000_EEWR     = 0x0102C, /* EEPROM Write Register - RW */
+	E1000_FLOP     = 0x0103C, /* FLASH Opcode Register */
+	E1000_PBA_ECC  = 0x01100, /* PBA ECC Register */
+	E1000_ERT      = 0x02008, /* Early Rx Threshold - RW */
+	E1000_FCRTL    = 0x02160, /* Flow Control Receive Threshold Low - RW */
+	E1000_FCRTH    = 0x02168, /* Flow Control Receive Threshold High - RW */
+	E1000_PSRCTL   = 0x02170, /* Packet Split Receive Control - RW */
+	E1000_RDBAL    = 0x02800, /* Rx Descriptor Base Address Low - RW */
+	E1000_RDBAH    = 0x02804, /* Rx Descriptor Base Address High - RW */
+	E1000_RDLEN    = 0x02808, /* Rx Descriptor Length - RW */
+	E1000_RDH      = 0x02810, /* Rx Descriptor Head - RW */
+	E1000_RDT      = 0x02818, /* Rx Descriptor Tail - RW */
+	E1000_RDTR     = 0x02820, /* Rx Delay Timer - RW */
+	E1000_RXDCTL_BASE = 0x02828, /* Rx Descriptor Control - RW */
+#define E1000_RXDCTL(_n)   (E1000_RXDCTL_BASE + (_n << 8))
+	E1000_RADV     = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */
+
+/* Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ *
+ */
+#define E1000_RDBAL_REG(_n)   (E1000_RDBAL + (_n << 8))
+	E1000_KABGTXD  = 0x03004, /* AFE Band Gap Transmit Ref Data */
+	E1000_TDBAL    = 0x03800, /* Tx Descriptor Base Address Low - RW */
+	E1000_TDBAH    = 0x03804, /* Tx Descriptor Base Address High - RW */
+	E1000_TDLEN    = 0x03808, /* Tx Descriptor Length - RW */
+	E1000_TDH      = 0x03810, /* Tx Descriptor Head - RW */
+	E1000_TDT      = 0x03818, /* Tx Descriptor Tail - RW */
+	E1000_TIDV     = 0x03820, /* Tx Interrupt Delay Value - RW */
+	E1000_TXDCTL_BASE = 0x03828, /* Tx Descriptor Control - RW */
+#define E1000_TXDCTL(_n)   (E1000_TXDCTL_BASE + (_n << 8))
+	E1000_TADV     = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */
+	E1000_TARC_BASE = 0x03840, /* Tx Arbitration Count (0) */
+#define E1000_TARC(_n)   (E1000_TARC_BASE + (_n << 8))
+	E1000_CRCERRS  = 0x04000, /* CRC Error Count - R/clr */
+	E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
+	E1000_SYMERRS  = 0x04008, /* Symbol Error Count - R/clr */
+	E1000_RXERRC   = 0x0400C, /* Receive Error Count - R/clr */
+	E1000_MPC      = 0x04010, /* Missed Packet Count - R/clr */
+	E1000_SCC      = 0x04014, /* Single Collision Count - R/clr */
+	E1000_ECOL     = 0x04018, /* Excessive Collision Count - R/clr */
+	E1000_MCC      = 0x0401C, /* Multiple Collision Count - R/clr */
+	E1000_LATECOL  = 0x04020, /* Late Collision Count - R/clr */
+	E1000_COLC     = 0x04028, /* Collision Count - R/clr */
+	E1000_DC       = 0x04030, /* Defer Count - R/clr */
+	E1000_TNCRS    = 0x04034, /* Tx-No CRS - R/clr */
+	E1000_SEC      = 0x04038, /* Sequence Error Count - R/clr */
+	E1000_CEXTERR  = 0x0403C, /* Carrier Extension Error Count - R/clr */
+	E1000_RLEC     = 0x04040, /* Receive Length Error Count - R/clr */
+	E1000_XONRXC   = 0x04048, /* XON Rx Count - R/clr */
+	E1000_XONTXC   = 0x0404C, /* XON Tx Count - R/clr */
+	E1000_XOFFRXC  = 0x04050, /* XOFF Rx Count - R/clr */
+	E1000_XOFFTXC  = 0x04054, /* XOFF Tx Count - R/clr */
+	E1000_FCRUC    = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */
+	E1000_PRC64    = 0x0405C, /* Packets Rx (64 bytes) - R/clr */
+	E1000_PRC127   = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */
+	E1000_PRC255   = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */
+	E1000_PRC511   = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */
+	E1000_PRC1023  = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */
+	E1000_PRC1522  = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */
+	E1000_GPRC     = 0x04074, /* Good Packets Rx Count - R/clr */
+	E1000_BPRC     = 0x04078, /* Broadcast Packets Rx Count - R/clr */
+	E1000_MPRC     = 0x0407C, /* Multicast Packets Rx Count - R/clr */
+	E1000_GPTC     = 0x04080, /* Good Packets Tx Count - R/clr */
+	E1000_GORCL    = 0x04088, /* Good Octets Rx Count Low - R/clr */
+	E1000_GORCH    = 0x0408C, /* Good Octets Rx Count High - R/clr */
+	E1000_GOTCL    = 0x04090, /* Good Octets Tx Count Low - R/clr */
+	E1000_GOTCH    = 0x04094, /* Good Octets Tx Count High - R/clr */
+	E1000_RNBC     = 0x040A0, /* Rx No Buffers Count - R/clr */
+	E1000_RUC      = 0x040A4, /* Rx Undersize Count - R/clr */
+	E1000_RFC      = 0x040A8, /* Rx Fragment Count - R/clr */
+	E1000_ROC      = 0x040AC, /* Rx Oversize Count - R/clr */
+	E1000_RJC      = 0x040B0, /* Rx Jabber Count - R/clr */
+	E1000_MGTPRC   = 0x040B4, /* Management Packets Rx Count - R/clr */
+	E1000_MGTPDC   = 0x040B8, /* Management Packets Dropped Count - R/clr */
+	E1000_MGTPTC   = 0x040BC, /* Management Packets Tx Count - R/clr */
+	E1000_TORL     = 0x040C0, /* Total Octets Rx Low - R/clr */
+	E1000_TORH     = 0x040C4, /* Total Octets Rx High - R/clr */
+	E1000_TOTL     = 0x040C8, /* Total Octets Tx Low - R/clr */
+	E1000_TOTH     = 0x040CC, /* Total Octets Tx High - R/clr */
+	E1000_TPR      = 0x040D0, /* Total Packets Rx - R/clr */
+	E1000_TPT      = 0x040D4, /* Total Packets Tx - R/clr */
+	E1000_PTC64    = 0x040D8, /* Packets Tx (64 bytes) - R/clr */
+	E1000_PTC127   = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */
+	E1000_PTC255   = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */
+	E1000_PTC511   = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */
+	E1000_PTC1023  = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */
+	E1000_PTC1522  = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */
+	E1000_MPTC     = 0x040F0, /* Multicast Packets Tx Count - R/clr */
+	E1000_BPTC     = 0x040F4, /* Broadcast Packets Tx Count - R/clr */
+	E1000_TSCTC    = 0x040F8, /* TCP Segmentation Context Tx - R/clr */
+	E1000_TSCTFC   = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */
+	E1000_IAC      = 0x04100, /* Interrupt Assertion Count */
+	E1000_ICRXPTC  = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
+	E1000_ICRXATC  = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
+	E1000_ICTXPTC  = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
+	E1000_ICTXATC  = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
+	E1000_ICTXQEC  = 0x04118, /* Irq Cause Tx Queue Empty Count */
+	E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
+	E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
+	E1000_ICRXOC   = 0x04124, /* Irq Cause Receiver Overrun Count */
+	E1000_RXCSUM   = 0x05000, /* Rx Checksum Control - RW */
+	E1000_RFCTL    = 0x05008, /* Receive Filter Control */
+	E1000_MTA      = 0x05200, /* Multicast Table Array - RW Array */
+	E1000_RAL_BASE = 0x05400, /* Receive Address Low - RW */
+#define E1000_RAL(_n)   (E1000_RAL_BASE + ((_n) * 8))
+#define E1000_RA        (E1000_RAL(0))
+	E1000_RAH_BASE = 0x05404, /* Receive Address High - RW */
+#define E1000_RAH(_n)   (E1000_RAH_BASE + ((_n) * 8))
+	E1000_VFTA     = 0x05600, /* VLAN Filter Table Array - RW Array */
+	E1000_WUC      = 0x05800, /* Wakeup Control - RW */
+	E1000_WUFC     = 0x05808, /* Wakeup Filter Control - RW */
+	E1000_WUS      = 0x05810, /* Wakeup Status - RO */
+	E1000_MANC     = 0x05820, /* Management Control - RW */
+	E1000_FFLT     = 0x05F00, /* Flexible Filter Length Table - RW Array */
+	E1000_HOST_IF  = 0x08800, /* Host Interface */
+
+	E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
+	E1000_MANC2H    = 0x05860, /* Management Control To Host - RW */
+	E1000_MDEF_BASE = 0x05890, /* Management Decision Filters */
+#define E1000_MDEF(_n)   (E1000_MDEF_BASE + ((_n) * 4))
+	E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
+	E1000_GCR	= 0x05B00, /* PCI-Ex Control */
+	E1000_GCR2      = 0x05B64, /* PCI-Ex Control #2 */
+	E1000_FACTPS    = 0x05B30, /* Function Active and Power State to MNG */
+	E1000_SWSM      = 0x05B50, /* SW Semaphore */
+	E1000_FWSM      = 0x05B54, /* FW Semaphore */
+	E1000_SWSM2     = 0x05B58, /* Driver-only SW semaphore */
+	E1000_CRC_OFFSET = 0x05F50, /* CRC Offset register */
+	E1000_HICR      = 0x08F00, /* Host Interface Control */
+};
+
+#define E1000_MAX_PHY_ADDR		4
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG	0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS	0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL	0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH	0x13 /* PHY Link Health */
+#define IGP02E1000_PHY_POWER_MGMT	0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT	0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT		22   /* Page Select for BM */
+#define IGP_PAGE_SHIFT			5
+#define PHY_REG_MASK			0x1F
+
+#define BM_WUC_PAGE			800
+#define BM_WUC_ADDRESS_OPCODE		0x11
+#define BM_WUC_DATA_OPCODE		0x12
+#define BM_WUC_ENABLE_PAGE		769
+#define BM_WUC_ENABLE_REG		17
+#define BM_WUC_ENABLE_BIT		(1 << 2)
+#define BM_WUC_HOST_WU_BIT		(1 << 4)
+
+#define BM_WUC	PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS	PHY_REG(BM_WUC_PAGE, 3)
+
+#define IGP01E1000_PHY_PCS_INIT_REG	0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK	0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX	0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX	0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED	0x0080
+
+#define IGP02E1000_PM_SPD		0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU		0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU		0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE	0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED	0x0002
+#define IGP01E1000_PSSR_MDIX			0x0800
+#define IGP01E1000_PSSR_SPEED_MASK		0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS		0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM		4
+#define IGP02E1000_PHY_AGC_A			0x11B1
+#define IGP02E1000_PHY_AGC_B			0x12B1
+#define IGP02E1000_PHY_AGC_C			0x14B1
+#define IGP02E1000_PHY_AGC_D			0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT	9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK	0x7F
+#define IGP02E1000_AGC_RANGE		15
+
+/* manage.c */
+#define E1000_VFTA_ENTRY_SHIFT		5
+#define E1000_VFTA_ENTRY_MASK		0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK	0x1F
+
+#define E1000_HICR_EN			0x01  /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C			0x02
+#define E1000_HICR_FW_RESET_ENABLE	0x40
+#define E1000_HICR_FW_RESET		0x80
+
+#define E1000_FWSM_MODE_MASK		0xE
+#define E1000_FWSM_MODE_SHIFT		1
+
+#define E1000_MNG_IAMT_MODE		0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH	0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET	0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT	10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD	64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING	0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN	0x2
+
+/* nvm.c */
+#define E1000_STM_OPCODE  0xDB00
+
+#define E1000_KMRNCTRLSTA_OFFSET	0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT	16
+#define E1000_KMRNCTRLSTA_REN		0x00200000
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET	0x3    /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_TIMEOUTS	0x4    /* Kumeran Timeouts */
+#define E1000_KMRNCTRLSTA_INBAND_PARAM	0x9    /* Kumeran InBand Parameters */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK	0x1000 /* Nearend Loopback mode */
+#define E1000_KMRNCTRLSTA_K1_CONFIG	0x7
+#define E1000_KMRNCTRLSTA_K1_ENABLE	0x0002
+#define E1000_KMRNCTRLSTA_K1_DISABLE	0x1400
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL	0x10
+#define IFE_PHY_SPECIAL_CONTROL		0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED	0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL		0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED	0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE		0x0010
+#define IFE_PSC_FORCE_POLARITY			0x0020
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE		0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF		0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON		0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS	0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX	0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX	0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#define E1000_CABLE_LENGTH_UNDEFINED	0xFF
+
+#define E1000_DEV_ID_82571EB_COPPER		0x105E
+#define E1000_DEV_ID_82571EB_FIBER		0x105F
+#define E1000_DEV_ID_82571EB_SERDES		0x1060
+#define E1000_DEV_ID_82571EB_QUAD_COPPER	0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER	0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER		0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP	0x10BC
+#define E1000_DEV_ID_82571EB_SERDES_DUAL	0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD	0x10DA
+#define E1000_DEV_ID_82572EI_COPPER		0x107D
+#define E1000_DEV_ID_82572EI_FIBER		0x107E
+#define E1000_DEV_ID_82572EI_SERDES		0x107F
+#define E1000_DEV_ID_82572EI			0x10B9
+#define E1000_DEV_ID_82573E			0x108B
+#define E1000_DEV_ID_82573E_IAMT		0x108C
+#define E1000_DEV_ID_82573L			0x109A
+#define E1000_DEV_ID_82574L			0x10D3
+#define E1000_DEV_ID_82574LA			0x10F6
+#define E1000_DEV_ID_82583V                     0x150C
+
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT	0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT	0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT	0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT	0x10BB
+
+#define E1000_DEV_ID_ICH8_82567V_3		0x1501
+#define E1000_DEV_ID_ICH8_IGP_M_AMT		0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT		0x104A
+#define E1000_DEV_ID_ICH8_IGP_C			0x104B
+#define E1000_DEV_ID_ICH8_IFE			0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT		0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G			0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M			0x104D
+#define E1000_DEV_ID_ICH9_IGP_AMT		0x10BD
+#define E1000_DEV_ID_ICH9_BM			0x10E5
+#define E1000_DEV_ID_ICH9_IGP_M_AMT		0x10F5
+#define E1000_DEV_ID_ICH9_IGP_M			0x10BF
+#define E1000_DEV_ID_ICH9_IGP_M_V		0x10CB
+#define E1000_DEV_ID_ICH9_IGP_C			0x294C
+#define E1000_DEV_ID_ICH9_IFE			0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT		0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G			0x10C2
+#define E1000_DEV_ID_ICH10_R_BM_LM		0x10CC
+#define E1000_DEV_ID_ICH10_R_BM_LF		0x10CD
+#define E1000_DEV_ID_ICH10_R_BM_V		0x10CE
+#define E1000_DEV_ID_ICH10_D_BM_LM		0x10DE
+#define E1000_DEV_ID_ICH10_D_BM_LF		0x10DF
+#define E1000_DEV_ID_ICH10_D_BM_V		0x1525
+#define E1000_DEV_ID_PCH_M_HV_LM		0x10EA
+#define E1000_DEV_ID_PCH_M_HV_LC		0x10EB
+#define E1000_DEV_ID_PCH_D_HV_DM		0x10EF
+#define E1000_DEV_ID_PCH_D_HV_DC		0x10F0
+
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_1 1
+
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0   0
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1   3
+
+enum e1000_mac_type {
+	e1000_82571,
+	e1000_82572,
+	e1000_82573,
+	e1000_82574,
+	e1000_82583,
+	e1000_80003es2lan,
+	e1000_ich8lan,
+	e1000_ich9lan,
+	e1000_ich10lan,
+	e1000_pchlan,
+};
+
+enum e1000_media_type {
+	e1000_media_type_unknown = 0,
+	e1000_media_type_copper = 1,
+	e1000_media_type_fiber = 2,
+	e1000_media_type_internal_serdes = 3,
+	e1000_num_media_types
+};
+
+enum e1000_nvm_type {
+	e1000_nvm_unknown = 0,
+	e1000_nvm_none,
+	e1000_nvm_eeprom_spi,
+	e1000_nvm_flash_hw,
+	e1000_nvm_flash_sw
+};
+
+enum e1000_nvm_override {
+	e1000_nvm_override_none = 0,
+	e1000_nvm_override_spi_small,
+	e1000_nvm_override_spi_large
+};
+
+enum e1000_phy_type {
+	e1000_phy_unknown = 0,
+	e1000_phy_none,
+	e1000_phy_m88,
+	e1000_phy_igp,
+	e1000_phy_igp_2,
+	e1000_phy_gg82563,
+	e1000_phy_igp_3,
+	e1000_phy_ife,
+	e1000_phy_bm,
+	e1000_phy_82578,
+	e1000_phy_82577,
+};
+
+enum e1000_bus_width {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_pcie_x1,
+	e1000_bus_width_pcie_x2,
+	e1000_bus_width_pcie_x4 = 4,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+};
+
+enum e1000_1000t_rx_status {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+};
+
+enum e1000_rev_polarity{
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+};
+
+enum e1000_fc_mode {
+	e1000_fc_none = 0,
+	e1000_fc_rx_pause,
+	e1000_fc_tx_pause,
+	e1000_fc_full,
+	e1000_fc_default = 0xFF
+};
+
+enum e1000_ms_type {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+};
+
+enum e1000_smart_speed {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+};
+
+enum e1000_serdes_link_state {
+	e1000_serdes_link_down = 0,
+	e1000_serdes_link_autoneg_progress,
+	e1000_serdes_link_autoneg_complete,
+	e1000_serdes_link_forced_up
+};
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	__le64 buffer_addr; /* Address of the descriptor's data buffer */
+	__le16 length;      /* Length of data DMAed into data buffer */
+	__le16 csum;	/* Packet checksum */
+	u8  status;      /* Descriptor status */
+	u8  errors;      /* Descriptor Errors */
+	__le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		__le64 buffer_addr;
+		__le64 reserved;
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	      /* Multiple Rx Queues */
+			union {
+				__le32 rss;	    /* RSS Hash */
+				struct {
+					__le16 ip_id;  /* IP id */
+					__le16 csum;   /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;     /* ext status/error */
+			__le16 length;
+			__le16 vlan;	     /* VLAN tag */
+		} upper;
+	} wb;  /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		__le64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	      /* Multiple Rx Queues */
+			union {
+				__le32 rss;	      /* RSS Hash */
+				struct {
+					__le16 ip_id;    /* IP id */
+					__le16 csum;     /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;     /* ext status/error */
+			__le16 length0;	  /* length of buffer 0 */
+			__le16 vlan;	     /* VLAN tag */
+		} middle;
+		struct {
+			__le16 header_status;
+			__le16 length[3];	/* length of buffers 1-3 */
+		} upper;
+		__le64 reserved;
+	} wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	__le64 buffer_addr;      /* Address of the descriptor's data buffer */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;    /* Data buffer length */
+			u8 cso;	/* Checksum offset */
+			u8 cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 css;	/* Checksum start */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		__le32 ip_config;
+		struct {
+			u8 ipcss;      /* IP checksum start */
+			u8 ipcso;      /* IP checksum offset */
+			__le16 ipcse;     /* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		__le32 tcp_config;
+		struct {
+			u8 tucss;      /* TCP checksum start */
+			u8 tucso;      /* TCP checksum offset */
+			__le16 tucse;     /* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	__le32 cmd_and_length;
+	union {
+		__le32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 hdr_len;    /* Header length */
+			__le16 mss;       /* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	__le64 buffer_addr;   /* Address of the descriptor's buffer address */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;    /* Data buffer length */
+			u8 typ_len_ext;
+			u8 cmd;
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 popts;      /* Packet Options */
+			__le16 special;   /* */
+		} fields;
+	} upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorc;
+	u64 gotc;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 tor;
+	u64 tot;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8  status;
+	u8  reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8  reserved3;
+	u8  checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;
+	u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH     252
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+	u8  command_id;
+	u8  checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+/* Function pointers and static data for the MAC. */
+struct e1000_mac_operations {
+	s32  (*id_led_init)(struct e1000_hw *);
+	bool (*check_mng_mode)(struct e1000_hw *);
+	s32  (*check_for_link)(struct e1000_hw *);
+	s32  (*cleanup_led)(struct e1000_hw *);
+	void (*clear_hw_cntrs)(struct e1000_hw *);
+	void (*clear_vfta)(struct e1000_hw *);
+	s32  (*get_bus_info)(struct e1000_hw *);
+	void (*set_lan_id)(struct e1000_hw *);
+	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+	s32  (*led_on)(struct e1000_hw *);
+	s32  (*led_off)(struct e1000_hw *);
+	void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+	s32  (*reset_hw)(struct e1000_hw *);
+	s32  (*init_hw)(struct e1000_hw *);
+	s32  (*setup_link)(struct e1000_hw *);
+	s32  (*setup_physical_interface)(struct e1000_hw *);
+	s32  (*setup_led)(struct e1000_hw *);
+	void (*write_vfta)(struct e1000_hw *, u32, u32);
+	s32  (*read_mac_addr)(struct e1000_hw *);
+};
+
+/* Function pointers for the PHY. */
+struct e1000_phy_operations {
+	s32  (*acquire)(struct e1000_hw *);
+	s32  (*cfg_on_link_up)(struct e1000_hw *);
+	s32  (*check_polarity)(struct e1000_hw *);
+	s32  (*check_reset_block)(struct e1000_hw *);
+	s32  (*commit)(struct e1000_hw *);
+	s32  (*force_speed_duplex)(struct e1000_hw *);
+	s32  (*get_cfg_done)(struct e1000_hw *hw);
+	s32  (*get_cable_length)(struct e1000_hw *);
+	s32  (*get_info)(struct e1000_hw *);
+	s32  (*read_reg)(struct e1000_hw *, u32, u16 *);
+	s32  (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
+	void (*release)(struct e1000_hw *);
+	s32  (*reset)(struct e1000_hw *);
+	s32  (*set_d0_lplu_state)(struct e1000_hw *, bool);
+	s32  (*set_d3_lplu_state)(struct e1000_hw *, bool);
+	s32  (*write_reg)(struct e1000_hw *, u32, u16);
+	s32  (*write_reg_locked)(struct e1000_hw *, u32, u16);
+	void (*power_up)(struct e1000_hw *);
+	void (*power_down)(struct e1000_hw *);
+};
+
+/* Function pointers for the NVM. */
+struct e1000_nvm_operations {
+	s32  (*acquire)(struct e1000_hw *);
+	s32  (*read)(struct e1000_hw *, u16, u16, u16 *);
+	void (*release)(struct e1000_hw *);
+	s32  (*update)(struct e1000_hw *);
+	s32  (*valid_led_default)(struct e1000_hw *, u16 *);
+	s32  (*validate)(struct e1000_hw *);
+	s32  (*write)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+	struct e1000_mac_operations ops;
+
+	u8 addr[6];
+	u8 perm_addr[6];
+
+	enum e1000_mac_type type;
+
+	u32 collision_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	u32 mc_filter_type;
+	u32 tx_packet_delta;
+	u32 txcw;
+
+	u16 current_ifs_val;
+	u16 ifs_max_val;
+	u16 ifs_min_val;
+	u16 ifs_ratio;
+	u16 ifs_step_size;
+	u16 mta_reg_count;
+
+	/* Maximum size of the MTA register table in all supported adapters */
+	#define MAX_MTA_REG 128
+	u32 mta_shadow[MAX_MTA_REG];
+	u16 rar_entry_count;
+
+	u8  forced_speed_duplex;
+
+	bool adaptive_ifs;
+	bool has_fwsm;
+	bool arc_subsystem_valid;
+	bool autoneg;
+	bool autoneg_failed;
+	bool get_link_status;
+	bool in_ifs_mode;
+	bool serdes_has_link;
+	bool tx_pkt_filtering;
+	enum e1000_serdes_link_state serdes_link_state;
+};
+
+struct e1000_phy_info {
+	struct e1000_phy_operations ops;
+
+	enum e1000_phy_type type;
+
+	enum e1000_1000t_rx_status local_rx;
+	enum e1000_1000t_rx_status remote_rx;
+	enum e1000_ms_type ms_type;
+	enum e1000_ms_type original_ms_type;
+	enum e1000_rev_polarity cable_polarity;
+	enum e1000_smart_speed smart_speed;
+
+	u32 addr;
+	u32 id;
+	u32 reset_delay_us; /* in usec */
+	u32 revision;
+
+	enum e1000_media_type media_type;
+
+	u16 autoneg_advertised;
+	u16 autoneg_mask;
+	u16 cable_length;
+	u16 max_cable_length;
+	u16 min_cable_length;
+
+	u8 mdix;
+
+	bool disable_polarity_correction;
+	bool is_mdix;
+	bool polarity_correction;
+	bool speed_downgraded;
+	bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+	struct e1000_nvm_operations ops;
+
+	enum e1000_nvm_type type;
+	enum e1000_nvm_override override;
+
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+
+	u16 word_size;
+	u16 delay_usec;
+	u16 address_bits;
+	u16 opcode_bits;
+	u16 page_size;
+};
+
+struct e1000_bus_info {
+	enum e1000_bus_width width;
+
+	u16 func;
+};
+
+struct e1000_fc_info {
+	u32 high_water;          /* Flow control high-water mark */
+	u32 low_water;           /* Flow control low-water mark */
+	u16 pause_time;          /* Flow control pause timer */
+	u16 refresh_time;        /* Flow control refresh timer */
+	bool send_xon;           /* Flow control send XON */
+	bool strict_ieee;        /* Strict IEEE mode */
+	enum e1000_fc_mode current_mode; /* FC mode in effect */
+	enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
+};
+
+struct e1000_dev_spec_82571 {
+	bool laa_is_present;
+	u32 smb_counter;
+};
+
+struct e1000_dev_spec_80003es2lan {
+	bool  mdic_wa_enable;
+};
+
+struct e1000_shadow_ram {
+	u16  value;
+	bool modified;
+};
+
+#define E1000_ICH8_SHADOW_RAM_WORDS		2048
+
+struct e1000_dev_spec_ich8lan {
+	bool kmrn_lock_loss_workaround_enabled;
+	struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
+	bool nvm_k1_enabled;
+};
+
+struct e1000_hw {
+	struct e1000_adapter *adapter;
+
+	u8 __iomem *hw_addr;
+	u8 __iomem *flash_address;
+
+	struct e1000_mac_info  mac;
+	struct e1000_fc_info   fc;
+	struct e1000_phy_info  phy;
+	struct e1000_nvm_info  nvm;
+	struct e1000_bus_info  bus;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+	union {
+		struct e1000_dev_spec_82571	e82571;
+		struct e1000_dev_spec_80003es2lan e80003es2lan;
+		struct e1000_dev_spec_ich8lan	ich8lan;
+	} dev_spec;
+};
+
+#endif
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/hw-2.6.35-orig.h	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,954 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include <linux/types.h>
+
+struct e1000_hw;
+struct e1000_adapter;
+
+#include "defines.h"
+
+#define er32(reg)	__er32(hw, E1000_##reg)
+#define ew32(reg,val)	__ew32(hw, E1000_##reg, (val))
+#define e1e_flush()	er32(STATUS)
+
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
+	(writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
+
+#define E1000_READ_REG_ARRAY(a, reg, offset) \
+	(readl((a)->hw_addr + reg + ((offset) << 2)))
+
+enum e1e_registers {
+	E1000_CTRL     = 0x00000, /* Device Control - RW */
+	E1000_STATUS   = 0x00008, /* Device Status - RO */
+	E1000_EECD     = 0x00010, /* EEPROM/Flash Control - RW */
+	E1000_EERD     = 0x00014, /* EEPROM Read - RW */
+	E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
+	E1000_FLA      = 0x0001C, /* Flash Access - RW */
+	E1000_MDIC     = 0x00020, /* MDI Control - RW */
+	E1000_SCTL     = 0x00024, /* SerDes Control - RW */
+	E1000_FCAL     = 0x00028, /* Flow Control Address Low - RW */
+	E1000_FCAH     = 0x0002C, /* Flow Control Address High -RW */
+	E1000_FEXTNVM  = 0x00028, /* Future Extended NVM - RW */
+	E1000_FCT      = 0x00030, /* Flow Control Type - RW */
+	E1000_VET      = 0x00038, /* VLAN Ether Type - RW */
+	E1000_ICR      = 0x000C0, /* Interrupt Cause Read - R/clr */
+	E1000_ITR      = 0x000C4, /* Interrupt Throttling Rate - RW */
+	E1000_ICS      = 0x000C8, /* Interrupt Cause Set - WO */
+	E1000_IMS      = 0x000D0, /* Interrupt Mask Set - RW */
+	E1000_IMC      = 0x000D8, /* Interrupt Mask Clear - WO */
+	E1000_EIAC_82574 = 0x000DC, /* Ext. Interrupt Auto Clear - RW */
+	E1000_IAM      = 0x000E0, /* Interrupt Acknowledge Auto Mask */
+	E1000_IVAR     = 0x000E4, /* Interrupt Vector Allocation - RW */
+	E1000_EITR_82574_BASE = 0x000E8, /* Interrupt Throttling - RW */
+#define E1000_EITR_82574(_n) (E1000_EITR_82574_BASE + (_n << 2))
+	E1000_RCTL     = 0x00100, /* Rx Control - RW */
+	E1000_FCTTV    = 0x00170, /* Flow Control Transmit Timer Value - RW */
+	E1000_TXCW     = 0x00178, /* Tx Configuration Word - RW */
+	E1000_RXCW     = 0x00180, /* Rx Configuration Word - RO */
+	E1000_TCTL     = 0x00400, /* Tx Control - RW */
+	E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */
+	E1000_TIPG     = 0x00410, /* Tx Inter-packet gap -RW */
+	E1000_AIT      = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */
+	E1000_LEDCTL   = 0x00E00, /* LED Control - RW */
+	E1000_EXTCNF_CTRL  = 0x00F00, /* Extended Configuration Control */
+	E1000_EXTCNF_SIZE  = 0x00F08, /* Extended Configuration Size */
+	E1000_PHY_CTRL     = 0x00F10, /* PHY Control Register in CSR */
+	E1000_PBA      = 0x01000, /* Packet Buffer Allocation - RW */
+	E1000_PBS      = 0x01008, /* Packet Buffer Size */
+	E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
+	E1000_EEWR     = 0x0102C, /* EEPROM Write Register - RW */
+	E1000_FLOP     = 0x0103C, /* FLASH Opcode Register */
+	E1000_PBA_ECC  = 0x01100, /* PBA ECC Register */
+	E1000_ERT      = 0x02008, /* Early Rx Threshold - RW */
+	E1000_FCRTL    = 0x02160, /* Flow Control Receive Threshold Low - RW */
+	E1000_FCRTH    = 0x02168, /* Flow Control Receive Threshold High - RW */
+	E1000_PSRCTL   = 0x02170, /* Packet Split Receive Control - RW */
+	E1000_RDBAL    = 0x02800, /* Rx Descriptor Base Address Low - RW */
+	E1000_RDBAH    = 0x02804, /* Rx Descriptor Base Address High - RW */
+	E1000_RDLEN    = 0x02808, /* Rx Descriptor Length - RW */
+	E1000_RDH      = 0x02810, /* Rx Descriptor Head - RW */
+	E1000_RDT      = 0x02818, /* Rx Descriptor Tail - RW */
+	E1000_RDTR     = 0x02820, /* Rx Delay Timer - RW */
+	E1000_RXDCTL_BASE = 0x02828, /* Rx Descriptor Control - RW */
+#define E1000_RXDCTL(_n)   (E1000_RXDCTL_BASE + (_n << 8))
+	E1000_RADV     = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */
+
+/* Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ *
+ */
+#define E1000_RDBAL_REG(_n)   (E1000_RDBAL + (_n << 8))
+	E1000_KABGTXD  = 0x03004, /* AFE Band Gap Transmit Ref Data */
+	E1000_TDBAL    = 0x03800, /* Tx Descriptor Base Address Low - RW */
+	E1000_TDBAH    = 0x03804, /* Tx Descriptor Base Address High - RW */
+	E1000_TDLEN    = 0x03808, /* Tx Descriptor Length - RW */
+	E1000_TDH      = 0x03810, /* Tx Descriptor Head - RW */
+	E1000_TDT      = 0x03818, /* Tx Descriptor Tail - RW */
+	E1000_TIDV     = 0x03820, /* Tx Interrupt Delay Value - RW */
+	E1000_TXDCTL_BASE = 0x03828, /* Tx Descriptor Control - RW */
+#define E1000_TXDCTL(_n)   (E1000_TXDCTL_BASE + (_n << 8))
+	E1000_TADV     = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */
+	E1000_TARC_BASE = 0x03840, /* Tx Arbitration Count (0) */
+#define E1000_TARC(_n)   (E1000_TARC_BASE + (_n << 8))
+	E1000_CRCERRS  = 0x04000, /* CRC Error Count - R/clr */
+	E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
+	E1000_SYMERRS  = 0x04008, /* Symbol Error Count - R/clr */
+	E1000_RXERRC   = 0x0400C, /* Receive Error Count - R/clr */
+	E1000_MPC      = 0x04010, /* Missed Packet Count - R/clr */
+	E1000_SCC      = 0x04014, /* Single Collision Count - R/clr */
+	E1000_ECOL     = 0x04018, /* Excessive Collision Count - R/clr */
+	E1000_MCC      = 0x0401C, /* Multiple Collision Count - R/clr */
+	E1000_LATECOL  = 0x04020, /* Late Collision Count - R/clr */
+	E1000_COLC     = 0x04028, /* Collision Count - R/clr */
+	E1000_DC       = 0x04030, /* Defer Count - R/clr */
+	E1000_TNCRS    = 0x04034, /* Tx-No CRS - R/clr */
+	E1000_SEC      = 0x04038, /* Sequence Error Count - R/clr */
+	E1000_CEXTERR  = 0x0403C, /* Carrier Extension Error Count - R/clr */
+	E1000_RLEC     = 0x04040, /* Receive Length Error Count - R/clr */
+	E1000_XONRXC   = 0x04048, /* XON Rx Count - R/clr */
+	E1000_XONTXC   = 0x0404C, /* XON Tx Count - R/clr */
+	E1000_XOFFRXC  = 0x04050, /* XOFF Rx Count - R/clr */
+	E1000_XOFFTXC  = 0x04054, /* XOFF Tx Count - R/clr */
+	E1000_FCRUC    = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */
+	E1000_PRC64    = 0x0405C, /* Packets Rx (64 bytes) - R/clr */
+	E1000_PRC127   = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */
+	E1000_PRC255   = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */
+	E1000_PRC511   = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */
+	E1000_PRC1023  = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */
+	E1000_PRC1522  = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */
+	E1000_GPRC     = 0x04074, /* Good Packets Rx Count - R/clr */
+	E1000_BPRC     = 0x04078, /* Broadcast Packets Rx Count - R/clr */
+	E1000_MPRC     = 0x0407C, /* Multicast Packets Rx Count - R/clr */
+	E1000_GPTC     = 0x04080, /* Good Packets Tx Count - R/clr */
+	E1000_GORCL    = 0x04088, /* Good Octets Rx Count Low - R/clr */
+	E1000_GORCH    = 0x0408C, /* Good Octets Rx Count High - R/clr */
+	E1000_GOTCL    = 0x04090, /* Good Octets Tx Count Low - R/clr */
+	E1000_GOTCH    = 0x04094, /* Good Octets Tx Count High - R/clr */
+	E1000_RNBC     = 0x040A0, /* Rx No Buffers Count - R/clr */
+	E1000_RUC      = 0x040A4, /* Rx Undersize Count - R/clr */
+	E1000_RFC      = 0x040A8, /* Rx Fragment Count - R/clr */
+	E1000_ROC      = 0x040AC, /* Rx Oversize Count - R/clr */
+	E1000_RJC      = 0x040B0, /* Rx Jabber Count - R/clr */
+	E1000_MGTPRC   = 0x040B4, /* Management Packets Rx Count - R/clr */
+	E1000_MGTPDC   = 0x040B8, /* Management Packets Dropped Count - R/clr */
+	E1000_MGTPTC   = 0x040BC, /* Management Packets Tx Count - R/clr */
+	E1000_TORL     = 0x040C0, /* Total Octets Rx Low - R/clr */
+	E1000_TORH     = 0x040C4, /* Total Octets Rx High - R/clr */
+	E1000_TOTL     = 0x040C8, /* Total Octets Tx Low - R/clr */
+	E1000_TOTH     = 0x040CC, /* Total Octets Tx High - R/clr */
+	E1000_TPR      = 0x040D0, /* Total Packets Rx - R/clr */
+	E1000_TPT      = 0x040D4, /* Total Packets Tx - R/clr */
+	E1000_PTC64    = 0x040D8, /* Packets Tx (64 bytes) - R/clr */
+	E1000_PTC127   = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */
+	E1000_PTC255   = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */
+	E1000_PTC511   = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */
+	E1000_PTC1023  = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */
+	E1000_PTC1522  = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */
+	E1000_MPTC     = 0x040F0, /* Multicast Packets Tx Count - R/clr */
+	E1000_BPTC     = 0x040F4, /* Broadcast Packets Tx Count - R/clr */
+	E1000_TSCTC    = 0x040F8, /* TCP Segmentation Context Tx - R/clr */
+	E1000_TSCTFC   = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */
+	E1000_IAC      = 0x04100, /* Interrupt Assertion Count */
+	E1000_ICRXPTC  = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
+	E1000_ICRXATC  = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
+	E1000_ICTXPTC  = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
+	E1000_ICTXATC  = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
+	E1000_ICTXQEC  = 0x04118, /* Irq Cause Tx Queue Empty Count */
+	E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
+	E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
+	E1000_ICRXOC   = 0x04124, /* Irq Cause Receiver Overrun Count */
+	E1000_RXCSUM   = 0x05000, /* Rx Checksum Control - RW */
+	E1000_RFCTL    = 0x05008, /* Receive Filter Control */
+	E1000_MTA      = 0x05200, /* Multicast Table Array - RW Array */
+	E1000_RAL_BASE = 0x05400, /* Receive Address Low - RW */
+#define E1000_RAL(_n)   (E1000_RAL_BASE + ((_n) * 8))
+#define E1000_RA        (E1000_RAL(0))
+	E1000_RAH_BASE = 0x05404, /* Receive Address High - RW */
+#define E1000_RAH(_n)   (E1000_RAH_BASE + ((_n) * 8))
+	E1000_VFTA     = 0x05600, /* VLAN Filter Table Array - RW Array */
+	E1000_WUC      = 0x05800, /* Wakeup Control - RW */
+	E1000_WUFC     = 0x05808, /* Wakeup Filter Control - RW */
+	E1000_WUS      = 0x05810, /* Wakeup Status - RO */
+	E1000_MANC     = 0x05820, /* Management Control - RW */
+	E1000_FFLT     = 0x05F00, /* Flexible Filter Length Table - RW Array */
+	E1000_HOST_IF  = 0x08800, /* Host Interface */
+
+	E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
+	E1000_MANC2H    = 0x05860, /* Management Control To Host - RW */
+	E1000_MDEF_BASE = 0x05890, /* Management Decision Filters */
+#define E1000_MDEF(_n)   (E1000_MDEF_BASE + ((_n) * 4))
+	E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
+	E1000_GCR	= 0x05B00, /* PCI-Ex Control */
+	E1000_GCR2      = 0x05B64, /* PCI-Ex Control #2 */
+	E1000_FACTPS    = 0x05B30, /* Function Active and Power State to MNG */
+	E1000_SWSM      = 0x05B50, /* SW Semaphore */
+	E1000_FWSM      = 0x05B54, /* FW Semaphore */
+	E1000_SWSM2     = 0x05B58, /* Driver-only SW semaphore */
+	E1000_CRC_OFFSET = 0x05F50, /* CRC Offset register */
+	E1000_HICR      = 0x08F00, /* Host Interface Control */
+};
+
+#define E1000_MAX_PHY_ADDR		4
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG	0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS	0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL	0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH	0x13 /* PHY Link Health */
+#define IGP02E1000_PHY_POWER_MGMT	0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT	0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT		22   /* Page Select for BM */
+#define IGP_PAGE_SHIFT			5
+#define PHY_REG_MASK			0x1F
+
+#define BM_WUC_PAGE			800
+#define BM_WUC_ADDRESS_OPCODE		0x11
+#define BM_WUC_DATA_OPCODE		0x12
+#define BM_WUC_ENABLE_PAGE		769
+#define BM_WUC_ENABLE_REG		17
+#define BM_WUC_ENABLE_BIT		(1 << 2)
+#define BM_WUC_HOST_WU_BIT		(1 << 4)
+
+#define BM_WUC	PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS	PHY_REG(BM_WUC_PAGE, 3)
+
+#define IGP01E1000_PHY_PCS_INIT_REG	0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK	0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX	0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX	0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED	0x0080
+
+#define IGP02E1000_PM_SPD		0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU		0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU		0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE	0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED	0x0002
+#define IGP01E1000_PSSR_MDIX			0x0800
+#define IGP01E1000_PSSR_SPEED_MASK		0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS		0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM		4
+#define IGP02E1000_PHY_AGC_A			0x11B1
+#define IGP02E1000_PHY_AGC_B			0x12B1
+#define IGP02E1000_PHY_AGC_C			0x14B1
+#define IGP02E1000_PHY_AGC_D			0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT	9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK	0x7F
+#define IGP02E1000_AGC_RANGE		15
+
+/* manage.c */
+#define E1000_VFTA_ENTRY_SHIFT		5
+#define E1000_VFTA_ENTRY_MASK		0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK	0x1F
+
+#define E1000_HICR_EN			0x01  /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C			0x02
+#define E1000_HICR_FW_RESET_ENABLE	0x40
+#define E1000_HICR_FW_RESET		0x80
+
+#define E1000_FWSM_MODE_MASK		0xE
+#define E1000_FWSM_MODE_SHIFT		1
+
+#define E1000_MNG_IAMT_MODE		0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH	0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET	0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT	10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD	64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING	0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN	0x2
+
+/* nvm.c */
+#define E1000_STM_OPCODE  0xDB00
+
+#define E1000_KMRNCTRLSTA_OFFSET	0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT	16
+#define E1000_KMRNCTRLSTA_REN		0x00200000
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET	0x3    /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_TIMEOUTS	0x4    /* Kumeran Timeouts */
+#define E1000_KMRNCTRLSTA_INBAND_PARAM	0x9    /* Kumeran InBand Parameters */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK	0x1000 /* Nearend Loopback mode */
+#define E1000_KMRNCTRLSTA_K1_CONFIG	0x7
+#define E1000_KMRNCTRLSTA_K1_ENABLE	0x0002
+#define E1000_KMRNCTRLSTA_K1_DISABLE	0x1400
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL	0x10
+#define IFE_PHY_SPECIAL_CONTROL		0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED	0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL		0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED	0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE		0x0010
+#define IFE_PSC_FORCE_POLARITY			0x0020
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE		0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF		0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON		0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS	0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX	0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX	0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#define E1000_CABLE_LENGTH_UNDEFINED	0xFF
+
+#define E1000_DEV_ID_82571EB_COPPER		0x105E
+#define E1000_DEV_ID_82571EB_FIBER		0x105F
+#define E1000_DEV_ID_82571EB_SERDES		0x1060
+#define E1000_DEV_ID_82571EB_QUAD_COPPER	0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER	0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER		0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP	0x10BC
+#define E1000_DEV_ID_82571EB_SERDES_DUAL	0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD	0x10DA
+#define E1000_DEV_ID_82572EI_COPPER		0x107D
+#define E1000_DEV_ID_82572EI_FIBER		0x107E
+#define E1000_DEV_ID_82572EI_SERDES		0x107F
+#define E1000_DEV_ID_82572EI			0x10B9
+#define E1000_DEV_ID_82573E			0x108B
+#define E1000_DEV_ID_82573E_IAMT		0x108C
+#define E1000_DEV_ID_82573L			0x109A
+#define E1000_DEV_ID_82574L			0x10D3
+#define E1000_DEV_ID_82574LA			0x10F6
+#define E1000_DEV_ID_82583V                     0x150C
+
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT	0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT	0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT	0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT	0x10BB
+
+#define E1000_DEV_ID_ICH8_82567V_3		0x1501
+#define E1000_DEV_ID_ICH8_IGP_M_AMT		0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT		0x104A
+#define E1000_DEV_ID_ICH8_IGP_C			0x104B
+#define E1000_DEV_ID_ICH8_IFE			0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT		0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G			0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M			0x104D
+#define E1000_DEV_ID_ICH9_IGP_AMT		0x10BD
+#define E1000_DEV_ID_ICH9_BM			0x10E5
+#define E1000_DEV_ID_ICH9_IGP_M_AMT		0x10F5
+#define E1000_DEV_ID_ICH9_IGP_M			0x10BF
+#define E1000_DEV_ID_ICH9_IGP_M_V		0x10CB
+#define E1000_DEV_ID_ICH9_IGP_C			0x294C
+#define E1000_DEV_ID_ICH9_IFE			0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT		0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G			0x10C2
+#define E1000_DEV_ID_ICH10_R_BM_LM		0x10CC
+#define E1000_DEV_ID_ICH10_R_BM_LF		0x10CD
+#define E1000_DEV_ID_ICH10_R_BM_V		0x10CE
+#define E1000_DEV_ID_ICH10_D_BM_LM		0x10DE
+#define E1000_DEV_ID_ICH10_D_BM_LF		0x10DF
+#define E1000_DEV_ID_ICH10_D_BM_V		0x1525
+#define E1000_DEV_ID_PCH_M_HV_LM		0x10EA
+#define E1000_DEV_ID_PCH_M_HV_LC		0x10EB
+#define E1000_DEV_ID_PCH_D_HV_DM		0x10EF
+#define E1000_DEV_ID_PCH_D_HV_DC		0x10F0
+
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_1 1
+
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0   0
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1   3
+
+enum e1000_mac_type {
+	e1000_82571,
+	e1000_82572,
+	e1000_82573,
+	e1000_82574,
+	e1000_82583,
+	e1000_80003es2lan,
+	e1000_ich8lan,
+	e1000_ich9lan,
+	e1000_ich10lan,
+	e1000_pchlan,
+};
+
+enum e1000_media_type {
+	e1000_media_type_unknown = 0,
+	e1000_media_type_copper = 1,
+	e1000_media_type_fiber = 2,
+	e1000_media_type_internal_serdes = 3,
+	e1000_num_media_types
+};
+
+enum e1000_nvm_type {
+	e1000_nvm_unknown = 0,
+	e1000_nvm_none,
+	e1000_nvm_eeprom_spi,
+	e1000_nvm_flash_hw,
+	e1000_nvm_flash_sw
+};
+
+enum e1000_nvm_override {
+	e1000_nvm_override_none = 0,
+	e1000_nvm_override_spi_small,
+	e1000_nvm_override_spi_large
+};
+
+enum e1000_phy_type {
+	e1000_phy_unknown = 0,
+	e1000_phy_none,
+	e1000_phy_m88,
+	e1000_phy_igp,
+	e1000_phy_igp_2,
+	e1000_phy_gg82563,
+	e1000_phy_igp_3,
+	e1000_phy_ife,
+	e1000_phy_bm,
+	e1000_phy_82578,
+	e1000_phy_82577,
+};
+
+enum e1000_bus_width {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_pcie_x1,
+	e1000_bus_width_pcie_x2,
+	e1000_bus_width_pcie_x4 = 4,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+};
+
+enum e1000_1000t_rx_status {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+};
+
+enum e1000_rev_polarity{
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+};
+
+enum e1000_fc_mode {
+	e1000_fc_none = 0,
+	e1000_fc_rx_pause,
+	e1000_fc_tx_pause,
+	e1000_fc_full,
+	e1000_fc_default = 0xFF
+};
+
+enum e1000_ms_type {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+};
+
+enum e1000_smart_speed {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+};
+
+enum e1000_serdes_link_state {
+	e1000_serdes_link_down = 0,
+	e1000_serdes_link_autoneg_progress,
+	e1000_serdes_link_autoneg_complete,
+	e1000_serdes_link_forced_up
+};
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	__le64 buffer_addr; /* Address of the descriptor's data buffer */
+	__le16 length;      /* Length of data DMAed into data buffer */
+	__le16 csum;	/* Packet checksum */
+	u8  status;      /* Descriptor status */
+	u8  errors;      /* Descriptor Errors */
+	__le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		__le64 buffer_addr;
+		__le64 reserved;
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	      /* Multiple Rx Queues */
+			union {
+				__le32 rss;	    /* RSS Hash */
+				struct {
+					__le16 ip_id;  /* IP id */
+					__le16 csum;   /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;     /* ext status/error */
+			__le16 length;
+			__le16 vlan;	     /* VLAN tag */
+		} upper;
+	} wb;  /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		__le64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	      /* Multiple Rx Queues */
+			union {
+				__le32 rss;	      /* RSS Hash */
+				struct {
+					__le16 ip_id;    /* IP id */
+					__le16 csum;     /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;     /* ext status/error */
+			__le16 length0;	  /* length of buffer 0 */
+			__le16 vlan;	     /* VLAN tag */
+		} middle;
+		struct {
+			__le16 header_status;
+			__le16 length[3];	/* length of buffers 1-3 */
+		} upper;
+		__le64 reserved;
+	} wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	__le64 buffer_addr;      /* Address of the descriptor's data buffer */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;    /* Data buffer length */
+			u8 cso;	/* Checksum offset */
+			u8 cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 css;	/* Checksum start */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		__le32 ip_config;
+		struct {
+			u8 ipcss;      /* IP checksum start */
+			u8 ipcso;      /* IP checksum offset */
+			__le16 ipcse;     /* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		__le32 tcp_config;
+		struct {
+			u8 tucss;      /* TCP checksum start */
+			u8 tucso;      /* TCP checksum offset */
+			__le16 tucse;     /* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	__le32 cmd_and_length;
+	union {
+		__le32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 hdr_len;    /* Header length */
+			__le16 mss;       /* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	__le64 buffer_addr;   /* Address of the descriptor's buffer address */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;    /* Data buffer length */
+			u8 typ_len_ext;
+			u8 cmd;
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;     /* Descriptor status */
+			u8 popts;      /* Packet Options */
+			__le16 special;   /* */
+		} fields;
+	} upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorc;
+	u64 gotc;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 tor;
+	u64 tot;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8  status;
+	u8  reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8  reserved3;
+	u8  checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;
+	u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH     252
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+	u8  command_id;
+	u8  checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+/* Function pointers and static data for the MAC. */
+struct e1000_mac_operations {
+	s32  (*id_led_init)(struct e1000_hw *);
+	bool (*check_mng_mode)(struct e1000_hw *);
+	s32  (*check_for_link)(struct e1000_hw *);
+	s32  (*cleanup_led)(struct e1000_hw *);
+	void (*clear_hw_cntrs)(struct e1000_hw *);
+	void (*clear_vfta)(struct e1000_hw *);
+	s32  (*get_bus_info)(struct e1000_hw *);
+	void (*set_lan_id)(struct e1000_hw *);
+	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+	s32  (*led_on)(struct e1000_hw *);
+	s32  (*led_off)(struct e1000_hw *);
+	void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+	s32  (*reset_hw)(struct e1000_hw *);
+	s32  (*init_hw)(struct e1000_hw *);
+	s32  (*setup_link)(struct e1000_hw *);
+	s32  (*setup_physical_interface)(struct e1000_hw *);
+	s32  (*setup_led)(struct e1000_hw *);
+	void (*write_vfta)(struct e1000_hw *, u32, u32);
+	s32  (*read_mac_addr)(struct e1000_hw *);
+};
+
+/* Function pointers for the PHY. */
+struct e1000_phy_operations {
+	s32  (*acquire)(struct e1000_hw *);
+	s32  (*cfg_on_link_up)(struct e1000_hw *);
+	s32  (*check_polarity)(struct e1000_hw *);
+	s32  (*check_reset_block)(struct e1000_hw *);
+	s32  (*commit)(struct e1000_hw *);
+	s32  (*force_speed_duplex)(struct e1000_hw *);
+	s32  (*get_cfg_done)(struct e1000_hw *hw);
+	s32  (*get_cable_length)(struct e1000_hw *);
+	s32  (*get_info)(struct e1000_hw *);
+	s32  (*read_reg)(struct e1000_hw *, u32, u16 *);
+	s32  (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
+	void (*release)(struct e1000_hw *);
+	s32  (*reset)(struct e1000_hw *);
+	s32  (*set_d0_lplu_state)(struct e1000_hw *, bool);
+	s32  (*set_d3_lplu_state)(struct e1000_hw *, bool);
+	s32  (*write_reg)(struct e1000_hw *, u32, u16);
+	s32  (*write_reg_locked)(struct e1000_hw *, u32, u16);
+	void (*power_up)(struct e1000_hw *);
+	void (*power_down)(struct e1000_hw *);
+};
+
+/* Function pointers for the NVM. */
+struct e1000_nvm_operations {
+	s32  (*acquire)(struct e1000_hw *);
+	s32  (*read)(struct e1000_hw *, u16, u16, u16 *);
+	void (*release)(struct e1000_hw *);
+	s32  (*update)(struct e1000_hw *);
+	s32  (*valid_led_default)(struct e1000_hw *, u16 *);
+	s32  (*validate)(struct e1000_hw *);
+	s32  (*write)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+	struct e1000_mac_operations ops;
+
+	u8 addr[6];
+	u8 perm_addr[6];
+
+	enum e1000_mac_type type;
+
+	u32 collision_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	u32 mc_filter_type;
+	u32 tx_packet_delta;
+	u32 txcw;
+
+	u16 current_ifs_val;
+	u16 ifs_max_val;
+	u16 ifs_min_val;
+	u16 ifs_ratio;
+	u16 ifs_step_size;
+	u16 mta_reg_count;
+
+	/* Maximum size of the MTA register table in all supported adapters */
+	#define MAX_MTA_REG 128
+	u32 mta_shadow[MAX_MTA_REG];
+	u16 rar_entry_count;
+
+	u8  forced_speed_duplex;
+
+	bool adaptive_ifs;
+	bool has_fwsm;
+	bool arc_subsystem_valid;
+	bool autoneg;
+	bool autoneg_failed;
+	bool get_link_status;
+	bool in_ifs_mode;
+	bool serdes_has_link;
+	bool tx_pkt_filtering;
+	enum e1000_serdes_link_state serdes_link_state;
+};
+
+struct e1000_phy_info {
+	struct e1000_phy_operations ops;
+
+	enum e1000_phy_type type;
+
+	enum e1000_1000t_rx_status local_rx;
+	enum e1000_1000t_rx_status remote_rx;
+	enum e1000_ms_type ms_type;
+	enum e1000_ms_type original_ms_type;
+	enum e1000_rev_polarity cable_polarity;
+	enum e1000_smart_speed smart_speed;
+
+	u32 addr;
+	u32 id;
+	u32 reset_delay_us; /* in usec */
+	u32 revision;
+
+	enum e1000_media_type media_type;
+
+	u16 autoneg_advertised;
+	u16 autoneg_mask;
+	u16 cable_length;
+	u16 max_cable_length;
+	u16 min_cable_length;
+
+	u8 mdix;
+
+	bool disable_polarity_correction;
+	bool is_mdix;
+	bool polarity_correction;
+	bool speed_downgraded;
+	bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+	struct e1000_nvm_operations ops;
+
+	enum e1000_nvm_type type;
+	enum e1000_nvm_override override;
+
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+
+	u16 word_size;
+	u16 delay_usec;
+	u16 address_bits;
+	u16 opcode_bits;
+	u16 page_size;
+};
+
+struct e1000_bus_info {
+	enum e1000_bus_width width;
+
+	u16 func;
+};
+
+struct e1000_fc_info {
+	u32 high_water;          /* Flow control high-water mark */
+	u32 low_water;           /* Flow control low-water mark */
+	u16 pause_time;          /* Flow control pause timer */
+	u16 refresh_time;        /* Flow control refresh timer */
+	bool send_xon;           /* Flow control send XON */
+	bool strict_ieee;        /* Strict IEEE mode */
+	enum e1000_fc_mode current_mode; /* FC mode in effect */
+	enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
+};
+
+struct e1000_dev_spec_82571 {
+	bool laa_is_present;
+	u32 smb_counter;
+};
+
+struct e1000_dev_spec_80003es2lan {
+	bool  mdic_wa_enable;
+};
+
+struct e1000_shadow_ram {
+	u16  value;
+	bool modified;
+};
+
+#define E1000_ICH8_SHADOW_RAM_WORDS		2048
+
+struct e1000_dev_spec_ich8lan {
+	bool kmrn_lock_loss_workaround_enabled;
+	struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
+	bool nvm_k1_enabled;
+};
+
+struct e1000_hw {
+	struct e1000_adapter *adapter;
+
+	u8 __iomem *hw_addr;
+	u8 __iomem *flash_address;
+
+	struct e1000_mac_info  mac;
+	struct e1000_fc_info   fc;
+	struct e1000_phy_info  phy;
+	struct e1000_nvm_info  nvm;
+	struct e1000_bus_info  bus;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+	union {
+		struct e1000_dev_spec_82571	e82571;
+		struct e1000_dev_spec_80003es2lan e80003es2lan;
+		struct e1000_dev_spec_ich8lan	ich8lan;
+	} dev_spec;
+};
+
+#endif
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/ich8lan-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3506 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ * 82562G 10/100 Network Connection
+ * 82562G-2 10/100 Network Connection
+ * 82562GT 10/100 Network Connection
+ * 82562GT-2 10/100 Network Connection
+ * 82562V 10/100 Network Connection
+ * 82562V-2 10/100 Network Connection
+ * 82566DC-2 Gigabit Network Connection
+ * 82566DC Gigabit Network Connection
+ * 82566DM-2 Gigabit Network Connection
+ * 82566DM Gigabit Network Connection
+ * 82566MC Gigabit Network Connection
+ * 82566MM Gigabit Network Connection
+ * 82567LM Gigabit Network Connection
+ * 82567LF Gigabit Network Connection
+ * 82567V Gigabit Network Connection
+ * 82567LM-2 Gigabit Network Connection
+ * 82567LF-2 Gigabit Network Connection
+ * 82567V-2 Gigabit Network Connection
+ * 82567LF-3 Gigabit Network Connection
+ * 82567LM-3 Gigabit Network Connection
+ * 82567LM-4 Gigabit Network Connection
+ * 82577LM Gigabit Network Connection
+ * 82577LC Gigabit Network Connection
+ * 82578DM Gigabit Network Connection
+ * 82578DC Gigabit Network Connection
+ */
+
+#include "e1000-2.6.35-ethercat.h"
+
+#define ICH_FLASH_GFPREG		0x0000
+#define ICH_FLASH_HSFSTS		0x0004
+#define ICH_FLASH_HSFCTL		0x0006
+#define ICH_FLASH_FADDR			0x0008
+#define ICH_FLASH_FDATA0		0x0010
+#define ICH_FLASH_PR0			0x0074
+
+#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
+#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
+
+#define ICH_CYCLE_READ			0
+#define ICH_CYCLE_WRITE			2
+#define ICH_CYCLE_ERASE			3
+
+#define FLASH_GFPREG_BASE_MASK		0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT		12
+
+#define ICH_FLASH_SEG_SIZE_256		256
+#define ICH_FLASH_SEG_SIZE_4K		4096
+#define ICH_FLASH_SEG_SIZE_8K		8192
+#define ICH_FLASH_SEG_SIZE_64K		65536
+
+
+#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID		0x00008000
+
+#define E1000_ICH_MNG_IAMT_MODE		0x2
+
+#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
+				 (ID_LED_DEF1_OFF2 <<  8) | \
+				 (ID_LED_DEF1_ON2  <<  4) | \
+				 (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD		0x13
+#define E1000_ICH_NVM_SIG_MASK		0xC000
+#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
+#define E1000_ICH_NVM_SIG_VALUE         0x80
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
+
+#define E1000_FEXTNVM_SW_CONFIG		1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
+
+#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES		7
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+			   ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
+
+#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
+
+#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
+
+/* SMBus Address Phy Register */
+#define HV_SMB_ADDR            PHY_REG(768, 26)
+#define HV_SMB_ADDR_PEC_EN     0x0200
+#define HV_SMB_ADDR_VALID      0x0080
+
+/* Strapping Option Register - RO */
+#define E1000_STRAP                     0x0000C
+#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
+#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
+
+/* OEM Bits Phy Register */
+#define HV_OEM_BITS            PHY_REG(768, 25)
+#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
+#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
+#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
+
+#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
+#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
+
+/* KMRN Mode Control */
+#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
+#define HV_KMRN_MDIO_SLOW      0x0400
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+	struct ich8_hsfsts {
+		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
+		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
+		u16 dael       :1; /* bit 2 Direct Access error Log */
+		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
+		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
+		u16 reserved1  :2; /* bit 13:6 Reserved */
+		u16 reserved2  :6; /* bit 13:6 Reserved */
+		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
+		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
+	} hsf_status;
+	u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+	struct ich8_hsflctl {
+		u16 flcgo      :1;   /* 0 Flash Cycle Go */
+		u16 flcycle    :2;   /* 2:1 Flash Cycle */
+		u16 reserved   :5;   /* 7:3 Reserved  */
+		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
+		u16 flockdn    :6;   /* 15:10 Reserved */
+	} hsf_ctrl;
+	u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+	struct ich8_flracc {
+		u32 grra      :8; /* 0:7 GbE region Read Access */
+		u32 grwa      :8; /* 8:15 GbE region Write Access */
+		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
+		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
+	} hsf_flregacc;
+	u16 regval;
+};
+
+/* ICH Flash Protected Region */
+union ich8_flash_protected_range {
+	struct ich8_pr {
+		u32 base:13;     /* 0:12 Protected Range Base */
+		u32 reserved1:2; /* 13:14 Reserved */
+		u32 rpe:1;       /* 15 Read Protection Enable */
+		u32 limit:13;    /* 16:28 Protected Range Limit */
+		u32 reserved2:2; /* 29:30 Reserved */
+		u32 wpe:1;       /* 31 Write Protection Enable */
+	} range;
+	u32 regval;
+};
+
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						u32 offset, u8 byte);
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 *data);
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u16 *data);
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 size, u16 *data);
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
+static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
+
+static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
+{
+	return readw(hw->flash_address + reg);
+}
+
+static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
+{
+	return readl(hw->flash_address + reg);
+}
+
+static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
+{
+	writew(val, hw->flash_address + reg);
+}
+
+static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
+{
+	writel(val, hw->flash_address + reg);
+}
+
+#define er16flash(reg)		__er16flash(hw, (reg))
+#define er32flash(reg)		__er32flash(hw, (reg))
+#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
+#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
+
+/**
+ *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 ctrl;
+	s32 ret_val = 0;
+
+	phy->addr                     = 1;
+	phy->reset_delay_us           = 100;
+
+	phy->ops.read_reg             = e1000_read_phy_reg_hv;
+	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
+	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
+	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
+	phy->ops.write_reg            = e1000_write_phy_reg_hv;
+	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
+	phy->ops.power_up             = e1000_power_up_phy_copper;
+	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
+	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
+		/*
+		 * The MAC-PHY interconnect may still be in SMBus mode
+		 * after Sx->S0.  Toggle the LANPHYPC Value bit to force
+		 * the interconnect to PCIe mode, but only if there is no
+		 * firmware present otherwise firmware will have done it.
+		 */
+		ctrl = er32(CTRL);
+		ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
+		ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
+		ew32(CTRL, ctrl);
+		udelay(10);
+		ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
+		ew32(CTRL, ctrl);
+		msleep(50);
+	}
+
+	/*
+	 * Reset the PHY before any acccess to it.  Doing so, ensures that
+	 * the PHY is in a known good state before we read/write PHY registers.
+	 * The generic reset is sufficient here, because we haven't determined
+	 * the PHY type yet.
+	 */
+	ret_val = e1000e_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	phy->id = e1000_phy_unknown;
+	ret_val = e1000e_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+	if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
+		/*
+		 * In case the PHY needs to be in mdio slow mode (eg. 82577),
+		 * set slow mode and try to get the PHY id again.
+		 */
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (ret_val)
+			goto out;
+		ret_val = e1000e_get_phy_id(hw);
+		if (ret_val)
+			goto out;
+	}
+	phy->type = e1000e_get_phy_type_from_id(phy->id);
+
+	switch (phy->type) {
+	case e1000_phy_82577:
+		phy->ops.check_polarity = e1000_check_polarity_82577;
+		phy->ops.force_speed_duplex =
+			e1000_phy_force_speed_duplex_82577;
+		phy->ops.get_cable_length = e1000_get_cable_length_82577;
+		phy->ops.get_info = e1000_get_phy_info_82577;
+		phy->ops.commit = e1000e_phy_sw_reset;
+		break;
+	case e1000_phy_82578:
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
+		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
+		phy->ops.get_info = e1000e_get_phy_info_m88;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 i = 0;
+
+	phy->addr			= 1;
+	phy->reset_delay_us		= 100;
+
+	phy->ops.power_up               = e1000_power_up_phy_copper;
+	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
+
+	/*
+	 * We may need to do this twice - once for IGP and if that fails,
+	 * we'll set BM func pointers and try again
+	 */
+	ret_val = e1000e_determine_phy_address(hw);
+	if (ret_val) {
+		phy->ops.write_reg = e1000e_write_phy_reg_bm;
+		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
+		ret_val = e1000e_determine_phy_address(hw);
+		if (ret_val) {
+			e_dbg("Cannot determine PHY addr. Erroring out\n");
+			return ret_val;
+		}
+	}
+
+	phy->id = 0;
+	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
+	       (i++ < 100)) {
+		msleep(1);
+		ret_val = e1000e_get_phy_id(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Verify phy id */
+	switch (phy->id) {
+	case IGP03E1000_E_PHY_ID:
+		phy->type = e1000_phy_igp_3;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
+		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
+		phy->ops.get_info = e1000e_get_phy_info_igp;
+		phy->ops.check_polarity = e1000_check_polarity_igp;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy->type = e1000_phy_ife;
+		phy->autoneg_mask = E1000_ALL_NOT_GIG;
+		phy->ops.get_info = e1000_get_phy_info_ife;
+		phy->ops.check_polarity = e1000_check_polarity_ife;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
+		break;
+	case BME1000_E_PHY_ID:
+		phy->type = e1000_phy_bm;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg = e1000e_read_phy_reg_bm;
+		phy->ops.write_reg = e1000e_write_phy_reg_bm;
+		phy->ops.commit = e1000e_phy_sw_reset;
+		phy->ops.get_info = e1000e_get_phy_info_m88;
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific NVM parameters and function
+ *  pointers.
+ **/
+static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 gfpreg, sector_base_addr, sector_end_addr;
+	u16 i;
+
+	/* Can't read flash registers if the register set isn't mapped. */
+	if (!hw->flash_address) {
+		e_dbg("ERROR: Flash registers not mapped\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	nvm->type = e1000_nvm_flash_sw;
+
+	gfpreg = er32flash(ICH_FLASH_GFPREG);
+
+	/*
+	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
+	 * Add 1 to sector_end_addr since this sector is included in
+	 * the overall size.
+	 */
+	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+	/* flash_base_addr is byte-aligned */
+	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+	/*
+	 * find total size of the NVM, then cut in half since the total
+	 * size represents two separate NVM banks.
+	 */
+	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
+				<< FLASH_SECTOR_ADDR_SHIFT;
+	nvm->flash_bank_size /= 2;
+	/* Adjust to word count */
+	nvm->flash_bank_size /= sizeof(u16);
+
+	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
+
+	/* Clear shadow ram */
+	for (i = 0; i < nvm->word_size; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value    = 0xFFFF;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific MAC parameters and function
+ *  pointers.
+ **/
+static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &hw->mac;
+
+	/* Set media type function pointer */
+	hw->phy.media_type = e1000_media_type_copper;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 32;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+	if (mac->type == e1000_ich8lan)
+		mac->rar_entry_count--;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC subsystem not supported */
+	mac->arc_subsystem_valid = false;
+	/* Adaptive IFS supported */
+	mac->adaptive_ifs = true;
+
+	/* LED operations */
+	switch (mac->type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+		/* ID LED init */
+		mac->ops.id_led_init = e1000e_id_led_init;
+		/* setup LED */
+		mac->ops.setup_led = e1000e_setup_led_generic;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_ich8lan;
+		mac->ops.led_off = e1000_led_off_ich8lan;
+		break;
+	case e1000_pchlan:
+		/* ID LED init */
+		mac->ops.id_led_init = e1000_id_led_init_pchlan;
+		/* setup LED */
+		mac->ops.setup_led = e1000_setup_led_pchlan;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_pchlan;
+		mac->ops.led_off = e1000_led_off_pchlan;
+		break;
+	default:
+		break;
+	}
+
+	/* Enable PCS Lock-loss workaround for ICH8 */
+	if (mac->type == e1000_ich8lan)
+		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
+
+	return 0;
+}
+
+/**
+ *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = 0;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type == e1000_pchlan) {
+		ret_val = e1000_k1_gig_workaround_hv(hw, link);
+		if (ret_val)
+			goto out;
+	}
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = false;
+
+	if (hw->phy.type == e1000_phy_82578) {
+		ret_val = e1000_link_stall_workaround_hv(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000e_check_downshift(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000e_config_collision_dist(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000e_config_fc_after_link_up(hw);
+	if (ret_val)
+		e_dbg("Error configuring flow control\n");
+
+out:
+	return ret_val;
+}
+
+static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	s32 rc;
+
+	rc = e1000_init_mac_params_ich8lan(adapter);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_nvm_params_ich8lan(hw);
+	if (rc)
+		return rc;
+
+	if (hw->mac.type == e1000_pchlan)
+		rc = e1000_init_phy_params_pchlan(hw);
+	else
+		rc = e1000_init_phy_params_ich8lan(hw);
+	if (rc)
+		return rc;
+
+	if (adapter->hw.phy.type == e1000_phy_ife) {
+		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
+		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
+	}
+
+	if ((adapter->hw.mac.type == e1000_ich8lan) &&
+	    (adapter->hw.phy.type == e1000_phy_igp_3))
+		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
+
+	return 0;
+}
+
+static DEFINE_MUTEX(nvm_mutex);
+
+/**
+ *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the mutex for performing NVM operations.
+ **/
+static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
+{
+	mutex_lock(&nvm_mutex);
+
+	return 0;
+}
+
+/**
+ *  e1000_release_nvm_ich8lan - Release NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the mutex used while performing NVM operations.
+ **/
+static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
+{
+	mutex_unlock(&nvm_mutex);
+}
+
+static DEFINE_MUTEX(swflag_mutex);
+
+/**
+ *  e1000_acquire_swflag_ich8lan - Acquire software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = 0;
+
+	mutex_lock(&swflag_mutex);
+
+	while (timeout) {
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
+			break;
+
+		mdelay(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("SW/FW/HW has locked the resource for too long.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	timeout = SW_FLAG_TIMEOUT;
+
+	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+	ew32(EXTCNF_CTRL, extcnf_ctrl);
+
+	while (timeout) {
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+			break;
+
+		mdelay(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("Failed to acquire the semaphore.\n");
+		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+		ew32(EXTCNF_CTRL, extcnf_ctrl);
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	if (ret_val)
+		mutex_unlock(&swflag_mutex);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swflag_ich8lan - Release software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+
+	extcnf_ctrl = er32(EXTCNF_CTRL);
+	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+	ew32(EXTCNF_CTRL, extcnf_ctrl);
+
+	mutex_unlock(&swflag_mutex);
+}
+
+/**
+ *  e1000_check_mng_mode_ich8lan - Checks management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has manageability enabled.
+ *  This is a function pointer entry point only called by read/write
+ *  routines for the PHY and NVM parts.
+ **/
+static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	fwsm = er32(FWSM);
+
+	return (fwsm & E1000_FWSM_MODE_MASK) ==
+		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks if firmware is blocking the reset of the PHY.
+ *  This is a function pointer entry point only called by
+ *  reset routines.
+ **/
+static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	fwsm = er32(FWSM);
+
+	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
+}
+
+/**
+ *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
+ *  @hw:   pointer to the HW structure
+ *
+ *  SW should configure the LCD from the NVM extended configuration region
+ *  as a workaround for certain parts.
+ **/
+static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->adapter;
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+	s32 ret_val = 0;
+	u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+	if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) &&
+		!(hw->mac.type == e1000_pchlan))
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Initialize the PHY from the NVM on ICH platforms.  This
+	 * is needed due to an issue where the NVM configuration is
+	 * not properly autoloaded after power transitions.
+	 * Therefore, after each PHY reset, we will load the
+	 * configuration data out of the NVM manually.
+	 */
+	if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
+	    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
+	    (hw->mac.type == e1000_pchlan))
+		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+	else
+		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+
+	data = er32(FEXTNVM);
+	if (!(data & sw_cfg_mask))
+		goto out;
+
+	/*
+	 * Make sure HW does not configure LCD from PHY
+	 * extended configuration before SW configuration
+	 */
+	data = er32(EXTCNF_CTRL);
+	if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+		goto out;
+
+	cnf_size = er32(EXTCNF_SIZE);
+	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+	if (!cnf_size)
+		goto out;
+
+	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+	if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
+	    (hw->mac.type == e1000_pchlan)) {
+		/*
+		 * HW configures the SMBus address and LEDs when the
+		 * OEM and LCD Write Enable bits are set in the NVM.
+		 * When both NVM bits are cleared, SW will configure
+		 * them instead.
+		 */
+		data = er32(STRAP);
+		data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
+		reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
+		reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
+		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
+							reg_data);
+		if (ret_val)
+			goto out;
+
+		data = er32(LEDCTL);
+		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
+							(u16)data);
+		if (ret_val)
+			goto out;
+	}
+
+	/* Configure LCD from extended configuration region. */
+
+	/* cnf_base_addr is in DWORD */
+	word_addr = (u16)(cnf_base_addr << 1);
+
+	for (i = 0; i < cnf_size; i++) {
+		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
+					 &reg_data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
+					 1, &reg_addr);
+		if (ret_val)
+			goto out;
+
+		/* Save off the PHY page for future writes. */
+		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+			phy_page = reg_data;
+			continue;
+		}
+
+		reg_addr &= PHY_REG_MASK;
+		reg_addr |= phy_page;
+
+		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
+						    reg_data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_k1_gig_workaround_hv - K1 Si workaround
+ *  @hw:   pointer to the HW structure
+ *  @link: link up bool flag
+ *
+ *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
+ *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
+ *  If link is down, the function will restore the default K1 setting located
+ *  in the NVM.
+ **/
+static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
+{
+	s32 ret_val = 0;
+	u16 status_reg = 0;
+	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
+
+	if (hw->mac.type != e1000_pchlan)
+		goto out;
+
+	/* Wrap the whole flow with the sw flag */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
+	if (link) {
+		if (hw->phy.type == e1000_phy_82578) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
+			                                          &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= BM_CS_STATUS_LINK_UP |
+			              BM_CS_STATUS_RESOLVED |
+			              BM_CS_STATUS_SPEED_MASK;
+
+			if (status_reg == (BM_CS_STATUS_LINK_UP |
+			                   BM_CS_STATUS_RESOLVED |
+			                   BM_CS_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		if (hw->phy.type == e1000_phy_82577) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
+			                                          &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= HV_M_STATUS_LINK_UP |
+			              HV_M_STATUS_AUTONEG_COMPLETE |
+			              HV_M_STATUS_SPEED_MASK;
+
+			if (status_reg == (HV_M_STATUS_LINK_UP |
+			                   HV_M_STATUS_AUTONEG_COMPLETE |
+			                   HV_M_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		/* Link stall fix for link up */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+		                                           0x0100);
+		if (ret_val)
+			goto release;
+
+	} else {
+		/* Link stall fix for link down */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+		                                           0x4100);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
+
+release:
+	hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_configure_k1_ich8lan - Configure K1 power state
+ *  @hw: pointer to the HW structure
+ *  @enable: K1 state to configure
+ *
+ *  Configure the K1 power state based on the provided parameter.
+ *  Assumes semaphore already acquired.
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ **/
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
+{
+	s32 ret_val = 0;
+	u32 ctrl_reg = 0;
+	u32 ctrl_ext = 0;
+	u32 reg = 0;
+	u16 kmrn_reg = 0;
+
+	ret_val = e1000e_read_kmrn_reg_locked(hw,
+	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
+	                                     &kmrn_reg);
+	if (ret_val)
+		goto out;
+
+	if (k1_enable)
+		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
+	else
+		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
+
+	ret_val = e1000e_write_kmrn_reg_locked(hw,
+	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
+	                                      kmrn_reg);
+	if (ret_val)
+		goto out;
+
+	udelay(20);
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_reg = er32(CTRL);
+
+	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+	reg |= E1000_CTRL_FRCSPD;
+	ew32(CTRL, reg);
+
+	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
+	udelay(20);
+	ew32(CTRL, ctrl_reg);
+	ew32(CTRL_EXT, ctrl_ext);
+	udelay(20);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
+ *  @hw:       pointer to the HW structure
+ *  @d0_state: boolean if entering d0 or d3 device state
+ *
+ *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
+ *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
+ *  in NVM determines whether HW should configure LPLU and Gbe Disable.
+ **/
+static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
+{
+	s32 ret_val = 0;
+	u32 mac_reg;
+	u16 oem_reg;
+
+	if (hw->mac.type != e1000_pchlan)
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	mac_reg = er32(EXTCNF_CTRL);
+	if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
+		goto out;
+
+	mac_reg = er32(FEXTNVM);
+	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
+		goto out;
+
+	mac_reg = er32(PHY_CTRL);
+
+	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		goto out;
+
+	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
+
+	if (d0_state) {
+		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
+			oem_reg |= HV_OEM_BITS_LPLU;
+	} else {
+		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
+			oem_reg |= HV_OEM_BITS_LPLU;
+	}
+	/* Restart auto-neg to activate the bits */
+	if (!e1000_check_reset_block(hw))
+		oem_reg |= HV_OEM_BITS_RESTART_AN;
+	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
+
+out:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+
+/**
+ *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
+ *  @hw:   pointer to the HW structure
+ **/
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= HV_KMRN_MDIO_SLOW;
+
+	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ *  done after every PHY reset.
+ **/
+static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 phy_data;
+
+	if (hw->mac.type != e1000_pchlan)
+		return ret_val;
+
+	/* Set MDIO slow mode before any other MDIO access */
+	if (hw->phy.type == e1000_phy_82577) {
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (((hw->phy.type == e1000_phy_82577) &&
+	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
+	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
+		/* Disable generation of early preamble */
+		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
+		if (ret_val)
+			return ret_val;
+
+		/* Preamble tuning for SSC */
+		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->phy.type == e1000_phy_82578) {
+		/*
+		 * Return registers to default by doing a soft reset then
+		 * writing 0x3140 to the control register.
+		 */
+		if (hw->phy.revision < 2) {
+			e1000e_phy_sw_reset(hw);
+			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
+		}
+	}
+
+	/* Select page 0 */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy.addr = 1;
+	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
+	hw->phy.ops.release(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Configure the K1 Si workaround during phy reset assuming there is
+	 * link so that it disables K1 if link is in 1Gbps.
+	 */
+	ret_val = e1000_k1_gig_workaround_hv(hw, true);
+	if (ret_val)
+		goto out;
+
+	/* Workaround for link disconnects on a busy hub in half duplex */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+	ret_val = hw->phy.ops.read_reg_locked(hw,
+	                                      PHY_REG(BM_PORT_CTRL_PAGE, 17),
+	                                      &phy_data);
+	if (ret_val)
+		goto release;
+	ret_val = hw->phy.ops.write_reg_locked(hw,
+	                                       PHY_REG(BM_PORT_CTRL_PAGE, 17),
+	                                       phy_data & 0x00FF);
+release:
+	hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_lan_init_done_ich8lan - Check for PHY config completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check the appropriate indication the MAC has finished configuring the
+ *  PHY after a software reset.
+ **/
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
+{
+	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+
+	/* Wait for basic configuration completes before proceeding */
+	do {
+		data = er32(STATUS);
+		data &= E1000_STATUS_LAN_INIT_DONE;
+		udelay(100);
+	} while ((!data) && --loop);
+
+	/*
+	 * If basic configuration is incomplete before the above loop
+	 * count reaches 0, loading the configuration from NVM will
+	 * leave the PHY in a bad state possibly resulting in no link.
+	 */
+	if (loop == 0)
+		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
+
+	/* Clear the Init Done bit for the next init event */
+	data = er32(STATUS);
+	data &= ~E1000_STATUS_LAN_INIT_DONE;
+	ew32(STATUS, data);
+}
+
+/**
+ *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 reg;
+
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	/* Perform any necessary post-reset workarounds */
+	switch (hw->mac.type) {
+	case e1000_pchlan:
+		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
+		if (ret_val)
+			goto out;
+		break;
+	default:
+		break;
+	}
+
+	/* Dummy read to clear the phy wakeup bit after lcd reset */
+	if (hw->mac.type == e1000_pchlan)
+		e1e_rphy(hw, BM_WUC, &reg);
+
+	/* Configure the LCD with the extended configuration region in NVM */
+	ret_val = e1000_sw_lcd_config_ich8lan(hw);
+	if (ret_val)
+		goto out;
+
+	/* Configure the LCD with the OEM bits in NVM */
+	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the PHY
+ *  This is a function pointer entry point called by drivers
+ *  or other shared routines.
+ **/
+static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	ret_val = e1000e_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_post_phy_reset_ich8lan(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
+ *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
+ *  the phy speed. This function will manually set the LPLU bit and restart
+ *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
+ *  since it configures the same bit.
+ **/
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val = 0;
+	u16 oem_reg;
+
+	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		goto out;
+
+	if (active)
+		oem_reg |= HV_OEM_BITS_LPLU;
+	else
+		oem_reg &= ~HV_OEM_BITS_LPLU;
+
+	oem_reg |= HV_OEM_BITS_RESTART_AN;
+	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = 0;
+	u16 data;
+
+	if (phy->type == e1000_phy_ife)
+		return ret_val;
+
+	phy_ctrl = er32(PHY_CTRL);
+
+	if (active) {
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D3 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val;
+	u16 data;
+
+	phy_ctrl = er32(PHY_CTRL);
+
+	if (!active) {
+		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ *  @hw: pointer to the HW structure
+ *  @bank:  pointer to the variable that returns the active bank
+ *
+ *  Reads signature byte from the NVM using the flash access registers.
+ *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
+ **/
+static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+	u32 eecd;
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
+	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
+	u8 sig_byte = 0;
+	s32 ret_val = 0;
+
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		eecd = er32(EECD);
+		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
+		    E1000_EECD_SEC1VAL_VALID_MASK) {
+			if (eecd & E1000_EECD_SEC1VAL)
+				*bank = 1;
+			else
+				*bank = 0;
+
+			return 0;
+		}
+		e_dbg("Unable to determine valid NVM bank via EEC - "
+		       "reading flash signature\n");
+		/* fall-thru */
+	default:
+		/* set bank to 0 in case flash read fails */
+		*bank = 0;
+
+		/* Check bank 0 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
+		                                        &sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 0;
+			return 0;
+		}
+
+		/* Check bank 1 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
+		                                        bank1_offset,
+		                                        &sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 1;
+			return 0;
+		}
+
+		e_dbg("ERROR: No valid NVM bank present\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to read.
+ *  @words: Size of data to read in words
+ *  @data: Pointer to the word(s) to read at offset.
+ *
+ *  Reads a word(s) from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 act_offset;
+	s32 ret_val = 0;
+	u32 bank = 0;
+	u16 i, word;
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	nvm->ops.acquire(hw);
+
+	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val) {
+		e_dbg("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	act_offset = (bank) ? nvm->flash_bank_size : 0;
+	act_offset += offset;
+
+	ret_val = 0;
+	for (i = 0; i < words; i++) {
+		if ((dev_spec->shadow_ram) &&
+		    (dev_spec->shadow_ram[offset+i].modified)) {
+			data[i] = dev_spec->shadow_ram[offset+i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw,
+								act_offset + i,
+								&word);
+			if (ret_val)
+				break;
+			data[i] = word;
+		}
+	}
+
+	nvm->ops.release(hw);
+
+out:
+	if (ret_val)
+		e_dbg("NVM read error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_init_ich8lan - Initialize flash
+ *  @hw: pointer to the HW structure
+ *
+ *  This function does initial flash setup so that a new read/write/erase cycle
+ *  can be started.
+ **/
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	s32 i = 0;
+
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+
+	/* Check if the flash descriptor is valid */
+	if (hsfsts.hsf_status.fldesvalid == 0) {
+		e_dbg("Flash descriptor invalid.  "
+			 "SW Sequencing must be used.\n");
+		return -E1000_ERR_NVM;
+	}
+
+	/* Clear FCERR and DAEL in hw status by writing 1 */
+	hsfsts.hsf_status.flcerr = 1;
+	hsfsts.hsf_status.dael = 1;
+
+	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	/*
+	 * Either we should have a hardware SPI cycle in progress
+	 * bit to check against, in order to start a new cycle or
+	 * FDONE bit should be changed in the hardware so that it
+	 * is 1 after hardware reset, which can then be used as an
+	 * indication whether a cycle is in progress or has been
+	 * completed.
+	 */
+
+	if (hsfsts.hsf_status.flcinprog == 0) {
+		/*
+		 * There is no cycle running at present,
+		 * so we can start a cycle.
+		 * Begin by setting Flash Cycle Done.
+		 */
+		hsfsts.hsf_status.flcdone = 1;
+		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+		ret_val = 0;
+	} else {
+		/*
+		 * Otherwise poll for sometime so the current
+		 * cycle has a chance to end before giving up.
+		 */
+		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcinprog == 0) {
+				ret_val = 0;
+				break;
+			}
+			udelay(1);
+		}
+		if (ret_val == 0) {
+			/*
+			 * Successful in waiting for previous cycle to timeout,
+			 * now set the Flash Cycle Done.
+			 */
+			hsfsts.hsf_status.flcdone = 1;
+			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+		} else {
+			e_dbg("Flash controller busy, cannot get access\n");
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ *  @hw: pointer to the HW structure
+ *  @timeout: maximum time to wait for completion
+ *
+ *  This function starts a flash cycle and waits for its completion.
+ **/
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+	union ich8_hws_flash_ctrl hsflctl;
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	u32 i = 0;
+
+	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+	hsflctl.hsf_ctrl.flcgo = 1;
+	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+	/* wait till FDONE bit is set to 1 */
+	do {
+		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcdone == 1)
+			break;
+		udelay(1);
+	} while (i++ < timeout);
+
+	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+		return 0;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_flash_word_ich8lan - Read word from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: offset to data location
+ *  @data: pointer to the location for storing the data
+ *
+ *  Reads the flash word at offset into data.  Offset is converted
+ *  to bytes before read.
+ **/
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u16 *data)
+{
+	/* Must convert offset into bytes. */
+	offset <<= 1;
+
+	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+}
+
+/**
+ *  e1000_read_flash_byte_ich8lan - Read byte from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to read.
+ *  @data: Pointer to a byte to store the value read.
+ *
+ *  Reads a single byte from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 *data)
+{
+	s32 ret_val;
+	u16 word = 0;
+
+	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
+	if (ret_val)
+		return ret_val;
+
+	*data = (u8)word;
+
+	return 0;
+}
+
+/**
+ *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte or word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: Pointer to the word to store the value read.
+ *
+ *  Reads a byte or word from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 size, u16 *data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			    hw->nvm.flash_base_addr;
+
+	do {
+		udelay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != 0)
+			break;
+
+		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+						ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+		/*
+		 * Check if FCERR is set to 1, if set to 1, clear it
+		 * and try the whole sequence a few more times, else
+		 * read in (shift in) the Flash Data0, the order is
+		 * least significant byte first msb to lsb
+		 */
+		if (ret_val == 0) {
+			flash_data = er32flash(ICH_FLASH_FDATA0);
+			if (size == 1) {
+				*data = (u8)(flash_data & 0x000000FF);
+			} else if (size == 2) {
+				*data = (u16)(flash_data & 0x0000FFFF);
+			}
+			break;
+		} else {
+			/*
+			 * If we've gotten here, then things are probably
+			 * completely hosed, but if the error condition is
+			 * detected, it won't hurt to give it another try...
+			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (hsfsts.hsf_status.flcdone == 0) {
+				e_dbg("Timeout error - flash cycle "
+					 "did not complete.\n");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to write.
+ *  @words: Size of data to write in words
+ *  @data: Pointer to the word(s) to write at offset.
+ *
+ *  Writes a byte or word to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				   u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 i;
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	nvm->ops.acquire(hw);
+
+	for (i = 0; i < words; i++) {
+		dev_spec->shadow_ram[offset+i].modified = true;
+		dev_spec->shadow_ram[offset+i].value = data[i];
+	}
+
+	nvm->ops.release(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  The NVM checksum is updated by calling the generic update_nvm_checksum,
+ *  which writes the checksum to the shadow ram.  The changes in the shadow
+ *  ram are then committed to the EEPROM by processing each bank at a time
+ *  checking for the modified bit and writing only the pending changes.
+ *  After a successful commit, the shadow ram is cleared and is ready for
+ *  future writes.
+ **/
+static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1000e_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	if (nvm->type != e1000_nvm_flash_sw)
+		goto out;
+
+	nvm->ops.acquire(hw);
+
+	/*
+	 * We're writing to the opposite bank so if we're on bank 1,
+	 * write to bank 0 etc.  We also need to erase the segment that
+	 * is going to be written
+	 */
+	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val) {
+		e_dbg("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	if (bank == 0) {
+		new_bank_offset = nvm->flash_bank_size;
+		old_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
+		if (ret_val)
+			goto release;
+	} else {
+		old_bank_offset = nvm->flash_bank_size;
+		new_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
+		if (ret_val)
+			goto release;
+	}
+
+	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
+		/*
+		 * Determine whether to write the value stored
+		 * in the other NVM bank or a modified value stored
+		 * in the shadow RAM
+		 */
+		if (dev_spec->shadow_ram[i].modified) {
+			data = dev_spec->shadow_ram[i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw, i +
+			                                        old_bank_offset,
+			                                        &data);
+			if (ret_val)
+				break;
+		}
+
+		/*
+		 * If the word is 0x13, then make sure the signature bits
+		 * (15:14) are 11b until the commit has completed.
+		 * This will allow us to write 10b which indicates the
+		 * signature is valid.  We want to do this after the write
+		 * has completed so that we don't mark the segment valid
+		 * while the write is still in progress
+		 */
+		if (i == E1000_ICH_NVM_SIG_WORD)
+			data |= E1000_ICH_NVM_SIG_MASK;
+
+		/* Convert offset to bytes. */
+		act_offset = (i + new_bank_offset) << 1;
+
+		udelay(100);
+		/* Write the bytes to the new bank. */
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							       act_offset,
+							       (u8)data);
+		if (ret_val)
+			break;
+
+		udelay(100);
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							  act_offset + 1,
+							  (u8)(data >> 8));
+		if (ret_val)
+			break;
+	}
+
+	/*
+	 * Don't bother writing the segment valid bits if sector
+	 * programming failed.
+	 */
+	if (ret_val) {
+		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
+		e_dbg("Flash commit failed.\n");
+		goto release;
+	}
+
+	/*
+	 * Finally validate the new segment by setting bit 15:14
+	 * to 10b in word 0x13 , this can be done without an
+	 * erase as well since these bits are 11 to start with
+	 * and we need to change bit 14 to 0b
+	 */
+	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+	if (ret_val)
+		goto release;
+
+	data &= 0xBFFF;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+						       act_offset * 2 + 1,
+						       (u8)(data >> 8));
+	if (ret_val)
+		goto release;
+
+	/*
+	 * And invalidate the previously valid segment by setting
+	 * its signature word (0x13) high_byte to 0b. This can be
+	 * done without an erase because flash erase sets all bits
+	 * to 1's. We can write 1's to 0's without an erase
+	 */
+	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+	if (ret_val)
+		goto release;
+
+	/* Great!  Everything worked, we can now clear the cached entries. */
+	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value = 0xFFFF;
+	}
+
+release:
+	nvm->ops.release(hw);
+
+	/*
+	 * Reload the EEPROM, or else modifications will not appear
+	 * until after the next adapter reset.
+	 */
+	if (!ret_val) {
+		e1000e_reload_nvm(hw);
+		msleep(10);
+	}
+
+out:
+	if (ret_val)
+		e_dbg("NVM update error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ *  calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+
+	/*
+	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
+	 * needs to be fixed.  This bit is an indication that the NVM
+	 * was prepared by OEM software and did not calculate the
+	 * checksum...a likely scenario.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
+	if (ret_val)
+		return ret_val;
+
+	if ((data & 0x40) == 0) {
+		data |= 0x40;
+		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000e_update_nvm_checksum(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000e_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
+ *  @hw: pointer to the HW structure
+ *
+ *  To prevent malicious write/erase of the NVM, set it to be read-only
+ *  so that the hardware ignores all write/erase cycles of the NVM via
+ *  the flash control registers.  The shadow-ram copy of the NVM will
+ *  still be updated, however any updates to this copy will not stick
+ *  across driver reloads.
+ **/
+void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_flash_protected_range pr0;
+	union ich8_hws_flash_status hsfsts;
+	u32 gfpreg;
+
+	nvm->ops.acquire(hw);
+
+	gfpreg = er32flash(ICH_FLASH_GFPREG);
+
+	/* Write-protect GbE Sector of NVM */
+	pr0.regval = er32flash(ICH_FLASH_PR0);
+	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
+	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
+	pr0.range.wpe = true;
+	ew32flash(ICH_FLASH_PR0, pr0.regval);
+
+	/*
+	 * Lock down a subset of GbE Flash Control Registers, e.g.
+	 * PR0 to prevent the write-protection from being lifted.
+	 * Once FLOCKDN is set, the registers protected by it cannot
+	 * be written until FLOCKDN is cleared by a hardware reset.
+	 */
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+	hsfsts.hsf_status.flockdn = true;
+	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	nvm->ops.release(hw);
+}
+
+/**
+ *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte/word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: The byte(s) to write to the NVM.
+ *
+ *  Writes one/two bytes to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 size, u16 data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val;
+	u8 count = 0;
+
+	if (size < 1 || size > 2 || data > size * 0xff ||
+	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			    hw->nvm.flash_base_addr;
+
+	do {
+		udelay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val)
+			break;
+
+		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size -1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+		if (size == 1)
+			flash_data = (u32)data & 0x00FF;
+		else
+			flash_data = (u32)data;
+
+		ew32flash(ICH_FLASH_FDATA0, flash_data);
+
+		/*
+		 * check if FCERR is set to 1 , if set to 1, clear it
+		 * and try the whole sequence a few more times else done
+		 */
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+		if (!ret_val)
+			break;
+
+		/*
+		 * If we're here, then things are most likely
+		 * completely hosed, but if the error condition
+		 * is detected, it won't hurt to give it another
+		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+		 */
+		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcerr == 1)
+			/* Repeat for some time before giving up. */
+			continue;
+		if (hsfsts.hsf_status.flcdone == 0) {
+			e_dbg("Timeout error - flash cycle "
+				 "did not complete.");
+			break;
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The index of the byte to read.
+ *  @data: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 data)
+{
+	u16 word = (u16)data;
+
+	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to write.
+ *  @byte: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ *  Goes through a retry algorithm before giving up.
+ **/
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						u32 offset, u8 byte)
+{
+	s32 ret_val;
+	u16 program_retries;
+
+	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+	if (!ret_val)
+		return ret_val;
+
+	for (program_retries = 0; program_retries < 100; program_retries++) {
+		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
+		udelay(100);
+		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+		if (!ret_val)
+			break;
+	}
+	if (program_retries == 100)
+		return -E1000_ERR_NVM;
+
+	return 0;
+}
+
+/**
+ *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ *  @hw: pointer to the HW structure
+ *  @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ *  bank N is 4096 * N + flash_reg_addr.
+ **/
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	/* bank size is in 16bit words - adjust to bytes */
+	u32 flash_bank_size = nvm->flash_bank_size * 2;
+	s32 ret_val;
+	s32 count = 0;
+	s32 j, iteration, sector_size;
+
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+
+	/*
+	 * Determine HW Sector size: Read BERASE bits of hw flash status
+	 * register
+	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
+	 *     consecutive sectors.  The start index for the nth Hw sector
+	 *     can be calculated as = bank * 4096 + n * 256
+	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+	 *     The start index for the nth Hw sector can be calculated
+	 *     as = bank * 4096
+	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+	 *     (ich9 only, otherwise error condition)
+	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+	 */
+	switch (hsfsts.hsf_status.berasesz) {
+	case 0:
+		/* Hw sector size 256 */
+		sector_size = ICH_FLASH_SEG_SIZE_256;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+		break;
+	case 1:
+		sector_size = ICH_FLASH_SEG_SIZE_4K;
+		iteration = 1;
+		break;
+	case 2:
+		sector_size = ICH_FLASH_SEG_SIZE_8K;
+		iteration = 1;
+		break;
+	case 3:
+		sector_size = ICH_FLASH_SEG_SIZE_64K;
+		iteration = 1;
+		break;
+	default:
+		return -E1000_ERR_NVM;
+	}
+
+	/* Start with the base address, then add the sector offset. */
+	flash_linear_addr = hw->nvm.flash_base_addr;
+	flash_linear_addr += (bank) ? flash_bank_size : 0;
+
+	for (j = 0; j < iteration ; j++) {
+		do {
+			/* Steps */
+			ret_val = e1000_flash_cycle_init_ich8lan(hw);
+			if (ret_val)
+				return ret_val;
+
+			/*
+			 * Write a value 11 (block Erase) in Flash
+			 * Cycle field in hw flash control
+			 */
+			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+			/*
+			 * Write the last 24 bits of an index within the
+			 * block into Flash Linear address field in Flash
+			 * Address.
+			 */
+			flash_linear_addr += (j * sector_size);
+			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+			ret_val = e1000_flash_cycle_ich8lan(hw,
+					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+			if (ret_val == 0)
+				break;
+
+			/*
+			 * Check if FCERR is set to 1.  If 1,
+			 * clear it and try the whole sequence
+			 * a few more times else Done
+			 */
+			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1)
+				/* repeat for some time before giving up */
+				continue;
+			else if (hsfsts.hsf_status.flcdone == 0)
+				return ret_val;
+		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_valid_led_default_ich8lan - Set the default LED settings
+ *  @hw: pointer to the HW structure
+ *  @data: Pointer to the LED settings
+ *
+ *  Reads the LED default settings from the NVM to data.  If the NVM LED
+ *  settings is all 0's or F's, set the LED default to a valid LED default
+ *  setting.
+ **/
+static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 ||
+	    *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT_ICH8LAN;
+
+	return 0;
+}
+
+/**
+ *  e1000_id_led_init_pchlan - store LED configurations
+ *  @hw: pointer to the HW structure
+ *
+ *  PCH does not control LEDs via the LEDCTL register, rather it uses
+ *  the PHY LED configuration register.
+ *
+ *  PCH also does not have an "always on" or "always off" mode which
+ *  complicates the ID feature.  Instead of using the "on" mode to indicate
+ *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
+ *  use "link_up" mode.  The LEDs will still ID on request if there is no
+ *  link based on logic in e1000_led_[on|off]_pchlan().
+ **/
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
+	u16 data, i, temp, shift;
+
+	/* Get default ID LED modes */
+	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+	if (ret_val)
+		goto out;
+
+	mac->ledctl_default = er32(LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
+		shift = (i * 5);
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_on << shift);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_on << shift);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ *  @hw: pointer to the HW structure
+ *
+ *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ *  register, so the the bus width is hard coded.
+ **/
+static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+
+	ret_val = e1000e_get_bus_info_pcie(hw);
+
+	/*
+	 * ICH devices are "PCI Express"-ish.  They have
+	 * a configuration space, but do not contain
+	 * PCI Express Capability registers, so bus width
+	 * must be hardcoded.
+	 */
+	if (bus->width == e1000_bus_width_unknown)
+		bus->width = e1000_bus_width_pcie_x1;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_ich8lan - Reset the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a full reset of the hardware which includes a reset of the PHY and
+ *  MAC.
+ **/
+static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 reg;
+	u32 ctrl, icr, kab;
+	s32 ret_val;
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000e_disable_pcie_master(hw);
+	if (ret_val)
+		e_dbg("PCI-E Master disable polling has failed.\n");
+
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/*
+	 * Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC
+	 * with the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	e1e_flush();
+
+	msleep(10);
+
+	/* Workaround for ICH8 bit corruption issue in FIFO memory */
+	if (hw->mac.type == e1000_ich8lan) {
+		/* Set Tx and Rx buffer allocation to 8k apiece. */
+		ew32(PBA, E1000_PBA_8K);
+		/* Set Packet Buffer Size to 16k. */
+		ew32(PBS, E1000_PBS_16K);
+	}
+
+	if (hw->mac.type == e1000_pchlan) {
+		/* Save the NVM K1 bit setting*/
+		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
+		if (ret_val)
+			return ret_val;
+
+		if (reg & E1000_NVM_K1_ENABLE)
+			dev_spec->nvm_k1_enabled = true;
+		else
+			dev_spec->nvm_k1_enabled = false;
+	}
+
+	ctrl = er32(CTRL);
+
+	if (!e1000_check_reset_block(hw)) {
+		/*
+		 * Full-chip reset requires MAC and PHY reset at the same
+		 * time to make sure the interface between MAC and the
+		 * external PHY is reset.
+		 */
+		ctrl |= E1000_CTRL_PHY_RST;
+	}
+	ret_val = e1000_acquire_swflag_ich8lan(hw);
+	e_dbg("Issuing a global reset to ich8lan\n");
+	ew32(CTRL, (ctrl | E1000_CTRL_RST));
+	msleep(20);
+
+	if (!ret_val)
+		e1000_release_swflag_ich8lan(hw);
+
+	if (ctrl & E1000_CTRL_PHY_RST) {
+		ret_val = hw->phy.ops.get_cfg_done(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_post_phy_reset_ich8lan(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * For PCH, this write will make sure that any noise
+	 * will be detected as a CRC error and be dropped rather than show up
+	 * as a bad packet to the DMA engine.
+	 */
+	if (hw->mac.type == e1000_pchlan)
+		ew32(CRC_OFFSET, 0x65656565);
+
+	ew32(IMC, 0xffffffff);
+	icr = er32(ICR);
+
+	kab = er32(KABGTXD);
+	kab |= E1000_KABGTXD_BGSQLBIAS;
+	ew32(KABGTXD, kab);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_ich8lan - Initialize the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Prepares the hardware for transmit and receive by doing the following:
+ *   - initialize hardware bits
+ *   - initialize LED identification
+ *   - setup receive address registers
+ *   - setup flow control
+ *   - setup transmit descriptors
+ *   - clear statistics
+ **/
+static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl_ext, txdctl, snoop;
+	s32 ret_val;
+	u16 i;
+
+	e1000_initialize_hw_bits_ich8lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	if (ret_val)
+		e_dbg("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+
+	/* Setup the receive address. */
+	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/*
+	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
+	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
+	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
+	 */
+	if (hw->phy.type == e1000_phy_82578) {
+		hw->phy.ops.read_reg(hw, BM_WUC, &i);
+		ret_val = e1000_phy_hw_reset_ich8lan(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_ich8lan(hw);
+
+	/* Set the transmit descriptor write-back policy for both queues */
+	txdctl = er32(TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	ew32(TXDCTL(0), txdctl);
+	txdctl = er32(TXDCTL(1));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	ew32(TXDCTL(1), txdctl);
+
+	/*
+	 * ICH8 has opposite polarity of no_snoop bits.
+	 * By default, we should use snoop behavior.
+	 */
+	if (mac->type == e1000_ich8lan)
+		snoop = PCIE_ICH8_SNOOP_ALL;
+	else
+		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
+	e1000e_set_pcie_no_snoop(hw, snoop);
+
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+	ew32(CTRL_EXT, ctrl_ext);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_ich8lan(hw);
+
+	return 0;
+}
+/**
+ *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets/Clears required hardware bits necessary for correctly setting up the
+ *  hardware for transmit and receive.
+ **/
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	/* Extended Device Control */
+	reg = er32(CTRL_EXT);
+	reg |= (1 << 22);
+	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
+	if (hw->mac.type >= e1000_pchlan)
+		reg |= E1000_CTRL_EXT_PHYPDEN;
+	ew32(CTRL_EXT, reg);
+
+	/* Transmit Descriptor Control 0 */
+	reg = er32(TXDCTL(0));
+	reg |= (1 << 22);
+	ew32(TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = er32(TXDCTL(1));
+	reg |= (1 << 22);
+	ew32(TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = er32(TARC(0));
+	if (hw->mac.type == e1000_ich8lan)
+		reg |= (1 << 28) | (1 << 29);
+	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+	ew32(TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = er32(TARC(1));
+	if (er32(TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	reg |= (1 << 24) | (1 << 26) | (1 << 30);
+	ew32(TARC(1), reg);
+
+	/* Device Status */
+	if (hw->mac.type == e1000_ich8lan) {
+		reg = er32(STATUS);
+		reg &= ~(1 << 31);
+		ew32(STATUS, reg);
+	}
+
+	/*
+	 * work-around descriptor data corruption issue during nfs v2 udp
+	 * traffic, just disable the nfs filtering capability
+	 */
+	reg = er32(RFCTL);
+	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
+	ew32(RFCTL, reg);
+}
+
+/**
+ *  e1000_setup_link_ich8lan - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	if (e1000_check_reset_block(hw))
+		return 0;
+
+	/*
+	 * ICH parts do not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default) {
+		/* Workaround h/w hang when Tx flow control enabled */
+		if (hw->mac.type == e1000_pchlan)
+			hw->fc.requested_mode = e1000_fc_rx_pause;
+		else
+			hw->fc.requested_mode = e1000_fc_full;
+	}
+
+	/*
+	 * Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	e_dbg("After fix-ups FlowControl is now = %x\n",
+		hw->fc.current_mode);
+
+	/* Continue to configure the copper link. */
+	ret_val = e1000_setup_copper_link_ich8lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	ew32(FCTTV, hw->fc.pause_time);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		ew32(FCRTV_PCH, hw->fc.refresh_time);
+
+		ret_val = hw->phy.ops.write_reg(hw,
+		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
+		                             hw->fc.pause_time);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000e_set_fc_watermarks(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the kumeran interface to the PHY to wait the appropriate time
+ *  when polling the PHY, then call the generic setup_copper_link to finish
+ *  configuring the copper link.
+ **/
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ew32(CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each iteration
+	 * and increase the max iterations when polling the phy;
+	 * this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+	                               &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= 0x3F;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+	                                reg_data);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->phy.type) {
+	case e1000_phy_igp_3:
+		ret_val = e1000e_copper_link_setup_igp(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_bm:
+	case e1000_phy_82578:
+		ret_val = e1000e_copper_link_setup_m88(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_82577:
+		ret_val = e1000_copper_link_setup_82577(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_ife:
+		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
+		                               &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+		switch (hw->phy.mdix) {
+		case 1:
+			reg_data &= ~IFE_PMC_FORCE_MDIX;
+			break;
+		case 2:
+			reg_data |= IFE_PMC_FORCE_MDIX;
+			break;
+		case 0:
+		default:
+			reg_data |= IFE_PMC_AUTO_MDIX;
+			break;
+		}
+		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
+		                                reg_data);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		break;
+	}
+	return e1000e_setup_copper_link(hw);
+}
+
+/**
+ *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to store current link speed
+ *  @duplex: pointer to store the current link duplex
+ *
+ *  Calls the generic get_speed_and_duplex to retrieve the current link
+ *  information and then calls the Kumeran lock loss workaround for links at
+ *  gigabit speeds.
+ **/
+static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+					  u16 *duplex)
+{
+	s32 ret_val;
+
+	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac.type == e1000_ich8lan) &&
+	    (hw->phy.type == e1000_phy_igp_3) &&
+	    (*speed == SPEED_1000)) {
+		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  Work-around for 82566 Kumeran PCS lock loss:
+ *  On link status change (i.e. PCI reset, speed change) and link is up and
+ *  speed is gigabit-
+ *    0) if workaround is optionally disabled do nothing
+ *    1) wait 1ms for Kumeran link to come up
+ *    2) check Kumeran Diagnostic register PCS lock loss bit
+ *    3) if not set the link is locked (all is good), otherwise...
+ *    4) reset the PHY
+ *    5) repeat up to 10 times
+ *  Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 phy_ctrl;
+	s32 ret_val;
+	u16 i, data;
+	bool link;
+
+	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
+		return 0;
+
+	/*
+	 * Make sure link is up before proceeding.  If not just return.
+	 * Attempting this while link is negotiating fouled up link
+	 * stability
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (!link)
+		return 0;
+
+	for (i = 0; i < 10; i++) {
+		/* read once to clear */
+		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+		/* and again to get new status */
+		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+
+		/* check for PCS lock */
+		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+			return 0;
+
+		/* Issue PHY reset */
+		e1000_phy_hw_reset(hw);
+		mdelay(5);
+	}
+	/* Disable GigE link negotiation */
+	phy_ctrl = er32(PHY_CTRL);
+	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+	ew32(PHY_CTRL, phy_ctrl);
+
+	/*
+	 * Call gig speed drop workaround on Gig disable before accessing
+	 * any PHY registers
+	 */
+	e1000e_gig_downshift_workaround_ich8lan(hw);
+
+	/* unable to acquire PCS lock */
+	return -E1000_ERR_PHY;
+}
+
+/**
+ *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
+ *  @hw: pointer to the HW structure
+ *  @state: boolean value used to set the current Kumeran workaround state
+ *
+ *  If ICH8, set the current Kumeran workaround state (enabled - true
+ *  /disabled - false).
+ **/
+void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+						 bool state)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+
+	if (hw->mac.type != e1000_ich8lan) {
+		e_dbg("Workaround applies to ICH8 only.\n");
+		return;
+	}
+
+	dev_spec->kmrn_lock_loss_workaround_enabled = state;
+}
+
+/**
+ *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ *  @hw: pointer to the HW structure
+ *
+ *  Workaround for 82566 power-down on D3 entry:
+ *    1) disable gigabit link
+ *    2) write VR power-down enable
+ *    3) read it back
+ *  Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+	u16 data;
+	u8  retry = 0;
+
+	if (hw->phy.type != e1000_phy_igp_3)
+		return;
+
+	/* Try the workaround twice (if needed) */
+	do {
+		/* Disable link */
+		reg = er32(PHY_CTRL);
+		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+		ew32(PHY_CTRL, reg);
+
+		/*
+		 * Call gig speed drop workaround on Gig disable before
+		 * accessing any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* Write VR power-down enable */
+		e1e_rphy(hw, IGP3_VR_CTRL, &data);
+		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+		/* Read it back and test */
+		e1e_rphy(hw, IGP3_VR_CTRL, &data);
+		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+			break;
+
+		/* Issue PHY reset and repeat at most one more time */
+		reg = er32(CTRL);
+		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
+		retry++;
+	} while (retry);
+}
+
+/**
+ *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ *  @hw: pointer to the HW structure
+ *
+ *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ *  LPLU, Gig disable, MDIC PHY reset):
+ *    1) Set Kumeran Near-end loopback
+ *    2) Clear Kumeran Near-end loopback
+ *  Should only be called for ICH8[m] devices with IGP_3 Phy.
+ **/
+void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 reg_data;
+
+	if ((hw->mac.type != e1000_ich8lan) ||
+	    (hw->phy.type != e1000_phy_igp_3))
+		return;
+
+	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				      &reg_data);
+	if (ret_val)
+		return;
+	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				       reg_data);
+	if (ret_val)
+		return;
+	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				       reg_data);
+}
+
+/**
+ *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
+ *  @hw: pointer to the HW structure
+ *
+ *  During S0 to Sx transition, it is possible the link remains at gig
+ *  instead of negotiating to a lower speed.  Before going to Sx, set
+ *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
+ *  to a lower speed.
+ *
+ *  Should only be called for applicable parts.
+ **/
+void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
+{
+	u32 phy_ctrl;
+
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+	case e1000_pchlan:
+		phy_ctrl = er32(PHY_CTRL);
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
+		            E1000_PHY_CTRL_GBE_DISABLE;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (hw->mac.type == e1000_pchlan)
+			e1000_phy_hw_reset_ich8lan(hw);
+	default:
+		break;
+	}
+}
+
+/**
+ *  e1000_cleanup_led_ich8lan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+
+	ew32(LEDCTL, hw->mac.ledctl_default);
+	return 0;
+}
+
+/**
+ *  e1000_led_on_ich8lan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+
+	ew32(LEDCTL, hw->mac.ledctl_mode2);
+	return 0;
+}
+
+/**
+ *  e1000_led_off_ich8lan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+
+	ew32(LEDCTL, hw->mac.ledctl_mode1);
+	return 0;
+}
+
+/**
+ *  e1000_setup_led_pchlan - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use.
+ **/
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
+{
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+					(u16)hw->mac.ledctl_mode1);
+}
+
+/**
+ *  e1000_cleanup_led_pchlan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
+{
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+					(u16)hw->mac.ledctl_default);
+}
+
+/**
+ *  e1000_led_on_pchlan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode2;
+	u32 i, led;
+
+	/*
+	 * If no link, then turn LED on by setting the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode2.
+	 */
+	if (!(er32(STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_led_off_pchlan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode1;
+	u32 i, led;
+
+	/*
+	 * If no link, then turn LED off by clearing the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode1.
+	 */
+	if (!(er32(STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Read appropriate register for the config done bit for completion status
+ *  and configure the PHY through s/w for EEPROM-less parts.
+ *
+ *  NOTE: some silicon which is EEPROM-less will fail trying to read the
+ *  config done bit, so only an error is logged and continues.  If we were
+ *  to return with error, EEPROM-less silicon would not be able to be reset
+ *  or change link.
+ **/
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u32 bank = 0;
+	u32 status;
+
+	e1000e_get_cfg_done(hw);
+
+	/* Wait for indication from h/w that it has completed basic config */
+	if (hw->mac.type >= e1000_ich10lan) {
+		e1000_lan_init_done_ich8lan(hw);
+	} else {
+		ret_val = e1000e_get_auto_rd_done(hw);
+		if (ret_val) {
+			/*
+			 * When auto config read does not complete, do not
+			 * return with an error. This can happen in situations
+			 * where there is no eeprom and prevents getting link.
+			 */
+			e_dbg("Auto Read Done did not complete\n");
+			ret_val = 0;
+		}
+	}
+
+	/* Clear PHY Reset Asserted bit */
+	status = er32(STATUS);
+	if (status & E1000_STATUS_PHYRA)
+		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
+	else
+		e_dbg("PHY Reset Asserted not set - needs delay\n");
+
+	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
+	if (hw->mac.type <= e1000_ich9lan) {
+		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
+		    (hw->phy.type == e1000_phy_igp_3)) {
+			e1000e_phy_init_script_igp3(hw);
+		}
+	} else {
+		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
+			/* Maybe we should do a basic PHY config */
+			e_dbg("EEPROM not present\n");
+			ret_val = -E1000_ERR_CONFIG;
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(hw->mac.ops.check_mng_mode(hw) ||
+	      hw->phy.ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+}
+
+/**
+ *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears hardware counters specific to the silicon family and calls
+ *  clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+	u16 phy_data;
+
+	e1000e_clear_hw_cntrs_base(hw);
+
+	er32(ALGNERRC);
+	er32(RXERRC);
+	er32(TNCRS);
+	er32(CEXTERR);
+	er32(TSCTC);
+	er32(TSCTFC);
+
+	er32(MGTPRC);
+	er32(MGTPDC);
+	er32(MGTPTC);
+
+	er32(IAC);
+	er32(ICRXOC);
+
+	/* Clear PHY statistics registers */
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
+	}
+}
+
+static struct e1000_mac_operations ich8_mac_ops = {
+	.id_led_init		= e1000e_id_led_init,
+	.check_mng_mode		= e1000_check_mng_mode_ich8lan,
+	.check_for_link		= e1000_check_for_copper_link_ich8lan,
+	/* cleanup_led dependent on mac type */
+	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
+	.get_bus_info		= e1000_get_bus_info_ich8lan,
+	.set_lan_id		= e1000_set_lan_id_single_port,
+	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
+	/* led_on dependent on mac type */
+	/* led_off dependent on mac type */
+	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
+	.reset_hw		= e1000_reset_hw_ich8lan,
+	.init_hw		= e1000_init_hw_ich8lan,
+	.setup_link		= e1000_setup_link_ich8lan,
+	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
+	/* id_led_init dependent on mac type */
+};
+
+static struct e1000_phy_operations ich8_phy_ops = {
+	.acquire		= e1000_acquire_swflag_ich8lan,
+	.check_reset_block	= e1000_check_reset_block_ich8lan,
+	.commit			= NULL,
+	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
+	.get_cable_length	= e1000e_get_cable_length_igp_2,
+	.read_reg		= e1000e_read_phy_reg_igp,
+	.release		= e1000_release_swflag_ich8lan,
+	.reset			= e1000_phy_hw_reset_ich8lan,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
+	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
+	.write_reg		= e1000e_write_phy_reg_igp,
+};
+
+static struct e1000_nvm_operations ich8_nvm_ops = {
+	.acquire		= e1000_acquire_nvm_ich8lan,
+	.read		 	= e1000_read_nvm_ich8lan,
+	.release		= e1000_release_nvm_ich8lan,
+	.update			= e1000_update_nvm_checksum_ich8lan,
+	.valid_led_default	= e1000_valid_led_default_ich8lan,
+	.validate		= e1000_validate_nvm_checksum_ich8lan,
+	.write			= e1000_write_nvm_ich8lan,
+};
+
+struct e1000_info e1000_ich8_info = {
+	.mac			= e1000_ich8lan,
+	.flags			= FLAG_HAS_WOL
+				  | FLAG_IS_ICH
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 8,
+	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_ich9_info = {
+	.mac			= e1000_ich9lan,
+	.flags			= FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_ERT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 10,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_ich10_info = {
+	.mac			= e1000_ich10lan,
+	.flags			= FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_ERT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 10,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_pch_info = {
+	.mac			= e1000_pchlan,
+	.flags			= FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_FLASH
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
+				  | FLAG_APME_IN_WUC,
+	.pba			= 26,
+	.max_hw_frame_size	= 4096,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/ich8lan-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3506 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ * 82562G 10/100 Network Connection
+ * 82562G-2 10/100 Network Connection
+ * 82562GT 10/100 Network Connection
+ * 82562GT-2 10/100 Network Connection
+ * 82562V 10/100 Network Connection
+ * 82562V-2 10/100 Network Connection
+ * 82566DC-2 Gigabit Network Connection
+ * 82566DC Gigabit Network Connection
+ * 82566DM-2 Gigabit Network Connection
+ * 82566DM Gigabit Network Connection
+ * 82566MC Gigabit Network Connection
+ * 82566MM Gigabit Network Connection
+ * 82567LM Gigabit Network Connection
+ * 82567LF Gigabit Network Connection
+ * 82567V Gigabit Network Connection
+ * 82567LM-2 Gigabit Network Connection
+ * 82567LF-2 Gigabit Network Connection
+ * 82567V-2 Gigabit Network Connection
+ * 82567LF-3 Gigabit Network Connection
+ * 82567LM-3 Gigabit Network Connection
+ * 82567LM-4 Gigabit Network Connection
+ * 82577LM Gigabit Network Connection
+ * 82577LC Gigabit Network Connection
+ * 82578DM Gigabit Network Connection
+ * 82578DC Gigabit Network Connection
+ */
+
+#include "e1000.h"
+
+#define ICH_FLASH_GFPREG		0x0000
+#define ICH_FLASH_HSFSTS		0x0004
+#define ICH_FLASH_HSFCTL		0x0006
+#define ICH_FLASH_FADDR			0x0008
+#define ICH_FLASH_FDATA0		0x0010
+#define ICH_FLASH_PR0			0x0074
+
+#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
+#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
+
+#define ICH_CYCLE_READ			0
+#define ICH_CYCLE_WRITE			2
+#define ICH_CYCLE_ERASE			3
+
+#define FLASH_GFPREG_BASE_MASK		0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT		12
+
+#define ICH_FLASH_SEG_SIZE_256		256
+#define ICH_FLASH_SEG_SIZE_4K		4096
+#define ICH_FLASH_SEG_SIZE_8K		8192
+#define ICH_FLASH_SEG_SIZE_64K		65536
+
+
+#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID		0x00008000
+
+#define E1000_ICH_MNG_IAMT_MODE		0x2
+
+#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
+				 (ID_LED_DEF1_OFF2 <<  8) | \
+				 (ID_LED_DEF1_ON2  <<  4) | \
+				 (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD		0x13
+#define E1000_ICH_NVM_SIG_MASK		0xC000
+#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
+#define E1000_ICH_NVM_SIG_VALUE         0x80
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
+
+#define E1000_FEXTNVM_SW_CONFIG		1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
+
+#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES		7
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+			   ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
+
+#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
+
+#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
+
+/* SMBus Address Phy Register */
+#define HV_SMB_ADDR            PHY_REG(768, 26)
+#define HV_SMB_ADDR_PEC_EN     0x0200
+#define HV_SMB_ADDR_VALID      0x0080
+
+/* Strapping Option Register - RO */
+#define E1000_STRAP                     0x0000C
+#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
+#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
+
+/* OEM Bits Phy Register */
+#define HV_OEM_BITS            PHY_REG(768, 25)
+#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
+#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
+#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
+
+#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
+#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
+
+/* KMRN Mode Control */
+#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
+#define HV_KMRN_MDIO_SLOW      0x0400
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+	struct ich8_hsfsts {
+		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
+		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
+		u16 dael       :1; /* bit 2 Direct Access error Log */
+		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
+		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
+		u16 reserved1  :2; /* bit 13:6 Reserved */
+		u16 reserved2  :6; /* bit 13:6 Reserved */
+		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
+		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
+	} hsf_status;
+	u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+	struct ich8_hsflctl {
+		u16 flcgo      :1;   /* 0 Flash Cycle Go */
+		u16 flcycle    :2;   /* 2:1 Flash Cycle */
+		u16 reserved   :5;   /* 7:3 Reserved  */
+		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
+		u16 flockdn    :6;   /* 15:10 Reserved */
+	} hsf_ctrl;
+	u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+	struct ich8_flracc {
+		u32 grra      :8; /* 0:7 GbE region Read Access */
+		u32 grwa      :8; /* 8:15 GbE region Write Access */
+		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
+		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
+	} hsf_flregacc;
+	u16 regval;
+};
+
+/* ICH Flash Protected Region */
+union ich8_flash_protected_range {
+	struct ich8_pr {
+		u32 base:13;     /* 0:12 Protected Range Base */
+		u32 reserved1:2; /* 13:14 Reserved */
+		u32 rpe:1;       /* 15 Read Protection Enable */
+		u32 limit:13;    /* 16:28 Protected Range Limit */
+		u32 reserved2:2; /* 29:30 Reserved */
+		u32 wpe:1;       /* 31 Write Protection Enable */
+	} range;
+	u32 regval;
+};
+
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						u32 offset, u8 byte);
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 *data);
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u16 *data);
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 size, u16 *data);
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
+static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
+
+static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
+{
+	return readw(hw->flash_address + reg);
+}
+
+static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
+{
+	return readl(hw->flash_address + reg);
+}
+
+static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
+{
+	writew(val, hw->flash_address + reg);
+}
+
+static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
+{
+	writel(val, hw->flash_address + reg);
+}
+
+#define er16flash(reg)		__er16flash(hw, (reg))
+#define er32flash(reg)		__er32flash(hw, (reg))
+#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
+#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
+
+/**
+ *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 ctrl;
+	s32 ret_val = 0;
+
+	phy->addr                     = 1;
+	phy->reset_delay_us           = 100;
+
+	phy->ops.read_reg             = e1000_read_phy_reg_hv;
+	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
+	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
+	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
+	phy->ops.write_reg            = e1000_write_phy_reg_hv;
+	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
+	phy->ops.power_up             = e1000_power_up_phy_copper;
+	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
+	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
+		/*
+		 * The MAC-PHY interconnect may still be in SMBus mode
+		 * after Sx->S0.  Toggle the LANPHYPC Value bit to force
+		 * the interconnect to PCIe mode, but only if there is no
+		 * firmware present otherwise firmware will have done it.
+		 */
+		ctrl = er32(CTRL);
+		ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
+		ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
+		ew32(CTRL, ctrl);
+		udelay(10);
+		ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
+		ew32(CTRL, ctrl);
+		msleep(50);
+	}
+
+	/*
+	 * Reset the PHY before any acccess to it.  Doing so, ensures that
+	 * the PHY is in a known good state before we read/write PHY registers.
+	 * The generic reset is sufficient here, because we haven't determined
+	 * the PHY type yet.
+	 */
+	ret_val = e1000e_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	phy->id = e1000_phy_unknown;
+	ret_val = e1000e_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+	if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
+		/*
+		 * In case the PHY needs to be in mdio slow mode (eg. 82577),
+		 * set slow mode and try to get the PHY id again.
+		 */
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (ret_val)
+			goto out;
+		ret_val = e1000e_get_phy_id(hw);
+		if (ret_val)
+			goto out;
+	}
+	phy->type = e1000e_get_phy_type_from_id(phy->id);
+
+	switch (phy->type) {
+	case e1000_phy_82577:
+		phy->ops.check_polarity = e1000_check_polarity_82577;
+		phy->ops.force_speed_duplex =
+			e1000_phy_force_speed_duplex_82577;
+		phy->ops.get_cable_length = e1000_get_cable_length_82577;
+		phy->ops.get_info = e1000_get_phy_info_82577;
+		phy->ops.commit = e1000e_phy_sw_reset;
+		break;
+	case e1000_phy_82578:
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
+		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
+		phy->ops.get_info = e1000e_get_phy_info_m88;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 i = 0;
+
+	phy->addr			= 1;
+	phy->reset_delay_us		= 100;
+
+	phy->ops.power_up               = e1000_power_up_phy_copper;
+	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
+
+	/*
+	 * We may need to do this twice - once for IGP and if that fails,
+	 * we'll set BM func pointers and try again
+	 */
+	ret_val = e1000e_determine_phy_address(hw);
+	if (ret_val) {
+		phy->ops.write_reg = e1000e_write_phy_reg_bm;
+		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
+		ret_val = e1000e_determine_phy_address(hw);
+		if (ret_val) {
+			e_dbg("Cannot determine PHY addr. Erroring out\n");
+			return ret_val;
+		}
+	}
+
+	phy->id = 0;
+	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
+	       (i++ < 100)) {
+		msleep(1);
+		ret_val = e1000e_get_phy_id(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Verify phy id */
+	switch (phy->id) {
+	case IGP03E1000_E_PHY_ID:
+		phy->type = e1000_phy_igp_3;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
+		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
+		phy->ops.get_info = e1000e_get_phy_info_igp;
+		phy->ops.check_polarity = e1000_check_polarity_igp;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy->type = e1000_phy_ife;
+		phy->autoneg_mask = E1000_ALL_NOT_GIG;
+		phy->ops.get_info = e1000_get_phy_info_ife;
+		phy->ops.check_polarity = e1000_check_polarity_ife;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
+		break;
+	case BME1000_E_PHY_ID:
+		phy->type = e1000_phy_bm;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg = e1000e_read_phy_reg_bm;
+		phy->ops.write_reg = e1000e_write_phy_reg_bm;
+		phy->ops.commit = e1000e_phy_sw_reset;
+		phy->ops.get_info = e1000e_get_phy_info_m88;
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific NVM parameters and function
+ *  pointers.
+ **/
+static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 gfpreg, sector_base_addr, sector_end_addr;
+	u16 i;
+
+	/* Can't read flash registers if the register set isn't mapped. */
+	if (!hw->flash_address) {
+		e_dbg("ERROR: Flash registers not mapped\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	nvm->type = e1000_nvm_flash_sw;
+
+	gfpreg = er32flash(ICH_FLASH_GFPREG);
+
+	/*
+	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
+	 * Add 1 to sector_end_addr since this sector is included in
+	 * the overall size.
+	 */
+	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+	/* flash_base_addr is byte-aligned */
+	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+	/*
+	 * find total size of the NVM, then cut in half since the total
+	 * size represents two separate NVM banks.
+	 */
+	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
+				<< FLASH_SECTOR_ADDR_SHIFT;
+	nvm->flash_bank_size /= 2;
+	/* Adjust to word count */
+	nvm->flash_bank_size /= sizeof(u16);
+
+	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
+
+	/* Clear shadow ram */
+	for (i = 0; i < nvm->word_size; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value    = 0xFFFF;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific MAC parameters and function
+ *  pointers.
+ **/
+static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &hw->mac;
+
+	/* Set media type function pointer */
+	hw->phy.media_type = e1000_media_type_copper;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 32;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+	if (mac->type == e1000_ich8lan)
+		mac->rar_entry_count--;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC subsystem not supported */
+	mac->arc_subsystem_valid = false;
+	/* Adaptive IFS supported */
+	mac->adaptive_ifs = true;
+
+	/* LED operations */
+	switch (mac->type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+		/* ID LED init */
+		mac->ops.id_led_init = e1000e_id_led_init;
+		/* setup LED */
+		mac->ops.setup_led = e1000e_setup_led_generic;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_ich8lan;
+		mac->ops.led_off = e1000_led_off_ich8lan;
+		break;
+	case e1000_pchlan:
+		/* ID LED init */
+		mac->ops.id_led_init = e1000_id_led_init_pchlan;
+		/* setup LED */
+		mac->ops.setup_led = e1000_setup_led_pchlan;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_pchlan;
+		mac->ops.led_off = e1000_led_off_pchlan;
+		break;
+	default:
+		break;
+	}
+
+	/* Enable PCS Lock-loss workaround for ICH8 */
+	if (mac->type == e1000_ich8lan)
+		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
+
+	return 0;
+}
+
+/**
+ *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = 0;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type == e1000_pchlan) {
+		ret_val = e1000_k1_gig_workaround_hv(hw, link);
+		if (ret_val)
+			goto out;
+	}
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = false;
+
+	if (hw->phy.type == e1000_phy_82578) {
+		ret_val = e1000_link_stall_workaround_hv(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000e_check_downshift(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000e_config_collision_dist(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000e_config_fc_after_link_up(hw);
+	if (ret_val)
+		e_dbg("Error configuring flow control\n");
+
+out:
+	return ret_val;
+}
+
+static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	s32 rc;
+
+	rc = e1000_init_mac_params_ich8lan(adapter);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_nvm_params_ich8lan(hw);
+	if (rc)
+		return rc;
+
+	if (hw->mac.type == e1000_pchlan)
+		rc = e1000_init_phy_params_pchlan(hw);
+	else
+		rc = e1000_init_phy_params_ich8lan(hw);
+	if (rc)
+		return rc;
+
+	if (adapter->hw.phy.type == e1000_phy_ife) {
+		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
+		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
+	}
+
+	if ((adapter->hw.mac.type == e1000_ich8lan) &&
+	    (adapter->hw.phy.type == e1000_phy_igp_3))
+		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
+
+	return 0;
+}
+
+static DEFINE_MUTEX(nvm_mutex);
+
+/**
+ *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the mutex for performing NVM operations.
+ **/
+static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
+{
+	mutex_lock(&nvm_mutex);
+
+	return 0;
+}
+
+/**
+ *  e1000_release_nvm_ich8lan - Release NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the mutex used while performing NVM operations.
+ **/
+static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
+{
+	mutex_unlock(&nvm_mutex);
+}
+
+static DEFINE_MUTEX(swflag_mutex);
+
+/**
+ *  e1000_acquire_swflag_ich8lan - Acquire software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = 0;
+
+	mutex_lock(&swflag_mutex);
+
+	while (timeout) {
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
+			break;
+
+		mdelay(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("SW/FW/HW has locked the resource for too long.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	timeout = SW_FLAG_TIMEOUT;
+
+	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+	ew32(EXTCNF_CTRL, extcnf_ctrl);
+
+	while (timeout) {
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+			break;
+
+		mdelay(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("Failed to acquire the semaphore.\n");
+		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+		ew32(EXTCNF_CTRL, extcnf_ctrl);
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	if (ret_val)
+		mutex_unlock(&swflag_mutex);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swflag_ich8lan - Release software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+
+	extcnf_ctrl = er32(EXTCNF_CTRL);
+	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+	ew32(EXTCNF_CTRL, extcnf_ctrl);
+
+	mutex_unlock(&swflag_mutex);
+}
+
+/**
+ *  e1000_check_mng_mode_ich8lan - Checks management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has manageability enabled.
+ *  This is a function pointer entry point only called by read/write
+ *  routines for the PHY and NVM parts.
+ **/
+static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	fwsm = er32(FWSM);
+
+	return (fwsm & E1000_FWSM_MODE_MASK) ==
+		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks if firmware is blocking the reset of the PHY.
+ *  This is a function pointer entry point only called by
+ *  reset routines.
+ **/
+static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	fwsm = er32(FWSM);
+
+	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
+}
+
+/**
+ *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
+ *  @hw:   pointer to the HW structure
+ *
+ *  SW should configure the LCD from the NVM extended configuration region
+ *  as a workaround for certain parts.
+ **/
+static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->adapter;
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+	s32 ret_val = 0;
+	u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+	if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) &&
+		!(hw->mac.type == e1000_pchlan))
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Initialize the PHY from the NVM on ICH platforms.  This
+	 * is needed due to an issue where the NVM configuration is
+	 * not properly autoloaded after power transitions.
+	 * Therefore, after each PHY reset, we will load the
+	 * configuration data out of the NVM manually.
+	 */
+	if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
+	    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
+	    (hw->mac.type == e1000_pchlan))
+		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+	else
+		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+
+	data = er32(FEXTNVM);
+	if (!(data & sw_cfg_mask))
+		goto out;
+
+	/*
+	 * Make sure HW does not configure LCD from PHY
+	 * extended configuration before SW configuration
+	 */
+	data = er32(EXTCNF_CTRL);
+	if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+		goto out;
+
+	cnf_size = er32(EXTCNF_SIZE);
+	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+	if (!cnf_size)
+		goto out;
+
+	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+	if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
+	    (hw->mac.type == e1000_pchlan)) {
+		/*
+		 * HW configures the SMBus address and LEDs when the
+		 * OEM and LCD Write Enable bits are set in the NVM.
+		 * When both NVM bits are cleared, SW will configure
+		 * them instead.
+		 */
+		data = er32(STRAP);
+		data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
+		reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
+		reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
+		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
+							reg_data);
+		if (ret_val)
+			goto out;
+
+		data = er32(LEDCTL);
+		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
+							(u16)data);
+		if (ret_val)
+			goto out;
+	}
+
+	/* Configure LCD from extended configuration region. */
+
+	/* cnf_base_addr is in DWORD */
+	word_addr = (u16)(cnf_base_addr << 1);
+
+	for (i = 0; i < cnf_size; i++) {
+		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
+					 &reg_data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
+					 1, &reg_addr);
+		if (ret_val)
+			goto out;
+
+		/* Save off the PHY page for future writes. */
+		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+			phy_page = reg_data;
+			continue;
+		}
+
+		reg_addr &= PHY_REG_MASK;
+		reg_addr |= phy_page;
+
+		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
+						    reg_data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_k1_gig_workaround_hv - K1 Si workaround
+ *  @hw:   pointer to the HW structure
+ *  @link: link up bool flag
+ *
+ *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
+ *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
+ *  If link is down, the function will restore the default K1 setting located
+ *  in the NVM.
+ **/
+static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
+{
+	s32 ret_val = 0;
+	u16 status_reg = 0;
+	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
+
+	if (hw->mac.type != e1000_pchlan)
+		goto out;
+
+	/* Wrap the whole flow with the sw flag */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
+	if (link) {
+		if (hw->phy.type == e1000_phy_82578) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
+			                                          &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= BM_CS_STATUS_LINK_UP |
+			              BM_CS_STATUS_RESOLVED |
+			              BM_CS_STATUS_SPEED_MASK;
+
+			if (status_reg == (BM_CS_STATUS_LINK_UP |
+			                   BM_CS_STATUS_RESOLVED |
+			                   BM_CS_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		if (hw->phy.type == e1000_phy_82577) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
+			                                          &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= HV_M_STATUS_LINK_UP |
+			              HV_M_STATUS_AUTONEG_COMPLETE |
+			              HV_M_STATUS_SPEED_MASK;
+
+			if (status_reg == (HV_M_STATUS_LINK_UP |
+			                   HV_M_STATUS_AUTONEG_COMPLETE |
+			                   HV_M_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		/* Link stall fix for link up */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+		                                           0x0100);
+		if (ret_val)
+			goto release;
+
+	} else {
+		/* Link stall fix for link down */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+		                                           0x4100);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
+
+release:
+	hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_configure_k1_ich8lan - Configure K1 power state
+ *  @hw: pointer to the HW structure
+ *  @enable: K1 state to configure
+ *
+ *  Configure the K1 power state based on the provided parameter.
+ *  Assumes semaphore already acquired.
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ **/
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
+{
+	s32 ret_val = 0;
+	u32 ctrl_reg = 0;
+	u32 ctrl_ext = 0;
+	u32 reg = 0;
+	u16 kmrn_reg = 0;
+
+	ret_val = e1000e_read_kmrn_reg_locked(hw,
+	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
+	                                     &kmrn_reg);
+	if (ret_val)
+		goto out;
+
+	if (k1_enable)
+		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
+	else
+		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
+
+	ret_val = e1000e_write_kmrn_reg_locked(hw,
+	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
+	                                      kmrn_reg);
+	if (ret_val)
+		goto out;
+
+	udelay(20);
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_reg = er32(CTRL);
+
+	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+	reg |= E1000_CTRL_FRCSPD;
+	ew32(CTRL, reg);
+
+	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
+	udelay(20);
+	ew32(CTRL, ctrl_reg);
+	ew32(CTRL_EXT, ctrl_ext);
+	udelay(20);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
+ *  @hw:       pointer to the HW structure
+ *  @d0_state: boolean if entering d0 or d3 device state
+ *
+ *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
+ *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
+ *  in NVM determines whether HW should configure LPLU and Gbe Disable.
+ **/
+static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
+{
+	s32 ret_val = 0;
+	u32 mac_reg;
+	u16 oem_reg;
+
+	if (hw->mac.type != e1000_pchlan)
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	mac_reg = er32(EXTCNF_CTRL);
+	if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
+		goto out;
+
+	mac_reg = er32(FEXTNVM);
+	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
+		goto out;
+
+	mac_reg = er32(PHY_CTRL);
+
+	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		goto out;
+
+	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
+
+	if (d0_state) {
+		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
+			oem_reg |= HV_OEM_BITS_LPLU;
+	} else {
+		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
+			oem_reg |= HV_OEM_BITS_LPLU;
+	}
+	/* Restart auto-neg to activate the bits */
+	if (!e1000_check_reset_block(hw))
+		oem_reg |= HV_OEM_BITS_RESTART_AN;
+	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
+
+out:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+
+/**
+ *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
+ *  @hw:   pointer to the HW structure
+ **/
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= HV_KMRN_MDIO_SLOW;
+
+	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ *  done after every PHY reset.
+ **/
+static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 phy_data;
+
+	if (hw->mac.type != e1000_pchlan)
+		return ret_val;
+
+	/* Set MDIO slow mode before any other MDIO access */
+	if (hw->phy.type == e1000_phy_82577) {
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (((hw->phy.type == e1000_phy_82577) &&
+	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
+	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
+		/* Disable generation of early preamble */
+		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
+		if (ret_val)
+			return ret_val;
+
+		/* Preamble tuning for SSC */
+		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->phy.type == e1000_phy_82578) {
+		/*
+		 * Return registers to default by doing a soft reset then
+		 * writing 0x3140 to the control register.
+		 */
+		if (hw->phy.revision < 2) {
+			e1000e_phy_sw_reset(hw);
+			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
+		}
+	}
+
+	/* Select page 0 */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy.addr = 1;
+	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
+	hw->phy.ops.release(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Configure the K1 Si workaround during phy reset assuming there is
+	 * link so that it disables K1 if link is in 1Gbps.
+	 */
+	ret_val = e1000_k1_gig_workaround_hv(hw, true);
+	if (ret_val)
+		goto out;
+
+	/* Workaround for link disconnects on a busy hub in half duplex */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+	ret_val = hw->phy.ops.read_reg_locked(hw,
+	                                      PHY_REG(BM_PORT_CTRL_PAGE, 17),
+	                                      &phy_data);
+	if (ret_val)
+		goto release;
+	ret_val = hw->phy.ops.write_reg_locked(hw,
+	                                       PHY_REG(BM_PORT_CTRL_PAGE, 17),
+	                                       phy_data & 0x00FF);
+release:
+	hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_lan_init_done_ich8lan - Check for PHY config completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check the appropriate indication the MAC has finished configuring the
+ *  PHY after a software reset.
+ **/
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
+{
+	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+
+	/* Wait for basic configuration completes before proceeding */
+	do {
+		data = er32(STATUS);
+		data &= E1000_STATUS_LAN_INIT_DONE;
+		udelay(100);
+	} while ((!data) && --loop);
+
+	/*
+	 * If basic configuration is incomplete before the above loop
+	 * count reaches 0, loading the configuration from NVM will
+	 * leave the PHY in a bad state possibly resulting in no link.
+	 */
+	if (loop == 0)
+		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
+
+	/* Clear the Init Done bit for the next init event */
+	data = er32(STATUS);
+	data &= ~E1000_STATUS_LAN_INIT_DONE;
+	ew32(STATUS, data);
+}
+
+/**
+ *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 reg;
+
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	/* Perform any necessary post-reset workarounds */
+	switch (hw->mac.type) {
+	case e1000_pchlan:
+		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
+		if (ret_val)
+			goto out;
+		break;
+	default:
+		break;
+	}
+
+	/* Dummy read to clear the phy wakeup bit after lcd reset */
+	if (hw->mac.type == e1000_pchlan)
+		e1e_rphy(hw, BM_WUC, &reg);
+
+	/* Configure the LCD with the extended configuration region in NVM */
+	ret_val = e1000_sw_lcd_config_ich8lan(hw);
+	if (ret_val)
+		goto out;
+
+	/* Configure the LCD with the OEM bits in NVM */
+	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the PHY
+ *  This is a function pointer entry point called by drivers
+ *  or other shared routines.
+ **/
+static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	ret_val = e1000e_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_post_phy_reset_ich8lan(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
+ *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
+ *  the phy speed. This function will manually set the LPLU bit and restart
+ *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
+ *  since it configures the same bit.
+ **/
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val = 0;
+	u16 oem_reg;
+
+	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		goto out;
+
+	if (active)
+		oem_reg |= HV_OEM_BITS_LPLU;
+	else
+		oem_reg &= ~HV_OEM_BITS_LPLU;
+
+	oem_reg |= HV_OEM_BITS_RESTART_AN;
+	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = 0;
+	u16 data;
+
+	if (phy->type == e1000_phy_ife)
+		return ret_val;
+
+	phy_ctrl = er32(PHY_CTRL);
+
+	if (active) {
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D3 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val;
+	u16 data;
+
+	phy_ctrl = er32(PHY_CTRL);
+
+	if (!active) {
+		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ *  @hw: pointer to the HW structure
+ *  @bank:  pointer to the variable that returns the active bank
+ *
+ *  Reads signature byte from the NVM using the flash access registers.
+ *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
+ **/
+static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+	u32 eecd;
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
+	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
+	u8 sig_byte = 0;
+	s32 ret_val = 0;
+
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		eecd = er32(EECD);
+		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
+		    E1000_EECD_SEC1VAL_VALID_MASK) {
+			if (eecd & E1000_EECD_SEC1VAL)
+				*bank = 1;
+			else
+				*bank = 0;
+
+			return 0;
+		}
+		e_dbg("Unable to determine valid NVM bank via EEC - "
+		       "reading flash signature\n");
+		/* fall-thru */
+	default:
+		/* set bank to 0 in case flash read fails */
+		*bank = 0;
+
+		/* Check bank 0 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
+		                                        &sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 0;
+			return 0;
+		}
+
+		/* Check bank 1 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
+		                                        bank1_offset,
+		                                        &sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 1;
+			return 0;
+		}
+
+		e_dbg("ERROR: No valid NVM bank present\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to read.
+ *  @words: Size of data to read in words
+ *  @data: Pointer to the word(s) to read at offset.
+ *
+ *  Reads a word(s) from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 act_offset;
+	s32 ret_val = 0;
+	u32 bank = 0;
+	u16 i, word;
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	nvm->ops.acquire(hw);
+
+	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val) {
+		e_dbg("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	act_offset = (bank) ? nvm->flash_bank_size : 0;
+	act_offset += offset;
+
+	ret_val = 0;
+	for (i = 0; i < words; i++) {
+		if ((dev_spec->shadow_ram) &&
+		    (dev_spec->shadow_ram[offset+i].modified)) {
+			data[i] = dev_spec->shadow_ram[offset+i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw,
+								act_offset + i,
+								&word);
+			if (ret_val)
+				break;
+			data[i] = word;
+		}
+	}
+
+	nvm->ops.release(hw);
+
+out:
+	if (ret_val)
+		e_dbg("NVM read error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_init_ich8lan - Initialize flash
+ *  @hw: pointer to the HW structure
+ *
+ *  This function does initial flash setup so that a new read/write/erase cycle
+ *  can be started.
+ **/
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	s32 i = 0;
+
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+
+	/* Check if the flash descriptor is valid */
+	if (hsfsts.hsf_status.fldesvalid == 0) {
+		e_dbg("Flash descriptor invalid.  "
+			 "SW Sequencing must be used.\n");
+		return -E1000_ERR_NVM;
+	}
+
+	/* Clear FCERR and DAEL in hw status by writing 1 */
+	hsfsts.hsf_status.flcerr = 1;
+	hsfsts.hsf_status.dael = 1;
+
+	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	/*
+	 * Either we should have a hardware SPI cycle in progress
+	 * bit to check against, in order to start a new cycle or
+	 * FDONE bit should be changed in the hardware so that it
+	 * is 1 after hardware reset, which can then be used as an
+	 * indication whether a cycle is in progress or has been
+	 * completed.
+	 */
+
+	if (hsfsts.hsf_status.flcinprog == 0) {
+		/*
+		 * There is no cycle running at present,
+		 * so we can start a cycle.
+		 * Begin by setting Flash Cycle Done.
+		 */
+		hsfsts.hsf_status.flcdone = 1;
+		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+		ret_val = 0;
+	} else {
+		/*
+		 * Otherwise poll for sometime so the current
+		 * cycle has a chance to end before giving up.
+		 */
+		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcinprog == 0) {
+				ret_val = 0;
+				break;
+			}
+			udelay(1);
+		}
+		if (ret_val == 0) {
+			/*
+			 * Successful in waiting for previous cycle to timeout,
+			 * now set the Flash Cycle Done.
+			 */
+			hsfsts.hsf_status.flcdone = 1;
+			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+		} else {
+			e_dbg("Flash controller busy, cannot get access\n");
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ *  @hw: pointer to the HW structure
+ *  @timeout: maximum time to wait for completion
+ *
+ *  This function starts a flash cycle and waits for its completion.
+ **/
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+	union ich8_hws_flash_ctrl hsflctl;
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	u32 i = 0;
+
+	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+	hsflctl.hsf_ctrl.flcgo = 1;
+	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+	/* wait till FDONE bit is set to 1 */
+	do {
+		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcdone == 1)
+			break;
+		udelay(1);
+	} while (i++ < timeout);
+
+	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+		return 0;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_flash_word_ich8lan - Read word from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: offset to data location
+ *  @data: pointer to the location for storing the data
+ *
+ *  Reads the flash word at offset into data.  Offset is converted
+ *  to bytes before read.
+ **/
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u16 *data)
+{
+	/* Must convert offset into bytes. */
+	offset <<= 1;
+
+	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+}
+
+/**
+ *  e1000_read_flash_byte_ich8lan - Read byte from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to read.
+ *  @data: Pointer to a byte to store the value read.
+ *
+ *  Reads a single byte from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 *data)
+{
+	s32 ret_val;
+	u16 word = 0;
+
+	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
+	if (ret_val)
+		return ret_val;
+
+	*data = (u8)word;
+
+	return 0;
+}
+
+/**
+ *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte or word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: Pointer to the word to store the value read.
+ *
+ *  Reads a byte or word from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 size, u16 *data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			    hw->nvm.flash_base_addr;
+
+	do {
+		udelay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != 0)
+			break;
+
+		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+						ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+		/*
+		 * Check if FCERR is set to 1, if set to 1, clear it
+		 * and try the whole sequence a few more times, else
+		 * read in (shift in) the Flash Data0, the order is
+		 * least significant byte first msb to lsb
+		 */
+		if (ret_val == 0) {
+			flash_data = er32flash(ICH_FLASH_FDATA0);
+			if (size == 1) {
+				*data = (u8)(flash_data & 0x000000FF);
+			} else if (size == 2) {
+				*data = (u16)(flash_data & 0x0000FFFF);
+			}
+			break;
+		} else {
+			/*
+			 * If we've gotten here, then things are probably
+			 * completely hosed, but if the error condition is
+			 * detected, it won't hurt to give it another try...
+			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (hsfsts.hsf_status.flcdone == 0) {
+				e_dbg("Timeout error - flash cycle "
+					 "did not complete.\n");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to write.
+ *  @words: Size of data to write in words
+ *  @data: Pointer to the word(s) to write at offset.
+ *
+ *  Writes a byte or word to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				   u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 i;
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	nvm->ops.acquire(hw);
+
+	for (i = 0; i < words; i++) {
+		dev_spec->shadow_ram[offset+i].modified = true;
+		dev_spec->shadow_ram[offset+i].value = data[i];
+	}
+
+	nvm->ops.release(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  The NVM checksum is updated by calling the generic update_nvm_checksum,
+ *  which writes the checksum to the shadow ram.  The changes in the shadow
+ *  ram are then committed to the EEPROM by processing each bank at a time
+ *  checking for the modified bit and writing only the pending changes.
+ *  After a successful commit, the shadow ram is cleared and is ready for
+ *  future writes.
+ **/
+static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1000e_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	if (nvm->type != e1000_nvm_flash_sw)
+		goto out;
+
+	nvm->ops.acquire(hw);
+
+	/*
+	 * We're writing to the opposite bank so if we're on bank 1,
+	 * write to bank 0 etc.  We also need to erase the segment that
+	 * is going to be written
+	 */
+	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val) {
+		e_dbg("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	if (bank == 0) {
+		new_bank_offset = nvm->flash_bank_size;
+		old_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
+		if (ret_val)
+			goto release;
+	} else {
+		old_bank_offset = nvm->flash_bank_size;
+		new_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
+		if (ret_val)
+			goto release;
+	}
+
+	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
+		/*
+		 * Determine whether to write the value stored
+		 * in the other NVM bank or a modified value stored
+		 * in the shadow RAM
+		 */
+		if (dev_spec->shadow_ram[i].modified) {
+			data = dev_spec->shadow_ram[i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw, i +
+			                                        old_bank_offset,
+			                                        &data);
+			if (ret_val)
+				break;
+		}
+
+		/*
+		 * If the word is 0x13, then make sure the signature bits
+		 * (15:14) are 11b until the commit has completed.
+		 * This will allow us to write 10b which indicates the
+		 * signature is valid.  We want to do this after the write
+		 * has completed so that we don't mark the segment valid
+		 * while the write is still in progress
+		 */
+		if (i == E1000_ICH_NVM_SIG_WORD)
+			data |= E1000_ICH_NVM_SIG_MASK;
+
+		/* Convert offset to bytes. */
+		act_offset = (i + new_bank_offset) << 1;
+
+		udelay(100);
+		/* Write the bytes to the new bank. */
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							       act_offset,
+							       (u8)data);
+		if (ret_val)
+			break;
+
+		udelay(100);
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							  act_offset + 1,
+							  (u8)(data >> 8));
+		if (ret_val)
+			break;
+	}
+
+	/*
+	 * Don't bother writing the segment valid bits if sector
+	 * programming failed.
+	 */
+	if (ret_val) {
+		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
+		e_dbg("Flash commit failed.\n");
+		goto release;
+	}
+
+	/*
+	 * Finally validate the new segment by setting bit 15:14
+	 * to 10b in word 0x13 , this can be done without an
+	 * erase as well since these bits are 11 to start with
+	 * and we need to change bit 14 to 0b
+	 */
+	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+	if (ret_val)
+		goto release;
+
+	data &= 0xBFFF;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+						       act_offset * 2 + 1,
+						       (u8)(data >> 8));
+	if (ret_val)
+		goto release;
+
+	/*
+	 * And invalidate the previously valid segment by setting
+	 * its signature word (0x13) high_byte to 0b. This can be
+	 * done without an erase because flash erase sets all bits
+	 * to 1's. We can write 1's to 0's without an erase
+	 */
+	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+	if (ret_val)
+		goto release;
+
+	/* Great!  Everything worked, we can now clear the cached entries. */
+	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value = 0xFFFF;
+	}
+
+release:
+	nvm->ops.release(hw);
+
+	/*
+	 * Reload the EEPROM, or else modifications will not appear
+	 * until after the next adapter reset.
+	 */
+	if (!ret_val) {
+		e1000e_reload_nvm(hw);
+		msleep(10);
+	}
+
+out:
+	if (ret_val)
+		e_dbg("NVM update error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ *  calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+
+	/*
+	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
+	 * needs to be fixed.  This bit is an indication that the NVM
+	 * was prepared by OEM software and did not calculate the
+	 * checksum...a likely scenario.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
+	if (ret_val)
+		return ret_val;
+
+	if ((data & 0x40) == 0) {
+		data |= 0x40;
+		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000e_update_nvm_checksum(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000e_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
+ *  @hw: pointer to the HW structure
+ *
+ *  To prevent malicious write/erase of the NVM, set it to be read-only
+ *  so that the hardware ignores all write/erase cycles of the NVM via
+ *  the flash control registers.  The shadow-ram copy of the NVM will
+ *  still be updated, however any updates to this copy will not stick
+ *  across driver reloads.
+ **/
+void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_flash_protected_range pr0;
+	union ich8_hws_flash_status hsfsts;
+	u32 gfpreg;
+
+	nvm->ops.acquire(hw);
+
+	gfpreg = er32flash(ICH_FLASH_GFPREG);
+
+	/* Write-protect GbE Sector of NVM */
+	pr0.regval = er32flash(ICH_FLASH_PR0);
+	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
+	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
+	pr0.range.wpe = true;
+	ew32flash(ICH_FLASH_PR0, pr0.regval);
+
+	/*
+	 * Lock down a subset of GbE Flash Control Registers, e.g.
+	 * PR0 to prevent the write-protection from being lifted.
+	 * Once FLOCKDN is set, the registers protected by it cannot
+	 * be written until FLOCKDN is cleared by a hardware reset.
+	 */
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+	hsfsts.hsf_status.flockdn = true;
+	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	nvm->ops.release(hw);
+}
+
+/**
+ *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte/word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: The byte(s) to write to the NVM.
+ *
+ *  Writes one/two bytes to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 size, u16 data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val;
+	u8 count = 0;
+
+	if (size < 1 || size > 2 || data > size * 0xff ||
+	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			    hw->nvm.flash_base_addr;
+
+	do {
+		udelay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val)
+			break;
+
+		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size -1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+		if (size == 1)
+			flash_data = (u32)data & 0x00FF;
+		else
+			flash_data = (u32)data;
+
+		ew32flash(ICH_FLASH_FDATA0, flash_data);
+
+		/*
+		 * check if FCERR is set to 1 , if set to 1, clear it
+		 * and try the whole sequence a few more times else done
+		 */
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+		if (!ret_val)
+			break;
+
+		/*
+		 * If we're here, then things are most likely
+		 * completely hosed, but if the error condition
+		 * is detected, it won't hurt to give it another
+		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+		 */
+		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcerr == 1)
+			/* Repeat for some time before giving up. */
+			continue;
+		if (hsfsts.hsf_status.flcdone == 0) {
+			e_dbg("Timeout error - flash cycle "
+				 "did not complete.");
+			break;
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The index of the byte to read.
+ *  @data: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 data)
+{
+	u16 word = (u16)data;
+
+	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to write.
+ *  @byte: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ *  Goes through a retry algorithm before giving up.
+ **/
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						u32 offset, u8 byte)
+{
+	s32 ret_val;
+	u16 program_retries;
+
+	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+	if (!ret_val)
+		return ret_val;
+
+	for (program_retries = 0; program_retries < 100; program_retries++) {
+		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
+		udelay(100);
+		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+		if (!ret_val)
+			break;
+	}
+	if (program_retries == 100)
+		return -E1000_ERR_NVM;
+
+	return 0;
+}
+
+/**
+ *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ *  @hw: pointer to the HW structure
+ *  @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ *  bank N is 4096 * N + flash_reg_addr.
+ **/
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	/* bank size is in 16bit words - adjust to bytes */
+	u32 flash_bank_size = nvm->flash_bank_size * 2;
+	s32 ret_val;
+	s32 count = 0;
+	s32 j, iteration, sector_size;
+
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+
+	/*
+	 * Determine HW Sector size: Read BERASE bits of hw flash status
+	 * register
+	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
+	 *     consecutive sectors.  The start index for the nth Hw sector
+	 *     can be calculated as = bank * 4096 + n * 256
+	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+	 *     The start index for the nth Hw sector can be calculated
+	 *     as = bank * 4096
+	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+	 *     (ich9 only, otherwise error condition)
+	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+	 */
+	switch (hsfsts.hsf_status.berasesz) {
+	case 0:
+		/* Hw sector size 256 */
+		sector_size = ICH_FLASH_SEG_SIZE_256;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+		break;
+	case 1:
+		sector_size = ICH_FLASH_SEG_SIZE_4K;
+		iteration = 1;
+		break;
+	case 2:
+		sector_size = ICH_FLASH_SEG_SIZE_8K;
+		iteration = 1;
+		break;
+	case 3:
+		sector_size = ICH_FLASH_SEG_SIZE_64K;
+		iteration = 1;
+		break;
+	default:
+		return -E1000_ERR_NVM;
+	}
+
+	/* Start with the base address, then add the sector offset. */
+	flash_linear_addr = hw->nvm.flash_base_addr;
+	flash_linear_addr += (bank) ? flash_bank_size : 0;
+
+	for (j = 0; j < iteration ; j++) {
+		do {
+			/* Steps */
+			ret_val = e1000_flash_cycle_init_ich8lan(hw);
+			if (ret_val)
+				return ret_val;
+
+			/*
+			 * Write a value 11 (block Erase) in Flash
+			 * Cycle field in hw flash control
+			 */
+			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+			/*
+			 * Write the last 24 bits of an index within the
+			 * block into Flash Linear address field in Flash
+			 * Address.
+			 */
+			flash_linear_addr += (j * sector_size);
+			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+			ret_val = e1000_flash_cycle_ich8lan(hw,
+					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+			if (ret_val == 0)
+				break;
+
+			/*
+			 * Check if FCERR is set to 1.  If 1,
+			 * clear it and try the whole sequence
+			 * a few more times else Done
+			 */
+			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1)
+				/* repeat for some time before giving up */
+				continue;
+			else if (hsfsts.hsf_status.flcdone == 0)
+				return ret_val;
+		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_valid_led_default_ich8lan - Set the default LED settings
+ *  @hw: pointer to the HW structure
+ *  @data: Pointer to the LED settings
+ *
+ *  Reads the LED default settings from the NVM to data.  If the NVM LED
+ *  settings is all 0's or F's, set the LED default to a valid LED default
+ *  setting.
+ **/
+static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 ||
+	    *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT_ICH8LAN;
+
+	return 0;
+}
+
+/**
+ *  e1000_id_led_init_pchlan - store LED configurations
+ *  @hw: pointer to the HW structure
+ *
+ *  PCH does not control LEDs via the LEDCTL register, rather it uses
+ *  the PHY LED configuration register.
+ *
+ *  PCH also does not have an "always on" or "always off" mode which
+ *  complicates the ID feature.  Instead of using the "on" mode to indicate
+ *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
+ *  use "link_up" mode.  The LEDs will still ID on request if there is no
+ *  link based on logic in e1000_led_[on|off]_pchlan().
+ **/
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
+	u16 data, i, temp, shift;
+
+	/* Get default ID LED modes */
+	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+	if (ret_val)
+		goto out;
+
+	mac->ledctl_default = er32(LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
+		shift = (i * 5);
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_on << shift);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_on << shift);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ *  @hw: pointer to the HW structure
+ *
+ *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ *  register, so the the bus width is hard coded.
+ **/
+static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+
+	ret_val = e1000e_get_bus_info_pcie(hw);
+
+	/*
+	 * ICH devices are "PCI Express"-ish.  They have
+	 * a configuration space, but do not contain
+	 * PCI Express Capability registers, so bus width
+	 * must be hardcoded.
+	 */
+	if (bus->width == e1000_bus_width_unknown)
+		bus->width = e1000_bus_width_pcie_x1;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_ich8lan - Reset the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a full reset of the hardware which includes a reset of the PHY and
+ *  MAC.
+ **/
+static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 reg;
+	u32 ctrl, icr, kab;
+	s32 ret_val;
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000e_disable_pcie_master(hw);
+	if (ret_val)
+		e_dbg("PCI-E Master disable polling has failed.\n");
+
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/*
+	 * Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC
+	 * with the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	e1e_flush();
+
+	msleep(10);
+
+	/* Workaround for ICH8 bit corruption issue in FIFO memory */
+	if (hw->mac.type == e1000_ich8lan) {
+		/* Set Tx and Rx buffer allocation to 8k apiece. */
+		ew32(PBA, E1000_PBA_8K);
+		/* Set Packet Buffer Size to 16k. */
+		ew32(PBS, E1000_PBS_16K);
+	}
+
+	if (hw->mac.type == e1000_pchlan) {
+		/* Save the NVM K1 bit setting*/
+		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
+		if (ret_val)
+			return ret_val;
+
+		if (reg & E1000_NVM_K1_ENABLE)
+			dev_spec->nvm_k1_enabled = true;
+		else
+			dev_spec->nvm_k1_enabled = false;
+	}
+
+	ctrl = er32(CTRL);
+
+	if (!e1000_check_reset_block(hw)) {
+		/*
+		 * Full-chip reset requires MAC and PHY reset at the same
+		 * time to make sure the interface between MAC and the
+		 * external PHY is reset.
+		 */
+		ctrl |= E1000_CTRL_PHY_RST;
+	}
+	ret_val = e1000_acquire_swflag_ich8lan(hw);
+	e_dbg("Issuing a global reset to ich8lan\n");
+	ew32(CTRL, (ctrl | E1000_CTRL_RST));
+	msleep(20);
+
+	if (!ret_val)
+		e1000_release_swflag_ich8lan(hw);
+
+	if (ctrl & E1000_CTRL_PHY_RST) {
+		ret_val = hw->phy.ops.get_cfg_done(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_post_phy_reset_ich8lan(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * For PCH, this write will make sure that any noise
+	 * will be detected as a CRC error and be dropped rather than show up
+	 * as a bad packet to the DMA engine.
+	 */
+	if (hw->mac.type == e1000_pchlan)
+		ew32(CRC_OFFSET, 0x65656565);
+
+	ew32(IMC, 0xffffffff);
+	icr = er32(ICR);
+
+	kab = er32(KABGTXD);
+	kab |= E1000_KABGTXD_BGSQLBIAS;
+	ew32(KABGTXD, kab);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_ich8lan - Initialize the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Prepares the hardware for transmit and receive by doing the following:
+ *   - initialize hardware bits
+ *   - initialize LED identification
+ *   - setup receive address registers
+ *   - setup flow control
+ *   - setup transmit descriptors
+ *   - clear statistics
+ **/
+static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl_ext, txdctl, snoop;
+	s32 ret_val;
+	u16 i;
+
+	e1000_initialize_hw_bits_ich8lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	if (ret_val)
+		e_dbg("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+
+	/* Setup the receive address. */
+	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/*
+	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
+	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
+	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
+	 */
+	if (hw->phy.type == e1000_phy_82578) {
+		hw->phy.ops.read_reg(hw, BM_WUC, &i);
+		ret_val = e1000_phy_hw_reset_ich8lan(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_ich8lan(hw);
+
+	/* Set the transmit descriptor write-back policy for both queues */
+	txdctl = er32(TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	ew32(TXDCTL(0), txdctl);
+	txdctl = er32(TXDCTL(1));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	ew32(TXDCTL(1), txdctl);
+
+	/*
+	 * ICH8 has opposite polarity of no_snoop bits.
+	 * By default, we should use snoop behavior.
+	 */
+	if (mac->type == e1000_ich8lan)
+		snoop = PCIE_ICH8_SNOOP_ALL;
+	else
+		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
+	e1000e_set_pcie_no_snoop(hw, snoop);
+
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+	ew32(CTRL_EXT, ctrl_ext);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_ich8lan(hw);
+
+	return 0;
+}
+/**
+ *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets/Clears required hardware bits necessary for correctly setting up the
+ *  hardware for transmit and receive.
+ **/
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	/* Extended Device Control */
+	reg = er32(CTRL_EXT);
+	reg |= (1 << 22);
+	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
+	if (hw->mac.type >= e1000_pchlan)
+		reg |= E1000_CTRL_EXT_PHYPDEN;
+	ew32(CTRL_EXT, reg);
+
+	/* Transmit Descriptor Control 0 */
+	reg = er32(TXDCTL(0));
+	reg |= (1 << 22);
+	ew32(TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = er32(TXDCTL(1));
+	reg |= (1 << 22);
+	ew32(TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = er32(TARC(0));
+	if (hw->mac.type == e1000_ich8lan)
+		reg |= (1 << 28) | (1 << 29);
+	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+	ew32(TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = er32(TARC(1));
+	if (er32(TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	reg |= (1 << 24) | (1 << 26) | (1 << 30);
+	ew32(TARC(1), reg);
+
+	/* Device Status */
+	if (hw->mac.type == e1000_ich8lan) {
+		reg = er32(STATUS);
+		reg &= ~(1 << 31);
+		ew32(STATUS, reg);
+	}
+
+	/*
+	 * work-around descriptor data corruption issue during nfs v2 udp
+	 * traffic, just disable the nfs filtering capability
+	 */
+	reg = er32(RFCTL);
+	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
+	ew32(RFCTL, reg);
+}
+
+/**
+ *  e1000_setup_link_ich8lan - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	if (e1000_check_reset_block(hw))
+		return 0;
+
+	/*
+	 * ICH parts do not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default) {
+		/* Workaround h/w hang when Tx flow control enabled */
+		if (hw->mac.type == e1000_pchlan)
+			hw->fc.requested_mode = e1000_fc_rx_pause;
+		else
+			hw->fc.requested_mode = e1000_fc_full;
+	}
+
+	/*
+	 * Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	e_dbg("After fix-ups FlowControl is now = %x\n",
+		hw->fc.current_mode);
+
+	/* Continue to configure the copper link. */
+	ret_val = e1000_setup_copper_link_ich8lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	ew32(FCTTV, hw->fc.pause_time);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		ew32(FCRTV_PCH, hw->fc.refresh_time);
+
+		ret_val = hw->phy.ops.write_reg(hw,
+		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
+		                             hw->fc.pause_time);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000e_set_fc_watermarks(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the kumeran interface to the PHY to wait the appropriate time
+ *  when polling the PHY, then call the generic setup_copper_link to finish
+ *  configuring the copper link.
+ **/
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ew32(CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each iteration
+	 * and increase the max iterations when polling the phy;
+	 * this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+	                               &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= 0x3F;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+	                                reg_data);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->phy.type) {
+	case e1000_phy_igp_3:
+		ret_val = e1000e_copper_link_setup_igp(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_bm:
+	case e1000_phy_82578:
+		ret_val = e1000e_copper_link_setup_m88(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_82577:
+		ret_val = e1000_copper_link_setup_82577(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_ife:
+		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
+		                               &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+		switch (hw->phy.mdix) {
+		case 1:
+			reg_data &= ~IFE_PMC_FORCE_MDIX;
+			break;
+		case 2:
+			reg_data |= IFE_PMC_FORCE_MDIX;
+			break;
+		case 0:
+		default:
+			reg_data |= IFE_PMC_AUTO_MDIX;
+			break;
+		}
+		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
+		                                reg_data);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		break;
+	}
+	return e1000e_setup_copper_link(hw);
+}
+
+/**
+ *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to store current link speed
+ *  @duplex: pointer to store the current link duplex
+ *
+ *  Calls the generic get_speed_and_duplex to retrieve the current link
+ *  information and then calls the Kumeran lock loss workaround for links at
+ *  gigabit speeds.
+ **/
+static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+					  u16 *duplex)
+{
+	s32 ret_val;
+
+	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac.type == e1000_ich8lan) &&
+	    (hw->phy.type == e1000_phy_igp_3) &&
+	    (*speed == SPEED_1000)) {
+		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  Work-around for 82566 Kumeran PCS lock loss:
+ *  On link status change (i.e. PCI reset, speed change) and link is up and
+ *  speed is gigabit-
+ *    0) if workaround is optionally disabled do nothing
+ *    1) wait 1ms for Kumeran link to come up
+ *    2) check Kumeran Diagnostic register PCS lock loss bit
+ *    3) if not set the link is locked (all is good), otherwise...
+ *    4) reset the PHY
+ *    5) repeat up to 10 times
+ *  Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 phy_ctrl;
+	s32 ret_val;
+	u16 i, data;
+	bool link;
+
+	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
+		return 0;
+
+	/*
+	 * Make sure link is up before proceeding.  If not just return.
+	 * Attempting this while link is negotiating fouled up link
+	 * stability
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (!link)
+		return 0;
+
+	for (i = 0; i < 10; i++) {
+		/* read once to clear */
+		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+		/* and again to get new status */
+		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+
+		/* check for PCS lock */
+		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+			return 0;
+
+		/* Issue PHY reset */
+		e1000_phy_hw_reset(hw);
+		mdelay(5);
+	}
+	/* Disable GigE link negotiation */
+	phy_ctrl = er32(PHY_CTRL);
+	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+	ew32(PHY_CTRL, phy_ctrl);
+
+	/*
+	 * Call gig speed drop workaround on Gig disable before accessing
+	 * any PHY registers
+	 */
+	e1000e_gig_downshift_workaround_ich8lan(hw);
+
+	/* unable to acquire PCS lock */
+	return -E1000_ERR_PHY;
+}
+
+/**
+ *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
+ *  @hw: pointer to the HW structure
+ *  @state: boolean value used to set the current Kumeran workaround state
+ *
+ *  If ICH8, set the current Kumeran workaround state (enabled - true
+ *  /disabled - false).
+ **/
+void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+						 bool state)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+
+	if (hw->mac.type != e1000_ich8lan) {
+		e_dbg("Workaround applies to ICH8 only.\n");
+		return;
+	}
+
+	dev_spec->kmrn_lock_loss_workaround_enabled = state;
+}
+
+/**
+ *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ *  @hw: pointer to the HW structure
+ *
+ *  Workaround for 82566 power-down on D3 entry:
+ *    1) disable gigabit link
+ *    2) write VR power-down enable
+ *    3) read it back
+ *  Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+	u16 data;
+	u8  retry = 0;
+
+	if (hw->phy.type != e1000_phy_igp_3)
+		return;
+
+	/* Try the workaround twice (if needed) */
+	do {
+		/* Disable link */
+		reg = er32(PHY_CTRL);
+		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+		ew32(PHY_CTRL, reg);
+
+		/*
+		 * Call gig speed drop workaround on Gig disable before
+		 * accessing any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* Write VR power-down enable */
+		e1e_rphy(hw, IGP3_VR_CTRL, &data);
+		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+		/* Read it back and test */
+		e1e_rphy(hw, IGP3_VR_CTRL, &data);
+		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+			break;
+
+		/* Issue PHY reset and repeat at most one more time */
+		reg = er32(CTRL);
+		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
+		retry++;
+	} while (retry);
+}
+
+/**
+ *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ *  @hw: pointer to the HW structure
+ *
+ *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ *  LPLU, Gig disable, MDIC PHY reset):
+ *    1) Set Kumeran Near-end loopback
+ *    2) Clear Kumeran Near-end loopback
+ *  Should only be called for ICH8[m] devices with IGP_3 Phy.
+ **/
+void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 reg_data;
+
+	if ((hw->mac.type != e1000_ich8lan) ||
+	    (hw->phy.type != e1000_phy_igp_3))
+		return;
+
+	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				      &reg_data);
+	if (ret_val)
+		return;
+	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				       reg_data);
+	if (ret_val)
+		return;
+	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				       reg_data);
+}
+
+/**
+ *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
+ *  @hw: pointer to the HW structure
+ *
+ *  During S0 to Sx transition, it is possible the link remains at gig
+ *  instead of negotiating to a lower speed.  Before going to Sx, set
+ *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
+ *  to a lower speed.
+ *
+ *  Should only be called for applicable parts.
+ **/
+void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
+{
+	u32 phy_ctrl;
+
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+	case e1000_pchlan:
+		phy_ctrl = er32(PHY_CTRL);
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
+		            E1000_PHY_CTRL_GBE_DISABLE;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (hw->mac.type == e1000_pchlan)
+			e1000_phy_hw_reset_ich8lan(hw);
+	default:
+		break;
+	}
+}
+
+/**
+ *  e1000_cleanup_led_ich8lan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+
+	ew32(LEDCTL, hw->mac.ledctl_default);
+	return 0;
+}
+
+/**
+ *  e1000_led_on_ich8lan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+
+	ew32(LEDCTL, hw->mac.ledctl_mode2);
+	return 0;
+}
+
+/**
+ *  e1000_led_off_ich8lan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+
+	ew32(LEDCTL, hw->mac.ledctl_mode1);
+	return 0;
+}
+
+/**
+ *  e1000_setup_led_pchlan - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use.
+ **/
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
+{
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+					(u16)hw->mac.ledctl_mode1);
+}
+
+/**
+ *  e1000_cleanup_led_pchlan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
+{
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+					(u16)hw->mac.ledctl_default);
+}
+
+/**
+ *  e1000_led_on_pchlan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode2;
+	u32 i, led;
+
+	/*
+	 * If no link, then turn LED on by setting the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode2.
+	 */
+	if (!(er32(STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_led_off_pchlan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode1;
+	u32 i, led;
+
+	/*
+	 * If no link, then turn LED off by clearing the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode1.
+	 */
+	if (!(er32(STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Read appropriate register for the config done bit for completion status
+ *  and configure the PHY through s/w for EEPROM-less parts.
+ *
+ *  NOTE: some silicon which is EEPROM-less will fail trying to read the
+ *  config done bit, so only an error is logged and continues.  If we were
+ *  to return with error, EEPROM-less silicon would not be able to be reset
+ *  or change link.
+ **/
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u32 bank = 0;
+	u32 status;
+
+	e1000e_get_cfg_done(hw);
+
+	/* Wait for indication from h/w that it has completed basic config */
+	if (hw->mac.type >= e1000_ich10lan) {
+		e1000_lan_init_done_ich8lan(hw);
+	} else {
+		ret_val = e1000e_get_auto_rd_done(hw);
+		if (ret_val) {
+			/*
+			 * When auto config read does not complete, do not
+			 * return with an error. This can happen in situations
+			 * where there is no eeprom and prevents getting link.
+			 */
+			e_dbg("Auto Read Done did not complete\n");
+			ret_val = 0;
+		}
+	}
+
+	/* Clear PHY Reset Asserted bit */
+	status = er32(STATUS);
+	if (status & E1000_STATUS_PHYRA)
+		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
+	else
+		e_dbg("PHY Reset Asserted not set - needs delay\n");
+
+	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
+	if (hw->mac.type <= e1000_ich9lan) {
+		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
+		    (hw->phy.type == e1000_phy_igp_3)) {
+			e1000e_phy_init_script_igp3(hw);
+		}
+	} else {
+		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
+			/* Maybe we should do a basic PHY config */
+			e_dbg("EEPROM not present\n");
+			ret_val = -E1000_ERR_CONFIG;
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(hw->mac.ops.check_mng_mode(hw) ||
+	      hw->phy.ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+}
+
+/**
+ *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears hardware counters specific to the silicon family and calls
+ *  clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+	u16 phy_data;
+
+	e1000e_clear_hw_cntrs_base(hw);
+
+	er32(ALGNERRC);
+	er32(RXERRC);
+	er32(TNCRS);
+	er32(CEXTERR);
+	er32(TSCTC);
+	er32(TSCTFC);
+
+	er32(MGTPRC);
+	er32(MGTPDC);
+	er32(MGTPTC);
+
+	er32(IAC);
+	er32(ICRXOC);
+
+	/* Clear PHY statistics registers */
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
+	}
+}
+
+static struct e1000_mac_operations ich8_mac_ops = {
+	.id_led_init		= e1000e_id_led_init,
+	.check_mng_mode		= e1000_check_mng_mode_ich8lan,
+	.check_for_link		= e1000_check_for_copper_link_ich8lan,
+	/* cleanup_led dependent on mac type */
+	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
+	.get_bus_info		= e1000_get_bus_info_ich8lan,
+	.set_lan_id		= e1000_set_lan_id_single_port,
+	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
+	/* led_on dependent on mac type */
+	/* led_off dependent on mac type */
+	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
+	.reset_hw		= e1000_reset_hw_ich8lan,
+	.init_hw		= e1000_init_hw_ich8lan,
+	.setup_link		= e1000_setup_link_ich8lan,
+	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
+	/* id_led_init dependent on mac type */
+};
+
+static struct e1000_phy_operations ich8_phy_ops = {
+	.acquire		= e1000_acquire_swflag_ich8lan,
+	.check_reset_block	= e1000_check_reset_block_ich8lan,
+	.commit			= NULL,
+	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
+	.get_cable_length	= e1000e_get_cable_length_igp_2,
+	.read_reg		= e1000e_read_phy_reg_igp,
+	.release		= e1000_release_swflag_ich8lan,
+	.reset			= e1000_phy_hw_reset_ich8lan,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
+	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
+	.write_reg		= e1000e_write_phy_reg_igp,
+};
+
+static struct e1000_nvm_operations ich8_nvm_ops = {
+	.acquire		= e1000_acquire_nvm_ich8lan,
+	.read		 	= e1000_read_nvm_ich8lan,
+	.release		= e1000_release_nvm_ich8lan,
+	.update			= e1000_update_nvm_checksum_ich8lan,
+	.valid_led_default	= e1000_valid_led_default_ich8lan,
+	.validate		= e1000_validate_nvm_checksum_ich8lan,
+	.write			= e1000_write_nvm_ich8lan,
+};
+
+struct e1000_info e1000_ich8_info = {
+	.mac			= e1000_ich8lan,
+	.flags			= FLAG_HAS_WOL
+				  | FLAG_IS_ICH
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 8,
+	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_ich9_info = {
+	.mac			= e1000_ich9lan,
+	.flags			= FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_ERT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 10,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_ich10_info = {
+	.mac			= e1000_ich10lan,
+	.flags			= FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_ERT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 10,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_pch_info = {
+	.mac			= e1000_pchlan,
+	.flags			= FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_FLASH
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
+				  | FLAG_APME_IN_WUC,
+	.pba			= 26,
+	.max_hw_frame_size	= 4096,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
--- a/devices/e1000e/ich8lan-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000e/ich8lan-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -2978,7 +2978,7 @@
 {
 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 	u16 reg;
-	u32 ctrl, icr, kab;
+	u32 ctrl, icr __attribute__ ((unused)), kab;
 	s32 ret_val;
 
 	/*
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/lib-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,2603 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000-2.6.35-ethercat.h"
+
+enum e1000_mng_mode {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_if_only
+};
+
+#define E1000_FACTPS_MNGCG		0x20000000
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE		0x544D4149
+
+/**
+ *  e1000e_get_bus_info_pcie - Get PCIe bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_bus_info *bus = &hw->bus;
+	struct e1000_adapter *adapter = hw->adapter;
+	u16 pcie_link_status, cap_offset;
+
+	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
+	if (!cap_offset) {
+		bus->width = e1000_bus_width_unknown;
+	} else {
+		pci_read_config_word(adapter->pdev,
+				     cap_offset + PCIE_LINK_STATUS,
+				     &pcie_link_status);
+		bus->width = (enum e1000_bus_width)((pcie_link_status &
+						     PCIE_LINK_WIDTH_MASK) >>
+						    PCIE_LINK_WIDTH_SHIFT);
+	}
+
+	mac->ops.set_lan_id(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines the LAN function id by reading memory-mapped registers
+ *  and swaps the port value if requested.
+ **/
+void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	u32 reg;
+
+	/*
+	 * The status register reports the correct function number
+	 * for the device regardless of function swap state.
+	 */
+	reg = er32(STATUS);
+	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ *  e1000_set_lan_id_single_port - Set LAN id for a single port device
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+
+	bus->func = 0;
+}
+
+/**
+ *  e1000_clear_vfta_generic - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+	u32 offset;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+		e1e_flush();
+	}
+}
+
+/**
+ *  e1000_write_vfta_generic - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+	e1e_flush();
+}
+
+/**
+ *  e1000e_init_rx_addrs - Initialize receive address's
+ *  @hw: pointer to the HW structure
+ *  @rar_count: receive address registers
+ *
+ *  Setups the receive address registers by setting the base receive address
+ *  register to the devices MAC address and clearing all the other receive
+ *  address registers to 0.
+ **/
+void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
+{
+	u32 i;
+	u8 mac_addr[ETH_ALEN] = {0};
+
+	/* Setup the receive address */
+	e_dbg("Programming MAC Address into RAR[0]\n");
+
+	e1000e_rar_set(hw, hw->mac.addr, 0);
+
+	/* Zero out the other (rar_entry_count - 1) receive addresses */
+	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
+	for (i = 1; i < rar_count; i++)
+		e1000e_rar_set(hw, mac_addr, i);
+}
+
+/**
+ *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the nvm for an alternate MAC address.  An alternate MAC address
+ *  can be setup by pre-boot software and must be treated like a permanent
+ *  address and must override the actual permanent MAC address. If an
+ *  alternate MAC address is found it is programmed into RAR0, replacing
+ *  the permanent address that was installed into RAR0 by the Si on reset.
+ *  This function will return SUCCESS unless it encounters an error while
+ *  reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+	u32 i;
+	s32 ret_val = 0;
+	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+	u8 alt_mac_addr[ETH_ALEN];
+
+	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
+	if (ret_val)
+		goto out;
+
+	/* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
+	if (!((nvm_data & NVM_COMPAT_LOM) ||
+	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
+	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)))
+		goto out;
+
+	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+	                         &nvm_alt_mac_addr_offset);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		goto out;
+	}
+
+	if (nvm_alt_mac_addr_offset == 0xFFFF) {
+		/* There is no Alternate MAC Address */
+		goto out;
+	}
+
+	if (hw->bus.func == E1000_FUNC_1)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+	for (i = 0; i < ETH_ALEN; i += 2) {
+		offset = nvm_alt_mac_addr_offset + (i >> 1);
+		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			e_dbg("NVM Read Error\n");
+			goto out;
+		}
+
+		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+	}
+
+	/* if multicast bit is set, the alternate address will not be used */
+	if (alt_mac_addr[0] & 0x01) {
+		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
+		goto out;
+	}
+
+	/*
+	 * We have a valid alternate MAC address, and we want to treat it the
+	 * same as the normal permanent MAC address stored by the HW into the
+	 * RAR. Do this by mapping this address into RAR0.
+	 */
+	e1000e_rar_set(hw, alt_mac_addr, 0);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_rar_set - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	/*
+	 * HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] |
+		   ((u32) addr[1] << 8) |
+		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high)
+		rar_high |= E1000_RAH_AV;
+
+	/*
+	 * Some bridges will combine consecutive 32-bit writes into
+	 * a single burst write, which will malfunction on some parts.
+	 * The flushes avoid this.
+	 */
+	ew32(RAL(index), rar_low);
+	e1e_flush();
+	ew32(RAH(index), rar_high);
+	e1e_flush();
+}
+
+/**
+ *  e1000_hash_mc_addr - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.  See
+ *  e1000_mta_set_generic()
+ **/
+static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/*
+	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask.
+	 */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	/*
+	 * The portion of the address that is used for the hash table
+	 * is determined by the mc_filter_type setting.
+	 * The algorithm is such that there is a total of 8 bits of shifting.
+	 * The bit_shift for a mc_filter_type of 0 represents the number of
+	 * left-shifts where the MSB of mc_addr[5] would still fall within
+	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
+	 * of 8 bits of shifting, then mc_addr[4] will shift right the
+	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
+	 * cases are a variation of this algorithm...essentially raising the
+	 * number of bits to shift mc_addr[5] left, while still keeping the
+	 * 8-bit shifting total.
+	 *
+	 * For example, given the following Destination MAC Address and an
+	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+	 * we can see that the bit_shift for case 0 is 4.  These are the hash
+	 * values resulting from each mc_filter_type...
+	 * [0] [1] [2] [3] [4] [5]
+	 * 01  AA  00  12  34  56
+	 * LSB		 MSB
+	 *
+	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+	 */
+	switch (hw->mac.mc_filter_type) {
+	default:
+	case 0:
+		break;
+	case 1:
+		bit_shift += 1;
+		break;
+	case 2:
+		bit_shift += 2;
+		break;
+	case 3:
+		bit_shift += 4;
+		break;
+	}
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+				  (((u16) mc_addr[5]) << bit_shift)));
+
+	return hash_value;
+}
+
+/**
+ *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates entire Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
+					u8 *mc_addr_list, u32 mc_addr_count)
+{
+	u32 hash_value, hash_bit, hash_reg;
+	int i;
+
+	/* clear mta_shadow */
+	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+	/* update mta_shadow from mc_addr_list */
+	for (i = 0; (u32) i < mc_addr_count; i++) {
+		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
+
+		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+		hash_bit = hash_value & 0x1F;
+
+		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+		mc_addr_list += (ETH_ALEN);
+	}
+
+	/* replace the entire MTA table */
+	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+	e1e_flush();
+}
+
+/**
+ *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
+{
+	er32(CRCERRS);
+	er32(SYMERRS);
+	er32(MPC);
+	er32(SCC);
+	er32(ECOL);
+	er32(MCC);
+	er32(LATECOL);
+	er32(COLC);
+	er32(DC);
+	er32(SEC);
+	er32(RLEC);
+	er32(XONRXC);
+	er32(XONTXC);
+	er32(XOFFRXC);
+	er32(XOFFTXC);
+	er32(FCRUC);
+	er32(GPRC);
+	er32(BPRC);
+	er32(MPRC);
+	er32(GPTC);
+	er32(GORCL);
+	er32(GORCH);
+	er32(GOTCL);
+	er32(GOTCH);
+	er32(RNBC);
+	er32(RUC);
+	er32(RFC);
+	er32(ROC);
+	er32(RJC);
+	er32(TORL);
+	er32(TORH);
+	er32(TOTL);
+	er32(TOTH);
+	er32(TPR);
+	er32(TPT);
+	er32(MPTC);
+	er32(BPTC);
+}
+
+/**
+ *  e1000e_check_for_copper_link - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status)
+		return 0;
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link)
+		return ret_val; /* No link detected */
+
+	mac->get_link_status = false;
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000e_check_downshift(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		return ret_val;
+	}
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000e_config_collision_dist(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000e_config_fc_after_link_up(hw);
+	if (ret_val) {
+		e_dbg("Error configuring flow control\n");
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_check_for_fiber_link - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			return 0;
+		}
+		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000e_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			return ret_val;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, mac->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = true;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_check_for_serdes_link - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			return 0;
+		}
+		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000e_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			return ret_val;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, mac->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		rxcw = er32(RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				mac->serdes_has_link = true;
+				e_dbg("SERDES: Link up - forced.\n");
+			}
+		} else {
+			mac->serdes_has_link = false;
+			e_dbg("SERDES: Link down - force failed.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & er32(TXCW)) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					mac->serdes_has_link = true;
+					e_dbg("SERDES: Link up - autoneg "
+					   "completed successfully.\n");
+				} else {
+					mac->serdes_has_link = false;
+					e_dbg("SERDES: Link down - invalid"
+					   "codewords detected in autoneg.\n");
+				}
+			} else {
+				mac->serdes_has_link = false;
+				e_dbg("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			mac->serdes_has_link = false;
+			e_dbg("SERDES: Link down - autoneg failed\n");
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_set_default_fc_generic - Set flow control default values
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM for the default values for flow control and store the
+ *  values.
+ **/
+static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 nvm_data;
+
+	/*
+	 * Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+		hw->fc.requested_mode = e1000_fc_none;
+	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+		 NVM_WORD0F_ASM_DIR)
+		hw->fc.requested_mode = e1000_fc_tx_pause;
+	else
+		hw->fc.requested_mode = e1000_fc_full;
+
+	return 0;
+}
+
+/**
+ *  e1000e_setup_link - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+s32 e1000e_setup_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+
+	/*
+	 * In the case of the phy reset being blocked, we already have a link.
+	 * We do not need to set it up again.
+	 */
+	if (e1000_check_reset_block(hw))
+		return 0;
+
+	/*
+	 * If requested flow control is set to default, set flow control
+	 * based on the EEPROM flow control settings.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default) {
+		ret_val = e1000_set_default_fc_generic(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/*
+	 * Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	e_dbg("After fix-ups FlowControl is now = %x\n",
+		hw->fc.current_mode);
+
+	/* Call the necessary media_type subroutine to configure the link. */
+	ret_val = mac->ops.setup_physical_interface(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	e_dbg("Initializing the Flow Control address, type and timer regs\n");
+	ew32(FCT, FLOW_CONTROL_TYPE);
+	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	ew32(FCTTV, hw->fc.pause_time);
+
+	return e1000e_set_fc_watermarks(hw);
+}
+
+/**
+ *  e1000_commit_fc_settings_generic - Configure flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Write the flow control settings to the Transmit Config Word Register (TXCW)
+ *  base on the flow control settings in e1000_mac_info.
+ **/
+static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txcw;
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the device accordingly.  If auto-negotiation is enabled, then
+	 * software will have to set the "PAUSE" bits to the correct value in
+	 * the Transmit Config Word Register (TXCW) and re-start auto-
+	 * negotiation.  However, if auto-negotiation is disabled, then
+	 * software will have to manually configure the two flow control enable
+	 * bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames,
+	 *	  but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we
+	 *	  do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		/* Flow control completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * Rx Flow control is enabled and Tx Flow control is disabled
+		 * by a software over-ride. Since there really isn't a way to
+		 * advertise that we are capable of Rx Pause ONLY, we will
+		 * advertise that we support both symmetric and asymmetric Rx
+		 * PAUSE.  Later, we will disable the adapter's ability to send
+		 * PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * Tx Flow control is enabled, and Rx Flow control is disabled,
+		 * by a software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	ew32(TXCW, txcw);
+	mac->txcw = txcw;
+
+	return 0;
+}
+
+/**
+ *  e1000_poll_fiber_serdes_link_generic - Poll for link up
+ *  @hw: pointer to the HW structure
+ *
+ *  Polls for link up by reading the status register, if link fails to come
+ *  up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 i, status;
+	s32 ret_val;
+
+	/*
+	 * If we have a signal (the cable is plugged in, or assumed true for
+	 * serdes media) then poll for a "Link-Up" indication in the Device
+	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
+	 * seconds (Auto-negotiation should complete in less than 500
+	 * milliseconds even if the other end is doing it in SW).
+	 */
+	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+		msleep(10);
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU)
+			break;
+	}
+	if (i == FIBER_LINK_UP_LIMIT) {
+		e_dbg("Never got a valid link from auto-neg!!!\n");
+		mac->autoneg_failed = 1;
+		/*
+		 * AutoNeg failed to achieve a link, so we'll call
+		 * mac->check_for_link. This routine will force the
+		 * link up if we detect a signal. This will allow us to
+		 * communicate with non-autonegotiating link partners.
+		 */
+		ret_val = mac->ops.check_for_link(hw);
+		if (ret_val) {
+			e_dbg("Error while checking for link\n");
+			return ret_val;
+		}
+		mac->autoneg_failed = 0;
+	} else {
+		mac->autoneg_failed = 0;
+		e_dbg("Valid Link Found\n");
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes
+ *  links.  Upon successful setup, poll for link.
+ **/
+s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000e_config_collision_dist(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Since auto-negotiation is enabled, take the link out of reset (the
+	 * link will be in reset, because we previously reset the chip). This
+	 * will restart auto-negotiation.  If auto-negotiation is successful
+	 * then the link-up status bit will be set and the flow control enable
+	 * bits (RFCE and TFCE) will be set according to their negotiated value.
+	 */
+	e_dbg("Auto-negotiation enabled\n");
+
+	ew32(CTRL, ctrl);
+	e1e_flush();
+	msleep(1);
+
+	/*
+	 * For these adapters, the SW definable pin 1 is set when the optics
+	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
+	 * indication.
+	 */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		e_dbg("No signal detected\n");
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_config_collision_dist - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void e1000e_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl;
+
+	tctl = er32(TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+	ew32(TCTL, tctl);
+	e1e_flush();
+}
+
+/**
+ *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the flow control high/low threshold (watermark) registers.  If
+ *  flow control XON frame transmission is enabled, then set XON frame
+ *  transmission as well.
+ **/
+s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
+{
+	u32 fcrtl = 0, fcrth = 0;
+
+	/*
+	 * Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames is not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (hw->fc.current_mode & e1000_fc_tx_pause) {
+		/*
+		 * We need to set up the Receive Threshold high and low water
+		 * marks as well as (optionally) enabling the transmission of
+		 * XON frames.
+		 */
+		fcrtl = hw->fc.low_water;
+		fcrtl |= E1000_FCRTL_XONE;
+		fcrth = hw->fc.high_water;
+	}
+	ew32(FCRTL, fcrtl);
+	ew32(FCRTH, fcrth);
+
+	return 0;
+}
+
+/**
+ *  e1000e_force_mac_fc - Force the MAC's flow control settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ *  device control register to reflect the adapter settings.  TFCE and RFCE
+ *  need to be explicitly set by software when a copper PHY is used because
+ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+ *  also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000e_force_mac_fc(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	ctrl = er32(CTRL);
+
+	/*
+	 * Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc.current_mode" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *	  frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *	  frames but we do not receive pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return 0;
+}
+
+/**
+ *  e1000e_config_fc_after_link_up - Configures flow control after link
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the status of auto-negotiation after link up to ensure that the
+ *  speed and duplex were not forced.  If the link needed to be forced, then
+ *  flow control needs to be forced also.  If auto-negotiation is enabled
+ *  and did not fail, then we configure flow control based on our link
+ *  partner.
+ **/
+s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = 0;
+	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+	u16 speed, duplex;
+
+	/*
+	 * Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (mac->autoneg_failed) {
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes)
+			ret_val = e1000e_force_mac_fc(hw);
+	} else {
+		if (hw->phy.media_type == e1000_media_type_copper)
+			ret_val = e1000e_force_mac_fc(hw);
+	}
+
+	if (ret_val) {
+		e_dbg("Error forcing flow control settings\n");
+		return ret_val;
+	}
+
+	/*
+	 * Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+		/*
+		 * Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+			e_dbg("Copper PHY and Auto Neg "
+				 "has not completed.\n");
+			return ret_val;
+		}
+
+		/*
+		 * The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (Address 4) and the Auto_Negotiation Base
+		 * Page Ability Register (Address 5) to determine how
+		 * flow control was negotiated.
+		 */
+		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
+		if (ret_val)
+			return ret_val;
+
+		/*
+		 * Two bits in the Auto Negotiation Advertisement Register
+		 * (Address 4) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (Address 5) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
+		 *
+		 */
+		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+			/*
+			 * Now we need to check if the user selected Rx ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise Rx
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF  the TRANSMISSION of PAUSE frames.
+			 */
+			if (hw->fc.requested_mode == e1000_fc_full) {
+				hw->fc.current_mode = e1000_fc_full;
+				e_dbg("Flow Control = FULL.\r\n");
+			} else {
+				hw->fc.current_mode = e1000_fc_rx_pause;
+				e_dbg("Flow Control = "
+					 "RX PAUSE frames only.\r\n");
+			}
+		}
+		/*
+		 * For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_tx_pause;
+			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
+		}
+		/*
+		 * For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_rx_pause;
+			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
+		} else {
+			/*
+			 * Per the IEEE spec, at this point flow control
+			 * should be disabled.
+			 */
+			hw->fc.current_mode = e1000_fc_none;
+			e_dbg("Flow Control = NONE.\r\n");
+		}
+
+		/*
+		 * Now we need to do one last check...  If we auto-
+		 * negotiated to HALF DUPLEX, flow control should not be
+		 * enabled per IEEE 802.3 spec.
+		 */
+		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+		if (ret_val) {
+			e_dbg("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+
+		if (duplex == HALF_DUPLEX)
+			hw->fc.current_mode = e1000_fc_none;
+
+		/*
+		 * Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		ret_val = e1000e_force_mac_fc(hw);
+		if (ret_val) {
+			e_dbg("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Read the status register for the current speed/duplex and store the current
+ *  speed and duplex for copper connections.
+ **/
+s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	u32 status;
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_SPEED_1000)
+		*speed = SPEED_1000;
+	else if (status & E1000_STATUS_SPEED_100)
+		*speed = SPEED_100;
+	else
+		*speed = SPEED_10;
+
+	if (status & E1000_STATUS_FD)
+		*duplex = FULL_DUPLEX;
+	else
+		*duplex = HALF_DUPLEX;
+
+	e_dbg("%u Mbps, %s Duplex\n",
+	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
+	      *duplex == FULL_DUPLEX ? "Full" : "Half");
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Sets the speed and duplex to gigabit full duplex (the only possible option)
+ *  for fiber/serdes links.
+ **/
+s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	*speed = SPEED_1000;
+	*duplex = FULL_DUPLEX;
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_hw_semaphore - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	/* Get the SW semaphore */
+	while (i < timeout) {
+		swsm = er32(SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		udelay(50);
+		i++;
+	}
+
+	if (i == timeout) {
+		e_dbg("Driver can't access device - SMBI bit is set.\n");
+		return -E1000_ERR_NVM;
+	}
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (er32(SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		udelay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000e_put_hw_semaphore(hw);
+		e_dbg("Driver can't access the NVM\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_put_hw_semaphore - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000e_put_hw_semaphore(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	swsm = er32(SWSM);
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+	ew32(SWSM, swsm);
+}
+
+/**
+ *  e1000e_get_auto_rd_done - Check for auto read completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
+{
+	s32 i = 0;
+
+	while (i < AUTO_READ_DONE_TIMEOUT) {
+		if (er32(EECD) & E1000_EECD_AUTO_RD)
+			break;
+		msleep(1);
+		i++;
+	}
+
+	if (i == AUTO_READ_DONE_TIMEOUT) {
+		e_dbg("Auto read by HW from NVM has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_valid_led_default - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+
+	return 0;
+}
+
+/**
+ *  e1000e_id_led_init -
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000e_id_led_init(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+	if (ret_val)
+		return ret_val;
+
+	mac->ledctl_default = er32(LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_setup_led_generic - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.
+ **/
+s32 e1000e_setup_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl;
+
+	if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		ledctl = er32(LEDCTL);
+		hw->mac.ledctl_default = ledctl;
+		/* Turn off LED0 */
+		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+		            E1000_LEDCTL_LED0_BLINK |
+		            E1000_LEDCTL_LED0_MODE_MASK);
+		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+		           E1000_LEDCTL_LED0_MODE_SHIFT);
+		ew32(LEDCTL, ledctl);
+	} else if (hw->phy.media_type == e1000_media_type_copper) {
+		ew32(LEDCTL, hw->mac.ledctl_mode1);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_cleanup_led_generic - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
+{
+	ew32(LEDCTL, hw->mac.ledctl_default);
+	return 0;
+}
+
+/**
+ *  e1000e_blink_led - Blink LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Blink the LEDs which are set to be on.
+ **/
+s32 e1000e_blink_led(struct e1000_hw *hw)
+{
+	u32 ledctl_blink = 0;
+	u32 i;
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		/* always blink LED0 for PCI-E fiber */
+		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+	} else {
+		/*
+		 * set the blink bit for each LED that's "on" (0x0E)
+		 * in ledctl_mode2
+		 */
+		ledctl_blink = hw->mac.ledctl_mode2;
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+						 (i * 8));
+	}
+
+	ew32(LEDCTL, ledctl_blink);
+
+	return 0;
+}
+
+/**
+ *  e1000e_led_on_generic - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+s32 e1000e_led_on_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		ew32(CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		ew32(LEDCTL, hw->mac.ledctl_mode2);
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_led_off_generic - Turn LED off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED off.
+ **/
+s32 e1000e_led_off_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		ew32(CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		ew32(LEDCTL, hw->mac.ledctl_mode1);
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
+ *  @hw: pointer to the HW structure
+ *  @no_snoop: bitmap of snoop events
+ *
+ *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
+{
+	u32 gcr;
+
+	if (no_snoop) {
+		gcr = er32(GCR);
+		gcr &= ~(PCIE_NO_SNOOP_ALL);
+		gcr |= no_snoop;
+		ew32(GCR, gcr);
+	}
+}
+
+/**
+ *  e1000e_disable_pcie_master - Disables PCI-express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns 0 if successful, else returns -10
+ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ *  the master requests to be disabled.
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests.
+ **/
+s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 timeout = MASTER_DISABLE_TIMEOUT;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+	ew32(CTRL, ctrl);
+
+	while (timeout) {
+		if (!(er32(STATUS) &
+		      E1000_STATUS_GIO_MASTER_ENABLE))
+			break;
+		udelay(100);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("Master requests are pending.\n");
+		return -E1000_ERR_MASTER_REQUESTS_PENDING;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000e_reset_adaptive(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	if (!mac->adaptive_ifs) {
+		e_dbg("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	mac->current_ifs_val = 0;
+	mac->ifs_min_val = IFS_MIN;
+	mac->ifs_max_val = IFS_MAX;
+	mac->ifs_step_size = IFS_STEP;
+	mac->ifs_ratio = IFS_RATIO;
+
+	mac->in_ifs_mode = false;
+	ew32(AIT, 0);
+out:
+	return;
+}
+
+/**
+ *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Update the Adaptive Interframe Spacing Throttle value based on the
+ *  time between transmitted packets and time between collisions.
+ **/
+void e1000e_update_adaptive(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	if (!mac->adaptive_ifs) {
+		e_dbg("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+			mac->in_ifs_mode = true;
+			if (mac->current_ifs_val < mac->ifs_max_val) {
+				if (!mac->current_ifs_val)
+					mac->current_ifs_val = mac->ifs_min_val;
+				else
+					mac->current_ifs_val +=
+						mac->ifs_step_size;
+				ew32(AIT, mac->current_ifs_val);
+			}
+		}
+	} else {
+		if (mac->in_ifs_mode &&
+		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+			mac->current_ifs_val = 0;
+			mac->in_ifs_mode = false;
+			ew32(AIT, 0);
+		}
+	}
+out:
+	return;
+}
+
+/**
+ *  e1000_raise_eec_clk - Raise EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd | E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	e1e_flush();
+	udelay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_lower_eec_clk - Lower EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd & ~E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	e1e_flush();
+	udelay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the EEPROM
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
+ *  "data" parameter will be shifted out to the EEPROM one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u32 mask;
+
+	mask = 0x01 << (count - 1);
+	if (nvm->type == e1000_nvm_eeprom_spi)
+		eecd |= E1000_EECD_DO;
+
+	do {
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		ew32(EECD, eecd);
+		e1e_flush();
+
+		udelay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+
+		mask >>= 1;
+	} while (mask);
+
+	eecd &= ~E1000_EECD_DI;
+	ew32(EECD, eecd);
+}
+
+/**
+ *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @count: number of bits to shift in
+ *
+ *  In order to read a register from the EEPROM, we need to shift 'count' bits
+ *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
+ *  the EEPROM (setting the SK bit), and then reading the value of the data out
+ *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
+ *  always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	eecd = er32(EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data <<= 1;
+		e1000_raise_eec_clk(hw, &eecd);
+
+		eecd = er32(EECD);
+
+		eecd &= ~E1000_EECD_DI;
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ *  @hw: pointer to the HW structure
+ *  @ee_reg: EEPROM flag for polling
+ *
+ *  Polls the EEPROM status bit for either read or write completion based
+ *  upon the value of 'ee_reg'.
+ **/
+s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+	u32 attempts = 100000;
+	u32 i, reg = 0;
+
+	for (i = 0; i < attempts; i++) {
+		if (ee_reg == E1000_NVM_POLL_READ)
+			reg = er32(EERD);
+		else
+			reg = er32(EEWR);
+
+		if (reg & E1000_NVM_RW_REG_DONE)
+			return 0;
+
+		udelay(5);
+	}
+
+	return -E1000_ERR_NVM;
+}
+
+/**
+ *  e1000e_acquire_nvm - Generic request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000e_acquire_nvm(struct e1000_hw *hw)
+{
+	u32 eecd = er32(EECD);
+	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+
+	ew32(EECD, eecd | E1000_EECD_REQ);
+	eecd = er32(EECD);
+
+	while (timeout) {
+		if (eecd & E1000_EECD_GNT)
+			break;
+		udelay(5);
+		eecd = er32(EECD);
+		timeout--;
+	}
+
+	if (!timeout) {
+		eecd &= ~E1000_EECD_REQ;
+		ew32(EECD, eecd);
+		e_dbg("Could not acquire NVM grant\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_standby_nvm - Return EEPROM to standby state
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+
+	if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		e1e_flush();
+		udelay(nvm->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		ew32(EECD, eecd);
+		e1e_flush();
+		udelay(nvm->delay_usec);
+	}
+}
+
+/**
+ *  e1000_stop_nvm - Terminate EEPROM command
+ *  @hw: pointer to the HW structure
+ *
+ *  Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+static void e1000_stop_nvm(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	eecd = er32(EECD);
+	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+		/* Pull CS high */
+		eecd |= E1000_EECD_CS;
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+}
+
+/**
+ *  e1000e_release_nvm - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000e_release_nvm(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	e1000_stop_nvm(hw);
+
+	eecd = er32(EECD);
+	eecd &= ~E1000_EECD_REQ;
+	ew32(EECD, eecd);
+}
+
+/**
+ *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u16 timeout = 0;
+	u8 spi_stat_reg;
+
+	if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		udelay(1);
+		timeout = NVM_MAX_RETRY_SPI;
+
+		/*
+		 * Read "Status Register" repeatedly until the LSB is cleared.
+		 * The EEPROM will signal that the command has been completed
+		 * by clearing bit 0 of the internal status register.  If it's
+		 * not cleared within 'timeout', then error out.
+		 */
+		while (timeout) {
+			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+						 hw->nvm.opcode_bits);
+			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+				break;
+
+			udelay(5);
+			e1000_standby_nvm(hw);
+			timeout--;
+		}
+
+		if (!timeout) {
+			e_dbg("SPI NVM Status error\n");
+			return -E1000_ERR_NVM;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eerd = 0;
+	s32 ret_val = 0;
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * too many words for the offset, and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	for (i = 0; i < words; i++) {
+		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+		       E1000_NVM_RW_REG_START;
+
+		ew32(EERD, eerd);
+		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+		if (ret_val)
+			break;
+
+		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_nvm_spi - Write to EEPROM using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000e_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u16 widx = 0;
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	ret_val = nvm->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	msleep(10);
+
+	while (widx < words) {
+		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+		ret_val = e1000_ready_nvm_eeprom(hw);
+		if (ret_val) {
+			nvm->ops.release(hw);
+			return ret_val;
+		}
+
+		e1000_standby_nvm(hw);
+
+		/* Send the WRITE ENABLE command (8 bit opcode) */
+		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+					 nvm->opcode_bits);
+
+		e1000_standby_nvm(hw);
+
+		/*
+		 * Some SPI eeproms use the 8th address bit embedded in the
+		 * opcode
+		 */
+		if ((nvm->address_bits == 8) && (offset >= 128))
+			write_opcode |= NVM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+					 nvm->address_bits);
+
+		/* Loop to allow for up to whole page write of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_eec_bits(hw, word_out, 16);
+			widx++;
+
+			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+				e1000_standby_nvm(hw);
+				break;
+			}
+		}
+	}
+
+	msleep(10);
+	nvm->ops.release(hw);
+	return 0;
+}
+
+/**
+ *  e1000_read_mac_addr_generic - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ *  Since devices with two ports use the same EEPROM, we increment the
+ *  last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+	u32 rar_high;
+	u32 rar_low;
+	u16 i;
+
+	rar_high = er32(RAH(0));
+	rar_low = er32(RAL(0));
+
+	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
+
+	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
+
+	for (i = 0; i < ETH_ALEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+	return 0;
+}
+
+/**
+ *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			e_dbg("NVM Read Error\n");
+			return ret_val;
+		}
+		checksum += nvm_data;
+	}
+
+	if (checksum != (u16) NVM_SUM) {
+		e_dbg("NVM Checksum Invalid\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			e_dbg("NVM Read Error while updating checksum.\n");
+			return ret_val;
+		}
+		checksum += nvm_data;
+	}
+	checksum = (u16) NVM_SUM - checksum;
+	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+	if (ret_val)
+		e_dbg("NVM Write Error while updating checksum.\n");
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_reload_nvm - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+void e1000e_reload_nvm(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+
+	udelay(10);
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+	ew32(CTRL_EXT, ctrl_ext);
+	e1e_flush();
+}
+
+/**
+ *  e1000_calculate_checksum - Calculate checksum for buffer
+ *  @buffer: pointer to EEPROM
+ *  @length: size of EEPROM to calculate a checksum for
+ *
+ *  Calculates the checksum for some buffer on a specified length.  The
+ *  checksum calculated is returned.
+ **/
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+	u32 i;
+	u8  sum = 0;
+
+	if (!buffer)
+		return 0;
+
+	for (i = 0; i < length; i++)
+		sum += buffer[i];
+
+	return (u8) (0 - sum);
+}
+
+/**
+ *  e1000_mng_enable_host_if - Checks host interface is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ *  This function checks whether the HOST IF is enabled for command operation
+ *  and also checks whether the previous command is completed.  It busy waits
+ *  in case of previous command is not completed.
+ **/
+static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+{
+	u32 hicr;
+	u8 i;
+
+	if (!(hw->mac.arc_subsystem_valid)) {
+		e_dbg("ARC subsystem not valid.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	/* Check that the host interface is enabled. */
+	hicr = er32(HICR);
+	if ((hicr & E1000_HICR_EN) == 0) {
+		e_dbg("E1000_HOST_EN bit disabled.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+	/* check the previous command is completed */
+	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+		hicr = er32(HICR);
+		if (!(hicr & E1000_HICR_C))
+			break;
+		mdelay(1);
+	}
+
+	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+		e_dbg("Previous command timeout failed .\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_check_mng_mode_generic - check management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the firmware semaphore register and returns true (>0) if
+ *  manageability is enabled, else false (0).
+ **/
+bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
+{
+	u32 fwsm = er32(FWSM);
+
+	return (fwsm & E1000_FWSM_MODE_MASK) ==
+		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
+ *  @hw: pointer to the HW structure
+ *
+ *  Enables packet filtering on transmit packets if manageability is enabled
+ *  and host interface is enabled.
+ **/
+bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+	u32 *buffer = (u32 *)&hw->mng_cookie;
+	u32 offset;
+	s32 ret_val, hdr_csum, csum;
+	u8 i, len;
+
+	hw->mac.tx_pkt_filtering = true;
+
+	/* No manageability, no filtering */
+	if (!e1000e_check_mng_mode(hw)) {
+		hw->mac.tx_pkt_filtering = false;
+		goto out;
+	}
+
+	/*
+	 * If we can't read from the host interface for whatever
+	 * reason, disable filtering.
+	 */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val) {
+		hw->mac.tx_pkt_filtering = false;
+		goto out;
+	}
+
+	/* Read in the header.  Length and offset are in dwords. */
+	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+	for (i = 0; i < len; i++)
+		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
+	hdr_csum = hdr->checksum;
+	hdr->checksum = 0;
+	csum = e1000_calculate_checksum((u8 *)hdr,
+					E1000_MNG_DHCP_COOKIE_LENGTH);
+	/*
+	 * If either the checksums or signature don't match, then
+	 * the cookie area isn't considered valid, in which case we
+	 * take the safe route of assuming Tx filtering is enabled.
+	 */
+	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
+		hw->mac.tx_pkt_filtering = true;
+		goto out;
+	}
+
+	/* Cookie area is valid, make the final check for filtering. */
+	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
+		hw->mac.tx_pkt_filtering = false;
+		goto out;
+	}
+
+out:
+	return hw->mac.tx_pkt_filtering;
+}
+
+/**
+ *  e1000_mng_write_cmd_header - Writes manageability command header
+ *  @hw: pointer to the HW structure
+ *  @hdr: pointer to the host interface command header
+ *
+ *  Writes the command header after does the checksum calculation.
+ **/
+static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+				  struct e1000_host_mng_command_header *hdr)
+{
+	u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+	/* Write the whole command header structure with new checksum. */
+
+	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+	length >>= 2;
+	/* Write the relevant command block into the ram area. */
+	for (i = 0; i < length; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
+					    *((u32 *) hdr + i));
+		e1e_flush();
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_mng_host_if_write - Write to the manageability host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface buffer
+ *  @length: size of the buffer
+ *  @offset: location in the buffer to write to
+ *  @sum: sum of the data (not checksum)
+ *
+ *  This function writes the buffer content at the offset given on the host if.
+ *  It also does alignment considerations to do the writes in most efficient
+ *  way.  Also fills up the sum of the buffer in *buffer parameter.
+ **/
+static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
+				   u16 length, u16 offset, u8 *sum)
+{
+	u8 *tmp;
+	u8 *bufptr = buffer;
+	u32 data = 0;
+	u16 remaining, i, j, prev_bytes;
+
+	/* sum = only sum of the data and it is not checksum */
+
+	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
+		return -E1000_ERR_PARAM;
+
+	tmp = (u8 *)&data;
+	prev_bytes = offset & 0x3;
+	offset >>= 2;
+
+	if (prev_bytes) {
+		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
+		for (j = prev_bytes; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
+		length -= j - prev_bytes;
+		offset++;
+	}
+
+	remaining = length & 0x3;
+	length -= remaining;
+
+	/* Calculate length in DWORDs */
+	length >>= 2;
+
+	/*
+	 * The device driver writes the relevant command block into the
+	 * ram area.
+	 */
+	for (i = 0; i < length; i++) {
+		for (j = 0; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
+	}
+	if (remaining) {
+		for (j = 0; j < sizeof(u32); j++) {
+			if (j < remaining)
+				*(tmp + j) = *bufptr++;
+			else
+				*(tmp + j) = 0;
+
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface
+ *  @length: size of the buffer
+ *
+ *  Writes the DHCP information to the host interface.
+ **/
+s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+	struct e1000_host_mng_command_header hdr;
+	s32 ret_val;
+	u32 hicr;
+
+	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+	hdr.command_length = length;
+	hdr.reserved1 = 0;
+	hdr.reserved2 = 0;
+	hdr.checksum = 0;
+
+	/* Enable the host interface */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Populate the host interface with the contents of "buffer". */
+	ret_val = e1000_mng_host_if_write(hw, buffer, length,
+					  sizeof(hdr), &(hdr.checksum));
+	if (ret_val)
+		return ret_val;
+
+	/* Write the manageability command header */
+	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+	if (ret_val)
+		return ret_val;
+
+	/* Tell the ARC a new command is pending. */
+	hicr = er32(HICR);
+	ew32(HICR, hicr | E1000_HICR_C);
+
+	return 0;
+}
+
+/**
+ *  e1000e_enable_mng_pass_thru - Check if management passthrough is needed
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies the hardware needs to leave interface enabled so that frames can
+ *  be directed to and from the management interface.
+ **/
+bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+	u32 fwsm, factps;
+	bool ret_val = false;
+
+	manc = er32(MANC);
+
+	if (!(manc & E1000_MANC_RCV_TCO_EN))
+		goto out;
+
+	if (hw->mac.has_fwsm) {
+		fwsm = er32(FWSM);
+		factps = er32(FACTPS);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((fwsm & E1000_FWSM_MODE_MASK) ==
+		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+			ret_val = true;
+			goto out;
+		}
+	} else if ((hw->mac.type == e1000_82574) ||
+		   (hw->mac.type == e1000_82583)) {
+		u16 data;
+
+		factps = er32(FACTPS);
+		e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
+		     (e1000_mng_mode_pt << 13))) {
+			ret_val = true;
+			goto out;
+		}
+	} else if ((manc & E1000_MANC_SMBUS_EN) &&
+		    !(manc & E1000_MANC_ASF_EN)) {
+			ret_val = true;
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+	s32 ret_val;
+	u16 nvm_data;
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+	*pba_num = (u32)(nvm_data << 16);
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+	*pba_num |= nvm_data;
+
+	return 0;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/lib-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,2603 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+
+enum e1000_mng_mode {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_if_only
+};
+
+#define E1000_FACTPS_MNGCG		0x20000000
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE		0x544D4149
+
+/**
+ *  e1000e_get_bus_info_pcie - Get PCIe bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_bus_info *bus = &hw->bus;
+	struct e1000_adapter *adapter = hw->adapter;
+	u16 pcie_link_status, cap_offset;
+
+	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
+	if (!cap_offset) {
+		bus->width = e1000_bus_width_unknown;
+	} else {
+		pci_read_config_word(adapter->pdev,
+				     cap_offset + PCIE_LINK_STATUS,
+				     &pcie_link_status);
+		bus->width = (enum e1000_bus_width)((pcie_link_status &
+						     PCIE_LINK_WIDTH_MASK) >>
+						    PCIE_LINK_WIDTH_SHIFT);
+	}
+
+	mac->ops.set_lan_id(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines the LAN function id by reading memory-mapped registers
+ *  and swaps the port value if requested.
+ **/
+void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	u32 reg;
+
+	/*
+	 * The status register reports the correct function number
+	 * for the device regardless of function swap state.
+	 */
+	reg = er32(STATUS);
+	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ *  e1000_set_lan_id_single_port - Set LAN id for a single port device
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+
+	bus->func = 0;
+}
+
+/**
+ *  e1000_clear_vfta_generic - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+	u32 offset;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+		e1e_flush();
+	}
+}
+
+/**
+ *  e1000_write_vfta_generic - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+	e1e_flush();
+}
+
+/**
+ *  e1000e_init_rx_addrs - Initialize receive address's
+ *  @hw: pointer to the HW structure
+ *  @rar_count: receive address registers
+ *
+ *  Setups the receive address registers by setting the base receive address
+ *  register to the devices MAC address and clearing all the other receive
+ *  address registers to 0.
+ **/
+void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
+{
+	u32 i;
+	u8 mac_addr[ETH_ALEN] = {0};
+
+	/* Setup the receive address */
+	e_dbg("Programming MAC Address into RAR[0]\n");
+
+	e1000e_rar_set(hw, hw->mac.addr, 0);
+
+	/* Zero out the other (rar_entry_count - 1) receive addresses */
+	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
+	for (i = 1; i < rar_count; i++)
+		e1000e_rar_set(hw, mac_addr, i);
+}
+
+/**
+ *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the nvm for an alternate MAC address.  An alternate MAC address
+ *  can be setup by pre-boot software and must be treated like a permanent
+ *  address and must override the actual permanent MAC address. If an
+ *  alternate MAC address is found it is programmed into RAR0, replacing
+ *  the permanent address that was installed into RAR0 by the Si on reset.
+ *  This function will return SUCCESS unless it encounters an error while
+ *  reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+	u32 i;
+	s32 ret_val = 0;
+	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+	u8 alt_mac_addr[ETH_ALEN];
+
+	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
+	if (ret_val)
+		goto out;
+
+	/* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
+	if (!((nvm_data & NVM_COMPAT_LOM) ||
+	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
+	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)))
+		goto out;
+
+	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+	                         &nvm_alt_mac_addr_offset);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		goto out;
+	}
+
+	if (nvm_alt_mac_addr_offset == 0xFFFF) {
+		/* There is no Alternate MAC Address */
+		goto out;
+	}
+
+	if (hw->bus.func == E1000_FUNC_1)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+	for (i = 0; i < ETH_ALEN; i += 2) {
+		offset = nvm_alt_mac_addr_offset + (i >> 1);
+		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			e_dbg("NVM Read Error\n");
+			goto out;
+		}
+
+		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+	}
+
+	/* if multicast bit is set, the alternate address will not be used */
+	if (alt_mac_addr[0] & 0x01) {
+		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
+		goto out;
+	}
+
+	/*
+	 * We have a valid alternate MAC address, and we want to treat it the
+	 * same as the normal permanent MAC address stored by the HW into the
+	 * RAR. Do this by mapping this address into RAR0.
+	 */
+	e1000e_rar_set(hw, alt_mac_addr, 0);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_rar_set - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	/*
+	 * HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] |
+		   ((u32) addr[1] << 8) |
+		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high)
+		rar_high |= E1000_RAH_AV;
+
+	/*
+	 * Some bridges will combine consecutive 32-bit writes into
+	 * a single burst write, which will malfunction on some parts.
+	 * The flushes avoid this.
+	 */
+	ew32(RAL(index), rar_low);
+	e1e_flush();
+	ew32(RAH(index), rar_high);
+	e1e_flush();
+}
+
+/**
+ *  e1000_hash_mc_addr - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.  See
+ *  e1000_mta_set_generic()
+ **/
+static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/*
+	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask.
+	 */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	/*
+	 * The portion of the address that is used for the hash table
+	 * is determined by the mc_filter_type setting.
+	 * The algorithm is such that there is a total of 8 bits of shifting.
+	 * The bit_shift for a mc_filter_type of 0 represents the number of
+	 * left-shifts where the MSB of mc_addr[5] would still fall within
+	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
+	 * of 8 bits of shifting, then mc_addr[4] will shift right the
+	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
+	 * cases are a variation of this algorithm...essentially raising the
+	 * number of bits to shift mc_addr[5] left, while still keeping the
+	 * 8-bit shifting total.
+	 *
+	 * For example, given the following Destination MAC Address and an
+	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+	 * we can see that the bit_shift for case 0 is 4.  These are the hash
+	 * values resulting from each mc_filter_type...
+	 * [0] [1] [2] [3] [4] [5]
+	 * 01  AA  00  12  34  56
+	 * LSB		 MSB
+	 *
+	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+	 */
+	switch (hw->mac.mc_filter_type) {
+	default:
+	case 0:
+		break;
+	case 1:
+		bit_shift += 1;
+		break;
+	case 2:
+		bit_shift += 2;
+		break;
+	case 3:
+		bit_shift += 4;
+		break;
+	}
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+				  (((u16) mc_addr[5]) << bit_shift)));
+
+	return hash_value;
+}
+
+/**
+ *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates entire Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
+					u8 *mc_addr_list, u32 mc_addr_count)
+{
+	u32 hash_value, hash_bit, hash_reg;
+	int i;
+
+	/* clear mta_shadow */
+	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+	/* update mta_shadow from mc_addr_list */
+	for (i = 0; (u32) i < mc_addr_count; i++) {
+		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
+
+		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+		hash_bit = hash_value & 0x1F;
+
+		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+		mc_addr_list += (ETH_ALEN);
+	}
+
+	/* replace the entire MTA table */
+	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+	e1e_flush();
+}
+
+/**
+ *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
+{
+	er32(CRCERRS);
+	er32(SYMERRS);
+	er32(MPC);
+	er32(SCC);
+	er32(ECOL);
+	er32(MCC);
+	er32(LATECOL);
+	er32(COLC);
+	er32(DC);
+	er32(SEC);
+	er32(RLEC);
+	er32(XONRXC);
+	er32(XONTXC);
+	er32(XOFFRXC);
+	er32(XOFFTXC);
+	er32(FCRUC);
+	er32(GPRC);
+	er32(BPRC);
+	er32(MPRC);
+	er32(GPTC);
+	er32(GORCL);
+	er32(GORCH);
+	er32(GOTCL);
+	er32(GOTCH);
+	er32(RNBC);
+	er32(RUC);
+	er32(RFC);
+	er32(ROC);
+	er32(RJC);
+	er32(TORL);
+	er32(TORH);
+	er32(TOTL);
+	er32(TOTH);
+	er32(TPR);
+	er32(TPT);
+	er32(MPTC);
+	er32(BPTC);
+}
+
+/**
+ *  e1000e_check_for_copper_link - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status)
+		return 0;
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link)
+		return ret_val; /* No link detected */
+
+	mac->get_link_status = false;
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000e_check_downshift(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		return ret_val;
+	}
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000e_config_collision_dist(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000e_config_fc_after_link_up(hw);
+	if (ret_val) {
+		e_dbg("Error configuring flow control\n");
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_check_for_fiber_link - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			return 0;
+		}
+		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000e_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			return ret_val;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, mac->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = true;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_check_for_serdes_link - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			return 0;
+		}
+		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000e_config_fc_after_link_up(hw);
+		if (ret_val) {
+			e_dbg("Error configuring flow control\n");
+			return ret_val;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, mac->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		rxcw = er32(RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				mac->serdes_has_link = true;
+				e_dbg("SERDES: Link up - forced.\n");
+			}
+		} else {
+			mac->serdes_has_link = false;
+			e_dbg("SERDES: Link down - force failed.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & er32(TXCW)) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					mac->serdes_has_link = true;
+					e_dbg("SERDES: Link up - autoneg "
+					   "completed successfully.\n");
+				} else {
+					mac->serdes_has_link = false;
+					e_dbg("SERDES: Link down - invalid"
+					   "codewords detected in autoneg.\n");
+				}
+			} else {
+				mac->serdes_has_link = false;
+				e_dbg("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			mac->serdes_has_link = false;
+			e_dbg("SERDES: Link down - autoneg failed\n");
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_set_default_fc_generic - Set flow control default values
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM for the default values for flow control and store the
+ *  values.
+ **/
+static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 nvm_data;
+
+	/*
+	 * Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+		hw->fc.requested_mode = e1000_fc_none;
+	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+		 NVM_WORD0F_ASM_DIR)
+		hw->fc.requested_mode = e1000_fc_tx_pause;
+	else
+		hw->fc.requested_mode = e1000_fc_full;
+
+	return 0;
+}
+
+/**
+ *  e1000e_setup_link - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+s32 e1000e_setup_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+
+	/*
+	 * In the case of the phy reset being blocked, we already have a link.
+	 * We do not need to set it up again.
+	 */
+	if (e1000_check_reset_block(hw))
+		return 0;
+
+	/*
+	 * If requested flow control is set to default, set flow control
+	 * based on the EEPROM flow control settings.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default) {
+		ret_val = e1000_set_default_fc_generic(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/*
+	 * Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	e_dbg("After fix-ups FlowControl is now = %x\n",
+		hw->fc.current_mode);
+
+	/* Call the necessary media_type subroutine to configure the link. */
+	ret_val = mac->ops.setup_physical_interface(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	e_dbg("Initializing the Flow Control address, type and timer regs\n");
+	ew32(FCT, FLOW_CONTROL_TYPE);
+	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	ew32(FCTTV, hw->fc.pause_time);
+
+	return e1000e_set_fc_watermarks(hw);
+}
+
+/**
+ *  e1000_commit_fc_settings_generic - Configure flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Write the flow control settings to the Transmit Config Word Register (TXCW)
+ *  base on the flow control settings in e1000_mac_info.
+ **/
+static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txcw;
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the device accordingly.  If auto-negotiation is enabled, then
+	 * software will have to set the "PAUSE" bits to the correct value in
+	 * the Transmit Config Word Register (TXCW) and re-start auto-
+	 * negotiation.  However, if auto-negotiation is disabled, then
+	 * software will have to manually configure the two flow control enable
+	 * bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames,
+	 *	  but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we
+	 *	  do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		/* Flow control completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * Rx Flow control is enabled and Tx Flow control is disabled
+		 * by a software over-ride. Since there really isn't a way to
+		 * advertise that we are capable of Rx Pause ONLY, we will
+		 * advertise that we support both symmetric and asymmetric Rx
+		 * PAUSE.  Later, we will disable the adapter's ability to send
+		 * PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * Tx Flow control is enabled, and Rx Flow control is disabled,
+		 * by a software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	ew32(TXCW, txcw);
+	mac->txcw = txcw;
+
+	return 0;
+}
+
+/**
+ *  e1000_poll_fiber_serdes_link_generic - Poll for link up
+ *  @hw: pointer to the HW structure
+ *
+ *  Polls for link up by reading the status register, if link fails to come
+ *  up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 i, status;
+	s32 ret_val;
+
+	/*
+	 * If we have a signal (the cable is plugged in, or assumed true for
+	 * serdes media) then poll for a "Link-Up" indication in the Device
+	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
+	 * seconds (Auto-negotiation should complete in less than 500
+	 * milliseconds even if the other end is doing it in SW).
+	 */
+	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+		msleep(10);
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU)
+			break;
+	}
+	if (i == FIBER_LINK_UP_LIMIT) {
+		e_dbg("Never got a valid link from auto-neg!!!\n");
+		mac->autoneg_failed = 1;
+		/*
+		 * AutoNeg failed to achieve a link, so we'll call
+		 * mac->check_for_link. This routine will force the
+		 * link up if we detect a signal. This will allow us to
+		 * communicate with non-autonegotiating link partners.
+		 */
+		ret_val = mac->ops.check_for_link(hw);
+		if (ret_val) {
+			e_dbg("Error while checking for link\n");
+			return ret_val;
+		}
+		mac->autoneg_failed = 0;
+	} else {
+		mac->autoneg_failed = 0;
+		e_dbg("Valid Link Found\n");
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes
+ *  links.  Upon successful setup, poll for link.
+ **/
+s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	ctrl = er32(CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000e_config_collision_dist(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Since auto-negotiation is enabled, take the link out of reset (the
+	 * link will be in reset, because we previously reset the chip). This
+	 * will restart auto-negotiation.  If auto-negotiation is successful
+	 * then the link-up status bit will be set and the flow control enable
+	 * bits (RFCE and TFCE) will be set according to their negotiated value.
+	 */
+	e_dbg("Auto-negotiation enabled\n");
+
+	ew32(CTRL, ctrl);
+	e1e_flush();
+	msleep(1);
+
+	/*
+	 * For these adapters, the SW definable pin 1 is set when the optics
+	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
+	 * indication.
+	 */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		e_dbg("No signal detected\n");
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_config_collision_dist - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void e1000e_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl;
+
+	tctl = er32(TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+	ew32(TCTL, tctl);
+	e1e_flush();
+}
+
+/**
+ *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the flow control high/low threshold (watermark) registers.  If
+ *  flow control XON frame transmission is enabled, then set XON frame
+ *  transmission as well.
+ **/
+s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
+{
+	u32 fcrtl = 0, fcrth = 0;
+
+	/*
+	 * Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames is not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (hw->fc.current_mode & e1000_fc_tx_pause) {
+		/*
+		 * We need to set up the Receive Threshold high and low water
+		 * marks as well as (optionally) enabling the transmission of
+		 * XON frames.
+		 */
+		fcrtl = hw->fc.low_water;
+		fcrtl |= E1000_FCRTL_XONE;
+		fcrth = hw->fc.high_water;
+	}
+	ew32(FCRTL, fcrtl);
+	ew32(FCRTH, fcrth);
+
+	return 0;
+}
+
+/**
+ *  e1000e_force_mac_fc - Force the MAC's flow control settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ *  device control register to reflect the adapter settings.  TFCE and RFCE
+ *  need to be explicitly set by software when a copper PHY is used because
+ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+ *  also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000e_force_mac_fc(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	ctrl = er32(CTRL);
+
+	/*
+	 * Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc.current_mode" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *	  frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *	  frames but we do not receive pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return 0;
+}
+
+/**
+ *  e1000e_config_fc_after_link_up - Configures flow control after link
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the status of auto-negotiation after link up to ensure that the
+ *  speed and duplex were not forced.  If the link needed to be forced, then
+ *  flow control needs to be forced also.  If auto-negotiation is enabled
+ *  and did not fail, then we configure flow control based on our link
+ *  partner.
+ **/
+s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = 0;
+	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+	u16 speed, duplex;
+
+	/*
+	 * Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (mac->autoneg_failed) {
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes)
+			ret_val = e1000e_force_mac_fc(hw);
+	} else {
+		if (hw->phy.media_type == e1000_media_type_copper)
+			ret_val = e1000e_force_mac_fc(hw);
+	}
+
+	if (ret_val) {
+		e_dbg("Error forcing flow control settings\n");
+		return ret_val;
+	}
+
+	/*
+	 * Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+		/*
+		 * Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+			e_dbg("Copper PHY and Auto Neg "
+				 "has not completed.\n");
+			return ret_val;
+		}
+
+		/*
+		 * The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (Address 4) and the Auto_Negotiation Base
+		 * Page Ability Register (Address 5) to determine how
+		 * flow control was negotiated.
+		 */
+		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
+		if (ret_val)
+			return ret_val;
+
+		/*
+		 * Two bits in the Auto Negotiation Advertisement Register
+		 * (Address 4) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (Address 5) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
+		 *
+		 */
+		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+			/*
+			 * Now we need to check if the user selected Rx ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise Rx
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF  the TRANSMISSION of PAUSE frames.
+			 */
+			if (hw->fc.requested_mode == e1000_fc_full) {
+				hw->fc.current_mode = e1000_fc_full;
+				e_dbg("Flow Control = FULL.\r\n");
+			} else {
+				hw->fc.current_mode = e1000_fc_rx_pause;
+				e_dbg("Flow Control = "
+					 "RX PAUSE frames only.\r\n");
+			}
+		}
+		/*
+		 * For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_tx_pause;
+			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
+		}
+		/*
+		 * For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_rx_pause;
+			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
+		} else {
+			/*
+			 * Per the IEEE spec, at this point flow control
+			 * should be disabled.
+			 */
+			hw->fc.current_mode = e1000_fc_none;
+			e_dbg("Flow Control = NONE.\r\n");
+		}
+
+		/*
+		 * Now we need to do one last check...  If we auto-
+		 * negotiated to HALF DUPLEX, flow control should not be
+		 * enabled per IEEE 802.3 spec.
+		 */
+		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+		if (ret_val) {
+			e_dbg("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+
+		if (duplex == HALF_DUPLEX)
+			hw->fc.current_mode = e1000_fc_none;
+
+		/*
+		 * Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		ret_val = e1000e_force_mac_fc(hw);
+		if (ret_val) {
+			e_dbg("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Read the status register for the current speed/duplex and store the current
+ *  speed and duplex for copper connections.
+ **/
+s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	u32 status;
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_SPEED_1000)
+		*speed = SPEED_1000;
+	else if (status & E1000_STATUS_SPEED_100)
+		*speed = SPEED_100;
+	else
+		*speed = SPEED_10;
+
+	if (status & E1000_STATUS_FD)
+		*duplex = FULL_DUPLEX;
+	else
+		*duplex = HALF_DUPLEX;
+
+	e_dbg("%u Mbps, %s Duplex\n",
+	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
+	      *duplex == FULL_DUPLEX ? "Full" : "Half");
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Sets the speed and duplex to gigabit full duplex (the only possible option)
+ *  for fiber/serdes links.
+ **/
+s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	*speed = SPEED_1000;
+	*duplex = FULL_DUPLEX;
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_hw_semaphore - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	/* Get the SW semaphore */
+	while (i < timeout) {
+		swsm = er32(SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		udelay(50);
+		i++;
+	}
+
+	if (i == timeout) {
+		e_dbg("Driver can't access device - SMBI bit is set.\n");
+		return -E1000_ERR_NVM;
+	}
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (er32(SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		udelay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000e_put_hw_semaphore(hw);
+		e_dbg("Driver can't access the NVM\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_put_hw_semaphore - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000e_put_hw_semaphore(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	swsm = er32(SWSM);
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+	ew32(SWSM, swsm);
+}
+
+/**
+ *  e1000e_get_auto_rd_done - Check for auto read completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
+{
+	s32 i = 0;
+
+	while (i < AUTO_READ_DONE_TIMEOUT) {
+		if (er32(EECD) & E1000_EECD_AUTO_RD)
+			break;
+		msleep(1);
+		i++;
+	}
+
+	if (i == AUTO_READ_DONE_TIMEOUT) {
+		e_dbg("Auto read by HW from NVM has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_valid_led_default - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+
+	return 0;
+}
+
+/**
+ *  e1000e_id_led_init -
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000e_id_led_init(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+	if (ret_val)
+		return ret_val;
+
+	mac->ledctl_default = er32(LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_setup_led_generic - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.
+ **/
+s32 e1000e_setup_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl;
+
+	if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		ledctl = er32(LEDCTL);
+		hw->mac.ledctl_default = ledctl;
+		/* Turn off LED0 */
+		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+		            E1000_LEDCTL_LED0_BLINK |
+		            E1000_LEDCTL_LED0_MODE_MASK);
+		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+		           E1000_LEDCTL_LED0_MODE_SHIFT);
+		ew32(LEDCTL, ledctl);
+	} else if (hw->phy.media_type == e1000_media_type_copper) {
+		ew32(LEDCTL, hw->mac.ledctl_mode1);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_cleanup_led_generic - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
+{
+	ew32(LEDCTL, hw->mac.ledctl_default);
+	return 0;
+}
+
+/**
+ *  e1000e_blink_led - Blink LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Blink the LEDs which are set to be on.
+ **/
+s32 e1000e_blink_led(struct e1000_hw *hw)
+{
+	u32 ledctl_blink = 0;
+	u32 i;
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		/* always blink LED0 for PCI-E fiber */
+		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+	} else {
+		/*
+		 * set the blink bit for each LED that's "on" (0x0E)
+		 * in ledctl_mode2
+		 */
+		ledctl_blink = hw->mac.ledctl_mode2;
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+						 (i * 8));
+	}
+
+	ew32(LEDCTL, ledctl_blink);
+
+	return 0;
+}
+
+/**
+ *  e1000e_led_on_generic - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+s32 e1000e_led_on_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		ew32(CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		ew32(LEDCTL, hw->mac.ledctl_mode2);
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_led_off_generic - Turn LED off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED off.
+ **/
+s32 e1000e_led_off_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		ew32(CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		ew32(LEDCTL, hw->mac.ledctl_mode1);
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
+ *  @hw: pointer to the HW structure
+ *  @no_snoop: bitmap of snoop events
+ *
+ *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
+{
+	u32 gcr;
+
+	if (no_snoop) {
+		gcr = er32(GCR);
+		gcr &= ~(PCIE_NO_SNOOP_ALL);
+		gcr |= no_snoop;
+		ew32(GCR, gcr);
+	}
+}
+
+/**
+ *  e1000e_disable_pcie_master - Disables PCI-express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns 0 if successful, else returns -10
+ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ *  the master requests to be disabled.
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests.
+ **/
+s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 timeout = MASTER_DISABLE_TIMEOUT;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+	ew32(CTRL, ctrl);
+
+	while (timeout) {
+		if (!(er32(STATUS) &
+		      E1000_STATUS_GIO_MASTER_ENABLE))
+			break;
+		udelay(100);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("Master requests are pending.\n");
+		return -E1000_ERR_MASTER_REQUESTS_PENDING;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000e_reset_adaptive(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	if (!mac->adaptive_ifs) {
+		e_dbg("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	mac->current_ifs_val = 0;
+	mac->ifs_min_val = IFS_MIN;
+	mac->ifs_max_val = IFS_MAX;
+	mac->ifs_step_size = IFS_STEP;
+	mac->ifs_ratio = IFS_RATIO;
+
+	mac->in_ifs_mode = false;
+	ew32(AIT, 0);
+out:
+	return;
+}
+
+/**
+ *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Update the Adaptive Interframe Spacing Throttle value based on the
+ *  time between transmitted packets and time between collisions.
+ **/
+void e1000e_update_adaptive(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	if (!mac->adaptive_ifs) {
+		e_dbg("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+			mac->in_ifs_mode = true;
+			if (mac->current_ifs_val < mac->ifs_max_val) {
+				if (!mac->current_ifs_val)
+					mac->current_ifs_val = mac->ifs_min_val;
+				else
+					mac->current_ifs_val +=
+						mac->ifs_step_size;
+				ew32(AIT, mac->current_ifs_val);
+			}
+		}
+	} else {
+		if (mac->in_ifs_mode &&
+		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+			mac->current_ifs_val = 0;
+			mac->in_ifs_mode = false;
+			ew32(AIT, 0);
+		}
+	}
+out:
+	return;
+}
+
+/**
+ *  e1000_raise_eec_clk - Raise EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd | E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	e1e_flush();
+	udelay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_lower_eec_clk - Lower EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd & ~E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	e1e_flush();
+	udelay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the EEPROM
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
+ *  "data" parameter will be shifted out to the EEPROM one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u32 mask;
+
+	mask = 0x01 << (count - 1);
+	if (nvm->type == e1000_nvm_eeprom_spi)
+		eecd |= E1000_EECD_DO;
+
+	do {
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		ew32(EECD, eecd);
+		e1e_flush();
+
+		udelay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+
+		mask >>= 1;
+	} while (mask);
+
+	eecd &= ~E1000_EECD_DI;
+	ew32(EECD, eecd);
+}
+
+/**
+ *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @count: number of bits to shift in
+ *
+ *  In order to read a register from the EEPROM, we need to shift 'count' bits
+ *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
+ *  the EEPROM (setting the SK bit), and then reading the value of the data out
+ *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
+ *  always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	eecd = er32(EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data <<= 1;
+		e1000_raise_eec_clk(hw, &eecd);
+
+		eecd = er32(EECD);
+
+		eecd &= ~E1000_EECD_DI;
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ *  @hw: pointer to the HW structure
+ *  @ee_reg: EEPROM flag for polling
+ *
+ *  Polls the EEPROM status bit for either read or write completion based
+ *  upon the value of 'ee_reg'.
+ **/
+s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+	u32 attempts = 100000;
+	u32 i, reg = 0;
+
+	for (i = 0; i < attempts; i++) {
+		if (ee_reg == E1000_NVM_POLL_READ)
+			reg = er32(EERD);
+		else
+			reg = er32(EEWR);
+
+		if (reg & E1000_NVM_RW_REG_DONE)
+			return 0;
+
+		udelay(5);
+	}
+
+	return -E1000_ERR_NVM;
+}
+
+/**
+ *  e1000e_acquire_nvm - Generic request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000e_acquire_nvm(struct e1000_hw *hw)
+{
+	u32 eecd = er32(EECD);
+	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+
+	ew32(EECD, eecd | E1000_EECD_REQ);
+	eecd = er32(EECD);
+
+	while (timeout) {
+		if (eecd & E1000_EECD_GNT)
+			break;
+		udelay(5);
+		eecd = er32(EECD);
+		timeout--;
+	}
+
+	if (!timeout) {
+		eecd &= ~E1000_EECD_REQ;
+		ew32(EECD, eecd);
+		e_dbg("Could not acquire NVM grant\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_standby_nvm - Return EEPROM to standby state
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+
+	if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		e1e_flush();
+		udelay(nvm->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		ew32(EECD, eecd);
+		e1e_flush();
+		udelay(nvm->delay_usec);
+	}
+}
+
+/**
+ *  e1000_stop_nvm - Terminate EEPROM command
+ *  @hw: pointer to the HW structure
+ *
+ *  Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+static void e1000_stop_nvm(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	eecd = er32(EECD);
+	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+		/* Pull CS high */
+		eecd |= E1000_EECD_CS;
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+}
+
+/**
+ *  e1000e_release_nvm - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000e_release_nvm(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	e1000_stop_nvm(hw);
+
+	eecd = er32(EECD);
+	eecd &= ~E1000_EECD_REQ;
+	ew32(EECD, eecd);
+}
+
+/**
+ *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = er32(EECD);
+	u16 timeout = 0;
+	u8 spi_stat_reg;
+
+	if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		udelay(1);
+		timeout = NVM_MAX_RETRY_SPI;
+
+		/*
+		 * Read "Status Register" repeatedly until the LSB is cleared.
+		 * The EEPROM will signal that the command has been completed
+		 * by clearing bit 0 of the internal status register.  If it's
+		 * not cleared within 'timeout', then error out.
+		 */
+		while (timeout) {
+			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+						 hw->nvm.opcode_bits);
+			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+				break;
+
+			udelay(5);
+			e1000_standby_nvm(hw);
+			timeout--;
+		}
+
+		if (!timeout) {
+			e_dbg("SPI NVM Status error\n");
+			return -E1000_ERR_NVM;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eerd = 0;
+	s32 ret_val = 0;
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * too many words for the offset, and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	for (i = 0; i < words; i++) {
+		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+		       E1000_NVM_RW_REG_START;
+
+		ew32(EERD, eerd);
+		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+		if (ret_val)
+			break;
+
+		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_nvm_spi - Write to EEPROM using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000e_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u16 widx = 0;
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	ret_val = nvm->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	msleep(10);
+
+	while (widx < words) {
+		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+		ret_val = e1000_ready_nvm_eeprom(hw);
+		if (ret_val) {
+			nvm->ops.release(hw);
+			return ret_val;
+		}
+
+		e1000_standby_nvm(hw);
+
+		/* Send the WRITE ENABLE command (8 bit opcode) */
+		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+					 nvm->opcode_bits);
+
+		e1000_standby_nvm(hw);
+
+		/*
+		 * Some SPI eeproms use the 8th address bit embedded in the
+		 * opcode
+		 */
+		if ((nvm->address_bits == 8) && (offset >= 128))
+			write_opcode |= NVM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+					 nvm->address_bits);
+
+		/* Loop to allow for up to whole page write of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_eec_bits(hw, word_out, 16);
+			widx++;
+
+			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+				e1000_standby_nvm(hw);
+				break;
+			}
+		}
+	}
+
+	msleep(10);
+	nvm->ops.release(hw);
+	return 0;
+}
+
+/**
+ *  e1000_read_mac_addr_generic - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ *  Since devices with two ports use the same EEPROM, we increment the
+ *  last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+	u32 rar_high;
+	u32 rar_low;
+	u16 i;
+
+	rar_high = er32(RAH(0));
+	rar_low = er32(RAL(0));
+
+	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
+
+	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
+
+	for (i = 0; i < ETH_ALEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+	return 0;
+}
+
+/**
+ *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			e_dbg("NVM Read Error\n");
+			return ret_val;
+		}
+		checksum += nvm_data;
+	}
+
+	if (checksum != (u16) NVM_SUM) {
+		e_dbg("NVM Checksum Invalid\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			e_dbg("NVM Read Error while updating checksum.\n");
+			return ret_val;
+		}
+		checksum += nvm_data;
+	}
+	checksum = (u16) NVM_SUM - checksum;
+	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+	if (ret_val)
+		e_dbg("NVM Write Error while updating checksum.\n");
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_reload_nvm - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+void e1000e_reload_nvm(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+
+	udelay(10);
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+	ew32(CTRL_EXT, ctrl_ext);
+	e1e_flush();
+}
+
+/**
+ *  e1000_calculate_checksum - Calculate checksum for buffer
+ *  @buffer: pointer to EEPROM
+ *  @length: size of EEPROM to calculate a checksum for
+ *
+ *  Calculates the checksum for some buffer on a specified length.  The
+ *  checksum calculated is returned.
+ **/
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+	u32 i;
+	u8  sum = 0;
+
+	if (!buffer)
+		return 0;
+
+	for (i = 0; i < length; i++)
+		sum += buffer[i];
+
+	return (u8) (0 - sum);
+}
+
+/**
+ *  e1000_mng_enable_host_if - Checks host interface is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ *  This function checks whether the HOST IF is enabled for command operation
+ *  and also checks whether the previous command is completed.  It busy waits
+ *  in case of previous command is not completed.
+ **/
+static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+{
+	u32 hicr;
+	u8 i;
+
+	if (!(hw->mac.arc_subsystem_valid)) {
+		e_dbg("ARC subsystem not valid.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	/* Check that the host interface is enabled. */
+	hicr = er32(HICR);
+	if ((hicr & E1000_HICR_EN) == 0) {
+		e_dbg("E1000_HOST_EN bit disabled.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+	/* check the previous command is completed */
+	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+		hicr = er32(HICR);
+		if (!(hicr & E1000_HICR_C))
+			break;
+		mdelay(1);
+	}
+
+	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+		e_dbg("Previous command timeout failed .\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_check_mng_mode_generic - check management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the firmware semaphore register and returns true (>0) if
+ *  manageability is enabled, else false (0).
+ **/
+bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
+{
+	u32 fwsm = er32(FWSM);
+
+	return (fwsm & E1000_FWSM_MODE_MASK) ==
+		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
+ *  @hw: pointer to the HW structure
+ *
+ *  Enables packet filtering on transmit packets if manageability is enabled
+ *  and host interface is enabled.
+ **/
+bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+	u32 *buffer = (u32 *)&hw->mng_cookie;
+	u32 offset;
+	s32 ret_val, hdr_csum, csum;
+	u8 i, len;
+
+	hw->mac.tx_pkt_filtering = true;
+
+	/* No manageability, no filtering */
+	if (!e1000e_check_mng_mode(hw)) {
+		hw->mac.tx_pkt_filtering = false;
+		goto out;
+	}
+
+	/*
+	 * If we can't read from the host interface for whatever
+	 * reason, disable filtering.
+	 */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val) {
+		hw->mac.tx_pkt_filtering = false;
+		goto out;
+	}
+
+	/* Read in the header.  Length and offset are in dwords. */
+	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+	for (i = 0; i < len; i++)
+		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
+	hdr_csum = hdr->checksum;
+	hdr->checksum = 0;
+	csum = e1000_calculate_checksum((u8 *)hdr,
+					E1000_MNG_DHCP_COOKIE_LENGTH);
+	/*
+	 * If either the checksums or signature don't match, then
+	 * the cookie area isn't considered valid, in which case we
+	 * take the safe route of assuming Tx filtering is enabled.
+	 */
+	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
+		hw->mac.tx_pkt_filtering = true;
+		goto out;
+	}
+
+	/* Cookie area is valid, make the final check for filtering. */
+	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
+		hw->mac.tx_pkt_filtering = false;
+		goto out;
+	}
+
+out:
+	return hw->mac.tx_pkt_filtering;
+}
+
+/**
+ *  e1000_mng_write_cmd_header - Writes manageability command header
+ *  @hw: pointer to the HW structure
+ *  @hdr: pointer to the host interface command header
+ *
+ *  Writes the command header after does the checksum calculation.
+ **/
+static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+				  struct e1000_host_mng_command_header *hdr)
+{
+	u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+	/* Write the whole command header structure with new checksum. */
+
+	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+	length >>= 2;
+	/* Write the relevant command block into the ram area. */
+	for (i = 0; i < length; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
+					    *((u32 *) hdr + i));
+		e1e_flush();
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_mng_host_if_write - Write to the manageability host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface buffer
+ *  @length: size of the buffer
+ *  @offset: location in the buffer to write to
+ *  @sum: sum of the data (not checksum)
+ *
+ *  This function writes the buffer content at the offset given on the host if.
+ *  It also does alignment considerations to do the writes in most efficient
+ *  way.  Also fills up the sum of the buffer in *buffer parameter.
+ **/
+static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
+				   u16 length, u16 offset, u8 *sum)
+{
+	u8 *tmp;
+	u8 *bufptr = buffer;
+	u32 data = 0;
+	u16 remaining, i, j, prev_bytes;
+
+	/* sum = only sum of the data and it is not checksum */
+
+	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
+		return -E1000_ERR_PARAM;
+
+	tmp = (u8 *)&data;
+	prev_bytes = offset & 0x3;
+	offset >>= 2;
+
+	if (prev_bytes) {
+		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
+		for (j = prev_bytes; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
+		length -= j - prev_bytes;
+		offset++;
+	}
+
+	remaining = length & 0x3;
+	length -= remaining;
+
+	/* Calculate length in DWORDs */
+	length >>= 2;
+
+	/*
+	 * The device driver writes the relevant command block into the
+	 * ram area.
+	 */
+	for (i = 0; i < length; i++) {
+		for (j = 0; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
+	}
+	if (remaining) {
+		for (j = 0; j < sizeof(u32); j++) {
+			if (j < remaining)
+				*(tmp + j) = *bufptr++;
+			else
+				*(tmp + j) = 0;
+
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface
+ *  @length: size of the buffer
+ *
+ *  Writes the DHCP information to the host interface.
+ **/
+s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+	struct e1000_host_mng_command_header hdr;
+	s32 ret_val;
+	u32 hicr;
+
+	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+	hdr.command_length = length;
+	hdr.reserved1 = 0;
+	hdr.reserved2 = 0;
+	hdr.checksum = 0;
+
+	/* Enable the host interface */
+	ret_val = e1000_mng_enable_host_if(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Populate the host interface with the contents of "buffer". */
+	ret_val = e1000_mng_host_if_write(hw, buffer, length,
+					  sizeof(hdr), &(hdr.checksum));
+	if (ret_val)
+		return ret_val;
+
+	/* Write the manageability command header */
+	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+	if (ret_val)
+		return ret_val;
+
+	/* Tell the ARC a new command is pending. */
+	hicr = er32(HICR);
+	ew32(HICR, hicr | E1000_HICR_C);
+
+	return 0;
+}
+
+/**
+ *  e1000e_enable_mng_pass_thru - Check if management passthrough is needed
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies the hardware needs to leave interface enabled so that frames can
+ *  be directed to and from the management interface.
+ **/
+bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+	u32 fwsm, factps;
+	bool ret_val = false;
+
+	manc = er32(MANC);
+
+	if (!(manc & E1000_MANC_RCV_TCO_EN))
+		goto out;
+
+	if (hw->mac.has_fwsm) {
+		fwsm = er32(FWSM);
+		factps = er32(FACTPS);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((fwsm & E1000_FWSM_MODE_MASK) ==
+		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+			ret_val = true;
+			goto out;
+		}
+	} else if ((hw->mac.type == e1000_82574) ||
+		   (hw->mac.type == e1000_82583)) {
+		u16 data;
+
+		factps = er32(FACTPS);
+		e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
+		     (e1000_mng_mode_pt << 13))) {
+			ret_val = true;
+			goto out;
+		}
+	} else if ((manc & E1000_MANC_SMBUS_EN) &&
+		    !(manc & E1000_MANC_ASF_EN)) {
+			ret_val = true;
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+	s32 ret_val;
+	u16 nvm_data;
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+	*pba_num = (u32)(nvm_data << 16);
+
+	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+	*pba_num |= nvm_data;
+
+	return 0;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/netdev-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,6120 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/vmalloc.h>
+#include <linux/pagemap.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/tcp.h>
+#include <linux/ipv6.h>
+#include <linux/slab.h>
+#include <net/checksum.h>
+#include <net/ip6_checksum.h>
+#include <linux/mii.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+#include <linux/cpu.h>
+#include <linux/smp.h>
+#include <linux/pm_qos_params.h>
+#include <linux/pm_runtime.h>
+#include <linux/aer.h>
+
+#include "e1000-2.6.35-ethercat.h"
+
+#define DRV_VERSION "1.0.2-k4 (EtherCAT)"
+char e1000e_driver_name[] = "ec_e1000e";
+const char e1000e_driver_version[] = DRV_VERSION;
+
+static const struct e1000_info *e1000_info_tbl[] = {
+	[board_82571]		= &e1000_82571_info,
+	[board_82572]		= &e1000_82572_info,
+	[board_82573]		= &e1000_82573_info,
+	[board_82574]		= &e1000_82574_info,
+	[board_82583]		= &e1000_82583_info,
+	[board_80003es2lan]	= &e1000_es2_info,
+	[board_ich8lan]		= &e1000_ich8_info,
+	[board_ich9lan]		= &e1000_ich9_info,
+	[board_ich10lan]	= &e1000_ich10_info,
+	[board_pchlan]		= &e1000_pch_info,
+};
+
+struct e1000_reg_info {
+	u32 ofs;
+	char *name;
+};
+
+#define E1000_RDFH	0x02410 /* Rx Data FIFO Head - RW */
+#define E1000_RDFT	0x02418 /* Rx Data FIFO Tail - RW */
+#define E1000_RDFHS	0x02420 /* Rx Data FIFO Head Saved - RW */
+#define E1000_RDFTS	0x02428 /* Rx Data FIFO Tail Saved - RW */
+#define E1000_RDFPC	0x02430 /* Rx Data FIFO Packet Count - RW */
+
+#define E1000_TDFH	0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT	0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS	0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS	0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC	0x03430 /* Tx Data FIFO Packet Count - RW */
+
+static const struct e1000_reg_info e1000_reg_info_tbl[] = {
+
+	/* General Registers */
+	{E1000_CTRL, "CTRL"},
+	{E1000_STATUS, "STATUS"},
+	{E1000_CTRL_EXT, "CTRL_EXT"},
+
+	/* Interrupt Registers */
+	{E1000_ICR, "ICR"},
+
+	/* RX Registers */
+	{E1000_RCTL, "RCTL"},
+	{E1000_RDLEN, "RDLEN"},
+	{E1000_RDH, "RDH"},
+	{E1000_RDT, "RDT"},
+	{E1000_RDTR, "RDTR"},
+	{E1000_RXDCTL(0), "RXDCTL"},
+	{E1000_ERT, "ERT"},
+	{E1000_RDBAL, "RDBAL"},
+	{E1000_RDBAH, "RDBAH"},
+	{E1000_RDFH, "RDFH"},
+	{E1000_RDFT, "RDFT"},
+	{E1000_RDFHS, "RDFHS"},
+	{E1000_RDFTS, "RDFTS"},
+	{E1000_RDFPC, "RDFPC"},
+
+	/* TX Registers */
+	{E1000_TCTL, "TCTL"},
+	{E1000_TDBAL, "TDBAL"},
+	{E1000_TDBAH, "TDBAH"},
+	{E1000_TDLEN, "TDLEN"},
+	{E1000_TDH, "TDH"},
+	{E1000_TDT, "TDT"},
+	{E1000_TIDV, "TIDV"},
+	{E1000_TXDCTL(0), "TXDCTL"},
+	{E1000_TADV, "TADV"},
+	{E1000_TARC(0), "TARC"},
+	{E1000_TDFH, "TDFH"},
+	{E1000_TDFT, "TDFT"},
+	{E1000_TDFHS, "TDFHS"},
+	{E1000_TDFTS, "TDFTS"},
+	{E1000_TDFPC, "TDFPC"},
+
+	/* List Terminator */
+	{}
+};
+
+/*
+ * e1000_regdump - register printout routine
+ */
+static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
+{
+	int n = 0;
+	char rname[16];
+	u32 regs[8];
+
+	switch (reginfo->ofs) {
+	case E1000_RXDCTL(0):
+		for (n = 0; n < 2; n++)
+			regs[n] = __er32(hw, E1000_RXDCTL(n));
+		break;
+	case E1000_TXDCTL(0):
+		for (n = 0; n < 2; n++)
+			regs[n] = __er32(hw, E1000_TXDCTL(n));
+		break;
+	case E1000_TARC(0):
+		for (n = 0; n < 2; n++)
+			regs[n] = __er32(hw, E1000_TARC(n));
+		break;
+	default:
+		printk(KERN_INFO "%-15s %08x\n",
+			reginfo->name, __er32(hw, reginfo->ofs));
+		return;
+	}
+
+	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
+	printk(KERN_INFO "%-15s ", rname);
+	for (n = 0; n < 2; n++)
+		printk(KERN_CONT "%08x ", regs[n]);
+	printk(KERN_CONT "\n");
+}
+
+
+/*
+ * e1000e_dump - Print registers, tx-ring and rx-ring
+ */
+static void e1000e_dump(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_reg_info *reginfo;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_tx_desc *tx_desc;
+	struct my_u0 { u64 a; u64 b; } *u0;
+	struct e1000_buffer *buffer_info;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	union e1000_rx_desc_packet_split *rx_desc_ps;
+	struct e1000_rx_desc *rx_desc;
+	struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
+	u32 staterr;
+	int i = 0;
+
+	if (!netif_msg_hw(adapter))
+		return;
+
+	/* Print netdevice Info */
+	if (netdev) {
+		dev_info(&adapter->pdev->dev, "Net device Info\n");
+		printk(KERN_INFO "Device Name     state            "
+			"trans_start      last_rx\n");
+		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
+			netdev->name,
+			netdev->state,
+			netdev->trans_start,
+			netdev->last_rx);
+	}
+
+	/* Print Registers */
+	dev_info(&adapter->pdev->dev, "Register Dump\n");
+	printk(KERN_INFO " Register Name   Value\n");
+	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
+	     reginfo->name; reginfo++) {
+		e1000_regdump(hw, reginfo);
+	}
+
+	/* Print TX Ring Summary */
+	if (!netdev || !netif_running(netdev))
+		goto exit;
+
+	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
+	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
+		" leng ntw timestamp\n");
+	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
+	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
+		0, tx_ring->next_to_use, tx_ring->next_to_clean,
+		(u64)buffer_info->dma,
+		buffer_info->length,
+		buffer_info->next_to_watch,
+		(u64)buffer_info->time_stamp);
+
+	/* Print TX Rings */
+	if (!netif_msg_tx_done(adapter))
+		goto rx_ring_summary;
+
+	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
+
+	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
+	 *
+	 * Legacy Transmit Descriptor
+	 *   +--------------------------------------------------------------+
+	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
+	 *   +--------------------------------------------------------------+
+	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
+	 *   +--------------------------------------------------------------+
+	 *   63       48 47        36 35    32 31     24 23    16 15        0
+	 *
+	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
+	 *   63      48 47    40 39       32 31             16 15    8 7      0
+	 *   +----------------------------------------------------------------+
+	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
+	 *   +----------------------------------------------------------------+
+	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
+	 *   +----------------------------------------------------------------+
+	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
+	 *
+	 * Extended Data Descriptor (DTYP=0x1)
+	 *   +----------------------------------------------------------------+
+	 * 0 |                     Buffer Address [63:0]                      |
+	 *   +----------------------------------------------------------------+
+	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
+	 *   +----------------------------------------------------------------+
+	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
+	 */
+	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
+		" [bi->dma       ] leng  ntw timestamp        bi->skb "
+		"<-- Legacy format\n");
+	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
+		" [bi->dma       ] leng  ntw timestamp        bi->skb "
+		"<-- Ext Context format\n");
+	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
+		" [bi->dma       ] leng  ntw timestamp        bi->skb "
+		"<-- Ext Data format\n");
+	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		buffer_info = &tx_ring->buffer_info[i];
+		u0 = (struct my_u0 *)tx_desc;
+		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
+			"%04X  %3X %016llX %p",
+		       (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
+			((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
+		       le64_to_cpu(u0->a), le64_to_cpu(u0->b),
+		       (u64)buffer_info->dma, buffer_info->length,
+		       buffer_info->next_to_watch, (u64)buffer_info->time_stamp,
+		       buffer_info->skb);
+		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
+			printk(KERN_CONT " NTC/U\n");
+		else if (i == tx_ring->next_to_use)
+			printk(KERN_CONT " NTU\n");
+		else if (i == tx_ring->next_to_clean)
+			printk(KERN_CONT " NTC\n");
+		else
+			printk(KERN_CONT "\n");
+
+		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
+			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
+					16, 1, phys_to_virt(buffer_info->dma),
+					buffer_info->length, true);
+	}
+
+	/* Print RX Rings Summary */
+rx_ring_summary:
+	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
+	printk(KERN_INFO "Queue [NTU] [NTC]\n");
+	printk(KERN_INFO " %5d %5X %5X\n", 0,
+		rx_ring->next_to_use, rx_ring->next_to_clean);
+
+	/* Print RX Rings */
+	if (!netif_msg_rx_status(adapter))
+		goto exit;
+
+	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
+	switch (adapter->rx_ps_pages) {
+	case 1:
+	case 2:
+	case 3:
+		/* [Extended] Packet Split Receive Descriptor Format
+		 *
+		 *    +-----------------------------------------------------+
+		 *  0 |                Buffer Address 0 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 *  8 |                Buffer Address 1 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 * 16 |                Buffer Address 2 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 * 24 |                Buffer Address 3 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 */
+		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
+			"[buffer 1 63:0 ] "
+		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
+		       "[bi->skb] <-- Ext Pkt Split format\n");
+		/* [Extended] Receive Descriptor (Write-Back) Format
+		 *
+		 *   63       48 47    32 31     13 12    8 7    4 3        0
+		 *   +------------------------------------------------------+
+		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
+		 *   | Checksum | Ident  |         | Queue |      |  Type   |
+		 *   +------------------------------------------------------+
+		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
+		 *   +------------------------------------------------------+
+		 *   63       48 47    32 31            20 19               0
+		 */
+		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
+			"[vl   l0 ee  es] "
+		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
+		       "[bi->skb] <-- Ext Rx Write-Back format\n");
+		for (i = 0; i < rx_ring->count; i++) {
+			buffer_info = &rx_ring->buffer_info[i];
+			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
+			u1 = (struct my_u1 *)rx_desc_ps;
+			staterr =
+				le32_to_cpu(rx_desc_ps->wb.middle.status_error);
+			if (staterr & E1000_RXD_STAT_DD) {
+				/* Descriptor Done */
+				printk(KERN_INFO "RWB[0x%03X]     %016llX "
+					"%016llX %016llX %016llX "
+					"---------------- %p", i,
+					le64_to_cpu(u1->a),
+					le64_to_cpu(u1->b),
+					le64_to_cpu(u1->c),
+					le64_to_cpu(u1->d),
+					buffer_info->skb);
+			} else {
+				printk(KERN_INFO "R  [0x%03X]     %016llX "
+					"%016llX %016llX %016llX %016llX %p", i,
+					le64_to_cpu(u1->a),
+					le64_to_cpu(u1->b),
+					le64_to_cpu(u1->c),
+					le64_to_cpu(u1->d),
+					(u64)buffer_info->dma,
+					buffer_info->skb);
+
+				if (netif_msg_pktdata(adapter))
+					print_hex_dump(KERN_INFO, "",
+						DUMP_PREFIX_ADDRESS, 16, 1,
+						phys_to_virt(buffer_info->dma),
+						adapter->rx_ps_bsize0, true);
+			}
+
+			if (i == rx_ring->next_to_use)
+				printk(KERN_CONT " NTU\n");
+			else if (i == rx_ring->next_to_clean)
+				printk(KERN_CONT " NTC\n");
+			else
+				printk(KERN_CONT "\n");
+		}
+		break;
+	default:
+	case 0:
+		/* Legacy Receive Descriptor Format
+		 *
+		 * +-----------------------------------------------------+
+		 * |                Buffer Address [63:0]                |
+		 * +-----------------------------------------------------+
+		 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
+		 * +-----------------------------------------------------+
+		 * 63       48 47    40 39      32 31         16 15      0
+		 */
+		printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
+			"[vl er S cks ln] [bi->dma       ] [bi->skb] "
+			"<-- Legacy format\n");
+		for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
+			rx_desc = E1000_RX_DESC(*rx_ring, i);
+			buffer_info = &rx_ring->buffer_info[i];
+			u0 = (struct my_u0 *)rx_desc;
+			printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
+				"%016llX %p",
+				i, le64_to_cpu(u0->a), le64_to_cpu(u0->b),
+				(u64)buffer_info->dma, buffer_info->skb);
+			if (i == rx_ring->next_to_use)
+				printk(KERN_CONT " NTU\n");
+			else if (i == rx_ring->next_to_clean)
+				printk(KERN_CONT " NTC\n");
+			else
+				printk(KERN_CONT "\n");
+
+			if (netif_msg_pktdata(adapter))
+				print_hex_dump(KERN_INFO, "",
+					DUMP_PREFIX_ADDRESS,
+					16, 1, phys_to_virt(buffer_info->dma),
+					adapter->rx_buffer_len, true);
+		}
+	}
+
+exit:
+	return;
+}
+
+/**
+ * e1000_desc_unused - calculate if we have unused descriptors
+ **/
+static int e1000_desc_unused(struct e1000_ring *ring)
+{
+	if (ring->next_to_clean > ring->next_to_use)
+		return ring->next_to_clean - ring->next_to_use - 1;
+
+	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
+}
+
+/**
+ * e1000_receive_skb - helper function to handle Rx indications
+ * @adapter: board private structure
+ * @status: descriptor status field as written by hardware
+ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
+ * @skb: pointer to sk_buff to be indicated to stack
+ **/
+static void e1000_receive_skb(struct e1000_adapter *adapter,
+			      struct net_device *netdev,
+			      struct sk_buff *skb,
+			      u8 status, __le16 vlan)
+{
+	skb->protocol = eth_type_trans(skb, netdev);
+
+	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
+		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
+				 le16_to_cpu(vlan), skb);
+	else
+		napi_gro_receive(&adapter->napi, skb);
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter:     board private structure
+ * @status_err:  receive descriptor status and error fields
+ * @csum:	receive descriptor csum field
+ * @sk_buff:     socket buffer with received data
+ **/
+static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
+			      u32 csum, struct sk_buff *skb)
+{
+	u16 status = (u16)status_err;
+	u8 errors = (u8)(status_err >> 24);
+	skb->ip_summed = CHECKSUM_NONE;
+
+	/* Ignore Checksum bit is set */
+	if (status & E1000_RXD_STAT_IXSM)
+		return;
+	/* TCP/UDP checksum error bit is set */
+	if (errors & E1000_RXD_ERR_TCPE) {
+		/* let the stack verify checksum errors */
+		adapter->hw_csum_err++;
+		return;
+	}
+
+	/* TCP/UDP Checksum has not been calculated */
+	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
+		return;
+
+	/* It must be a TCP or UDP packet with a valid checksum */
+	if (status & E1000_RXD_STAT_TCPCS) {
+		/* TCP checksum is good */
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	} else {
+		/*
+		 * IP fragment with UDP payload
+		 * Hardware complements the payload checksum, so we undo it
+		 * and then put the value in host order for further stack use.
+		 */
+		__sum16 sum = (__force __sum16)htons(csum);
+		skb->csum = csum_unfold(~sum);
+		skb->ip_summed = CHECKSUM_COMPLETE;
+	}
+	adapter->hw_csum_good++;
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
+ * @adapter: address of board private structure
+ **/
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = adapter->rx_buffer_len;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto map_skb;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (!skb) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		buffer_info->skb = skb;
+map_skb:
+		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
+						  adapter->rx_buffer_len,
+						  DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+			dev_err(&pdev->dev, "RX DMA map failed\n");
+			adapter->rx_dma_failed++;
+			break;
+		}
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
+			/*
+			 * Force memory writes to complete before letting h/w
+			 * know there are new descriptors to fetch.  (Only
+			 * applicable for weak-ordered memory model archs,
+			 * such as IA-64).
+			 */
+			wmb();
+			writel(i, adapter->hw.hw_addr + rx_ring->tail);
+		}
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	rx_ring->next_to_use = i;
+}
+
+/**
+ * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
+ * @adapter: address of board private structure
+ **/
+static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
+				      int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	union e1000_rx_desc_packet_split *rx_desc;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	struct e1000_ps_page *ps_page;
+	struct sk_buff *skb;
+	unsigned int i, j;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
+
+		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
+			ps_page = &buffer_info->ps_pages[j];
+			if (j >= adapter->rx_ps_pages) {
+				/* all unused desc entries get hw null ptr */
+				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
+				continue;
+			}
+			if (!ps_page->page) {
+				ps_page->page = alloc_page(GFP_ATOMIC);
+				if (!ps_page->page) {
+					adapter->alloc_rx_buff_failed++;
+					goto no_buffers;
+				}
+				ps_page->dma = dma_map_page(&pdev->dev,
+							    ps_page->page,
+							    0, PAGE_SIZE,
+							    DMA_FROM_DEVICE);
+				if (dma_mapping_error(&pdev->dev,
+						      ps_page->dma)) {
+					dev_err(&adapter->pdev->dev,
+					  "RX DMA page map failed\n");
+					adapter->rx_dma_failed++;
+					goto no_buffers;
+				}
+			}
+			/*
+			 * Refresh the desc even if buffer_addrs
+			 * didn't change because each write-back
+			 * erases this info.
+			 */
+			rx_desc->read.buffer_addr[j+1] =
+			     cpu_to_le64(ps_page->dma);
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev,
+						adapter->rx_ps_bsize0);
+
+		if (!skb) {
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		buffer_info->skb = skb;
+		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
+						  adapter->rx_ps_bsize0,
+						  DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+			dev_err(&pdev->dev, "RX DMA map failed\n");
+			adapter->rx_dma_failed++;
+			/* cleanup skb */
+			dev_kfree_skb_any(skb);
+			buffer_info->skb = NULL;
+			break;
+		}
+
+		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
+			/*
+			 * Force memory writes to complete before letting h/w
+			 * know there are new descriptors to fetch.  (Only
+			 * applicable for weak-ordered memory model archs,
+			 * such as IA-64).
+			 */
+			wmb();
+			writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
+		}
+
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+no_buffers:
+	rx_ring->next_to_use = i;
+}
+
+/**
+ * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
+ * @adapter: address of board private structure
+ * @cleaned_count: number of buffers to allocate this pass
+ **/
+
+static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+                                         int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto check_page;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		buffer_info->skb = skb;
+check_page:
+		/* allocate a new page if necessary */
+		if (!buffer_info->page) {
+			buffer_info->page = alloc_page(GFP_ATOMIC);
+			if (unlikely(!buffer_info->page)) {
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+		}
+
+		if (!buffer_info->dma)
+			buffer_info->dma = dma_map_page(&pdev->dev,
+			                                buffer_info->page, 0,
+			                                PAGE_SIZE,
+							DMA_FROM_DEVICE);
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, adapter->hw.hw_addr + rx_ring->tail);
+	}
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       int *work_done, int work_to_do)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = 0;
+	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb();	/* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+
+		if (!adapter->ecdev)
+			buffer_info->skb = NULL;
+
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = 1;
+		cleaned_count++;
+		dma_unmap_single(&pdev->dev,
+				 buffer_info->dma,
+				 adapter->rx_buffer_len,
+				 DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/*
+		 * !EOP means multiple descriptors were used to store a single
+		 * packet, if that's the case we need to toss it.  In fact, we
+		 * need to toss every packet with the EOP bit clear and the
+		 * next frame that _does_ have the EOP bit set, as it is by
+		 * definition only a frame fragment
+		 */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
+			adapter->flags2 |= FLAG2_IS_DISCARDING;
+
+		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
+			/* All receives must fit into a single buffer */
+			e_dbg("Receive packet consumed multiple buffers\n");
+			/* recycle */
+			buffer_info->skb = skb;
+			if (status & E1000_RXD_STAT_EOP)
+				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
+			goto next_desc;
+		}
+
+		if (!adapter->ecdev && (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
+			/* recycle */
+			buffer_info->skb = skb;
+			goto next_desc;
+		}
+
+		/* adjust length to remove Ethernet CRC */
+		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
+			length -= 4;
+
+		total_rx_bytes += length;
+		total_rx_packets++;
+
+		/*
+		 * code added for copybreak, this should improve
+		 * performance for small packets with large amounts
+		 * of reassembly being done in the stack
+		 */
+		if (!adapter->ecdev && length < copybreak) {
+			struct sk_buff *new_skb =
+			    netdev_alloc_skb_ip_align(netdev, length);
+			if (new_skb) {
+				skb_copy_to_linear_data_offset(new_skb,
+							       -NET_IP_ALIGN,
+							       (skb->data -
+								NET_IP_ALIGN),
+							       (length +
+								NET_IP_ALIGN));
+				/* save the skb in buffer_info as good */
+				buffer_info->skb = skb;
+				skb = new_skb;
+			}
+			/* else just continue with the old one */
+		}
+		/* end copybreak code */
+		skb_put(skb, length);
+
+		/* Receive Checksum Offload */
+		e1000_rx_checksum(adapter,
+				  (u32)(status) |
+				  ((u32)(rx_desc->errors) << 24),
+				  le16_to_cpu(rx_desc->csum), skb);
+
+		if (adapter->ecdev) {
+			ecdev_receive(adapter->ecdev, skb->data, length);
+			adapter->ec_watchdog_jiffies = jiffies;
+		} else {
+			e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
+		}
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
+			adapter->alloc_rx_buf(adapter, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = e1000_desc_unused(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, cleaned_count);
+
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->total_rx_packets += total_rx_packets;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+static void e1000_put_txbuf(struct e1000_adapter *adapter,
+			     struct e1000_buffer *buffer_info)
+{
+	if (adapter->ecdev)
+		return;
+
+	if (buffer_info->dma) {
+		if (buffer_info->mapped_as_page)
+			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
+				       buffer_info->length, DMA_TO_DEVICE);
+		else
+			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
+					 buffer_info->length, DMA_TO_DEVICE);
+		buffer_info->dma = 0;
+	}
+	if (buffer_info->skb) {
+		dev_kfree_skb_any(buffer_info->skb);
+		buffer_info->skb = NULL;
+	}
+	buffer_info->time_stamp = 0;
+}
+
+static void e1000_print_hw_hang(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+	                                             struct e1000_adapter,
+	                                             print_hang_task);
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	unsigned int i = tx_ring->next_to_clean;
+	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
+	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_status, phy_1000t_status, phy_ext_status;
+	u16 pci_status;
+
+	e1e_rphy(hw, PHY_STATUS, &phy_status);
+	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
+	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
+
+	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
+
+	/* detected Hardware unit hang */
+	e_err("Detected Hardware Unit Hang:\n"
+	      "  TDH                  <%x>\n"
+	      "  TDT                  <%x>\n"
+	      "  next_to_use          <%x>\n"
+	      "  next_to_clean        <%x>\n"
+	      "buffer_info[next_to_clean]:\n"
+	      "  time_stamp           <%lx>\n"
+	      "  next_to_watch        <%x>\n"
+	      "  jiffies              <%lx>\n"
+	      "  next_to_watch.status <%x>\n"
+	      "MAC Status             <%x>\n"
+	      "PHY Status             <%x>\n"
+	      "PHY 1000BASE-T Status  <%x>\n"
+	      "PHY Extended Status    <%x>\n"
+	      "PCI Status             <%x>\n",
+	      readl(adapter->hw.hw_addr + tx_ring->head),
+	      readl(adapter->hw.hw_addr + tx_ring->tail),
+	      tx_ring->next_to_use,
+	      tx_ring->next_to_clean,
+	      tx_ring->buffer_info[eop].time_stamp,
+	      eop,
+	      jiffies,
+	      eop_desc->upper.fields.status,
+	      er32(STATUS),
+	      phy_status,
+	      phy_1000t_status,
+	      phy_ext_status,
+	      pci_status);
+}
+
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_tx_desc *tx_desc, *eop_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i, eop;
+	unsigned int count = 0;
+	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
+
+	i = tx_ring->next_to_clean;
+	eop = tx_ring->buffer_info[i].next_to_watch;
+	eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
+	       (count < tx_ring->count)) {
+		bool cleaned = false;
+		rmb(); /* read buffer_info after eop_desc */
+		for (; !cleaned; count++) {
+			tx_desc = E1000_TX_DESC(*tx_ring, i);
+			buffer_info = &tx_ring->buffer_info[i];
+			cleaned = (i == eop);
+
+			if (cleaned) {
+				total_tx_packets += buffer_info->segs;
+				total_tx_bytes += buffer_info->bytecount;
+			}
+
+			e1000_put_txbuf(adapter, buffer_info);
+			tx_desc->upper.data = 0;
+
+			i++;
+			if (i == tx_ring->count)
+				i = 0;
+		}
+
+		if (i == tx_ring->next_to_use)
+			break;
+		eop = tx_ring->buffer_info[i].next_to_watch;
+		eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	}
+
+	tx_ring->next_to_clean = i;
+
+#define TX_WAKE_THRESHOLD 32
+	if (!adapter->ecdev && count && netif_carrier_ok(netdev) &&
+	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
+		/* Make sure that anybody stopping the queue after this
+		 * sees the new next_to_clean.
+		 */
+		smp_mb();
+
+		if (netif_queue_stopped(netdev) &&
+		    !(test_bit(__E1000_DOWN, &adapter->state))) {
+			netif_wake_queue(netdev);
+			++adapter->restart_queue;
+		}
+	}
+
+	if (!adapter->ecdev && adapter->detect_tx_hung) {
+		/*
+		 * Detect a transmit hang in hardware, this serializes the
+		 * check with the clearing of time_stamp and movement of i
+		 */
+		adapter->detect_tx_hung = 0;
+		if (tx_ring->buffer_info[i].time_stamp &&
+		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
+			       + (adapter->tx_timeout_factor * HZ)) &&
+		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
+			schedule_work(&adapter->print_hang_task);
+			netif_stop_queue(netdev);
+		}
+	}
+	adapter->total_tx_bytes += total_tx_bytes;
+	adapter->total_tx_packets += total_tx_packets;
+	netdev->stats.tx_bytes += total_tx_bytes;
+	netdev->stats.tx_packets += total_tx_packets;
+	return (count < tx_ring->count);
+}
+
+/**
+ * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
+				  int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	struct e1000_ps_page *ps_page;
+	struct sk_buff *skb;
+	unsigned int i, j;
+	u32 length, staterr;
+	int cleaned_count = 0;
+	bool cleaned = 0;
+	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
+	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (staterr & E1000_RXD_STAT_DD) {
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		skb = buffer_info->skb;
+		rmb();	/* read descriptor and rx_buffer_info after status DD */
+
+		/* in the packet split case this is header only */
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = 1;
+		cleaned_count++;
+		dma_unmap_single(&pdev->dev, buffer_info->dma,
+				 adapter->rx_ps_bsize0,
+				 DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		/* see !EOP comment in other rx routine */
+		if (!(staterr & E1000_RXD_STAT_EOP))
+			adapter->flags2 |= FLAG2_IS_DISCARDING;
+
+		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
+			e_dbg("Packet Split buffers didn't pick up the full "
+			      "packet\n");
+			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
+			if (staterr & E1000_RXD_STAT_EOP)
+				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
+			goto next_desc;
+		}
+
+		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
+			if (!adapter->ecdev)
+				dev_kfree_skb_irq(skb);
+			goto next_desc;
+		}
+
+		length = le16_to_cpu(rx_desc->wb.middle.length0);
+
+		if (!length) {
+			e_dbg("Last part of the packet spanning multiple "
+			      "descriptors\n");
+			if (!adapter->ecdev)
+				dev_kfree_skb_irq(skb);
+			goto next_desc;
+		}
+
+		/* Good Receive */
+		skb_put(skb, length);
+
+		{
+		/*
+		 * this looks ugly, but it seems compiler issues make it
+		 * more efficient than reusing j
+		 */
+		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
+
+		/*
+		 * page alloc/put takes too long and effects small packet
+		 * throughput, so unsplit small packets and save the alloc/put
+		 * only valid in softirq (napi) context to call kmap_*
+		 */
+		if (l1 && (l1 <= copybreak) &&
+		    ((length + l1) <= adapter->rx_ps_bsize0)) {
+			u8 *vaddr;
+
+			ps_page = &buffer_info->ps_pages[0];
+
+			/*
+			 * there is no documentation about how to call
+			 * kmap_atomic, so we can't hold the mapping
+			 * very long
+			 */
+			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
+						PAGE_SIZE, DMA_FROM_DEVICE);
+			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
+			memcpy(skb_tail_pointer(skb), vaddr, l1);
+			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
+			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
+						   PAGE_SIZE, DMA_FROM_DEVICE);
+
+			/* remove the CRC */
+			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
+				l1 -= 4;
+
+			skb_put(skb, l1);
+			goto copydone;
+		} /* if */
+		}
+
+		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
+			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
+			if (!length)
+				break;
+
+			ps_page = &buffer_info->ps_pages[j];
+			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
+				       DMA_FROM_DEVICE);
+			ps_page->dma = 0;
+			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
+			ps_page->page = NULL;
+			skb->len += length;
+			skb->data_len += length;
+			skb->truesize += length;
+		}
+
+		/* strip the ethernet crc, problem is we're using pages now so
+		 * this whole operation can get a little cpu intensive
+		 */
+		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
+			pskb_trim(skb, skb->len - 4);
+
+copydone:
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
+			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
+
+		if (rx_desc->wb.upper.header_status &
+			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
+			adapter->rx_hdr_split++;
+
+		if (adapter->ecdev) {
+			ecdev_receive(adapter->ecdev, skb->data, length);
+			adapter->ec_watchdog_jiffies = jiffies;
+		} else {
+			e1000_receive_skb(adapter, netdev, skb,
+					  staterr, rx_desc->wb.middle.vlan);
+		}
+
+next_desc:
+		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
+		if (!adapter->ecdev) buffer_info->skb = NULL;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
+			adapter->alloc_rx_buf(adapter, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+
+		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = e1000_desc_unused(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, cleaned_count);
+
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->total_rx_packets += total_rx_packets;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_consume_page - helper function
+ **/
+static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
+                               u16 length)
+{
+	bi->page = NULL;
+	skb->len += length;
+	skb->data_len += length;
+	skb->truesize += length;
+}
+
+/**
+ * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+                                     int *work_done, int work_to_do)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb();	/* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+
+		if (!adapter->ecdev)
+			buffer_info->skb = NULL;
+
+		++i;
+		if (i == rx_ring->count)
+			i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
+			       DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/* errors is only valid for DD + EOP descriptors */
+		if (!adapter->ecdev && unlikely((status & E1000_RXD_STAT_EOP) &&
+		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
+				/* recycle both page and skb */
+				buffer_info->skb = skb;
+				/* an error means any chain goes out the window
+				 * too */
+				if (rx_ring->rx_skb_top)
+					dev_kfree_skb(rx_ring->rx_skb_top);
+				rx_ring->rx_skb_top = NULL;
+				goto next_desc;
+		}
+
+#define rxtop rx_ring->rx_skb_top
+		if (!(status & E1000_RXD_STAT_EOP)) {
+			/* this descriptor is only the beginning (or middle) */
+			if (!rxtop) {
+				/* this is the beginning of a chain */
+				rxtop = skb;
+				skb_fill_page_desc(rxtop, 0, buffer_info->page,
+				                   0, length);
+			} else {
+				/* this is the middle of a chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the skb, only consumed the page */
+				buffer_info->skb = skb;
+			}
+			e1000_consume_page(buffer_info, rxtop, length);
+			goto next_desc;
+		} else {
+			if (rxtop) {
+				/* end of the chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the current skb, we only consumed the
+				 * page */
+				buffer_info->skb = skb;
+				skb = rxtop;
+				rxtop = NULL;
+				e1000_consume_page(buffer_info, skb, length);
+			} else {
+				/* no chain, got EOP, this buf is the packet
+				 * copybreak to save the put_page/alloc_page */
+				if (length <= copybreak &&
+				    skb_tailroom(skb) >= length) {
+					u8 *vaddr;
+					vaddr = kmap_atomic(buffer_info->page,
+					                   KM_SKB_DATA_SOFTIRQ);
+					memcpy(skb_tail_pointer(skb), vaddr,
+					       length);
+					kunmap_atomic(vaddr,
+					              KM_SKB_DATA_SOFTIRQ);
+					/* re-use the page, so don't erase
+					 * buffer_info->page */
+					skb_put(skb, length);
+				} else {
+					skb_fill_page_desc(skb, 0,
+					                   buffer_info->page, 0,
+				                           length);
+					e1000_consume_page(buffer_info, skb,
+					                   length);
+				}
+			}
+		}
+
+		/* Receive Checksum Offload XXX recompute due to CRC strip? */
+		e1000_rx_checksum(adapter,
+		                  (u32)(status) |
+		                  ((u32)(rx_desc->errors) << 24),
+		                  le16_to_cpu(rx_desc->csum), skb);
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		/* eth type trans needs skb->data to point to something */
+		if (!adapter->ecdev && !pskb_may_pull(skb, ETH_HLEN)) {
+			e_err("pskb_may_pull failed.\n");
+			dev_kfree_skb(skb);
+			goto next_desc;
+		}
+
+		if (adapter->ecdev) {
+			ecdev_receive(adapter->ecdev, skb->data, length);
+			adapter->ec_watchdog_jiffies = jiffies;
+		} else {
+			e1000_receive_skb(adapter, netdev, skb, status,
+			                  rx_desc->special);
+		}
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = e1000_desc_unused(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, cleaned_count);
+
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->total_rx_packets += total_rx_packets;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers per Queue
+ * @adapter: board private structure
+ **/
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	struct e1000_ps_page *ps_page;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned int i, j;
+
+	/* Free all the Rx ring sk_buffs */
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		if (buffer_info->dma) {
+			if (adapter->clean_rx == e1000_clean_rx_irq)
+				dma_unmap_single(&pdev->dev, buffer_info->dma,
+						 adapter->rx_buffer_len,
+						 DMA_FROM_DEVICE);
+			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
+				dma_unmap_page(&pdev->dev, buffer_info->dma,
+				               PAGE_SIZE,
+					       DMA_FROM_DEVICE);
+			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
+				dma_unmap_single(&pdev->dev, buffer_info->dma,
+						 adapter->rx_ps_bsize0,
+						 DMA_FROM_DEVICE);
+			buffer_info->dma = 0;
+		}
+
+		if (buffer_info->page) {
+			put_page(buffer_info->page);
+			buffer_info->page = NULL;
+		}
+
+		if (buffer_info->skb) {
+			dev_kfree_skb(buffer_info->skb);
+			buffer_info->skb = NULL;
+		}
+
+		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
+			ps_page = &buffer_info->ps_pages[j];
+			if (!ps_page->page)
+				break;
+			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
+				       DMA_FROM_DEVICE);
+			ps_page->dma = 0;
+			put_page(ps_page->page);
+			ps_page->page = NULL;
+		}
+	}
+
+	/* there also may be some cached data from a chained receive */
+	if (rx_ring->rx_skb_top) {
+		dev_kfree_skb(rx_ring->rx_skb_top);
+		rx_ring->rx_skb_top = NULL;
+	}
+
+	/* Zero out the descriptor ring */
+	memset(rx_ring->desc, 0, rx_ring->size);
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
+
+	writel(0, adapter->hw.hw_addr + rx_ring->head);
+	writel(0, adapter->hw.hw_addr + rx_ring->tail);
+}
+
+static void e1000e_downshift_workaround(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+					struct e1000_adapter, downshift_task);
+
+	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
+}
+
+/**
+ * e1000_intr_msi - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+static irqreturn_t e1000_intr_msi(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+ 	if (adapter->ecdev) {
+ 		int ec_work_done = 0;
+ 		adapter->clean_rx(adapter, &ec_work_done, 100);
+ 		e1000_clean_tx_irq(adapter);
+		return IRQ_HANDLED;
+	}
+	/*
+	 * read ICR disables interrupts using IAM
+	 */
+
+	if (icr & E1000_ICR_LSC) {
+		hw->mac.get_link_status = 1;
+		/*
+		 * ICH8 workaround-- Call gig speed drop workaround on cable
+		 * disconnect (LSC) before accessing any PHY registers
+		 */
+		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
+		    (!(er32(STATUS) & E1000_STATUS_LU)))
+			schedule_work(&adapter->downshift_task);
+
+		/*
+		 * 80003ES2LAN workaround-- For packet buffer work-around on
+		 * link down event; disable receives here in the ISR and reset
+		 * adapter in watchdog
+		 */
+		if (netif_carrier_ok(netdev) &&
+		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
+			/* disable receives */
+			u32 rctl = er32(RCTL);
+			ew32(RCTL, rctl & ~E1000_RCTL_EN);
+			adapter->flags |= FLAG_RX_RESTART_NOW;
+		}
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->state))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	if (napi_schedule_prep(&adapter->napi)) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__napi_schedule(&adapter->napi);
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+static irqreturn_t e1000_intr(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl, icr = er32(ICR);
+
+	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
+		return IRQ_NONE;  /* Not our interrupt */
+
+	/*
+	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
+	 * not set, then the adapter didn't send an interrupt
+	 */
+	if (!adapter->ecdev && !(icr & E1000_ICR_INT_ASSERTED))
+		return IRQ_NONE;
+
+	/*
+	 * Interrupt Auto-Mask...upon reading ICR,
+	 * interrupts are masked.  No need for the
+	 * IMC write
+	 */
+
+	if (!adapter->ecdev && (icr & E1000_ICR_LSC)) {
+		hw->mac.get_link_status = 1;
+		/*
+		 * ICH8 workaround-- Call gig speed drop workaround on cable
+		 * disconnect (LSC) before accessing any PHY registers
+		 */
+		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
+		    (!(er32(STATUS) & E1000_STATUS_LU)))
+			schedule_work(&adapter->downshift_task);
+
+		/*
+		 * 80003ES2LAN workaround--
+		 * For packet buffer work-around on link down event;
+		 * disable receives here in the ISR and
+		 * reset adapter in watchdog
+		 */
+		if (netif_carrier_ok(netdev) &&
+		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
+			/* disable receives */
+			rctl = er32(RCTL);
+			ew32(RCTL, rctl & ~E1000_RCTL_EN);
+			adapter->flags |= FLAG_RX_RESTART_NOW;
+		}
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->state))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+ 	if (adapter->ecdev) {
+ 		int ec_work_done = 0;
+ 		adapter->clean_rx(adapter, &ec_work_done, 100);
+ 		e1000_clean_tx_irq(adapter);
+		return IRQ_HANDLED;
+	}
+
+	if (napi_schedule_prep(&adapter->napi)) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__napi_schedule(&adapter->napi);
+	}
+
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t e1000_msix_other(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	if (!(icr & E1000_ICR_INT_ASSERTED)) {
+		if (!test_bit(__E1000_DOWN, &adapter->state))
+			ew32(IMS, E1000_IMS_OTHER);
+		return IRQ_NONE;
+	}
+
+	if (icr & adapter->eiac_mask)
+		ew32(ICS, (icr & adapter->eiac_mask));
+
+	if (icr & E1000_ICR_OTHER) {
+		if (!(icr & E1000_ICR_LSC))
+			goto no_link_interrupt;
+		hw->mac.get_link_status = 1;
+		/* guard against interrupt when we're going down */
+		if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+no_link_interrupt:
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
+
+	return IRQ_HANDLED;
+}
+
+
+static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+
+
+	adapter->total_tx_bytes = 0;
+	adapter->total_tx_packets = 0;
+
+	if (!e1000_clean_tx_irq(adapter))
+		/* Ring was not completely cleaned, so fire another interrupt */
+		ew32(ICS, tx_ring->ims_val);
+
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Write the ITR value calculated at the end of the
+	 * previous interrupt.
+	 */
+	if (adapter->rx_ring->set_itr) {
+		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
+		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
+		adapter->rx_ring->set_itr = 0;
+	}
+
+ 	if (adapter->ecdev) {
+ 		int ec_work_done = 0;
+ 		adapter->clean_rx(adapter, &ec_work_done, 100);
+	} else {
+		if (napi_schedule_prep(&adapter->napi)) {
+			adapter->total_rx_bytes = 0;
+			adapter->total_rx_packets = 0;
+			__napi_schedule(&adapter->napi);
+		}
+	}
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_configure_msix - Configure MSI-X hardware
+ *
+ * e1000_configure_msix sets up the hardware to properly
+ * generate MSI-X interrupts.
+ **/
+static void e1000_configure_msix(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	int vector = 0;
+	u32 ctrl_ext, ivar = 0;
+
+	adapter->eiac_mask = 0;
+
+	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
+	if (hw->mac.type == e1000_82574) {
+		u32 rfctl = er32(RFCTL);
+		rfctl |= E1000_RFCTL_ACK_DIS;
+		ew32(RFCTL, rfctl);
+	}
+
+#define E1000_IVAR_INT_ALLOC_VALID	0x8
+	/* Configure Rx vector */
+	rx_ring->ims_val = E1000_IMS_RXQ0;
+	adapter->eiac_mask |= rx_ring->ims_val;
+	if (rx_ring->itr_val)
+		writel(1000000000 / (rx_ring->itr_val * 256),
+		       hw->hw_addr + rx_ring->itr_register);
+	else
+		writel(1, hw->hw_addr + rx_ring->itr_register);
+	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
+
+	/* Configure Tx vector */
+	tx_ring->ims_val = E1000_IMS_TXQ0;
+	vector++;
+	if (tx_ring->itr_val)
+		writel(1000000000 / (tx_ring->itr_val * 256),
+		       hw->hw_addr + tx_ring->itr_register);
+	else
+		writel(1, hw->hw_addr + tx_ring->itr_register);
+	adapter->eiac_mask |= tx_ring->ims_val;
+	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
+
+	/* set vector for Other Causes, e.g. link changes */
+	vector++;
+	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
+	if (rx_ring->itr_val)
+		writel(1000000000 / (rx_ring->itr_val * 256),
+		       hw->hw_addr + E1000_EITR_82574(vector));
+	else
+		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
+
+	/* Cause Tx interrupts on every write back */
+	ivar |= (1 << 31);
+
+	ew32(IVAR, ivar);
+
+	/* enable MSI-X PBA support */
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
+
+	/* Auto-Mask Other interrupts upon ICR read */
+#define E1000_EIAC_MASK_82574   0x01F00000
+	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
+	ctrl_ext |= E1000_CTRL_EXT_EIAME;
+	ew32(CTRL_EXT, ctrl_ext);
+	e1e_flush();
+}
+
+void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
+{
+	if (adapter->msix_entries) {
+		pci_disable_msix(adapter->pdev);
+		kfree(adapter->msix_entries);
+		adapter->msix_entries = NULL;
+	} else if (adapter->flags & FLAG_MSI_ENABLED) {
+		pci_disable_msi(adapter->pdev);
+		adapter->flags &= ~FLAG_MSI_ENABLED;
+	}
+}
+
+/**
+ * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
+ *
+ * Attempt to configure interrupts using the best available
+ * capabilities of the hardware and kernel.
+ **/
+void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
+{
+	int err;
+	int numvecs, i;
+
+
+	switch (adapter->int_mode) {
+	case E1000E_INT_MODE_MSIX:
+		if (adapter->flags & FLAG_HAS_MSIX) {
+			numvecs = 3; /* RxQ0, TxQ0 and other */
+			adapter->msix_entries = kcalloc(numvecs,
+						      sizeof(struct msix_entry),
+						      GFP_KERNEL);
+			if (adapter->msix_entries) {
+				for (i = 0; i < numvecs; i++)
+					adapter->msix_entries[i].entry = i;
+
+				err = pci_enable_msix(adapter->pdev,
+						      adapter->msix_entries,
+						      numvecs);
+				if (err == 0)
+					return;
+			}
+			/* MSI-X failed, so fall through and try MSI */
+			e_err("Failed to initialize MSI-X interrupts.  "
+			      "Falling back to MSI interrupts.\n");
+			e1000e_reset_interrupt_capability(adapter);
+		}
+		adapter->int_mode = E1000E_INT_MODE_MSI;
+		/* Fall through */
+	case E1000E_INT_MODE_MSI:
+		if (!pci_enable_msi(adapter->pdev)) {
+			adapter->flags |= FLAG_MSI_ENABLED;
+		} else {
+			adapter->int_mode = E1000E_INT_MODE_LEGACY;
+			e_err("Failed to initialize MSI interrupts.  Falling "
+			      "back to legacy interrupts.\n");
+		}
+		/* Fall through */
+	case E1000E_INT_MODE_LEGACY:
+		/* Don't do anything; this is the system default */
+		break;
+	}
+}
+
+/**
+ * e1000_request_msix - Initialize MSI-X interrupts
+ *
+ * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
+ * kernel.
+ **/
+static int e1000_request_msix(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int err = 0, vector = 0;
+
+	if (strlen(netdev->name) < (IFNAMSIZ - 5))
+		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
+	else
+		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
+	err = request_irq(adapter->msix_entries[vector].vector,
+			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
+			  netdev);
+	if (err)
+		goto out;
+	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
+	adapter->rx_ring->itr_val = adapter->itr;
+	vector++;
+
+	if (strlen(netdev->name) < (IFNAMSIZ - 5))
+		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
+	else
+		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
+	err = request_irq(adapter->msix_entries[vector].vector,
+			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
+			  netdev);
+	if (err)
+		goto out;
+	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
+	adapter->tx_ring->itr_val = adapter->itr;
+	vector++;
+
+	err = request_irq(adapter->msix_entries[vector].vector,
+			  e1000_msix_other, 0, netdev->name, netdev);
+	if (err)
+		goto out;
+
+	e1000_configure_msix(adapter);
+	return 0;
+out:
+	return err;
+}
+
+/**
+ * e1000_request_irq - initialize interrupts
+ *
+ * Attempts to configure interrupts using the best available
+ * capabilities of the hardware and kernel.
+ **/
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int err;
+
+	if (adapter->ecdev)
+		return 0;
+
+	if (adapter->msix_entries) {
+		err = e1000_request_msix(adapter);
+		if (!err)
+			return err;
+		/* fall back to MSI */
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = E1000E_INT_MODE_MSI;
+		e1000e_set_interrupt_capability(adapter);
+	}
+	if (adapter->flags & FLAG_MSI_ENABLED) {
+		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
+				  netdev->name, netdev);
+		if (!err)
+			return err;
+
+		/* fall back to legacy interrupt */
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = E1000E_INT_MODE_LEGACY;
+	}
+
+	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
+			  netdev->name, netdev);
+	if (err)
+		e_err("Unable to allocate interrupt, Error: %d\n", err);
+
+	return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	if (adapter->ecdev)
+		return;
+
+	if (adapter->msix_entries) {
+		int vector = 0;
+
+		free_irq(adapter->msix_entries[vector].vector, netdev);
+		vector++;
+
+		free_irq(adapter->msix_entries[vector].vector, netdev);
+		vector++;
+
+		/* Other Causes interrupt vector */
+		free_irq(adapter->msix_entries[vector].vector, netdev);
+		return;
+	}
+
+	free_irq(adapter->pdev->irq, netdev);
+}
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ **/
+static void e1000_irq_disable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return;
+
+	ew32(IMC, ~0);
+	if (adapter->msix_entries)
+		ew32(EIAC_82574, 0);
+	e1e_flush();
+	synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ **/
+static void e1000_irq_enable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return;
+
+	if (adapter->msix_entries) {
+		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
+		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
+	} else {
+		ew32(IMS, IMS_ENABLE_MASK);
+	}
+	e1e_flush();
+}
+
+/**
+ * e1000_get_hw_control - get control of the h/w from f/w
+ * @adapter: address of board private structure
+ *
+ * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is loaded. For AMT version (only with 82573)
+ * of the f/w this means that the network i/f is open.
+ **/
+static void e1000_get_hw_control(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_ext;
+	u32 swsm;
+
+	/* Let firmware know the driver has taken over */
+	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
+	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
+		ctrl_ext = er32(CTRL_EXT);
+		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+	}
+}
+
+/**
+ * e1000_release_hw_control - release control of the h/w to f/w
+ * @adapter: address of board private structure
+ *
+ * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT version (only with 82573) i
+ * of the f/w this means that the network i/f is closed.
+ *
+ **/
+static void e1000_release_hw_control(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_ext;
+	u32 swsm;
+
+	/* Let firmware taken over control of h/w */
+	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
+	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
+		ctrl_ext = er32(CTRL_EXT);
+		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+	}
+}
+
+/**
+ * @e1000_alloc_ring - allocate memory for a ring structure
+ **/
+static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
+				struct e1000_ring *ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
+					GFP_KERNEL);
+	if (!ring->desc)
+		return -ENOMEM;
+
+	return 0;
+}
+
+/**
+ * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	int err = -ENOMEM, size;
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	tx_ring->buffer_info = vmalloc(size);
+	if (!tx_ring->buffer_info)
+		goto err;
+	memset(tx_ring->buffer_info, 0, size);
+
+	/* round up to nearest 4K */
+	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
+	tx_ring->size = ALIGN(tx_ring->size, 4096);
+
+	err = e1000_alloc_ring_dma(adapter, tx_ring);
+	if (err)
+		goto err;
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+
+	return 0;
+err:
+	vfree(tx_ring->buffer_info);
+	e_err("Unable to allocate memory for the transmit descriptor ring\n");
+	return err;
+}
+
+/**
+ * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	int i, size, desc_len, err = -ENOMEM;
+
+	size = sizeof(struct e1000_buffer) * rx_ring->count;
+	rx_ring->buffer_info = vmalloc(size);
+	if (!rx_ring->buffer_info)
+		goto err;
+	memset(rx_ring->buffer_info, 0, size);
+
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
+						sizeof(struct e1000_ps_page),
+						GFP_KERNEL);
+		if (!buffer_info->ps_pages)
+			goto err_pages;
+	}
+
+	desc_len = sizeof(union e1000_rx_desc_packet_split);
+
+	/* Round up to nearest 4K */
+	rx_ring->size = rx_ring->count * desc_len;
+	rx_ring->size = ALIGN(rx_ring->size, 4096);
+
+	err = e1000_alloc_ring_dma(adapter, rx_ring);
+	if (err)
+		goto err_pages;
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+	rx_ring->rx_skb_top = NULL;
+
+	return 0;
+
+err_pages:
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		kfree(buffer_info->ps_pages);
+	}
+err:
+	vfree(rx_ring->buffer_info);
+	e_err("Unable to allocate memory for the transmit descriptor ring\n");
+	return err;
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ **/
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_buffer *buffer_info;
+	unsigned long size;
+	unsigned int i;
+
+	for (i = 0; i < tx_ring->count; i++) {
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_put_txbuf(adapter, buffer_info);
+	}
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	memset(tx_ring->buffer_info, 0, size);
+
+	memset(tx_ring->desc, 0, tx_ring->size);
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+
+	writel(0, adapter->hw.hw_addr + tx_ring->head);
+	writel(0, adapter->hw.hw_addr + tx_ring->tail);
+}
+
+/**
+ * e1000e_free_tx_resources - Free Tx Resources per Queue
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+void e1000e_free_tx_resources(struct e1000_adapter *adapter)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+
+	e1000_clean_tx_ring(adapter);
+
+	vfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
+			  tx_ring->dma);
+	tx_ring->desc = NULL;
+}
+
+/**
+ * e1000e_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void e1000e_free_rx_resources(struct e1000_adapter *adapter)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	int i;
+
+	e1000_clean_rx_ring(adapter);
+
+	for (i = 0; i < rx_ring->count; i++) {
+		kfree(rx_ring->buffer_info[i].ps_pages);
+	}
+
+	vfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
+			  rx_ring->dma);
+	rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_update_itr - update the dynamic ITR value based on statistics
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ *
+ *      Stores a new ITR value based on packets and byte
+ *      counts during the last interrupt.  The advantage of per interrupt
+ *      computation is faster updates and more accurate ITR for the current
+ *      traffic pattern.  Constants in this function were computed
+ *      based on theoretical maximum wire speed and thresholds were set based
+ *      on testing data as well as attempting to minimize response time
+ *      while increasing bulk throughput.  This functionality is controlled
+ *      by the InterruptThrottleRate module parameter.
+ **/
+static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
+				     u16 itr_setting, int packets,
+				     int bytes)
+{
+	unsigned int retval = itr_setting;
+
+	if (packets == 0)
+		goto update_itr_done;
+
+	switch (itr_setting) {
+	case lowest_latency:
+		/* handle TSO and jumbo frames */
+		if (bytes/packets > 8000)
+			retval = bulk_latency;
+		else if ((packets < 5) && (bytes > 512)) {
+			retval = low_latency;
+		}
+		break;
+	case low_latency:  /* 50 usec aka 20000 ints/s */
+		if (bytes > 10000) {
+			/* this if handles the TSO accounting */
+			if (bytes/packets > 8000) {
+				retval = bulk_latency;
+			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
+				retval = bulk_latency;
+			} else if ((packets > 35)) {
+				retval = lowest_latency;
+			}
+		} else if (bytes/packets > 2000) {
+			retval = bulk_latency;
+		} else if (packets <= 2 && bytes < 512) {
+			retval = lowest_latency;
+		}
+		break;
+	case bulk_latency: /* 250 usec aka 4000 ints/s */
+		if (bytes > 25000) {
+			if (packets > 35) {
+				retval = low_latency;
+			}
+		} else if (bytes < 6000) {
+			retval = low_latency;
+		}
+		break;
+	}
+
+update_itr_done:
+	return retval;
+}
+
+static void e1000_set_itr(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 current_itr;
+	u32 new_itr = adapter->itr;
+
+	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
+	if (adapter->link_speed != SPEED_1000) {
+		current_itr = 0;
+		new_itr = 4000;
+		goto set_itr_now;
+	}
+
+	adapter->tx_itr = e1000_update_itr(adapter,
+				    adapter->tx_itr,
+				    adapter->total_tx_packets,
+				    adapter->total_tx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
+		adapter->tx_itr = low_latency;
+
+	adapter->rx_itr = e1000_update_itr(adapter,
+				    adapter->rx_itr,
+				    adapter->total_rx_packets,
+				    adapter->total_rx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
+		adapter->rx_itr = low_latency;
+
+	current_itr = max(adapter->rx_itr, adapter->tx_itr);
+
+	switch (current_itr) {
+	/* counts and packets in update_itr are dependent on these numbers */
+	case lowest_latency:
+		new_itr = 70000;
+		break;
+	case low_latency:
+		new_itr = 20000; /* aka hwitr = ~200 */
+		break;
+	case bulk_latency:
+		new_itr = 4000;
+		break;
+	default:
+		break;
+	}
+
+set_itr_now:
+	if (new_itr != adapter->itr) {
+		/*
+		 * this attempts to bias the interrupt rate towards Bulk
+		 * by adding intermediate steps when interrupt rate is
+		 * increasing
+		 */
+		new_itr = new_itr > adapter->itr ?
+			     min(adapter->itr + (new_itr >> 2), new_itr) :
+			     new_itr;
+		adapter->itr = new_itr;
+		adapter->rx_ring->itr_val = new_itr;
+		if (adapter->msix_entries)
+			adapter->rx_ring->set_itr = 1;
+		else
+			ew32(ITR, 1000000000 / (new_itr * 256));
+	}
+}
+
+/**
+ * e1000_alloc_queues - Allocate memory for all rings
+ * @adapter: board private structure to initialize
+ **/
+static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
+{
+	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!adapter->tx_ring)
+		goto err;
+
+	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!adapter->rx_ring)
+		goto err;
+
+	return 0;
+err:
+	e_err("Unable to allocate memory for queues\n");
+	kfree(adapter->rx_ring);
+	kfree(adapter->tx_ring);
+	return -ENOMEM;
+}
+
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @napi: struct associated with this polling callback
+ * @budget: amount of packets driver is allowed to process this poll
+ **/
+static int e1000_clean(struct napi_struct *napi, int budget)
+{
+	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *poll_dev = adapter->netdev;
+	int tx_cleaned = 1, work_done = 0;
+
+	adapter = netdev_priv(poll_dev);
+
+	if (adapter->msix_entries &&
+	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
+		goto clean_rx;
+
+	tx_cleaned = e1000_clean_tx_irq(adapter);
+
+clean_rx:
+	adapter->clean_rx(adapter, &work_done, budget);
+
+	if (!tx_cleaned)
+		work_done = budget;
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		if (adapter->itr_setting & 3)
+			e1000_set_itr(adapter);
+		napi_complete(napi);
+		if (!test_bit(__E1000_DOWN, &adapter->state)) {
+			if (adapter->msix_entries)
+				ew32(IMS, adapter->rx_ring->ims_val);
+			else
+				e1000_irq_enable(adapter);
+		}
+	}
+
+	return work_done;
+}
+
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	/* don't update vlan cookie if already programmed */
+	if ((adapter->hw.mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
+	    (vid == adapter->mng_vlan_id))
+		return;
+
+	/* add VID to filter table */
+	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+		index = (vid >> 5) & 0x7F;
+		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
+		vfta |= (1 << (vid & 0x1F));
+		hw->mac.ops.write_vfta(hw, index, vfta);
+	}
+}
+
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_disable(adapter);
+	vlan_group_set_device(adapter->vlgrp, vid, NULL);
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_enable(adapter);
+
+	if ((adapter->hw.mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
+	    (vid == adapter->mng_vlan_id)) {
+		/* release control to f/w */
+		e1000_release_hw_control(adapter);
+		return;
+	}
+
+	/* remove VID from filter table */
+	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+		index = (vid >> 5) & 0x7F;
+		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
+		vfta &= ~(1 << (vid & 0x1F));
+		hw->mac.ops.write_vfta(hw, index, vfta);
+	}
+}
+
+static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	u16 vid = adapter->hw.mng_cookie.vlan_id;
+	u16 old_vid = adapter->mng_vlan_id;
+
+	if (!adapter->vlgrp)
+		return;
+
+	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
+		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+		if (adapter->hw.mng_cookie.status &
+			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
+			e1000_vlan_rx_add_vid(netdev, vid);
+			adapter->mng_vlan_id = vid;
+		}
+
+		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
+				(vid != old_vid) &&
+		    !vlan_group_get_device(adapter->vlgrp, old_vid))
+			e1000_vlan_rx_kill_vid(netdev, old_vid);
+	} else {
+		adapter->mng_vlan_id = vid;
+	}
+}
+
+
+static void e1000_vlan_rx_register(struct net_device *netdev,
+				   struct vlan_group *grp)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, rctl;
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_disable(adapter);
+	adapter->vlgrp = grp;
+
+	if (grp) {
+		/* enable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+			/* enable VLAN receive filtering */
+			rctl = er32(RCTL);
+			rctl &= ~E1000_RCTL_CFIEN;
+			ew32(RCTL, rctl);
+			e1000_update_mng_vlan(adapter);
+		}
+	} else {
+		/* disable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+			if (adapter->mng_vlan_id !=
+			    (u16)E1000_MNG_VLAN_NONE) {
+				e1000_vlan_rx_kill_vid(netdev,
+						       adapter->mng_vlan_id);
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+			}
+		}
+	}
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_enable(adapter);
+}
+
+static void e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+	u16 vid;
+
+	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+	if (!adapter->vlgrp)
+		return;
+
+	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+		if (!vlan_group_get_device(adapter->vlgrp, vid))
+			continue;
+		e1000_vlan_rx_add_vid(adapter->netdev, vid);
+	}
+}
+
+static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 manc, manc2h, mdef, i, j;
+
+	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
+		return;
+
+	manc = er32(MANC);
+
+	/*
+	 * enable receiving management packets to the host. this will probably
+	 * generate destination unreachable messages from the host OS, but
+	 * the packets will be handled on SMBUS
+	 */
+	manc |= E1000_MANC_EN_MNG2HOST;
+	manc2h = er32(MANC2H);
+
+	switch (hw->mac.type) {
+	default:
+		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		/*
+		 * Check if IPMI pass-through decision filter already exists;
+		 * if so, enable it.
+		 */
+		for (i = 0, j = 0; i < 8; i++) {
+			mdef = er32(MDEF(i));
+
+			/* Ignore filters with anything other than IPMI ports */
+			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
+				continue;
+
+			/* Enable this decision filter in MANC2H */
+			if (mdef)
+				manc2h |= (1 << i);
+
+			j |= mdef;
+		}
+
+		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
+			break;
+
+		/* Create new decision filter in an empty filter */
+		for (i = 0, j = 0; i < 8; i++)
+			if (er32(MDEF(i)) == 0) {
+				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
+					       E1000_MDEF_PORT_664));
+				manc2h |= (1 << 1);
+				j++;
+				break;
+			}
+
+		if (!j)
+			e_warn("Unable to create IPMI pass-through filter\n");
+		break;
+	}
+
+	ew32(MANC2H, manc2h);
+	ew32(MANC, manc);
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+static void e1000_configure_tx(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	u64 tdba;
+	u32 tdlen, tctl, tipg, tarc;
+	u32 ipgr1, ipgr2;
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+	tdba = tx_ring->dma;
+	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
+	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
+	ew32(TDBAH, (tdba >> 32));
+	ew32(TDLEN, tdlen);
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	tx_ring->head = E1000_TDH;
+	tx_ring->tail = E1000_TDT;
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
+	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
+	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
+
+	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
+		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
+
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	ew32(TIPG, tipg);
+
+	/* Set the Tx Interrupt Delay register */
+	ew32(TIDV, adapter->tx_int_delay);
+	/* Tx irq moderation */
+	ew32(TADV, adapter->tx_abs_int_delay);
+
+	/* Program the Transmit Control Register */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
+		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
+		tarc = er32(TARC(0));
+		/*
+		 * set the speed mode bit, we'll clear it if we're not at
+		 * gigabit link later
+		 */
+#define SPEED_MODE_BIT (1 << 21)
+		tarc |= SPEED_MODE_BIT;
+		ew32(TARC(0), tarc);
+	}
+
+	/* errata: program both queues to unweighted RR */
+	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
+		tarc = er32(TARC(0));
+		tarc |= 1;
+		ew32(TARC(0), tarc);
+		tarc = er32(TARC(1));
+		tarc |= 1;
+		ew32(TARC(1), tarc);
+	}
+
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* only set IDE if we are delaying interrupts using the timers */
+	if (adapter->tx_int_delay)
+		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+	/* enable Report Status bit */
+	adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+	ew32(TCTL, tctl);
+
+	e1000e_config_collision_dist(hw);
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control registers
+ * @adapter: Board private structure
+ **/
+#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
+			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
+static void e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl, rfctl;
+	u32 psrctl = 0;
+	u32 pages = 0;
+
+	/* Program MC offset vector base */
+	rctl = er32(RCTL);
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	/* Do not Store bad packets */
+	rctl &= ~E1000_RCTL_SBP;
+
+	/* Enable Long Packet receive */
+	if (adapter->netdev->mtu <= ETH_DATA_LEN)
+		rctl &= ~E1000_RCTL_LPE;
+	else
+		rctl |= E1000_RCTL_LPE;
+
+	/* Some systems expect that the CRC is included in SMBUS traffic. The
+	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
+	 * host memory when this is enabled
+	 */
+	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
+		rctl |= E1000_RCTL_SECRC;
+
+	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
+	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
+		u16 phy_data;
+
+		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
+		phy_data &= 0xfff8;
+		phy_data |= (1 << 2);
+		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
+
+		e1e_rphy(hw, 22, &phy_data);
+		phy_data &= 0x0fff;
+		phy_data |= (1 << 14);
+		e1e_wphy(hw, 0x10, 0x2823);
+		e1e_wphy(hw, 0x11, 0x0003);
+		e1e_wphy(hw, 22, phy_data);
+	}
+
+	/* Setup buffer sizes */
+	rctl &= ~E1000_RCTL_SZ_4096;
+	rctl |= E1000_RCTL_BSEX;
+	switch (adapter->rx_buffer_len) {
+	case 2048:
+	default:
+		rctl |= E1000_RCTL_SZ_2048;
+		rctl &= ~E1000_RCTL_BSEX;
+		break;
+	case 4096:
+		rctl |= E1000_RCTL_SZ_4096;
+		break;
+	case 8192:
+		rctl |= E1000_RCTL_SZ_8192;
+		break;
+	case 16384:
+		rctl |= E1000_RCTL_SZ_16384;
+		break;
+	}
+
+	/*
+	 * 82571 and greater support packet-split where the protocol
+	 * header is placed in skb->data and the packet data is
+	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
+	 * In the case of a non-split, skb->data is linearly filled,
+	 * followed by the page buffers.  Therefore, skb->data is
+	 * sized to hold the largest protocol header.
+	 *
+	 * allocations using alloc_page take too long for regular MTU
+	 * so only enable packet split for jumbo frames
+	 *
+	 * Using pages when the page size is greater than 16k wastes
+	 * a lot of memory, since we allocate 3 pages at all times
+	 * per packet.
+	 */
+	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
+	if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
+	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
+		adapter->rx_ps_pages = pages;
+	else
+		adapter->rx_ps_pages = 0;
+
+	if (adapter->rx_ps_pages) {
+		/* Configure extra packet-split registers */
+		rfctl = er32(RFCTL);
+		rfctl |= E1000_RFCTL_EXTEN;
+		/*
+		 * disable packet split support for IPv6 extension headers,
+		 * because some malformed IPv6 headers can hang the Rx
+		 */
+		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
+			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
+
+		ew32(RFCTL, rfctl);
+
+		/* Enable Packet split descriptors */
+		rctl |= E1000_RCTL_DTYP_PS;
+
+		psrctl |= adapter->rx_ps_bsize0 >>
+			E1000_PSRCTL_BSIZE0_SHIFT;
+
+		switch (adapter->rx_ps_pages) {
+		case 3:
+			psrctl |= PAGE_SIZE <<
+				E1000_PSRCTL_BSIZE3_SHIFT;
+		case 2:
+			psrctl |= PAGE_SIZE <<
+				E1000_PSRCTL_BSIZE2_SHIFT;
+		case 1:
+			psrctl |= PAGE_SIZE >>
+				E1000_PSRCTL_BSIZE1_SHIFT;
+			break;
+		}
+
+		ew32(PSRCTL, psrctl);
+	}
+
+	ew32(RCTL, rctl);
+	/* just started the receive unit, no need to restart */
+	adapter->flags &= ~FLAG_RX_RESTART_NOW;
+}
+
+/**
+ * e1000_configure_rx - Configure Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+static void e1000_configure_rx(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	u64 rdba;
+	u32 rdlen, rctl, rxcsum, ctrl_ext;
+
+	if (adapter->rx_ps_pages) {
+		/* this is a 32 byte descriptor */
+		rdlen = rx_ring->count *
+			sizeof(union e1000_rx_desc_packet_split);
+		adapter->clean_rx = e1000_clean_rx_irq_ps;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
+	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
+		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
+	} else {
+		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+	}
+
+	/* disable receives while setting up the descriptors */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	e1e_flush();
+	msleep(10);
+
+	/* set the Receive Delay Timer Register */
+	ew32(RDTR, adapter->rx_int_delay);
+
+	/* irq moderation */
+	ew32(RADV, adapter->rx_abs_int_delay);
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+
+	ctrl_ext = er32(CTRL_EXT);
+	/* Auto-Mask interrupts upon ICR access */
+	ctrl_ext |= E1000_CTRL_EXT_IAME;
+	ew32(IAM, 0xffffffff);
+	ew32(CTRL_EXT, ctrl_ext);
+	e1e_flush();
+
+	/*
+	 * Setup the HW Rx Head and Tail Descriptor Pointers and
+	 * the Base and Length of the Rx Descriptor Ring
+	 */
+	rdba = rx_ring->dma;
+	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
+	ew32(RDBAH, (rdba >> 32));
+	ew32(RDLEN, rdlen);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rx_ring->head = E1000_RDH;
+	rx_ring->tail = E1000_RDT;
+
+	/* Enable Receive Checksum Offload for TCP and UDP */
+	rxcsum = er32(RXCSUM);
+	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
+		rxcsum |= E1000_RXCSUM_TUOFL;
+
+		/*
+		 * IPv4 payload checksum for UDP fragments must be
+		 * used in conjunction with packet-split.
+		 */
+		if (adapter->rx_ps_pages)
+			rxcsum |= E1000_RXCSUM_IPPCSE;
+	} else {
+		rxcsum &= ~E1000_RXCSUM_TUOFL;
+		/* no need to clear IPPCSE as it defaults to 0 */
+	}
+	ew32(RXCSUM, rxcsum);
+
+	/*
+	 * Enable early receives on supported devices, only takes effect when
+	 * packet size is equal or larger than the specified value (in 8 byte
+	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
+	 */
+	if (adapter->flags & FLAG_HAS_ERT) {
+		if (adapter->netdev->mtu > ETH_DATA_LEN) {
+			u32 rxdctl = er32(RXDCTL(0));
+			ew32(RXDCTL(0), rxdctl | 0x3);
+			ew32(ERT, E1000_ERT_2048 | (1 << 13));
+			/*
+			 * With jumbo frames and early-receive enabled,
+			 * excessive C-state transition latencies result in
+			 * dropped transactions.
+			 */
+			pm_qos_update_request(
+				adapter->netdev->pm_qos_req, 55);
+		} else {
+			pm_qos_update_request(
+				adapter->netdev->pm_qos_req,
+				PM_QOS_DEFAULT_VALUE);
+		}
+	}
+
+	/* Enable Receives */
+	ew32(RCTL, rctl);
+}
+
+/**
+ *  e1000_update_mc_addr_list - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates the Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+				      u32 mc_addr_count)
+{
+	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
+}
+
+/**
+ * e1000_set_multi - Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_multi entry point is called whenever the multicast address
+ * list or the network interface flags are updated.  This routine is
+ * responsible for configuring the hardware for proper multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+static void e1000_set_multi(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct netdev_hw_addr *ha;
+	u8  *mta_list;
+	u32 rctl;
+	int i;
+
+	/* Check for Promiscuous and All Multicast modes */
+
+	rctl = er32(RCTL);
+
+	if (netdev->flags & IFF_PROMISC) {
+		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		rctl &= ~E1000_RCTL_VFE;
+	} else {
+		if (netdev->flags & IFF_ALLMULTI) {
+			rctl |= E1000_RCTL_MPE;
+			rctl &= ~E1000_RCTL_UPE;
+		} else {
+			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
+		}
+		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
+			rctl |= E1000_RCTL_VFE;
+	}
+
+	ew32(RCTL, rctl);
+
+	if (!netdev_mc_empty(netdev)) {
+		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
+		if (!mta_list)
+			return;
+
+		/* prepare a packed array of only addresses. */
+		i = 0;
+		netdev_for_each_mc_addr(ha, netdev)
+			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
+
+		e1000_update_mc_addr_list(hw, mta_list, i);
+		kfree(mta_list);
+	} else {
+		/*
+		 * if we're called from probe, we might not have
+		 * anything to do here, so clear out the list
+		 */
+		e1000_update_mc_addr_list(hw, NULL, 0);
+	}
+}
+
+/**
+ * e1000_configure - configure the hardware for Rx and Tx
+ * @adapter: private board structure
+ **/
+static void e1000_configure(struct e1000_adapter *adapter)
+{
+	e1000_set_multi(adapter->netdev);
+
+	e1000_restore_vlan(adapter);
+	e1000_init_manageability_pt(adapter);
+
+	e1000_configure_tx(adapter);
+	e1000_setup_rctl(adapter);
+	e1000_configure_rx(adapter);
+
+	if (adapter->ecdev) {
+		adapter->alloc_rx_buf(adapter, adapter->rx_ring->count);
+	} else {
+		adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
+	}
+}
+
+/**
+ * e1000e_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000e_reset ***
+ **/
+void e1000e_power_up_phy(struct e1000_adapter *adapter)
+{
+	if (adapter->hw.phy.ops.power_up)
+		adapter->hw.phy.ops.power_up(&adapter->hw);
+
+	adapter->hw.mac.ops.setup_link(&adapter->hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down the PHY
+ *
+ * Power down the PHY so no link is implied when interface is down.
+ * The PHY cannot be powered down if management or WoL is active.
+ */
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+	/* WoL is enabled */
+	if (adapter->wol)
+		return;
+
+	if (adapter->hw.phy.ops.power_down)
+		adapter->hw.phy.ops.power_down(&adapter->hw);
+}
+
+/**
+ * e1000e_reset - bring the hardware into a known good state
+ *
+ * This function boots the hardware and enables some settings that
+ * require a configuration cycle of the hardware - those cannot be
+ * set/changed during runtime. After reset the device needs to be
+ * properly configured for Rx, Tx etc.
+ */
+void e1000e_reset(struct e1000_adapter *adapter)
+{
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+	struct e1000_fc_info *fc = &adapter->hw.fc;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tx_space, min_tx_space, min_rx_space;
+	u32 pba = adapter->pba;
+	u16 hwm;
+
+	/* reset Packet Buffer Allocation to default */
+	ew32(PBA, pba);
+
+	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
+		/*
+		 * To maintain wire speed transmits, the Tx FIFO should be
+		 * large enough to accommodate two full transmit packets,
+		 * rounded up to the next 1KB and expressed in KB.  Likewise,
+		 * the Rx FIFO should be large enough to accommodate at least
+		 * one full receive packet and is similarly rounded up and
+		 * expressed in KB.
+		 */
+		pba = er32(PBA);
+		/* upper 16 bits has Tx packet buffer allocation size in KB */
+		tx_space = pba >> 16;
+		/* lower 16 bits has Rx packet buffer allocation size in KB */
+		pba &= 0xffff;
+		/*
+		 * the Tx fifo also stores 16 bytes of information about the tx
+		 * but don't include ethernet FCS because hardware appends it
+		 */
+		min_tx_space = (adapter->max_frame_size +
+				sizeof(struct e1000_tx_desc) -
+				ETH_FCS_LEN) * 2;
+		min_tx_space = ALIGN(min_tx_space, 1024);
+		min_tx_space >>= 10;
+		/* software strips receive CRC, so leave room for it */
+		min_rx_space = adapter->max_frame_size;
+		min_rx_space = ALIGN(min_rx_space, 1024);
+		min_rx_space >>= 10;
+
+		/*
+		 * If current Tx allocation is less than the min Tx FIFO size,
+		 * and the min Tx FIFO size is less than the current Rx FIFO
+		 * allocation, take space away from current Rx allocation
+		 */
+		if ((tx_space < min_tx_space) &&
+		    ((min_tx_space - tx_space) < pba)) {
+			pba -= min_tx_space - tx_space;
+
+			/*
+			 * if short on Rx space, Rx wins and must trump tx
+			 * adjustment or use Early Receive if available
+			 */
+			if ((pba < min_rx_space) &&
+			    (!(adapter->flags & FLAG_HAS_ERT)))
+				/* ERT enabled in e1000_configure_rx */
+				pba = min_rx_space;
+		}
+
+		ew32(PBA, pba);
+	}
+
+
+	/*
+	 * flow control settings
+	 *
+	 * The high water mark must be low enough to fit one full frame
+	 * (or the size used for early receive) above it in the Rx FIFO.
+	 * Set it to the lower of:
+	 * - 90% of the Rx FIFO size, and
+	 * - the full Rx FIFO size minus the early receive size (for parts
+	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
+	 * - the full Rx FIFO size minus one full frame
+	 */
+	if (hw->mac.type == e1000_pchlan) {
+		/*
+		 * Workaround PCH LOM adapter hangs with certain network
+		 * loads.  If hangs persist, try disabling Tx flow control.
+		 */
+		if (adapter->netdev->mtu > ETH_DATA_LEN) {
+			fc->high_water = 0x3500;
+			fc->low_water  = 0x1500;
+		} else {
+			fc->high_water = 0x5000;
+			fc->low_water  = 0x3000;
+		}
+		fc->refresh_time = 0x1000;
+	} else {
+		if ((adapter->flags & FLAG_HAS_ERT) &&
+		    (adapter->netdev->mtu > ETH_DATA_LEN))
+			hwm = min(((pba << 10) * 9 / 10),
+				  ((pba << 10) - (E1000_ERT_2048 << 3)));
+		else
+			hwm = min(((pba << 10) * 9 / 10),
+				  ((pba << 10) - adapter->max_frame_size));
+
+		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
+		fc->low_water = fc->high_water - 8;
+	}
+
+	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
+		fc->pause_time = 0xFFFF;
+	else
+		fc->pause_time = E1000_FC_PAUSE_TIME;
+	fc->send_xon = 1;
+	fc->current_mode = fc->requested_mode;
+
+	/* Allow time for pending master requests to run */
+	mac->ops.reset_hw(hw);
+
+	/*
+	 * For parts with AMT enabled, let the firmware know
+	 * that the network interface is in control
+	 */
+	if (adapter->flags & FLAG_HAS_AMT)
+		e1000_get_hw_control(adapter);
+
+	ew32(WUC, 0);
+	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
+		e1e_wphy(&adapter->hw, BM_WUC, 0);
+
+	if (mac->ops.init_hw(hw))
+		e_err("Hardware Error\n");
+
+	e1000_update_mng_vlan(adapter);
+
+	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+	ew32(VET, ETH_P_8021Q);
+
+	e1000e_reset_adaptive(hw);
+	e1000_get_phy_info(hw);
+
+	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
+	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
+		u16 phy_data = 0;
+		/*
+		 * speed up time to link by disabling smart power down, ignore
+		 * the return value of this function because there is nothing
+		 * different we would do if it failed
+		 */
+		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+		phy_data &= ~IGP02E1000_PM_SPD;
+		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
+	}
+}
+
+int e1000e_up(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* DMA latency requirement to workaround early-receive/jumbo issue */
+	if (adapter->flags & FLAG_HAS_ERT)
+		adapter->netdev->pm_qos_req =
+			pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY,
+				       PM_QOS_DEFAULT_VALUE);
+
+	/* hardware has been reset, we need to reload some things */
+	e1000_configure(adapter);
+
+	clear_bit(__E1000_DOWN, &adapter->state);
+
+	if (!adapter->ecdev) {
+		napi_enable(&adapter->napi);
+    }
+
+	if (adapter->msix_entries)
+		e1000_configure_msix(adapter);
+	if (!adapter->ecdev) {
+        e1000_irq_enable(adapter);
+
+        netif_wake_queue(adapter->netdev);
+
+        /* fire a link change interrupt to start the watchdog */
+        if (adapter->msix_entries)
+            ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
+        else
+            ew32(ICS, E1000_ICS_LSC);
+	}
+
+	return 0;
+}
+
+void e1000e_down(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tctl, rctl;
+
+	/*
+	 * signal that we're down so the interrupt handler does not
+	 * reschedule our watchdog timer
+	 */
+	set_bit(__E1000_DOWN, &adapter->state);
+
+	/* disable receives in the hardware */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	/* flush and sleep below */
+
+	if (!adapter->ecdev) 
+		netif_stop_queue(netdev);
+
+	/* disable transmits in the hardware */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_EN;
+	ew32(TCTL, tctl);
+	/* flush both disables and wait for them to finish */
+	e1e_flush();
+	msleep(10);
+
+	if (!adapter->ecdev) {
+		napi_disable(&adapter->napi);
+		e1000_irq_disable(adapter);
+		del_timer_sync(&adapter->watchdog_timer);
+		del_timer_sync(&adapter->phy_info_timer);
+	}
+
+	if (adapter->ecdev) {
+		ecdev_set_link(adapter->ecdev, 0);
+	} else {
+		netif_carrier_off(netdev);
+	}
+	adapter->link_speed = 0;
+	adapter->link_duplex = 0;
+
+	if (!pci_channel_offline(adapter->pdev))
+		e1000e_reset(adapter);
+	e1000_clean_tx_ring(adapter);
+	e1000_clean_rx_ring(adapter);
+
+	if (adapter->flags & FLAG_HAS_ERT) {
+		pm_qos_remove_request(
+			      adapter->netdev->pm_qos_req);
+		adapter->netdev->pm_qos_req = NULL;
+	}
+
+	/*
+	 * TODO: for power management, we could drop the link and
+	 * pci_disable_device here.
+	 */
+}
+
+void e1000e_reinit_locked(struct e1000_adapter *adapter)
+{
+	might_sleep();
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+	e1000e_down(adapter);
+	e1000e_up(adapter);
+	clear_bit(__E1000_RESETTING, &adapter->state);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
+	adapter->rx_ps_bsize0 = 128;
+	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
+	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
+
+	e1000e_set_interrupt_capability(adapter);
+
+	if (e1000_alloc_queues(adapter))
+		return -ENOMEM;
+
+	/* Explicitly disable IRQ since the NIC can be in any state. */
+	e1000_irq_disable(adapter);
+
+	set_bit(__E1000_DOWN, &adapter->state);
+	return 0;
+}
+
+/**
+ * e1000_intr_msi_test - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+static irqreturn_t e1000_intr_msi_test(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	e_dbg("icr is %08X\n", icr);
+	if (icr & E1000_ICR_RXSEQ) {
+		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
+		wmb();
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_test_msi_interrupt - Returns 0 for successful test
+ * @adapter: board private struct
+ *
+ * code flow taken from tg3.c
+ **/
+static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	/* poll_enable hasn't been called yet, so don't need disable */
+	/* clear any pending events */
+	er32(ICR);
+
+	/* free the real vector and request a test handler */
+	e1000_free_irq(adapter);
+	e1000e_reset_interrupt_capability(adapter);
+
+	/* Assume that the test fails, if it succeeds then the test
+	 * MSI irq handler will unset this flag */
+	adapter->flags |= FLAG_MSI_TEST_FAILED;
+
+	err = pci_enable_msi(adapter->pdev);
+	if (err)
+		goto msi_test_failed;
+
+	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
+			  netdev->name, netdev);
+	if (err) {
+		pci_disable_msi(adapter->pdev);
+		goto msi_test_failed;
+	}
+
+	wmb();
+
+	e1000_irq_enable(adapter);
+
+	/* fire an unusual interrupt on the test handler */
+	ew32(ICS, E1000_ICS_RXSEQ);
+	e1e_flush();
+	msleep(50);
+
+	e1000_irq_disable(adapter);
+
+	rmb();
+
+	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
+		adapter->int_mode = E1000E_INT_MODE_LEGACY;
+		err = -EIO;
+		e_info("MSI interrupt test failed!\n");
+	}
+
+	free_irq(adapter->pdev->irq, netdev);
+	pci_disable_msi(adapter->pdev);
+
+	if (err == -EIO)
+		goto msi_test_failed;
+
+	/* okay so the test worked, restore settings */
+	e_dbg("MSI interrupt test succeeded!\n");
+msi_test_failed:
+	e1000e_set_interrupt_capability(adapter);
+	e1000_request_irq(adapter);
+	return err;
+}
+
+/**
+ * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
+ * @adapter: board private struct
+ *
+ * code flow taken from tg3.c, called with e1000 interrupts disabled.
+ **/
+static int e1000_test_msi(struct e1000_adapter *adapter)
+{
+	int err;
+	u16 pci_cmd;
+
+	if (!(adapter->flags & FLAG_MSI_ENABLED))
+		return 0;
+
+	/* disable SERR in case the MSI write causes a master abort */
+	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
+	if (pci_cmd & PCI_COMMAND_SERR)
+		pci_write_config_word(adapter->pdev, PCI_COMMAND,
+				      pci_cmd & ~PCI_COMMAND_SERR);
+
+	err = e1000_test_msi_interrupt(adapter);
+
+	/* re-enable SERR */
+	if (pci_cmd & PCI_COMMAND_SERR) {
+		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
+		pci_cmd |= PCI_COMMAND_SERR;
+		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
+	}
+
+	/* success ! */
+	if (!err)
+		return 0;
+
+	/* EIO means MSI test failed */
+	if (err != -EIO)
+		return err;
+
+	/* back to INTx mode */
+	e_warn("MSI interrupt test failed, using legacy interrupt.\n");
+
+	e1000_free_irq(adapter);
+
+	err = e1000_request_irq(adapter);
+
+	return err;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP).  At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+static int e1000_open(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	int err;
+
+	/* disallow open during test */
+	if (test_bit(__E1000_TESTING, &adapter->state))
+		return -EBUSY;
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	if (adapter->ecdev) {
+		ecdev_set_link(adapter->ecdev, 0);
+	} else {
+		netif_carrier_off(netdev);
+	}
+
+	/* allocate transmit descriptors */
+	err = e1000e_setup_tx_resources(adapter);
+	if (err)
+		goto err_setup_tx;
+
+	/* allocate receive descriptors */
+	err = e1000e_setup_rx_resources(adapter);
+	if (err)
+		goto err_setup_rx;
+
+	/*
+	 * If AMT is enabled, let the firmware know that the network
+	 * interface is now open and reset the part to a known state.
+	 */
+	if (adapter->flags & FLAG_HAS_AMT) {
+		e1000_get_hw_control(adapter);
+		e1000e_reset(adapter);
+	}
+
+	e1000e_power_up_phy(adapter);
+
+	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+	if ((adapter->hw.mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
+		e1000_update_mng_vlan(adapter);
+
+	/*
+	 * before we allocate an interrupt, we must be ready to handle it.
+	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
+	 * as soon as we call pci_request_irq, so we have to setup our
+	 * clean_rx handler before we do so.
+	 */
+	e1000_configure(adapter);
+
+	err = e1000_request_irq(adapter);
+	if (err)
+		goto err_req_irq;
+
+	/*
+	 * Work around PCIe errata with MSI interrupts causing some chipsets to
+	 * ignore e1000e MSI messages, which means we need to test our MSI
+	 * interrupt now
+	 */
+	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
+		err = e1000_test_msi(adapter);
+		if (err) {
+			e_err("Interrupt allocation failed\n");
+			goto err_req_irq;
+		}
+	}
+
+	/* From here on the code is the same as e1000e_up() */
+	clear_bit(__E1000_DOWN, &adapter->state);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_start_queue(netdev);
+
+	adapter->idle_check = true;
+	pm_runtime_put(&pdev->dev);
+
+	/* fire a link status change interrupt to start the watchdog */
+	if (adapter->msix_entries)
+		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
+	else
+		ew32(ICS, E1000_ICS_LSC);
+
+	return 0;
+
+err_req_irq:
+	e1000_release_hw_control(adapter);
+	e1000_power_down_phy(adapter);
+	e1000e_free_rx_resources(adapter);
+err_setup_rx:
+	e1000e_free_tx_resources(adapter);
+err_setup_tx:
+	e1000e_reset(adapter);
+	pm_runtime_put_sync(&pdev->dev);
+
+	return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS.  The hardware is still under the drivers control, but
+ * needs to be disabled.  A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+static int e1000_close(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct pci_dev *pdev = adapter->pdev;
+
+	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	if (!test_bit(__E1000_DOWN, &adapter->state)) {
+		e1000e_down(adapter);
+		e1000_free_irq(adapter);
+	}
+	e1000_power_down_phy(adapter);
+
+	e1000e_free_tx_resources(adapter);
+	e1000e_free_rx_resources(adapter);
+
+	/*
+	 * kill manageability vlan ID if supported, but not if a vlan with
+	 * the same ID is registered on the host OS (let 8021q kill it)
+	 */
+	if ((adapter->hw.mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
+	     !(adapter->vlgrp &&
+	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
+		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+
+	/*
+	 * If AMT is enabled, let the firmware know that the network
+	 * interface is now closed
+	 */
+	if (adapter->flags & FLAG_HAS_AMT)
+		e1000_release_hw_control(adapter);
+
+	pm_runtime_put_sync(&pdev->dev);
+
+	return 0;
+}
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+static int e1000_set_mac(struct net_device *netdev, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
+
+	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
+		/* activate the work around */
+		e1000e_set_laa_state_82571(&adapter->hw, 1);
+
+		/*
+		 * Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered  and the time it
+		 * gets fixed (in e1000_watchdog), the actual LAA is in one
+		 * of the RARs and no incoming packets directed to this port
+		 * are dropped. Eventually the LAA will be in RAR[0] and
+		 * RAR[14]
+		 */
+		e1000e_rar_set(&adapter->hw,
+			      adapter->hw.mac.addr,
+			      adapter->hw.mac.rar_entry_count - 1);
+	}
+
+	return 0;
+}
+
+/**
+ * e1000e_update_phy_task - work thread to update phy
+ * @work: pointer to our work struct
+ *
+ * this worker thread exists because we must acquire a
+ * semaphore to read the phy, which we could msleep while
+ * waiting for it, and we can't msleep in a timer.
+ **/
+static void e1000e_update_phy_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+					struct e1000_adapter, update_phy_task);
+	e1000_get_phy_info(&adapter->hw);
+}
+
+/*
+ * Need to wait a few seconds after link up to get diagnostic information from
+ * the phy
+ */
+static void e1000_update_phy_info(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+	schedule_work(&adapter->update_phy_task);
+}
+
+/**
+ * e1000e_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+void e1000e_update_stats(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	u16 phy_data;
+
+	/*
+	 * Prevent stats update while adapter is being reset, or if the pci
+	 * connection is down.
+	 */
+	if (adapter->link_speed == 0)
+		return;
+	if (pci_channel_offline(pdev))
+		return;
+
+	adapter->stats.crcerrs += er32(CRCERRS);
+	adapter->stats.gprc += er32(GPRC);
+	adapter->stats.gorc += er32(GORCL);
+	er32(GORCH); /* Clear gorc */
+	adapter->stats.bprc += er32(BPRC);
+	adapter->stats.mprc += er32(MPRC);
+	adapter->stats.roc += er32(ROC);
+
+	adapter->stats.mpc += er32(MPC);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
+			adapter->stats.scc += phy_data;
+
+		e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
+			adapter->stats.ecol += phy_data;
+
+		e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
+			adapter->stats.mcc += phy_data;
+
+		e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
+			adapter->stats.latecol += phy_data;
+
+		e1e_rphy(hw, HV_DC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
+			adapter->stats.dc += phy_data;
+	} else {
+		adapter->stats.scc += er32(SCC);
+		adapter->stats.ecol += er32(ECOL);
+		adapter->stats.mcc += er32(MCC);
+		adapter->stats.latecol += er32(LATECOL);
+		adapter->stats.dc += er32(DC);
+	}
+	adapter->stats.xonrxc += er32(XONRXC);
+	adapter->stats.xontxc += er32(XONTXC);
+	adapter->stats.xoffrxc += er32(XOFFRXC);
+	adapter->stats.xofftxc += er32(XOFFTXC);
+	adapter->stats.gptc += er32(GPTC);
+	adapter->stats.gotc += er32(GOTCL);
+	er32(GOTCH); /* Clear gotc */
+	adapter->stats.rnbc += er32(RNBC);
+	adapter->stats.ruc += er32(RUC);
+
+	adapter->stats.mptc += er32(MPTC);
+	adapter->stats.bptc += er32(BPTC);
+
+	/* used for adaptive IFS */
+
+	hw->mac.tx_packet_delta = er32(TPT);
+	adapter->stats.tpt += hw->mac.tx_packet_delta;
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
+			hw->mac.collision_delta = phy_data;
+	} else {
+		hw->mac.collision_delta = er32(COLC);
+	}
+	adapter->stats.colc += hw->mac.collision_delta;
+
+	adapter->stats.algnerrc += er32(ALGNERRC);
+	adapter->stats.rxerrc += er32(RXERRC);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
+			adapter->stats.tncrs += phy_data;
+	} else {
+		if ((hw->mac.type != e1000_82574) &&
+		    (hw->mac.type != e1000_82583))
+			adapter->stats.tncrs += er32(TNCRS);
+	}
+	adapter->stats.cexterr += er32(CEXTERR);
+	adapter->stats.tsctc += er32(TSCTC);
+	adapter->stats.tsctfc += er32(TSCTFC);
+
+	/* Fill out the OS statistics structure */
+	netdev->stats.multicast = adapter->stats.mprc;
+	netdev->stats.collisions = adapter->stats.colc;
+
+	/* Rx Errors */
+
+	/*
+	 * RLEC on some newer hardware can be incorrect so build
+	 * our own version based on RUC and ROC
+	 */
+	netdev->stats.rx_errors = adapter->stats.rxerrc +
+		adapter->stats.crcerrs + adapter->stats.algnerrc +
+		adapter->stats.ruc + adapter->stats.roc +
+		adapter->stats.cexterr;
+	netdev->stats.rx_length_errors = adapter->stats.ruc +
+					      adapter->stats.roc;
+	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
+	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
+	netdev->stats.rx_missed_errors = adapter->stats.mpc;
+
+	/* Tx Errors */
+	netdev->stats.tx_errors = adapter->stats.ecol +
+				       adapter->stats.latecol;
+	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
+	netdev->stats.tx_window_errors = adapter->stats.latecol;
+	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
+
+	/* Tx Dropped needs to be maintained elsewhere */
+
+	/* Management Stats */
+	adapter->stats.mgptc += er32(MGTPTC);
+	adapter->stats.mgprc += er32(MGTPRC);
+	adapter->stats.mgpdc += er32(MGTPDC);
+}
+
+/**
+ * e1000_phy_read_status - Update the PHY register status snapshot
+ * @adapter: board private structure
+ **/
+static void e1000_phy_read_status(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_phy_regs *phy = &adapter->phy_regs;
+	int ret_val;
+
+	if ((er32(STATUS) & E1000_STATUS_LU) &&
+	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
+		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
+		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
+		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
+		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
+		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
+		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
+		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
+		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
+		if (ret_val)
+			e_warn("Error reading PHY register\n");
+	} else {
+		/*
+		 * Do not read PHY registers if link is not up
+		 * Set values to typical power-on defaults
+		 */
+		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
+		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
+			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
+			     BMSR_ERCAP);
+		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
+				  ADVERTISE_ALL | ADVERTISE_CSMA);
+		phy->lpa = 0;
+		phy->expansion = EXPANSION_ENABLENPAGE;
+		phy->ctrl1000 = ADVERTISE_1000FULL;
+		phy->stat1000 = 0;
+		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
+	}
+}
+
+static void e1000_print_link_info(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl = er32(CTRL);
+
+	/* Link status message must follow this format for user tools */
+	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
+	       "Flow Control: %s\n",
+	       adapter->netdev->name,
+	       adapter->link_speed,
+	       (adapter->link_duplex == FULL_DUPLEX) ?
+	                        "Full Duplex" : "Half Duplex",
+	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
+	                        "RX/TX" :
+	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
+	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
+}
+
+bool e1000e_has_link(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	bool link_active = 0;
+	s32 ret_val = 0;
+
+	/*
+	 * get_link_status is set on LSC (link status) interrupt or
+	 * Rx sequence error interrupt.  get_link_status will stay
+	 * false until the check_for_link establishes link
+	 * for copper adapters ONLY
+	 */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		if (hw->mac.get_link_status) {
+			ret_val = hw->mac.ops.check_for_link(hw);
+			link_active = !hw->mac.get_link_status;
+		} else {
+			link_active = 1;
+		}
+		break;
+	case e1000_media_type_fiber:
+		ret_val = hw->mac.ops.check_for_link(hw);
+		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
+		break;
+	case e1000_media_type_internal_serdes:
+		ret_val = hw->mac.ops.check_for_link(hw);
+		link_active = adapter->hw.mac.serdes_has_link;
+		break;
+	default:
+	case e1000_media_type_unknown:
+		break;
+	}
+
+	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
+	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
+		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
+		e_info("Gigabit has been disabled, downgrading speed\n");
+	}
+
+	return link_active;
+}
+
+static void e1000e_enable_receives(struct e1000_adapter *adapter)
+{
+	/* make sure the receive unit is started */
+	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
+	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
+		struct e1000_hw *hw = &adapter->hw;
+		u32 rctl = er32(RCTL);
+		ew32(RCTL, rctl | E1000_RCTL_EN);
+		adapter->flags &= ~FLAG_RX_RESTART_NOW;
+	}
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void e1000_watchdog(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+
+	/* Do the rest outside of interrupt context */
+	schedule_work(&adapter->watchdog_task);
+
+	/* TODO: make this use queue_delayed_work() */
+}
+
+static void e1000_watchdog_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+					struct e1000_adapter, watchdog_task);
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+	struct e1000_phy_info *phy = &adapter->hw.phy;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 link, tctl;
+	int tx_pending = 0;
+
+	link = e1000e_has_link(adapter);
+	if ((adapter->ecdev && (ecdev_get_link(adapter->ecdev)) && link)
+            || (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)) {
+		/* Cancel scheduled suspend requests. */
+		pm_runtime_resume(netdev->dev.parent);
+
+		e1000e_enable_receives(adapter);
+		goto link_up;
+	}
+
+	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
+	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
+		e1000_update_mng_vlan(adapter);
+
+	if (link) {
+		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) 
+				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
+			bool txb2b = 1;
+
+			/* Cancel scheduled suspend requests. */
+			pm_runtime_resume(netdev->dev.parent);
+
+			/* update snapshot of PHY registers on LSC */
+			e1000_phy_read_status(adapter);
+			mac->ops.get_link_up_info(&adapter->hw,
+						   &adapter->link_speed,
+						   &adapter->link_duplex);
+			e1000_print_link_info(adapter);
+			/*
+			 * On supported PHYs, check for duplex mismatch only
+			 * if link has autonegotiated at 10/100 half
+			 */
+			if ((hw->phy.type == e1000_phy_igp_3 ||
+			     hw->phy.type == e1000_phy_bm) &&
+			    (hw->mac.autoneg == true) &&
+			    (adapter->link_speed == SPEED_10 ||
+			     adapter->link_speed == SPEED_100) &&
+			    (adapter->link_duplex == HALF_DUPLEX)) {
+				u16 autoneg_exp;
+
+				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
+
+				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
+					e_info("Autonegotiated half duplex but"
+					       " link partner cannot autoneg. "
+					       " Try forcing full duplex if "
+					       "link gets many collisions.\n");
+			}
+
+			/* adjust timeout factor according to speed/duplex */
+			adapter->tx_timeout_factor = 1;
+			switch (adapter->link_speed) {
+			case SPEED_10:
+				txb2b = 0;
+				adapter->tx_timeout_factor = 16;
+				break;
+			case SPEED_100:
+				txb2b = 0;
+				adapter->tx_timeout_factor = 10;
+				break;
+			}
+
+			/*
+			 * workaround: re-program speed mode bit after
+			 * link-up event
+			 */
+			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
+			    !txb2b) {
+				u32 tarc0;
+				tarc0 = er32(TARC(0));
+				tarc0 &= ~SPEED_MODE_BIT;
+				ew32(TARC(0), tarc0);
+			}
+
+			/*
+			 * disable TSO for pcie and 10/100 speeds, to avoid
+			 * some hardware issues
+			 */
+			if (!(adapter->flags & FLAG_TSO_FORCE)) {
+				switch (adapter->link_speed) {
+				case SPEED_10:
+				case SPEED_100:
+					e_info("10/100 speed: disabling TSO\n");
+					netdev->features &= ~NETIF_F_TSO;
+					netdev->features &= ~NETIF_F_TSO6;
+					break;
+				case SPEED_1000:
+					netdev->features |= NETIF_F_TSO;
+					netdev->features |= NETIF_F_TSO6;
+					break;
+				default:
+					/* oops */
+					break;
+				}
+			}
+
+			/*
+			 * enable transmits in the hardware, need to do this
+			 * after setting TARC(0)
+			 */
+			tctl = er32(TCTL);
+			tctl |= E1000_TCTL_EN;
+			ew32(TCTL, tctl);
+
+                        /*
+			 * Perform any post-link-up configuration before
+			 * reporting link up.
+			 */
+			if (phy->ops.cfg_on_link_up)
+				phy->ops.cfg_on_link_up(hw);
+
+			if (adapter->ecdev)
+				ecdev_set_link(adapter->ecdev, 1);
+			else 
+				netif_carrier_on(netdev);
+
+			if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
+				mod_timer(&adapter->phy_info_timer,
+					  round_jiffies(jiffies + 2 * HZ));
+		}
+	} else {
+		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) 
+				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
+			adapter->link_speed = 0;
+			adapter->link_duplex = 0;
+			/* Link status message must follow this format */
+			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
+			       adapter->netdev->name);
+			if (adapter->ecdev)
+				ecdev_set_link(adapter->ecdev, 0);
+			else
+				netif_carrier_off(netdev);
+			if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
+				mod_timer(&adapter->phy_info_timer,
+					  round_jiffies(jiffies + 2 * HZ));
+
+			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
+				schedule_work(&adapter->reset_task);
+			else
+				pm_schedule_suspend(netdev->dev.parent,
+							LINK_TIMEOUT);
+		}
+	}
+
+link_up:
+	e1000e_update_stats(adapter);
+
+	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+	adapter->tpt_old = adapter->stats.tpt;
+	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
+	adapter->colc_old = adapter->stats.colc;
+
+	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
+	adapter->gorc_old = adapter->stats.gorc;
+	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
+	adapter->gotc_old = adapter->stats.gotc;
+
+	e1000e_update_adaptive(&adapter->hw);
+
+	if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) 
+			|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
+		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
+			       tx_ring->count);
+		if (tx_pending) {
+			/*
+			 * We've lost link, so the controller stops DMA,
+			 * but we've got queued Tx work that's never going
+			 * to get done, so reset controller to flush Tx.
+			 * (Do the reset outside of interrupt context).
+			 */
+			adapter->tx_timeout_count++;
+			schedule_work(&adapter->reset_task);
+			/* return immediately since reset is imminent */
+			return;
+		}
+	}
+
+	/* Simple mode for Interrupt Throttle Rate (ITR) */
+	if (adapter->itr_setting == 4) {
+		/*
+		 * Symmetric Tx/Rx gets a reduced ITR=2000;
+		 * Total asymmetrical Tx or Rx gets ITR=8000;
+		 * everyone else is between 2000-8000.
+		 */
+		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
+		u32 dif = (adapter->gotc > adapter->gorc ?
+			    adapter->gotc - adapter->gorc :
+			    adapter->gorc - adapter->gotc) / 10000;
+		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
+
+		ew32(ITR, 1000000000 / (itr * 256));
+	}
+
+	/* Cause software interrupt to ensure Rx ring is cleaned */
+	if (adapter->msix_entries)
+		ew32(ICS, adapter->rx_ring->ims_val);
+	else
+		ew32(ICS, E1000_ICS_RXDMT0);
+
+	/* Force detection of hung controller every watchdog period */
+	adapter->detect_tx_hung = 1;
+
+	/*
+	 * With 82571 controllers, LAA may be overwritten due to controller
+	 * reset from the other port. Set the appropriate LAA in RAR[0]
+	 */
+	if (e1000e_get_laa_state_82571(hw))
+		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
+
+	/* Reset the timer */
+	if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
+		mod_timer(&adapter->watchdog_timer,
+			  round_jiffies(jiffies + 2 * HZ));
+}
+
+#define E1000_TX_FLAGS_CSUM		0x00000001
+#define E1000_TX_FLAGS_VLAN		0x00000002
+#define E1000_TX_FLAGS_TSO		0x00000004
+#define E1000_TX_FLAGS_IPV4		0x00000008
+#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT	16
+
+static int e1000_tso(struct e1000_adapter *adapter,
+		     struct sk_buff *skb)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u32 cmd_length = 0;
+	u16 ipcse = 0, tucse, mss;
+	u8 ipcss, ipcso, tucss, tucso, hdr_len;
+	int err;
+
+	if (!skb_is_gso(skb))
+		return 0;
+
+	if (skb_header_cloned(skb)) {
+		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+		if (err)
+			return err;
+	}
+
+	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+	mss = skb_shinfo(skb)->gso_size;
+	if (skb->protocol == htons(ETH_P_IP)) {
+		struct iphdr *iph = ip_hdr(skb);
+		iph->tot_len = 0;
+		iph->check = 0;
+		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
+		                                         0, IPPROTO_TCP, 0);
+		cmd_length = E1000_TXD_CMD_IP;
+		ipcse = skb_transport_offset(skb) - 1;
+	} else if (skb_is_gso_v6(skb)) {
+		ipv6_hdr(skb)->payload_len = 0;
+		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+		                                       &ipv6_hdr(skb)->daddr,
+		                                       0, IPPROTO_TCP, 0);
+		ipcse = 0;
+	}
+	ipcss = skb_network_offset(skb);
+	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
+	tucss = skb_transport_offset(skb);
+	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
+	tucse = 0;
+
+	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
+
+	i = tx_ring->next_to_use;
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+	buffer_info = &tx_ring->buffer_info[i];
+
+	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
+	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
+	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
+	context_desc->upper_setup.tcp_fields.tucss = tucss;
+	context_desc->upper_setup.tcp_fields.tucso = tucso;
+	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
+	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	i++;
+	if (i == tx_ring->count)
+		i = 0;
+	tx_ring->next_to_use = i;
+
+	return 1;
+}
+
+static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u8 css;
+	u32 cmd_len = E1000_TXD_CMD_DEXT;
+	__be16 protocol;
+
+	if (skb->ip_summed != CHECKSUM_PARTIAL)
+		return 0;
+
+	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
+		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
+	else
+		protocol = skb->protocol;
+
+	switch (protocol) {
+	case cpu_to_be16(ETH_P_IP):
+		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	case cpu_to_be16(ETH_P_IPV6):
+		/* XXX not handling all IPV6 headers */
+		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	default:
+		if (unlikely(net_ratelimit()))
+			e_warn("checksum_partial proto=%x!\n",
+			       be16_to_cpu(protocol));
+		break;
+	}
+
+	css = skb_transport_offset(skb);
+
+	i = tx_ring->next_to_use;
+	buffer_info = &tx_ring->buffer_info[i];
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+
+	context_desc->lower_setup.ip_config = 0;
+	context_desc->upper_setup.tcp_fields.tucss = css;
+	context_desc->upper_setup.tcp_fields.tucso =
+				css + skb->csum_offset;
+	context_desc->upper_setup.tcp_fields.tucse = 0;
+	context_desc->tcp_seg_setup.data = 0;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	i++;
+	if (i == tx_ring->count)
+		i = 0;
+	tx_ring->next_to_use = i;
+
+	return 1;
+}
+
+#define E1000_MAX_PER_TXD	8192
+#define E1000_MAX_TXD_PWR	12
+
+static int e1000_tx_map(struct e1000_adapter *adapter,
+			struct sk_buff *skb, unsigned int first,
+			unsigned int max_per_txd, unsigned int nr_frags,
+			unsigned int mss)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_buffer *buffer_info;
+	unsigned int len = skb_headlen(skb);
+	unsigned int offset = 0, size, count = 0, i;
+	unsigned int f, bytecount, segs;
+
+	i = tx_ring->next_to_use;
+
+	while (len) {
+		buffer_info = &tx_ring->buffer_info[i];
+		size = min(len, max_per_txd);
+
+		buffer_info->length = size;
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+		buffer_info->dma = dma_map_single(&pdev->dev,
+						  skb->data + offset,
+						  size,	DMA_TO_DEVICE);
+		buffer_info->mapped_as_page = false;
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+			goto dma_error;
+
+		len -= size;
+		offset += size;
+		count++;
+
+		if (len) {
+			i++;
+			if (i == tx_ring->count)
+				i = 0;
+		}
+	}
+
+	for (f = 0; f < nr_frags; f++) {
+		struct skb_frag_struct *frag;
+
+		frag = &skb_shinfo(skb)->frags[f];
+		len = frag->size;
+		offset = frag->page_offset;
+
+		while (len) {
+			i++;
+			if (i == tx_ring->count)
+				i = 0;
+
+			buffer_info = &tx_ring->buffer_info[i];
+			size = min(len, max_per_txd);
+
+			buffer_info->length = size;
+			buffer_info->time_stamp = jiffies;
+			buffer_info->next_to_watch = i;
+			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
+							offset, size,
+							DMA_TO_DEVICE);
+			buffer_info->mapped_as_page = true;
+			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+				goto dma_error;
+
+			len -= size;
+			offset += size;
+			count++;
+		}
+	}
+
+	segs = skb_shinfo(skb)->gso_segs ?: 1;
+	/* multiply data chunks by size of headers */
+	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
+
+	tx_ring->buffer_info[i].skb = skb;
+	tx_ring->buffer_info[i].segs = segs;
+	tx_ring->buffer_info[i].bytecount = bytecount;
+	tx_ring->buffer_info[first].next_to_watch = i;
+
+	return count;
+
+dma_error:
+	dev_err(&pdev->dev, "TX DMA map failed\n");
+	buffer_info->dma = 0;
+	if (count)
+		count--;
+
+	while (count--) {
+		if (i==0)
+			i += tx_ring->count;
+		i--;
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_put_txbuf(adapter, buffer_info);;
+	}
+
+	return 0;
+}
+
+static void e1000_tx_queue(struct e1000_adapter *adapter,
+			   int tx_flags, int count)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_tx_desc *tx_desc = NULL;
+	struct e1000_buffer *buffer_info;
+	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+	unsigned int i;
+
+	if (tx_flags & E1000_TX_FLAGS_TSO) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+			     E1000_TXD_CMD_TSE;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+		if (tx_flags & E1000_TX_FLAGS_IPV4)
+			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+	}
+
+	if (tx_flags & E1000_TX_FLAGS_CSUM) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+	}
+
+	if (tx_flags & E1000_TX_FLAGS_VLAN) {
+		txd_lower |= E1000_TXD_CMD_VLE;
+		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+	}
+
+	i = tx_ring->next_to_use;
+
+	while (count--) {
+		buffer_info = &tx_ring->buffer_info[i];
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+		tx_desc->lower.data =
+			cpu_to_le32(txd_lower | buffer_info->length);
+		tx_desc->upper.data = cpu_to_le32(txd_upper);
+
+		i++;
+		if (i == tx_ring->count)
+			i = 0;
+	}
+
+	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+	/*
+	 * Force memory writes to complete before letting h/w
+	 * know there are new descriptors to fetch.  (Only
+	 * applicable for weak-ordered memory model archs,
+	 * such as IA-64).
+	 */
+	wmb();
+
+	tx_ring->next_to_use = i;
+	writel(i, adapter->hw.hw_addr + tx_ring->tail);
+	/*
+	 * we need this if more than one processor can write to our tail
+	 * at a time, it synchronizes IO on IA64/Altix systems
+	 */
+	mmiowb();
+}
+
+#define MINIMUM_DHCP_PACKET_SIZE 282
+static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
+				    struct sk_buff *skb)
+{
+	struct e1000_hw *hw =  &adapter->hw;
+	u16 length, offset;
+
+	if (vlan_tx_tag_present(skb)) {
+		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
+		    (adapter->hw.mng_cookie.status &
+			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
+			return 0;
+	}
+
+	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
+		return 0;
+
+	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
+		return 0;
+
+	{
+		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
+		struct udphdr *udp;
+
+		if (ip->protocol != IPPROTO_UDP)
+			return 0;
+
+		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
+		if (ntohs(udp->dest) != 67)
+			return 0;
+
+		offset = (u8 *)udp + 8 - skb->data;
+		length = skb->len - offset;
+		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
+	}
+
+	return 0;
+}
+
+static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_stop_queue(netdev);
+	/*
+	 * Herbert's original patch had:
+	 *  smp_mb__after_netif_stop_queue();
+	 * but since that doesn't exist yet, just open code it.
+	 */
+	smp_mb();
+
+	/*
+	 * We need to check again in a case another CPU has just
+	 * made room available.
+	 */
+	if (e1000_desc_unused(adapter->tx_ring) < size)
+		return -EBUSY;
+
+	/* A reprieve! */
+	netif_start_queue(netdev);
+	++adapter->restart_queue;
+	return 0;
+}
+
+static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (e1000_desc_unused(adapter->tx_ring) >= size)
+		return 0;
+	return __e1000_maybe_stop_tx(netdev, size);
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	unsigned int first;
+	unsigned int max_per_txd = E1000_MAX_PER_TXD;
+	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+	unsigned int tx_flags = 0;
+	unsigned int len = skb_headlen(skb);
+	unsigned int nr_frags;
+	unsigned int mss;
+	int count = 0;
+	int tso;
+	unsigned int f;
+
+	if (test_bit(__E1000_DOWN, &adapter->state)) {
+		if (!adapter->ecdev)
+			dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	if (skb->len <= 0) {
+		if (!adapter->ecdev)
+			dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	mss = skb_shinfo(skb)->gso_size;
+	/*
+	 * The controller does a simple calculation to
+	 * make sure there is enough room in the FIFO before
+	 * initiating the DMA for each buffer.  The calc is:
+	 * 4 = ceil(buffer len/mss).  To make sure we don't
+	 * overrun the FIFO, adjust the max buffer len if mss
+	 * drops.
+	 */
+	if (mss) {
+		u8 hdr_len;
+		max_per_txd = min(mss << 2, max_per_txd);
+		max_txd_pwr = fls(max_per_txd) - 1;
+
+		/*
+		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
+		 * points to just header, pull a few bytes of payload from
+		 * frags into skb->data
+		 */
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		/*
+		 * we do this workaround for ES2LAN, but it is un-necessary,
+		 * avoiding it could save a lot of cycles
+		 */
+		if (skb->data_len && (hdr_len == len)) {
+			unsigned int pull_size;
+
+			pull_size = min((unsigned int)4, skb->data_len);
+			if (!__pskb_pull_tail(skb, pull_size)) {
+				e_err("__pskb_pull_tail failed.\n");
+				if (!adapter->ecdev)
+					dev_kfree_skb_any(skb);
+				return NETDEV_TX_OK;
+			}
+			len = skb_headlen(skb);
+		}
+	}
+
+	/* reserve a descriptor for the offload context */
+	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
+		count++;
+	count++;
+
+	count += TXD_USE_COUNT(len, max_txd_pwr);
+
+	nr_frags = skb_shinfo(skb)->nr_frags;
+	for (f = 0; f < nr_frags; f++)
+		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+				       max_txd_pwr);
+
+	if (adapter->hw.mac.tx_pkt_filtering)
+		e1000_transfer_dhcp_info(adapter, skb);
+
+	/*
+	 * need: count + 2 desc gap to keep tail from touching
+	 * head, otherwise try next time
+	 */
+	if (!adapter->ecdev && e1000_maybe_stop_tx(netdev, count + 2))
+		return NETDEV_TX_BUSY;
+
+	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
+		tx_flags |= E1000_TX_FLAGS_VLAN;
+		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+	}
+
+	first = tx_ring->next_to_use;
+
+	tso = e1000_tso(adapter, skb);
+	if (tso < 0) {
+		if (!adapter->ecdev)
+			dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	if (tso)
+		tx_flags |= E1000_TX_FLAGS_TSO;
+	else if (e1000_tx_csum(adapter, skb))
+		tx_flags |= E1000_TX_FLAGS_CSUM;
+
+	/*
+	 * Old method was to assume IPv4 packet by default if TSO was enabled.
+	 * 82571 hardware supports TSO capabilities for IPv6 as well...
+	 * no longer assume, we must.
+	 */
+	if (skb->protocol == htons(ETH_P_IP))
+		tx_flags |= E1000_TX_FLAGS_IPV4;
+
+	/* if count is 0 then mapping error has occured */
+	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
+	if (count) {
+		e1000_tx_queue(adapter, tx_flags, count);
+		/* Make sure there is space in the ring for the next send. */
+		if (!adapter->ecdev)
+			e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
+
+	} else {
+		if (!adapter->ecdev)
+			dev_kfree_skb_any(skb);
+		tx_ring->buffer_info[first].time_stamp = 0;
+		tx_ring->next_to_use = first;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+static void e1000_tx_timeout(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Do the reset outside of interrupt context */
+	adapter->tx_timeout_count++;
+	schedule_work(&adapter->reset_task);
+}
+
+static void e1000_reset_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter;
+	adapter = container_of(work, struct e1000_adapter, reset_task);
+
+	e1000e_dump(adapter);
+	e_err("Reset adapter\n");
+	e1000e_reinit_locked(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
+{
+	/* only return the current stats */
+	return &netdev->stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	/* Jumbo frame support */
+	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
+	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
+		e_err("Jumbo Frames not supported.\n");
+		return -EINVAL;
+	}
+
+	/* Supported frame sizes */
+	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
+	    (max_frame > adapter->max_hw_frame_size)) {
+		e_err("Unsupported MTU setting\n");
+		return -EINVAL;
+	}
+
+	/* 82573 Errata 17 */
+	if (((adapter->hw.mac.type == e1000_82573) ||
+	     (adapter->hw.mac.type == e1000_82574)) &&
+	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
+		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
+		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
+	adapter->max_frame_size = max_frame;
+	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
+	netdev->mtu = new_mtu;
+	if (netif_running(netdev))
+		e1000e_down(adapter);
+
+	/*
+	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+	 * means we reserve 2 more, this pushes us to allocate from the next
+	 * larger slab size.
+	 * i.e. RXBUFFER_2048 --> size-4096 slab
+	 * However with the new *_jumbo_rx* routines, jumbo receives will use
+	 * fragmented skbs
+	 */
+
+	if (max_frame <= 2048)
+		adapter->rx_buffer_len = 2048;
+	else
+		adapter->rx_buffer_len = 4096;
+
+	/* adjust allocation if LPE protects us, and we aren't using SBP */
+	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
+	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
+		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
+					 + ETH_FCS_LEN;
+
+	if (netif_running(netdev))
+		e1000e_up(adapter);
+	else
+		e1000e_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->state);
+
+	return 0;
+}
+
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct mii_ioctl_data *data = if_mii(ifr);
+
+	if (adapter->hw.phy.media_type != e1000_media_type_copper)
+		return -EOPNOTSUPP;
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = adapter->hw.phy.addr;
+		break;
+	case SIOCGMIIREG:
+		e1000_phy_read_status(adapter);
+
+		switch (data->reg_num & 0x1F) {
+		case MII_BMCR:
+			data->val_out = adapter->phy_regs.bmcr;
+			break;
+		case MII_BMSR:
+			data->val_out = adapter->phy_regs.bmsr;
+			break;
+		case MII_PHYSID1:
+			data->val_out = (adapter->hw.phy.id >> 16);
+			break;
+		case MII_PHYSID2:
+			data->val_out = (adapter->hw.phy.id & 0xFFFF);
+			break;
+		case MII_ADVERTISE:
+			data->val_out = adapter->phy_regs.advertise;
+			break;
+		case MII_LPA:
+			data->val_out = adapter->phy_regs.lpa;
+			break;
+		case MII_EXPANSION:
+			data->val_out = adapter->phy_regs.expansion;
+			break;
+		case MII_CTRL1000:
+			data->val_out = adapter->phy_regs.ctrl1000;
+			break;
+		case MII_STAT1000:
+			data->val_out = adapter->phy_regs.stat1000;
+			break;
+		case MII_ESTATUS:
+			data->val_out = adapter->phy_regs.estatus;
+			break;
+		default:
+			return -EIO;
+		}
+		break;
+	case SIOCSMIIREG:
+	default:
+		return -EOPNOTSUPP;
+	}
+	return 0;
+}
+
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+	case SIOCSMIIREG:
+		return e1000_mii_ioctl(netdev, ifr, cmd);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 i, mac_reg;
+	u16 phy_reg;
+	int retval = 0;
+
+	/* copy MAC RARs to PHY RARs */
+	for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
+		mac_reg = er32(RAL(i));
+		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
+		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
+		mac_reg = er32(RAH(i));
+		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
+		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
+	}
+
+	/* copy MAC MTA to PHY MTA */
+	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
+		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
+		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
+		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
+	}
+
+	/* configure PHY Rx Control register */
+	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
+	mac_reg = er32(RCTL);
+	if (mac_reg & E1000_RCTL_UPE)
+		phy_reg |= BM_RCTL_UPE;
+	if (mac_reg & E1000_RCTL_MPE)
+		phy_reg |= BM_RCTL_MPE;
+	phy_reg &= ~(BM_RCTL_MO_MASK);
+	if (mac_reg & E1000_RCTL_MO_3)
+		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
+				<< BM_RCTL_MO_SHIFT);
+	if (mac_reg & E1000_RCTL_BAM)
+		phy_reg |= BM_RCTL_BAM;
+	if (mac_reg & E1000_RCTL_PMCF)
+		phy_reg |= BM_RCTL_PMCF;
+	mac_reg = er32(CTRL);
+	if (mac_reg & E1000_CTRL_RFCE)
+		phy_reg |= BM_RCTL_RFCE;
+	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
+
+	/* enable PHY wakeup in MAC register */
+	ew32(WUFC, wufc);
+	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
+
+	/* configure and enable PHY wakeup in PHY registers */
+	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
+	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
+
+	/* activate PHY wakeup */
+	retval = hw->phy.ops.acquire(hw);
+	if (retval) {
+		e_err("Could not acquire PHY\n");
+		return retval;
+	}
+	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+	if (retval) {
+		e_err("Could not read PHY page 769\n");
+		goto out;
+	}
+	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
+	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (retval)
+		e_err("Could not set PHY Host Wakeup bit\n");
+out:
+	hw->phy.ops.release(hw);
+
+	return retval;
+}
+
+static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
+			    bool runtime)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, ctrl_ext, rctl, status;
+	/* Runtime suspend should only enable wakeup for link changes */
+	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
+	int retval = 0;
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev)) {
+		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
+		e1000e_down(adapter);
+		e1000_free_irq(adapter);
+	}
+	e1000e_reset_interrupt_capability(adapter);
+
+	retval = pci_save_state(pdev);
+	if (retval)
+		return retval;
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU)
+		wufc &= ~E1000_WUFC_LNKC;
+
+	if (wufc) {
+		e1000_setup_rctl(adapter);
+		e1000_set_multi(netdev);
+
+		/* turn on all-multi mode if wake on multicast is enabled */
+		if (wufc & E1000_WUFC_MC) {
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_MPE;
+			ew32(RCTL, rctl);
+		}
+
+		ctrl = er32(CTRL);
+		/* advertise wake from D3Cold */
+		#define E1000_CTRL_ADVD3WUC 0x00100000
+		/* phy power management enable */
+		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+		ctrl |= E1000_CTRL_ADVD3WUC;
+		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
+			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
+		ew32(CTRL, ctrl);
+
+		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
+		    adapter->hw.phy.media_type ==
+		    e1000_media_type_internal_serdes) {
+			/* keep the laser running in D3 */
+			ctrl_ext = er32(CTRL_EXT);
+			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
+			ew32(CTRL_EXT, ctrl_ext);
+		}
+
+		if (adapter->flags & FLAG_IS_ICH)
+			e1000e_disable_gig_wol_ich8lan(&adapter->hw);
+
+		/* Allow time for pending master requests to run */
+		e1000e_disable_pcie_master(&adapter->hw);
+
+		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
+			/* enable wakeup by the PHY */
+			retval = e1000_init_phy_wakeup(adapter, wufc);
+			if (retval)
+				return retval;
+		} else {
+			/* enable wakeup by the MAC */
+			ew32(WUFC, wufc);
+			ew32(WUC, E1000_WUC_PME_EN);
+		}
+	} else {
+		ew32(WUC, 0);
+		ew32(WUFC, 0);
+	}
+
+	*enable_wake = !!wufc;
+
+	/* make sure adapter isn't asleep if manageability is enabled */
+	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
+	    (hw->mac.ops.check_mng_mode(hw)))
+		*enable_wake = true;
+
+	if (adapter->hw.phy.type == e1000_phy_igp_3)
+		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
+
+	/*
+	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
+	 * would have already happened in close and is redundant.
+	 */
+	e1000_release_hw_control(adapter);
+
+	pci_disable_device(pdev);
+
+	return 0;
+}
+
+static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
+{
+	if (sleep && wake) {
+		pci_prepare_to_sleep(pdev);
+		return;
+	}
+
+	pci_wake_from_d3(pdev, wake);
+	pci_set_power_state(pdev, PCI_D3hot);
+}
+
+static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
+                                    bool wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/*
+	 * The pci-e switch on some quad port adapters will report a
+	 * correctable error when the MAC transitions from D0 to D3.  To
+	 * prevent this we need to mask off the correctable errors on the
+	 * downstream port of the pci-e switch.
+	 */
+	if (adapter->flags & FLAG_IS_QUAD_PORT) {
+		struct pci_dev *us_dev = pdev->bus->self;
+		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
+		u16 devctl;
+
+		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
+		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
+		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
+
+		e1000_power_off(pdev, sleep, wake);
+
+		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
+	} else {
+		e1000_power_off(pdev, sleep, wake);
+	}
+}
+
+#ifdef CONFIG_PCIEASPM
+static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
+{
+	pci_disable_link_state(pdev, state);
+}
+#else
+static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
+{
+	int pos;
+	u16 reg16;
+
+	/*
+	 * Both device and parent should have the same ASPM setting.
+	 * Disable ASPM in downstream component first and then upstream.
+	 */
+	pos = pci_pcie_cap(pdev);
+	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
+	reg16 &= ~state;
+	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
+
+	if (!pdev->bus->self)
+		return;
+
+	pos = pci_pcie_cap(pdev->bus->self);
+	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
+	reg16 &= ~state;
+	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
+}
+#endif
+void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
+{
+	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
+		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
+		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
+
+	__e1000e_disable_aspm(pdev, state);
+}
+
+#ifdef CONFIG_PM_OPS
+static bool e1000e_pm_ready(struct e1000_adapter *adapter)
+{
+	return !!adapter->tx_ring->buffer_info;
+}
+
+static int __e1000_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 err;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	pci_save_state(pdev);
+	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
+		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
+
+	e1000e_set_interrupt_capability(adapter);
+	if (netif_running(netdev)) {
+		err = e1000_request_irq(adapter);
+		if (err)
+			return err;
+	}
+
+	e1000e_power_up_phy(adapter);
+
+	/* report the system wakeup cause from S3/S4 */
+	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
+		u16 phy_data;
+
+		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
+		if (phy_data) {
+			e_info("PHY Wakeup cause - %s\n",
+				phy_data & E1000_WUS_EX ? "Unicast Packet" :
+				phy_data & E1000_WUS_MC ? "Multicast Packet" :
+				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
+				phy_data & E1000_WUS_MAG ? "Magic Packet" :
+				phy_data & E1000_WUS_LNKC ? "Link Status "
+				" Change" : "other");
+		}
+		e1e_wphy(&adapter->hw, BM_WUS, ~0);
+	} else {
+		u32 wus = er32(WUS);
+		if (wus) {
+			e_info("MAC Wakeup cause - %s\n",
+				wus & E1000_WUS_EX ? "Unicast Packet" :
+				wus & E1000_WUS_MC ? "Multicast Packet" :
+				wus & E1000_WUS_BC ? "Broadcast Packet" :
+				wus & E1000_WUS_MAG ? "Magic Packet" :
+				wus & E1000_WUS_LNKC ? "Link Status Change" :
+				"other");
+		}
+		ew32(WUS, ~0);
+	}
+
+	e1000e_reset(adapter);
+
+	e1000_init_manageability_pt(adapter);
+
+	if (netif_running(netdev))
+		e1000e_up(adapter);
+
+	netif_device_attach(netdev);
+
+	/*
+	 * If the controller has AMT, do not set DRV_LOAD until the interface
+	 * is up.  For all other cases, let the f/w know that the h/w is now
+	 * under the control of the driver.
+	 */
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_get_hw_control(adapter);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int e1000_suspend(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	int retval;
+	bool wake;
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+    if (adapter->ecdev) {
+        return -EBUSY;
+    }
+
+	retval = __e1000_shutdown(pdev, &wake, false);
+	if (!retval)
+		e1000_complete_shutdown(pdev, true, wake);
+
+	return retval;
+}
+
+static int e1000_resume(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+    if (adapter->ecdev) {
+        return -EBUSY;
+    }
+
+	if (e1000e_pm_ready(adapter))
+		adapter->idle_check = true;
+
+	return __e1000_resume(pdev);
+}
+#endif /* CONFIG_PM_SLEEP */
+
+#ifdef CONFIG_PM_RUNTIME
+static int e1000_runtime_suspend(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (e1000e_pm_ready(adapter)) {
+		bool wake;
+
+		__e1000_shutdown(pdev, &wake, true);
+	}
+
+	return 0;
+}
+
+static int e1000_idle(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (!e1000e_pm_ready(adapter))
+		return 0;
+
+	if (adapter->idle_check) {
+		adapter->idle_check = false;
+		if (!e1000e_has_link(adapter))
+			pm_schedule_suspend(dev, MSEC_PER_SEC);
+	}
+
+	return -EBUSY;
+}
+
+static int e1000_runtime_resume(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (!e1000e_pm_ready(adapter))
+		return 0;
+
+	adapter->idle_check = !dev->power.runtime_auto;
+	return __e1000_resume(pdev);
+}
+#endif /* CONFIG_PM_RUNTIME */
+#endif /* CONFIG_PM_OPS */
+
+static void e1000_shutdown(struct pci_dev *pdev)
+{
+	bool wake = false;
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	
+	if (adapter->ecdev)
+		return;
+
+	__e1000_shutdown(pdev, &wake, false);
+
+	if (system_state == SYSTEM_POWER_OFF)
+		e1000_complete_shutdown(pdev, false, wake);
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void e1000_netpoll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	disable_irq(adapter->pdev->irq);
+	e1000_intr(adapter->pdev->irq, netdev);
+
+	enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/**
+ * e1000_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+						pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e1000e_down(adapter);
+	pci_disable_device(pdev);
+
+	/* Request a slot slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e1000_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot. Implementation
+ * resembles the first-half of the e1000_resume routine.
+ */
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+	pci_ers_result_t result;
+
+	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
+		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
+	err = pci_enable_device_mem(pdev);
+	if (err) {
+		dev_err(&pdev->dev,
+			"Cannot re-enable PCI device after reset.\n");
+		result = PCI_ERS_RESULT_DISCONNECT;
+	} else {
+		pci_set_master(pdev);
+		pdev->state_saved = true;
+		pci_restore_state(pdev);
+
+		pci_enable_wake(pdev, PCI_D3hot, 0);
+		pci_enable_wake(pdev, PCI_D3cold, 0);
+
+		e1000e_reset(adapter);
+		ew32(WUS, ~0);
+		result = PCI_ERS_RESULT_RECOVERED;
+	}
+
+	pci_cleanup_aer_uncorrect_error_status(pdev);
+
+	return result;
+}
+
+/**
+ * e1000_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells us that
+ * its OK to resume normal operation. Implementation resembles the
+ * second-half of the e1000_resume routine.
+ */
+static void e1000_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	e1000_init_manageability_pt(adapter);
+
+	if (netif_running(netdev)) {
+		if (e1000e_up(adapter)) {
+			dev_err(&pdev->dev,
+				"can't bring device back up after reset\n");
+			return;
+		}
+	}
+
+	netif_device_attach(netdev);
+
+	/*
+	 * If the controller has AMT, do not set DRV_LOAD until the interface
+	 * is up.  For all other cases, let the f/w know that the h/w is now
+	 * under the control of the driver.
+	 */
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_get_hw_control(adapter);
+
+}
+
+static void e1000_print_device_info(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 pba_num;
+
+	/* print bus type/speed/width info */
+	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
+	       /* bus width */
+	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
+	        "Width x1"),
+	       /* MAC address */
+	       netdev->dev_addr);
+	e_info("Intel(R) PRO/%s Network Connection\n",
+	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
+	e1000e_read_pba_num(hw, &pba_num);
+	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
+	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
+}
+
+static void e1000_eeprom_checks(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int ret_val;
+	u16 buf = 0;
+
+	if (hw->mac.type != e1000_82573)
+		return;
+
+	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
+	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
+		/* Deep Smart Power Down (DSPD) */
+		dev_warn(&adapter->pdev->dev,
+			 "Warning: detected DSPD enabled in EEPROM\n");
+	}
+}
+
+static const struct net_device_ops e1000e_netdev_ops = {
+	.ndo_open		= e1000_open,
+	.ndo_stop		= e1000_close,
+	.ndo_start_xmit		= e1000_xmit_frame,
+	.ndo_get_stats		= e1000_get_stats,
+	.ndo_set_multicast_list	= e1000_set_multi,
+	.ndo_set_mac_address	= e1000_set_mac,
+	.ndo_change_mtu		= e1000_change_mtu,
+	.ndo_do_ioctl		= e1000_ioctl,
+	.ndo_tx_timeout		= e1000_tx_timeout,
+	.ndo_validate_addr	= eth_validate_addr,
+
+	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
+	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
+	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e1000_netpoll,
+#endif
+};
+
+/**
+ * ec_poll - Ethercat poll Routine
+ * @netdev: net device structure
+ *
+ * This function can never fail.
+ *
+ **/
+void ec_poll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
+		e1000_watchdog((unsigned long) adapter);
+		adapter->ec_watchdog_jiffies = jiffies;
+	}
+
+#ifdef CONFIG_PCI_MSI
+	e1000_intr_msi(0,netdev);
+#else
+	e1000_intr(0,netdev);
+#endif
+}
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+static int __devinit e1000_probe(struct pci_dev *pdev,
+				 const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct e1000_adapter *adapter;
+	struct e1000_hw *hw;
+	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
+	resource_size_t mmio_start, mmio_len;
+	resource_size_t flash_start, flash_len;
+
+	static int cards_found;
+	int i, err, pci_using_dac;
+	u16 eeprom_data = 0;
+	u16 eeprom_apme_mask = E1000_EEPROM_APME;
+
+	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
+		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
+
+	err = pci_enable_device_mem(pdev);
+	if (err)
+		return err;
+
+	pci_using_dac = 0;
+	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
+	if (!err) {
+		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
+		if (!err)
+			pci_using_dac = 1;
+	} else {
+		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
+		if (err) {
+			err = dma_set_coherent_mask(&pdev->dev,
+						    DMA_BIT_MASK(32));
+			if (err) {
+				dev_err(&pdev->dev, "No usable DMA "
+					"configuration, aborting\n");
+				goto err_dma;
+			}
+		}
+	}
+
+	err = pci_request_selected_regions_exclusive(pdev,
+	                                  pci_select_bars(pdev, IORESOURCE_MEM),
+	                                  e1000e_driver_name);
+	if (err)
+		goto err_pci_reg;
+
+	/* AER (Advanced Error Reporting) hooks */
+	pci_enable_pcie_error_reporting(pdev);
+
+	pci_set_master(pdev);
+	/* PCI config space info */
+	err = pci_save_state(pdev);
+	if (err)
+		goto err_alloc_etherdev;
+
+	err = -ENOMEM;
+	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+	if (!netdev)
+		goto err_alloc_etherdev;
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	netdev->irq = pdev->irq;
+
+	pci_set_drvdata(pdev, netdev);
+	adapter = netdev_priv(netdev);
+	hw = &adapter->hw;
+	adapter->netdev = netdev;
+	adapter->pdev = pdev;
+	adapter->ei = ei;
+	adapter->pba = ei->pba;
+	adapter->flags = ei->flags;
+	adapter->flags2 = ei->flags2;
+	adapter->hw.adapter = adapter;
+	adapter->hw.mac.type = ei->mac;
+	adapter->max_hw_frame_size = ei->max_hw_frame_size;
+	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
+
+	mmio_start = pci_resource_start(pdev, 0);
+	mmio_len = pci_resource_len(pdev, 0);
+
+	err = -EIO;
+	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
+	if (!adapter->hw.hw_addr)
+		goto err_ioremap;
+
+	if ((adapter->flags & FLAG_HAS_FLASH) &&
+	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
+		flash_start = pci_resource_start(pdev, 1);
+		flash_len = pci_resource_len(pdev, 1);
+		adapter->hw.flash_address = ioremap(flash_start, flash_len);
+		if (!adapter->hw.flash_address)
+			goto err_flashmap;
+	}
+
+	/* construct the net_device struct */
+	netdev->netdev_ops		= &e1000e_netdev_ops;
+	e1000e_set_ethtool_ops(netdev);
+	netdev->watchdog_timeo		= 5 * HZ;
+	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	netdev->mem_start = mmio_start;
+	netdev->mem_end = mmio_start + mmio_len;
+
+	adapter->bd_number = cards_found++;
+
+	e1000e_check_options(adapter);
+
+	/* setup adapter struct */
+	err = e1000_sw_init(adapter);
+	if (err)
+		goto err_sw_init;
+
+	err = -EIO;
+
+	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
+	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
+	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
+
+	err = ei->get_variants(adapter);
+	if (err)
+		goto err_hw_init;
+
+	if ((adapter->flags & FLAG_IS_ICH) &&
+	    (adapter->flags & FLAG_READ_ONLY_NVM))
+		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
+
+	hw->mac.ops.get_bus_info(&adapter->hw);
+
+	adapter->hw.phy.autoneg_wait_to_complete = 0;
+
+	/* Copper options */
+	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+		adapter->hw.phy.mdix = AUTO_ALL_MODES;
+		adapter->hw.phy.disable_polarity_correction = 0;
+		adapter->hw.phy.ms_type = e1000_ms_hw_default;
+	}
+
+	if (e1000_check_reset_block(&adapter->hw))
+		e_info("PHY reset is blocked due to SOL/IDER session.\n");
+
+	netdev->features = NETIF_F_SG |
+			   NETIF_F_HW_CSUM |
+			   NETIF_F_HW_VLAN_TX |
+			   NETIF_F_HW_VLAN_RX;
+
+	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
+		netdev->features |= NETIF_F_HW_VLAN_FILTER;
+
+	netdev->features |= NETIF_F_TSO;
+	netdev->features |= NETIF_F_TSO6;
+
+	netdev->vlan_features |= NETIF_F_TSO;
+	netdev->vlan_features |= NETIF_F_TSO6;
+	netdev->vlan_features |= NETIF_F_HW_CSUM;
+	netdev->vlan_features |= NETIF_F_SG;
+
+	if (pci_using_dac)
+		netdev->features |= NETIF_F_HIGHDMA;
+
+	if (e1000e_enable_mng_pass_thru(&adapter->hw))
+		adapter->flags |= FLAG_MNG_PT_ENABLED;
+
+	/*
+	 * before reading the NVM, reset the controller to
+	 * put the device in a known good starting state
+	 */
+	adapter->hw.mac.ops.reset_hw(&adapter->hw);
+
+	/*
+	 * systems with ASPM and others may see the checksum fail on the first
+	 * attempt. Let's give it a few tries
+	 */
+	for (i = 0;; i++) {
+		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
+			break;
+		if (i == 2) {
+			e_err("The NVM Checksum Is Not Valid\n");
+			err = -EIO;
+			goto err_eeprom;
+		}
+	}
+
+	e1000_eeprom_checks(adapter);
+
+	/* copy the MAC address */
+	if (e1000e_read_mac_addr(&adapter->hw))
+		e_err("NVM Read Error while reading MAC address\n");
+
+	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
+	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
+
+	if (!is_valid_ether_addr(netdev->perm_addr)) {
+		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
+		err = -EIO;
+		goto err_eeprom;
+	}
+
+	init_timer(&adapter->watchdog_timer);
+	adapter->watchdog_timer.function = &e1000_watchdog;
+	adapter->watchdog_timer.data = (unsigned long) adapter;
+
+	init_timer(&adapter->phy_info_timer);
+	adapter->phy_info_timer.function = &e1000_update_phy_info;
+	adapter->phy_info_timer.data = (unsigned long) adapter;
+
+	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
+	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
+	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
+	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
+
+	/* Initialize link parameters. User can change them with ethtool */
+	adapter->hw.mac.autoneg = 1;
+	adapter->fc_autoneg = 1;
+	adapter->hw.fc.requested_mode = e1000_fc_default;
+	adapter->hw.fc.current_mode = e1000_fc_default;
+	adapter->hw.phy.autoneg_advertised = 0x2f;
+
+	/* ring size defaults */
+	adapter->rx_ring->count = 256;
+	adapter->tx_ring->count = 256;
+
+	/*
+	 * Initial Wake on LAN setting - If APM wake is enabled in
+	 * the EEPROM, enable the ACPI Magic Packet filter
+	 */
+	if (adapter->flags & FLAG_APME_IN_WUC) {
+		/* APME bit in EEPROM is mapped to WUC.APME */
+		eeprom_data = er32(WUC);
+		eeprom_apme_mask = E1000_WUC_APME;
+		if (eeprom_data & E1000_WUC_PHY_WAKE)
+			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
+	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
+		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
+		    (adapter->hw.bus.func == 1))
+			e1000_read_nvm(&adapter->hw,
+				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+		else
+			e1000_read_nvm(&adapter->hw,
+				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+	}
+
+	/* fetch WoL from EEPROM */
+	if (eeprom_data & eeprom_apme_mask)
+		adapter->eeprom_wol |= E1000_WUFC_MAG;
+
+	/*
+	 * now that we have the eeprom settings, apply the special cases
+	 * where the eeprom may be wrong or the board simply won't support
+	 * wake on lan on a particular port
+	 */
+	if (!(adapter->flags & FLAG_HAS_WOL))
+		adapter->eeprom_wol = 0;
+
+	/* initialize the wol settings based on the eeprom settings */
+	adapter->wol = adapter->eeprom_wol;
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	/* save off EEPROM version number */
+	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
+
+	/* reset the hardware with the new settings */
+	e1000e_reset(adapter);
+
+	/*
+	 * If the controller has AMT, do not set DRV_LOAD until the interface
+	 * is up.  For all other cases, let the f/w know that the h/w is now
+	 * under the control of the driver.
+	 */
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_get_hw_control(adapter);
+
+	adapter->ecdev = ecdev_offer(netdev,ec_poll,THIS_MODULE);
+	if (adapter->ecdev) {
+		if (ecdev_open(adapter->ecdev)) {
+			ecdev_withdraw(adapter->ecdev);
+			goto err_register;
+		}
+	} else {
+		strcpy(netdev->name, "eth%d");
+		err = register_netdev(netdev);
+		if (err)
+			goto err_register;
+
+		/* carrier off reporting is important to ethtool even BEFORE open */
+		netif_carrier_off(netdev);
+	}
+
+	e1000_print_device_info(adapter);
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_set_active(&pdev->dev);
+		pm_runtime_enable(&pdev->dev);
+	}
+	pm_schedule_suspend(&pdev->dev, MSEC_PER_SEC);
+
+	return 0;
+
+err_register:
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_release_hw_control(adapter);
+err_eeprom:
+	if (!e1000_check_reset_block(&adapter->hw))
+		e1000_phy_hw_reset(&adapter->hw);
+err_hw_init:
+
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+err_sw_init:
+	if (adapter->hw.flash_address)
+		iounmap(adapter->hw.flash_address);
+	e1000e_reset_interrupt_capability(adapter);
+err_flashmap:
+	iounmap(adapter->hw.hw_addr);
+err_ioremap:
+	free_netdev(netdev);
+err_alloc_etherdev:
+	pci_release_selected_regions(pdev,
+	                             pci_select_bars(pdev, IORESOURCE_MEM));
+err_pci_reg:
+err_dma:
+	pci_disable_device(pdev);
+	return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device.  The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+static void __devexit e1000_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	bool down = test_bit(__E1000_DOWN, &adapter->state);
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	/*
+	 * flush_scheduled work may reschedule our watchdog task, so
+	 * explicitly disable watchdog tasks from being rescheduled
+	 */
+	if (!down)
+		set_bit(__E1000_DOWN, &adapter->state);
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	cancel_work_sync(&adapter->reset_task);
+	cancel_work_sync(&adapter->watchdog_task);
+	cancel_work_sync(&adapter->downshift_task);
+	cancel_work_sync(&adapter->update_phy_task);
+	cancel_work_sync(&adapter->print_hang_task);
+	flush_scheduled_work();
+
+	if (!(netdev->flags & IFF_UP))
+		e1000_power_down_phy(adapter);
+
+	/* Don't lie to e1000_close() down the road. */
+	if (!down)
+		clear_bit(__E1000_DOWN, &adapter->state);
+
+	if (adapter->ecdev) {
+		ecdev_close(adapter->ecdev);
+		ecdev_withdraw(adapter->ecdev);
+	} else {
+		unregister_netdev(netdev);
+	}
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_disable(&pdev->dev);
+		pm_runtime_set_suspended(&pdev->dev);
+	}
+	pm_runtime_put_noidle(&pdev->dev);
+
+	/*
+	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
+	 * would have already happened in close and is redundant.
+	 */
+	e1000_release_hw_control(adapter);
+
+	e1000e_reset_interrupt_capability(adapter);
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+
+	iounmap(adapter->hw.hw_addr);
+	if (adapter->hw.flash_address)
+		iounmap(adapter->hw.flash_address);
+	pci_release_selected_regions(pdev,
+	                             pci_select_bars(pdev, IORESOURCE_MEM));
+
+	free_netdev(netdev);
+
+	/* AER disable */
+	pci_disable_pcie_error_reporting(pdev);
+
+	pci_disable_device(pdev);
+}
+
+/* PCI Error Recovery (ERS) */
+static struct pci_error_handlers e1000_err_handler = {
+	.error_detected = e1000_io_error_detected,
+	.slot_reset = e1000_io_slot_reset,
+	.resume = e1000_io_resume,
+};
+
+static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
+	  board_80003es2lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
+	  board_80003es2lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
+	  board_80003es2lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
+	  board_80003es2lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
+
+	{ }	/* terminate list */
+};
+//MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+#ifdef CONFIG_PM_OPS
+static const struct dev_pm_ops e1000_pm_ops = {
+	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
+	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
+				e1000_runtime_resume, e1000_idle)
+};
+#endif
+
+/* PCI Device API Driver */
+static struct pci_driver e1000_driver = {
+	.name     = e1000e_driver_name,
+	.id_table = e1000_pci_tbl,
+	.probe    = e1000_probe,
+	.remove   = __devexit_p(e1000_remove),
+#ifdef CONFIG_PM_OPS
+	.driver.pm = &e1000_pm_ops,
+#endif
+	.shutdown = e1000_shutdown,
+	.err_handler = &e1000_err_handler
+};
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+static int __init e1000_init_module(void)
+{
+	int ret;
+	pr_info("EtherCAT-capable Intel(R) PRO/1000 Network Driver - %s\n",
+		e1000e_driver_version);
+	pr_info("Copyright (c) 1999 - 2009 Intel Corporation.\n");
+	ret = pci_register_driver(&e1000_driver);
+
+	return ret;
+}
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+static void __exit e1000_exit_module(void)
+{
+	pci_unregister_driver(&e1000_driver);
+}
+module_exit(e1000_exit_module);
+
+
+MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
+MODULE_DESCRIPTION("Ethercat-capable Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+/* e1000_main.c */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/netdev-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,5972 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/vmalloc.h>
+#include <linux/pagemap.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/tcp.h>
+#include <linux/ipv6.h>
+#include <linux/slab.h>
+#include <net/checksum.h>
+#include <net/ip6_checksum.h>
+#include <linux/mii.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+#include <linux/cpu.h>
+#include <linux/smp.h>
+#include <linux/pm_qos_params.h>
+#include <linux/pm_runtime.h>
+#include <linux/aer.h>
+
+#include "e1000.h"
+
+#define DRV_VERSION "1.0.2-k4"
+char e1000e_driver_name[] = "e1000e";
+const char e1000e_driver_version[] = DRV_VERSION;
+
+static const struct e1000_info *e1000_info_tbl[] = {
+	[board_82571]		= &e1000_82571_info,
+	[board_82572]		= &e1000_82572_info,
+	[board_82573]		= &e1000_82573_info,
+	[board_82574]		= &e1000_82574_info,
+	[board_82583]		= &e1000_82583_info,
+	[board_80003es2lan]	= &e1000_es2_info,
+	[board_ich8lan]		= &e1000_ich8_info,
+	[board_ich9lan]		= &e1000_ich9_info,
+	[board_ich10lan]	= &e1000_ich10_info,
+	[board_pchlan]		= &e1000_pch_info,
+};
+
+struct e1000_reg_info {
+	u32 ofs;
+	char *name;
+};
+
+#define E1000_RDFH	0x02410 /* Rx Data FIFO Head - RW */
+#define E1000_RDFT	0x02418 /* Rx Data FIFO Tail - RW */
+#define E1000_RDFHS	0x02420 /* Rx Data FIFO Head Saved - RW */
+#define E1000_RDFTS	0x02428 /* Rx Data FIFO Tail Saved - RW */
+#define E1000_RDFPC	0x02430 /* Rx Data FIFO Packet Count - RW */
+
+#define E1000_TDFH	0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT	0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS	0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS	0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC	0x03430 /* Tx Data FIFO Packet Count - RW */
+
+static const struct e1000_reg_info e1000_reg_info_tbl[] = {
+
+	/* General Registers */
+	{E1000_CTRL, "CTRL"},
+	{E1000_STATUS, "STATUS"},
+	{E1000_CTRL_EXT, "CTRL_EXT"},
+
+	/* Interrupt Registers */
+	{E1000_ICR, "ICR"},
+
+	/* RX Registers */
+	{E1000_RCTL, "RCTL"},
+	{E1000_RDLEN, "RDLEN"},
+	{E1000_RDH, "RDH"},
+	{E1000_RDT, "RDT"},
+	{E1000_RDTR, "RDTR"},
+	{E1000_RXDCTL(0), "RXDCTL"},
+	{E1000_ERT, "ERT"},
+	{E1000_RDBAL, "RDBAL"},
+	{E1000_RDBAH, "RDBAH"},
+	{E1000_RDFH, "RDFH"},
+	{E1000_RDFT, "RDFT"},
+	{E1000_RDFHS, "RDFHS"},
+	{E1000_RDFTS, "RDFTS"},
+	{E1000_RDFPC, "RDFPC"},
+
+	/* TX Registers */
+	{E1000_TCTL, "TCTL"},
+	{E1000_TDBAL, "TDBAL"},
+	{E1000_TDBAH, "TDBAH"},
+	{E1000_TDLEN, "TDLEN"},
+	{E1000_TDH, "TDH"},
+	{E1000_TDT, "TDT"},
+	{E1000_TIDV, "TIDV"},
+	{E1000_TXDCTL(0), "TXDCTL"},
+	{E1000_TADV, "TADV"},
+	{E1000_TARC(0), "TARC"},
+	{E1000_TDFH, "TDFH"},
+	{E1000_TDFT, "TDFT"},
+	{E1000_TDFHS, "TDFHS"},
+	{E1000_TDFTS, "TDFTS"},
+	{E1000_TDFPC, "TDFPC"},
+
+	/* List Terminator */
+	{}
+};
+
+/*
+ * e1000_regdump - register printout routine
+ */
+static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
+{
+	int n = 0;
+	char rname[16];
+	u32 regs[8];
+
+	switch (reginfo->ofs) {
+	case E1000_RXDCTL(0):
+		for (n = 0; n < 2; n++)
+			regs[n] = __er32(hw, E1000_RXDCTL(n));
+		break;
+	case E1000_TXDCTL(0):
+		for (n = 0; n < 2; n++)
+			regs[n] = __er32(hw, E1000_TXDCTL(n));
+		break;
+	case E1000_TARC(0):
+		for (n = 0; n < 2; n++)
+			regs[n] = __er32(hw, E1000_TARC(n));
+		break;
+	default:
+		printk(KERN_INFO "%-15s %08x\n",
+			reginfo->name, __er32(hw, reginfo->ofs));
+		return;
+	}
+
+	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
+	printk(KERN_INFO "%-15s ", rname);
+	for (n = 0; n < 2; n++)
+		printk(KERN_CONT "%08x ", regs[n]);
+	printk(KERN_CONT "\n");
+}
+
+
+/*
+ * e1000e_dump - Print registers, tx-ring and rx-ring
+ */
+static void e1000e_dump(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_reg_info *reginfo;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_tx_desc *tx_desc;
+	struct my_u0 { u64 a; u64 b; } *u0;
+	struct e1000_buffer *buffer_info;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	union e1000_rx_desc_packet_split *rx_desc_ps;
+	struct e1000_rx_desc *rx_desc;
+	struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
+	u32 staterr;
+	int i = 0;
+
+	if (!netif_msg_hw(adapter))
+		return;
+
+	/* Print netdevice Info */
+	if (netdev) {
+		dev_info(&adapter->pdev->dev, "Net device Info\n");
+		printk(KERN_INFO "Device Name     state            "
+			"trans_start      last_rx\n");
+		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
+			netdev->name,
+			netdev->state,
+			netdev->trans_start,
+			netdev->last_rx);
+	}
+
+	/* Print Registers */
+	dev_info(&adapter->pdev->dev, "Register Dump\n");
+	printk(KERN_INFO " Register Name   Value\n");
+	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
+	     reginfo->name; reginfo++) {
+		e1000_regdump(hw, reginfo);
+	}
+
+	/* Print TX Ring Summary */
+	if (!netdev || !netif_running(netdev))
+		goto exit;
+
+	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
+	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
+		" leng ntw timestamp\n");
+	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
+	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
+		0, tx_ring->next_to_use, tx_ring->next_to_clean,
+		(u64)buffer_info->dma,
+		buffer_info->length,
+		buffer_info->next_to_watch,
+		(u64)buffer_info->time_stamp);
+
+	/* Print TX Rings */
+	if (!netif_msg_tx_done(adapter))
+		goto rx_ring_summary;
+
+	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
+
+	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
+	 *
+	 * Legacy Transmit Descriptor
+	 *   +--------------------------------------------------------------+
+	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
+	 *   +--------------------------------------------------------------+
+	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
+	 *   +--------------------------------------------------------------+
+	 *   63       48 47        36 35    32 31     24 23    16 15        0
+	 *
+	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
+	 *   63      48 47    40 39       32 31             16 15    8 7      0
+	 *   +----------------------------------------------------------------+
+	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
+	 *   +----------------------------------------------------------------+
+	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
+	 *   +----------------------------------------------------------------+
+	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
+	 *
+	 * Extended Data Descriptor (DTYP=0x1)
+	 *   +----------------------------------------------------------------+
+	 * 0 |                     Buffer Address [63:0]                      |
+	 *   +----------------------------------------------------------------+
+	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
+	 *   +----------------------------------------------------------------+
+	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
+	 */
+	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
+		" [bi->dma       ] leng  ntw timestamp        bi->skb "
+		"<-- Legacy format\n");
+	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
+		" [bi->dma       ] leng  ntw timestamp        bi->skb "
+		"<-- Ext Context format\n");
+	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
+		" [bi->dma       ] leng  ntw timestamp        bi->skb "
+		"<-- Ext Data format\n");
+	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		buffer_info = &tx_ring->buffer_info[i];
+		u0 = (struct my_u0 *)tx_desc;
+		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
+			"%04X  %3X %016llX %p",
+		       (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
+			((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
+		       le64_to_cpu(u0->a), le64_to_cpu(u0->b),
+		       (u64)buffer_info->dma, buffer_info->length,
+		       buffer_info->next_to_watch, (u64)buffer_info->time_stamp,
+		       buffer_info->skb);
+		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
+			printk(KERN_CONT " NTC/U\n");
+		else if (i == tx_ring->next_to_use)
+			printk(KERN_CONT " NTU\n");
+		else if (i == tx_ring->next_to_clean)
+			printk(KERN_CONT " NTC\n");
+		else
+			printk(KERN_CONT "\n");
+
+		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
+			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
+					16, 1, phys_to_virt(buffer_info->dma),
+					buffer_info->length, true);
+	}
+
+	/* Print RX Rings Summary */
+rx_ring_summary:
+	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
+	printk(KERN_INFO "Queue [NTU] [NTC]\n");
+	printk(KERN_INFO " %5d %5X %5X\n", 0,
+		rx_ring->next_to_use, rx_ring->next_to_clean);
+
+	/* Print RX Rings */
+	if (!netif_msg_rx_status(adapter))
+		goto exit;
+
+	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
+	switch (adapter->rx_ps_pages) {
+	case 1:
+	case 2:
+	case 3:
+		/* [Extended] Packet Split Receive Descriptor Format
+		 *
+		 *    +-----------------------------------------------------+
+		 *  0 |                Buffer Address 0 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 *  8 |                Buffer Address 1 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 * 16 |                Buffer Address 2 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 * 24 |                Buffer Address 3 [63:0]              |
+		 *    +-----------------------------------------------------+
+		 */
+		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
+			"[buffer 1 63:0 ] "
+		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
+		       "[bi->skb] <-- Ext Pkt Split format\n");
+		/* [Extended] Receive Descriptor (Write-Back) Format
+		 *
+		 *   63       48 47    32 31     13 12    8 7    4 3        0
+		 *   +------------------------------------------------------+
+		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
+		 *   | Checksum | Ident  |         | Queue |      |  Type   |
+		 *   +------------------------------------------------------+
+		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
+		 *   +------------------------------------------------------+
+		 *   63       48 47    32 31            20 19               0
+		 */
+		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
+			"[vl   l0 ee  es] "
+		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
+		       "[bi->skb] <-- Ext Rx Write-Back format\n");
+		for (i = 0; i < rx_ring->count; i++) {
+			buffer_info = &rx_ring->buffer_info[i];
+			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
+			u1 = (struct my_u1 *)rx_desc_ps;
+			staterr =
+				le32_to_cpu(rx_desc_ps->wb.middle.status_error);
+			if (staterr & E1000_RXD_STAT_DD) {
+				/* Descriptor Done */
+				printk(KERN_INFO "RWB[0x%03X]     %016llX "
+					"%016llX %016llX %016llX "
+					"---------------- %p", i,
+					le64_to_cpu(u1->a),
+					le64_to_cpu(u1->b),
+					le64_to_cpu(u1->c),
+					le64_to_cpu(u1->d),
+					buffer_info->skb);
+			} else {
+				printk(KERN_INFO "R  [0x%03X]     %016llX "
+					"%016llX %016llX %016llX %016llX %p", i,
+					le64_to_cpu(u1->a),
+					le64_to_cpu(u1->b),
+					le64_to_cpu(u1->c),
+					le64_to_cpu(u1->d),
+					(u64)buffer_info->dma,
+					buffer_info->skb);
+
+				if (netif_msg_pktdata(adapter))
+					print_hex_dump(KERN_INFO, "",
+						DUMP_PREFIX_ADDRESS, 16, 1,
+						phys_to_virt(buffer_info->dma),
+						adapter->rx_ps_bsize0, true);
+			}
+
+			if (i == rx_ring->next_to_use)
+				printk(KERN_CONT " NTU\n");
+			else if (i == rx_ring->next_to_clean)
+				printk(KERN_CONT " NTC\n");
+			else
+				printk(KERN_CONT "\n");
+		}
+		break;
+	default:
+	case 0:
+		/* Legacy Receive Descriptor Format
+		 *
+		 * +-----------------------------------------------------+
+		 * |                Buffer Address [63:0]                |
+		 * +-----------------------------------------------------+
+		 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
+		 * +-----------------------------------------------------+
+		 * 63       48 47    40 39      32 31         16 15      0
+		 */
+		printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
+			"[vl er S cks ln] [bi->dma       ] [bi->skb] "
+			"<-- Legacy format\n");
+		for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
+			rx_desc = E1000_RX_DESC(*rx_ring, i);
+			buffer_info = &rx_ring->buffer_info[i];
+			u0 = (struct my_u0 *)rx_desc;
+			printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
+				"%016llX %p",
+				i, le64_to_cpu(u0->a), le64_to_cpu(u0->b),
+				(u64)buffer_info->dma, buffer_info->skb);
+			if (i == rx_ring->next_to_use)
+				printk(KERN_CONT " NTU\n");
+			else if (i == rx_ring->next_to_clean)
+				printk(KERN_CONT " NTC\n");
+			else
+				printk(KERN_CONT "\n");
+
+			if (netif_msg_pktdata(adapter))
+				print_hex_dump(KERN_INFO, "",
+					DUMP_PREFIX_ADDRESS,
+					16, 1, phys_to_virt(buffer_info->dma),
+					adapter->rx_buffer_len, true);
+		}
+	}
+
+exit:
+	return;
+}
+
+/**
+ * e1000_desc_unused - calculate if we have unused descriptors
+ **/
+static int e1000_desc_unused(struct e1000_ring *ring)
+{
+	if (ring->next_to_clean > ring->next_to_use)
+		return ring->next_to_clean - ring->next_to_use - 1;
+
+	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
+}
+
+/**
+ * e1000_receive_skb - helper function to handle Rx indications
+ * @adapter: board private structure
+ * @status: descriptor status field as written by hardware
+ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
+ * @skb: pointer to sk_buff to be indicated to stack
+ **/
+static void e1000_receive_skb(struct e1000_adapter *adapter,
+			      struct net_device *netdev,
+			      struct sk_buff *skb,
+			      u8 status, __le16 vlan)
+{
+	skb->protocol = eth_type_trans(skb, netdev);
+
+	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
+		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
+				 le16_to_cpu(vlan), skb);
+	else
+		napi_gro_receive(&adapter->napi, skb);
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter:     board private structure
+ * @status_err:  receive descriptor status and error fields
+ * @csum:	receive descriptor csum field
+ * @sk_buff:     socket buffer with received data
+ **/
+static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
+			      u32 csum, struct sk_buff *skb)
+{
+	u16 status = (u16)status_err;
+	u8 errors = (u8)(status_err >> 24);
+	skb->ip_summed = CHECKSUM_NONE;
+
+	/* Ignore Checksum bit is set */
+	if (status & E1000_RXD_STAT_IXSM)
+		return;
+	/* TCP/UDP checksum error bit is set */
+	if (errors & E1000_RXD_ERR_TCPE) {
+		/* let the stack verify checksum errors */
+		adapter->hw_csum_err++;
+		return;
+	}
+
+	/* TCP/UDP Checksum has not been calculated */
+	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
+		return;
+
+	/* It must be a TCP or UDP packet with a valid checksum */
+	if (status & E1000_RXD_STAT_TCPCS) {
+		/* TCP checksum is good */
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	} else {
+		/*
+		 * IP fragment with UDP payload
+		 * Hardware complements the payload checksum, so we undo it
+		 * and then put the value in host order for further stack use.
+		 */
+		__sum16 sum = (__force __sum16)htons(csum);
+		skb->csum = csum_unfold(~sum);
+		skb->ip_summed = CHECKSUM_COMPLETE;
+	}
+	adapter->hw_csum_good++;
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
+ * @adapter: address of board private structure
+ **/
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = adapter->rx_buffer_len;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto map_skb;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (!skb) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		buffer_info->skb = skb;
+map_skb:
+		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
+						  adapter->rx_buffer_len,
+						  DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+			dev_err(&pdev->dev, "RX DMA map failed\n");
+			adapter->rx_dma_failed++;
+			break;
+		}
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
+			/*
+			 * Force memory writes to complete before letting h/w
+			 * know there are new descriptors to fetch.  (Only
+			 * applicable for weak-ordered memory model archs,
+			 * such as IA-64).
+			 */
+			wmb();
+			writel(i, adapter->hw.hw_addr + rx_ring->tail);
+		}
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	rx_ring->next_to_use = i;
+}
+
+/**
+ * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
+ * @adapter: address of board private structure
+ **/
+static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
+				      int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	union e1000_rx_desc_packet_split *rx_desc;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	struct e1000_ps_page *ps_page;
+	struct sk_buff *skb;
+	unsigned int i, j;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
+
+		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
+			ps_page = &buffer_info->ps_pages[j];
+			if (j >= adapter->rx_ps_pages) {
+				/* all unused desc entries get hw null ptr */
+				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
+				continue;
+			}
+			if (!ps_page->page) {
+				ps_page->page = alloc_page(GFP_ATOMIC);
+				if (!ps_page->page) {
+					adapter->alloc_rx_buff_failed++;
+					goto no_buffers;
+				}
+				ps_page->dma = dma_map_page(&pdev->dev,
+							    ps_page->page,
+							    0, PAGE_SIZE,
+							    DMA_FROM_DEVICE);
+				if (dma_mapping_error(&pdev->dev,
+						      ps_page->dma)) {
+					dev_err(&adapter->pdev->dev,
+					  "RX DMA page map failed\n");
+					adapter->rx_dma_failed++;
+					goto no_buffers;
+				}
+			}
+			/*
+			 * Refresh the desc even if buffer_addrs
+			 * didn't change because each write-back
+			 * erases this info.
+			 */
+			rx_desc->read.buffer_addr[j+1] =
+			     cpu_to_le64(ps_page->dma);
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev,
+						adapter->rx_ps_bsize0);
+
+		if (!skb) {
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		buffer_info->skb = skb;
+		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
+						  adapter->rx_ps_bsize0,
+						  DMA_FROM_DEVICE);
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
+			dev_err(&pdev->dev, "RX DMA map failed\n");
+			adapter->rx_dma_failed++;
+			/* cleanup skb */
+			dev_kfree_skb_any(skb);
+			buffer_info->skb = NULL;
+			break;
+		}
+
+		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
+			/*
+			 * Force memory writes to complete before letting h/w
+			 * know there are new descriptors to fetch.  (Only
+			 * applicable for weak-ordered memory model archs,
+			 * such as IA-64).
+			 */
+			wmb();
+			writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
+		}
+
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+no_buffers:
+	rx_ring->next_to_use = i;
+}
+
+/**
+ * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
+ * @adapter: address of board private structure
+ * @cleaned_count: number of buffers to allocate this pass
+ **/
+
+static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+                                         int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto check_page;
+		}
+
+		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		buffer_info->skb = skb;
+check_page:
+		/* allocate a new page if necessary */
+		if (!buffer_info->page) {
+			buffer_info->page = alloc_page(GFP_ATOMIC);
+			if (unlikely(!buffer_info->page)) {
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+		}
+
+		if (!buffer_info->dma)
+			buffer_info->dma = dma_map_page(&pdev->dev,
+			                                buffer_info->page, 0,
+			                                PAGE_SIZE,
+							DMA_FROM_DEVICE);
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, adapter->hw.hw_addr + rx_ring->tail);
+	}
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       int *work_done, int work_to_do)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = 0;
+	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb();	/* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		buffer_info->skb = NULL;
+
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = 1;
+		cleaned_count++;
+		dma_unmap_single(&pdev->dev,
+				 buffer_info->dma,
+				 adapter->rx_buffer_len,
+				 DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/*
+		 * !EOP means multiple descriptors were used to store a single
+		 * packet, if that's the case we need to toss it.  In fact, we
+		 * need to toss every packet with the EOP bit clear and the
+		 * next frame that _does_ have the EOP bit set, as it is by
+		 * definition only a frame fragment
+		 */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
+			adapter->flags2 |= FLAG2_IS_DISCARDING;
+
+		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
+			/* All receives must fit into a single buffer */
+			e_dbg("Receive packet consumed multiple buffers\n");
+			/* recycle */
+			buffer_info->skb = skb;
+			if (status & E1000_RXD_STAT_EOP)
+				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
+			goto next_desc;
+		}
+
+		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
+			/* recycle */
+			buffer_info->skb = skb;
+			goto next_desc;
+		}
+
+		/* adjust length to remove Ethernet CRC */
+		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
+			length -= 4;
+
+		total_rx_bytes += length;
+		total_rx_packets++;
+
+		/*
+		 * code added for copybreak, this should improve
+		 * performance for small packets with large amounts
+		 * of reassembly being done in the stack
+		 */
+		if (length < copybreak) {
+			struct sk_buff *new_skb =
+			    netdev_alloc_skb_ip_align(netdev, length);
+			if (new_skb) {
+				skb_copy_to_linear_data_offset(new_skb,
+							       -NET_IP_ALIGN,
+							       (skb->data -
+								NET_IP_ALIGN),
+							       (length +
+								NET_IP_ALIGN));
+				/* save the skb in buffer_info as good */
+				buffer_info->skb = skb;
+				skb = new_skb;
+			}
+			/* else just continue with the old one */
+		}
+		/* end copybreak code */
+		skb_put(skb, length);
+
+		/* Receive Checksum Offload */
+		e1000_rx_checksum(adapter,
+				  (u32)(status) |
+				  ((u32)(rx_desc->errors) << 24),
+				  le16_to_cpu(rx_desc->csum), skb);
+
+		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
+			adapter->alloc_rx_buf(adapter, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = e1000_desc_unused(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, cleaned_count);
+
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->total_rx_packets += total_rx_packets;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+static void e1000_put_txbuf(struct e1000_adapter *adapter,
+			     struct e1000_buffer *buffer_info)
+{
+	if (buffer_info->dma) {
+		if (buffer_info->mapped_as_page)
+			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
+				       buffer_info->length, DMA_TO_DEVICE);
+		else
+			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
+					 buffer_info->length, DMA_TO_DEVICE);
+		buffer_info->dma = 0;
+	}
+	if (buffer_info->skb) {
+		dev_kfree_skb_any(buffer_info->skb);
+		buffer_info->skb = NULL;
+	}
+	buffer_info->time_stamp = 0;
+}
+
+static void e1000_print_hw_hang(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+	                                             struct e1000_adapter,
+	                                             print_hang_task);
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	unsigned int i = tx_ring->next_to_clean;
+	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
+	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_status, phy_1000t_status, phy_ext_status;
+	u16 pci_status;
+
+	e1e_rphy(hw, PHY_STATUS, &phy_status);
+	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
+	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
+
+	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
+
+	/* detected Hardware unit hang */
+	e_err("Detected Hardware Unit Hang:\n"
+	      "  TDH                  <%x>\n"
+	      "  TDT                  <%x>\n"
+	      "  next_to_use          <%x>\n"
+	      "  next_to_clean        <%x>\n"
+	      "buffer_info[next_to_clean]:\n"
+	      "  time_stamp           <%lx>\n"
+	      "  next_to_watch        <%x>\n"
+	      "  jiffies              <%lx>\n"
+	      "  next_to_watch.status <%x>\n"
+	      "MAC Status             <%x>\n"
+	      "PHY Status             <%x>\n"
+	      "PHY 1000BASE-T Status  <%x>\n"
+	      "PHY Extended Status    <%x>\n"
+	      "PCI Status             <%x>\n",
+	      readl(adapter->hw.hw_addr + tx_ring->head),
+	      readl(adapter->hw.hw_addr + tx_ring->tail),
+	      tx_ring->next_to_use,
+	      tx_ring->next_to_clean,
+	      tx_ring->buffer_info[eop].time_stamp,
+	      eop,
+	      jiffies,
+	      eop_desc->upper.fields.status,
+	      er32(STATUS),
+	      phy_status,
+	      phy_1000t_status,
+	      phy_ext_status,
+	      pci_status);
+}
+
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_tx_desc *tx_desc, *eop_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i, eop;
+	unsigned int count = 0;
+	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
+
+	i = tx_ring->next_to_clean;
+	eop = tx_ring->buffer_info[i].next_to_watch;
+	eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
+	       (count < tx_ring->count)) {
+		bool cleaned = false;
+		rmb(); /* read buffer_info after eop_desc */
+		for (; !cleaned; count++) {
+			tx_desc = E1000_TX_DESC(*tx_ring, i);
+			buffer_info = &tx_ring->buffer_info[i];
+			cleaned = (i == eop);
+
+			if (cleaned) {
+				total_tx_packets += buffer_info->segs;
+				total_tx_bytes += buffer_info->bytecount;
+			}
+
+			e1000_put_txbuf(adapter, buffer_info);
+			tx_desc->upper.data = 0;
+
+			i++;
+			if (i == tx_ring->count)
+				i = 0;
+		}
+
+		if (i == tx_ring->next_to_use)
+			break;
+		eop = tx_ring->buffer_info[i].next_to_watch;
+		eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	}
+
+	tx_ring->next_to_clean = i;
+
+#define TX_WAKE_THRESHOLD 32
+	if (count && netif_carrier_ok(netdev) &&
+	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
+		/* Make sure that anybody stopping the queue after this
+		 * sees the new next_to_clean.
+		 */
+		smp_mb();
+
+		if (netif_queue_stopped(netdev) &&
+		    !(test_bit(__E1000_DOWN, &adapter->state))) {
+			netif_wake_queue(netdev);
+			++adapter->restart_queue;
+		}
+	}
+
+	if (adapter->detect_tx_hung) {
+		/*
+		 * Detect a transmit hang in hardware, this serializes the
+		 * check with the clearing of time_stamp and movement of i
+		 */
+		adapter->detect_tx_hung = 0;
+		if (tx_ring->buffer_info[i].time_stamp &&
+		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
+			       + (adapter->tx_timeout_factor * HZ)) &&
+		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
+			schedule_work(&adapter->print_hang_task);
+			netif_stop_queue(netdev);
+		}
+	}
+	adapter->total_tx_bytes += total_tx_bytes;
+	adapter->total_tx_packets += total_tx_packets;
+	netdev->stats.tx_bytes += total_tx_bytes;
+	netdev->stats.tx_packets += total_tx_packets;
+	return (count < tx_ring->count);
+}
+
+/**
+ * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
+				  int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	struct e1000_ps_page *ps_page;
+	struct sk_buff *skb;
+	unsigned int i, j;
+	u32 length, staterr;
+	int cleaned_count = 0;
+	bool cleaned = 0;
+	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
+	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (staterr & E1000_RXD_STAT_DD) {
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		skb = buffer_info->skb;
+		rmb();	/* read descriptor and rx_buffer_info after status DD */
+
+		/* in the packet split case this is header only */
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		i++;
+		if (i == rx_ring->count)
+			i = 0;
+		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = 1;
+		cleaned_count++;
+		dma_unmap_single(&pdev->dev, buffer_info->dma,
+				 adapter->rx_ps_bsize0,
+				 DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		/* see !EOP comment in other rx routine */
+		if (!(staterr & E1000_RXD_STAT_EOP))
+			adapter->flags2 |= FLAG2_IS_DISCARDING;
+
+		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
+			e_dbg("Packet Split buffers didn't pick up the full "
+			      "packet\n");
+			dev_kfree_skb_irq(skb);
+			if (staterr & E1000_RXD_STAT_EOP)
+				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
+			goto next_desc;
+		}
+
+		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
+			dev_kfree_skb_irq(skb);
+			goto next_desc;
+		}
+
+		length = le16_to_cpu(rx_desc->wb.middle.length0);
+
+		if (!length) {
+			e_dbg("Last part of the packet spanning multiple "
+			      "descriptors\n");
+			dev_kfree_skb_irq(skb);
+			goto next_desc;
+		}
+
+		/* Good Receive */
+		skb_put(skb, length);
+
+		{
+		/*
+		 * this looks ugly, but it seems compiler issues make it
+		 * more efficient than reusing j
+		 */
+		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
+
+		/*
+		 * page alloc/put takes too long and effects small packet
+		 * throughput, so unsplit small packets and save the alloc/put
+		 * only valid in softirq (napi) context to call kmap_*
+		 */
+		if (l1 && (l1 <= copybreak) &&
+		    ((length + l1) <= adapter->rx_ps_bsize0)) {
+			u8 *vaddr;
+
+			ps_page = &buffer_info->ps_pages[0];
+
+			/*
+			 * there is no documentation about how to call
+			 * kmap_atomic, so we can't hold the mapping
+			 * very long
+			 */
+			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
+						PAGE_SIZE, DMA_FROM_DEVICE);
+			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
+			memcpy(skb_tail_pointer(skb), vaddr, l1);
+			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
+			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
+						   PAGE_SIZE, DMA_FROM_DEVICE);
+
+			/* remove the CRC */
+			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
+				l1 -= 4;
+
+			skb_put(skb, l1);
+			goto copydone;
+		} /* if */
+		}
+
+		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
+			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
+			if (!length)
+				break;
+
+			ps_page = &buffer_info->ps_pages[j];
+			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
+				       DMA_FROM_DEVICE);
+			ps_page->dma = 0;
+			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
+			ps_page->page = NULL;
+			skb->len += length;
+			skb->data_len += length;
+			skb->truesize += length;
+		}
+
+		/* strip the ethernet crc, problem is we're using pages now so
+		 * this whole operation can get a little cpu intensive
+		 */
+		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
+			pskb_trim(skb, skb->len - 4);
+
+copydone:
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
+			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
+
+		if (rx_desc->wb.upper.header_status &
+			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
+			adapter->rx_hdr_split++;
+
+		e1000_receive_skb(adapter, netdev, skb,
+				  staterr, rx_desc->wb.middle.vlan);
+
+next_desc:
+		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
+		buffer_info->skb = NULL;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
+			adapter->alloc_rx_buf(adapter, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+
+		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = e1000_desc_unused(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, cleaned_count);
+
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->total_rx_packets += total_rx_packets;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_consume_page - helper function
+ **/
+static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
+                               u16 length)
+{
+	bi->page = NULL;
+	skb->len += length;
+	skb->data_len += length;
+	skb->truesize += length;
+}
+
+/**
+ * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+                                     int *work_done, int work_to_do)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+		rmb();	/* read descriptor and rx_buffer_info after status DD */
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		buffer_info->skb = NULL;
+
+		++i;
+		if (i == rx_ring->count)
+			i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
+			       DMA_FROM_DEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/* errors is only valid for DD + EOP descriptors */
+		if (unlikely((status & E1000_RXD_STAT_EOP) &&
+		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
+				/* recycle both page and skb */
+				buffer_info->skb = skb;
+				/* an error means any chain goes out the window
+				 * too */
+				if (rx_ring->rx_skb_top)
+					dev_kfree_skb(rx_ring->rx_skb_top);
+				rx_ring->rx_skb_top = NULL;
+				goto next_desc;
+		}
+
+#define rxtop rx_ring->rx_skb_top
+		if (!(status & E1000_RXD_STAT_EOP)) {
+			/* this descriptor is only the beginning (or middle) */
+			if (!rxtop) {
+				/* this is the beginning of a chain */
+				rxtop = skb;
+				skb_fill_page_desc(rxtop, 0, buffer_info->page,
+				                   0, length);
+			} else {
+				/* this is the middle of a chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the skb, only consumed the page */
+				buffer_info->skb = skb;
+			}
+			e1000_consume_page(buffer_info, rxtop, length);
+			goto next_desc;
+		} else {
+			if (rxtop) {
+				/* end of the chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the current skb, we only consumed the
+				 * page */
+				buffer_info->skb = skb;
+				skb = rxtop;
+				rxtop = NULL;
+				e1000_consume_page(buffer_info, skb, length);
+			} else {
+				/* no chain, got EOP, this buf is the packet
+				 * copybreak to save the put_page/alloc_page */
+				if (length <= copybreak &&
+				    skb_tailroom(skb) >= length) {
+					u8 *vaddr;
+					vaddr = kmap_atomic(buffer_info->page,
+					                   KM_SKB_DATA_SOFTIRQ);
+					memcpy(skb_tail_pointer(skb), vaddr,
+					       length);
+					kunmap_atomic(vaddr,
+					              KM_SKB_DATA_SOFTIRQ);
+					/* re-use the page, so don't erase
+					 * buffer_info->page */
+					skb_put(skb, length);
+				} else {
+					skb_fill_page_desc(skb, 0,
+					                   buffer_info->page, 0,
+				                           length);
+					e1000_consume_page(buffer_info, skb,
+					                   length);
+				}
+			}
+		}
+
+		/* Receive Checksum Offload XXX recompute due to CRC strip? */
+		e1000_rx_checksum(adapter,
+		                  (u32)(status) |
+		                  ((u32)(rx_desc->errors) << 24),
+		                  le16_to_cpu(rx_desc->csum), skb);
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		/* eth type trans needs skb->data to point to something */
+		if (!pskb_may_pull(skb, ETH_HLEN)) {
+			e_err("pskb_may_pull failed.\n");
+			dev_kfree_skb(skb);
+			goto next_desc;
+		}
+
+		e1000_receive_skb(adapter, netdev, skb, status,
+		                  rx_desc->special);
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = e1000_desc_unused(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, cleaned_count);
+
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->total_rx_packets += total_rx_packets;
+	netdev->stats.rx_bytes += total_rx_bytes;
+	netdev->stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers per Queue
+ * @adapter: board private structure
+ **/
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	struct e1000_ps_page *ps_page;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned int i, j;
+
+	/* Free all the Rx ring sk_buffs */
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		if (buffer_info->dma) {
+			if (adapter->clean_rx == e1000_clean_rx_irq)
+				dma_unmap_single(&pdev->dev, buffer_info->dma,
+						 adapter->rx_buffer_len,
+						 DMA_FROM_DEVICE);
+			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
+				dma_unmap_page(&pdev->dev, buffer_info->dma,
+				               PAGE_SIZE,
+					       DMA_FROM_DEVICE);
+			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
+				dma_unmap_single(&pdev->dev, buffer_info->dma,
+						 adapter->rx_ps_bsize0,
+						 DMA_FROM_DEVICE);
+			buffer_info->dma = 0;
+		}
+
+		if (buffer_info->page) {
+			put_page(buffer_info->page);
+			buffer_info->page = NULL;
+		}
+
+		if (buffer_info->skb) {
+			dev_kfree_skb(buffer_info->skb);
+			buffer_info->skb = NULL;
+		}
+
+		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
+			ps_page = &buffer_info->ps_pages[j];
+			if (!ps_page->page)
+				break;
+			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
+				       DMA_FROM_DEVICE);
+			ps_page->dma = 0;
+			put_page(ps_page->page);
+			ps_page->page = NULL;
+		}
+	}
+
+	/* there also may be some cached data from a chained receive */
+	if (rx_ring->rx_skb_top) {
+		dev_kfree_skb(rx_ring->rx_skb_top);
+		rx_ring->rx_skb_top = NULL;
+	}
+
+	/* Zero out the descriptor ring */
+	memset(rx_ring->desc, 0, rx_ring->size);
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
+
+	writel(0, adapter->hw.hw_addr + rx_ring->head);
+	writel(0, adapter->hw.hw_addr + rx_ring->tail);
+}
+
+static void e1000e_downshift_workaround(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+					struct e1000_adapter, downshift_task);
+
+	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
+}
+
+/**
+ * e1000_intr_msi - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+static irqreturn_t e1000_intr_msi(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	/*
+	 * read ICR disables interrupts using IAM
+	 */
+
+	if (icr & E1000_ICR_LSC) {
+		hw->mac.get_link_status = 1;
+		/*
+		 * ICH8 workaround-- Call gig speed drop workaround on cable
+		 * disconnect (LSC) before accessing any PHY registers
+		 */
+		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
+		    (!(er32(STATUS) & E1000_STATUS_LU)))
+			schedule_work(&adapter->downshift_task);
+
+		/*
+		 * 80003ES2LAN workaround-- For packet buffer work-around on
+		 * link down event; disable receives here in the ISR and reset
+		 * adapter in watchdog
+		 */
+		if (netif_carrier_ok(netdev) &&
+		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
+			/* disable receives */
+			u32 rctl = er32(RCTL);
+			ew32(RCTL, rctl & ~E1000_RCTL_EN);
+			adapter->flags |= FLAG_RX_RESTART_NOW;
+		}
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->state))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	if (napi_schedule_prep(&adapter->napi)) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__napi_schedule(&adapter->napi);
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+static irqreturn_t e1000_intr(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl, icr = er32(ICR);
+
+	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
+		return IRQ_NONE;  /* Not our interrupt */
+
+	/*
+	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
+	 * not set, then the adapter didn't send an interrupt
+	 */
+	if (!(icr & E1000_ICR_INT_ASSERTED))
+		return IRQ_NONE;
+
+	/*
+	 * Interrupt Auto-Mask...upon reading ICR,
+	 * interrupts are masked.  No need for the
+	 * IMC write
+	 */
+
+	if (icr & E1000_ICR_LSC) {
+		hw->mac.get_link_status = 1;
+		/*
+		 * ICH8 workaround-- Call gig speed drop workaround on cable
+		 * disconnect (LSC) before accessing any PHY registers
+		 */
+		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
+		    (!(er32(STATUS) & E1000_STATUS_LU)))
+			schedule_work(&adapter->downshift_task);
+
+		/*
+		 * 80003ES2LAN workaround--
+		 * For packet buffer work-around on link down event;
+		 * disable receives here in the ISR and
+		 * reset adapter in watchdog
+		 */
+		if (netif_carrier_ok(netdev) &&
+		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
+			/* disable receives */
+			rctl = er32(RCTL);
+			ew32(RCTL, rctl & ~E1000_RCTL_EN);
+			adapter->flags |= FLAG_RX_RESTART_NOW;
+		}
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->state))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	if (napi_schedule_prep(&adapter->napi)) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__napi_schedule(&adapter->napi);
+	}
+
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t e1000_msix_other(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	if (!(icr & E1000_ICR_INT_ASSERTED)) {
+		if (!test_bit(__E1000_DOWN, &adapter->state))
+			ew32(IMS, E1000_IMS_OTHER);
+		return IRQ_NONE;
+	}
+
+	if (icr & adapter->eiac_mask)
+		ew32(ICS, (icr & adapter->eiac_mask));
+
+	if (icr & E1000_ICR_OTHER) {
+		if (!(icr & E1000_ICR_LSC))
+			goto no_link_interrupt;
+		hw->mac.get_link_status = 1;
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->state))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+no_link_interrupt:
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
+
+	return IRQ_HANDLED;
+}
+
+
+static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+
+
+	adapter->total_tx_bytes = 0;
+	adapter->total_tx_packets = 0;
+
+	if (!e1000_clean_tx_irq(adapter))
+		/* Ring was not completely cleaned, so fire another interrupt */
+		ew32(ICS, tx_ring->ims_val);
+
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Write the ITR value calculated at the end of the
+	 * previous interrupt.
+	 */
+	if (adapter->rx_ring->set_itr) {
+		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
+		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
+		adapter->rx_ring->set_itr = 0;
+	}
+
+	if (napi_schedule_prep(&adapter->napi)) {
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__napi_schedule(&adapter->napi);
+	}
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_configure_msix - Configure MSI-X hardware
+ *
+ * e1000_configure_msix sets up the hardware to properly
+ * generate MSI-X interrupts.
+ **/
+static void e1000_configure_msix(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	int vector = 0;
+	u32 ctrl_ext, ivar = 0;
+
+	adapter->eiac_mask = 0;
+
+	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
+	if (hw->mac.type == e1000_82574) {
+		u32 rfctl = er32(RFCTL);
+		rfctl |= E1000_RFCTL_ACK_DIS;
+		ew32(RFCTL, rfctl);
+	}
+
+#define E1000_IVAR_INT_ALLOC_VALID	0x8
+	/* Configure Rx vector */
+	rx_ring->ims_val = E1000_IMS_RXQ0;
+	adapter->eiac_mask |= rx_ring->ims_val;
+	if (rx_ring->itr_val)
+		writel(1000000000 / (rx_ring->itr_val * 256),
+		       hw->hw_addr + rx_ring->itr_register);
+	else
+		writel(1, hw->hw_addr + rx_ring->itr_register);
+	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
+
+	/* Configure Tx vector */
+	tx_ring->ims_val = E1000_IMS_TXQ0;
+	vector++;
+	if (tx_ring->itr_val)
+		writel(1000000000 / (tx_ring->itr_val * 256),
+		       hw->hw_addr + tx_ring->itr_register);
+	else
+		writel(1, hw->hw_addr + tx_ring->itr_register);
+	adapter->eiac_mask |= tx_ring->ims_val;
+	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
+
+	/* set vector for Other Causes, e.g. link changes */
+	vector++;
+	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
+	if (rx_ring->itr_val)
+		writel(1000000000 / (rx_ring->itr_val * 256),
+		       hw->hw_addr + E1000_EITR_82574(vector));
+	else
+		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
+
+	/* Cause Tx interrupts on every write back */
+	ivar |= (1 << 31);
+
+	ew32(IVAR, ivar);
+
+	/* enable MSI-X PBA support */
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
+
+	/* Auto-Mask Other interrupts upon ICR read */
+#define E1000_EIAC_MASK_82574   0x01F00000
+	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
+	ctrl_ext |= E1000_CTRL_EXT_EIAME;
+	ew32(CTRL_EXT, ctrl_ext);
+	e1e_flush();
+}
+
+void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
+{
+	if (adapter->msix_entries) {
+		pci_disable_msix(adapter->pdev);
+		kfree(adapter->msix_entries);
+		adapter->msix_entries = NULL;
+	} else if (adapter->flags & FLAG_MSI_ENABLED) {
+		pci_disable_msi(adapter->pdev);
+		adapter->flags &= ~FLAG_MSI_ENABLED;
+	}
+}
+
+/**
+ * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
+ *
+ * Attempt to configure interrupts using the best available
+ * capabilities of the hardware and kernel.
+ **/
+void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
+{
+	int err;
+	int numvecs, i;
+
+
+	switch (adapter->int_mode) {
+	case E1000E_INT_MODE_MSIX:
+		if (adapter->flags & FLAG_HAS_MSIX) {
+			numvecs = 3; /* RxQ0, TxQ0 and other */
+			adapter->msix_entries = kcalloc(numvecs,
+						      sizeof(struct msix_entry),
+						      GFP_KERNEL);
+			if (adapter->msix_entries) {
+				for (i = 0; i < numvecs; i++)
+					adapter->msix_entries[i].entry = i;
+
+				err = pci_enable_msix(adapter->pdev,
+						      adapter->msix_entries,
+						      numvecs);
+				if (err == 0)
+					return;
+			}
+			/* MSI-X failed, so fall through and try MSI */
+			e_err("Failed to initialize MSI-X interrupts.  "
+			      "Falling back to MSI interrupts.\n");
+			e1000e_reset_interrupt_capability(adapter);
+		}
+		adapter->int_mode = E1000E_INT_MODE_MSI;
+		/* Fall through */
+	case E1000E_INT_MODE_MSI:
+		if (!pci_enable_msi(adapter->pdev)) {
+			adapter->flags |= FLAG_MSI_ENABLED;
+		} else {
+			adapter->int_mode = E1000E_INT_MODE_LEGACY;
+			e_err("Failed to initialize MSI interrupts.  Falling "
+			      "back to legacy interrupts.\n");
+		}
+		/* Fall through */
+	case E1000E_INT_MODE_LEGACY:
+		/* Don't do anything; this is the system default */
+		break;
+	}
+}
+
+/**
+ * e1000_request_msix - Initialize MSI-X interrupts
+ *
+ * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
+ * kernel.
+ **/
+static int e1000_request_msix(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int err = 0, vector = 0;
+
+	if (strlen(netdev->name) < (IFNAMSIZ - 5))
+		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
+	else
+		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
+	err = request_irq(adapter->msix_entries[vector].vector,
+			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
+			  netdev);
+	if (err)
+		goto out;
+	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
+	adapter->rx_ring->itr_val = adapter->itr;
+	vector++;
+
+	if (strlen(netdev->name) < (IFNAMSIZ - 5))
+		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
+	else
+		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
+	err = request_irq(adapter->msix_entries[vector].vector,
+			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
+			  netdev);
+	if (err)
+		goto out;
+	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
+	adapter->tx_ring->itr_val = adapter->itr;
+	vector++;
+
+	err = request_irq(adapter->msix_entries[vector].vector,
+			  e1000_msix_other, 0, netdev->name, netdev);
+	if (err)
+		goto out;
+
+	e1000_configure_msix(adapter);
+	return 0;
+out:
+	return err;
+}
+
+/**
+ * e1000_request_irq - initialize interrupts
+ *
+ * Attempts to configure interrupts using the best available
+ * capabilities of the hardware and kernel.
+ **/
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int err;
+
+	if (adapter->msix_entries) {
+		err = e1000_request_msix(adapter);
+		if (!err)
+			return err;
+		/* fall back to MSI */
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = E1000E_INT_MODE_MSI;
+		e1000e_set_interrupt_capability(adapter);
+	}
+	if (adapter->flags & FLAG_MSI_ENABLED) {
+		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
+				  netdev->name, netdev);
+		if (!err)
+			return err;
+
+		/* fall back to legacy interrupt */
+		e1000e_reset_interrupt_capability(adapter);
+		adapter->int_mode = E1000E_INT_MODE_LEGACY;
+	}
+
+	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
+			  netdev->name, netdev);
+	if (err)
+		e_err("Unable to allocate interrupt, Error: %d\n", err);
+
+	return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	if (adapter->msix_entries) {
+		int vector = 0;
+
+		free_irq(adapter->msix_entries[vector].vector, netdev);
+		vector++;
+
+		free_irq(adapter->msix_entries[vector].vector, netdev);
+		vector++;
+
+		/* Other Causes interrupt vector */
+		free_irq(adapter->msix_entries[vector].vector, netdev);
+		return;
+	}
+
+	free_irq(adapter->pdev->irq, netdev);
+}
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ **/
+static void e1000_irq_disable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	ew32(IMC, ~0);
+	if (adapter->msix_entries)
+		ew32(EIAC_82574, 0);
+	e1e_flush();
+	synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ **/
+static void e1000_irq_enable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->msix_entries) {
+		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
+		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
+	} else {
+		ew32(IMS, IMS_ENABLE_MASK);
+	}
+	e1e_flush();
+}
+
+/**
+ * e1000_get_hw_control - get control of the h/w from f/w
+ * @adapter: address of board private structure
+ *
+ * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is loaded. For AMT version (only with 82573)
+ * of the f/w this means that the network i/f is open.
+ **/
+static void e1000_get_hw_control(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_ext;
+	u32 swsm;
+
+	/* Let firmware know the driver has taken over */
+	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
+	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
+		ctrl_ext = er32(CTRL_EXT);
+		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+	}
+}
+
+/**
+ * e1000_release_hw_control - release control of the h/w to f/w
+ * @adapter: address of board private structure
+ *
+ * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT version (only with 82573) i
+ * of the f/w this means that the network i/f is closed.
+ *
+ **/
+static void e1000_release_hw_control(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_ext;
+	u32 swsm;
+
+	/* Let firmware taken over control of h/w */
+	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
+		swsm = er32(SWSM);
+		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
+	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
+		ctrl_ext = er32(CTRL_EXT);
+		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+	}
+}
+
+/**
+ * @e1000_alloc_ring - allocate memory for a ring structure
+ **/
+static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
+				struct e1000_ring *ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
+					GFP_KERNEL);
+	if (!ring->desc)
+		return -ENOMEM;
+
+	return 0;
+}
+
+/**
+ * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	int err = -ENOMEM, size;
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	tx_ring->buffer_info = vmalloc(size);
+	if (!tx_ring->buffer_info)
+		goto err;
+	memset(tx_ring->buffer_info, 0, size);
+
+	/* round up to nearest 4K */
+	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
+	tx_ring->size = ALIGN(tx_ring->size, 4096);
+
+	err = e1000_alloc_ring_dma(adapter, tx_ring);
+	if (err)
+		goto err;
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+
+	return 0;
+err:
+	vfree(tx_ring->buffer_info);
+	e_err("Unable to allocate memory for the transmit descriptor ring\n");
+	return err;
+}
+
+/**
+ * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	struct e1000_buffer *buffer_info;
+	int i, size, desc_len, err = -ENOMEM;
+
+	size = sizeof(struct e1000_buffer) * rx_ring->count;
+	rx_ring->buffer_info = vmalloc(size);
+	if (!rx_ring->buffer_info)
+		goto err;
+	memset(rx_ring->buffer_info, 0, size);
+
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
+						sizeof(struct e1000_ps_page),
+						GFP_KERNEL);
+		if (!buffer_info->ps_pages)
+			goto err_pages;
+	}
+
+	desc_len = sizeof(union e1000_rx_desc_packet_split);
+
+	/* Round up to nearest 4K */
+	rx_ring->size = rx_ring->count * desc_len;
+	rx_ring->size = ALIGN(rx_ring->size, 4096);
+
+	err = e1000_alloc_ring_dma(adapter, rx_ring);
+	if (err)
+		goto err_pages;
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+	rx_ring->rx_skb_top = NULL;
+
+	return 0;
+
+err_pages:
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		kfree(buffer_info->ps_pages);
+	}
+err:
+	vfree(rx_ring->buffer_info);
+	e_err("Unable to allocate memory for the transmit descriptor ring\n");
+	return err;
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ **/
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_buffer *buffer_info;
+	unsigned long size;
+	unsigned int i;
+
+	for (i = 0; i < tx_ring->count; i++) {
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_put_txbuf(adapter, buffer_info);
+	}
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	memset(tx_ring->buffer_info, 0, size);
+
+	memset(tx_ring->desc, 0, tx_ring->size);
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+
+	writel(0, adapter->hw.hw_addr + tx_ring->head);
+	writel(0, adapter->hw.hw_addr + tx_ring->tail);
+}
+
+/**
+ * e1000e_free_tx_resources - Free Tx Resources per Queue
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+void e1000e_free_tx_resources(struct e1000_adapter *adapter)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+
+	e1000_clean_tx_ring(adapter);
+
+	vfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
+			  tx_ring->dma);
+	tx_ring->desc = NULL;
+}
+
+/**
+ * e1000e_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void e1000e_free_rx_resources(struct e1000_adapter *adapter)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	int i;
+
+	e1000_clean_rx_ring(adapter);
+
+	for (i = 0; i < rx_ring->count; i++) {
+		kfree(rx_ring->buffer_info[i].ps_pages);
+	}
+
+	vfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+
+	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
+			  rx_ring->dma);
+	rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_update_itr - update the dynamic ITR value based on statistics
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ *
+ *      Stores a new ITR value based on packets and byte
+ *      counts during the last interrupt.  The advantage of per interrupt
+ *      computation is faster updates and more accurate ITR for the current
+ *      traffic pattern.  Constants in this function were computed
+ *      based on theoretical maximum wire speed and thresholds were set based
+ *      on testing data as well as attempting to minimize response time
+ *      while increasing bulk throughput.  This functionality is controlled
+ *      by the InterruptThrottleRate module parameter.
+ **/
+static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
+				     u16 itr_setting, int packets,
+				     int bytes)
+{
+	unsigned int retval = itr_setting;
+
+	if (packets == 0)
+		goto update_itr_done;
+
+	switch (itr_setting) {
+	case lowest_latency:
+		/* handle TSO and jumbo frames */
+		if (bytes/packets > 8000)
+			retval = bulk_latency;
+		else if ((packets < 5) && (bytes > 512)) {
+			retval = low_latency;
+		}
+		break;
+	case low_latency:  /* 50 usec aka 20000 ints/s */
+		if (bytes > 10000) {
+			/* this if handles the TSO accounting */
+			if (bytes/packets > 8000) {
+				retval = bulk_latency;
+			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
+				retval = bulk_latency;
+			} else if ((packets > 35)) {
+				retval = lowest_latency;
+			}
+		} else if (bytes/packets > 2000) {
+			retval = bulk_latency;
+		} else if (packets <= 2 && bytes < 512) {
+			retval = lowest_latency;
+		}
+		break;
+	case bulk_latency: /* 250 usec aka 4000 ints/s */
+		if (bytes > 25000) {
+			if (packets > 35) {
+				retval = low_latency;
+			}
+		} else if (bytes < 6000) {
+			retval = low_latency;
+		}
+		break;
+	}
+
+update_itr_done:
+	return retval;
+}
+
+static void e1000_set_itr(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 current_itr;
+	u32 new_itr = adapter->itr;
+
+	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
+	if (adapter->link_speed != SPEED_1000) {
+		current_itr = 0;
+		new_itr = 4000;
+		goto set_itr_now;
+	}
+
+	adapter->tx_itr = e1000_update_itr(adapter,
+				    adapter->tx_itr,
+				    adapter->total_tx_packets,
+				    adapter->total_tx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
+		adapter->tx_itr = low_latency;
+
+	adapter->rx_itr = e1000_update_itr(adapter,
+				    adapter->rx_itr,
+				    adapter->total_rx_packets,
+				    adapter->total_rx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
+		adapter->rx_itr = low_latency;
+
+	current_itr = max(adapter->rx_itr, adapter->tx_itr);
+
+	switch (current_itr) {
+	/* counts and packets in update_itr are dependent on these numbers */
+	case lowest_latency:
+		new_itr = 70000;
+		break;
+	case low_latency:
+		new_itr = 20000; /* aka hwitr = ~200 */
+		break;
+	case bulk_latency:
+		new_itr = 4000;
+		break;
+	default:
+		break;
+	}
+
+set_itr_now:
+	if (new_itr != adapter->itr) {
+		/*
+		 * this attempts to bias the interrupt rate towards Bulk
+		 * by adding intermediate steps when interrupt rate is
+		 * increasing
+		 */
+		new_itr = new_itr > adapter->itr ?
+			     min(adapter->itr + (new_itr >> 2), new_itr) :
+			     new_itr;
+		adapter->itr = new_itr;
+		adapter->rx_ring->itr_val = new_itr;
+		if (adapter->msix_entries)
+			adapter->rx_ring->set_itr = 1;
+		else
+			ew32(ITR, 1000000000 / (new_itr * 256));
+	}
+}
+
+/**
+ * e1000_alloc_queues - Allocate memory for all rings
+ * @adapter: board private structure to initialize
+ **/
+static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
+{
+	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!adapter->tx_ring)
+		goto err;
+
+	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
+	if (!adapter->rx_ring)
+		goto err;
+
+	return 0;
+err:
+	e_err("Unable to allocate memory for queues\n");
+	kfree(adapter->rx_ring);
+	kfree(adapter->tx_ring);
+	return -ENOMEM;
+}
+
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @napi: struct associated with this polling callback
+ * @budget: amount of packets driver is allowed to process this poll
+ **/
+static int e1000_clean(struct napi_struct *napi, int budget)
+{
+	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *poll_dev = adapter->netdev;
+	int tx_cleaned = 1, work_done = 0;
+
+	adapter = netdev_priv(poll_dev);
+
+	if (adapter->msix_entries &&
+	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
+		goto clean_rx;
+
+	tx_cleaned = e1000_clean_tx_irq(adapter);
+
+clean_rx:
+	adapter->clean_rx(adapter, &work_done, budget);
+
+	if (!tx_cleaned)
+		work_done = budget;
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		if (adapter->itr_setting & 3)
+			e1000_set_itr(adapter);
+		napi_complete(napi);
+		if (!test_bit(__E1000_DOWN, &adapter->state)) {
+			if (adapter->msix_entries)
+				ew32(IMS, adapter->rx_ring->ims_val);
+			else
+				e1000_irq_enable(adapter);
+		}
+	}
+
+	return work_done;
+}
+
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	/* don't update vlan cookie if already programmed */
+	if ((adapter->hw.mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
+	    (vid == adapter->mng_vlan_id))
+		return;
+
+	/* add VID to filter table */
+	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+		index = (vid >> 5) & 0x7F;
+		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
+		vfta |= (1 << (vid & 0x1F));
+		hw->mac.ops.write_vfta(hw, index, vfta);
+	}
+}
+
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_disable(adapter);
+	vlan_group_set_device(adapter->vlgrp, vid, NULL);
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_enable(adapter);
+
+	if ((adapter->hw.mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
+	    (vid == adapter->mng_vlan_id)) {
+		/* release control to f/w */
+		e1000_release_hw_control(adapter);
+		return;
+	}
+
+	/* remove VID from filter table */
+	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+		index = (vid >> 5) & 0x7F;
+		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
+		vfta &= ~(1 << (vid & 0x1F));
+		hw->mac.ops.write_vfta(hw, index, vfta);
+	}
+}
+
+static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	u16 vid = adapter->hw.mng_cookie.vlan_id;
+	u16 old_vid = adapter->mng_vlan_id;
+
+	if (!adapter->vlgrp)
+		return;
+
+	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
+		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+		if (adapter->hw.mng_cookie.status &
+			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
+			e1000_vlan_rx_add_vid(netdev, vid);
+			adapter->mng_vlan_id = vid;
+		}
+
+		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
+				(vid != old_vid) &&
+		    !vlan_group_get_device(adapter->vlgrp, old_vid))
+			e1000_vlan_rx_kill_vid(netdev, old_vid);
+	} else {
+		adapter->mng_vlan_id = vid;
+	}
+}
+
+
+static void e1000_vlan_rx_register(struct net_device *netdev,
+				   struct vlan_group *grp)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, rctl;
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_disable(adapter);
+	adapter->vlgrp = grp;
+
+	if (grp) {
+		/* enable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+			/* enable VLAN receive filtering */
+			rctl = er32(RCTL);
+			rctl &= ~E1000_RCTL_CFIEN;
+			ew32(RCTL, rctl);
+			e1000_update_mng_vlan(adapter);
+		}
+	} else {
+		/* disable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
+			if (adapter->mng_vlan_id !=
+			    (u16)E1000_MNG_VLAN_NONE) {
+				e1000_vlan_rx_kill_vid(netdev,
+						       adapter->mng_vlan_id);
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+			}
+		}
+	}
+
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		e1000_irq_enable(adapter);
+}
+
+static void e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+	u16 vid;
+
+	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+	if (!adapter->vlgrp)
+		return;
+
+	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+		if (!vlan_group_get_device(adapter->vlgrp, vid))
+			continue;
+		e1000_vlan_rx_add_vid(adapter->netdev, vid);
+	}
+}
+
+static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 manc, manc2h, mdef, i, j;
+
+	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
+		return;
+
+	manc = er32(MANC);
+
+	/*
+	 * enable receiving management packets to the host. this will probably
+	 * generate destination unreachable messages from the host OS, but
+	 * the packets will be handled on SMBUS
+	 */
+	manc |= E1000_MANC_EN_MNG2HOST;
+	manc2h = er32(MANC2H);
+
+	switch (hw->mac.type) {
+	default:
+		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		/*
+		 * Check if IPMI pass-through decision filter already exists;
+		 * if so, enable it.
+		 */
+		for (i = 0, j = 0; i < 8; i++) {
+			mdef = er32(MDEF(i));
+
+			/* Ignore filters with anything other than IPMI ports */
+			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
+				continue;
+
+			/* Enable this decision filter in MANC2H */
+			if (mdef)
+				manc2h |= (1 << i);
+
+			j |= mdef;
+		}
+
+		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
+			break;
+
+		/* Create new decision filter in an empty filter */
+		for (i = 0, j = 0; i < 8; i++)
+			if (er32(MDEF(i)) == 0) {
+				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
+					       E1000_MDEF_PORT_664));
+				manc2h |= (1 << 1);
+				j++;
+				break;
+			}
+
+		if (!j)
+			e_warn("Unable to create IPMI pass-through filter\n");
+		break;
+	}
+
+	ew32(MANC2H, manc2h);
+	ew32(MANC, manc);
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+static void e1000_configure_tx(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	u64 tdba;
+	u32 tdlen, tctl, tipg, tarc;
+	u32 ipgr1, ipgr2;
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+	tdba = tx_ring->dma;
+	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
+	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
+	ew32(TDBAH, (tdba >> 32));
+	ew32(TDLEN, tdlen);
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	tx_ring->head = E1000_TDH;
+	tx_ring->tail = E1000_TDT;
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
+	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
+	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
+
+	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
+		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
+
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	ew32(TIPG, tipg);
+
+	/* Set the Tx Interrupt Delay register */
+	ew32(TIDV, adapter->tx_int_delay);
+	/* Tx irq moderation */
+	ew32(TADV, adapter->tx_abs_int_delay);
+
+	/* Program the Transmit Control Register */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
+		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
+		tarc = er32(TARC(0));
+		/*
+		 * set the speed mode bit, we'll clear it if we're not at
+		 * gigabit link later
+		 */
+#define SPEED_MODE_BIT (1 << 21)
+		tarc |= SPEED_MODE_BIT;
+		ew32(TARC(0), tarc);
+	}
+
+	/* errata: program both queues to unweighted RR */
+	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
+		tarc = er32(TARC(0));
+		tarc |= 1;
+		ew32(TARC(0), tarc);
+		tarc = er32(TARC(1));
+		tarc |= 1;
+		ew32(TARC(1), tarc);
+	}
+
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* only set IDE if we are delaying interrupts using the timers */
+	if (adapter->tx_int_delay)
+		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+	/* enable Report Status bit */
+	adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+	ew32(TCTL, tctl);
+
+	e1000e_config_collision_dist(hw);
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control registers
+ * @adapter: Board private structure
+ **/
+#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
+			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
+static void e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl, rfctl;
+	u32 psrctl = 0;
+	u32 pages = 0;
+
+	/* Program MC offset vector base */
+	rctl = er32(RCTL);
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	/* Do not Store bad packets */
+	rctl &= ~E1000_RCTL_SBP;
+
+	/* Enable Long Packet receive */
+	if (adapter->netdev->mtu <= ETH_DATA_LEN)
+		rctl &= ~E1000_RCTL_LPE;
+	else
+		rctl |= E1000_RCTL_LPE;
+
+	/* Some systems expect that the CRC is included in SMBUS traffic. The
+	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
+	 * host memory when this is enabled
+	 */
+	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
+		rctl |= E1000_RCTL_SECRC;
+
+	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
+	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
+		u16 phy_data;
+
+		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
+		phy_data &= 0xfff8;
+		phy_data |= (1 << 2);
+		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
+
+		e1e_rphy(hw, 22, &phy_data);
+		phy_data &= 0x0fff;
+		phy_data |= (1 << 14);
+		e1e_wphy(hw, 0x10, 0x2823);
+		e1e_wphy(hw, 0x11, 0x0003);
+		e1e_wphy(hw, 22, phy_data);
+	}
+
+	/* Setup buffer sizes */
+	rctl &= ~E1000_RCTL_SZ_4096;
+	rctl |= E1000_RCTL_BSEX;
+	switch (adapter->rx_buffer_len) {
+	case 2048:
+	default:
+		rctl |= E1000_RCTL_SZ_2048;
+		rctl &= ~E1000_RCTL_BSEX;
+		break;
+	case 4096:
+		rctl |= E1000_RCTL_SZ_4096;
+		break;
+	case 8192:
+		rctl |= E1000_RCTL_SZ_8192;
+		break;
+	case 16384:
+		rctl |= E1000_RCTL_SZ_16384;
+		break;
+	}
+
+	/*
+	 * 82571 and greater support packet-split where the protocol
+	 * header is placed in skb->data and the packet data is
+	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
+	 * In the case of a non-split, skb->data is linearly filled,
+	 * followed by the page buffers.  Therefore, skb->data is
+	 * sized to hold the largest protocol header.
+	 *
+	 * allocations using alloc_page take too long for regular MTU
+	 * so only enable packet split for jumbo frames
+	 *
+	 * Using pages when the page size is greater than 16k wastes
+	 * a lot of memory, since we allocate 3 pages at all times
+	 * per packet.
+	 */
+	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
+	if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
+	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
+		adapter->rx_ps_pages = pages;
+	else
+		adapter->rx_ps_pages = 0;
+
+	if (adapter->rx_ps_pages) {
+		/* Configure extra packet-split registers */
+		rfctl = er32(RFCTL);
+		rfctl |= E1000_RFCTL_EXTEN;
+		/*
+		 * disable packet split support for IPv6 extension headers,
+		 * because some malformed IPv6 headers can hang the Rx
+		 */
+		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
+			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
+
+		ew32(RFCTL, rfctl);
+
+		/* Enable Packet split descriptors */
+		rctl |= E1000_RCTL_DTYP_PS;
+
+		psrctl |= adapter->rx_ps_bsize0 >>
+			E1000_PSRCTL_BSIZE0_SHIFT;
+
+		switch (adapter->rx_ps_pages) {
+		case 3:
+			psrctl |= PAGE_SIZE <<
+				E1000_PSRCTL_BSIZE3_SHIFT;
+		case 2:
+			psrctl |= PAGE_SIZE <<
+				E1000_PSRCTL_BSIZE2_SHIFT;
+		case 1:
+			psrctl |= PAGE_SIZE >>
+				E1000_PSRCTL_BSIZE1_SHIFT;
+			break;
+		}
+
+		ew32(PSRCTL, psrctl);
+	}
+
+	ew32(RCTL, rctl);
+	/* just started the receive unit, no need to restart */
+	adapter->flags &= ~FLAG_RX_RESTART_NOW;
+}
+
+/**
+ * e1000_configure_rx - Configure Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+static void e1000_configure_rx(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_ring *rx_ring = adapter->rx_ring;
+	u64 rdba;
+	u32 rdlen, rctl, rxcsum, ctrl_ext;
+
+	if (adapter->rx_ps_pages) {
+		/* this is a 32 byte descriptor */
+		rdlen = rx_ring->count *
+			sizeof(union e1000_rx_desc_packet_split);
+		adapter->clean_rx = e1000_clean_rx_irq_ps;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
+	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
+		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
+	} else {
+		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+	}
+
+	/* disable receives while setting up the descriptors */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	e1e_flush();
+	msleep(10);
+
+	/* set the Receive Delay Timer Register */
+	ew32(RDTR, adapter->rx_int_delay);
+
+	/* irq moderation */
+	ew32(RADV, adapter->rx_abs_int_delay);
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+
+	ctrl_ext = er32(CTRL_EXT);
+	/* Auto-Mask interrupts upon ICR access */
+	ctrl_ext |= E1000_CTRL_EXT_IAME;
+	ew32(IAM, 0xffffffff);
+	ew32(CTRL_EXT, ctrl_ext);
+	e1e_flush();
+
+	/*
+	 * Setup the HW Rx Head and Tail Descriptor Pointers and
+	 * the Base and Length of the Rx Descriptor Ring
+	 */
+	rdba = rx_ring->dma;
+	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
+	ew32(RDBAH, (rdba >> 32));
+	ew32(RDLEN, rdlen);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rx_ring->head = E1000_RDH;
+	rx_ring->tail = E1000_RDT;
+
+	/* Enable Receive Checksum Offload for TCP and UDP */
+	rxcsum = er32(RXCSUM);
+	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
+		rxcsum |= E1000_RXCSUM_TUOFL;
+
+		/*
+		 * IPv4 payload checksum for UDP fragments must be
+		 * used in conjunction with packet-split.
+		 */
+		if (adapter->rx_ps_pages)
+			rxcsum |= E1000_RXCSUM_IPPCSE;
+	} else {
+		rxcsum &= ~E1000_RXCSUM_TUOFL;
+		/* no need to clear IPPCSE as it defaults to 0 */
+	}
+	ew32(RXCSUM, rxcsum);
+
+	/*
+	 * Enable early receives on supported devices, only takes effect when
+	 * packet size is equal or larger than the specified value (in 8 byte
+	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
+	 */
+	if (adapter->flags & FLAG_HAS_ERT) {
+		if (adapter->netdev->mtu > ETH_DATA_LEN) {
+			u32 rxdctl = er32(RXDCTL(0));
+			ew32(RXDCTL(0), rxdctl | 0x3);
+			ew32(ERT, E1000_ERT_2048 | (1 << 13));
+			/*
+			 * With jumbo frames and early-receive enabled,
+			 * excessive C-state transition latencies result in
+			 * dropped transactions.
+			 */
+			pm_qos_update_request(
+				adapter->netdev->pm_qos_req, 55);
+		} else {
+			pm_qos_update_request(
+				adapter->netdev->pm_qos_req,
+				PM_QOS_DEFAULT_VALUE);
+		}
+	}
+
+	/* Enable Receives */
+	ew32(RCTL, rctl);
+}
+
+/**
+ *  e1000_update_mc_addr_list - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates the Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+				      u32 mc_addr_count)
+{
+	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
+}
+
+/**
+ * e1000_set_multi - Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_multi entry point is called whenever the multicast address
+ * list or the network interface flags are updated.  This routine is
+ * responsible for configuring the hardware for proper multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+static void e1000_set_multi(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct netdev_hw_addr *ha;
+	u8  *mta_list;
+	u32 rctl;
+	int i;
+
+	/* Check for Promiscuous and All Multicast modes */
+
+	rctl = er32(RCTL);
+
+	if (netdev->flags & IFF_PROMISC) {
+		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		rctl &= ~E1000_RCTL_VFE;
+	} else {
+		if (netdev->flags & IFF_ALLMULTI) {
+			rctl |= E1000_RCTL_MPE;
+			rctl &= ~E1000_RCTL_UPE;
+		} else {
+			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
+		}
+		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
+			rctl |= E1000_RCTL_VFE;
+	}
+
+	ew32(RCTL, rctl);
+
+	if (!netdev_mc_empty(netdev)) {
+		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
+		if (!mta_list)
+			return;
+
+		/* prepare a packed array of only addresses. */
+		i = 0;
+		netdev_for_each_mc_addr(ha, netdev)
+			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
+
+		e1000_update_mc_addr_list(hw, mta_list, i);
+		kfree(mta_list);
+	} else {
+		/*
+		 * if we're called from probe, we might not have
+		 * anything to do here, so clear out the list
+		 */
+		e1000_update_mc_addr_list(hw, NULL, 0);
+	}
+}
+
+/**
+ * e1000_configure - configure the hardware for Rx and Tx
+ * @adapter: private board structure
+ **/
+static void e1000_configure(struct e1000_adapter *adapter)
+{
+	e1000_set_multi(adapter->netdev);
+
+	e1000_restore_vlan(adapter);
+	e1000_init_manageability_pt(adapter);
+
+	e1000_configure_tx(adapter);
+	e1000_setup_rctl(adapter);
+	e1000_configure_rx(adapter);
+	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
+}
+
+/**
+ * e1000e_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000e_reset ***
+ **/
+void e1000e_power_up_phy(struct e1000_adapter *adapter)
+{
+	if (adapter->hw.phy.ops.power_up)
+		adapter->hw.phy.ops.power_up(&adapter->hw);
+
+	adapter->hw.mac.ops.setup_link(&adapter->hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down the PHY
+ *
+ * Power down the PHY so no link is implied when interface is down.
+ * The PHY cannot be powered down if management or WoL is active.
+ */
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+	/* WoL is enabled */
+	if (adapter->wol)
+		return;
+
+	if (adapter->hw.phy.ops.power_down)
+		adapter->hw.phy.ops.power_down(&adapter->hw);
+}
+
+/**
+ * e1000e_reset - bring the hardware into a known good state
+ *
+ * This function boots the hardware and enables some settings that
+ * require a configuration cycle of the hardware - those cannot be
+ * set/changed during runtime. After reset the device needs to be
+ * properly configured for Rx, Tx etc.
+ */
+void e1000e_reset(struct e1000_adapter *adapter)
+{
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+	struct e1000_fc_info *fc = &adapter->hw.fc;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tx_space, min_tx_space, min_rx_space;
+	u32 pba = adapter->pba;
+	u16 hwm;
+
+	/* reset Packet Buffer Allocation to default */
+	ew32(PBA, pba);
+
+	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
+		/*
+		 * To maintain wire speed transmits, the Tx FIFO should be
+		 * large enough to accommodate two full transmit packets,
+		 * rounded up to the next 1KB and expressed in KB.  Likewise,
+		 * the Rx FIFO should be large enough to accommodate at least
+		 * one full receive packet and is similarly rounded up and
+		 * expressed in KB.
+		 */
+		pba = er32(PBA);
+		/* upper 16 bits has Tx packet buffer allocation size in KB */
+		tx_space = pba >> 16;
+		/* lower 16 bits has Rx packet buffer allocation size in KB */
+		pba &= 0xffff;
+		/*
+		 * the Tx fifo also stores 16 bytes of information about the tx
+		 * but don't include ethernet FCS because hardware appends it
+		 */
+		min_tx_space = (adapter->max_frame_size +
+				sizeof(struct e1000_tx_desc) -
+				ETH_FCS_LEN) * 2;
+		min_tx_space = ALIGN(min_tx_space, 1024);
+		min_tx_space >>= 10;
+		/* software strips receive CRC, so leave room for it */
+		min_rx_space = adapter->max_frame_size;
+		min_rx_space = ALIGN(min_rx_space, 1024);
+		min_rx_space >>= 10;
+
+		/*
+		 * If current Tx allocation is less than the min Tx FIFO size,
+		 * and the min Tx FIFO size is less than the current Rx FIFO
+		 * allocation, take space away from current Rx allocation
+		 */
+		if ((tx_space < min_tx_space) &&
+		    ((min_tx_space - tx_space) < pba)) {
+			pba -= min_tx_space - tx_space;
+
+			/*
+			 * if short on Rx space, Rx wins and must trump tx
+			 * adjustment or use Early Receive if available
+			 */
+			if ((pba < min_rx_space) &&
+			    (!(adapter->flags & FLAG_HAS_ERT)))
+				/* ERT enabled in e1000_configure_rx */
+				pba = min_rx_space;
+		}
+
+		ew32(PBA, pba);
+	}
+
+
+	/*
+	 * flow control settings
+	 *
+	 * The high water mark must be low enough to fit one full frame
+	 * (or the size used for early receive) above it in the Rx FIFO.
+	 * Set it to the lower of:
+	 * - 90% of the Rx FIFO size, and
+	 * - the full Rx FIFO size minus the early receive size (for parts
+	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
+	 * - the full Rx FIFO size minus one full frame
+	 */
+	if (hw->mac.type == e1000_pchlan) {
+		/*
+		 * Workaround PCH LOM adapter hangs with certain network
+		 * loads.  If hangs persist, try disabling Tx flow control.
+		 */
+		if (adapter->netdev->mtu > ETH_DATA_LEN) {
+			fc->high_water = 0x3500;
+			fc->low_water  = 0x1500;
+		} else {
+			fc->high_water = 0x5000;
+			fc->low_water  = 0x3000;
+		}
+		fc->refresh_time = 0x1000;
+	} else {
+		if ((adapter->flags & FLAG_HAS_ERT) &&
+		    (adapter->netdev->mtu > ETH_DATA_LEN))
+			hwm = min(((pba << 10) * 9 / 10),
+				  ((pba << 10) - (E1000_ERT_2048 << 3)));
+		else
+			hwm = min(((pba << 10) * 9 / 10),
+				  ((pba << 10) - adapter->max_frame_size));
+
+		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
+		fc->low_water = fc->high_water - 8;
+	}
+
+	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
+		fc->pause_time = 0xFFFF;
+	else
+		fc->pause_time = E1000_FC_PAUSE_TIME;
+	fc->send_xon = 1;
+	fc->current_mode = fc->requested_mode;
+
+	/* Allow time for pending master requests to run */
+	mac->ops.reset_hw(hw);
+
+	/*
+	 * For parts with AMT enabled, let the firmware know
+	 * that the network interface is in control
+	 */
+	if (adapter->flags & FLAG_HAS_AMT)
+		e1000_get_hw_control(adapter);
+
+	ew32(WUC, 0);
+	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
+		e1e_wphy(&adapter->hw, BM_WUC, 0);
+
+	if (mac->ops.init_hw(hw))
+		e_err("Hardware Error\n");
+
+	e1000_update_mng_vlan(adapter);
+
+	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+	ew32(VET, ETH_P_8021Q);
+
+	e1000e_reset_adaptive(hw);
+	e1000_get_phy_info(hw);
+
+	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
+	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
+		u16 phy_data = 0;
+		/*
+		 * speed up time to link by disabling smart power down, ignore
+		 * the return value of this function because there is nothing
+		 * different we would do if it failed
+		 */
+		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+		phy_data &= ~IGP02E1000_PM_SPD;
+		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
+	}
+}
+
+int e1000e_up(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* DMA latency requirement to workaround early-receive/jumbo issue */
+	if (adapter->flags & FLAG_HAS_ERT)
+		adapter->netdev->pm_qos_req =
+			pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY,
+				       PM_QOS_DEFAULT_VALUE);
+
+	/* hardware has been reset, we need to reload some things */
+	e1000_configure(adapter);
+
+	clear_bit(__E1000_DOWN, &adapter->state);
+
+	napi_enable(&adapter->napi);
+	if (adapter->msix_entries)
+		e1000_configure_msix(adapter);
+	e1000_irq_enable(adapter);
+
+	netif_wake_queue(adapter->netdev);
+
+	/* fire a link change interrupt to start the watchdog */
+	if (adapter->msix_entries)
+		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
+	else
+		ew32(ICS, E1000_ICS_LSC);
+
+	return 0;
+}
+
+void e1000e_down(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tctl, rctl;
+
+	/*
+	 * signal that we're down so the interrupt handler does not
+	 * reschedule our watchdog timer
+	 */
+	set_bit(__E1000_DOWN, &adapter->state);
+
+	/* disable receives in the hardware */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	/* flush and sleep below */
+
+	netif_stop_queue(netdev);
+
+	/* disable transmits in the hardware */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_EN;
+	ew32(TCTL, tctl);
+	/* flush both disables and wait for them to finish */
+	e1e_flush();
+	msleep(10);
+
+	napi_disable(&adapter->napi);
+	e1000_irq_disable(adapter);
+
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	netif_carrier_off(netdev);
+	adapter->link_speed = 0;
+	adapter->link_duplex = 0;
+
+	if (!pci_channel_offline(adapter->pdev))
+		e1000e_reset(adapter);
+	e1000_clean_tx_ring(adapter);
+	e1000_clean_rx_ring(adapter);
+
+	if (adapter->flags & FLAG_HAS_ERT) {
+		pm_qos_remove_request(
+			      adapter->netdev->pm_qos_req);
+		adapter->netdev->pm_qos_req = NULL;
+	}
+
+	/*
+	 * TODO: for power management, we could drop the link and
+	 * pci_disable_device here.
+	 */
+}
+
+void e1000e_reinit_locked(struct e1000_adapter *adapter)
+{
+	might_sleep();
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+	e1000e_down(adapter);
+	e1000e_up(adapter);
+	clear_bit(__E1000_RESETTING, &adapter->state);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
+	adapter->rx_ps_bsize0 = 128;
+	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
+	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
+
+	e1000e_set_interrupt_capability(adapter);
+
+	if (e1000_alloc_queues(adapter))
+		return -ENOMEM;
+
+	/* Explicitly disable IRQ since the NIC can be in any state. */
+	e1000_irq_disable(adapter);
+
+	set_bit(__E1000_DOWN, &adapter->state);
+	return 0;
+}
+
+/**
+ * e1000_intr_msi_test - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+static irqreturn_t e1000_intr_msi_test(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	e_dbg("icr is %08X\n", icr);
+	if (icr & E1000_ICR_RXSEQ) {
+		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
+		wmb();
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_test_msi_interrupt - Returns 0 for successful test
+ * @adapter: board private struct
+ *
+ * code flow taken from tg3.c
+ **/
+static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	/* poll_enable hasn't been called yet, so don't need disable */
+	/* clear any pending events */
+	er32(ICR);
+
+	/* free the real vector and request a test handler */
+	e1000_free_irq(adapter);
+	e1000e_reset_interrupt_capability(adapter);
+
+	/* Assume that the test fails, if it succeeds then the test
+	 * MSI irq handler will unset this flag */
+	adapter->flags |= FLAG_MSI_TEST_FAILED;
+
+	err = pci_enable_msi(adapter->pdev);
+	if (err)
+		goto msi_test_failed;
+
+	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
+			  netdev->name, netdev);
+	if (err) {
+		pci_disable_msi(adapter->pdev);
+		goto msi_test_failed;
+	}
+
+	wmb();
+
+	e1000_irq_enable(adapter);
+
+	/* fire an unusual interrupt on the test handler */
+	ew32(ICS, E1000_ICS_RXSEQ);
+	e1e_flush();
+	msleep(50);
+
+	e1000_irq_disable(adapter);
+
+	rmb();
+
+	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
+		adapter->int_mode = E1000E_INT_MODE_LEGACY;
+		err = -EIO;
+		e_info("MSI interrupt test failed!\n");
+	}
+
+	free_irq(adapter->pdev->irq, netdev);
+	pci_disable_msi(adapter->pdev);
+
+	if (err == -EIO)
+		goto msi_test_failed;
+
+	/* okay so the test worked, restore settings */
+	e_dbg("MSI interrupt test succeeded!\n");
+msi_test_failed:
+	e1000e_set_interrupt_capability(adapter);
+	e1000_request_irq(adapter);
+	return err;
+}
+
+/**
+ * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
+ * @adapter: board private struct
+ *
+ * code flow taken from tg3.c, called with e1000 interrupts disabled.
+ **/
+static int e1000_test_msi(struct e1000_adapter *adapter)
+{
+	int err;
+	u16 pci_cmd;
+
+	if (!(adapter->flags & FLAG_MSI_ENABLED))
+		return 0;
+
+	/* disable SERR in case the MSI write causes a master abort */
+	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
+	if (pci_cmd & PCI_COMMAND_SERR)
+		pci_write_config_word(adapter->pdev, PCI_COMMAND,
+				      pci_cmd & ~PCI_COMMAND_SERR);
+
+	err = e1000_test_msi_interrupt(adapter);
+
+	/* re-enable SERR */
+	if (pci_cmd & PCI_COMMAND_SERR) {
+		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
+		pci_cmd |= PCI_COMMAND_SERR;
+		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
+	}
+
+	/* success ! */
+	if (!err)
+		return 0;
+
+	/* EIO means MSI test failed */
+	if (err != -EIO)
+		return err;
+
+	/* back to INTx mode */
+	e_warn("MSI interrupt test failed, using legacy interrupt.\n");
+
+	e1000_free_irq(adapter);
+
+	err = e1000_request_irq(adapter);
+
+	return err;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP).  At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+static int e1000_open(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	int err;
+
+	/* disallow open during test */
+	if (test_bit(__E1000_TESTING, &adapter->state))
+		return -EBUSY;
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	netif_carrier_off(netdev);
+
+	/* allocate transmit descriptors */
+	err = e1000e_setup_tx_resources(adapter);
+	if (err)
+		goto err_setup_tx;
+
+	/* allocate receive descriptors */
+	err = e1000e_setup_rx_resources(adapter);
+	if (err)
+		goto err_setup_rx;
+
+	/*
+	 * If AMT is enabled, let the firmware know that the network
+	 * interface is now open and reset the part to a known state.
+	 */
+	if (adapter->flags & FLAG_HAS_AMT) {
+		e1000_get_hw_control(adapter);
+		e1000e_reset(adapter);
+	}
+
+	e1000e_power_up_phy(adapter);
+
+	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+	if ((adapter->hw.mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
+		e1000_update_mng_vlan(adapter);
+
+	/*
+	 * before we allocate an interrupt, we must be ready to handle it.
+	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
+	 * as soon as we call pci_request_irq, so we have to setup our
+	 * clean_rx handler before we do so.
+	 */
+	e1000_configure(adapter);
+
+	err = e1000_request_irq(adapter);
+	if (err)
+		goto err_req_irq;
+
+	/*
+	 * Work around PCIe errata with MSI interrupts causing some chipsets to
+	 * ignore e1000e MSI messages, which means we need to test our MSI
+	 * interrupt now
+	 */
+	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
+		err = e1000_test_msi(adapter);
+		if (err) {
+			e_err("Interrupt allocation failed\n");
+			goto err_req_irq;
+		}
+	}
+
+	/* From here on the code is the same as e1000e_up() */
+	clear_bit(__E1000_DOWN, &adapter->state);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_start_queue(netdev);
+
+	adapter->idle_check = true;
+	pm_runtime_put(&pdev->dev);
+
+	/* fire a link status change interrupt to start the watchdog */
+	if (adapter->msix_entries)
+		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
+	else
+		ew32(ICS, E1000_ICS_LSC);
+
+	return 0;
+
+err_req_irq:
+	e1000_release_hw_control(adapter);
+	e1000_power_down_phy(adapter);
+	e1000e_free_rx_resources(adapter);
+err_setup_rx:
+	e1000e_free_tx_resources(adapter);
+err_setup_tx:
+	e1000e_reset(adapter);
+	pm_runtime_put_sync(&pdev->dev);
+
+	return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS.  The hardware is still under the drivers control, but
+ * needs to be disabled.  A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+static int e1000_close(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct pci_dev *pdev = adapter->pdev;
+
+	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	if (!test_bit(__E1000_DOWN, &adapter->state)) {
+		e1000e_down(adapter);
+		e1000_free_irq(adapter);
+	}
+	e1000_power_down_phy(adapter);
+
+	e1000e_free_tx_resources(adapter);
+	e1000e_free_rx_resources(adapter);
+
+	/*
+	 * kill manageability vlan ID if supported, but not if a vlan with
+	 * the same ID is registered on the host OS (let 8021q kill it)
+	 */
+	if ((adapter->hw.mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
+	     !(adapter->vlgrp &&
+	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
+		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+
+	/*
+	 * If AMT is enabled, let the firmware know that the network
+	 * interface is now closed
+	 */
+	if (adapter->flags & FLAG_HAS_AMT)
+		e1000_release_hw_control(adapter);
+
+	pm_runtime_put_sync(&pdev->dev);
+
+	return 0;
+}
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+static int e1000_set_mac(struct net_device *netdev, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
+
+	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
+		/* activate the work around */
+		e1000e_set_laa_state_82571(&adapter->hw, 1);
+
+		/*
+		 * Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered  and the time it
+		 * gets fixed (in e1000_watchdog), the actual LAA is in one
+		 * of the RARs and no incoming packets directed to this port
+		 * are dropped. Eventually the LAA will be in RAR[0] and
+		 * RAR[14]
+		 */
+		e1000e_rar_set(&adapter->hw,
+			      adapter->hw.mac.addr,
+			      adapter->hw.mac.rar_entry_count - 1);
+	}
+
+	return 0;
+}
+
+/**
+ * e1000e_update_phy_task - work thread to update phy
+ * @work: pointer to our work struct
+ *
+ * this worker thread exists because we must acquire a
+ * semaphore to read the phy, which we could msleep while
+ * waiting for it, and we can't msleep in a timer.
+ **/
+static void e1000e_update_phy_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+					struct e1000_adapter, update_phy_task);
+	e1000_get_phy_info(&adapter->hw);
+}
+
+/*
+ * Need to wait a few seconds after link up to get diagnostic information from
+ * the phy
+ */
+static void e1000_update_phy_info(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+	schedule_work(&adapter->update_phy_task);
+}
+
+/**
+ * e1000e_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+void e1000e_update_stats(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	u16 phy_data;
+
+	/*
+	 * Prevent stats update while adapter is being reset, or if the pci
+	 * connection is down.
+	 */
+	if (adapter->link_speed == 0)
+		return;
+	if (pci_channel_offline(pdev))
+		return;
+
+	adapter->stats.crcerrs += er32(CRCERRS);
+	adapter->stats.gprc += er32(GPRC);
+	adapter->stats.gorc += er32(GORCL);
+	er32(GORCH); /* Clear gorc */
+	adapter->stats.bprc += er32(BPRC);
+	adapter->stats.mprc += er32(MPRC);
+	adapter->stats.roc += er32(ROC);
+
+	adapter->stats.mpc += er32(MPC);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
+			adapter->stats.scc += phy_data;
+
+		e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
+			adapter->stats.ecol += phy_data;
+
+		e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
+			adapter->stats.mcc += phy_data;
+
+		e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
+			adapter->stats.latecol += phy_data;
+
+		e1e_rphy(hw, HV_DC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
+			adapter->stats.dc += phy_data;
+	} else {
+		adapter->stats.scc += er32(SCC);
+		adapter->stats.ecol += er32(ECOL);
+		adapter->stats.mcc += er32(MCC);
+		adapter->stats.latecol += er32(LATECOL);
+		adapter->stats.dc += er32(DC);
+	}
+	adapter->stats.xonrxc += er32(XONRXC);
+	adapter->stats.xontxc += er32(XONTXC);
+	adapter->stats.xoffrxc += er32(XOFFRXC);
+	adapter->stats.xofftxc += er32(XOFFTXC);
+	adapter->stats.gptc += er32(GPTC);
+	adapter->stats.gotc += er32(GOTCL);
+	er32(GOTCH); /* Clear gotc */
+	adapter->stats.rnbc += er32(RNBC);
+	adapter->stats.ruc += er32(RUC);
+
+	adapter->stats.mptc += er32(MPTC);
+	adapter->stats.bptc += er32(BPTC);
+
+	/* used for adaptive IFS */
+
+	hw->mac.tx_packet_delta = er32(TPT);
+	adapter->stats.tpt += hw->mac.tx_packet_delta;
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
+			hw->mac.collision_delta = phy_data;
+	} else {
+		hw->mac.collision_delta = er32(COLC);
+	}
+	adapter->stats.colc += hw->mac.collision_delta;
+
+	adapter->stats.algnerrc += er32(ALGNERRC);
+	adapter->stats.rxerrc += er32(RXERRC);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
+		if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
+			adapter->stats.tncrs += phy_data;
+	} else {
+		if ((hw->mac.type != e1000_82574) &&
+		    (hw->mac.type != e1000_82583))
+			adapter->stats.tncrs += er32(TNCRS);
+	}
+	adapter->stats.cexterr += er32(CEXTERR);
+	adapter->stats.tsctc += er32(TSCTC);
+	adapter->stats.tsctfc += er32(TSCTFC);
+
+	/* Fill out the OS statistics structure */
+	netdev->stats.multicast = adapter->stats.mprc;
+	netdev->stats.collisions = adapter->stats.colc;
+
+	/* Rx Errors */
+
+	/*
+	 * RLEC on some newer hardware can be incorrect so build
+	 * our own version based on RUC and ROC
+	 */
+	netdev->stats.rx_errors = adapter->stats.rxerrc +
+		adapter->stats.crcerrs + adapter->stats.algnerrc +
+		adapter->stats.ruc + adapter->stats.roc +
+		adapter->stats.cexterr;
+	netdev->stats.rx_length_errors = adapter->stats.ruc +
+					      adapter->stats.roc;
+	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
+	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
+	netdev->stats.rx_missed_errors = adapter->stats.mpc;
+
+	/* Tx Errors */
+	netdev->stats.tx_errors = adapter->stats.ecol +
+				       adapter->stats.latecol;
+	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
+	netdev->stats.tx_window_errors = adapter->stats.latecol;
+	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
+
+	/* Tx Dropped needs to be maintained elsewhere */
+
+	/* Management Stats */
+	adapter->stats.mgptc += er32(MGTPTC);
+	adapter->stats.mgprc += er32(MGTPRC);
+	adapter->stats.mgpdc += er32(MGTPDC);
+}
+
+/**
+ * e1000_phy_read_status - Update the PHY register status snapshot
+ * @adapter: board private structure
+ **/
+static void e1000_phy_read_status(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_phy_regs *phy = &adapter->phy_regs;
+	int ret_val;
+
+	if ((er32(STATUS) & E1000_STATUS_LU) &&
+	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
+		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
+		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
+		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
+		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
+		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
+		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
+		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
+		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
+		if (ret_val)
+			e_warn("Error reading PHY register\n");
+	} else {
+		/*
+		 * Do not read PHY registers if link is not up
+		 * Set values to typical power-on defaults
+		 */
+		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
+		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
+			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
+			     BMSR_ERCAP);
+		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
+				  ADVERTISE_ALL | ADVERTISE_CSMA);
+		phy->lpa = 0;
+		phy->expansion = EXPANSION_ENABLENPAGE;
+		phy->ctrl1000 = ADVERTISE_1000FULL;
+		phy->stat1000 = 0;
+		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
+	}
+}
+
+static void e1000_print_link_info(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl = er32(CTRL);
+
+	/* Link status message must follow this format for user tools */
+	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
+	       "Flow Control: %s\n",
+	       adapter->netdev->name,
+	       adapter->link_speed,
+	       (adapter->link_duplex == FULL_DUPLEX) ?
+	                        "Full Duplex" : "Half Duplex",
+	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
+	                        "RX/TX" :
+	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
+	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
+}
+
+bool e1000e_has_link(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	bool link_active = 0;
+	s32 ret_val = 0;
+
+	/*
+	 * get_link_status is set on LSC (link status) interrupt or
+	 * Rx sequence error interrupt.  get_link_status will stay
+	 * false until the check_for_link establishes link
+	 * for copper adapters ONLY
+	 */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		if (hw->mac.get_link_status) {
+			ret_val = hw->mac.ops.check_for_link(hw);
+			link_active = !hw->mac.get_link_status;
+		} else {
+			link_active = 1;
+		}
+		break;
+	case e1000_media_type_fiber:
+		ret_val = hw->mac.ops.check_for_link(hw);
+		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
+		break;
+	case e1000_media_type_internal_serdes:
+		ret_val = hw->mac.ops.check_for_link(hw);
+		link_active = adapter->hw.mac.serdes_has_link;
+		break;
+	default:
+	case e1000_media_type_unknown:
+		break;
+	}
+
+	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
+	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
+		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
+		e_info("Gigabit has been disabled, downgrading speed\n");
+	}
+
+	return link_active;
+}
+
+static void e1000e_enable_receives(struct e1000_adapter *adapter)
+{
+	/* make sure the receive unit is started */
+	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
+	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
+		struct e1000_hw *hw = &adapter->hw;
+		u32 rctl = er32(RCTL);
+		ew32(RCTL, rctl | E1000_RCTL_EN);
+		adapter->flags &= ~FLAG_RX_RESTART_NOW;
+	}
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void e1000_watchdog(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+
+	/* Do the rest outside of interrupt context */
+	schedule_work(&adapter->watchdog_task);
+
+	/* TODO: make this use queue_delayed_work() */
+}
+
+static void e1000_watchdog_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter = container_of(work,
+					struct e1000_adapter, watchdog_task);
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_mac_info *mac = &adapter->hw.mac;
+	struct e1000_phy_info *phy = &adapter->hw.phy;
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 link, tctl;
+	int tx_pending = 0;
+
+	link = e1000e_has_link(adapter);
+	if ((netif_carrier_ok(netdev)) && link) {
+		/* Cancel scheduled suspend requests. */
+		pm_runtime_resume(netdev->dev.parent);
+
+		e1000e_enable_receives(adapter);
+		goto link_up;
+	}
+
+	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
+	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
+		e1000_update_mng_vlan(adapter);
+
+	if (link) {
+		if (!netif_carrier_ok(netdev)) {
+			bool txb2b = 1;
+
+			/* Cancel scheduled suspend requests. */
+			pm_runtime_resume(netdev->dev.parent);
+
+			/* update snapshot of PHY registers on LSC */
+			e1000_phy_read_status(adapter);
+			mac->ops.get_link_up_info(&adapter->hw,
+						   &adapter->link_speed,
+						   &adapter->link_duplex);
+			e1000_print_link_info(adapter);
+			/*
+			 * On supported PHYs, check for duplex mismatch only
+			 * if link has autonegotiated at 10/100 half
+			 */
+			if ((hw->phy.type == e1000_phy_igp_3 ||
+			     hw->phy.type == e1000_phy_bm) &&
+			    (hw->mac.autoneg == true) &&
+			    (adapter->link_speed == SPEED_10 ||
+			     adapter->link_speed == SPEED_100) &&
+			    (adapter->link_duplex == HALF_DUPLEX)) {
+				u16 autoneg_exp;
+
+				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
+
+				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
+					e_info("Autonegotiated half duplex but"
+					       " link partner cannot autoneg. "
+					       " Try forcing full duplex if "
+					       "link gets many collisions.\n");
+			}
+
+			/* adjust timeout factor according to speed/duplex */
+			adapter->tx_timeout_factor = 1;
+			switch (adapter->link_speed) {
+			case SPEED_10:
+				txb2b = 0;
+				adapter->tx_timeout_factor = 16;
+				break;
+			case SPEED_100:
+				txb2b = 0;
+				adapter->tx_timeout_factor = 10;
+				break;
+			}
+
+			/*
+			 * workaround: re-program speed mode bit after
+			 * link-up event
+			 */
+			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
+			    !txb2b) {
+				u32 tarc0;
+				tarc0 = er32(TARC(0));
+				tarc0 &= ~SPEED_MODE_BIT;
+				ew32(TARC(0), tarc0);
+			}
+
+			/*
+			 * disable TSO for pcie and 10/100 speeds, to avoid
+			 * some hardware issues
+			 */
+			if (!(adapter->flags & FLAG_TSO_FORCE)) {
+				switch (adapter->link_speed) {
+				case SPEED_10:
+				case SPEED_100:
+					e_info("10/100 speed: disabling TSO\n");
+					netdev->features &= ~NETIF_F_TSO;
+					netdev->features &= ~NETIF_F_TSO6;
+					break;
+				case SPEED_1000:
+					netdev->features |= NETIF_F_TSO;
+					netdev->features |= NETIF_F_TSO6;
+					break;
+				default:
+					/* oops */
+					break;
+				}
+			}
+
+			/*
+			 * enable transmits in the hardware, need to do this
+			 * after setting TARC(0)
+			 */
+			tctl = er32(TCTL);
+			tctl |= E1000_TCTL_EN;
+			ew32(TCTL, tctl);
+
+                        /*
+			 * Perform any post-link-up configuration before
+			 * reporting link up.
+			 */
+			if (phy->ops.cfg_on_link_up)
+				phy->ops.cfg_on_link_up(hw);
+
+			netif_carrier_on(netdev);
+
+			if (!test_bit(__E1000_DOWN, &adapter->state))
+				mod_timer(&adapter->phy_info_timer,
+					  round_jiffies(jiffies + 2 * HZ));
+		}
+	} else {
+		if (netif_carrier_ok(netdev)) {
+			adapter->link_speed = 0;
+			adapter->link_duplex = 0;
+			/* Link status message must follow this format */
+			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
+			       adapter->netdev->name);
+			netif_carrier_off(netdev);
+			if (!test_bit(__E1000_DOWN, &adapter->state))
+				mod_timer(&adapter->phy_info_timer,
+					  round_jiffies(jiffies + 2 * HZ));
+
+			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
+				schedule_work(&adapter->reset_task);
+			else
+				pm_schedule_suspend(netdev->dev.parent,
+							LINK_TIMEOUT);
+		}
+	}
+
+link_up:
+	e1000e_update_stats(adapter);
+
+	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+	adapter->tpt_old = adapter->stats.tpt;
+	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
+	adapter->colc_old = adapter->stats.colc;
+
+	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
+	adapter->gorc_old = adapter->stats.gorc;
+	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
+	adapter->gotc_old = adapter->stats.gotc;
+
+	e1000e_update_adaptive(&adapter->hw);
+
+	if (!netif_carrier_ok(netdev)) {
+		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
+			       tx_ring->count);
+		if (tx_pending) {
+			/*
+			 * We've lost link, so the controller stops DMA,
+			 * but we've got queued Tx work that's never going
+			 * to get done, so reset controller to flush Tx.
+			 * (Do the reset outside of interrupt context).
+			 */
+			adapter->tx_timeout_count++;
+			schedule_work(&adapter->reset_task);
+			/* return immediately since reset is imminent */
+			return;
+		}
+	}
+
+	/* Simple mode for Interrupt Throttle Rate (ITR) */
+	if (adapter->itr_setting == 4) {
+		/*
+		 * Symmetric Tx/Rx gets a reduced ITR=2000;
+		 * Total asymmetrical Tx or Rx gets ITR=8000;
+		 * everyone else is between 2000-8000.
+		 */
+		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
+		u32 dif = (adapter->gotc > adapter->gorc ?
+			    adapter->gotc - adapter->gorc :
+			    adapter->gorc - adapter->gotc) / 10000;
+		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
+
+		ew32(ITR, 1000000000 / (itr * 256));
+	}
+
+	/* Cause software interrupt to ensure Rx ring is cleaned */
+	if (adapter->msix_entries)
+		ew32(ICS, adapter->rx_ring->ims_val);
+	else
+		ew32(ICS, E1000_ICS_RXDMT0);
+
+	/* Force detection of hung controller every watchdog period */
+	adapter->detect_tx_hung = 1;
+
+	/*
+	 * With 82571 controllers, LAA may be overwritten due to controller
+	 * reset from the other port. Set the appropriate LAA in RAR[0]
+	 */
+	if (e1000e_get_laa_state_82571(hw))
+		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
+
+	/* Reset the timer */
+	if (!test_bit(__E1000_DOWN, &adapter->state))
+		mod_timer(&adapter->watchdog_timer,
+			  round_jiffies(jiffies + 2 * HZ));
+}
+
+#define E1000_TX_FLAGS_CSUM		0x00000001
+#define E1000_TX_FLAGS_VLAN		0x00000002
+#define E1000_TX_FLAGS_TSO		0x00000004
+#define E1000_TX_FLAGS_IPV4		0x00000008
+#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT	16
+
+static int e1000_tso(struct e1000_adapter *adapter,
+		     struct sk_buff *skb)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u32 cmd_length = 0;
+	u16 ipcse = 0, tucse, mss;
+	u8 ipcss, ipcso, tucss, tucso, hdr_len;
+	int err;
+
+	if (!skb_is_gso(skb))
+		return 0;
+
+	if (skb_header_cloned(skb)) {
+		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+		if (err)
+			return err;
+	}
+
+	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+	mss = skb_shinfo(skb)->gso_size;
+	if (skb->protocol == htons(ETH_P_IP)) {
+		struct iphdr *iph = ip_hdr(skb);
+		iph->tot_len = 0;
+		iph->check = 0;
+		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
+		                                         0, IPPROTO_TCP, 0);
+		cmd_length = E1000_TXD_CMD_IP;
+		ipcse = skb_transport_offset(skb) - 1;
+	} else if (skb_is_gso_v6(skb)) {
+		ipv6_hdr(skb)->payload_len = 0;
+		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+		                                       &ipv6_hdr(skb)->daddr,
+		                                       0, IPPROTO_TCP, 0);
+		ipcse = 0;
+	}
+	ipcss = skb_network_offset(skb);
+	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
+	tucss = skb_transport_offset(skb);
+	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
+	tucse = 0;
+
+	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
+
+	i = tx_ring->next_to_use;
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+	buffer_info = &tx_ring->buffer_info[i];
+
+	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
+	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
+	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
+	context_desc->upper_setup.tcp_fields.tucss = tucss;
+	context_desc->upper_setup.tcp_fields.tucso = tucso;
+	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
+	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	i++;
+	if (i == tx_ring->count)
+		i = 0;
+	tx_ring->next_to_use = i;
+
+	return 1;
+}
+
+static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u8 css;
+	u32 cmd_len = E1000_TXD_CMD_DEXT;
+	__be16 protocol;
+
+	if (skb->ip_summed != CHECKSUM_PARTIAL)
+		return 0;
+
+	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
+		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
+	else
+		protocol = skb->protocol;
+
+	switch (protocol) {
+	case cpu_to_be16(ETH_P_IP):
+		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	case cpu_to_be16(ETH_P_IPV6):
+		/* XXX not handling all IPV6 headers */
+		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	default:
+		if (unlikely(net_ratelimit()))
+			e_warn("checksum_partial proto=%x!\n",
+			       be16_to_cpu(protocol));
+		break;
+	}
+
+	css = skb_transport_offset(skb);
+
+	i = tx_ring->next_to_use;
+	buffer_info = &tx_ring->buffer_info[i];
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+
+	context_desc->lower_setup.ip_config = 0;
+	context_desc->upper_setup.tcp_fields.tucss = css;
+	context_desc->upper_setup.tcp_fields.tucso =
+				css + skb->csum_offset;
+	context_desc->upper_setup.tcp_fields.tucse = 0;
+	context_desc->tcp_seg_setup.data = 0;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	i++;
+	if (i == tx_ring->count)
+		i = 0;
+	tx_ring->next_to_use = i;
+
+	return 1;
+}
+
+#define E1000_MAX_PER_TXD	8192
+#define E1000_MAX_TXD_PWR	12
+
+static int e1000_tx_map(struct e1000_adapter *adapter,
+			struct sk_buff *skb, unsigned int first,
+			unsigned int max_per_txd, unsigned int nr_frags,
+			unsigned int mss)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_buffer *buffer_info;
+	unsigned int len = skb_headlen(skb);
+	unsigned int offset = 0, size, count = 0, i;
+	unsigned int f, bytecount, segs;
+
+	i = tx_ring->next_to_use;
+
+	while (len) {
+		buffer_info = &tx_ring->buffer_info[i];
+		size = min(len, max_per_txd);
+
+		buffer_info->length = size;
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+		buffer_info->dma = dma_map_single(&pdev->dev,
+						  skb->data + offset,
+						  size,	DMA_TO_DEVICE);
+		buffer_info->mapped_as_page = false;
+		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+			goto dma_error;
+
+		len -= size;
+		offset += size;
+		count++;
+
+		if (len) {
+			i++;
+			if (i == tx_ring->count)
+				i = 0;
+		}
+	}
+
+	for (f = 0; f < nr_frags; f++) {
+		struct skb_frag_struct *frag;
+
+		frag = &skb_shinfo(skb)->frags[f];
+		len = frag->size;
+		offset = frag->page_offset;
+
+		while (len) {
+			i++;
+			if (i == tx_ring->count)
+				i = 0;
+
+			buffer_info = &tx_ring->buffer_info[i];
+			size = min(len, max_per_txd);
+
+			buffer_info->length = size;
+			buffer_info->time_stamp = jiffies;
+			buffer_info->next_to_watch = i;
+			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
+							offset, size,
+							DMA_TO_DEVICE);
+			buffer_info->mapped_as_page = true;
+			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
+				goto dma_error;
+
+			len -= size;
+			offset += size;
+			count++;
+		}
+	}
+
+	segs = skb_shinfo(skb)->gso_segs ?: 1;
+	/* multiply data chunks by size of headers */
+	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
+
+	tx_ring->buffer_info[i].skb = skb;
+	tx_ring->buffer_info[i].segs = segs;
+	tx_ring->buffer_info[i].bytecount = bytecount;
+	tx_ring->buffer_info[first].next_to_watch = i;
+
+	return count;
+
+dma_error:
+	dev_err(&pdev->dev, "TX DMA map failed\n");
+	buffer_info->dma = 0;
+	if (count)
+		count--;
+
+	while (count--) {
+		if (i==0)
+			i += tx_ring->count;
+		i--;
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_put_txbuf(adapter, buffer_info);;
+	}
+
+	return 0;
+}
+
+static void e1000_tx_queue(struct e1000_adapter *adapter,
+			   int tx_flags, int count)
+{
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	struct e1000_tx_desc *tx_desc = NULL;
+	struct e1000_buffer *buffer_info;
+	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+	unsigned int i;
+
+	if (tx_flags & E1000_TX_FLAGS_TSO) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+			     E1000_TXD_CMD_TSE;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+		if (tx_flags & E1000_TX_FLAGS_IPV4)
+			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+	}
+
+	if (tx_flags & E1000_TX_FLAGS_CSUM) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+	}
+
+	if (tx_flags & E1000_TX_FLAGS_VLAN) {
+		txd_lower |= E1000_TXD_CMD_VLE;
+		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+	}
+
+	i = tx_ring->next_to_use;
+
+	while (count--) {
+		buffer_info = &tx_ring->buffer_info[i];
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+		tx_desc->lower.data =
+			cpu_to_le32(txd_lower | buffer_info->length);
+		tx_desc->upper.data = cpu_to_le32(txd_upper);
+
+		i++;
+		if (i == tx_ring->count)
+			i = 0;
+	}
+
+	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+	/*
+	 * Force memory writes to complete before letting h/w
+	 * know there are new descriptors to fetch.  (Only
+	 * applicable for weak-ordered memory model archs,
+	 * such as IA-64).
+	 */
+	wmb();
+
+	tx_ring->next_to_use = i;
+	writel(i, adapter->hw.hw_addr + tx_ring->tail);
+	/*
+	 * we need this if more than one processor can write to our tail
+	 * at a time, it synchronizes IO on IA64/Altix systems
+	 */
+	mmiowb();
+}
+
+#define MINIMUM_DHCP_PACKET_SIZE 282
+static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
+				    struct sk_buff *skb)
+{
+	struct e1000_hw *hw =  &adapter->hw;
+	u16 length, offset;
+
+	if (vlan_tx_tag_present(skb)) {
+		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
+		    (adapter->hw.mng_cookie.status &
+			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
+			return 0;
+	}
+
+	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
+		return 0;
+
+	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
+		return 0;
+
+	{
+		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
+		struct udphdr *udp;
+
+		if (ip->protocol != IPPROTO_UDP)
+			return 0;
+
+		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
+		if (ntohs(udp->dest) != 67)
+			return 0;
+
+		offset = (u8 *)udp + 8 - skb->data;
+		length = skb->len - offset;
+		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
+	}
+
+	return 0;
+}
+
+static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_stop_queue(netdev);
+	/*
+	 * Herbert's original patch had:
+	 *  smp_mb__after_netif_stop_queue();
+	 * but since that doesn't exist yet, just open code it.
+	 */
+	smp_mb();
+
+	/*
+	 * We need to check again in a case another CPU has just
+	 * made room available.
+	 */
+	if (e1000_desc_unused(adapter->tx_ring) < size)
+		return -EBUSY;
+
+	/* A reprieve! */
+	netif_start_queue(netdev);
+	++adapter->restart_queue;
+	return 0;
+}
+
+static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (e1000_desc_unused(adapter->tx_ring) >= size)
+		return 0;
+	return __e1000_maybe_stop_tx(netdev, size);
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_ring *tx_ring = adapter->tx_ring;
+	unsigned int first;
+	unsigned int max_per_txd = E1000_MAX_PER_TXD;
+	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+	unsigned int tx_flags = 0;
+	unsigned int len = skb_headlen(skb);
+	unsigned int nr_frags;
+	unsigned int mss;
+	int count = 0;
+	int tso;
+	unsigned int f;
+
+	if (test_bit(__E1000_DOWN, &adapter->state)) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	if (skb->len <= 0) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	mss = skb_shinfo(skb)->gso_size;
+	/*
+	 * The controller does a simple calculation to
+	 * make sure there is enough room in the FIFO before
+	 * initiating the DMA for each buffer.  The calc is:
+	 * 4 = ceil(buffer len/mss).  To make sure we don't
+	 * overrun the FIFO, adjust the max buffer len if mss
+	 * drops.
+	 */
+	if (mss) {
+		u8 hdr_len;
+		max_per_txd = min(mss << 2, max_per_txd);
+		max_txd_pwr = fls(max_per_txd) - 1;
+
+		/*
+		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
+		 * points to just header, pull a few bytes of payload from
+		 * frags into skb->data
+		 */
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		/*
+		 * we do this workaround for ES2LAN, but it is un-necessary,
+		 * avoiding it could save a lot of cycles
+		 */
+		if (skb->data_len && (hdr_len == len)) {
+			unsigned int pull_size;
+
+			pull_size = min((unsigned int)4, skb->data_len);
+			if (!__pskb_pull_tail(skb, pull_size)) {
+				e_err("__pskb_pull_tail failed.\n");
+				dev_kfree_skb_any(skb);
+				return NETDEV_TX_OK;
+			}
+			len = skb_headlen(skb);
+		}
+	}
+
+	/* reserve a descriptor for the offload context */
+	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
+		count++;
+	count++;
+
+	count += TXD_USE_COUNT(len, max_txd_pwr);
+
+	nr_frags = skb_shinfo(skb)->nr_frags;
+	for (f = 0; f < nr_frags; f++)
+		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+				       max_txd_pwr);
+
+	if (adapter->hw.mac.tx_pkt_filtering)
+		e1000_transfer_dhcp_info(adapter, skb);
+
+	/*
+	 * need: count + 2 desc gap to keep tail from touching
+	 * head, otherwise try next time
+	 */
+	if (e1000_maybe_stop_tx(netdev, count + 2))
+		return NETDEV_TX_BUSY;
+
+	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
+		tx_flags |= E1000_TX_FLAGS_VLAN;
+		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+	}
+
+	first = tx_ring->next_to_use;
+
+	tso = e1000_tso(adapter, skb);
+	if (tso < 0) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	if (tso)
+		tx_flags |= E1000_TX_FLAGS_TSO;
+	else if (e1000_tx_csum(adapter, skb))
+		tx_flags |= E1000_TX_FLAGS_CSUM;
+
+	/*
+	 * Old method was to assume IPv4 packet by default if TSO was enabled.
+	 * 82571 hardware supports TSO capabilities for IPv6 as well...
+	 * no longer assume, we must.
+	 */
+	if (skb->protocol == htons(ETH_P_IP))
+		tx_flags |= E1000_TX_FLAGS_IPV4;
+
+	/* if count is 0 then mapping error has occured */
+	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
+	if (count) {
+		e1000_tx_queue(adapter, tx_flags, count);
+		/* Make sure there is space in the ring for the next send. */
+		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
+
+	} else {
+		dev_kfree_skb_any(skb);
+		tx_ring->buffer_info[first].time_stamp = 0;
+		tx_ring->next_to_use = first;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+static void e1000_tx_timeout(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Do the reset outside of interrupt context */
+	adapter->tx_timeout_count++;
+	schedule_work(&adapter->reset_task);
+}
+
+static void e1000_reset_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter;
+	adapter = container_of(work, struct e1000_adapter, reset_task);
+
+	e1000e_dump(adapter);
+	e_err("Reset adapter\n");
+	e1000e_reinit_locked(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
+{
+	/* only return the current stats */
+	return &netdev->stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
+
+	/* Jumbo frame support */
+	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
+	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
+		e_err("Jumbo Frames not supported.\n");
+		return -EINVAL;
+	}
+
+	/* Supported frame sizes */
+	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
+	    (max_frame > adapter->max_hw_frame_size)) {
+		e_err("Unsupported MTU setting\n");
+		return -EINVAL;
+	}
+
+	/* 82573 Errata 17 */
+	if (((adapter->hw.mac.type == e1000_82573) ||
+	     (adapter->hw.mac.type == e1000_82574)) &&
+	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
+		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
+		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
+		msleep(1);
+	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
+	adapter->max_frame_size = max_frame;
+	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
+	netdev->mtu = new_mtu;
+	if (netif_running(netdev))
+		e1000e_down(adapter);
+
+	/*
+	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+	 * means we reserve 2 more, this pushes us to allocate from the next
+	 * larger slab size.
+	 * i.e. RXBUFFER_2048 --> size-4096 slab
+	 * However with the new *_jumbo_rx* routines, jumbo receives will use
+	 * fragmented skbs
+	 */
+
+	if (max_frame <= 2048)
+		adapter->rx_buffer_len = 2048;
+	else
+		adapter->rx_buffer_len = 4096;
+
+	/* adjust allocation if LPE protects us, and we aren't using SBP */
+	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
+	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
+		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
+					 + ETH_FCS_LEN;
+
+	if (netif_running(netdev))
+		e1000e_up(adapter);
+	else
+		e1000e_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->state);
+
+	return 0;
+}
+
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct mii_ioctl_data *data = if_mii(ifr);
+
+	if (adapter->hw.phy.media_type != e1000_media_type_copper)
+		return -EOPNOTSUPP;
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = adapter->hw.phy.addr;
+		break;
+	case SIOCGMIIREG:
+		e1000_phy_read_status(adapter);
+
+		switch (data->reg_num & 0x1F) {
+		case MII_BMCR:
+			data->val_out = adapter->phy_regs.bmcr;
+			break;
+		case MII_BMSR:
+			data->val_out = adapter->phy_regs.bmsr;
+			break;
+		case MII_PHYSID1:
+			data->val_out = (adapter->hw.phy.id >> 16);
+			break;
+		case MII_PHYSID2:
+			data->val_out = (adapter->hw.phy.id & 0xFFFF);
+			break;
+		case MII_ADVERTISE:
+			data->val_out = adapter->phy_regs.advertise;
+			break;
+		case MII_LPA:
+			data->val_out = adapter->phy_regs.lpa;
+			break;
+		case MII_EXPANSION:
+			data->val_out = adapter->phy_regs.expansion;
+			break;
+		case MII_CTRL1000:
+			data->val_out = adapter->phy_regs.ctrl1000;
+			break;
+		case MII_STAT1000:
+			data->val_out = adapter->phy_regs.stat1000;
+			break;
+		case MII_ESTATUS:
+			data->val_out = adapter->phy_regs.estatus;
+			break;
+		default:
+			return -EIO;
+		}
+		break;
+	case SIOCSMIIREG:
+	default:
+		return -EOPNOTSUPP;
+	}
+	return 0;
+}
+
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+	case SIOCSMIIREG:
+		return e1000_mii_ioctl(netdev, ifr, cmd);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 i, mac_reg;
+	u16 phy_reg;
+	int retval = 0;
+
+	/* copy MAC RARs to PHY RARs */
+	for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
+		mac_reg = er32(RAL(i));
+		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
+		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
+		mac_reg = er32(RAH(i));
+		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
+		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
+	}
+
+	/* copy MAC MTA to PHY MTA */
+	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
+		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
+		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
+		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
+	}
+
+	/* configure PHY Rx Control register */
+	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
+	mac_reg = er32(RCTL);
+	if (mac_reg & E1000_RCTL_UPE)
+		phy_reg |= BM_RCTL_UPE;
+	if (mac_reg & E1000_RCTL_MPE)
+		phy_reg |= BM_RCTL_MPE;
+	phy_reg &= ~(BM_RCTL_MO_MASK);
+	if (mac_reg & E1000_RCTL_MO_3)
+		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
+				<< BM_RCTL_MO_SHIFT);
+	if (mac_reg & E1000_RCTL_BAM)
+		phy_reg |= BM_RCTL_BAM;
+	if (mac_reg & E1000_RCTL_PMCF)
+		phy_reg |= BM_RCTL_PMCF;
+	mac_reg = er32(CTRL);
+	if (mac_reg & E1000_CTRL_RFCE)
+		phy_reg |= BM_RCTL_RFCE;
+	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
+
+	/* enable PHY wakeup in MAC register */
+	ew32(WUFC, wufc);
+	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
+
+	/* configure and enable PHY wakeup in PHY registers */
+	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
+	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
+
+	/* activate PHY wakeup */
+	retval = hw->phy.ops.acquire(hw);
+	if (retval) {
+		e_err("Could not acquire PHY\n");
+		return retval;
+	}
+	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+	if (retval) {
+		e_err("Could not read PHY page 769\n");
+		goto out;
+	}
+	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
+	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (retval)
+		e_err("Could not set PHY Host Wakeup bit\n");
+out:
+	hw->phy.ops.release(hw);
+
+	return retval;
+}
+
+static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
+			    bool runtime)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, ctrl_ext, rctl, status;
+	/* Runtime suspend should only enable wakeup for link changes */
+	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
+	int retval = 0;
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev)) {
+		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
+		e1000e_down(adapter);
+		e1000_free_irq(adapter);
+	}
+	e1000e_reset_interrupt_capability(adapter);
+
+	retval = pci_save_state(pdev);
+	if (retval)
+		return retval;
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU)
+		wufc &= ~E1000_WUFC_LNKC;
+
+	if (wufc) {
+		e1000_setup_rctl(adapter);
+		e1000_set_multi(netdev);
+
+		/* turn on all-multi mode if wake on multicast is enabled */
+		if (wufc & E1000_WUFC_MC) {
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_MPE;
+			ew32(RCTL, rctl);
+		}
+
+		ctrl = er32(CTRL);
+		/* advertise wake from D3Cold */
+		#define E1000_CTRL_ADVD3WUC 0x00100000
+		/* phy power management enable */
+		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+		ctrl |= E1000_CTRL_ADVD3WUC;
+		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
+			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
+		ew32(CTRL, ctrl);
+
+		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
+		    adapter->hw.phy.media_type ==
+		    e1000_media_type_internal_serdes) {
+			/* keep the laser running in D3 */
+			ctrl_ext = er32(CTRL_EXT);
+			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
+			ew32(CTRL_EXT, ctrl_ext);
+		}
+
+		if (adapter->flags & FLAG_IS_ICH)
+			e1000e_disable_gig_wol_ich8lan(&adapter->hw);
+
+		/* Allow time for pending master requests to run */
+		e1000e_disable_pcie_master(&adapter->hw);
+
+		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
+			/* enable wakeup by the PHY */
+			retval = e1000_init_phy_wakeup(adapter, wufc);
+			if (retval)
+				return retval;
+		} else {
+			/* enable wakeup by the MAC */
+			ew32(WUFC, wufc);
+			ew32(WUC, E1000_WUC_PME_EN);
+		}
+	} else {
+		ew32(WUC, 0);
+		ew32(WUFC, 0);
+	}
+
+	*enable_wake = !!wufc;
+
+	/* make sure adapter isn't asleep if manageability is enabled */
+	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
+	    (hw->mac.ops.check_mng_mode(hw)))
+		*enable_wake = true;
+
+	if (adapter->hw.phy.type == e1000_phy_igp_3)
+		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
+
+	/*
+	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
+	 * would have already happened in close and is redundant.
+	 */
+	e1000_release_hw_control(adapter);
+
+	pci_disable_device(pdev);
+
+	return 0;
+}
+
+static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
+{
+	if (sleep && wake) {
+		pci_prepare_to_sleep(pdev);
+		return;
+	}
+
+	pci_wake_from_d3(pdev, wake);
+	pci_set_power_state(pdev, PCI_D3hot);
+}
+
+static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
+                                    bool wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/*
+	 * The pci-e switch on some quad port adapters will report a
+	 * correctable error when the MAC transitions from D0 to D3.  To
+	 * prevent this we need to mask off the correctable errors on the
+	 * downstream port of the pci-e switch.
+	 */
+	if (adapter->flags & FLAG_IS_QUAD_PORT) {
+		struct pci_dev *us_dev = pdev->bus->self;
+		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
+		u16 devctl;
+
+		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
+		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
+		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
+
+		e1000_power_off(pdev, sleep, wake);
+
+		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
+	} else {
+		e1000_power_off(pdev, sleep, wake);
+	}
+}
+
+#ifdef CONFIG_PCIEASPM
+static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
+{
+	pci_disable_link_state(pdev, state);
+}
+#else
+static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
+{
+	int pos;
+	u16 reg16;
+
+	/*
+	 * Both device and parent should have the same ASPM setting.
+	 * Disable ASPM in downstream component first and then upstream.
+	 */
+	pos = pci_pcie_cap(pdev);
+	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
+	reg16 &= ~state;
+	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
+
+	if (!pdev->bus->self)
+		return;
+
+	pos = pci_pcie_cap(pdev->bus->self);
+	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
+	reg16 &= ~state;
+	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
+}
+#endif
+void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
+{
+	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
+		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
+		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
+
+	__e1000e_disable_aspm(pdev, state);
+}
+
+#ifdef CONFIG_PM_OPS
+static bool e1000e_pm_ready(struct e1000_adapter *adapter)
+{
+	return !!adapter->tx_ring->buffer_info;
+}
+
+static int __e1000_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 err;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	pci_save_state(pdev);
+	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
+		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
+
+	e1000e_set_interrupt_capability(adapter);
+	if (netif_running(netdev)) {
+		err = e1000_request_irq(adapter);
+		if (err)
+			return err;
+	}
+
+	e1000e_power_up_phy(adapter);
+
+	/* report the system wakeup cause from S3/S4 */
+	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
+		u16 phy_data;
+
+		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
+		if (phy_data) {
+			e_info("PHY Wakeup cause - %s\n",
+				phy_data & E1000_WUS_EX ? "Unicast Packet" :
+				phy_data & E1000_WUS_MC ? "Multicast Packet" :
+				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
+				phy_data & E1000_WUS_MAG ? "Magic Packet" :
+				phy_data & E1000_WUS_LNKC ? "Link Status "
+				" Change" : "other");
+		}
+		e1e_wphy(&adapter->hw, BM_WUS, ~0);
+	} else {
+		u32 wus = er32(WUS);
+		if (wus) {
+			e_info("MAC Wakeup cause - %s\n",
+				wus & E1000_WUS_EX ? "Unicast Packet" :
+				wus & E1000_WUS_MC ? "Multicast Packet" :
+				wus & E1000_WUS_BC ? "Broadcast Packet" :
+				wus & E1000_WUS_MAG ? "Magic Packet" :
+				wus & E1000_WUS_LNKC ? "Link Status Change" :
+				"other");
+		}
+		ew32(WUS, ~0);
+	}
+
+	e1000e_reset(adapter);
+
+	e1000_init_manageability_pt(adapter);
+
+	if (netif_running(netdev))
+		e1000e_up(adapter);
+
+	netif_device_attach(netdev);
+
+	/*
+	 * If the controller has AMT, do not set DRV_LOAD until the interface
+	 * is up.  For all other cases, let the f/w know that the h/w is now
+	 * under the control of the driver.
+	 */
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_get_hw_control(adapter);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int e1000_suspend(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	int retval;
+	bool wake;
+
+	retval = __e1000_shutdown(pdev, &wake, false);
+	if (!retval)
+		e1000_complete_shutdown(pdev, true, wake);
+
+	return retval;
+}
+
+static int e1000_resume(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (e1000e_pm_ready(adapter))
+		adapter->idle_check = true;
+
+	return __e1000_resume(pdev);
+}
+#endif /* CONFIG_PM_SLEEP */
+
+#ifdef CONFIG_PM_RUNTIME
+static int e1000_runtime_suspend(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (e1000e_pm_ready(adapter)) {
+		bool wake;
+
+		__e1000_shutdown(pdev, &wake, true);
+	}
+
+	return 0;
+}
+
+static int e1000_idle(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (!e1000e_pm_ready(adapter))
+		return 0;
+
+	if (adapter->idle_check) {
+		adapter->idle_check = false;
+		if (!e1000e_has_link(adapter))
+			pm_schedule_suspend(dev, MSEC_PER_SEC);
+	}
+
+	return -EBUSY;
+}
+
+static int e1000_runtime_resume(struct device *dev)
+{
+	struct pci_dev *pdev = to_pci_dev(dev);
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (!e1000e_pm_ready(adapter))
+		return 0;
+
+	adapter->idle_check = !dev->power.runtime_auto;
+	return __e1000_resume(pdev);
+}
+#endif /* CONFIG_PM_RUNTIME */
+#endif /* CONFIG_PM_OPS */
+
+static void e1000_shutdown(struct pci_dev *pdev)
+{
+	bool wake = false;
+
+	__e1000_shutdown(pdev, &wake, false);
+
+	if (system_state == SYSTEM_POWER_OFF)
+		e1000_complete_shutdown(pdev, false, wake);
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void e1000_netpoll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	disable_irq(adapter->pdev->irq);
+	e1000_intr(adapter->pdev->irq, netdev);
+
+	enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/**
+ * e1000_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+						pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e1000e_down(adapter);
+	pci_disable_device(pdev);
+
+	/* Request a slot slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e1000_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot. Implementation
+ * resembles the first-half of the e1000_resume routine.
+ */
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+	pci_ers_result_t result;
+
+	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
+		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
+	err = pci_enable_device_mem(pdev);
+	if (err) {
+		dev_err(&pdev->dev,
+			"Cannot re-enable PCI device after reset.\n");
+		result = PCI_ERS_RESULT_DISCONNECT;
+	} else {
+		pci_set_master(pdev);
+		pdev->state_saved = true;
+		pci_restore_state(pdev);
+
+		pci_enable_wake(pdev, PCI_D3hot, 0);
+		pci_enable_wake(pdev, PCI_D3cold, 0);
+
+		e1000e_reset(adapter);
+		ew32(WUS, ~0);
+		result = PCI_ERS_RESULT_RECOVERED;
+	}
+
+	pci_cleanup_aer_uncorrect_error_status(pdev);
+
+	return result;
+}
+
+/**
+ * e1000_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells us that
+ * its OK to resume normal operation. Implementation resembles the
+ * second-half of the e1000_resume routine.
+ */
+static void e1000_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	e1000_init_manageability_pt(adapter);
+
+	if (netif_running(netdev)) {
+		if (e1000e_up(adapter)) {
+			dev_err(&pdev->dev,
+				"can't bring device back up after reset\n");
+			return;
+		}
+	}
+
+	netif_device_attach(netdev);
+
+	/*
+	 * If the controller has AMT, do not set DRV_LOAD until the interface
+	 * is up.  For all other cases, let the f/w know that the h/w is now
+	 * under the control of the driver.
+	 */
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_get_hw_control(adapter);
+
+}
+
+static void e1000_print_device_info(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 pba_num;
+
+	/* print bus type/speed/width info */
+	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
+	       /* bus width */
+	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
+	        "Width x1"),
+	       /* MAC address */
+	       netdev->dev_addr);
+	e_info("Intel(R) PRO/%s Network Connection\n",
+	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
+	e1000e_read_pba_num(hw, &pba_num);
+	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
+	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
+}
+
+static void e1000_eeprom_checks(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int ret_val;
+	u16 buf = 0;
+
+	if (hw->mac.type != e1000_82573)
+		return;
+
+	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
+	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
+		/* Deep Smart Power Down (DSPD) */
+		dev_warn(&adapter->pdev->dev,
+			 "Warning: detected DSPD enabled in EEPROM\n");
+	}
+}
+
+static const struct net_device_ops e1000e_netdev_ops = {
+	.ndo_open		= e1000_open,
+	.ndo_stop		= e1000_close,
+	.ndo_start_xmit		= e1000_xmit_frame,
+	.ndo_get_stats		= e1000_get_stats,
+	.ndo_set_multicast_list	= e1000_set_multi,
+	.ndo_set_mac_address	= e1000_set_mac,
+	.ndo_change_mtu		= e1000_change_mtu,
+	.ndo_do_ioctl		= e1000_ioctl,
+	.ndo_tx_timeout		= e1000_tx_timeout,
+	.ndo_validate_addr	= eth_validate_addr,
+
+	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
+	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
+	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e1000_netpoll,
+#endif
+};
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+static int __devinit e1000_probe(struct pci_dev *pdev,
+				 const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct e1000_adapter *adapter;
+	struct e1000_hw *hw;
+	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
+	resource_size_t mmio_start, mmio_len;
+	resource_size_t flash_start, flash_len;
+
+	static int cards_found;
+	int i, err, pci_using_dac;
+	u16 eeprom_data = 0;
+	u16 eeprom_apme_mask = E1000_EEPROM_APME;
+
+	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
+		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
+
+	err = pci_enable_device_mem(pdev);
+	if (err)
+		return err;
+
+	pci_using_dac = 0;
+	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
+	if (!err) {
+		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
+		if (!err)
+			pci_using_dac = 1;
+	} else {
+		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
+		if (err) {
+			err = dma_set_coherent_mask(&pdev->dev,
+						    DMA_BIT_MASK(32));
+			if (err) {
+				dev_err(&pdev->dev, "No usable DMA "
+					"configuration, aborting\n");
+				goto err_dma;
+			}
+		}
+	}
+
+	err = pci_request_selected_regions_exclusive(pdev,
+	                                  pci_select_bars(pdev, IORESOURCE_MEM),
+	                                  e1000e_driver_name);
+	if (err)
+		goto err_pci_reg;
+
+	/* AER (Advanced Error Reporting) hooks */
+	pci_enable_pcie_error_reporting(pdev);
+
+	pci_set_master(pdev);
+	/* PCI config space info */
+	err = pci_save_state(pdev);
+	if (err)
+		goto err_alloc_etherdev;
+
+	err = -ENOMEM;
+	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+	if (!netdev)
+		goto err_alloc_etherdev;
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	netdev->irq = pdev->irq;
+
+	pci_set_drvdata(pdev, netdev);
+	adapter = netdev_priv(netdev);
+	hw = &adapter->hw;
+	adapter->netdev = netdev;
+	adapter->pdev = pdev;
+	adapter->ei = ei;
+	adapter->pba = ei->pba;
+	adapter->flags = ei->flags;
+	adapter->flags2 = ei->flags2;
+	adapter->hw.adapter = adapter;
+	adapter->hw.mac.type = ei->mac;
+	adapter->max_hw_frame_size = ei->max_hw_frame_size;
+	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
+
+	mmio_start = pci_resource_start(pdev, 0);
+	mmio_len = pci_resource_len(pdev, 0);
+
+	err = -EIO;
+	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
+	if (!adapter->hw.hw_addr)
+		goto err_ioremap;
+
+	if ((adapter->flags & FLAG_HAS_FLASH) &&
+	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
+		flash_start = pci_resource_start(pdev, 1);
+		flash_len = pci_resource_len(pdev, 1);
+		adapter->hw.flash_address = ioremap(flash_start, flash_len);
+		if (!adapter->hw.flash_address)
+			goto err_flashmap;
+	}
+
+	/* construct the net_device struct */
+	netdev->netdev_ops		= &e1000e_netdev_ops;
+	e1000e_set_ethtool_ops(netdev);
+	netdev->watchdog_timeo		= 5 * HZ;
+	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	netdev->mem_start = mmio_start;
+	netdev->mem_end = mmio_start + mmio_len;
+
+	adapter->bd_number = cards_found++;
+
+	e1000e_check_options(adapter);
+
+	/* setup adapter struct */
+	err = e1000_sw_init(adapter);
+	if (err)
+		goto err_sw_init;
+
+	err = -EIO;
+
+	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
+	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
+	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
+
+	err = ei->get_variants(adapter);
+	if (err)
+		goto err_hw_init;
+
+	if ((adapter->flags & FLAG_IS_ICH) &&
+	    (adapter->flags & FLAG_READ_ONLY_NVM))
+		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
+
+	hw->mac.ops.get_bus_info(&adapter->hw);
+
+	adapter->hw.phy.autoneg_wait_to_complete = 0;
+
+	/* Copper options */
+	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+		adapter->hw.phy.mdix = AUTO_ALL_MODES;
+		adapter->hw.phy.disable_polarity_correction = 0;
+		adapter->hw.phy.ms_type = e1000_ms_hw_default;
+	}
+
+	if (e1000_check_reset_block(&adapter->hw))
+		e_info("PHY reset is blocked due to SOL/IDER session.\n");
+
+	netdev->features = NETIF_F_SG |
+			   NETIF_F_HW_CSUM |
+			   NETIF_F_HW_VLAN_TX |
+			   NETIF_F_HW_VLAN_RX;
+
+	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
+		netdev->features |= NETIF_F_HW_VLAN_FILTER;
+
+	netdev->features |= NETIF_F_TSO;
+	netdev->features |= NETIF_F_TSO6;
+
+	netdev->vlan_features |= NETIF_F_TSO;
+	netdev->vlan_features |= NETIF_F_TSO6;
+	netdev->vlan_features |= NETIF_F_HW_CSUM;
+	netdev->vlan_features |= NETIF_F_SG;
+
+	if (pci_using_dac)
+		netdev->features |= NETIF_F_HIGHDMA;
+
+	if (e1000e_enable_mng_pass_thru(&adapter->hw))
+		adapter->flags |= FLAG_MNG_PT_ENABLED;
+
+	/*
+	 * before reading the NVM, reset the controller to
+	 * put the device in a known good starting state
+	 */
+	adapter->hw.mac.ops.reset_hw(&adapter->hw);
+
+	/*
+	 * systems with ASPM and others may see the checksum fail on the first
+	 * attempt. Let's give it a few tries
+	 */
+	for (i = 0;; i++) {
+		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
+			break;
+		if (i == 2) {
+			e_err("The NVM Checksum Is Not Valid\n");
+			err = -EIO;
+			goto err_eeprom;
+		}
+	}
+
+	e1000_eeprom_checks(adapter);
+
+	/* copy the MAC address */
+	if (e1000e_read_mac_addr(&adapter->hw))
+		e_err("NVM Read Error while reading MAC address\n");
+
+	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
+	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
+
+	if (!is_valid_ether_addr(netdev->perm_addr)) {
+		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
+		err = -EIO;
+		goto err_eeprom;
+	}
+
+	init_timer(&adapter->watchdog_timer);
+	adapter->watchdog_timer.function = &e1000_watchdog;
+	adapter->watchdog_timer.data = (unsigned long) adapter;
+
+	init_timer(&adapter->phy_info_timer);
+	adapter->phy_info_timer.function = &e1000_update_phy_info;
+	adapter->phy_info_timer.data = (unsigned long) adapter;
+
+	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
+	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
+	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
+	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
+
+	/* Initialize link parameters. User can change them with ethtool */
+	adapter->hw.mac.autoneg = 1;
+	adapter->fc_autoneg = 1;
+	adapter->hw.fc.requested_mode = e1000_fc_default;
+	adapter->hw.fc.current_mode = e1000_fc_default;
+	adapter->hw.phy.autoneg_advertised = 0x2f;
+
+	/* ring size defaults */
+	adapter->rx_ring->count = 256;
+	adapter->tx_ring->count = 256;
+
+	/*
+	 * Initial Wake on LAN setting - If APM wake is enabled in
+	 * the EEPROM, enable the ACPI Magic Packet filter
+	 */
+	if (adapter->flags & FLAG_APME_IN_WUC) {
+		/* APME bit in EEPROM is mapped to WUC.APME */
+		eeprom_data = er32(WUC);
+		eeprom_apme_mask = E1000_WUC_APME;
+		if (eeprom_data & E1000_WUC_PHY_WAKE)
+			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
+	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
+		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
+		    (adapter->hw.bus.func == 1))
+			e1000_read_nvm(&adapter->hw,
+				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+		else
+			e1000_read_nvm(&adapter->hw,
+				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+	}
+
+	/* fetch WoL from EEPROM */
+	if (eeprom_data & eeprom_apme_mask)
+		adapter->eeprom_wol |= E1000_WUFC_MAG;
+
+	/*
+	 * now that we have the eeprom settings, apply the special cases
+	 * where the eeprom may be wrong or the board simply won't support
+	 * wake on lan on a particular port
+	 */
+	if (!(adapter->flags & FLAG_HAS_WOL))
+		adapter->eeprom_wol = 0;
+
+	/* initialize the wol settings based on the eeprom settings */
+	adapter->wol = adapter->eeprom_wol;
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	/* save off EEPROM version number */
+	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
+
+	/* reset the hardware with the new settings */
+	e1000e_reset(adapter);
+
+	/*
+	 * If the controller has AMT, do not set DRV_LOAD until the interface
+	 * is up.  For all other cases, let the f/w know that the h/w is now
+	 * under the control of the driver.
+	 */
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_get_hw_control(adapter);
+
+	strcpy(netdev->name, "eth%d");
+	err = register_netdev(netdev);
+	if (err)
+		goto err_register;
+
+	/* carrier off reporting is important to ethtool even BEFORE open */
+	netif_carrier_off(netdev);
+
+	e1000_print_device_info(adapter);
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_set_active(&pdev->dev);
+		pm_runtime_enable(&pdev->dev);
+	}
+	pm_schedule_suspend(&pdev->dev, MSEC_PER_SEC);
+
+	return 0;
+
+err_register:
+	if (!(adapter->flags & FLAG_HAS_AMT))
+		e1000_release_hw_control(adapter);
+err_eeprom:
+	if (!e1000_check_reset_block(&adapter->hw))
+		e1000_phy_hw_reset(&adapter->hw);
+err_hw_init:
+
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+err_sw_init:
+	if (adapter->hw.flash_address)
+		iounmap(adapter->hw.flash_address);
+	e1000e_reset_interrupt_capability(adapter);
+err_flashmap:
+	iounmap(adapter->hw.hw_addr);
+err_ioremap:
+	free_netdev(netdev);
+err_alloc_etherdev:
+	pci_release_selected_regions(pdev,
+	                             pci_select_bars(pdev, IORESOURCE_MEM));
+err_pci_reg:
+err_dma:
+	pci_disable_device(pdev);
+	return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device.  The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+static void __devexit e1000_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	bool down = test_bit(__E1000_DOWN, &adapter->state);
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	/*
+	 * flush_scheduled work may reschedule our watchdog task, so
+	 * explicitly disable watchdog tasks from being rescheduled
+	 */
+	if (!down)
+		set_bit(__E1000_DOWN, &adapter->state);
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	cancel_work_sync(&adapter->reset_task);
+	cancel_work_sync(&adapter->watchdog_task);
+	cancel_work_sync(&adapter->downshift_task);
+	cancel_work_sync(&adapter->update_phy_task);
+	cancel_work_sync(&adapter->print_hang_task);
+	flush_scheduled_work();
+
+	if (!(netdev->flags & IFF_UP))
+		e1000_power_down_phy(adapter);
+
+	/* Don't lie to e1000_close() down the road. */
+	if (!down)
+		clear_bit(__E1000_DOWN, &adapter->state);
+	unregister_netdev(netdev);
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_disable(&pdev->dev);
+		pm_runtime_set_suspended(&pdev->dev);
+	}
+	pm_runtime_put_noidle(&pdev->dev);
+
+	/*
+	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
+	 * would have already happened in close and is redundant.
+	 */
+	e1000_release_hw_control(adapter);
+
+	e1000e_reset_interrupt_capability(adapter);
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+
+	iounmap(adapter->hw.hw_addr);
+	if (adapter->hw.flash_address)
+		iounmap(adapter->hw.flash_address);
+	pci_release_selected_regions(pdev,
+	                             pci_select_bars(pdev, IORESOURCE_MEM));
+
+	free_netdev(netdev);
+
+	/* AER disable */
+	pci_disable_pcie_error_reporting(pdev);
+
+	pci_disable_device(pdev);
+}
+
+/* PCI Error Recovery (ERS) */
+static struct pci_error_handlers e1000_err_handler = {
+	.error_detected = e1000_io_error_detected,
+	.slot_reset = e1000_io_slot_reset,
+	.resume = e1000_io_resume,
+};
+
+static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
+	  board_80003es2lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
+	  board_80003es2lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
+	  board_80003es2lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
+	  board_80003es2lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
+
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
+	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
+
+	{ }	/* terminate list */
+};
+MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+#ifdef CONFIG_PM_OPS
+static const struct dev_pm_ops e1000_pm_ops = {
+	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
+	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
+				e1000_runtime_resume, e1000_idle)
+};
+#endif
+
+/* PCI Device API Driver */
+static struct pci_driver e1000_driver = {
+	.name     = e1000e_driver_name,
+	.id_table = e1000_pci_tbl,
+	.probe    = e1000_probe,
+	.remove   = __devexit_p(e1000_remove),
+#ifdef CONFIG_PM_OPS
+	.driver.pm = &e1000_pm_ops,
+#endif
+	.shutdown = e1000_shutdown,
+	.err_handler = &e1000_err_handler
+};
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+static int __init e1000_init_module(void)
+{
+	int ret;
+	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
+		e1000e_driver_version);
+	pr_info("Copyright (c) 1999 - 2009 Intel Corporation.\n");
+	ret = pci_register_driver(&e1000_driver);
+
+	return ret;
+}
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+static void __exit e1000_exit_module(void)
+{
+	pci_unregister_driver(&e1000_driver);
+}
+module_exit(e1000_exit_module);
+
+
+MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
+MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+/* e1000_main.c */
--- a/devices/e1000e/netdev-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/e1000e/netdev-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -2790,7 +2790,7 @@
 
 	/* Workaround Si errata on 82579 - configure jumbo frame flow */
 	if (hw->mac.type == e1000_pch2lan) {
-		s32 ret_val;
+		s32 ret_val __attribute__ ((unused));
 
 		if (adapter->netdev->mtu > ETH_DATA_LEN)
 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/param-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,480 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include <linux/netdevice.h>
+#include <linux/pci.h>
+
+#include "e1000-2.6.35-ethercat.h"
+
+/*
+ * This is the only thing that needs to be changed to adjust the
+ * maximum number of ports that the driver can manage.
+ */
+
+#define E1000_MAX_NIC 32
+
+#define OPTION_UNSET   -1
+#define OPTION_DISABLED 0
+#define OPTION_ENABLED  1
+
+#define COPYBREAK_DEFAULT 256
+unsigned int copybreak = COPYBREAK_DEFAULT;
+module_param(copybreak, uint, 0644);
+MODULE_PARM_DESC(copybreak,
+	"Maximum size of packet that is copied to a new buffer on receive");
+
+/*
+ * All parameters are treated the same, as an integer array of values.
+ * This macro just reduces the need to repeat the same declaration code
+ * over and over (plus this helps to avoid typo bugs).
+ */
+
+#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+#define E1000_PARAM(X, desc)					\
+	static int __devinitdata X[E1000_MAX_NIC+1]		\
+		= E1000_PARAM_INIT;				\
+	static unsigned int num_##X;				\
+	module_param_array_named(X, X, int, &num_##X, 0);	\
+	MODULE_PARM_DESC(X, desc);
+
+
+/*
+ * Transmit Interrupt Delay in units of 1.024 microseconds
+ * Tx interrupt delay needs to typically be set to something non zero
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
+#define DEFAULT_TIDV 8
+#define MAX_TXDELAY 0xFFFF
+#define MIN_TXDELAY 0
+
+/*
+ * Transmit Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
+#define DEFAULT_TADV 32
+#define MAX_TXABSDELAY 0xFFFF
+#define MIN_TXABSDELAY 0
+
+/*
+ * Receive Interrupt Delay in units of 1.024 microseconds
+ * hardware will likely hang if you set this to anything but zero.
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
+#define DEFAULT_RDTR 0
+#define MAX_RXDELAY 0xFFFF
+#define MIN_RXDELAY 0
+
+/*
+ * Receive Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
+#define DEFAULT_RADV 8
+#define MAX_RXABSDELAY 0xFFFF
+#define MIN_RXABSDELAY 0
+
+/*
+ * Interrupt Throttle Rate (interrupts/sec)
+ *
+ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
+ */
+E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
+#define DEFAULT_ITR 3
+#define MAX_ITR 100000
+#define MIN_ITR 100
+/* IntMode (Interrupt Mode)
+ *
+ * Valid Range: 0 - 2
+ *
+ * Default Value: 2 (MSI-X)
+ */
+E1000_PARAM(IntMode, "Interrupt Mode");
+#define MAX_INTMODE	2
+#define MIN_INTMODE	0
+
+/*
+ * Enable Smart Power Down of the PHY
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 0 (disabled)
+ */
+E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
+
+/*
+ * Enable Kumeran Lock Loss workaround
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
+
+/*
+ * Write Protect NVM
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]");
+
+/*
+ * Enable CRC Stripping
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \
+                          "the CRC");
+
+struct e1000_option {
+	enum { enable_option, range_option, list_option } type;
+	const char *name;
+	const char *err;
+	int def;
+	union {
+		struct { /* range_option info */
+			int min;
+			int max;
+		} r;
+		struct { /* list_option info */
+			int nr;
+			struct e1000_opt_list { int i; char *str; } *p;
+		} l;
+	} arg;
+};
+
+static int __devinit e1000_validate_option(unsigned int *value,
+					   const struct e1000_option *opt,
+					   struct e1000_adapter *adapter)
+{
+	if (*value == OPTION_UNSET) {
+		*value = opt->def;
+		return 0;
+	}
+
+	switch (opt->type) {
+	case enable_option:
+		switch (*value) {
+		case OPTION_ENABLED:
+			e_info("%s Enabled\n", opt->name);
+			return 0;
+		case OPTION_DISABLED:
+			e_info("%s Disabled\n", opt->name);
+			return 0;
+		}
+		break;
+	case range_option:
+		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
+			e_info("%s set to %i\n", opt->name, *value);
+			return 0;
+		}
+		break;
+	case list_option: {
+		int i;
+		struct e1000_opt_list *ent;
+
+		for (i = 0; i < opt->arg.l.nr; i++) {
+			ent = &opt->arg.l.p[i];
+			if (*value == ent->i) {
+				if (ent->str[0] != '\0')
+					e_info("%s\n", ent->str);
+				return 0;
+			}
+		}
+	}
+		break;
+	default:
+		BUG();
+	}
+
+	e_info("Invalid %s value specified (%i) %s\n", opt->name, *value,
+	       opt->err);
+	*value = opt->def;
+	return -1;
+}
+
+/**
+ * e1000e_check_options - Range Checking for Command Line Parameters
+ * @adapter: board private structure
+ *
+ * This routine checks all command line parameters for valid user
+ * input.  If an invalid value is given, or if no user specified
+ * value exists, a default value is used.  The final value is stored
+ * in a variable in the adapter structure.
+ **/
+void __devinit e1000e_check_options(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int bd = adapter->bd_number;
+
+	if (bd >= E1000_MAX_NIC) {
+		e_notice("Warning: no configuration for board #%i\n", bd);
+		e_notice("Using defaults for all values\n");
+	}
+
+	{ /* Transmit Interrupt Delay */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Transmit Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_TIDV),
+			.def  = DEFAULT_TIDV,
+			.arg  = { .r = { .min = MIN_TXDELAY,
+					 .max = MAX_TXDELAY } }
+		};
+
+		if (num_TxIntDelay > bd) {
+			adapter->tx_int_delay = TxIntDelay[bd];
+			e1000_validate_option(&adapter->tx_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->tx_int_delay = opt.def;
+		}
+	}
+	{ /* Transmit Absolute Interrupt Delay */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Transmit Absolute Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_TADV),
+			.def  = DEFAULT_TADV,
+			.arg  = { .r = { .min = MIN_TXABSDELAY,
+					 .max = MAX_TXABSDELAY } }
+		};
+
+		if (num_TxAbsIntDelay > bd) {
+			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->tx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Interrupt Delay */
+		static struct e1000_option opt = {
+			.type = range_option,
+			.name = "Receive Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_RDTR),
+			.def  = DEFAULT_RDTR,
+			.arg  = { .r = { .min = MIN_RXDELAY,
+					 .max = MAX_RXDELAY } }
+		};
+
+		if (num_RxIntDelay > bd) {
+			adapter->rx_int_delay = RxIntDelay[bd];
+			e1000_validate_option(&adapter->rx_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->rx_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Absolute Interrupt Delay */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Receive Absolute Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_RADV),
+			.def  = DEFAULT_RADV,
+			.arg  = { .r = { .min = MIN_RXABSDELAY,
+					 .max = MAX_RXABSDELAY } }
+		};
+
+		if (num_RxAbsIntDelay > bd) {
+			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->rx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Interrupt Throttling Rate */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Interrupt Throttling Rate (ints/sec)",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_ITR),
+			.def  = DEFAULT_ITR,
+			.arg  = { .r = { .min = MIN_ITR,
+					 .max = MAX_ITR } }
+		};
+
+		if (num_InterruptThrottleRate > bd) {
+			adapter->itr = InterruptThrottleRate[bd];
+			switch (adapter->itr) {
+			case 0:
+				e_info("%s turned off\n", opt.name);
+				break;
+			case 1:
+				e_info("%s set to dynamic mode\n", opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 3:
+				e_info("%s set to dynamic conservative mode\n",
+					opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 4:
+				e_info("%s set to simplified (2000-8000 ints) "
+				       "mode\n", opt.name);
+				adapter->itr_setting = 4;
+				break;
+			default:
+				/*
+				 * Save the setting, because the dynamic bits
+				 * change itr.
+				 */
+				if (e1000_validate_option(&adapter->itr, &opt,
+							  adapter) &&
+				    (adapter->itr == 3)) {
+					/*
+					 * In case of invalid user value,
+					 * default to conservative mode.
+					 */
+					adapter->itr_setting = adapter->itr;
+					adapter->itr = 20000;
+				} else {
+					/*
+					 * Clear the lower two bits because
+					 * they are used as control.
+					 */
+					adapter->itr_setting =
+						adapter->itr & ~3;
+				}
+				break;
+			}
+		} else {
+			adapter->itr_setting = opt.def;
+			adapter->itr = 20000;
+		}
+	}
+	{ /* Interrupt Mode */
+		static struct e1000_option opt = {
+			.type = range_option,
+			.name = "Interrupt Mode",
+			.err  = "defaulting to 2 (MSI-X)",
+			.def  = E1000E_INT_MODE_MSIX,
+			.arg  = { .r = { .min = MIN_INTMODE,
+					 .max = MAX_INTMODE } }
+		};
+
+		if (num_IntMode > bd) {
+			unsigned int int_mode = IntMode[bd];
+			e1000_validate_option(&int_mode, &opt, adapter);
+			adapter->int_mode = int_mode;
+		} else {
+			adapter->int_mode = opt.def;
+		}
+	}
+	{ /* Smart Power Down */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "PHY Smart Power Down",
+			.err  = "defaulting to Disabled",
+			.def  = OPTION_DISABLED
+		};
+
+		if (num_SmartPowerDownEnable > bd) {
+			unsigned int spd = SmartPowerDownEnable[bd];
+			e1000_validate_option(&spd, &opt, adapter);
+			if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
+			    && spd)
+				adapter->flags |= FLAG_SMART_POWER_DOWN;
+		}
+	}
+	{ /* CRC Stripping */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "CRC Stripping",
+			.err  = "defaulting to enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_CrcStripping > bd) {
+			unsigned int crc_stripping = CrcStripping[bd];
+			e1000_validate_option(&crc_stripping, &opt, adapter);
+			if (crc_stripping == OPTION_ENABLED)
+				adapter->flags2 |= FLAG2_CRC_STRIPPING;
+		} else {
+			adapter->flags2 |= FLAG2_CRC_STRIPPING;
+		}
+	}
+	{ /* Kumeran Lock Loss Workaround */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "Kumeran Lock Loss Workaround",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_KumeranLockLoss > bd) {
+			unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
+			e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
+			if (hw->mac.type == e1000_ich8lan)
+				e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
+								kmrn_lock_loss);
+		} else {
+			if (hw->mac.type == e1000_ich8lan)
+				e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
+								       opt.def);
+		}
+	}
+	{ /* Write-protect NVM */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "Write-protect NVM",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (adapter->flags & FLAG_IS_ICH) {
+			if (num_WriteProtectNVM > bd) {
+				unsigned int write_protect_nvm = WriteProtectNVM[bd];
+				e1000_validate_option(&write_protect_nvm, &opt,
+						      adapter);
+				if (write_protect_nvm)
+					adapter->flags |= FLAG_READ_ONLY_NVM;
+			} else {
+				if (opt.def)
+					adapter->flags |= FLAG_READ_ONLY_NVM;
+			}
+		}
+	}
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/param-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,480 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include <linux/netdevice.h>
+#include <linux/pci.h>
+
+#include "e1000.h"
+
+/*
+ * This is the only thing that needs to be changed to adjust the
+ * maximum number of ports that the driver can manage.
+ */
+
+#define E1000_MAX_NIC 32
+
+#define OPTION_UNSET   -1
+#define OPTION_DISABLED 0
+#define OPTION_ENABLED  1
+
+#define COPYBREAK_DEFAULT 256
+unsigned int copybreak = COPYBREAK_DEFAULT;
+module_param(copybreak, uint, 0644);
+MODULE_PARM_DESC(copybreak,
+	"Maximum size of packet that is copied to a new buffer on receive");
+
+/*
+ * All parameters are treated the same, as an integer array of values.
+ * This macro just reduces the need to repeat the same declaration code
+ * over and over (plus this helps to avoid typo bugs).
+ */
+
+#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+#define E1000_PARAM(X, desc)					\
+	static int __devinitdata X[E1000_MAX_NIC+1]		\
+		= E1000_PARAM_INIT;				\
+	static unsigned int num_##X;				\
+	module_param_array_named(X, X, int, &num_##X, 0);	\
+	MODULE_PARM_DESC(X, desc);
+
+
+/*
+ * Transmit Interrupt Delay in units of 1.024 microseconds
+ * Tx interrupt delay needs to typically be set to something non zero
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
+#define DEFAULT_TIDV 8
+#define MAX_TXDELAY 0xFFFF
+#define MIN_TXDELAY 0
+
+/*
+ * Transmit Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
+#define DEFAULT_TADV 32
+#define MAX_TXABSDELAY 0xFFFF
+#define MIN_TXABSDELAY 0
+
+/*
+ * Receive Interrupt Delay in units of 1.024 microseconds
+ * hardware will likely hang if you set this to anything but zero.
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
+#define DEFAULT_RDTR 0
+#define MAX_RXDELAY 0xFFFF
+#define MIN_RXDELAY 0
+
+/*
+ * Receive Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
+#define DEFAULT_RADV 8
+#define MAX_RXABSDELAY 0xFFFF
+#define MIN_RXABSDELAY 0
+
+/*
+ * Interrupt Throttle Rate (interrupts/sec)
+ *
+ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
+ */
+E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
+#define DEFAULT_ITR 3
+#define MAX_ITR 100000
+#define MIN_ITR 100
+/* IntMode (Interrupt Mode)
+ *
+ * Valid Range: 0 - 2
+ *
+ * Default Value: 2 (MSI-X)
+ */
+E1000_PARAM(IntMode, "Interrupt Mode");
+#define MAX_INTMODE	2
+#define MIN_INTMODE	0
+
+/*
+ * Enable Smart Power Down of the PHY
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 0 (disabled)
+ */
+E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
+
+/*
+ * Enable Kumeran Lock Loss workaround
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
+
+/*
+ * Write Protect NVM
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]");
+
+/*
+ * Enable CRC Stripping
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \
+                          "the CRC");
+
+struct e1000_option {
+	enum { enable_option, range_option, list_option } type;
+	const char *name;
+	const char *err;
+	int def;
+	union {
+		struct { /* range_option info */
+			int min;
+			int max;
+		} r;
+		struct { /* list_option info */
+			int nr;
+			struct e1000_opt_list { int i; char *str; } *p;
+		} l;
+	} arg;
+};
+
+static int __devinit e1000_validate_option(unsigned int *value,
+					   const struct e1000_option *opt,
+					   struct e1000_adapter *adapter)
+{
+	if (*value == OPTION_UNSET) {
+		*value = opt->def;
+		return 0;
+	}
+
+	switch (opt->type) {
+	case enable_option:
+		switch (*value) {
+		case OPTION_ENABLED:
+			e_info("%s Enabled\n", opt->name);
+			return 0;
+		case OPTION_DISABLED:
+			e_info("%s Disabled\n", opt->name);
+			return 0;
+		}
+		break;
+	case range_option:
+		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
+			e_info("%s set to %i\n", opt->name, *value);
+			return 0;
+		}
+		break;
+	case list_option: {
+		int i;
+		struct e1000_opt_list *ent;
+
+		for (i = 0; i < opt->arg.l.nr; i++) {
+			ent = &opt->arg.l.p[i];
+			if (*value == ent->i) {
+				if (ent->str[0] != '\0')
+					e_info("%s\n", ent->str);
+				return 0;
+			}
+		}
+	}
+		break;
+	default:
+		BUG();
+	}
+
+	e_info("Invalid %s value specified (%i) %s\n", opt->name, *value,
+	       opt->err);
+	*value = opt->def;
+	return -1;
+}
+
+/**
+ * e1000e_check_options - Range Checking for Command Line Parameters
+ * @adapter: board private structure
+ *
+ * This routine checks all command line parameters for valid user
+ * input.  If an invalid value is given, or if no user specified
+ * value exists, a default value is used.  The final value is stored
+ * in a variable in the adapter structure.
+ **/
+void __devinit e1000e_check_options(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int bd = adapter->bd_number;
+
+	if (bd >= E1000_MAX_NIC) {
+		e_notice("Warning: no configuration for board #%i\n", bd);
+		e_notice("Using defaults for all values\n");
+	}
+
+	{ /* Transmit Interrupt Delay */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Transmit Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_TIDV),
+			.def  = DEFAULT_TIDV,
+			.arg  = { .r = { .min = MIN_TXDELAY,
+					 .max = MAX_TXDELAY } }
+		};
+
+		if (num_TxIntDelay > bd) {
+			adapter->tx_int_delay = TxIntDelay[bd];
+			e1000_validate_option(&adapter->tx_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->tx_int_delay = opt.def;
+		}
+	}
+	{ /* Transmit Absolute Interrupt Delay */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Transmit Absolute Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_TADV),
+			.def  = DEFAULT_TADV,
+			.arg  = { .r = { .min = MIN_TXABSDELAY,
+					 .max = MAX_TXABSDELAY } }
+		};
+
+		if (num_TxAbsIntDelay > bd) {
+			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->tx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Interrupt Delay */
+		static struct e1000_option opt = {
+			.type = range_option,
+			.name = "Receive Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_RDTR),
+			.def  = DEFAULT_RDTR,
+			.arg  = { .r = { .min = MIN_RXDELAY,
+					 .max = MAX_RXDELAY } }
+		};
+
+		if (num_RxIntDelay > bd) {
+			adapter->rx_int_delay = RxIntDelay[bd];
+			e1000_validate_option(&adapter->rx_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->rx_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Absolute Interrupt Delay */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Receive Absolute Interrupt Delay",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_RADV),
+			.def  = DEFAULT_RADV,
+			.arg  = { .r = { .min = MIN_RXABSDELAY,
+					 .max = MAX_RXABSDELAY } }
+		};
+
+		if (num_RxAbsIntDelay > bd) {
+			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+					      adapter);
+		} else {
+			adapter->rx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Interrupt Throttling Rate */
+		static const struct e1000_option opt = {
+			.type = range_option,
+			.name = "Interrupt Throttling Rate (ints/sec)",
+			.err  = "using default of "
+				__MODULE_STRING(DEFAULT_ITR),
+			.def  = DEFAULT_ITR,
+			.arg  = { .r = { .min = MIN_ITR,
+					 .max = MAX_ITR } }
+		};
+
+		if (num_InterruptThrottleRate > bd) {
+			adapter->itr = InterruptThrottleRate[bd];
+			switch (adapter->itr) {
+			case 0:
+				e_info("%s turned off\n", opt.name);
+				break;
+			case 1:
+				e_info("%s set to dynamic mode\n", opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 3:
+				e_info("%s set to dynamic conservative mode\n",
+					opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 4:
+				e_info("%s set to simplified (2000-8000 ints) "
+				       "mode\n", opt.name);
+				adapter->itr_setting = 4;
+				break;
+			default:
+				/*
+				 * Save the setting, because the dynamic bits
+				 * change itr.
+				 */
+				if (e1000_validate_option(&adapter->itr, &opt,
+							  adapter) &&
+				    (adapter->itr == 3)) {
+					/*
+					 * In case of invalid user value,
+					 * default to conservative mode.
+					 */
+					adapter->itr_setting = adapter->itr;
+					adapter->itr = 20000;
+				} else {
+					/*
+					 * Clear the lower two bits because
+					 * they are used as control.
+					 */
+					adapter->itr_setting =
+						adapter->itr & ~3;
+				}
+				break;
+			}
+		} else {
+			adapter->itr_setting = opt.def;
+			adapter->itr = 20000;
+		}
+	}
+	{ /* Interrupt Mode */
+		static struct e1000_option opt = {
+			.type = range_option,
+			.name = "Interrupt Mode",
+			.err  = "defaulting to 2 (MSI-X)",
+			.def  = E1000E_INT_MODE_MSIX,
+			.arg  = { .r = { .min = MIN_INTMODE,
+					 .max = MAX_INTMODE } }
+		};
+
+		if (num_IntMode > bd) {
+			unsigned int int_mode = IntMode[bd];
+			e1000_validate_option(&int_mode, &opt, adapter);
+			adapter->int_mode = int_mode;
+		} else {
+			adapter->int_mode = opt.def;
+		}
+	}
+	{ /* Smart Power Down */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "PHY Smart Power Down",
+			.err  = "defaulting to Disabled",
+			.def  = OPTION_DISABLED
+		};
+
+		if (num_SmartPowerDownEnable > bd) {
+			unsigned int spd = SmartPowerDownEnable[bd];
+			e1000_validate_option(&spd, &opt, adapter);
+			if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
+			    && spd)
+				adapter->flags |= FLAG_SMART_POWER_DOWN;
+		}
+	}
+	{ /* CRC Stripping */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "CRC Stripping",
+			.err  = "defaulting to enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_CrcStripping > bd) {
+			unsigned int crc_stripping = CrcStripping[bd];
+			e1000_validate_option(&crc_stripping, &opt, adapter);
+			if (crc_stripping == OPTION_ENABLED)
+				adapter->flags2 |= FLAG2_CRC_STRIPPING;
+		} else {
+			adapter->flags2 |= FLAG2_CRC_STRIPPING;
+		}
+	}
+	{ /* Kumeran Lock Loss Workaround */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "Kumeran Lock Loss Workaround",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_KumeranLockLoss > bd) {
+			unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
+			e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
+			if (hw->mac.type == e1000_ich8lan)
+				e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
+								kmrn_lock_loss);
+		} else {
+			if (hw->mac.type == e1000_ich8lan)
+				e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
+								       opt.def);
+		}
+	}
+	{ /* Write-protect NVM */
+		static const struct e1000_option opt = {
+			.type = enable_option,
+			.name = "Write-protect NVM",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (adapter->flags & FLAG_IS_ICH) {
+			if (num_WriteProtectNVM > bd) {
+				unsigned int write_protect_nvm = WriteProtectNVM[bd];
+				e1000_validate_option(&write_protect_nvm, &opt,
+						      adapter);
+				if (write_protect_nvm)
+					adapter->flags |= FLAG_READ_ONLY_NVM;
+			} else {
+				if (opt.def)
+					adapter->flags |= FLAG_READ_ONLY_NVM;
+			}
+		}
+	}
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/phy-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3258 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include <linux/delay.h>
+
+#include "e1000-2.6.35-ethercat.h"
+
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read);
+static u32 e1000_get_phy_addr_for_hv_page(u32 page);
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+                                          u16 *data, bool read);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] =
+	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+		ARRAY_SIZE(e1000_m88_cable_length_table)
+
+static const u16 e1000_igp_2_cable_length_table[] =
+	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+	  124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+		ARRAY_SIZE(e1000_igp_2_cable_length_table)
+
+#define BM_PHY_REG_PAGE(offset) \
+	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
+#define BM_PHY_REG_NUM(offset) \
+	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
+	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
+		~MAX_PHY_REG_ADDRESS)))
+
+#define HV_INTC_FC_PAGE_START             768
+#define I82578_ADDR_REG                   29
+#define I82577_ADDR_REG                   16
+#define I82577_CFG_REG                    22
+#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
+#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
+#define I82577_CTRL_REG                   23
+
+/* 82577 specific PHY registers */
+#define I82577_PHY_CTRL_2            18
+#define I82577_PHY_STATUS_2          26
+#define I82577_PHY_DIAG_STATUS       31
+
+/* I82577 PHY Status 2 */
+#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
+#define I82577_PHY_STATUS2_MDIX           0x0800
+#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
+#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
+
+/* I82577 PHY Control 2 */
+#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
+#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
+
+/* I82577 PHY Diagnostics Status */
+#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
+#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
+
+/* BM PHY Copper Specific Control 1 */
+#define BM_CS_CTRL1                       16
+
+#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
+#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
+#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
+
+/**
+ *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the PHY management control register and check whether a PHY reset
+ *  is blocked.  If a reset is not blocked return 0, otherwise
+ *  return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	manc = er32(MANC);
+
+	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+	       E1000_BLK_PHY_RESET : 0;
+}
+
+/**
+ *  e1000e_get_phy_id - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+s32 e1000e_get_phy_id(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = 0;
+	u16 phy_id;
+	u16 retry_count = 0;
+
+	if (!(phy->ops.read_reg))
+		goto out;
+
+	while (retry_count < 2) {
+		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
+		if (ret_val)
+			goto out;
+
+		phy->id = (u32)(phy_id << 16);
+		udelay(20);
+		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
+		if (ret_val)
+			goto out;
+
+		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
+			goto out;
+
+		retry_count++;
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_reset_dsp - Reset PHY DSP
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the digital signal processor.
+ **/
+s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+	if (ret_val)
+		return ret_val;
+
+	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
+}
+
+/**
+ *  e1000e_read_phy_reg_mdic - Read MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the MDI control register in the PHY at offset and stores the
+ *  information read to data.
+ **/
+s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+		(phy->addr << E1000_MDIC_PHY_SHIFT) |
+		(E1000_MDIC_OP_READ));
+
+	ew32(MDIC, mdic);
+
+	/*
+	 * Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		udelay(50);
+		mdic = er32(MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		e_dbg("MDI Read did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		e_dbg("MDI Error\n");
+		return -E1000_ERR_PHY;
+	}
+	*data = (u16) mdic;
+
+	return 0;
+}
+
+/**
+ *  e1000e_write_phy_reg_mdic - Write MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write to register at offset
+ *
+ *  Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = (((u32)data) |
+		(offset << E1000_MDIC_REG_SHIFT) |
+		(phy->addr << E1000_MDIC_PHY_SHIFT) |
+		(E1000_MDIC_OP_WRITE));
+
+	ew32(MDIC, mdic);
+
+	/*
+	 * Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		udelay(50);
+		mdic = er32(MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		e_dbg("MDI Write did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		e_dbg("MDI Error\n");
+		return -E1000_ERR_PHY;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_read_phy_reg_m88 - Read m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					   data);
+
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_phy_reg_m88 - Write m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					    data);
+
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  __e1000e_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+                                    bool locked)
+{
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+						    IGP01E1000_PHY_PAGE_SELECT,
+						    (u16)offset);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+	                                  data);
+
+release:
+	if (!locked)
+		hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores the
+ *  retrieved information in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  e1000e_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+                                     bool locked)
+{
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+						    IGP01E1000_PHY_PAGE_SELECT,
+						    (u16)offset);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					    data);
+
+release:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_read_kmrn_reg - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+                                 bool locked)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	kmrnctrlsta = er32(KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_kmrn_reg -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset using the
+ *  kumeran interface.  The information retrieved is stored in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_read_kmrn_reg_locked -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the kumeran interface.  The
+ *  information retrieved is stored in data.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_write_kmrn_reg - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release any acquired semaphores
+ *  before exiting.
+ **/
+static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+                                  bool locked)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | data;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_kmrn_reg -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to the PHY register at the offset
+ *  using the kumeran interface.  Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_write_kmrn_reg_locked -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Write the data to PHY register at the offset using the kumeran interface.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+	/* Enable downshift */
+	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
+ *  and downshift values are set also.
+ **/
+s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	/* Enable CRS on Tx. This must be set for half-duplex operation. */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* For BM PHY this bit is downshift enable */
+	if (phy->type != e1000_phy_bm)
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/*
+	 * Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (phy->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/*
+	 * Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (phy->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+	/* Enable downshift on BM (disabled by default) */
+	if (phy->type == e1000_phy_bm)
+		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+
+	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy->type == e1000_phy_m88) &&
+	    (phy->revision < E1000_REVISION_4) &&
+	    (phy->id != BME1000_E_PHY_ID_R2)) {
+		/*
+		 * Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((phy->revision == 2) &&
+		    (phy->id == M88E1111_I_PHY_ID)) {
+			/* 82573L PHY - set the downshift counter to 5x. */
+			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+		}
+		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
+		/* Set PHY page 0, register 29 to 0x0003 */
+		ret_val = e1e_wphy(hw, 29, 0x0003);
+		if (ret_val)
+			return ret_val;
+
+		/* Set PHY page 0, register 30 to 0x0000 */
+		ret_val = e1e_wphy(hw, 30, 0x0000);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Commit the changes. */
+	ret_val = e1000e_commit_phy(hw);
+	if (ret_val) {
+		e_dbg("Error committing the PHY changes\n");
+		return ret_val;
+	}
+
+	if (phy->type == e1000_phy_82578) {
+		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+		                            &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* 82578 PHY - set the downshift count to 1x. */
+		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
+		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
+		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+		                             phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ *  igp PHY's.
+ **/
+s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1000_phy_hw_reset(hw);
+	if (ret_val) {
+		e_dbg("Error resetting the PHY.\n");
+		return ret_val;
+	}
+
+	/*
+	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+	 * timeout issues when LFS is enabled.
+	 */
+	msleep(100);
+
+	/* disable lplu d0 during driver init */
+	ret_val = e1000_set_d0_lplu_state(hw, false);
+	if (ret_val) {
+		e_dbg("Error Disabling LPLU D0\n");
+		return ret_val;
+	}
+	/* Configure mdi-mdix settings */
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+	switch (phy->mdix) {
+	case 1:
+		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 2:
+		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 0:
+	default:
+		data |= IGP01E1000_PSCR_AUTO_MDIX;
+		break;
+	}
+	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->mac.autoneg) {
+		/*
+		 * when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default.
+		 */
+		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+
+			/* Set auto Master/Slave resolution process */
+			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~CR_1000T_MS_ENABLE;
+			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
+		if (ret_val)
+			return ret_val;
+
+		/* load defaults for future use */
+		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+			((data & CR_1000T_MS_VALUE) ?
+			e1000_ms_force_master :
+			e1000_ms_force_slave) :
+			e1000_ms_auto;
+
+		switch (phy->ms_type) {
+		case e1000_ms_force_master:
+			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			data |= CR_1000T_MS_ENABLE;
+			data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the MII auto-neg advertisement register and/or the 1000T control
+ *  register and if the PHY is already setup for auto-negotiation, then
+ *  return successful.  Otherwise, setup advertisement and flow control to
+ *  the appropriate values for the wanted auto-negotiation.
+ **/
+static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg = 0;
+
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		/* Read the MII 1000Base-T Control Register (Address 9). */
+		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/*
+	 * Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/*
+	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+				 NWAY_AR_100TX_HD_CAPS |
+				 NWAY_AR_10T_FD_CAPS   |
+				 NWAY_AR_10T_HD_CAPS);
+	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+		e_dbg("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+		e_dbg("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+		e_dbg("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+		e_dbg("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+		e_dbg("Advertise 1000mb Half duplex request denied!\n");
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+		e_dbg("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+	 * negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *	  but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *	  but we do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *	  in the EEPROM is used.
+	 */
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		/*
+		 * Flow control (Rx & Tx) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * Rx Flow control is enabled, and Tx Flow control is
+		 * disabled, by a software over-ride.
+		 *
+		 * Since there really isn't a way to advertise that we are
+		 * capable of Rx Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric Rx PAUSE.  Later
+		 * (in e1000e_config_fc_after_link_up) we will disable the
+		 * hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * Tx Flow control is enabled, and Rx Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		return ret_val;
+	}
+
+	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs initial bounds checking on autoneg advertisement parameter, then
+ *  configure to advertise the full capability.  Setup the PHY to autoneg
+ *  and restart the negotiation process between the link partner.  If
+ *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	/*
+	 * Perform some bounds checking on the autoneg advertisement
+	 * parameter.
+	 */
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/*
+	 * If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (phy->autoneg_advertised == 0)
+		phy->autoneg_advertised = phy->autoneg_mask;
+
+	e_dbg("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		e_dbg("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	e_dbg("Restarting Auto-Neg\n");
+
+	/*
+	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (phy->autoneg_wait_to_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			e_dbg("Error while waiting for "
+				 "autoneg to complete\n");
+			return ret_val;
+		}
+	}
+
+	hw->mac.get_link_status = 1;
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_setup_copper_link - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000e_setup_copper_link(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	bool link;
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		e_dbg("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			e_dbg("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw,
+					     COPPER_LINK_UP_LIMIT,
+					     10,
+					     &link);
+	if (ret_val)
+		return ret_val;
+
+	if (link) {
+		e_dbg("Valid link established!!!\n");
+		e1000e_config_collision_dist(hw);
+		ret_val = e1000e_config_fc_after_link_up(hw);
+	} else {
+		e_dbg("Unable to establish link!!!\n");
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Waits for link and returns
+ *  successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("IGP PSCR: %X\n", phy_data);
+
+	udelay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw,
+						     PHY_FORCE_LIMIT,
+						     100000,
+						     &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link)
+			e_dbg("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw,
+						     PHY_FORCE_LIMIT,
+						     100000,
+						     &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Resets the PHY to commit the
+ *  changes.  If time expires while waiting for link up, we reset the DSP.
+ *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
+ *  successful completion, else return corresponding error code.
+ **/
+s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("M88E1000 PSCR: %X\n", phy_data);
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Reset the phy to commit changes. */
+	ret_val = e1000e_commit_phy(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link) {
+			if (hw->phy.type != e1000_phy_m88) {
+				e_dbg("Link taking longer than expected.\n");
+			} else {
+				/*
+				 * We didn't get link.
+				 * Reset the DSP and cross our fingers.
+				 */
+				ret_val = e1e_wphy(hw,
+						M88E1000_PHY_PAGE_SELECT,
+						0x001d);
+				if (ret_val)
+					return ret_val;
+				ret_val = e1000e_phy_reset_dsp(hw);
+				if (ret_val)
+					return ret_val;
+			}
+		}
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->phy.type != e1000_phy_m88)
+		return 0;
+
+	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Resetting the phy means we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock from
+	 * the reset value of 2.5MHz.
+	 */
+	phy_data |= M88E1000_EPSCR_TX_CLK_25;
+	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Forces the speed and duplex settings of the PHY.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &data);
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	/* Disable MDI-X support for 10/100 */
+	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~IFE_PMC_AUTO_MDIX;
+	data &= ~IFE_PMC_FORCE_MDIX;
+
+	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	e_dbg("IFE PMC: %X\n", data);
+
+	udelay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+
+		if (!link)
+			e_dbg("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ *  Forces speed and duplex on the PHY by doing the following: disable flow
+ *  control, force speed/duplex on the MAC, disable auto speed detection,
+ *  disable auto-negotiation, configure duplex, configure speed, configure
+ *  the collision distance, write configuration to CTRL register.  The
+ *  caller must write to the PHY_CONTROL register for these settings to
+ *  take affect.
+ **/
+void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl;
+
+	/* Turn off flow control when forcing speed/duplex */
+	hw->fc.current_mode = e1000_fc_none;
+
+	/* Force speed/duplex on the mac */
+	ctrl = er32(CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~E1000_CTRL_SPD_SEL;
+
+	/* Disable Auto Speed Detection */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Disable autoneg on the phy */
+	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Forcing Full or Half Duplex? */
+	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+		ctrl &= ~E1000_CTRL_FD;
+		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+		e_dbg("Half Duplex\n");
+	} else {
+		ctrl |= E1000_CTRL_FD;
+		*phy_ctrl |= MII_CR_FULL_DUPLEX;
+		e_dbg("Full Duplex\n");
+	}
+
+	/* Forcing 10mb or 100mb? */
+	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+		ctrl |= E1000_CTRL_SPD_100;
+		*phy_ctrl |= MII_CR_SPEED_100;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		e_dbg("Forcing 100mb\n");
+	} else {
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		*phy_ctrl |= MII_CR_SPEED_10;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		e_dbg("Forcing 10mb\n");
+	}
+
+	e1000e_config_collision_dist(hw);
+
+	ew32(CTRL, ctrl);
+}
+
+/**
+ *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (!active) {
+		data &= ~IGP02E1000_PM_D3_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		if (ret_val)
+			return ret_val;
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP02E1000_PM_D3_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		if (ret_val)
+			return ret_val;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_check_downshift - Checks whether a downshift in speed occurred
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000e_check_downshift(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	switch (phy->type) {
+	case e1000_phy_m88:
+	case e1000_phy_gg82563:
+	case e1000_phy_bm:
+	case e1000_phy_82578:
+		offset	= M88E1000_PHY_SPEC_STATUS;
+		mask	= M88E1000_PSSR_DOWNSHIFT;
+		break;
+	case e1000_phy_igp_2:
+	case e1000_phy_igp_3:
+		offset	= IGP01E1000_PHY_LINK_HEALTH;
+		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
+		break;
+	default:
+		/* speed downshift not supported */
+		phy->speed_downgraded = false;
+		return 0;
+	}
+
+	ret_val = e1e_rphy(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->speed_downgraded = (phy_data & mask);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_m88 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+				      ? e1000_rev_polarity_reversed
+				      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_igp - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY port status register, and the
+ *  current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data, offset, mask;
+
+	/*
+	 * Polarity is determined based on the speed of
+	 * our connection.
+	 */
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		offset	= IGP01E1000_PHY_PCS_INIT_REG;
+		mask	= IGP01E1000_PHY_POLARITY_MASK;
+	} else {
+		/*
+		 * This really only applies to 10Mbps since
+		 * there is no polarity for 100Mbps (always 0).
+		 */
+		offset	= IGP01E1000_PHY_PORT_STATUS;
+		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
+	}
+
+	ret_val = e1e_rphy(hw, offset, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & mask)
+				      ? e1000_rev_polarity_reversed
+				      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	/*
+	 * Polarity is determined based on the reversal feature being enabled.
+	 */
+	if (phy->polarity_correction) {
+		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+		mask = IFE_PESC_POLARITY_REVERSED;
+	} else {
+		offset = IFE_PHY_SPECIAL_CONTROL;
+		mask = IFE_PSC_FORCE_POLARITY;
+	}
+
+	ret_val = e1e_rphy(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->cable_polarity = (phy_data & mask)
+		                       ? e1000_rev_polarity_reversed
+		                       : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_wait_autoneg - Wait for auto-neg completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Waits for auto-negotiation to complete or for the auto-negotiation time
+ *  limit to expire, which ever happens first.
+ **/
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 i, phy_status;
+
+	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_AUTONEG_COMPLETE)
+			break;
+		msleep(100);
+	}
+
+	/*
+	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+	 * has completed.
+	 */
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_has_link_generic - Polls PHY for link
+ *  @hw: pointer to the HW structure
+ *  @iterations: number of times to poll for link
+ *  @usec_interval: delay between polling attempts
+ *  @success: pointer to whether polling was successful or not
+ *
+ *  Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+			       u32 usec_interval, bool *success)
+{
+	s32 ret_val = 0;
+	u16 i, phy_status;
+
+	for (i = 0; i < iterations; i++) {
+		/*
+		 * Some PHYs require the PHY_STATUS register to be read
+		 * twice due to the link bit being sticky.  No harm doing
+		 * it across the board.
+		 */
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			/*
+			 * If the first read fails, another entity may have
+			 * ownership of the resources, wait and try again to
+			 * see if they have relinquished the resources yet.
+			 */
+			udelay(usec_interval);
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_LINK_STATUS)
+			break;
+		if (usec_interval >= 1000)
+			mdelay(usec_interval/1000);
+		else
+			udelay(usec_interval);
+	}
+
+	*success = (i < iterations);
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY specific status register to retrieve the cable length
+ *  information.  The cable length is determined by averaging the minimum and
+ *  maximum values to get the "average" cable length.  The m88 PHY has four
+ *  possible cable length values, which are:
+ *	Register Value		Cable Length
+ *	0			< 50 meters
+ *	1			50 - 80 meters
+ *	2			80 - 110 meters
+ *	3			110 - 140 meters
+ *	4			> 140 meters
+ **/
+s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	phy->min_cable_length = e1000_m88_cable_length_table[index];
+	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  The automatic gain control (agc) normalizes the amplitude of the
+ *  received signal, adjusting for the attenuation produced by the
+ *  cable.  By reading the AGC registers, which represent the
+ *  combination of coarse and fine gain value, the value can be put
+ *  into a lookup table to obtain the approximate cable length
+ *  for each channel.
+ **/
+s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, i, agc_value = 0;
+	u16 cur_agc_index, max_agc_index = 0;
+	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+							 {IGP02E1000_PHY_AGC_A,
+							  IGP02E1000_PHY_AGC_B,
+							  IGP02E1000_PHY_AGC_C,
+							  IGP02E1000_PHY_AGC_D};
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/*
+		 * Getting bits 15:9, which represent the combination of
+		 * coarse and fine gain values.  The result is a number
+		 * that can be put into the lookup table to obtain the
+		 * approximate cable length.
+		 */
+		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+				IGP02E1000_AGC_LENGTH_MASK;
+
+		/* Array index bound check. */
+		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+		    (cur_agc_index == 0))
+			return -E1000_ERR_PHY;
+
+		/* Remove min & max AGC values from calculation. */
+		if (e1000_igp_2_cable_length_table[min_agc_index] >
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			min_agc_index = cur_agc_index;
+		if (e1000_igp_2_cable_length_table[max_agc_index] <
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			max_agc_index = cur_agc_index;
+
+		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+	}
+
+	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+		      e1000_igp_2_cable_length_table[max_agc_index]);
+	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+	/* Calculate cable length with the error range of +/- 10 meters. */
+	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
+	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_phy_info_m88 - Retrieve PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Valid for only copper links.  Read the PHY status register (sticky read)
+ *  to verify that link is up.  Read the PHY special control register to
+ *  determine the polarity and 10base-T extended distance.  Read the PHY
+ *  special status register to determine MDI/MDIx and current speed.  If
+ *  speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32  ret_val;
+	u16 phy_data;
+	bool link;
+
+	if (phy->media_type != e1000_media_type_copper) {
+		e_dbg("Phy info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy->polarity_correction = (phy_data &
+				    M88E1000_PSCR_POLARITY_REVERSAL);
+
+	ret_val = e1000_check_polarity_m88(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+				? e1000_1000t_rx_status_ok
+				: e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+				 ? e1000_1000t_rx_status_ok
+				 : e1000_1000t_rx_status_not_ok;
+	} else {
+		/* Set values to "undefined" */
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_phy_info_igp - Retrieve igp PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	phy->polarity_correction = true;
+
+	ret_val = e1000_check_polarity_igp(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			return ret_val;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+				? e1000_1000t_rx_status_ok
+				: e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+				 ? e1000_1000t_rx_status_ok
+				 : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ *  @hw: pointer to the HW structure
+ *
+ *  Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+	if (ret_val)
+		goto out;
+	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
+	                           ? false : true;
+
+	if (phy->polarity_correction) {
+		ret_val = e1000_check_polarity_ife(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/* Polarity is forced */
+		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+	}
+
+	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
+
+	/* The following parameters are undefined for 10/100 operation. */
+	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+	phy->local_rx = e1000_1000t_rx_status_undefined;
+	phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_sw_reset - PHY software reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a software reset of the PHY by reading the PHY control register and
+ *  setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	phy_ctrl |= MII_CR_RESET;
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_hw_reset_generic - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify the reset block is not blocking us from resetting.  Acquire
+ *  semaphore (if necessary) and read/set/write the device control reset
+ *  bit in the PHY.  Wait the appropriate delay time for the device to
+ *  reset and release the semaphore (if necessary).
+ **/
+s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 ctrl;
+
+	ret_val = e1000_check_reset_block(hw);
+	if (ret_val)
+		return 0;
+
+	ret_val = phy->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ctrl = er32(CTRL);
+	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+	e1e_flush();
+
+	udelay(phy->reset_delay_us);
+
+	ew32(CTRL, ctrl);
+	e1e_flush();
+
+	udelay(150);
+
+	phy->ops.release(hw);
+
+	return e1000_get_phy_cfg_done(hw);
+}
+
+/**
+ *  e1000e_get_cfg_done - Generic configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Generic function to wait 10 milli-seconds for configuration to complete
+ *  and return success.
+ **/
+s32 e1000e_get_cfg_done(struct e1000_hw *hw)
+{
+	mdelay(10);
+	return 0;
+}
+
+/**
+ *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
+{
+	e_dbg("Running IGP 3 PHY init script\n");
+
+	/* PHY init IGP 3 */
+	/* Enable rise/fall, 10-mode work in class-A */
+	e1e_wphy(hw, 0x2F5B, 0x9018);
+	/* Remove all caps from Replica path filter */
+	e1e_wphy(hw, 0x2F52, 0x0000);
+	/* Bias trimming for ADC, AFE and Driver (Default) */
+	e1e_wphy(hw, 0x2FB1, 0x8B24);
+	/* Increase Hybrid poly bias */
+	e1e_wphy(hw, 0x2FB2, 0xF8F0);
+	/* Add 4% to Tx amplitude in Gig mode */
+	e1e_wphy(hw, 0x2010, 0x10B0);
+	/* Disable trimming (TTT) */
+	e1e_wphy(hw, 0x2011, 0x0000);
+	/* Poly DC correction to 94.6% + 2% for all channels */
+	e1e_wphy(hw, 0x20DD, 0x249A);
+	/* ABS DC correction to 95.9% */
+	e1e_wphy(hw, 0x20DE, 0x00D3);
+	/* BG temp curve trim */
+	e1e_wphy(hw, 0x28B4, 0x04CE);
+	/* Increasing ADC OPAMP stage 1 currents to max */
+	e1e_wphy(hw, 0x2F70, 0x29E4);
+	/* Force 1000 ( required for enabling PHY regs configuration) */
+	e1e_wphy(hw, 0x0000, 0x0140);
+	/* Set upd_freq to 6 */
+	e1e_wphy(hw, 0x1F30, 0x1606);
+	/* Disable NPDFE */
+	e1e_wphy(hw, 0x1F31, 0xB814);
+	/* Disable adaptive fixed FFE (Default) */
+	e1e_wphy(hw, 0x1F35, 0x002A);
+	/* Enable FFE hysteresis */
+	e1e_wphy(hw, 0x1F3E, 0x0067);
+	/* Fixed FFE for short cable lengths */
+	e1e_wphy(hw, 0x1F54, 0x0065);
+	/* Fixed FFE for medium cable lengths */
+	e1e_wphy(hw, 0x1F55, 0x002A);
+	/* Fixed FFE for long cable lengths */
+	e1e_wphy(hw, 0x1F56, 0x002A);
+	/* Enable Adaptive Clip Threshold */
+	e1e_wphy(hw, 0x1F72, 0x3FB0);
+	/* AHT reset limit to 1 */
+	e1e_wphy(hw, 0x1F76, 0xC0FF);
+	/* Set AHT master delay to 127 msec */
+	e1e_wphy(hw, 0x1F77, 0x1DEC);
+	/* Set scan bits for AHT */
+	e1e_wphy(hw, 0x1F78, 0xF9EF);
+	/* Set AHT Preset bits */
+	e1e_wphy(hw, 0x1F79, 0x0210);
+	/* Change integ_factor of channel A to 3 */
+	e1e_wphy(hw, 0x1895, 0x0003);
+	/* Change prop_factor of channels BCD to 8 */
+	e1e_wphy(hw, 0x1796, 0x0008);
+	/* Change cg_icount + enable integbp for channels BCD */
+	e1e_wphy(hw, 0x1798, 0xD008);
+	/*
+	 * Change cg_icount + enable integbp + change prop_factor_master
+	 * to 8 for channel A
+	 */
+	e1e_wphy(hw, 0x1898, 0xD918);
+	/* Disable AHT in Slave mode on channel A */
+	e1e_wphy(hw, 0x187A, 0x0800);
+	/*
+	 * Enable LPLU and disable AN to 1000 in non-D0a states,
+	 * Enable SPD+B2B
+	 */
+	e1e_wphy(hw, 0x0019, 0x008D);
+	/* Enable restart AN on an1000_dis change */
+	e1e_wphy(hw, 0x001B, 0x2080);
+	/* Enable wh_fifo read clock in 10/100 modes */
+	e1e_wphy(hw, 0x0014, 0x0045);
+	/* Restart AN, Speed selection is 1000 */
+	e1e_wphy(hw, 0x0000, 0x1340);
+
+	return 0;
+}
+
+/* Internal function pointers */
+
+/**
+ *  e1000_get_phy_cfg_done - Generic PHY configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Return success if silicon family did not implement a family specific
+ *  get_cfg_done function.
+ **/
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.get_cfg_done)
+		return hw->phy.ops.get_cfg_done(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  When the silicon family has not implemented a forced speed/duplex
+ *  function for the PHY, simply return 0.
+ **/
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.force_speed_duplex)
+		return hw->phy.ops.force_speed_duplex(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_phy_type_from_id - Get PHY type from id
+ *  @phy_id: phy_id read from the phy
+ *
+ *  Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
+{
+	enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+	switch (phy_id) {
+	case M88E1000_I_PHY_ID:
+	case M88E1000_E_PHY_ID:
+	case M88E1111_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+		phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+		phy_type = e1000_phy_igp_2;
+		break;
+	case GG82563_E_PHY_ID:
+		phy_type = e1000_phy_gg82563;
+		break;
+	case IGP03E1000_E_PHY_ID:
+		phy_type = e1000_phy_igp_3;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy_type = e1000_phy_ife;
+		break;
+	case BME1000_E_PHY_ID:
+	case BME1000_E_PHY_ID_R2:
+		phy_type = e1000_phy_bm;
+		break;
+	case I82578_E_PHY_ID:
+		phy_type = e1000_phy_82578;
+		break;
+	case I82577_E_PHY_ID:
+		phy_type = e1000_phy_82577;
+		break;
+	default:
+		phy_type = e1000_phy_unknown;
+		break;
+	}
+	return phy_type;
+}
+
+/**
+ *  e1000e_determine_phy_address - Determines PHY address.
+ *  @hw: pointer to the HW structure
+ *
+ *  This uses a trial and error method to loop through possible PHY
+ *  addresses. It tests each by reading the PHY ID registers and
+ *  checking for a match.
+ **/
+s32 e1000e_determine_phy_address(struct e1000_hw *hw)
+{
+	s32 ret_val = -E1000_ERR_PHY_TYPE;
+	u32 phy_addr = 0;
+	u32 i;
+	enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+	hw->phy.id = phy_type;
+
+	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+		hw->phy.addr = phy_addr;
+		i = 0;
+
+		do {
+			e1000e_get_phy_id(hw);
+			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
+
+			/*
+			 * If phy_type is valid, break - we found our
+			 * PHY address
+			 */
+			if (phy_type  != e1000_phy_unknown) {
+				ret_val = 0;
+				goto out;
+			}
+			msleep(1);
+			i++;
+		} while (i < 10);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ *  @page: page to access
+ *
+ *  Returns the phy address for the page requested.
+ **/
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+	u32 phy_addr = 2;
+
+	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+		phy_addr = 1;
+
+	return phy_addr;
+}
+
+/**
+ *  e1000e_write_phy_reg_bm - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select = 0;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+	u32 page_shift = 0;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+							 false);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/*
+		 * Page select is register 31 for phy address 1 and 22 for
+		 * phy address 2 and 3. Page select is shifted only for
+		 * phy address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+		                                    (page << page_shift));
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+	                                    data);
+
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_phy_reg_bm - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select = 0;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+	u32 page_shift = 0;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+							 true);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/*
+		 * Page select is register 31 for phy address 1 and 22 for
+		 * phy address 2 and 3. Page select is shifted only for
+		 * phy address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+		                                    (page << page_shift));
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+	                                   data);
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_phy_reg_bm2 - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+							 true);
+		goto out;
+	}
+
+	hw->phy.addr = 1;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+						    page);
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					   data);
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_phy_reg_bm2 - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+							 false);
+		goto out;
+	}
+
+	hw->phy.addr = 1;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+						    page);
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					    data);
+
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to read or write
+ *  @read: determines if operation is read or write
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting. Note that procedure to read the wakeup
+ *  registers are different. It works as such:
+ *  1) Set page 769, register 17, bit 2 = 1
+ *  2) Set page to 800 for host (801 if we were manageability)
+ *  3) Write the address using the address opcode (0x11)
+ *  4) Read or write the data using the data opcode (0x12)
+ *  5) Restore 769_17.2 to its original value
+ *
+ *  Assumes semaphore already acquired.
+ **/
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read)
+{
+	s32 ret_val;
+	u16 reg = BM_PHY_REG_NUM(offset);
+	u16 phy_reg = 0;
+
+	/* Gig must be disabled for MDIO accesses to page 800 */
+	if ((hw->mac.type == e1000_pchlan) &&
+	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
+		e_dbg("Attempting to access page 800 while gig enabled.\n");
+
+	/* All operations in this function are phy address 1 */
+	hw->phy.addr = 1;
+
+	/* Set page 769 */
+	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+	if (ret_val) {
+		e_dbg("Could not read PHY page 769\n");
+		goto out;
+	}
+
+	/* First clear bit 4 to avoid a power state change */
+	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (ret_val) {
+		e_dbg("Could not clear PHY page 769 bit 4\n");
+		goto out;
+	}
+
+	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
+	                                    phy_reg | BM_WUC_ENABLE_BIT);
+	if (ret_val) {
+		e_dbg("Could not write PHY page 769 bit 2\n");
+		goto out;
+	}
+
+	/* Select page 800 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+
+	/* Write the page 800 offset value using opcode 0x11 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+	if (ret_val) {
+		e_dbg("Could not write address opcode to page 800\n");
+		goto out;
+	}
+
+	if (read) {
+	        /* Read the page 800 value using opcode 0x12 */
+		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+		                                   data);
+	} else {
+	        /* Write the page 800 value using opcode 0x12 */
+		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+						    *data);
+	}
+
+	if (ret_val) {
+		e_dbg("Could not access data value from page 800\n");
+		goto out;
+	}
+
+	/*
+	 * Restore 769_17.2 to its original value
+	 * Set page 769
+	 */
+	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+	/* Clear 769_17.2 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (ret_val) {
+		e_dbg("Could not clear PHY page 769 bit 2\n");
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
+	mii_reg &= ~MII_CR_POWER_DOWN;
+	e1e_wphy(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
+	mii_reg |= MII_CR_POWER_DOWN;
+	e1e_wphy(hw, PHY_CONTROL, mii_reg);
+	msleep(1);
+}
+
+/**
+ *  e1000e_commit_phy - Soft PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs a soft PHY reset on those that apply. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000e_commit_phy(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.commit)
+		return hw->phy.ops.commit(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_set_d0_lplu_state - Sets low power link up state for D0
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D0
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D0
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.  This is a function pointer entry point called by drivers.
+ **/
+static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+	if (hw->phy.ops.set_d0_lplu_state)
+		return hw->phy.ops.set_d0_lplu_state(hw, active);
+
+	return 0;
+}
+
+/**
+ *  __e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphore before exiting.
+ **/
+static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
+                                   bool locked)
+{
+	s32 ret_val;
+	u16 page = BM_PHY_REG_PAGE(offset);
+	u16 reg = BM_PHY_REG_NUM(offset);
+
+	if (!locked) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
+		                                         data, true);
+		goto out;
+	}
+
+	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+		                                         data, true);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+	if (page == HV_INTC_FC_PAGE_START)
+		page = 0;
+
+	if (reg > MAX_PHY_MULTI_PAGE_REG) {
+		u32 phy_addr = hw->phy.addr;
+
+		hw->phy.addr = 1;
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+					     IGP01E1000_PHY_PAGE_SELECT,
+					     (page << IGP_PAGE_SHIFT));
+		hw->phy.addr = phy_addr;
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+	                                  data);
+out:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores
+ *  the retrieved information in data.  Release the acquired semaphore
+ *  before exiting.
+ **/
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_hv(hw, offset, data, false);
+}
+
+/**
+ *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_hv(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
+                                    bool locked)
+{
+	s32 ret_val;
+	u16 page = BM_PHY_REG_PAGE(offset);
+	u16 reg = BM_PHY_REG_NUM(offset);
+
+	if (!locked) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
+		                                         &data, false);
+		goto out;
+	}
+
+	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+		                                         &data, false);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+	if (page == HV_INTC_FC_PAGE_START)
+		page = 0;
+
+	/*
+	 * Workaround MDIO accesses being disabled after entering IEEE Power
+	 * Down (whenever bit 11 of the PHY Control register is set)
+	 */
+	if ((hw->phy.type == e1000_phy_82578) &&
+	    (hw->phy.revision >= 1) &&
+	    (hw->phy.addr == 2) &&
+	    ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
+	    (data & (1 << 11))) {
+		u16 data2 = 0x7EFF;
+		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
+		                                         &data2, false);
+		if (ret_val)
+			goto out;
+	}
+
+	if (reg > MAX_PHY_MULTI_PAGE_REG) {
+		u32 phy_addr = hw->phy.addr;
+
+		hw->phy.addr = 1;
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+					     IGP01E1000_PHY_PAGE_SELECT,
+					     (page << IGP_PAGE_SHIFT));
+		hw->phy.addr = phy_addr;
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+	                                  data);
+
+out:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register at the offset.
+ *  Release the acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_hv(hw, offset, data, false);
+}
+
+/**
+ *  e1000_write_phy_reg_hv_locked - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.  Assumes semaphore
+ *  already acquired.
+ **/
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_hv(hw, offset, data, true);
+}
+
+/**
+ *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
+ *  @page: page to be accessed
+ **/
+static u32 e1000_get_phy_addr_for_hv_page(u32 page)
+{
+	u32 phy_addr = 2;
+
+	if (page >= HV_INTC_FC_PAGE_START)
+		phy_addr = 1;
+
+	return phy_addr;
+}
+
+/**
+ *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to be read or written
+ *  @read: determines if operation is read or written
+ *
+ *  Reads the PHY register at offset and stores the retreived information
+ *  in data.  Assumes semaphore already acquired.  Note that the procedure
+ *  to read these regs uses the address port and data port to read/write.
+ **/
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+                                          u16 *data, bool read)
+{
+	s32 ret_val;
+	u32 addr_reg = 0;
+	u32 data_reg = 0;
+
+	/* This takes care of the difference with desktop vs mobile phy */
+	addr_reg = (hw->phy.type == e1000_phy_82578) ?
+	           I82578_ADDR_REG : I82577_ADDR_REG;
+	data_reg = addr_reg + 1;
+
+	/* All operations in this function are phy address 2 */
+	hw->phy.addr = 2;
+
+	/* masking with 0x3F to remove the page from offset */
+	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
+	if (ret_val) {
+		e_dbg("Could not write PHY the HV address register\n");
+		goto out;
+	}
+
+	/* Read or write the data value next */
+	if (read)
+		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
+	else
+		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
+
+	if (ret_val) {
+		e_dbg("Could not read data value from HV data register\n");
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_link_stall_workaround_hv - Si workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  This function works around a Si bug where the link partner can get
+ *  a link up indication before the PHY does.  If small packets are sent
+ *  by the link partner they can be placed in the packet buffer without
+ *  being properly accounted for by the PHY and will stall preventing
+ *  further packets from being received.  The workaround is to clear the
+ *  packet buffer after the PHY detects link up.
+ **/
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 data;
+
+	if (hw->phy.type != e1000_phy_82578)
+		goto out;
+
+	/* Do not apply workaround if in PHY loopback bit 14 set */
+	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
+	if (data & PHY_CONTROL_LB)
+		goto out;
+
+	/* check if link is up and at 1Gbps */
+	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
+	if (ret_val)
+		goto out;
+
+	data &= BM_CS_STATUS_LINK_UP |
+	        BM_CS_STATUS_RESOLVED |
+	        BM_CS_STATUS_SPEED_MASK;
+
+	if (data != (BM_CS_STATUS_LINK_UP |
+	             BM_CS_STATUS_RESOLVED |
+	             BM_CS_STATUS_SPEED_1000))
+		goto out;
+
+	mdelay(200);
+
+	/* flush the packets in the fifo buffer */
+	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+	                                HV_MUX_DATA_CTRL_GEN_TO_MAC |
+	                                HV_MUX_DATA_CTRL_FORCE_SPEED);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+	                                HV_MUX_DATA_CTRL_GEN_TO_MAC);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_82577 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	udelay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+
+		if (!link)
+			e_dbg("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	phy->polarity_correction = true;
+
+	ret_val = e1000_check_polarity_82577(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
+
+	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
+		ret_val = hw->phy.ops.get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			goto out;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+		                ? e1000_1000t_rx_status_ok
+		                : e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+		                 ? e1000_1000t_rx_status_ok
+		                 : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, length;
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
+
+	if (length == E1000_CABLE_LENGTH_UNDEFINED)
+		ret_val = -E1000_ERR_PHY;
+
+	phy->cable_length = length;
+
+out:
+	return ret_val;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/phy-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3258 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include <linux/delay.h>
+
+#include "e1000.h"
+
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read);
+static u32 e1000_get_phy_addr_for_hv_page(u32 page);
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+                                          u16 *data, bool read);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] =
+	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+		ARRAY_SIZE(e1000_m88_cable_length_table)
+
+static const u16 e1000_igp_2_cable_length_table[] =
+	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+	  124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+		ARRAY_SIZE(e1000_igp_2_cable_length_table)
+
+#define BM_PHY_REG_PAGE(offset) \
+	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
+#define BM_PHY_REG_NUM(offset) \
+	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
+	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
+		~MAX_PHY_REG_ADDRESS)))
+
+#define HV_INTC_FC_PAGE_START             768
+#define I82578_ADDR_REG                   29
+#define I82577_ADDR_REG                   16
+#define I82577_CFG_REG                    22
+#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
+#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
+#define I82577_CTRL_REG                   23
+
+/* 82577 specific PHY registers */
+#define I82577_PHY_CTRL_2            18
+#define I82577_PHY_STATUS_2          26
+#define I82577_PHY_DIAG_STATUS       31
+
+/* I82577 PHY Status 2 */
+#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
+#define I82577_PHY_STATUS2_MDIX           0x0800
+#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
+#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
+
+/* I82577 PHY Control 2 */
+#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
+#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
+
+/* I82577 PHY Diagnostics Status */
+#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
+#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
+
+/* BM PHY Copper Specific Control 1 */
+#define BM_CS_CTRL1                       16
+
+#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
+#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
+#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
+
+/**
+ *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the PHY management control register and check whether a PHY reset
+ *  is blocked.  If a reset is not blocked return 0, otherwise
+ *  return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	manc = er32(MANC);
+
+	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+	       E1000_BLK_PHY_RESET : 0;
+}
+
+/**
+ *  e1000e_get_phy_id - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+s32 e1000e_get_phy_id(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = 0;
+	u16 phy_id;
+	u16 retry_count = 0;
+
+	if (!(phy->ops.read_reg))
+		goto out;
+
+	while (retry_count < 2) {
+		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
+		if (ret_val)
+			goto out;
+
+		phy->id = (u32)(phy_id << 16);
+		udelay(20);
+		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
+		if (ret_val)
+			goto out;
+
+		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
+			goto out;
+
+		retry_count++;
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_reset_dsp - Reset PHY DSP
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the digital signal processor.
+ **/
+s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+	if (ret_val)
+		return ret_val;
+
+	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
+}
+
+/**
+ *  e1000e_read_phy_reg_mdic - Read MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the MDI control register in the PHY at offset and stores the
+ *  information read to data.
+ **/
+s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+		(phy->addr << E1000_MDIC_PHY_SHIFT) |
+		(E1000_MDIC_OP_READ));
+
+	ew32(MDIC, mdic);
+
+	/*
+	 * Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		udelay(50);
+		mdic = er32(MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		e_dbg("MDI Read did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		e_dbg("MDI Error\n");
+		return -E1000_ERR_PHY;
+	}
+	*data = (u16) mdic;
+
+	return 0;
+}
+
+/**
+ *  e1000e_write_phy_reg_mdic - Write MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write to register at offset
+ *
+ *  Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		e_dbg("PHY Address %d is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/*
+	 * Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = (((u32)data) |
+		(offset << E1000_MDIC_REG_SHIFT) |
+		(phy->addr << E1000_MDIC_PHY_SHIFT) |
+		(E1000_MDIC_OP_WRITE));
+
+	ew32(MDIC, mdic);
+
+	/*
+	 * Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		udelay(50);
+		mdic = er32(MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		e_dbg("MDI Write did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		e_dbg("MDI Error\n");
+		return -E1000_ERR_PHY;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_read_phy_reg_m88 - Read m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					   data);
+
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_phy_reg_m88 - Write m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					    data);
+
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  __e1000e_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+                                    bool locked)
+{
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+						    IGP01E1000_PHY_PAGE_SELECT,
+						    (u16)offset);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+	                                  data);
+
+release:
+	if (!locked)
+		hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores the
+ *  retrieved information in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  e1000e_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+                                     bool locked)
+{
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+						    IGP01E1000_PHY_PAGE_SELECT,
+						    (u16)offset);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					    data);
+
+release:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_read_kmrn_reg - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+                                 bool locked)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	kmrnctrlsta = er32(KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_kmrn_reg -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset using the
+ *  kumeran interface.  The information retrieved is stored in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_read_kmrn_reg_locked -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the kumeran interface.  The
+ *  information retrieved is stored in data.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_write_kmrn_reg - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release any acquired semaphores
+ *  before exiting.
+ **/
+static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+                                  bool locked)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val = 0;
+
+	if (!locked) {
+		if (!(hw->phy.ops.acquire))
+			goto out;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | data;
+	ew32(KMRNCTRLSTA, kmrnctrlsta);
+
+	udelay(2);
+
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_kmrn_reg -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to the PHY register at the offset
+ *  using the kumeran interface.  Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000e_write_kmrn_reg_locked -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Write the data to PHY register at the offset using the kumeran interface.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+	/* Enable downshift */
+	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
+ *  and downshift values are set also.
+ **/
+s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	/* Enable CRS on Tx. This must be set for half-duplex operation. */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* For BM PHY this bit is downshift enable */
+	if (phy->type != e1000_phy_bm)
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/*
+	 * Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (phy->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/*
+	 * Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (phy->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+	/* Enable downshift on BM (disabled by default) */
+	if (phy->type == e1000_phy_bm)
+		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+
+	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy->type == e1000_phy_m88) &&
+	    (phy->revision < E1000_REVISION_4) &&
+	    (phy->id != BME1000_E_PHY_ID_R2)) {
+		/*
+		 * Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((phy->revision == 2) &&
+		    (phy->id == M88E1111_I_PHY_ID)) {
+			/* 82573L PHY - set the downshift counter to 5x. */
+			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+		}
+		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
+		/* Set PHY page 0, register 29 to 0x0003 */
+		ret_val = e1e_wphy(hw, 29, 0x0003);
+		if (ret_val)
+			return ret_val;
+
+		/* Set PHY page 0, register 30 to 0x0000 */
+		ret_val = e1e_wphy(hw, 30, 0x0000);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Commit the changes. */
+	ret_val = e1000e_commit_phy(hw);
+	if (ret_val) {
+		e_dbg("Error committing the PHY changes\n");
+		return ret_val;
+	}
+
+	if (phy->type == e1000_phy_82578) {
+		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+		                            &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* 82578 PHY - set the downshift count to 1x. */
+		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
+		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
+		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+		                             phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ *  igp PHY's.
+ **/
+s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1000_phy_hw_reset(hw);
+	if (ret_val) {
+		e_dbg("Error resetting the PHY.\n");
+		return ret_val;
+	}
+
+	/*
+	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+	 * timeout issues when LFS is enabled.
+	 */
+	msleep(100);
+
+	/* disable lplu d0 during driver init */
+	ret_val = e1000_set_d0_lplu_state(hw, false);
+	if (ret_val) {
+		e_dbg("Error Disabling LPLU D0\n");
+		return ret_val;
+	}
+	/* Configure mdi-mdix settings */
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+	switch (phy->mdix) {
+	case 1:
+		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 2:
+		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 0:
+	default:
+		data |= IGP01E1000_PSCR_AUTO_MDIX;
+		break;
+	}
+	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->mac.autoneg) {
+		/*
+		 * when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default.
+		 */
+		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+
+			/* Set auto Master/Slave resolution process */
+			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~CR_1000T_MS_ENABLE;
+			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
+		if (ret_val)
+			return ret_val;
+
+		/* load defaults for future use */
+		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+			((data & CR_1000T_MS_VALUE) ?
+			e1000_ms_force_master :
+			e1000_ms_force_slave) :
+			e1000_ms_auto;
+
+		switch (phy->ms_type) {
+		case e1000_ms_force_master:
+			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			data |= CR_1000T_MS_ENABLE;
+			data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the MII auto-neg advertisement register and/or the 1000T control
+ *  register and if the PHY is already setup for auto-negotiation, then
+ *  return successful.  Otherwise, setup advertisement and flow control to
+ *  the appropriate values for the wanted auto-negotiation.
+ **/
+static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg = 0;
+
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		/* Read the MII 1000Base-T Control Register (Address 9). */
+		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/*
+	 * Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/*
+	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+				 NWAY_AR_100TX_HD_CAPS |
+				 NWAY_AR_10T_FD_CAPS   |
+				 NWAY_AR_10T_HD_CAPS);
+	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+		e_dbg("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+		e_dbg("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+		e_dbg("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+		e_dbg("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+		e_dbg("Advertise 1000mb Half duplex request denied!\n");
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+		e_dbg("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/*
+	 * Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+	 * negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *	  but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *	  but we do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *	  in the EEPROM is used.
+	 */
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		/*
+		 * Flow control (Rx & Tx) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_rx_pause:
+		/*
+		 * Rx Flow control is enabled, and Tx Flow control is
+		 * disabled, by a software over-ride.
+		 *
+		 * Since there really isn't a way to advertise that we are
+		 * capable of Rx Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric Rx PAUSE.  Later
+		 * (in e1000e_config_fc_after_link_up) we will disable the
+		 * hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_tx_pause:
+		/*
+		 * Tx Flow control is enabled, and Rx Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case e1000_fc_full:
+		/*
+		 * Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		e_dbg("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		return ret_val;
+	}
+
+	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs initial bounds checking on autoneg advertisement parameter, then
+ *  configure to advertise the full capability.  Setup the PHY to autoneg
+ *  and restart the negotiation process between the link partner.  If
+ *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	/*
+	 * Perform some bounds checking on the autoneg advertisement
+	 * parameter.
+	 */
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/*
+	 * If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (phy->autoneg_advertised == 0)
+		phy->autoneg_advertised = phy->autoneg_mask;
+
+	e_dbg("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		e_dbg("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	e_dbg("Restarting Auto-Neg\n");
+
+	/*
+	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (phy->autoneg_wait_to_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			e_dbg("Error while waiting for "
+				 "autoneg to complete\n");
+			return ret_val;
+		}
+	}
+
+	hw->mac.get_link_status = 1;
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_setup_copper_link - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000e_setup_copper_link(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	bool link;
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		e_dbg("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			e_dbg("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw,
+					     COPPER_LINK_UP_LIMIT,
+					     10,
+					     &link);
+	if (ret_val)
+		return ret_val;
+
+	if (link) {
+		e_dbg("Valid link established!!!\n");
+		e1000e_config_collision_dist(hw);
+		ret_val = e1000e_config_fc_after_link_up(hw);
+	} else {
+		e_dbg("Unable to establish link!!!\n");
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Waits for link and returns
+ *  successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("IGP PSCR: %X\n", phy_data);
+
+	udelay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw,
+						     PHY_FORCE_LIMIT,
+						     100000,
+						     &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link)
+			e_dbg("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw,
+						     PHY_FORCE_LIMIT,
+						     100000,
+						     &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Resets the PHY to commit the
+ *  changes.  If time expires while waiting for link up, we reset the DSP.
+ *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
+ *  successful completion, else return corresponding error code.
+ **/
+s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	/*
+	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e_dbg("M88E1000 PSCR: %X\n", phy_data);
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Reset the phy to commit changes. */
+	ret_val = e1000e_commit_phy(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link) {
+			if (hw->phy.type != e1000_phy_m88) {
+				e_dbg("Link taking longer than expected.\n");
+			} else {
+				/*
+				 * We didn't get link.
+				 * Reset the DSP and cross our fingers.
+				 */
+				ret_val = e1e_wphy(hw,
+						M88E1000_PHY_PAGE_SELECT,
+						0x001d);
+				if (ret_val)
+					return ret_val;
+				ret_val = e1000e_phy_reset_dsp(hw);
+				if (ret_val)
+					return ret_val;
+			}
+		}
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->phy.type != e1000_phy_m88)
+		return 0;
+
+	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Resetting the phy means we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock from
+	 * the reset value of 2.5MHz.
+	 */
+	phy_data |= M88E1000_EPSCR_TX_CLK_25;
+	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Forces the speed and duplex settings of the PHY.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &data);
+
+	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	/* Disable MDI-X support for 10/100 */
+	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	data &= ~IFE_PMC_AUTO_MDIX;
+	data &= ~IFE_PMC_FORCE_MDIX;
+
+	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
+	if (ret_val)
+		goto out;
+
+	e_dbg("IFE PMC: %X\n", data);
+
+	udelay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+
+		if (!link)
+			e_dbg("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ *  Forces speed and duplex on the PHY by doing the following: disable flow
+ *  control, force speed/duplex on the MAC, disable auto speed detection,
+ *  disable auto-negotiation, configure duplex, configure speed, configure
+ *  the collision distance, write configuration to CTRL register.  The
+ *  caller must write to the PHY_CONTROL register for these settings to
+ *  take affect.
+ **/
+void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl;
+
+	/* Turn off flow control when forcing speed/duplex */
+	hw->fc.current_mode = e1000_fc_none;
+
+	/* Force speed/duplex on the mac */
+	ctrl = er32(CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~E1000_CTRL_SPD_SEL;
+
+	/* Disable Auto Speed Detection */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Disable autoneg on the phy */
+	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Forcing Full or Half Duplex? */
+	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+		ctrl &= ~E1000_CTRL_FD;
+		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+		e_dbg("Half Duplex\n");
+	} else {
+		ctrl |= E1000_CTRL_FD;
+		*phy_ctrl |= MII_CR_FULL_DUPLEX;
+		e_dbg("Full Duplex\n");
+	}
+
+	/* Forcing 10mb or 100mb? */
+	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+		ctrl |= E1000_CTRL_SPD_100;
+		*phy_ctrl |= MII_CR_SPEED_100;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		e_dbg("Forcing 100mb\n");
+	} else {
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		*phy_ctrl |= MII_CR_SPEED_10;
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		e_dbg("Forcing 10mb\n");
+	}
+
+	e1000e_config_collision_dist(hw);
+
+	ew32(CTRL, ctrl);
+}
+
+/**
+ *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (!active) {
+		data &= ~IGP02E1000_PM_D3_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		if (ret_val)
+			return ret_val;
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP02E1000_PM_D3_LPLU;
+		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+		if (ret_val)
+			return ret_val;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_check_downshift - Checks whether a downshift in speed occurred
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000e_check_downshift(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	switch (phy->type) {
+	case e1000_phy_m88:
+	case e1000_phy_gg82563:
+	case e1000_phy_bm:
+	case e1000_phy_82578:
+		offset	= M88E1000_PHY_SPEC_STATUS;
+		mask	= M88E1000_PSSR_DOWNSHIFT;
+		break;
+	case e1000_phy_igp_2:
+	case e1000_phy_igp_3:
+		offset	= IGP01E1000_PHY_LINK_HEALTH;
+		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
+		break;
+	default:
+		/* speed downshift not supported */
+		phy->speed_downgraded = false;
+		return 0;
+	}
+
+	ret_val = e1e_rphy(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->speed_downgraded = (phy_data & mask);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_m88 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+				      ? e1000_rev_polarity_reversed
+				      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_igp - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY port status register, and the
+ *  current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data, offset, mask;
+
+	/*
+	 * Polarity is determined based on the speed of
+	 * our connection.
+	 */
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		offset	= IGP01E1000_PHY_PCS_INIT_REG;
+		mask	= IGP01E1000_PHY_POLARITY_MASK;
+	} else {
+		/*
+		 * This really only applies to 10Mbps since
+		 * there is no polarity for 100Mbps (always 0).
+		 */
+		offset	= IGP01E1000_PHY_PORT_STATUS;
+		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
+	}
+
+	ret_val = e1e_rphy(hw, offset, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & mask)
+				      ? e1000_rev_polarity_reversed
+				      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	/*
+	 * Polarity is determined based on the reversal feature being enabled.
+	 */
+	if (phy->polarity_correction) {
+		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+		mask = IFE_PESC_POLARITY_REVERSED;
+	} else {
+		offset = IFE_PHY_SPECIAL_CONTROL;
+		mask = IFE_PSC_FORCE_POLARITY;
+	}
+
+	ret_val = e1e_rphy(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->cable_polarity = (phy_data & mask)
+		                       ? e1000_rev_polarity_reversed
+		                       : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_wait_autoneg - Wait for auto-neg completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Waits for auto-negotiation to complete or for the auto-negotiation time
+ *  limit to expire, which ever happens first.
+ **/
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 i, phy_status;
+
+	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_AUTONEG_COMPLETE)
+			break;
+		msleep(100);
+	}
+
+	/*
+	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+	 * has completed.
+	 */
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_has_link_generic - Polls PHY for link
+ *  @hw: pointer to the HW structure
+ *  @iterations: number of times to poll for link
+ *  @usec_interval: delay between polling attempts
+ *  @success: pointer to whether polling was successful or not
+ *
+ *  Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+			       u32 usec_interval, bool *success)
+{
+	s32 ret_val = 0;
+	u16 i, phy_status;
+
+	for (i = 0; i < iterations; i++) {
+		/*
+		 * Some PHYs require the PHY_STATUS register to be read
+		 * twice due to the link bit being sticky.  No harm doing
+		 * it across the board.
+		 */
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			/*
+			 * If the first read fails, another entity may have
+			 * ownership of the resources, wait and try again to
+			 * see if they have relinquished the resources yet.
+			 */
+			udelay(usec_interval);
+		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_LINK_STATUS)
+			break;
+		if (usec_interval >= 1000)
+			mdelay(usec_interval/1000);
+		else
+			udelay(usec_interval);
+	}
+
+	*success = (i < iterations);
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY specific status register to retrieve the cable length
+ *  information.  The cable length is determined by averaging the minimum and
+ *  maximum values to get the "average" cable length.  The m88 PHY has four
+ *  possible cable length values, which are:
+ *	Register Value		Cable Length
+ *	0			< 50 meters
+ *	1			50 - 80 meters
+ *	2			80 - 110 meters
+ *	3			110 - 140 meters
+ *	4			> 140 meters
+ **/
+s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	phy->min_cable_length = e1000_m88_cable_length_table[index];
+	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  The automatic gain control (agc) normalizes the amplitude of the
+ *  received signal, adjusting for the attenuation produced by the
+ *  cable.  By reading the AGC registers, which represent the
+ *  combination of coarse and fine gain value, the value can be put
+ *  into a lookup table to obtain the approximate cable length
+ *  for each channel.
+ **/
+s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, i, agc_value = 0;
+	u16 cur_agc_index, max_agc_index = 0;
+	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+							 {IGP02E1000_PHY_AGC_A,
+							  IGP02E1000_PHY_AGC_B,
+							  IGP02E1000_PHY_AGC_C,
+							  IGP02E1000_PHY_AGC_D};
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/*
+		 * Getting bits 15:9, which represent the combination of
+		 * coarse and fine gain values.  The result is a number
+		 * that can be put into the lookup table to obtain the
+		 * approximate cable length.
+		 */
+		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+				IGP02E1000_AGC_LENGTH_MASK;
+
+		/* Array index bound check. */
+		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+		    (cur_agc_index == 0))
+			return -E1000_ERR_PHY;
+
+		/* Remove min & max AGC values from calculation. */
+		if (e1000_igp_2_cable_length_table[min_agc_index] >
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			min_agc_index = cur_agc_index;
+		if (e1000_igp_2_cable_length_table[max_agc_index] <
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			max_agc_index = cur_agc_index;
+
+		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+	}
+
+	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+		      e1000_igp_2_cable_length_table[max_agc_index]);
+	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+	/* Calculate cable length with the error range of +/- 10 meters. */
+	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
+	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_phy_info_m88 - Retrieve PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Valid for only copper links.  Read the PHY status register (sticky read)
+ *  to verify that link is up.  Read the PHY special control register to
+ *  determine the polarity and 10base-T extended distance.  Read the PHY
+ *  special status register to determine MDI/MDIx and current speed.  If
+ *  speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32  ret_val;
+	u16 phy_data;
+	bool link;
+
+	if (phy->media_type != e1000_media_type_copper) {
+		e_dbg("Phy info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy->polarity_correction = (phy_data &
+				    M88E1000_PSCR_POLARITY_REVERSAL);
+
+	ret_val = e1000_check_polarity_m88(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+				? e1000_1000t_rx_status_ok
+				: e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+				 ? e1000_1000t_rx_status_ok
+				 : e1000_1000t_rx_status_not_ok;
+	} else {
+		/* Set values to "undefined" */
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_get_phy_info_igp - Retrieve igp PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	phy->polarity_correction = true;
+
+	ret_val = e1000_check_polarity_igp(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		ret_val = e1000_get_cable_length(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			return ret_val;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+				? e1000_1000t_rx_status_ok
+				: e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+				 ? e1000_1000t_rx_status_ok
+				 : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ *  @hw: pointer to the HW structure
+ *
+ *  Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+	if (ret_val)
+		goto out;
+	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
+	                           ? false : true;
+
+	if (phy->polarity_correction) {
+		ret_val = e1000_check_polarity_ife(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/* Polarity is forced */
+		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+	}
+
+	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
+
+	/* The following parameters are undefined for 10/100 operation. */
+	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+	phy->local_rx = e1000_1000t_rx_status_undefined;
+	phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_sw_reset - PHY software reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a software reset of the PHY by reading the PHY control register and
+ *  setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	phy_ctrl |= MII_CR_RESET;
+	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	return ret_val;
+}
+
+/**
+ *  e1000e_phy_hw_reset_generic - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify the reset block is not blocking us from resetting.  Acquire
+ *  semaphore (if necessary) and read/set/write the device control reset
+ *  bit in the PHY.  Wait the appropriate delay time for the device to
+ *  reset and release the semaphore (if necessary).
+ **/
+s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 ctrl;
+
+	ret_val = e1000_check_reset_block(hw);
+	if (ret_val)
+		return 0;
+
+	ret_val = phy->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ctrl = er32(CTRL);
+	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+	e1e_flush();
+
+	udelay(phy->reset_delay_us);
+
+	ew32(CTRL, ctrl);
+	e1e_flush();
+
+	udelay(150);
+
+	phy->ops.release(hw);
+
+	return e1000_get_phy_cfg_done(hw);
+}
+
+/**
+ *  e1000e_get_cfg_done - Generic configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Generic function to wait 10 milli-seconds for configuration to complete
+ *  and return success.
+ **/
+s32 e1000e_get_cfg_done(struct e1000_hw *hw)
+{
+	mdelay(10);
+	return 0;
+}
+
+/**
+ *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
+{
+	e_dbg("Running IGP 3 PHY init script\n");
+
+	/* PHY init IGP 3 */
+	/* Enable rise/fall, 10-mode work in class-A */
+	e1e_wphy(hw, 0x2F5B, 0x9018);
+	/* Remove all caps from Replica path filter */
+	e1e_wphy(hw, 0x2F52, 0x0000);
+	/* Bias trimming for ADC, AFE and Driver (Default) */
+	e1e_wphy(hw, 0x2FB1, 0x8B24);
+	/* Increase Hybrid poly bias */
+	e1e_wphy(hw, 0x2FB2, 0xF8F0);
+	/* Add 4% to Tx amplitude in Gig mode */
+	e1e_wphy(hw, 0x2010, 0x10B0);
+	/* Disable trimming (TTT) */
+	e1e_wphy(hw, 0x2011, 0x0000);
+	/* Poly DC correction to 94.6% + 2% for all channels */
+	e1e_wphy(hw, 0x20DD, 0x249A);
+	/* ABS DC correction to 95.9% */
+	e1e_wphy(hw, 0x20DE, 0x00D3);
+	/* BG temp curve trim */
+	e1e_wphy(hw, 0x28B4, 0x04CE);
+	/* Increasing ADC OPAMP stage 1 currents to max */
+	e1e_wphy(hw, 0x2F70, 0x29E4);
+	/* Force 1000 ( required for enabling PHY regs configuration) */
+	e1e_wphy(hw, 0x0000, 0x0140);
+	/* Set upd_freq to 6 */
+	e1e_wphy(hw, 0x1F30, 0x1606);
+	/* Disable NPDFE */
+	e1e_wphy(hw, 0x1F31, 0xB814);
+	/* Disable adaptive fixed FFE (Default) */
+	e1e_wphy(hw, 0x1F35, 0x002A);
+	/* Enable FFE hysteresis */
+	e1e_wphy(hw, 0x1F3E, 0x0067);
+	/* Fixed FFE for short cable lengths */
+	e1e_wphy(hw, 0x1F54, 0x0065);
+	/* Fixed FFE for medium cable lengths */
+	e1e_wphy(hw, 0x1F55, 0x002A);
+	/* Fixed FFE for long cable lengths */
+	e1e_wphy(hw, 0x1F56, 0x002A);
+	/* Enable Adaptive Clip Threshold */
+	e1e_wphy(hw, 0x1F72, 0x3FB0);
+	/* AHT reset limit to 1 */
+	e1e_wphy(hw, 0x1F76, 0xC0FF);
+	/* Set AHT master delay to 127 msec */
+	e1e_wphy(hw, 0x1F77, 0x1DEC);
+	/* Set scan bits for AHT */
+	e1e_wphy(hw, 0x1F78, 0xF9EF);
+	/* Set AHT Preset bits */
+	e1e_wphy(hw, 0x1F79, 0x0210);
+	/* Change integ_factor of channel A to 3 */
+	e1e_wphy(hw, 0x1895, 0x0003);
+	/* Change prop_factor of channels BCD to 8 */
+	e1e_wphy(hw, 0x1796, 0x0008);
+	/* Change cg_icount + enable integbp for channels BCD */
+	e1e_wphy(hw, 0x1798, 0xD008);
+	/*
+	 * Change cg_icount + enable integbp + change prop_factor_master
+	 * to 8 for channel A
+	 */
+	e1e_wphy(hw, 0x1898, 0xD918);
+	/* Disable AHT in Slave mode on channel A */
+	e1e_wphy(hw, 0x187A, 0x0800);
+	/*
+	 * Enable LPLU and disable AN to 1000 in non-D0a states,
+	 * Enable SPD+B2B
+	 */
+	e1e_wphy(hw, 0x0019, 0x008D);
+	/* Enable restart AN on an1000_dis change */
+	e1e_wphy(hw, 0x001B, 0x2080);
+	/* Enable wh_fifo read clock in 10/100 modes */
+	e1e_wphy(hw, 0x0014, 0x0045);
+	/* Restart AN, Speed selection is 1000 */
+	e1e_wphy(hw, 0x0000, 0x1340);
+
+	return 0;
+}
+
+/* Internal function pointers */
+
+/**
+ *  e1000_get_phy_cfg_done - Generic PHY configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Return success if silicon family did not implement a family specific
+ *  get_cfg_done function.
+ **/
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.get_cfg_done)
+		return hw->phy.ops.get_cfg_done(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  When the silicon family has not implemented a forced speed/duplex
+ *  function for the PHY, simply return 0.
+ **/
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.force_speed_duplex)
+		return hw->phy.ops.force_speed_duplex(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000e_get_phy_type_from_id - Get PHY type from id
+ *  @phy_id: phy_id read from the phy
+ *
+ *  Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
+{
+	enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+	switch (phy_id) {
+	case M88E1000_I_PHY_ID:
+	case M88E1000_E_PHY_ID:
+	case M88E1111_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+		phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+		phy_type = e1000_phy_igp_2;
+		break;
+	case GG82563_E_PHY_ID:
+		phy_type = e1000_phy_gg82563;
+		break;
+	case IGP03E1000_E_PHY_ID:
+		phy_type = e1000_phy_igp_3;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy_type = e1000_phy_ife;
+		break;
+	case BME1000_E_PHY_ID:
+	case BME1000_E_PHY_ID_R2:
+		phy_type = e1000_phy_bm;
+		break;
+	case I82578_E_PHY_ID:
+		phy_type = e1000_phy_82578;
+		break;
+	case I82577_E_PHY_ID:
+		phy_type = e1000_phy_82577;
+		break;
+	default:
+		phy_type = e1000_phy_unknown;
+		break;
+	}
+	return phy_type;
+}
+
+/**
+ *  e1000e_determine_phy_address - Determines PHY address.
+ *  @hw: pointer to the HW structure
+ *
+ *  This uses a trial and error method to loop through possible PHY
+ *  addresses. It tests each by reading the PHY ID registers and
+ *  checking for a match.
+ **/
+s32 e1000e_determine_phy_address(struct e1000_hw *hw)
+{
+	s32 ret_val = -E1000_ERR_PHY_TYPE;
+	u32 phy_addr = 0;
+	u32 i;
+	enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+	hw->phy.id = phy_type;
+
+	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+		hw->phy.addr = phy_addr;
+		i = 0;
+
+		do {
+			e1000e_get_phy_id(hw);
+			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
+
+			/*
+			 * If phy_type is valid, break - we found our
+			 * PHY address
+			 */
+			if (phy_type  != e1000_phy_unknown) {
+				ret_val = 0;
+				goto out;
+			}
+			msleep(1);
+			i++;
+		} while (i < 10);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ *  @page: page to access
+ *
+ *  Returns the phy address for the page requested.
+ **/
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+	u32 phy_addr = 2;
+
+	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+		phy_addr = 1;
+
+	return phy_addr;
+}
+
+/**
+ *  e1000e_write_phy_reg_bm - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select = 0;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+	u32 page_shift = 0;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+							 false);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/*
+		 * Page select is register 31 for phy address 1 and 22 for
+		 * phy address 2 and 3. Page select is shifted only for
+		 * phy address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+		                                    (page << page_shift));
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+	                                    data);
+
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_phy_reg_bm - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select = 0;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+	u32 page_shift = 0;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+							 true);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/*
+		 * Page select is register 31 for phy address 1 and 22 for
+		 * phy address 2 and 3. Page select is shifted only for
+		 * phy address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+		                                    (page << page_shift));
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+	                                   data);
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000e_read_phy_reg_bm2 - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+							 true);
+		goto out;
+	}
+
+	hw->phy.addr = 1;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+						    page);
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					   data);
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000e_write_phy_reg_bm2 - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+							 false);
+		goto out;
+	}
+
+	hw->phy.addr = 1;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+						    page);
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					    data);
+
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to read or write
+ *  @read: determines if operation is read or write
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting. Note that procedure to read the wakeup
+ *  registers are different. It works as such:
+ *  1) Set page 769, register 17, bit 2 = 1
+ *  2) Set page to 800 for host (801 if we were manageability)
+ *  3) Write the address using the address opcode (0x11)
+ *  4) Read or write the data using the data opcode (0x12)
+ *  5) Restore 769_17.2 to its original value
+ *
+ *  Assumes semaphore already acquired.
+ **/
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read)
+{
+	s32 ret_val;
+	u16 reg = BM_PHY_REG_NUM(offset);
+	u16 phy_reg = 0;
+
+	/* Gig must be disabled for MDIO accesses to page 800 */
+	if ((hw->mac.type == e1000_pchlan) &&
+	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
+		e_dbg("Attempting to access page 800 while gig enabled.\n");
+
+	/* All operations in this function are phy address 1 */
+	hw->phy.addr = 1;
+
+	/* Set page 769 */
+	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+	if (ret_val) {
+		e_dbg("Could not read PHY page 769\n");
+		goto out;
+	}
+
+	/* First clear bit 4 to avoid a power state change */
+	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (ret_val) {
+		e_dbg("Could not clear PHY page 769 bit 4\n");
+		goto out;
+	}
+
+	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
+	                                    phy_reg | BM_WUC_ENABLE_BIT);
+	if (ret_val) {
+		e_dbg("Could not write PHY page 769 bit 2\n");
+		goto out;
+	}
+
+	/* Select page 800 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+
+	/* Write the page 800 offset value using opcode 0x11 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+	if (ret_val) {
+		e_dbg("Could not write address opcode to page 800\n");
+		goto out;
+	}
+
+	if (read) {
+	        /* Read the page 800 value using opcode 0x12 */
+		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+		                                   data);
+	} else {
+	        /* Write the page 800 value using opcode 0x12 */
+		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+						    *data);
+	}
+
+	if (ret_val) {
+		e_dbg("Could not access data value from page 800\n");
+		goto out;
+	}
+
+	/*
+	 * Restore 769_17.2 to its original value
+	 * Set page 769
+	 */
+	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+	/* Clear 769_17.2 */
+	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (ret_val) {
+		e_dbg("Could not clear PHY page 769 bit 2\n");
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
+	mii_reg &= ~MII_CR_POWER_DOWN;
+	e1e_wphy(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
+	mii_reg |= MII_CR_POWER_DOWN;
+	e1e_wphy(hw, PHY_CONTROL, mii_reg);
+	msleep(1);
+}
+
+/**
+ *  e1000e_commit_phy - Soft PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs a soft PHY reset on those that apply. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000e_commit_phy(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.commit)
+		return hw->phy.ops.commit(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_set_d0_lplu_state - Sets low power link up state for D0
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D0
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D0
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.  This is a function pointer entry point called by drivers.
+ **/
+static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+	if (hw->phy.ops.set_d0_lplu_state)
+		return hw->phy.ops.set_d0_lplu_state(hw, active);
+
+	return 0;
+}
+
+/**
+ *  __e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphore before exiting.
+ **/
+static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
+                                   bool locked)
+{
+	s32 ret_val;
+	u16 page = BM_PHY_REG_PAGE(offset);
+	u16 reg = BM_PHY_REG_NUM(offset);
+
+	if (!locked) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
+		                                         data, true);
+		goto out;
+	}
+
+	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+		                                         data, true);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+	if (page == HV_INTC_FC_PAGE_START)
+		page = 0;
+
+	if (reg > MAX_PHY_MULTI_PAGE_REG) {
+		u32 phy_addr = hw->phy.addr;
+
+		hw->phy.addr = 1;
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+					     IGP01E1000_PHY_PAGE_SELECT,
+					     (page << IGP_PAGE_SHIFT));
+		hw->phy.addr = phy_addr;
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+	                                  data);
+out:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores
+ *  the retrieved information in data.  Release the acquired semaphore
+ *  before exiting.
+ **/
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_hv(hw, offset, data, false);
+}
+
+/**
+ *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_hv(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
+                                    bool locked)
+{
+	s32 ret_val;
+	u16 page = BM_PHY_REG_PAGE(offset);
+	u16 reg = BM_PHY_REG_NUM(offset);
+
+	if (!locked) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
+		                                         &data, false);
+		goto out;
+	}
+
+	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+		                                         &data, false);
+		goto out;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+	if (page == HV_INTC_FC_PAGE_START)
+		page = 0;
+
+	/*
+	 * Workaround MDIO accesses being disabled after entering IEEE Power
+	 * Down (whenever bit 11 of the PHY Control register is set)
+	 */
+	if ((hw->phy.type == e1000_phy_82578) &&
+	    (hw->phy.revision >= 1) &&
+	    (hw->phy.addr == 2) &&
+	    ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
+	    (data & (1 << 11))) {
+		u16 data2 = 0x7EFF;
+		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
+		                                         &data2, false);
+		if (ret_val)
+			goto out;
+	}
+
+	if (reg > MAX_PHY_MULTI_PAGE_REG) {
+		u32 phy_addr = hw->phy.addr;
+
+		hw->phy.addr = 1;
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000e_write_phy_reg_mdic(hw,
+					     IGP01E1000_PHY_PAGE_SELECT,
+					     (page << IGP_PAGE_SHIFT));
+		hw->phy.addr = phy_addr;
+
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+	                                  data);
+
+out:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register at the offset.
+ *  Release the acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_hv(hw, offset, data, false);
+}
+
+/**
+ *  e1000_write_phy_reg_hv_locked - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.  Assumes semaphore
+ *  already acquired.
+ **/
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_hv(hw, offset, data, true);
+}
+
+/**
+ *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
+ *  @page: page to be accessed
+ **/
+static u32 e1000_get_phy_addr_for_hv_page(u32 page)
+{
+	u32 phy_addr = 2;
+
+	if (page >= HV_INTC_FC_PAGE_START)
+		phy_addr = 1;
+
+	return phy_addr;
+}
+
+/**
+ *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to be read or written
+ *  @read: determines if operation is read or written
+ *
+ *  Reads the PHY register at offset and stores the retreived information
+ *  in data.  Assumes semaphore already acquired.  Note that the procedure
+ *  to read these regs uses the address port and data port to read/write.
+ **/
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+                                          u16 *data, bool read)
+{
+	s32 ret_val;
+	u32 addr_reg = 0;
+	u32 data_reg = 0;
+
+	/* This takes care of the difference with desktop vs mobile phy */
+	addr_reg = (hw->phy.type == e1000_phy_82578) ?
+	           I82578_ADDR_REG : I82577_ADDR_REG;
+	data_reg = addr_reg + 1;
+
+	/* All operations in this function are phy address 2 */
+	hw->phy.addr = 2;
+
+	/* masking with 0x3F to remove the page from offset */
+	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
+	if (ret_val) {
+		e_dbg("Could not write PHY the HV address register\n");
+		goto out;
+	}
+
+	/* Read or write the data value next */
+	if (read)
+		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
+	else
+		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
+
+	if (ret_val) {
+		e_dbg("Could not read data value from HV data register\n");
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_link_stall_workaround_hv - Si workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  This function works around a Si bug where the link partner can get
+ *  a link up indication before the PHY does.  If small packets are sent
+ *  by the link partner they can be placed in the packet buffer without
+ *  being properly accounted for by the PHY and will stall preventing
+ *  further packets from being received.  The workaround is to clear the
+ *  packet buffer after the PHY detects link up.
+ **/
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 data;
+
+	if (hw->phy.type != e1000_phy_82578)
+		goto out;
+
+	/* Do not apply workaround if in PHY loopback bit 14 set */
+	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
+	if (data & PHY_CONTROL_LB)
+		goto out;
+
+	/* check if link is up and at 1Gbps */
+	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
+	if (ret_val)
+		goto out;
+
+	data &= BM_CS_STATUS_LINK_UP |
+	        BM_CS_STATUS_RESOLVED |
+	        BM_CS_STATUS_SPEED_MASK;
+
+	if (data != (BM_CS_STATUS_LINK_UP |
+	             BM_CS_STATUS_RESOLVED |
+	             BM_CS_STATUS_SPEED_1000))
+		goto out;
+
+	mdelay(200);
+
+	/* flush the packets in the fifo buffer */
+	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+	                                HV_MUX_DATA_CTRL_GEN_TO_MAC |
+	                                HV_MUX_DATA_CTRL_FORCE_SPEED);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+	                                HV_MUX_DATA_CTRL_GEN_TO_MAC);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_82577 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
+		                      ? e1000_rev_polarity_reversed
+		                      : e1000_rev_polarity_normal;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	udelay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
+
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+
+		if (!link)
+			e_dbg("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000e_phy_has_link_generic(hw,
+		                                     PHY_FORCE_LIMIT,
+		                                     100000,
+		                                     &link);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		e_dbg("Phy info is only valid if link is up\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	phy->polarity_correction = true;
+
+	ret_val = e1000_check_polarity_82577(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+	if (ret_val)
+		goto out;
+
+	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
+
+	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
+		ret_val = hw->phy.ops.get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			goto out;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+		                ? e1000_1000t_rx_status_ok
+		                : e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+		                 ? e1000_1000t_rx_status_ok
+		                 : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, length;
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
+
+	if (length == E1000_CABLE_LENGTH_UNDEFINED)
+		ret_val = -E1000_ERR_PHY;
+
+	phy->cable_length = length;
+
+out:
+	return ret_val;
+}
--- a/devices/r8169-2.6.24-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/r8169-2.6.24-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -3237,7 +3237,7 @@
 	void __iomem *ioaddr = tp->mmio_addr;
 
 	if (tp->ecdev)
-		return;
+		return -EBUSY;
 
 	if (!netif_running(dev))
 		goto out_pci_suspend;
@@ -3269,7 +3269,7 @@
 	struct rtl8169_private *tp = netdev_priv(dev);
 
 	if (tp->ecdev)
-		return;
+		return -EBUSY;
 
 	pci_set_power_state(pdev, PCI_D0);
 	pci_restore_state(pdev);
--- a/devices/r8169-2.6.28-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/r8169-2.6.28-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -3858,7 +3858,7 @@
 	void __iomem *ioaddr = tp->mmio_addr;
 
 	if (tp->ecdev)
-		return;
+		return -EBUSY;
 
 	if (!netif_running(dev))
 		goto out_pci_suspend;
@@ -3889,7 +3889,7 @@
 	struct rtl8169_private *tp = netdev_priv(dev);
 
 	if (tp->ecdev)
-		return;
+		return -EBUSY;
 
 	pci_set_power_state(pdev, PCI_D0);
 	pci_restore_state(pdev);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/r8169-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,5118 @@
+/*
+* r8169.c: RealTek 8169/8168/8101 ethernet driver.
+*
+* Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>
+* Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>
+* Copyright (c) a lot of people too. Please respect their work.
+ *
+ * See MAINTAINERS file for support contact information.
+ */
+
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/delay.h>
+#include <linux/ethtool.h>
+#include <linux/mii.h>
+#include <linux/if_vlan.h>
+#include <linux/crc32.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/tcp.h>
+#include <linux/init.h>
+#include <linux/dma-mapping.h>
+#include <linux/pm_runtime.h>
+
+#include <asm/system.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include "../globals.h"
+#include "ecdev.h"
+
+#define RTL8169_VERSION "2.3LK-NAPI"
+#define MODULENAME "ec_r8169"
+#define PFX MODULENAME ": "
+
+#ifdef RTL8169_DEBUG
+#define assert(expr) \
+	if (!(expr)) {					\
+		printk( "Assertion failed! %s,%s,%s,line=%d\n",	\
+		#expr,__FILE__,__func__,__LINE__);		\
+	}
+#define dprintk(fmt, args...) \
+	do { printk(KERN_DEBUG PFX fmt, ## args); } while (0)
+#else
+#define assert(expr) do {} while (0)
+#define dprintk(fmt, args...)	do {} while (0)
+#endif /* RTL8169_DEBUG */
+
+#define R8169_MSG_DEFAULT \
+	(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)
+
+#define TX_BUFFS_AVAIL(tp) \
+	(tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1)
+
+/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
+   The RTL chips use a 64 element hash table based on the Ethernet CRC. */
+static const int multicast_filter_limit = 32;
+
+/* MAC address length */
+#define MAC_ADDR_LEN	6
+
+#define MAX_READ_REQUEST_SHIFT	12
+#define RX_FIFO_THRESH	7	/* 7 means NO threshold, Rx buffer level before first PCI xfer. */
+#define RX_DMA_BURST	6	/* Maximum PCI burst, '6' is 1024 */
+#define TX_DMA_BURST	6	/* Maximum PCI burst, '6' is 1024 */
+#define EarlyTxThld	0x3F	/* 0x3F means NO early transmit */
+#define SafeMtu		0x1c20	/* ... actually life sucks beyond ~7k */
+#define InterFrameGap	0x03	/* 3 means InterFrameGap = the shortest one */
+
+#define R8169_REGS_SIZE		256
+#define R8169_NAPI_WEIGHT	64
+#define NUM_TX_DESC	64	/* Number of Tx descriptor registers */
+#define NUM_RX_DESC	256	/* Number of Rx descriptor registers */
+#define RX_BUF_SIZE	1536	/* Rx Buffer size */
+#define R8169_TX_RING_BYTES	(NUM_TX_DESC * sizeof(struct TxDesc))
+#define R8169_RX_RING_BYTES	(NUM_RX_DESC * sizeof(struct RxDesc))
+
+#define RTL8169_TX_TIMEOUT	(6*HZ)
+#define RTL8169_PHY_TIMEOUT	(10*HZ)
+
+#define RTL_EEPROM_SIG		cpu_to_le32(0x8129)
+#define RTL_EEPROM_SIG_MASK	cpu_to_le32(0xffff)
+#define RTL_EEPROM_SIG_ADDR	0x0000
+
+/* write/read MMIO register */
+#define RTL_W8(reg, val8)	writeb ((val8), ioaddr + (reg))
+#define RTL_W16(reg, val16)	writew ((val16), ioaddr + (reg))
+#define RTL_W32(reg, val32)	writel ((val32), ioaddr + (reg))
+#define RTL_R8(reg)		readb (ioaddr + (reg))
+#define RTL_R16(reg)		readw (ioaddr + (reg))
+#define RTL_R32(reg)		((unsigned long) readl (ioaddr + (reg)))
+
+enum mac_version {
+	RTL_GIGA_MAC_NONE   = 0x00,
+	RTL_GIGA_MAC_VER_01 = 0x01, // 8169
+	RTL_GIGA_MAC_VER_02 = 0x02, // 8169S
+	RTL_GIGA_MAC_VER_03 = 0x03, // 8110S
+	RTL_GIGA_MAC_VER_04 = 0x04, // 8169SB
+	RTL_GIGA_MAC_VER_05 = 0x05, // 8110SCd
+	RTL_GIGA_MAC_VER_06 = 0x06, // 8110SCe
+	RTL_GIGA_MAC_VER_07 = 0x07, // 8102e
+	RTL_GIGA_MAC_VER_08 = 0x08, // 8102e
+	RTL_GIGA_MAC_VER_09 = 0x09, // 8102e
+	RTL_GIGA_MAC_VER_10 = 0x0a, // 8101e
+	RTL_GIGA_MAC_VER_11 = 0x0b, // 8168Bb
+	RTL_GIGA_MAC_VER_12 = 0x0c, // 8168Be
+	RTL_GIGA_MAC_VER_13 = 0x0d, // 8101Eb
+	RTL_GIGA_MAC_VER_14 = 0x0e, // 8101 ?
+	RTL_GIGA_MAC_VER_15 = 0x0f, // 8101 ?
+	RTL_GIGA_MAC_VER_16 = 0x11, // 8101Ec
+	RTL_GIGA_MAC_VER_17 = 0x10, // 8168Bf
+	RTL_GIGA_MAC_VER_18 = 0x12, // 8168CP
+	RTL_GIGA_MAC_VER_19 = 0x13, // 8168C
+	RTL_GIGA_MAC_VER_20 = 0x14, // 8168C
+	RTL_GIGA_MAC_VER_21 = 0x15, // 8168C
+	RTL_GIGA_MAC_VER_22 = 0x16, // 8168C
+	RTL_GIGA_MAC_VER_23 = 0x17, // 8168CP
+	RTL_GIGA_MAC_VER_24 = 0x18, // 8168CP
+	RTL_GIGA_MAC_VER_25 = 0x19, // 8168D
+	RTL_GIGA_MAC_VER_26 = 0x1a, // 8168D
+	RTL_GIGA_MAC_VER_27 = 0x1b  // 8168DP
+};
+
+#define _R(NAME,MAC,MASK) \
+	{ .name = NAME, .mac_version = MAC, .RxConfigMask = MASK }
+
+static const struct {
+	const char *name;
+	u8 mac_version;
+	u32 RxConfigMask;	/* Clears the bits supported by this chip */
+} rtl_chip_info[] = {
+	_R("RTL8169",		RTL_GIGA_MAC_VER_01, 0xff7e1880), // 8169
+	_R("RTL8169s",		RTL_GIGA_MAC_VER_02, 0xff7e1880), // 8169S
+	_R("RTL8110s",		RTL_GIGA_MAC_VER_03, 0xff7e1880), // 8110S
+	_R("RTL8169sb/8110sb",	RTL_GIGA_MAC_VER_04, 0xff7e1880), // 8169SB
+	_R("RTL8169sc/8110sc",	RTL_GIGA_MAC_VER_05, 0xff7e1880), // 8110SCd
+	_R("RTL8169sc/8110sc",	RTL_GIGA_MAC_VER_06, 0xff7e1880), // 8110SCe
+	_R("RTL8102e",		RTL_GIGA_MAC_VER_07, 0xff7e1880), // PCI-E
+	_R("RTL8102e",		RTL_GIGA_MAC_VER_08, 0xff7e1880), // PCI-E
+	_R("RTL8102e",		RTL_GIGA_MAC_VER_09, 0xff7e1880), // PCI-E
+	_R("RTL8101e",		RTL_GIGA_MAC_VER_10, 0xff7e1880), // PCI-E
+	_R("RTL8168b/8111b",	RTL_GIGA_MAC_VER_11, 0xff7e1880), // PCI-E
+	_R("RTL8168b/8111b",	RTL_GIGA_MAC_VER_12, 0xff7e1880), // PCI-E
+	_R("RTL8101e",		RTL_GIGA_MAC_VER_13, 0xff7e1880), // PCI-E 8139
+	_R("RTL8100e",		RTL_GIGA_MAC_VER_14, 0xff7e1880), // PCI-E 8139
+	_R("RTL8100e",		RTL_GIGA_MAC_VER_15, 0xff7e1880), // PCI-E 8139
+	_R("RTL8168b/8111b",	RTL_GIGA_MAC_VER_17, 0xff7e1880), // PCI-E
+	_R("RTL8101e",		RTL_GIGA_MAC_VER_16, 0xff7e1880), // PCI-E
+	_R("RTL8168cp/8111cp",	RTL_GIGA_MAC_VER_18, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_19, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_20, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_21, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_22, 0xff7e1880), // PCI-E
+	_R("RTL8168cp/8111cp",	RTL_GIGA_MAC_VER_23, 0xff7e1880), // PCI-E
+	_R("RTL8168cp/8111cp",	RTL_GIGA_MAC_VER_24, 0xff7e1880), // PCI-E
+	_R("RTL8168d/8111d",	RTL_GIGA_MAC_VER_25, 0xff7e1880), // PCI-E
+	_R("RTL8168d/8111d",	RTL_GIGA_MAC_VER_26, 0xff7e1880), // PCI-E
+	_R("RTL8168dp/8111dp",	RTL_GIGA_MAC_VER_27, 0xff7e1880)  // PCI-E
+};
+#undef _R
+
+enum cfg_version {
+	RTL_CFG_0 = 0x00,
+	RTL_CFG_1,
+	RTL_CFG_2
+};
+
+static void rtl_hw_start_8169(struct net_device *);
+static void rtl_hw_start_8168(struct net_device *);
+static void rtl_hw_start_8101(struct net_device *);
+
+static DEFINE_PCI_DEVICE_TABLE(rtl8169_pci_tbl) = {
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8129), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8136), 0, 0, RTL_CFG_2 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8167), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8168), 0, 0, RTL_CFG_1 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8169), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK,	0x4300), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_AT,		0xc107), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(0x16ec,			0x0116), 0, 0, RTL_CFG_0 },
+	{ PCI_VENDOR_ID_LINKSYS,		0x1032,
+		PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 },
+	{ 0x0001,				0x8168,
+		PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 },
+	{0,},
+};
+
+/* prevent driver from being loaded automatically */
+//MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);
+
+/*
+ * we set our copybreak very high so that we don't have
+ * to allocate 16k frames all the time (see note in
+ * rtl8169_open()
+ */
+static int rx_copybreak = 16383;
+static int use_dac;
+static struct {
+	u32 msg_enable;
+} debug = { -1 };
+
+enum rtl_registers {
+	MAC0		= 0,	/* Ethernet hardware address. */
+	MAC4		= 4,
+	MAR0		= 8,	/* Multicast filter. */
+	CounterAddrLow		= 0x10,
+	CounterAddrHigh		= 0x14,
+	TxDescStartAddrLow	= 0x20,
+	TxDescStartAddrHigh	= 0x24,
+	TxHDescStartAddrLow	= 0x28,
+	TxHDescStartAddrHigh	= 0x2c,
+	FLASH		= 0x30,
+	ERSR		= 0x36,
+	ChipCmd		= 0x37,
+	TxPoll		= 0x38,
+	IntrMask	= 0x3c,
+	IntrStatus	= 0x3e,
+	TxConfig	= 0x40,
+	RxConfig	= 0x44,
+	RxMissed	= 0x4c,
+	Cfg9346		= 0x50,
+	Config0		= 0x51,
+	Config1		= 0x52,
+	Config2		= 0x53,
+	Config3		= 0x54,
+	Config4		= 0x55,
+	Config5		= 0x56,
+	MultiIntr	= 0x5c,
+	PHYAR		= 0x60,
+	PHYstatus	= 0x6c,
+	RxMaxSize	= 0xda,
+	CPlusCmd	= 0xe0,
+	IntrMitigate	= 0xe2,
+	RxDescAddrLow	= 0xe4,
+	RxDescAddrHigh	= 0xe8,
+	EarlyTxThres	= 0xec,
+	FuncEvent	= 0xf0,
+	FuncEventMask	= 0xf4,
+	FuncPresetState	= 0xf8,
+	FuncForceEvent	= 0xfc,
+};
+
+enum rtl8110_registers {
+	TBICSR			= 0x64,
+	TBI_ANAR		= 0x68,
+	TBI_LPAR		= 0x6a,
+};
+
+enum rtl8168_8101_registers {
+	CSIDR			= 0x64,
+	CSIAR			= 0x68,
+#define	CSIAR_FLAG			0x80000000
+#define	CSIAR_WRITE_CMD			0x80000000
+#define	CSIAR_BYTE_ENABLE		0x0f
+#define	CSIAR_BYTE_ENABLE_SHIFT		12
+#define	CSIAR_ADDR_MASK			0x0fff
+
+	EPHYAR			= 0x80,
+#define	EPHYAR_FLAG			0x80000000
+#define	EPHYAR_WRITE_CMD		0x80000000
+#define	EPHYAR_REG_MASK			0x1f
+#define	EPHYAR_REG_SHIFT		16
+#define	EPHYAR_DATA_MASK		0xffff
+	DBG_REG			= 0xd1,
+#define	FIX_NAK_1			(1 << 4)
+#define	FIX_NAK_2			(1 << 3)
+	EFUSEAR			= 0xdc,
+#define	EFUSEAR_FLAG			0x80000000
+#define	EFUSEAR_WRITE_CMD		0x80000000
+#define	EFUSEAR_READ_CMD		0x00000000
+#define	EFUSEAR_REG_MASK		0x03ff
+#define	EFUSEAR_REG_SHIFT		8
+#define	EFUSEAR_DATA_MASK		0xff
+};
+
+enum rtl_register_content {
+	/* InterruptStatusBits */
+	SYSErr		= 0x8000,
+	PCSTimeout	= 0x4000,
+	SWInt		= 0x0100,
+	TxDescUnavail	= 0x0080,
+	RxFIFOOver	= 0x0040,
+	LinkChg		= 0x0020,
+	RxOverflow	= 0x0010,
+	TxErr		= 0x0008,
+	TxOK		= 0x0004,
+	RxErr		= 0x0002,
+	RxOK		= 0x0001,
+
+	/* RxStatusDesc */
+	RxFOVF	= (1 << 23),
+	RxRWT	= (1 << 22),
+	RxRES	= (1 << 21),
+	RxRUNT	= (1 << 20),
+	RxCRC	= (1 << 19),
+
+	/* ChipCmdBits */
+	CmdReset	= 0x10,
+	CmdRxEnb	= 0x08,
+	CmdTxEnb	= 0x04,
+	RxBufEmpty	= 0x01,
+
+	/* TXPoll register p.5 */
+	HPQ		= 0x80,		/* Poll cmd on the high prio queue */
+	NPQ		= 0x40,		/* Poll cmd on the low prio queue */
+	FSWInt		= 0x01,		/* Forced software interrupt */
+
+	/* Cfg9346Bits */
+	Cfg9346_Lock	= 0x00,
+	Cfg9346_Unlock	= 0xc0,
+
+	/* rx_mode_bits */
+	AcceptErr	= 0x20,
+	AcceptRunt	= 0x10,
+	AcceptBroadcast	= 0x08,
+	AcceptMulticast	= 0x04,
+	AcceptMyPhys	= 0x02,
+	AcceptAllPhys	= 0x01,
+
+	/* RxConfigBits */
+	RxCfgFIFOShift	= 13,
+	RxCfgDMAShift	=  8,
+
+	/* TxConfigBits */
+	TxInterFrameGapShift = 24,
+	TxDMAShift = 8,	/* DMA burst value (0-7) is shift this many bits */
+
+	/* Config1 register p.24 */
+	LEDS1		= (1 << 7),
+	LEDS0		= (1 << 6),
+	MSIEnable	= (1 << 5),	/* Enable Message Signaled Interrupt */
+	Speed_down	= (1 << 4),
+	MEMMAP		= (1 << 3),
+	IOMAP		= (1 << 2),
+	VPD		= (1 << 1),
+	PMEnable	= (1 << 0),	/* Power Management Enable */
+
+	/* Config2 register p. 25 */
+	PCI_Clock_66MHz = 0x01,
+	PCI_Clock_33MHz = 0x00,
+
+	/* Config3 register p.25 */
+	MagicPacket	= (1 << 5),	/* Wake up when receives a Magic Packet */
+	LinkUp		= (1 << 4),	/* Wake up when the cable connection is re-established */
+	Beacon_en	= (1 << 0),	/* 8168 only. Reserved in the 8168b */
+
+	/* Config5 register p.27 */
+	BWF		= (1 << 6),	/* Accept Broadcast wakeup frame */
+	MWF		= (1 << 5),	/* Accept Multicast wakeup frame */
+	UWF		= (1 << 4),	/* Accept Unicast wakeup frame */
+	LanWake		= (1 << 1),	/* LanWake enable/disable */
+	PMEStatus	= (1 << 0),	/* PME status can be reset by PCI RST# */
+
+	/* TBICSR p.28 */
+	TBIReset	= 0x80000000,
+	TBILoopback	= 0x40000000,
+	TBINwEnable	= 0x20000000,
+	TBINwRestart	= 0x10000000,
+	TBILinkOk	= 0x02000000,
+	TBINwComplete	= 0x01000000,
+
+	/* CPlusCmd p.31 */
+	EnableBist	= (1 << 15),	// 8168 8101
+	Mac_dbgo_oe	= (1 << 14),	// 8168 8101
+	Normal_mode	= (1 << 13),	// unused
+	Force_half_dup	= (1 << 12),	// 8168 8101
+	Force_rxflow_en	= (1 << 11),	// 8168 8101
+	Force_txflow_en	= (1 << 10),	// 8168 8101
+	Cxpl_dbg_sel	= (1 << 9),	// 8168 8101
+	ASF		= (1 << 8),	// 8168 8101
+	PktCntrDisable	= (1 << 7),	// 8168 8101
+	Mac_dbgo_sel	= 0x001c,	// 8168
+	RxVlan		= (1 << 6),
+	RxChkSum	= (1 << 5),
+	PCIDAC		= (1 << 4),
+	PCIMulRW	= (1 << 3),
+	INTT_0		= 0x0000,	// 8168
+	INTT_1		= 0x0001,	// 8168
+	INTT_2		= 0x0002,	// 8168
+	INTT_3		= 0x0003,	// 8168
+
+	/* rtl8169_PHYstatus */
+	TBI_Enable	= 0x80,
+	TxFlowCtrl	= 0x40,
+	RxFlowCtrl	= 0x20,
+	_1000bpsF	= 0x10,
+	_100bps		= 0x08,
+	_10bps		= 0x04,
+	LinkStatus	= 0x02,
+	FullDup		= 0x01,
+
+	/* _TBICSRBit */
+	TBILinkOK	= 0x02000000,
+
+	/* DumpCounterCommand */
+	CounterDump	= 0x8,
+};
+
+enum desc_status_bit {
+	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
+	RingEnd		= (1 << 30), /* End of descriptor ring */
+	FirstFrag	= (1 << 29), /* First segment of a packet */
+	LastFrag	= (1 << 28), /* Final segment of a packet */
+
+	/* Tx private */
+	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
+	MSSShift	= 16,        /* MSS value position */
+	MSSMask		= 0xfff,     /* MSS value + LargeSend bit: 12 bits */
+	IPCS		= (1 << 18), /* Calculate IP checksum */
+	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
+	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
+	TxVlanTag	= (1 << 17), /* Add VLAN tag */
+
+	/* Rx private */
+	PID1		= (1 << 18), /* Protocol ID bit 1/2 */
+	PID0		= (1 << 17), /* Protocol ID bit 2/2 */
+
+#define RxProtoUDP	(PID1)
+#define RxProtoTCP	(PID0)
+#define RxProtoIP	(PID1 | PID0)
+#define RxProtoMask	RxProtoIP
+
+	IPFail		= (1 << 16), /* IP checksum failed */
+	UDPFail		= (1 << 15), /* UDP/IP checksum failed */
+	TCPFail		= (1 << 14), /* TCP/IP checksum failed */
+	RxVlanTag	= (1 << 16), /* VLAN tag available */
+};
+
+#define RsvdMask	0x3fffc000
+
+struct TxDesc {
+	__le32 opts1;
+	__le32 opts2;
+	__le64 addr;
+};
+
+struct RxDesc {
+	__le32 opts1;
+	__le32 opts2;
+	__le64 addr;
+};
+
+struct ring_info {
+	struct sk_buff	*skb;
+	u32		len;
+	u8		__pad[sizeof(void *) - sizeof(u32)];
+};
+
+enum features {
+	RTL_FEATURE_WOL		= (1 << 0),
+	RTL_FEATURE_MSI		= (1 << 1),
+	RTL_FEATURE_GMII	= (1 << 2),
+};
+
+struct rtl8169_counters {
+	__le64	tx_packets;
+	__le64	rx_packets;
+	__le64	tx_errors;
+	__le32	rx_errors;
+	__le16	rx_missed;
+	__le16	align_errors;
+	__le32	tx_one_collision;
+	__le32	tx_multi_collision;
+	__le64	rx_unicast;
+	__le64	rx_broadcast;
+	__le32	rx_multicast;
+	__le16	tx_aborted;
+	__le16	tx_underun;
+};
+
+struct rtl8169_private {
+	void __iomem *mmio_addr;	/* memory map physical address */
+	struct pci_dev *pci_dev;	/* Index of PCI device */
+	struct net_device *dev;
+	struct napi_struct napi;
+	spinlock_t lock;		/* spin lock flag */
+	u32 msg_enable;
+	int chipset;
+	int mac_version;
+	u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
+	u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
+	u32 dirty_rx;
+	u32 dirty_tx;
+	struct TxDesc *TxDescArray;	/* 256-aligned Tx descriptor ring */
+	struct RxDesc *RxDescArray;	/* 256-aligned Rx descriptor ring */
+	dma_addr_t TxPhyAddr;
+	dma_addr_t RxPhyAddr;
+	struct sk_buff *Rx_skbuff[NUM_RX_DESC];	/* Rx data buffers */
+	struct ring_info tx_skb[NUM_TX_DESC];	/* Tx data buffers */
+	unsigned align;
+	unsigned rx_buf_sz;
+	struct timer_list timer;
+	u16 cp_cmd;
+	u16 intr_event;
+	u16 napi_event;
+	u16 intr_mask;
+	int phy_1000_ctrl_reg;
+#ifdef CONFIG_R8169_VLAN
+	struct vlan_group *vlgrp;
+#endif
+	int (*set_speed)(struct net_device *, u8 autoneg, u16 speed, u8 duplex);
+	int (*get_settings)(struct net_device *, struct ethtool_cmd *);
+	void (*phy_reset_enable)(void __iomem *);
+	void (*hw_start)(struct net_device *);
+	unsigned int (*phy_reset_pending)(void __iomem *);
+	unsigned int (*link_ok)(void __iomem *);
+	int (*do_ioctl)(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd);
+	int pcie_cap;
+	struct delayed_work task;
+	unsigned features;
+
+	struct mii_if_info mii;
+	struct rtl8169_counters counters;
+	u32 saved_wolopts;
+
+	ec_device_t *ecdev;
+	unsigned long ec_watchdog_jiffies;
+};
+
+MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
+MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver (EtherCAT)");
+module_param(rx_copybreak, int, 0);
+MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
+module_param(use_dac, int, 0);
+MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot.");
+module_param_named(debug, debug.msg_enable, int, 0);
+MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(EC_MASTER_VERSION);
+
+static int rtl8169_open(struct net_device *dev);
+static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
+				      struct net_device *dev);
+static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance);
+static int rtl8169_init_ring(struct net_device *dev);
+static void rtl_hw_start(struct net_device *dev);
+static int rtl8169_close(struct net_device *dev);
+static void rtl_set_rx_mode(struct net_device *dev);
+static void rtl8169_tx_timeout(struct net_device *dev);
+static struct net_device_stats *rtl8169_get_stats(struct net_device *dev);
+static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *,
+				void __iomem *, u32 budget);
+static int rtl8169_change_mtu(struct net_device *dev, int new_mtu);
+static void rtl8169_down(struct net_device *dev);
+static void rtl8169_rx_clear(struct rtl8169_private *tp);
+static void ec_poll(struct net_device *dev);
+static int rtl8169_poll(struct napi_struct *napi, int budget);
+
+static const unsigned int rtl8169_rx_config =
+	(RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);
+
+static void mdio_write(void __iomem *ioaddr, int reg_addr, int value)
+{
+	int i;
+
+	RTL_W32(PHYAR, 0x80000000 | (reg_addr & 0x1f) << 16 | (value & 0xffff));
+
+	for (i = 20; i > 0; i--) {
+		/*
+		 * Check if the RTL8169 has completed writing to the specified
+		 * MII register.
+		 */
+		if (!(RTL_R32(PHYAR) & 0x80000000))
+			break;
+		udelay(25);
+	}
+	/*
+	 * According to hardware specs a 20us delay is required after write
+	 * complete indication, but before sending next command.
+	 */
+	udelay(20);
+}
+
+static int mdio_read(void __iomem *ioaddr, int reg_addr)
+{
+	int i, value = -1;
+
+	RTL_W32(PHYAR, 0x0 | (reg_addr & 0x1f) << 16);
+
+	for (i = 20; i > 0; i--) {
+		/*
+		 * Check if the RTL8169 has completed retrieving data from
+		 * the specified MII register.
+		 */
+		if (RTL_R32(PHYAR) & 0x80000000) {
+			value = RTL_R32(PHYAR) & 0xffff;
+			break;
+		}
+		udelay(25);
+	}
+	/*
+	 * According to hardware specs a 20us delay is required after read
+	 * complete indication, but before sending next command.
+	 */
+	udelay(20);
+
+	return value;
+}
+
+static void mdio_patch(void __iomem *ioaddr, int reg_addr, int value)
+{
+	mdio_write(ioaddr, reg_addr, mdio_read(ioaddr, reg_addr) | value);
+}
+
+static void mdio_plus_minus(void __iomem *ioaddr, int reg_addr, int p, int m)
+{
+	int val;
+
+	val = mdio_read(ioaddr, reg_addr);
+	mdio_write(ioaddr, reg_addr, (val | p) & ~m);
+}
+
+static void rtl_mdio_write(struct net_device *dev, int phy_id, int location,
+			   int val)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	mdio_write(ioaddr, location, val);
+}
+
+static int rtl_mdio_read(struct net_device *dev, int phy_id, int location)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	return mdio_read(ioaddr, location);
+}
+
+static void rtl_ephy_write(void __iomem *ioaddr, int reg_addr, int value)
+{
+	unsigned int i;
+
+	RTL_W32(EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |
+		(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (!(RTL_R32(EPHYAR) & EPHYAR_FLAG))
+			break;
+		udelay(10);
+	}
+}
+
+static u16 rtl_ephy_read(void __iomem *ioaddr, int reg_addr)
+{
+	u16 value = 0xffff;
+	unsigned int i;
+
+	RTL_W32(EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (RTL_R32(EPHYAR) & EPHYAR_FLAG) {
+			value = RTL_R32(EPHYAR) & EPHYAR_DATA_MASK;
+			break;
+		}
+		udelay(10);
+	}
+
+	return value;
+}
+
+static void rtl_csi_write(void __iomem *ioaddr, int addr, int value)
+{
+	unsigned int i;
+
+	RTL_W32(CSIDR, value);
+	RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
+		CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (!(RTL_R32(CSIAR) & CSIAR_FLAG))
+			break;
+		udelay(10);
+	}
+}
+
+static u32 rtl_csi_read(void __iomem *ioaddr, int addr)
+{
+	u32 value = ~0x00;
+	unsigned int i;
+
+	RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) |
+		CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (RTL_R32(CSIAR) & CSIAR_FLAG) {
+			value = RTL_R32(CSIDR);
+			break;
+		}
+		udelay(10);
+	}
+
+	return value;
+}
+
+static u8 rtl8168d_efuse_read(void __iomem *ioaddr, int reg_addr)
+{
+	u8 value = 0xff;
+	unsigned int i;
+
+	RTL_W32(EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT);
+
+	for (i = 0; i < 300; i++) {
+		if (RTL_R32(EFUSEAR) & EFUSEAR_FLAG) {
+			value = RTL_R32(EFUSEAR) & EFUSEAR_DATA_MASK;
+			break;
+		}
+		udelay(100);
+	}
+
+	return value;
+}
+
+static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr)
+{
+	RTL_W16(IntrMask, 0x0000);
+
+	RTL_W16(IntrStatus, 0xffff);
+}
+
+static void rtl8169_asic_down(void __iomem *ioaddr)
+{
+	RTL_W8(ChipCmd, 0x00);
+	rtl8169_irq_mask_and_ack(ioaddr);
+	RTL_R16(CPlusCmd);
+}
+
+static unsigned int rtl8169_tbi_reset_pending(void __iomem *ioaddr)
+{
+	return RTL_R32(TBICSR) & TBIReset;
+}
+
+static unsigned int rtl8169_xmii_reset_pending(void __iomem *ioaddr)
+{
+	return mdio_read(ioaddr, MII_BMCR) & BMCR_RESET;
+}
+
+static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr)
+{
+	return RTL_R32(TBICSR) & TBILinkOk;
+}
+
+static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr)
+{
+	return RTL_R8(PHYstatus) & LinkStatus;
+}
+
+static void rtl8169_tbi_reset_enable(void __iomem *ioaddr)
+{
+	RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset);
+}
+
+static void rtl8169_xmii_reset_enable(void __iomem *ioaddr)
+{
+	unsigned int val;
+
+	val = mdio_read(ioaddr, MII_BMCR) | BMCR_RESET;
+	mdio_write(ioaddr, MII_BMCR, val & 0xffff);
+}
+
+static void rtl8169_check_link_status(struct net_device *dev,
+				      struct rtl8169_private *tp,
+				      void __iomem *ioaddr)
+{
+	unsigned long flags;
+
+	if (tp->ecdev) {
+		ecdev_set_link(tp->ecdev, tp->link_ok(ioaddr) ? 1 : 0);
+		return;
+	}
+
+	spin_lock_irqsave(&tp->lock, flags);
+	if (tp->link_ok(ioaddr)) {
+		/* This is to cancel a scheduled suspend if there's one. */
+		pm_request_resume(&tp->pci_dev->dev);
+		netif_carrier_on(dev);
+		netif_info(tp, ifup, dev, "link up\n");
+	} else {
+		netif_carrier_off(dev);
+		netif_info(tp, ifdown, dev, "link down\n");
+		pm_schedule_suspend(&tp->pci_dev->dev, 100);
+	}
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
+
+static u32 __rtl8169_get_wol(struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	u8 options;
+	u32 wolopts = 0;
+
+	options = RTL_R8(Config1);
+	if (!(options & PMEnable))
+		return 0;
+
+	options = RTL_R8(Config3);
+	if (options & LinkUp)
+		wolopts |= WAKE_PHY;
+	if (options & MagicPacket)
+		wolopts |= WAKE_MAGIC;
+
+	options = RTL_R8(Config5);
+	if (options & UWF)
+		wolopts |= WAKE_UCAST;
+	if (options & BWF)
+		wolopts |= WAKE_BCAST;
+	if (options & MWF)
+		wolopts |= WAKE_MCAST;
+
+	return wolopts;
+}
+
+static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	spin_lock_irq(&tp->lock);
+
+	wol->supported = WAKE_ANY;
+	wol->wolopts = __rtl8169_get_wol(tp);
+
+	spin_unlock_irq(&tp->lock);
+}
+
+static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int i;
+	static const struct {
+		u32 opt;
+		u16 reg;
+		u8  mask;
+	} cfg[] = {
+		{ WAKE_ANY,   Config1, PMEnable },
+		{ WAKE_PHY,   Config3, LinkUp },
+		{ WAKE_MAGIC, Config3, MagicPacket },
+		{ WAKE_UCAST, Config5, UWF },
+		{ WAKE_BCAST, Config5, BWF },
+		{ WAKE_MCAST, Config5, MWF },
+		{ WAKE_ANY,   Config5, LanWake }
+	};
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	for (i = 0; i < ARRAY_SIZE(cfg); i++) {
+		u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask;
+		if (wolopts & cfg[i].opt)
+			options |= cfg[i].mask;
+		RTL_W8(cfg[i].reg, options);
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+}
+
+static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	spin_lock_irq(&tp->lock);
+
+	if (wol->wolopts)
+		tp->features |= RTL_FEATURE_WOL;
+	else
+		tp->features &= ~RTL_FEATURE_WOL;
+	__rtl8169_set_wol(tp, wol->wolopts);
+	device_set_wakeup_enable(&tp->pci_dev->dev, wol->wolopts);
+
+	spin_unlock_irq(&tp->lock);
+
+	return 0;
+}
+
+static void rtl8169_get_drvinfo(struct net_device *dev,
+				struct ethtool_drvinfo *info)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	strcpy(info->driver, MODULENAME);
+	strcpy(info->version, RTL8169_VERSION);
+	strcpy(info->bus_info, pci_name(tp->pci_dev));
+}
+
+static int rtl8169_get_regs_len(struct net_device *dev)
+{
+	return R8169_REGS_SIZE;
+}
+
+static int rtl8169_set_speed_tbi(struct net_device *dev,
+				 u8 autoneg, u16 speed, u8 duplex)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	int ret = 0;
+	u32 reg;
+
+	reg = RTL_R32(TBICSR);
+	if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) &&
+	    (duplex == DUPLEX_FULL)) {
+		RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart));
+	} else if (autoneg == AUTONEG_ENABLE)
+		RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart);
+	else {
+		netif_warn(tp, link, dev,
+			   "incorrect speed setting refused in TBI mode\n");
+		ret = -EOPNOTSUPP;
+	}
+
+	return ret;
+}
+
+static int rtl8169_set_speed_xmii(struct net_device *dev,
+				  u8 autoneg, u16 speed, u8 duplex)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	int giga_ctrl, bmcr;
+
+	if (autoneg == AUTONEG_ENABLE) {
+		int auto_nego;
+
+		auto_nego = mdio_read(ioaddr, MII_ADVERTISE);
+		auto_nego |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
+			      ADVERTISE_100HALF | ADVERTISE_100FULL);
+		auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
+
+		giga_ctrl = mdio_read(ioaddr, MII_CTRL1000);
+		giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
+
+		/* The 8100e/8101e/8102e do Fast Ethernet only. */
+		if ((tp->mac_version != RTL_GIGA_MAC_VER_07) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_08) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_09) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_10) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_13) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_14) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_15) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_16)) {
+			giga_ctrl |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
+		} else {
+			netif_info(tp, link, dev,
+				   "PHY does not support 1000Mbps\n");
+		}
+
+		bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
+
+		if ((tp->mac_version == RTL_GIGA_MAC_VER_11) ||
+		    (tp->mac_version == RTL_GIGA_MAC_VER_12) ||
+		    (tp->mac_version >= RTL_GIGA_MAC_VER_17)) {
+			/*
+			 * Wake up the PHY.
+			 * Vendor specific (0x1f) and reserved (0x0e) MII
+			 * registers.
+			 */
+			mdio_write(ioaddr, 0x1f, 0x0000);
+			mdio_write(ioaddr, 0x0e, 0x0000);
+		}
+
+		mdio_write(ioaddr, MII_ADVERTISE, auto_nego);
+		mdio_write(ioaddr, MII_CTRL1000, giga_ctrl);
+	} else {
+		giga_ctrl = 0;
+
+		if (speed == SPEED_10)
+			bmcr = 0;
+		else if (speed == SPEED_100)
+			bmcr = BMCR_SPEED100;
+		else
+			return -EINVAL;
+
+		if (duplex == DUPLEX_FULL)
+			bmcr |= BMCR_FULLDPLX;
+
+		mdio_write(ioaddr, 0x1f, 0x0000);
+	}
+
+	tp->phy_1000_ctrl_reg = giga_ctrl;
+
+	mdio_write(ioaddr, MII_BMCR, bmcr);
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03)) {
+		if ((speed == SPEED_100) && (autoneg != AUTONEG_ENABLE)) {
+			mdio_write(ioaddr, 0x17, 0x2138);
+			mdio_write(ioaddr, 0x0e, 0x0260);
+		} else {
+			mdio_write(ioaddr, 0x17, 0x2108);
+			mdio_write(ioaddr, 0x0e, 0x0000);
+		}
+	}
+
+	return 0;
+}
+
+static int rtl8169_set_speed(struct net_device *dev,
+			     u8 autoneg, u16 speed, u8 duplex)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int ret;
+
+	ret = tp->set_speed(dev, autoneg, speed, duplex);
+
+	if (netif_running(dev) && (tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL))
+		mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT);
+
+	return ret;
+}
+
+static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned long flags;
+	int ret;
+
+	spin_lock_irqsave(&tp->lock, flags);
+	ret = rtl8169_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex);
+	spin_unlock_irqrestore(&tp->lock, flags);
+
+	return ret;
+}
+
+static u32 rtl8169_get_rx_csum(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	return tp->cp_cmd & RxChkSum;
+}
+
+static int rtl8169_set_rx_csum(struct net_device *dev, u32 data)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+
+	spin_lock_irqsave(&tp->lock, flags);
+
+	if (data)
+		tp->cp_cmd |= RxChkSum;
+	else
+		tp->cp_cmd &= ~RxChkSum;
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+	RTL_R16(CPlusCmd);
+
+	spin_unlock_irqrestore(&tp->lock, flags);
+
+	return 0;
+}
+
+#ifdef CONFIG_R8169_VLAN
+
+static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
+				      struct sk_buff *skb)
+{
+	return (tp->vlgrp && vlan_tx_tag_present(skb)) ?
+		TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
+}
+
+static void rtl8169_vlan_rx_register(struct net_device *dev,
+				     struct vlan_group *grp)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+
+	spin_lock_irqsave(&tp->lock, flags);
+	tp->vlgrp = grp;
+	/*
+	 * Do not disable RxVlan on 8110SCd.
+	 */
+	if (tp->vlgrp || (tp->mac_version == RTL_GIGA_MAC_VER_05))
+		tp->cp_cmd |= RxVlan;
+	else
+		tp->cp_cmd &= ~RxVlan;
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+	RTL_R16(CPlusCmd);
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
+			       struct sk_buff *skb, int polling)
+{
+	u32 opts2 = le32_to_cpu(desc->opts2);
+	struct vlan_group *vlgrp = tp->vlgrp;
+	int ret;
+
+	if (vlgrp && (opts2 & RxVlanTag)) {
+		__vlan_hwaccel_rx(skb, vlgrp, swab16(opts2 & 0xffff), polling);
+		ret = 0;
+	} else
+		ret = -1;
+	desc->opts2 = 0;
+	return ret;
+}
+
+#else /* !CONFIG_R8169_VLAN */
+
+static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
+				      struct sk_buff *skb)
+{
+	return 0;
+}
+
+static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
+			       struct sk_buff *skb, int polling)
+{
+	return -1;
+}
+
+#endif
+
+static int rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	u32 status;
+
+	cmd->supported =
+		SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE;
+	cmd->port = PORT_FIBRE;
+	cmd->transceiver = XCVR_INTERNAL;
+
+	status = RTL_R32(TBICSR);
+	cmd->advertising = (status & TBINwEnable) ?  ADVERTISED_Autoneg : 0;
+	cmd->autoneg = !!(status & TBINwEnable);
+
+	cmd->speed = SPEED_1000;
+	cmd->duplex = DUPLEX_FULL; /* Always set */
+
+	return 0;
+}
+
+static int rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	return mii_ethtool_gset(&tp->mii, cmd);
+}
+
+static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned long flags;
+	int rc;
+
+	spin_lock_irqsave(&tp->lock, flags);
+
+	rc = tp->get_settings(dev, cmd);
+
+	spin_unlock_irqrestore(&tp->lock, flags);
+	return rc;
+}
+
+static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
+			     void *p)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned long flags;
+
+	if (regs->len > R8169_REGS_SIZE)
+		regs->len = R8169_REGS_SIZE;
+
+	spin_lock_irqsave(&tp->lock, flags);
+	memcpy_fromio(p, tp->mmio_addr, regs->len);
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+static u32 rtl8169_get_msglevel(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	return tp->msg_enable;
+}
+
+static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	tp->msg_enable = value;
+}
+
+static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
+	"tx_packets",
+	"rx_packets",
+	"tx_errors",
+	"rx_errors",
+	"rx_missed",
+	"align_errors",
+	"tx_single_collisions",
+	"tx_multi_collisions",
+	"unicast",
+	"broadcast",
+	"multicast",
+	"tx_aborted",
+	"tx_underrun",
+};
+
+static int rtl8169_get_sset_count(struct net_device *dev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_STATS:
+		return ARRAY_SIZE(rtl8169_gstrings);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void rtl8169_update_counters(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct rtl8169_counters *counters;
+	dma_addr_t paddr;
+	u32 cmd;
+	int wait = 1000;
+
+	/*
+	 * Some chips are unable to dump tally counters when the receiver
+	 * is disabled.
+	 */
+	if ((RTL_R8(ChipCmd) & CmdRxEnb) == 0)
+		return;
+
+	counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr);
+	if (!counters)
+		return;
+
+	RTL_W32(CounterAddrHigh, (u64)paddr >> 32);
+	cmd = (u64)paddr & DMA_BIT_MASK(32);
+	RTL_W32(CounterAddrLow, cmd);
+	RTL_W32(CounterAddrLow, cmd | CounterDump);
+
+	while (wait--) {
+		if ((RTL_R32(CounterAddrLow) & CounterDump) == 0) {
+			/* copy updated counters */
+			memcpy(&tp->counters, counters, sizeof(*counters));
+			break;
+		}
+		udelay(10);
+	}
+
+	RTL_W32(CounterAddrLow, 0);
+	RTL_W32(CounterAddrHigh, 0);
+
+	pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr);
+}
+
+static void rtl8169_get_ethtool_stats(struct net_device *dev,
+				      struct ethtool_stats *stats, u64 *data)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	ASSERT_RTNL();
+
+	rtl8169_update_counters(dev);
+
+	data[0] = le64_to_cpu(tp->counters.tx_packets);
+	data[1] = le64_to_cpu(tp->counters.rx_packets);
+	data[2] = le64_to_cpu(tp->counters.tx_errors);
+	data[3] = le32_to_cpu(tp->counters.rx_errors);
+	data[4] = le16_to_cpu(tp->counters.rx_missed);
+	data[5] = le16_to_cpu(tp->counters.align_errors);
+	data[6] = le32_to_cpu(tp->counters.tx_one_collision);
+	data[7] = le32_to_cpu(tp->counters.tx_multi_collision);
+	data[8] = le64_to_cpu(tp->counters.rx_unicast);
+	data[9] = le64_to_cpu(tp->counters.rx_broadcast);
+	data[10] = le32_to_cpu(tp->counters.rx_multicast);
+	data[11] = le16_to_cpu(tp->counters.tx_aborted);
+	data[12] = le16_to_cpu(tp->counters.tx_underun);
+}
+
+static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
+{
+	switch(stringset) {
+	case ETH_SS_STATS:
+		memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
+		break;
+	}
+}
+
+static const struct ethtool_ops rtl8169_ethtool_ops = {
+	.get_drvinfo		= rtl8169_get_drvinfo,
+	.get_regs_len		= rtl8169_get_regs_len,
+	.get_link		= ethtool_op_get_link,
+	.get_settings		= rtl8169_get_settings,
+	.set_settings		= rtl8169_set_settings,
+	.get_msglevel		= rtl8169_get_msglevel,
+	.set_msglevel		= rtl8169_set_msglevel,
+	.get_rx_csum		= rtl8169_get_rx_csum,
+	.set_rx_csum		= rtl8169_set_rx_csum,
+	.set_tx_csum		= ethtool_op_set_tx_csum,
+	.set_sg			= ethtool_op_set_sg,
+	.set_tso		= ethtool_op_set_tso,
+	.get_regs		= rtl8169_get_regs,
+	.get_wol		= rtl8169_get_wol,
+	.set_wol		= rtl8169_set_wol,
+	.get_strings		= rtl8169_get_strings,
+	.get_sset_count		= rtl8169_get_sset_count,
+	.get_ethtool_stats	= rtl8169_get_ethtool_stats,
+};
+
+static void rtl8169_get_mac_version(struct rtl8169_private *tp,
+				    void __iomem *ioaddr)
+{
+	/*
+	 * The driver currently handles the 8168Bf and the 8168Be identically
+	 * but they can be identified more specifically through the test below
+	 * if needed:
+	 *
+	 * (RTL_R32(TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be
+	 *
+	 * Same thing for the 8101Eb and the 8101Ec:
+	 *
+	 * (RTL_R32(TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec
+	 */
+	static const struct {
+		u32 mask;
+		u32 val;
+		int mac_version;
+	} mac_info[] = {
+		/* 8168D family. */
+		{ 0x7cf00000, 0x28300000,	RTL_GIGA_MAC_VER_26 },
+		{ 0x7cf00000, 0x28100000,	RTL_GIGA_MAC_VER_25 },
+		{ 0x7c800000, 0x28800000,	RTL_GIGA_MAC_VER_27 },
+		{ 0x7c800000, 0x28000000,	RTL_GIGA_MAC_VER_26 },
+
+		/* 8168C family. */
+		{ 0x7cf00000, 0x3cb00000,	RTL_GIGA_MAC_VER_24 },
+		{ 0x7cf00000, 0x3c900000,	RTL_GIGA_MAC_VER_23 },
+		{ 0x7cf00000, 0x3c800000,	RTL_GIGA_MAC_VER_18 },
+		{ 0x7c800000, 0x3c800000,	RTL_GIGA_MAC_VER_24 },
+		{ 0x7cf00000, 0x3c000000,	RTL_GIGA_MAC_VER_19 },
+		{ 0x7cf00000, 0x3c200000,	RTL_GIGA_MAC_VER_20 },
+		{ 0x7cf00000, 0x3c300000,	RTL_GIGA_MAC_VER_21 },
+		{ 0x7cf00000, 0x3c400000,	RTL_GIGA_MAC_VER_22 },
+		{ 0x7c800000, 0x3c000000,	RTL_GIGA_MAC_VER_22 },
+
+		/* 8168B family. */
+		{ 0x7cf00000, 0x38000000,	RTL_GIGA_MAC_VER_12 },
+		{ 0x7cf00000, 0x38500000,	RTL_GIGA_MAC_VER_17 },
+		{ 0x7c800000, 0x38000000,	RTL_GIGA_MAC_VER_17 },
+		{ 0x7c800000, 0x30000000,	RTL_GIGA_MAC_VER_11 },
+
+		/* 8101 family. */
+		{ 0x7cf00000, 0x34a00000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7cf00000, 0x24a00000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7cf00000, 0x34900000,	RTL_GIGA_MAC_VER_08 },
+		{ 0x7cf00000, 0x24900000,	RTL_GIGA_MAC_VER_08 },
+		{ 0x7cf00000, 0x34800000,	RTL_GIGA_MAC_VER_07 },
+		{ 0x7cf00000, 0x24800000,	RTL_GIGA_MAC_VER_07 },
+		{ 0x7cf00000, 0x34000000,	RTL_GIGA_MAC_VER_13 },
+		{ 0x7cf00000, 0x34300000,	RTL_GIGA_MAC_VER_10 },
+		{ 0x7cf00000, 0x34200000,	RTL_GIGA_MAC_VER_16 },
+		{ 0x7c800000, 0x34800000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7c800000, 0x24800000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7c800000, 0x34000000,	RTL_GIGA_MAC_VER_16 },
+		/* FIXME: where did these entries come from ? -- FR */
+		{ 0xfc800000, 0x38800000,	RTL_GIGA_MAC_VER_15 },
+		{ 0xfc800000, 0x30800000,	RTL_GIGA_MAC_VER_14 },
+
+		/* 8110 family. */
+		{ 0xfc800000, 0x98000000,	RTL_GIGA_MAC_VER_06 },
+		{ 0xfc800000, 0x18000000,	RTL_GIGA_MAC_VER_05 },
+		{ 0xfc800000, 0x10000000,	RTL_GIGA_MAC_VER_04 },
+		{ 0xfc800000, 0x04000000,	RTL_GIGA_MAC_VER_03 },
+		{ 0xfc800000, 0x00800000,	RTL_GIGA_MAC_VER_02 },
+		{ 0xfc800000, 0x00000000,	RTL_GIGA_MAC_VER_01 },
+
+		/* Catch-all */
+		{ 0x00000000, 0x00000000,	RTL_GIGA_MAC_NONE   }
+	}, *p = mac_info;
+	u32 reg;
+
+	reg = RTL_R32(TxConfig);
+	while ((reg & p->mask) != p->val)
+		p++;
+	tp->mac_version = p->mac_version;
+}
+
+static void rtl8169_print_mac_version(struct rtl8169_private *tp)
+{
+	dprintk("mac_version = 0x%02x\n", tp->mac_version);
+}
+
+struct phy_reg {
+	u16 reg;
+	u16 val;
+};
+
+static void rtl_phy_write(void __iomem *ioaddr, const struct phy_reg *regs, int len)
+{
+	while (len-- > 0) {
+		mdio_write(ioaddr, regs->reg, regs->val);
+		regs++;
+	}
+}
+
+static void rtl8169s_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x06, 0x006e },
+		{ 0x08, 0x0708 },
+		{ 0x15, 0x4000 },
+		{ 0x18, 0x65c7 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x03, 0x00a1 },
+		{ 0x02, 0x0008 },
+		{ 0x01, 0x0120 },
+		{ 0x00, 0x1000 },
+		{ 0x04, 0x0800 },
+		{ 0x04, 0x0000 },
+
+		{ 0x03, 0xff41 },
+		{ 0x02, 0xdf60 },
+		{ 0x01, 0x0140 },
+		{ 0x00, 0x0077 },
+		{ 0x04, 0x7800 },
+		{ 0x04, 0x7000 },
+
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf0f9 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0x9000 },
+
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0xff95 },
+		{ 0x00, 0xba00 },
+		{ 0x04, 0xa800 },
+		{ 0x04, 0xa000 },
+
+		{ 0x03, 0xff41 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x0140 },
+		{ 0x00, 0x00bb },
+		{ 0x04, 0xb800 },
+		{ 0x04, 0xb000 },
+
+		{ 0x03, 0xdf41 },
+		{ 0x02, 0xdc60 },
+		{ 0x01, 0x6340 },
+		{ 0x00, 0x007d },
+		{ 0x04, 0xd800 },
+		{ 0x04, 0xd000 },
+
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x100a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0xf000 },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0b, 0x0000 },
+		{ 0x00, 0x9200 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8169sb_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0002 },
+		{ 0x01, 0x90d0 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp,
+					   void __iomem *ioaddr)
+{
+	struct pci_dev *pdev = tp->pci_dev;
+	u16 vendor_id, device_id;
+
+	pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &vendor_id);
+	pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &device_id);
+
+	if ((vendor_id != PCI_VENDOR_ID_GIGABYTE) || (device_id != 0xe000))
+		return;
+
+	mdio_write(ioaddr, 0x1f, 0x0001);
+	mdio_write(ioaddr, 0x10, 0xf01b);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp,
+				     void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x04, 0x0000 },
+		{ 0x03, 0x00a1 },
+		{ 0x02, 0x0008 },
+		{ 0x01, 0x0120 },
+		{ 0x00, 0x1000 },
+		{ 0x04, 0x0800 },
+		{ 0x04, 0x9000 },
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf099 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0xa000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0xff95 },
+		{ 0x00, 0xba00 },
+		{ 0x04, 0xa800 },
+		{ 0x04, 0xf000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x101a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0x0000 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x10, 0xf41b },
+		{ 0x14, 0xfb54 },
+		{ 0x18, 0xf5c7 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x17, 0x0cc0 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	rtl8169scd_hw_phy_config_quirk(tp, ioaddr);
+}
+
+static void rtl8169sce_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x04, 0x0000 },
+		{ 0x03, 0x00a1 },
+		{ 0x02, 0x0008 },
+		{ 0x01, 0x0120 },
+		{ 0x00, 0x1000 },
+		{ 0x04, 0x0800 },
+		{ 0x04, 0x9000 },
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf099 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0xa000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0xff95 },
+		{ 0x00, 0xba00 },
+		{ 0x04, 0xa800 },
+		{ 0x04, 0xf000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x101a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0x0000 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x0b, 0x8480 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x18, 0x67c7 },
+		{ 0x04, 0x2000 },
+		{ 0x03, 0x002f },
+		{ 0x02, 0x4360 },
+		{ 0x01, 0x0109 },
+		{ 0x00, 0x3022 },
+		{ 0x04, 0x2800 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x17, 0x0cc0 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168bb_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x10, 0xf41b },
+		{ 0x1f, 0x0000 }
+	};
+
+	mdio_write(ioaddr, 0x1f, 0x0001);
+	mdio_patch(ioaddr, 0x16, 1 << 0);
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168bef_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x10, 0xf41b },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168cp_1_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0000 },
+		{ 0x1d, 0x0f00 },
+		{ 0x1f, 0x0002 },
+		{ 0x0c, 0x1ec8 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168cp_2_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x1d, 0x3d98 },
+		{ 0x1f, 0x0000 }
+	};
+
+	mdio_write(ioaddr, 0x1f, 0x0000);
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168c_1_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x12, 0x2300 },
+		{ 0x1f, 0x0002 },
+		{ 0x00, 0x88d4 },
+		{ 0x01, 0x82b1 },
+		{ 0x03, 0x7002 },
+		{ 0x08, 0x9e30 },
+		{ 0x09, 0x01f0 },
+		{ 0x0a, 0x5500 },
+		{ 0x0c, 0x00c8 },
+		{ 0x1f, 0x0003 },
+		{ 0x12, 0xc096 },
+		{ 0x16, 0x000a },
+		{ 0x1f, 0x0000 },
+		{ 0x1f, 0x0000 },
+		{ 0x09, 0x2000 },
+		{ 0x09, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8168c_2_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x12, 0x2300 },
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf099 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0x9000 },
+		{ 0x1d, 0x3d98 },
+		{ 0x1f, 0x0002 },
+		{ 0x0c, 0x7eb8 },
+		{ 0x06, 0x0761 },
+		{ 0x1f, 0x0003 },
+		{ 0x16, 0x0f0a },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	mdio_patch(ioaddr, 0x16, 1 << 0);
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8168c_3_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x12, 0x2300 },
+		{ 0x1d, 0x3d98 },
+		{ 0x1f, 0x0002 },
+		{ 0x0c, 0x7eb8 },
+		{ 0x06, 0x5461 },
+		{ 0x1f, 0x0003 },
+		{ 0x16, 0x0f0a },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	mdio_patch(ioaddr, 0x16, 1 << 0);
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8168c_4_hw_phy_config(void __iomem *ioaddr)
+{
+	rtl8168c_3_hw_phy_config(ioaddr);
+}
+
+static void rtl8168d_1_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init_0[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x06, 0x4064 },
+		{ 0x07, 0x2863 },
+		{ 0x08, 0x059c },
+		{ 0x09, 0x26b4 },
+		{ 0x0a, 0x6a19 },
+		{ 0x0b, 0xdcc8 },
+		{ 0x10, 0xf06d },
+		{ 0x14, 0x7f68 },
+		{ 0x18, 0x7fd9 },
+		{ 0x1c, 0xf0ff },
+		{ 0x1d, 0x3d9c },
+		{ 0x1f, 0x0003 },
+		{ 0x12, 0xf49f },
+		{ 0x13, 0x070b },
+		{ 0x1a, 0x05ad },
+		{ 0x14, 0x94c0 }
+	};
+	static const struct phy_reg phy_reg_init_1[] = {
+		{ 0x1f, 0x0002 },
+		{ 0x06, 0x5561 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8332 },
+		{ 0x06, 0x5561 }
+	};
+	static const struct phy_reg phy_reg_init_2[] = {
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0xffc2 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8000 },
+		{ 0x06, 0xf8f9 },
+		{ 0x06, 0xfaef },
+		{ 0x06, 0x59ee },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x00e0 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x7d59 },
+		{ 0x06, 0x0fef },
+		{ 0x06, 0x0139 },
+		{ 0x06, 0x029e },
+		{ 0x06, 0x06ef },
+		{ 0x06, 0x1039 },
+		{ 0x06, 0x089f },
+		{ 0x06, 0x2aee },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x01e0 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x7d58 },
+		{ 0x06, 0x409e },
+		{ 0x06, 0x0f39 },
+		{ 0x06, 0x46aa },
+		{ 0x06, 0x0bbf },
+		{ 0x06, 0x8290 },
+		{ 0x06, 0xd682 },
+		{ 0x06, 0x9802 },
+		{ 0x06, 0x014f },
+		{ 0x06, 0xae09 },
+		{ 0x06, 0xbf82 },
+		{ 0x06, 0x98d6 },
+		{ 0x06, 0x82a0 },
+		{ 0x06, 0x0201 },
+		{ 0x06, 0x4fef },
+		{ 0x06, 0x95fe },
+		{ 0x06, 0xfdfc },
+		{ 0x06, 0x05f8 },
+		{ 0x06, 0xf9fa },
+		{ 0x06, 0xeef8 },
+		{ 0x06, 0xea00 },
+		{ 0x06, 0xeef8 },
+		{ 0x06, 0xeb00 },
+		{ 0x06, 0xe2f8 },
+		{ 0x06, 0x7ce3 },
+		{ 0x06, 0xf87d },
+		{ 0x06, 0xa511 },
+		{ 0x06, 0x1112 },
+		{ 0x06, 0xd240 },
+		{ 0x06, 0xd644 },
+		{ 0x06, 0x4402 },
+		{ 0x06, 0x8217 },
+		{ 0x06, 0xd2a0 },
+		{ 0x06, 0xd6aa },
+		{ 0x06, 0xaa02 },
+		{ 0x06, 0x8217 },
+		{ 0x06, 0xae0f },
+		{ 0x06, 0xa544 },
+		{ 0x06, 0x4402 },
+		{ 0x06, 0xae4d },
+		{ 0x06, 0xa5aa },
+		{ 0x06, 0xaa02 },
+		{ 0x06, 0xae47 },
+		{ 0x06, 0xaf82 },
+		{ 0x06, 0x13ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x0fee },
+		{ 0x06, 0x834c },
+		{ 0x06, 0x0fee },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x8351 },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x834a },
+		{ 0x06, 0xffee },
+		{ 0x06, 0x834b },
+		{ 0x06, 0xffe0 },
+		{ 0x06, 0x8330 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3158 },
+		{ 0x06, 0xfee4 },
+		{ 0x06, 0xf88a },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8be0 },
+		{ 0x06, 0x8332 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3359 },
+		{ 0x06, 0x0fe2 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x0c24 },
+		{ 0x06, 0x5af0 },
+		{ 0x06, 0x1e12 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ce5 },
+		{ 0x06, 0xf88d },
+		{ 0x06, 0xaf82 },
+		{ 0x06, 0x13e0 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x10e4 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x009f },
+		{ 0x06, 0x0ae0 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0xa010 },
+		{ 0x06, 0xa5ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x01e0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7805 },
+		{ 0x06, 0x9e9a },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x049e },
+		{ 0x06, 0x10e0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7803 },
+		{ 0x06, 0x9e0f },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x019e },
+		{ 0x06, 0x05ae },
+		{ 0x06, 0x0caf },
+		{ 0x06, 0x81f8 },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0xa3af },
+		{ 0x06, 0x81dc },
+		{ 0x06, 0xaf82 },
+		{ 0x06, 0x13ee },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0x00e0 },
+		{ 0x06, 0x8351 },
+		{ 0x06, 0x10e4 },
+		{ 0x06, 0x8351 },
+		{ 0x06, 0x5801 },
+		{ 0x06, 0x9fea },
+		{ 0x06, 0xd000 },
+		{ 0x06, 0xd180 },
+		{ 0x06, 0x1f66 },
+		{ 0x06, 0xe2f8 },
+		{ 0x06, 0xeae3 },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x5af8 },
+		{ 0x06, 0x1e20 },
+		{ 0x06, 0xe6f8 },
+		{ 0x06, 0xeae5 },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0xd302 },
+		{ 0x06, 0xb3fe },
+		{ 0x06, 0xe2f8 },
+		{ 0x06, 0x7cef },
+		{ 0x06, 0x325b },
+		{ 0x06, 0x80e3 },
+		{ 0x06, 0xf87d },
+		{ 0x06, 0x9e03 },
+		{ 0x06, 0x7dff },
+		{ 0x06, 0xff0d },
+		{ 0x06, 0x581c },
+		{ 0x06, 0x551a },
+		{ 0x06, 0x6511 },
+		{ 0x06, 0xa190 },
+		{ 0x06, 0xd3e2 },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0xe383 },
+		{ 0x06, 0x491b },
+		{ 0x06, 0x56ab },
+		{ 0x06, 0x08ef },
+		{ 0x06, 0x56e6 },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0xe783 },
+		{ 0x06, 0x4910 },
+		{ 0x06, 0xd180 },
+		{ 0x06, 0x1f66 },
+		{ 0x06, 0xa004 },
+		{ 0x06, 0xb9e2 },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0xe383 },
+		{ 0x06, 0x49ef },
+		{ 0x06, 0x65e2 },
+		{ 0x06, 0x834a },
+		{ 0x06, 0xe383 },
+		{ 0x06, 0x4b1b },
+		{ 0x06, 0x56aa },
+		{ 0x06, 0x0eef },
+		{ 0x06, 0x56e6 },
+		{ 0x06, 0x834a },
+		{ 0x06, 0xe783 },
+		{ 0x06, 0x4be2 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xe683 },
+		{ 0x06, 0x4ce0 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xa000 },
+		{ 0x06, 0x0caf },
+		{ 0x06, 0x81dc },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4d10 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x4dae },
+		{ 0x06, 0x0480 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x4de0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7803 },
+		{ 0x06, 0x9e0b },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x049e },
+		{ 0x06, 0x04ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x02e0 },
+		{ 0x06, 0x8332 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3359 },
+		{ 0x06, 0x0fe2 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x0c24 },
+		{ 0x06, 0x5af0 },
+		{ 0x06, 0x1e12 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ce5 },
+		{ 0x06, 0xf88d },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x30e1 },
+		{ 0x06, 0x8331 },
+		{ 0x06, 0x6801 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ae5 },
+		{ 0x06, 0xf88b },
+		{ 0x06, 0xae37 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e03 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4ce1 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x1b01 },
+		{ 0x06, 0x9e04 },
+		{ 0x06, 0xaaa1 },
+		{ 0x06, 0xaea8 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e04 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4f00 },
+		{ 0x06, 0xaeab },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4f78 },
+		{ 0x06, 0x039f },
+		{ 0x06, 0x14ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x05d2 },
+		{ 0x06, 0x40d6 },
+		{ 0x06, 0x5554 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x17d2 },
+		{ 0x06, 0xa0d6 },
+		{ 0x06, 0xba00 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x17fe },
+		{ 0x06, 0xfdfc },
+		{ 0x06, 0x05f8 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x60e1 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0x6802 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x60e5 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x48e1 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0x580f },
+		{ 0x06, 0x1e02 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x48e5 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0xd000 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x5bbf },
+		{ 0x06, 0x8350 },
+		{ 0x06, 0xef46 },
+		{ 0x06, 0xdc19 },
+		{ 0x06, 0xddd0 },
+		{ 0x06, 0x0102 },
+		{ 0x06, 0x825b },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x77e0 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x6158 },
+		{ 0x06, 0xfde4 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x61fc },
+		{ 0x06, 0x04f9 },
+		{ 0x06, 0xfafb },
+		{ 0x06, 0xc6bf },
+		{ 0x06, 0xf840 },
+		{ 0x06, 0xbe83 },
+		{ 0x06, 0x50a0 },
+		{ 0x06, 0x0101 },
+		{ 0x06, 0x071b },
+		{ 0x06, 0x89cf },
+		{ 0x06, 0xd208 },
+		{ 0x06, 0xebdb },
+		{ 0x06, 0x19b2 },
+		{ 0x06, 0xfbff },
+		{ 0x06, 0xfefd },
+		{ 0x06, 0x04f8 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x48e1 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0x6808 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x48e5 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0x58f7 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x48e5 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0xfc04 },
+		{ 0x06, 0x4d20 },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x4e22 },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x4ddf },
+		{ 0x06, 0xff01 },
+		{ 0x06, 0x4edd },
+		{ 0x06, 0xff01 },
+		{ 0x05, 0x83d4 },
+		{ 0x06, 0x8000 },
+		{ 0x05, 0x83d8 },
+		{ 0x06, 0x8051 },
+		{ 0x02, 0x6010 },
+		{ 0x03, 0xdc00 },
+		{ 0x05, 0xfff6 },
+		{ 0x06, 0x00fc },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0d, 0xf880 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_plus_minus(ioaddr, 0x0b, 0x0010, 0x00ef);
+	mdio_plus_minus(ioaddr, 0x0c, 0xa200, 0x5d00);
+
+	rtl_phy_write(ioaddr, phy_reg_init_1, ARRAY_SIZE(phy_reg_init_1));
+
+	if (rtl8168d_efuse_read(ioaddr, 0x01) == 0xb1) {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x669a },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x669a },
+			{ 0x1f, 0x0002 }
+		};
+		int val;
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+		val = mdio_read(ioaddr, 0x0d);
+
+		if ((val & 0x00ff) != 0x006c) {
+			static const u32 set[] = {
+				0x0065, 0x0066, 0x0067, 0x0068,
+				0x0069, 0x006a, 0x006b, 0x006c
+			};
+			int i;
+
+			mdio_write(ioaddr, 0x1f, 0x0002);
+
+			val &= 0xff00;
+			for (i = 0; i < ARRAY_SIZE(set); i++)
+				mdio_write(ioaddr, 0x0d, val | set[i]);
+		}
+	} else {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x6662 },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x6662 }
+		};
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+	}
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_patch(ioaddr, 0x0d, 0x0300);
+	mdio_patch(ioaddr, 0x0f, 0x0010);
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_plus_minus(ioaddr, 0x02, 0x0100, 0x0600);
+	mdio_plus_minus(ioaddr, 0x03, 0x0000, 0xe000);
+
+	rtl_phy_write(ioaddr, phy_reg_init_2, ARRAY_SIZE(phy_reg_init_2));
+}
+
+static void rtl8168d_2_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init_0[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x06, 0x4064 },
+		{ 0x07, 0x2863 },
+		{ 0x08, 0x059c },
+		{ 0x09, 0x26b4 },
+		{ 0x0a, 0x6a19 },
+		{ 0x0b, 0xdcc8 },
+		{ 0x10, 0xf06d },
+		{ 0x14, 0x7f68 },
+		{ 0x18, 0x7fd9 },
+		{ 0x1c, 0xf0ff },
+		{ 0x1d, 0x3d9c },
+		{ 0x1f, 0x0003 },
+		{ 0x12, 0xf49f },
+		{ 0x13, 0x070b },
+		{ 0x1a, 0x05ad },
+		{ 0x14, 0x94c0 },
+
+		{ 0x1f, 0x0002 },
+		{ 0x06, 0x5561 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8332 },
+		{ 0x06, 0x5561 }
+	};
+	static const struct phy_reg phy_reg_init_1[] = {
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0xffc2 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8000 },
+		{ 0x06, 0xf8f9 },
+		{ 0x06, 0xfaee },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x00e2 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xe3f8 },
+		{ 0x06, 0x7da5 },
+		{ 0x06, 0x1111 },
+		{ 0x06, 0x12d2 },
+		{ 0x06, 0x40d6 },
+		{ 0x06, 0x4444 },
+		{ 0x06, 0x0281 },
+		{ 0x06, 0xc6d2 },
+		{ 0x06, 0xa0d6 },
+		{ 0x06, 0xaaaa },
+		{ 0x06, 0x0281 },
+		{ 0x06, 0xc6ae },
+		{ 0x06, 0x0fa5 },
+		{ 0x06, 0x4444 },
+		{ 0x06, 0x02ae },
+		{ 0x06, 0x4da5 },
+		{ 0x06, 0xaaaa },
+		{ 0x06, 0x02ae },
+		{ 0x06, 0x47af },
+		{ 0x06, 0x81c2 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e00 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4d0f },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4c0f },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4f00 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x5100 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4aff },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4bff },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x30e1 },
+		{ 0x06, 0x8331 },
+		{ 0x06, 0x58fe },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ae5 },
+		{ 0x06, 0xf88b },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x32e1 },
+		{ 0x06, 0x8333 },
+		{ 0x06, 0x590f },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4d0c },
+		{ 0x06, 0x245a },
+		{ 0x06, 0xf01e },
+		{ 0x06, 0x12e4 },
+		{ 0x06, 0xf88c },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8daf },
+		{ 0x06, 0x81c2 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4f10 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x4fe0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7800 },
+		{ 0x06, 0x9f0a },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4fa0 },
+		{ 0x06, 0x10a5 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e01 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x059e },
+		{ 0x06, 0x9ae0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7804 },
+		{ 0x06, 0x9e10 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x039e },
+		{ 0x06, 0x0fe0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7801 },
+		{ 0x06, 0x9e05 },
+		{ 0x06, 0xae0c },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0xa7af },
+		{ 0x06, 0x8152 },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0x8baf },
+		{ 0x06, 0x81c2 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4800 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4900 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x5110 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x5158 },
+		{ 0x06, 0x019f },
+		{ 0x06, 0xead0 },
+		{ 0x06, 0x00d1 },
+		{ 0x06, 0x801f },
+		{ 0x06, 0x66e2 },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0xe3f8 },
+		{ 0x06, 0xeb5a },
+		{ 0x06, 0xf81e },
+		{ 0x06, 0x20e6 },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0xebd3 },
+		{ 0x06, 0x02b3 },
+		{ 0x06, 0xfee2 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xef32 },
+		{ 0x06, 0x5b80 },
+		{ 0x06, 0xe3f8 },
+		{ 0x06, 0x7d9e },
+		{ 0x06, 0x037d },
+		{ 0x06, 0xffff },
+		{ 0x06, 0x0d58 },
+		{ 0x06, 0x1c55 },
+		{ 0x06, 0x1a65 },
+		{ 0x06, 0x11a1 },
+		{ 0x06, 0x90d3 },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x48e3 },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0x1b56 },
+		{ 0x06, 0xab08 },
+		{ 0x06, 0xef56 },
+		{ 0x06, 0xe683 },
+		{ 0x06, 0x48e7 },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0x10d1 },
+		{ 0x06, 0x801f },
+		{ 0x06, 0x66a0 },
+		{ 0x06, 0x04b9 },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x48e3 },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0xef65 },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4ae3 },
+		{ 0x06, 0x834b },
+		{ 0x06, 0x1b56 },
+		{ 0x06, 0xaa0e },
+		{ 0x06, 0xef56 },
+		{ 0x06, 0xe683 },
+		{ 0x06, 0x4ae7 },
+		{ 0x06, 0x834b },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4de6 },
+		{ 0x06, 0x834c },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4da0 },
+		{ 0x06, 0x000c },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0x8be0 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x10e4 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xae04 },
+		{ 0x06, 0x80e4 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x039e },
+		{ 0x06, 0x0be0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7804 },
+		{ 0x06, 0x9e04 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e02 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x32e1 },
+		{ 0x06, 0x8333 },
+		{ 0x06, 0x590f },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4d0c },
+		{ 0x06, 0x245a },
+		{ 0x06, 0xf01e },
+		{ 0x06, 0x12e4 },
+		{ 0x06, 0xf88c },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8de0 },
+		{ 0x06, 0x8330 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3168 },
+		{ 0x06, 0x01e4 },
+		{ 0x06, 0xf88a },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8bae },
+		{ 0x06, 0x37ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x03e0 },
+		{ 0x06, 0x834c },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x4d1b },
+		{ 0x06, 0x019e },
+		{ 0x06, 0x04aa },
+		{ 0x06, 0xa1ae },
+		{ 0x06, 0xa8ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x04ee },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x00ae },
+		{ 0x06, 0xabe0 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x7803 },
+		{ 0x06, 0x9f14 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e05 },
+		{ 0x06, 0xd240 },
+		{ 0x06, 0xd655 },
+		{ 0x06, 0x5402 },
+		{ 0x06, 0x81c6 },
+		{ 0x06, 0xd2a0 },
+		{ 0x06, 0xd6ba },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x81c6 },
+		{ 0x06, 0xfefd },
+		{ 0x06, 0xfc05 },
+		{ 0x06, 0xf8e0 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x6168 },
+		{ 0x06, 0x02e4 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x61e0 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x4958 },
+		{ 0x06, 0x0f1e },
+		{ 0x06, 0x02e4 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x49d0 },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x820a },
+		{ 0x06, 0xbf83 },
+		{ 0x06, 0x50ef },
+		{ 0x06, 0x46dc },
+		{ 0x06, 0x19dd },
+		{ 0x06, 0xd001 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x0a02 },
+		{ 0x06, 0x8226 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x60e1 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0x58fd },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x60e5 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0xfc04 },
+		{ 0x06, 0xf9fa },
+		{ 0x06, 0xfbc6 },
+		{ 0x06, 0xbff8 },
+		{ 0x06, 0x40be },
+		{ 0x06, 0x8350 },
+		{ 0x06, 0xa001 },
+		{ 0x06, 0x0107 },
+		{ 0x06, 0x1b89 },
+		{ 0x06, 0xcfd2 },
+		{ 0x06, 0x08eb },
+		{ 0x06, 0xdb19 },
+		{ 0x06, 0xb2fb },
+		{ 0x06, 0xfffe },
+		{ 0x06, 0xfd04 },
+		{ 0x06, 0xf8e0 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x4968 },
+		{ 0x06, 0x08e4 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x4958 },
+		{ 0x06, 0xf7e4 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x49fc },
+		{ 0x06, 0x044d },
+		{ 0x06, 0x2000 },
+		{ 0x06, 0x024e },
+		{ 0x06, 0x2200 },
+		{ 0x06, 0x024d },
+		{ 0x06, 0xdfff },
+		{ 0x06, 0x014e },
+		{ 0x06, 0xddff },
+		{ 0x06, 0x0100 },
+		{ 0x05, 0x83d8 },
+		{ 0x06, 0x8000 },
+		{ 0x03, 0xdc00 },
+		{ 0x05, 0xfff6 },
+		{ 0x06, 0x00fc },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0d, 0xf880 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
+
+	if (rtl8168d_efuse_read(ioaddr, 0x01) == 0xb1) {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x669a },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x669a },
+
+			{ 0x1f, 0x0002 }
+		};
+		int val;
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+		val = mdio_read(ioaddr, 0x0d);
+		if ((val & 0x00ff) != 0x006c) {
+			u32 set[] = {
+				0x0065, 0x0066, 0x0067, 0x0068,
+				0x0069, 0x006a, 0x006b, 0x006c
+			};
+			int i;
+
+			mdio_write(ioaddr, 0x1f, 0x0002);
+
+			val &= 0xff00;
+			for (i = 0; i < ARRAY_SIZE(set); i++)
+				mdio_write(ioaddr, 0x0d, val | set[i]);
+		}
+	} else {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x2642 },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x2642 }
+		};
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+	}
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_plus_minus(ioaddr, 0x02, 0x0100, 0x0600);
+	mdio_plus_minus(ioaddr, 0x03, 0x0000, 0xe000);
+
+	mdio_write(ioaddr, 0x1f, 0x0001);
+	mdio_write(ioaddr, 0x17, 0x0cc0);
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_patch(ioaddr, 0x0f, 0x0017);
+
+	rtl_phy_write(ioaddr, phy_reg_init_1, ARRAY_SIZE(phy_reg_init_1));
+}
+
+static void rtl8168d_3_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0002 },
+		{ 0x10, 0x0008 },
+		{ 0x0d, 0x006c },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0d, 0xf880 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x17, 0x0cc0 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x0b, 0xa4d8 },
+		{ 0x09, 0x281c },
+		{ 0x07, 0x2883 },
+		{ 0x0a, 0x6b35 },
+		{ 0x1d, 0x3da4 },
+		{ 0x1c, 0xeffd },
+		{ 0x14, 0x7f52 },
+		{ 0x18, 0x7fc6 },
+		{ 0x08, 0x0601 },
+		{ 0x06, 0x4063 },
+		{ 0x10, 0xf074 },
+		{ 0x1f, 0x0003 },
+		{ 0x13, 0x0789 },
+		{ 0x12, 0xf4bd },
+		{ 0x1a, 0x04fd },
+		{ 0x14, 0x84b0 },
+		{ 0x1f, 0x0000 },
+		{ 0x00, 0x9200 },
+
+		{ 0x1f, 0x0005 },
+		{ 0x01, 0x0340 },
+		{ 0x1f, 0x0001 },
+		{ 0x04, 0x4000 },
+		{ 0x03, 0x1d21 },
+		{ 0x02, 0x0c32 },
+		{ 0x01, 0x0200 },
+		{ 0x00, 0x5554 },
+		{ 0x04, 0x4800 },
+		{ 0x04, 0x4000 },
+		{ 0x04, 0xf000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x101a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0xf000 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0007 },
+		{ 0x1e, 0x0023 },
+		{ 0x16, 0x0000 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8102e_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0003 },
+		{ 0x08, 0x441d },
+		{ 0x01, 0x9100 },
+		{ 0x1f, 0x0000 }
+	};
+
+	mdio_write(ioaddr, 0x1f, 0x0000);
+	mdio_patch(ioaddr, 0x11, 1 << 12);
+	mdio_patch(ioaddr, 0x19, 1 << 13);
+	mdio_patch(ioaddr, 0x10, 1 << 15);
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl_hw_phy_config(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	rtl8169_print_mac_version(tp);
+
+	switch (tp->mac_version) {
+	case RTL_GIGA_MAC_VER_01:
+		break;
+	case RTL_GIGA_MAC_VER_02:
+	case RTL_GIGA_MAC_VER_03:
+		rtl8169s_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_04:
+		rtl8169sb_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_05:
+		rtl8169scd_hw_phy_config(tp, ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_06:
+		rtl8169sce_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_07:
+	case RTL_GIGA_MAC_VER_08:
+	case RTL_GIGA_MAC_VER_09:
+		rtl8102e_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_11:
+		rtl8168bb_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_12:
+		rtl8168bef_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_17:
+		rtl8168bef_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_18:
+		rtl8168cp_1_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_19:
+		rtl8168c_1_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_20:
+		rtl8168c_2_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_21:
+		rtl8168c_3_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_22:
+		rtl8168c_4_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_23:
+	case RTL_GIGA_MAC_VER_24:
+		rtl8168cp_2_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_25:
+		rtl8168d_1_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_26:
+		rtl8168d_2_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_27:
+		rtl8168d_3_hw_phy_config(ioaddr);
+		break;
+
+	default:
+		break;
+	}
+}
+
+static void rtl8169_phy_timer(unsigned long __opaque)
+{
+	struct net_device *dev = (struct net_device *)__opaque;
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct timer_list *timer = &tp->timer;
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long timeout = RTL8169_PHY_TIMEOUT;
+
+	assert(tp->mac_version > RTL_GIGA_MAC_VER_01);
+
+	if (!(tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL))
+		return;
+
+	if (!tp->ecdev)
+		spin_lock_irq(&tp->lock);
+
+	if (tp->phy_reset_pending(ioaddr)) {
+		/*
+		 * A busy loop could burn quite a few cycles on nowadays CPU.
+		 * Let's delay the execution of the timer for a few ticks.
+		 */
+		timeout = HZ/10;
+		goto out_mod_timer;
+	}
+
+	if (tp->link_ok(ioaddr))
+		goto out_unlock;
+
+	netif_warn(tp, link, dev, "PHY reset until link up\n");
+
+	tp->phy_reset_enable(ioaddr);
+
+out_mod_timer:
+	if (!tp->ecdev)
+		mod_timer(timer, jiffies + timeout);
+out_unlock:
+	if (!tp->ecdev)
+		spin_unlock_irq(&tp->lock);
+}
+
+static inline void rtl8169_delete_timer(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct timer_list *timer = &tp->timer;
+
+	if (tp->ecdev || tp->mac_version <= RTL_GIGA_MAC_VER_01)
+		return;
+
+	del_timer_sync(timer);
+}
+
+static inline void rtl8169_request_timer(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct timer_list *timer = &tp->timer;
+
+	if (tp->ecdev || tp->mac_version <= RTL_GIGA_MAC_VER_01)
+		return;
+
+	mod_timer(timer, jiffies + RTL8169_PHY_TIMEOUT);
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void rtl8169_netpoll(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+
+	disable_irq(pdev->irq);
+	rtl8169_interrupt(pdev->irq, dev);
+	enable_irq(pdev->irq);
+}
+#endif
+
+static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev,
+				  void __iomem *ioaddr)
+{
+	iounmap(ioaddr);
+	pci_release_regions(pdev);
+	pci_clear_mwi(pdev);
+	pci_disable_device(pdev);
+	free_netdev(dev);
+}
+
+static void rtl8169_phy_reset(struct net_device *dev,
+			      struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int i;
+
+	tp->phy_reset_enable(ioaddr);
+	for (i = 0; i < 100; i++) {
+		if (!tp->phy_reset_pending(ioaddr))
+			return;
+		msleep(1);
+	}
+	netif_err(tp, link, dev, "PHY reset failed\n");
+}
+
+static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	rtl_hw_phy_config(dev);
+
+	if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
+		dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
+		RTL_W8(0x82, 0x01);
+	}
+
+	pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);
+
+	if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
+		pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
+
+	if (tp->mac_version == RTL_GIGA_MAC_VER_02) {
+		dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
+		RTL_W8(0x82, 0x01);
+		dprintk("Set PHY Reg 0x0bh = 0x00h\n");
+		mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0
+	}
+
+	rtl8169_phy_reset(dev, tp);
+
+	/*
+	 * rtl8169_set_speed_xmii takes good care of the Fast Ethernet
+	 * only 8101. Don't panic.
+	 */
+	rtl8169_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL);
+
+	if (RTL_R8(PHYstatus) & TBI_Enable)
+		netif_info(tp, link, dev, "TBI auto-negotiating\n");
+}
+
+static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	u32 high;
+	u32 low;
+
+	low  = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24);
+	high = addr[4] | (addr[5] << 8);
+
+	spin_lock_irq(&tp->lock);
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	RTL_W32(MAC4, high);
+	RTL_R32(MAC4);
+
+	RTL_W32(MAC0, low);
+	RTL_R32(MAC0);
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	spin_unlock_irq(&tp->lock);
+}
+
+static int rtl_set_mac_address(struct net_device *dev, void *p)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
+
+	rtl_rar_set(tp, dev->dev_addr);
+
+	return 0;
+}
+
+static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct mii_ioctl_data *data = if_mii(ifr);
+
+	return netif_running(dev) ? tp->do_ioctl(tp, data, cmd) : -ENODEV;
+}
+
+static int rtl_xmii_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = 32; /* Internal PHY */
+		return 0;
+
+	case SIOCGMIIREG:
+		data->val_out = mdio_read(tp->mmio_addr, data->reg_num & 0x1f);
+		return 0;
+
+	case SIOCSMIIREG:
+		mdio_write(tp->mmio_addr, data->reg_num & 0x1f, data->val_in);
+		return 0;
+	}
+	return -EOPNOTSUPP;
+}
+
+static int rtl_tbi_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd)
+{
+	return -EOPNOTSUPP;
+}
+
+static const struct rtl_cfg_info {
+	void (*hw_start)(struct net_device *);
+	unsigned int region;
+	unsigned int align;
+	u16 intr_event;
+	u16 napi_event;
+	unsigned features;
+	u8 default_ver;
+} rtl_cfg_infos [] = {
+	[RTL_CFG_0] = {
+		.hw_start	= rtl_hw_start_8169,
+		.region		= 1,
+		.align		= 0,
+		.intr_event	= SYSErr | LinkChg | RxOverflow |
+				  RxFIFOOver | TxErr | TxOK | RxOK | RxErr,
+		.napi_event	= RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow,
+		.features	= RTL_FEATURE_GMII,
+		.default_ver	= RTL_GIGA_MAC_VER_01,
+	},
+	[RTL_CFG_1] = {
+		.hw_start	= rtl_hw_start_8168,
+		.region		= 2,
+		.align		= 8,
+		.intr_event	= SYSErr | LinkChg | RxOverflow |
+				  TxErr | TxOK | RxOK | RxErr,
+		.napi_event	= TxErr | TxOK | RxOK | RxOverflow,
+		.features	= RTL_FEATURE_GMII | RTL_FEATURE_MSI,
+		.default_ver	= RTL_GIGA_MAC_VER_11,
+	},
+	[RTL_CFG_2] = {
+		.hw_start	= rtl_hw_start_8101,
+		.region		= 2,
+		.align		= 8,
+		.intr_event	= SYSErr | LinkChg | RxOverflow | PCSTimeout |
+				  RxFIFOOver | TxErr | TxOK | RxOK | RxErr,
+		.napi_event	= RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow,
+		.features	= RTL_FEATURE_MSI,
+		.default_ver	= RTL_GIGA_MAC_VER_13,
+	}
+};
+
+/* Cfg9346_Unlock assumed. */
+static unsigned rtl_try_msi(struct pci_dev *pdev, void __iomem *ioaddr,
+			    const struct rtl_cfg_info *cfg)
+{
+	unsigned msi = 0;
+	u8 cfg2;
+
+	cfg2 = RTL_R8(Config2) & ~MSIEnable;
+	if (cfg->features & RTL_FEATURE_MSI) {
+		if (pci_enable_msi(pdev)) {
+			dev_info(&pdev->dev, "no MSI. Back to INTx.\n");
+		} else {
+			cfg2 |= MSIEnable;
+			msi = RTL_FEATURE_MSI;
+		}
+	}
+	RTL_W8(Config2, cfg2);
+	return msi;
+}
+
+static void rtl_disable_msi(struct pci_dev *pdev, struct rtl8169_private *tp)
+{
+	if (tp->features & RTL_FEATURE_MSI) {
+		pci_disable_msi(pdev);
+		tp->features &= ~RTL_FEATURE_MSI;
+	}
+}
+
+static const struct net_device_ops rtl8169_netdev_ops = {
+	.ndo_open		= rtl8169_open,
+	.ndo_stop		= rtl8169_close,
+	.ndo_get_stats		= rtl8169_get_stats,
+	.ndo_start_xmit		= rtl8169_start_xmit,
+	.ndo_tx_timeout		= rtl8169_tx_timeout,
+	.ndo_validate_addr	= eth_validate_addr,
+	.ndo_change_mtu		= rtl8169_change_mtu,
+	.ndo_set_mac_address	= rtl_set_mac_address,
+	.ndo_do_ioctl		= rtl8169_ioctl,
+	.ndo_set_multicast_list	= rtl_set_rx_mode,
+#ifdef CONFIG_R8169_VLAN
+	.ndo_vlan_rx_register	= rtl8169_vlan_rx_register,
+#endif
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= rtl8169_netpoll,
+#endif
+
+};
+
+static int __devinit
+rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+	const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data;
+	const unsigned int region = cfg->region;
+	struct rtl8169_private *tp;
+	struct mii_if_info *mii;
+	struct net_device *dev;
+	void __iomem *ioaddr;
+	unsigned int i;
+	int rc;
+
+	if (netif_msg_drv(&debug)) {
+		printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n",
+		       MODULENAME, RTL8169_VERSION);
+	}
+
+	dev = alloc_etherdev(sizeof (*tp));
+	if (!dev) {
+		if (netif_msg_drv(&debug))
+			dev_err(&pdev->dev, "unable to alloc new ethernet\n");
+		rc = -ENOMEM;
+		goto out;
+	}
+
+	SET_NETDEV_DEV(dev, &pdev->dev);
+	dev->netdev_ops = &rtl8169_netdev_ops;
+	tp = netdev_priv(dev);
+	tp->dev = dev;
+	tp->pci_dev = pdev;
+	tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);
+
+	mii = &tp->mii;
+	mii->dev = dev;
+	mii->mdio_read = rtl_mdio_read;
+	mii->mdio_write = rtl_mdio_write;
+	mii->phy_id_mask = 0x1f;
+	mii->reg_num_mask = 0x1f;
+	mii->supports_gmii = !!(cfg->features & RTL_FEATURE_GMII);
+
+	/* enable device (incl. PCI PM wakeup and hotplug setup) */
+	rc = pci_enable_device(pdev);
+	if (rc < 0) {
+		netif_err(tp, probe, dev, "enable failure\n");
+		goto err_out_free_dev_1;
+	}
+
+	if (pci_set_mwi(pdev) < 0)
+		netif_info(tp, probe, dev, "Mem-Wr-Inval unavailable\n");
+
+	/* make sure PCI base addr 1 is MMIO */
+	if (!(pci_resource_flags(pdev, region) & IORESOURCE_MEM)) {
+		netif_err(tp, probe, dev,
+			  "region #%d not an MMIO resource, aborting\n",
+			  region);
+		rc = -ENODEV;
+		goto err_out_mwi_2;
+	}
+
+	/* check for weird/broken PCI region reporting */
+	if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) {
+		netif_err(tp, probe, dev,
+			  "Invalid PCI region size(s), aborting\n");
+		rc = -ENODEV;
+		goto err_out_mwi_2;
+	}
+
+	rc = pci_request_regions(pdev, MODULENAME);
+	if (rc < 0) {
+		netif_err(tp, probe, dev, "could not request regions\n");
+		goto err_out_mwi_2;
+	}
+
+	tp->cp_cmd = PCIMulRW | RxChkSum;
+
+	if ((sizeof(dma_addr_t) > 4) &&
+	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && use_dac) {
+		tp->cp_cmd |= PCIDAC;
+		dev->features |= NETIF_F_HIGHDMA;
+	} else {
+		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+		if (rc < 0) {
+			netif_err(tp, probe, dev, "DMA configuration failed\n");
+			goto err_out_free_res_3;
+		}
+	}
+
+	/* ioremap MMIO region */
+	ioaddr = ioremap(pci_resource_start(pdev, region), R8169_REGS_SIZE);
+	if (!ioaddr) {
+		netif_err(tp, probe, dev, "cannot remap MMIO, aborting\n");
+		rc = -EIO;
+		goto err_out_free_res_3;
+	}
+
+	tp->pcie_cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
+	if (!tp->pcie_cap)
+		netif_info(tp, probe, dev, "no PCI Express capability\n");
+
+	RTL_W16(IntrMask, 0x0000);
+
+	/* Soft reset the chip. */
+	RTL_W8(ChipCmd, CmdReset);
+
+	/* Check that the chip has finished the reset. */
+	for (i = 0; i < 100; i++) {
+		if ((RTL_R8(ChipCmd) & CmdReset) == 0)
+			break;
+		msleep_interruptible(1);
+	}
+
+	RTL_W16(IntrStatus, 0xffff);
+
+	pci_set_master(pdev);
+
+	/* Identify chip attached to board */
+	rtl8169_get_mac_version(tp, ioaddr);
+
+	/* Use appropriate default if unknown */
+	if (tp->mac_version == RTL_GIGA_MAC_NONE) {
+		netif_notice(tp, probe, dev,
+			     "unknown MAC, using family default\n");
+		tp->mac_version = cfg->default_ver;
+	}
+
+	rtl8169_print_mac_version(tp);
+
+	for (i = 0; i < ARRAY_SIZE(rtl_chip_info); i++) {
+		if (tp->mac_version == rtl_chip_info[i].mac_version)
+			break;
+	}
+	if (i == ARRAY_SIZE(rtl_chip_info)) {
+		dev_err(&pdev->dev,
+			"driver bug, MAC version not found in rtl_chip_info\n");
+		goto err_out_msi_4;
+	}
+	tp->chipset = i;
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+	RTL_W8(Config1, RTL_R8(Config1) | PMEnable);
+	RTL_W8(Config5, RTL_R8(Config5) & PMEStatus);
+	if ((RTL_R8(Config3) & (LinkUp | MagicPacket)) != 0)
+		tp->features |= RTL_FEATURE_WOL;
+	if ((RTL_R8(Config5) & (UWF | BWF | MWF)) != 0)
+		tp->features |= RTL_FEATURE_WOL;
+	tp->features |= rtl_try_msi(pdev, ioaddr, cfg);
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	if ((tp->mac_version <= RTL_GIGA_MAC_VER_06) &&
+	    (RTL_R8(PHYstatus) & TBI_Enable)) {
+		tp->set_speed = rtl8169_set_speed_tbi;
+		tp->get_settings = rtl8169_gset_tbi;
+		tp->phy_reset_enable = rtl8169_tbi_reset_enable;
+		tp->phy_reset_pending = rtl8169_tbi_reset_pending;
+		tp->link_ok = rtl8169_tbi_link_ok;
+		tp->do_ioctl = rtl_tbi_ioctl;
+
+		tp->phy_1000_ctrl_reg = ADVERTISE_1000FULL; /* Implied by TBI */
+	} else {
+		tp->set_speed = rtl8169_set_speed_xmii;
+		tp->get_settings = rtl8169_gset_xmii;
+		tp->phy_reset_enable = rtl8169_xmii_reset_enable;
+		tp->phy_reset_pending = rtl8169_xmii_reset_pending;
+		tp->link_ok = rtl8169_xmii_link_ok;
+		tp->do_ioctl = rtl_xmii_ioctl;
+	}
+
+	spin_lock_init(&tp->lock);
+
+	tp->mmio_addr = ioaddr;
+
+	/* Get MAC address */
+	for (i = 0; i < MAC_ADDR_LEN; i++)
+		dev->dev_addr[i] = RTL_R8(MAC0 + i);
+	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
+
+	SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops);
+	dev->watchdog_timeo = RTL8169_TX_TIMEOUT;
+	dev->irq = pdev->irq;
+	dev->base_addr = (unsigned long) ioaddr;
+
+	netif_napi_add(dev, &tp->napi, rtl8169_poll, R8169_NAPI_WEIGHT);
+
+#ifdef CONFIG_R8169_VLAN
+	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
+#endif
+
+	tp->intr_mask = 0xffff;
+	tp->align = cfg->align;
+	tp->hw_start = cfg->hw_start;
+	tp->intr_event = cfg->intr_event;
+	tp->napi_event = cfg->napi_event;
+
+	init_timer(&tp->timer);
+	tp->timer.data = (unsigned long) dev;
+	tp->timer.function = rtl8169_phy_timer;
+
+	// offer device to EtherCAT master module
+	tp->ecdev = ecdev_offer(dev, ec_poll, THIS_MODULE);
+	tp->ec_watchdog_jiffies = jiffies;
+
+	if (!tp->ecdev) {
+		rc = register_netdev(dev);
+		if (rc < 0)
+			goto err_out_msi_4;
+	}
+
+	pci_set_drvdata(pdev, dev);
+
+	netif_info(tp, probe, dev, "%s at 0x%lx, %pM, XID %08x IRQ %d\n",
+		   rtl_chip_info[tp->chipset].name,
+		   dev->base_addr, dev->dev_addr,
+		   (u32)(RTL_R32(TxConfig) & 0x9cf0f8ff), dev->irq);
+
+	rtl8169_init_phy(dev, tp);
+
+	/*
+	 * Pretend we are using VLANs; This bypasses a nasty bug where
+	 * Interrupts stop flowing on high load on 8110SCd controllers.
+	 */
+	if (tp->mac_version == RTL_GIGA_MAC_VER_05)
+		RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | RxVlan);
+
+	device_set_wakeup_enable(&pdev->dev, tp->features & RTL_FEATURE_WOL);
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_set_active(&pdev->dev);
+		pm_runtime_enable(&pdev->dev);
+	}
+	pm_runtime_idle(&pdev->dev);
+
+	if (tp->ecdev && ecdev_open(tp->ecdev)) {
+		ecdev_withdraw(tp->ecdev);
+		goto err_out_msi_4;
+	}
+
+out:
+	return rc;
+
+err_out_msi_4:
+	rtl_disable_msi(pdev, tp);
+	iounmap(ioaddr);
+err_out_free_res_3:
+	pci_release_regions(pdev);
+err_out_mwi_2:
+	pci_clear_mwi(pdev);
+	pci_disable_device(pdev);
+err_out_free_dev_1:
+	free_netdev(dev);
+	goto out;
+}
+
+static void __devexit rtl8169_remove_one(struct pci_dev *pdev)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	flush_scheduled_work();
+
+	if (tp->ecdev) {
+		ecdev_close(tp->ecdev);
+		ecdev_withdraw(tp->ecdev);
+	} else {
+		unregister_netdev(dev);
+	}
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_disable(&pdev->dev);
+		pm_runtime_set_suspended(&pdev->dev);
+	}
+	pm_runtime_put_noidle(&pdev->dev);
+
+	/* restore original MAC address */
+	rtl_rar_set(tp, dev->perm_addr);
+
+	rtl_disable_msi(pdev, tp);
+	rtl8169_release_board(pdev, dev, tp->mmio_addr);
+	pci_set_drvdata(pdev, NULL);
+}
+
+static void rtl8169_set_rxbufsize(struct rtl8169_private *tp,
+				  unsigned int mtu)
+{
+	unsigned int max_frame = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
+
+	if (max_frame != 16383)
+		printk(KERN_WARNING PFX "WARNING! Changing of MTU on this "
+			"NIC may lead to frame reception errors!\n");
+
+	tp->rx_buf_sz = (max_frame > RX_BUF_SIZE) ? max_frame : RX_BUF_SIZE;
+}
+
+static int rtl8169_open(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+	int retval = -ENOMEM;
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	/*
+	 * Note that we use a magic value here, its wierd I know
+	 * its done because, some subset of rtl8169 hardware suffers from
+	 * a problem in which frames received that are longer than
+	 * the size set in RxMaxSize register return garbage sizes
+	 * when received.  To avoid this we need to turn off filtering,
+	 * which is done by setting a value of 16383 in the RxMaxSize register
+	 * and allocating 16k frames to handle the largest possible rx value
+	 * thats what the magic math below does.
+	 */
+	rtl8169_set_rxbufsize(tp, 16383 - VLAN_ETH_HLEN - ETH_FCS_LEN);
+
+	/*
+	 * Rx and Tx desscriptors needs 256 bytes alignment.
+	 * pci_alloc_consistent provides more.
+	 */
+	tp->TxDescArray = pci_alloc_consistent(pdev, R8169_TX_RING_BYTES,
+					       &tp->TxPhyAddr);
+	if (!tp->TxDescArray)
+		goto err_pm_runtime_put;
+
+	tp->RxDescArray = pci_alloc_consistent(pdev, R8169_RX_RING_BYTES,
+					       &tp->RxPhyAddr);
+	if (!tp->RxDescArray)
+		goto err_free_tx_0;
+
+	retval = rtl8169_init_ring(dev);
+	if (retval < 0)
+		goto err_free_rx_1;
+
+	INIT_DELAYED_WORK(&tp->task, NULL);
+
+	smp_mb();
+
+	if (!tp->ecdev) {
+		retval = request_irq(dev->irq, rtl8169_interrupt,
+				(tp->features & RTL_FEATURE_MSI) ? 0 : IRQF_SHARED,
+				dev->name, dev);
+		if (retval < 0)
+			goto err_release_ring_2;
+
+		napi_enable(&tp->napi);
+	}
+
+	rtl_hw_start(dev);
+
+	rtl8169_request_timer(dev);
+
+	tp->saved_wolopts = 0;
+	pm_runtime_put_noidle(&pdev->dev);
+
+	rtl8169_check_link_status(dev, tp, tp->mmio_addr);
+out:
+	return retval;
+
+err_release_ring_2:
+	rtl8169_rx_clear(tp);
+err_free_rx_1:
+	pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
+			    tp->RxPhyAddr);
+	tp->RxDescArray = NULL;
+err_free_tx_0:
+	pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
+			    tp->TxPhyAddr);
+	tp->TxDescArray = NULL;
+err_pm_runtime_put:
+	pm_runtime_put_noidle(&pdev->dev);
+	goto out;
+}
+
+static void rtl8169_hw_reset(void __iomem *ioaddr)
+{
+	/* Disable interrupts */
+	rtl8169_irq_mask_and_ack(ioaddr);
+
+	/* Reset the chipset */
+	RTL_W8(ChipCmd, CmdReset);
+
+	/* PCI commit */
+	RTL_R8(ChipCmd);
+}
+
+static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	u32 cfg = rtl8169_rx_config;
+
+	cfg |= (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
+	RTL_W32(RxConfig, cfg);
+
+	/* Set DMA burst size and Interframe Gap Time */
+	RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
+		(InterFrameGap << TxInterFrameGapShift));
+}
+
+static void rtl_hw_start(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int i;
+
+	/* Soft reset the chip. */
+	RTL_W8(ChipCmd, CmdReset);
+
+	/* Check that the chip has finished the reset. */
+	for (i = 0; i < 100; i++) {
+		if ((RTL_R8(ChipCmd) & CmdReset) == 0)
+			break;
+		msleep_interruptible(1);
+	}
+
+	tp->hw_start(dev);
+
+	if (!tp->ecdev)
+		netif_start_queue(dev);
+}
+
+
+static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp,
+					 void __iomem *ioaddr)
+{
+	/*
+	 * Magic spell: some iop3xx ARM board needs the TxDescAddrHigh
+	 * register to be written before TxDescAddrLow to work.
+	 * Switching from MMIO to I/O access fixes the issue as well.
+	 */
+	RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32);
+	RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32));
+	RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32);
+	RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32));
+}
+
+static u16 rtl_rw_cpluscmd(void __iomem *ioaddr)
+{
+	u16 cmd;
+
+	cmd = RTL_R16(CPlusCmd);
+	RTL_W16(CPlusCmd, cmd);
+	return cmd;
+}
+
+static void rtl_set_rx_max_size(void __iomem *ioaddr, unsigned int rx_buf_sz)
+{
+	/* Low hurts. Let's disable the filtering. */
+	RTL_W16(RxMaxSize, rx_buf_sz + 1);
+}
+
+static void rtl8169_set_magic_reg(void __iomem *ioaddr, unsigned mac_version)
+{
+	static const struct {
+		u32 mac_version;
+		u32 clk;
+		u32 val;
+	} cfg2_info [] = {
+		{ RTL_GIGA_MAC_VER_05, PCI_Clock_33MHz, 0x000fff00 }, // 8110SCd
+		{ RTL_GIGA_MAC_VER_05, PCI_Clock_66MHz, 0x000fffff },
+		{ RTL_GIGA_MAC_VER_06, PCI_Clock_33MHz, 0x00ffff00 }, // 8110SCe
+		{ RTL_GIGA_MAC_VER_06, PCI_Clock_66MHz, 0x00ffffff }
+	}, *p = cfg2_info;
+	unsigned int i;
+	u32 clk;
+
+	clk = RTL_R8(Config2) & PCI_Clock_66MHz;
+	for (i = 0; i < ARRAY_SIZE(cfg2_info); i++, p++) {
+		if ((p->mac_version == mac_version) && (p->clk == clk)) {
+			RTL_W32(0x7c, p->val);
+			break;
+		}
+	}
+}
+
+static void rtl_hw_start_8169(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct pci_dev *pdev = tp->pci_dev;
+
+	if (tp->mac_version == RTL_GIGA_MAC_VER_05) {
+		RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | PCIMulRW);
+		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_01) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_04))
+		RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_set_rx_max_size(ioaddr, tp->rx_buf_sz);
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_01) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_04))
+		rtl_set_rx_tx_config_registers(tp);
+
+	tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03)) {
+		dprintk("Set MAC Reg C+CR Offset 0xE0. "
+			"Bit-3 and bit-14 MUST be 1\n");
+		tp->cp_cmd |= (1 << 14);
+	}
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+
+	rtl8169_set_magic_reg(ioaddr, tp->mac_version);
+
+	/*
+	 * Undocumented corner. Supposedly:
+	 * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets
+	 */
+	RTL_W16(IntrMitigate, 0x0000);
+
+	rtl_set_rx_tx_desc_registers(tp, ioaddr);
+
+	if ((tp->mac_version != RTL_GIGA_MAC_VER_01) &&
+	    (tp->mac_version != RTL_GIGA_MAC_VER_02) &&
+	    (tp->mac_version != RTL_GIGA_MAC_VER_03) &&
+	    (tp->mac_version != RTL_GIGA_MAC_VER_04)) {
+		RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+		rtl_set_rx_tx_config_registers(tp);
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	/* Initially a 10 us delay. Turned it into a PCI commit. - FR */
+	RTL_R8(IntrMask);
+
+	RTL_W32(RxMissed, 0);
+
+	rtl_set_rx_mode(dev);
+
+	/* no early-rx interrupts */
+	RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
+
+	/* Enable all known interrupts by setting the interrupt mask. */
+	if (!tp->ecdev)
+		RTL_W16(IntrMask, tp->intr_event);
+}
+
+static void rtl_tx_performance_tweak(struct pci_dev *pdev, u16 force)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int cap = tp->pcie_cap;
+
+	if (cap) {
+		u16 ctl;
+
+		pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl);
+		ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | force;
+		pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl);
+	}
+}
+
+static void rtl_csi_access_enable(void __iomem *ioaddr)
+{
+	u32 csi;
+
+	csi = rtl_csi_read(ioaddr, 0x070c) & 0x00ffffff;
+	rtl_csi_write(ioaddr, 0x070c, csi | 0x27000000);
+}
+
+struct ephy_info {
+	unsigned int offset;
+	u16 mask;
+	u16 bits;
+};
+
+static void rtl_ephy_init(void __iomem *ioaddr, const struct ephy_info *e, int len)
+{
+	u16 w;
+
+	while (len-- > 0) {
+		w = (rtl_ephy_read(ioaddr, e->offset) & ~e->mask) | e->bits;
+		rtl_ephy_write(ioaddr, e->offset, w);
+		e++;
+	}
+}
+
+static void rtl_disable_clock_request(struct pci_dev *pdev)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int cap = tp->pcie_cap;
+
+	if (cap) {
+		u16 ctl;
+
+		pci_read_config_word(pdev, cap + PCI_EXP_LNKCTL, &ctl);
+		ctl &= ~PCI_EXP_LNKCTL_CLKREQ_EN;
+		pci_write_config_word(pdev, cap + PCI_EXP_LNKCTL, ctl);
+	}
+}
+
+#define R8168_CPCMD_QUIRK_MASK (\
+	EnableBist | \
+	Mac_dbgo_oe | \
+	Force_half_dup | \
+	Force_rxflow_en | \
+	Force_txflow_en | \
+	Cxpl_dbg_sel | \
+	ASF | \
+	PktCntrDisable | \
+	Mac_dbgo_sel)
+
+static void rtl_hw_start_8168bb(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+
+	rtl_tx_performance_tweak(pdev,
+		(0x5 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN);
+}
+
+static void rtl_hw_start_8168bef(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_hw_start_8168bb(ioaddr, pdev);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0));
+}
+
+static void __rtl_hw_start_8168cp(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	RTL_W8(Config1, RTL_R8(Config1) | Speed_down);
+
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	rtl_disable_clock_request(pdev);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168cp_1(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8168cp[] = {
+		{ 0x01, 0,	0x0001 },
+		{ 0x02, 0x0800,	0x1000 },
+		{ 0x03, 0,	0x0042 },
+		{ 0x06, 0x0080,	0x0000 },
+		{ 0x07, 0,	0x2000 }
+	};
+
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_ephy_init(ioaddr, e_info_8168cp, ARRAY_SIZE(e_info_8168cp));
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168cp_2(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168cp_3(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	/* Magic. */
+	RTL_W8(DBG_REG, 0x20);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168c_1(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8168c_1[] = {
+		{ 0x02, 0x0800,	0x1000 },
+		{ 0x03, 0,	0x0002 },
+		{ 0x06, 0x0080,	0x0000 }
+	};
+
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);
+
+	rtl_ephy_init(ioaddr, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1));
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168c_2(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8168c_2[] = {
+		{ 0x01, 0,	0x0001 },
+		{ 0x03, 0x0400,	0x0220 }
+	};
+
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_ephy_init(ioaddr, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2));
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168c_3(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_hw_start_8168c_2(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168c_4(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168d(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_disable_clock_request(pdev);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct pci_dev *pdev = tp->pci_dev;
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_set_rx_max_size(ioaddr, tp->rx_buf_sz);
+
+	tp->cp_cmd |= RTL_R16(CPlusCmd) | PktCntrDisable | INTT_1;
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+
+	RTL_W16(IntrMitigate, 0x5151);
+
+	/* Work around for RxFIFO overflow. */
+	if (tp->mac_version == RTL_GIGA_MAC_VER_11) {
+		tp->intr_event |= RxFIFOOver | PCSTimeout;
+		tp->intr_event &= ~RxOverflow;
+	}
+
+	rtl_set_rx_tx_desc_registers(tp, ioaddr);
+
+	rtl_set_rx_mode(dev);
+
+	RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
+		(InterFrameGap << TxInterFrameGapShift));
+
+	RTL_R8(IntrMask);
+
+	switch (tp->mac_version) {
+	case RTL_GIGA_MAC_VER_11:
+		rtl_hw_start_8168bb(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_12:
+	case RTL_GIGA_MAC_VER_17:
+		rtl_hw_start_8168bef(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_18:
+		rtl_hw_start_8168cp_1(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_19:
+		rtl_hw_start_8168c_1(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_20:
+		rtl_hw_start_8168c_2(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_21:
+		rtl_hw_start_8168c_3(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_22:
+		rtl_hw_start_8168c_4(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_23:
+		rtl_hw_start_8168cp_2(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_24:
+		rtl_hw_start_8168cp_3(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_25:
+	case RTL_GIGA_MAC_VER_26:
+	case RTL_GIGA_MAC_VER_27:
+		rtl_hw_start_8168d(ioaddr, pdev);
+	break;
+
+	default:
+		printk(KERN_ERR PFX "%s: unknown chipset (mac_version = %d).\n",
+			dev->name, tp->mac_version);
+	break;
+	}
+
+	RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
+
+	if (!tp->ecdev)
+		RTL_W16(IntrMask, tp->intr_event);
+}
+
+#define R810X_CPCMD_QUIRK_MASK (\
+	EnableBist | \
+	Mac_dbgo_oe | \
+	Force_half_dup | \
+	Force_rxflow_en | \
+	Force_txflow_en | \
+	Cxpl_dbg_sel | \
+	ASF | \
+	PktCntrDisable | \
+	PCIDAC | \
+	PCIMulRW)
+
+static void rtl_hw_start_8102e_1(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8102e_1[] = {
+		{ 0x01,	0, 0x6e65 },
+		{ 0x02,	0, 0x091f },
+		{ 0x03,	0, 0xc2f9 },
+		{ 0x06,	0, 0xafb5 },
+		{ 0x07,	0, 0x0e00 },
+		{ 0x19,	0, 0xec80 },
+		{ 0x01,	0, 0x2e65 },
+		{ 0x01,	0, 0x6e65 }
+	};
+	u8 cfg1;
+
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(DBG_REG, FIX_NAK_1);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W8(Config1,
+	       LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable);
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	cfg1 = RTL_R8(Config1);
+	if ((cfg1 & LEDS0) && (cfg1 & LEDS1))
+		RTL_W8(Config1, cfg1 & ~LEDS0);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK);
+
+	rtl_ephy_init(ioaddr, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1));
+}
+
+static void rtl_hw_start_8102e_2(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W8(Config1, MEMMAP | IOMAP | VPD | PMEnable);
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8102e_3(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_hw_start_8102e_2(ioaddr, pdev);
+
+	rtl_ephy_write(ioaddr, 0x03, 0xc2f9);
+}
+
+static void rtl_hw_start_8101(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct pci_dev *pdev = tp->pci_dev;
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_13) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_16)) {
+		int cap = tp->pcie_cap;
+
+		if (cap) {
+			pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL,
+					      PCI_EXP_DEVCTL_NOSNOOP_EN);
+		}
+	}
+
+	switch (tp->mac_version) {
+	case RTL_GIGA_MAC_VER_07:
+		rtl_hw_start_8102e_1(ioaddr, pdev);
+		break;
+
+	case RTL_GIGA_MAC_VER_08:
+		rtl_hw_start_8102e_3(ioaddr, pdev);
+		break;
+
+	case RTL_GIGA_MAC_VER_09:
+		rtl_hw_start_8102e_2(ioaddr, pdev);
+		break;
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_set_rx_max_size(ioaddr, tp->rx_buf_sz);
+
+	tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+
+	RTL_W16(IntrMitigate, 0x0000);
+
+	rtl_set_rx_tx_desc_registers(tp, ioaddr);
+
+	RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+	rtl_set_rx_tx_config_registers(tp);
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	RTL_R8(IntrMask);
+
+	rtl_set_rx_mode(dev);
+
+	RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+
+	RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xf000);
+
+	if (!tp->ecdev)
+		RTL_W16(IntrMask, tp->intr_event);
+}
+
+static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int ret = 0;
+
+	if (new_mtu < ETH_ZLEN || new_mtu > SafeMtu)
+		return -EINVAL;
+
+	dev->mtu = new_mtu;
+
+	if (!netif_running(dev))
+		goto out;
+
+	rtl8169_down(dev);
+
+	rtl8169_set_rxbufsize(tp, dev->mtu);
+
+	ret = rtl8169_init_ring(dev);
+	if (ret < 0)
+		goto out;
+
+	napi_enable(&tp->napi);
+
+	rtl_hw_start(dev);
+
+	rtl8169_request_timer(dev);
+
+out:
+	return ret;
+}
+
+static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
+{
+	desc->addr = cpu_to_le64(0x0badbadbadbadbadull);
+	desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
+}
+
+static void rtl8169_free_rx_skb(struct rtl8169_private *tp,
+				struct sk_buff **sk_buff, struct RxDesc *desc)
+{
+	struct pci_dev *pdev = tp->pci_dev;
+
+	pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz,
+			 PCI_DMA_FROMDEVICE);
+	dev_kfree_skb(*sk_buff);
+	*sk_buff = NULL;
+	rtl8169_make_unusable_by_asic(desc);
+}
+
+static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
+{
+	u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
+
+	desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz);
+}
+
+static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,
+				       u32 rx_buf_sz)
+{
+	desc->addr = cpu_to_le64(mapping);
+	wmb();
+	rtl8169_mark_to_asic(desc, rx_buf_sz);
+}
+
+static struct sk_buff *rtl8169_alloc_rx_skb(struct pci_dev *pdev,
+					    struct net_device *dev,
+					    struct RxDesc *desc, int rx_buf_sz,
+					    unsigned int align, gfp_t gfp)
+{
+	struct sk_buff *skb;
+	dma_addr_t mapping;
+	unsigned int pad;
+
+	pad = align ? align : NET_IP_ALIGN;
+
+	skb = __netdev_alloc_skb(dev, rx_buf_sz + pad, gfp);
+	if (!skb)
+		goto err_out;
+
+	skb_reserve(skb, align ? ((pad - 1) & (unsigned long)skb->data) : pad);
+
+	mapping = pci_map_single(pdev, skb->data, rx_buf_sz,
+				 PCI_DMA_FROMDEVICE);
+
+	rtl8169_map_to_asic(desc, mapping, rx_buf_sz);
+out:
+	return skb;
+
+err_out:
+	rtl8169_make_unusable_by_asic(desc);
+	goto out;
+}
+
+static void rtl8169_rx_clear(struct rtl8169_private *tp)
+{
+	unsigned int i;
+
+	for (i = 0; i < NUM_RX_DESC; i++) {
+		if (tp->Rx_skbuff[i]) {
+			rtl8169_free_rx_skb(tp, tp->Rx_skbuff + i,
+					    tp->RxDescArray + i);
+		}
+	}
+}
+
+static u32 rtl8169_rx_fill(struct rtl8169_private *tp, struct net_device *dev,
+			   u32 start, u32 end, gfp_t gfp)
+{
+	u32 cur;
+
+	for (cur = start; end - cur != 0; cur++) {
+		struct sk_buff *skb;
+		unsigned int i = cur % NUM_RX_DESC;
+
+		WARN_ON((s32)(end - cur) < 0);
+
+		if (tp->Rx_skbuff[i])
+			continue;
+
+		skb = rtl8169_alloc_rx_skb(tp->pci_dev, dev,
+					   tp->RxDescArray + i,
+					   tp->rx_buf_sz, tp->align, gfp);
+		if (!skb)
+			break;
+
+		tp->Rx_skbuff[i] = skb;
+	}
+	return cur - start;
+}
+
+static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
+{
+	desc->opts1 |= cpu_to_le32(RingEnd);
+}
+
+static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
+{
+	tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0;
+}
+
+static int rtl8169_init_ring(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	rtl8169_init_ring_indexes(tp);
+
+	memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info));
+	memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *));
+
+	if (rtl8169_rx_fill(tp, dev, 0, NUM_RX_DESC, GFP_KERNEL) != NUM_RX_DESC)
+		goto err_out;
+
+	rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);
+
+	return 0;
+
+err_out:
+	rtl8169_rx_clear(tp);
+	return -ENOMEM;
+}
+
+static void rtl8169_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb,
+				 struct TxDesc *desc)
+{
+	unsigned int len = tx_skb->len;
+
+	pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE);
+	desc->opts1 = 0x00;
+	desc->opts2 = 0x00;
+	desc->addr = 0x00;
+	tx_skb->len = 0;
+}
+
+static void rtl8169_tx_clear(struct rtl8169_private *tp)
+{
+	unsigned int i;
+
+	for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) {
+		unsigned int entry = i % NUM_TX_DESC;
+		struct ring_info *tx_skb = tp->tx_skb + entry;
+		unsigned int len = tx_skb->len;
+
+		if (len) {
+			struct sk_buff *skb = tx_skb->skb;
+
+			rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb,
+					     tp->TxDescArray + entry);
+			if (skb) {
+				if (!tp->ecdev)
+					dev_kfree_skb(skb);
+				tx_skb->skb = NULL;
+			}
+			tp->dev->stats.tx_dropped++;
+		}
+	}
+	tp->cur_tx = tp->dirty_tx = 0;
+}
+
+static void rtl8169_schedule_work(struct net_device *dev, work_func_t task)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	PREPARE_DELAYED_WORK(&tp->task, task);
+	schedule_delayed_work(&tp->task, 4);
+}
+
+static void rtl8169_wait_for_quiescence(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	synchronize_irq(dev->irq);
+
+	/* Wait for any pending NAPI task to complete */
+	napi_disable(&tp->napi);
+
+	rtl8169_irq_mask_and_ack(ioaddr);
+
+	tp->intr_mask = 0xffff;
+	RTL_W16(IntrMask, tp->intr_event);
+	napi_enable(&tp->napi);
+}
+
+static void rtl8169_reinit_task(struct work_struct *work)
+{
+	struct rtl8169_private *tp =
+		container_of(work, struct rtl8169_private, task.work);
+	struct net_device *dev = tp->dev;
+	int ret;
+
+	rtnl_lock();
+
+	if (!netif_running(dev))
+		goto out_unlock;
+
+	rtl8169_wait_for_quiescence(dev);
+	rtl8169_close(dev);
+
+	ret = rtl8169_open(dev);
+	if (unlikely(ret < 0)) {
+		if (net_ratelimit())
+			netif_err(tp, drv, dev,
+				  "reinit failure (status = %d). Rescheduling\n",
+				  ret);
+		rtl8169_schedule_work(dev, rtl8169_reinit_task);
+	}
+
+out_unlock:
+	rtnl_unlock();
+}
+
+static void rtl8169_reset_task(struct work_struct *work)
+{
+	struct rtl8169_private *tp =
+		container_of(work, struct rtl8169_private, task.work);
+	struct net_device *dev = tp->dev;
+
+	rtnl_lock();
+
+	if (!netif_running(dev))
+		goto out_unlock;
+
+	rtl8169_wait_for_quiescence(dev);
+
+	rtl8169_rx_interrupt(dev, tp, tp->mmio_addr, ~(u32)0);
+	rtl8169_tx_clear(tp);
+
+	if (tp->dirty_rx == tp->cur_rx) {
+		rtl8169_init_ring_indexes(tp);
+		rtl_hw_start(dev);
+		netif_wake_queue(dev);
+		rtl8169_check_link_status(dev, tp, tp->mmio_addr);
+	} else {
+		if (net_ratelimit())
+			netif_emerg(tp, intr, dev, "Rx buffers shortage\n");
+		rtl8169_schedule_work(dev, rtl8169_reset_task);
+	}
+
+out_unlock:
+	rtnl_unlock();
+}
+
+static void rtl8169_tx_timeout(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (tp->ecdev)
+		return;
+
+	rtl8169_hw_reset(tp->mmio_addr);
+
+	/* Let's wait a bit while any (async) irq lands on */
+	rtl8169_schedule_work(dev, rtl8169_reset_task);
+}
+
+static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
+			      u32 opts1)
+{
+	struct skb_shared_info *info = skb_shinfo(skb);
+	unsigned int cur_frag, entry;
+	struct TxDesc * uninitialized_var(txd);
+
+	entry = tp->cur_tx;
+	for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
+		skb_frag_t *frag = info->frags + cur_frag;
+		dma_addr_t mapping;
+		u32 status, len;
+		void *addr;
+
+		entry = (entry + 1) % NUM_TX_DESC;
+
+		txd = tp->TxDescArray + entry;
+		len = frag->size;
+		addr = ((void *) page_address(frag->page)) + frag->page_offset;
+		mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE);
+
+		/* anti gcc 2.95.3 bugware (sic) */
+		status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
+
+		txd->opts1 = cpu_to_le32(status);
+		txd->addr = cpu_to_le64(mapping);
+
+		tp->tx_skb[entry].len = len;
+	}
+
+	if (cur_frag) {
+		tp->tx_skb[entry].skb = skb;
+		txd->opts1 |= cpu_to_le32(LastFrag);
+	}
+
+	return cur_frag;
+}
+
+static inline u32 rtl8169_tso_csum(struct sk_buff *skb, struct net_device *dev)
+{
+	if (dev->features & NETIF_F_TSO) {
+		u32 mss = skb_shinfo(skb)->gso_size;
+
+		if (mss)
+			return LargeSend | ((mss & MSSMask) << MSSShift);
+	}
+	if (skb->ip_summed == CHECKSUM_PARTIAL) {
+		const struct iphdr *ip = ip_hdr(skb);
+
+		if (ip->protocol == IPPROTO_TCP)
+			return IPCS | TCPCS;
+		else if (ip->protocol == IPPROTO_UDP)
+			return IPCS | UDPCS;
+		WARN_ON(1);	/* we need a WARN() */
+	}
+	return 0;
+}
+
+static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
+				      struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC;
+	struct TxDesc *txd = tp->TxDescArray + entry;
+	void __iomem *ioaddr = tp->mmio_addr;
+	dma_addr_t mapping;
+	u32 status, len;
+	u32 opts1;
+
+	if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) {
+		netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n");
+		goto err_stop;
+	}
+
+	if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))
+		goto err_stop;
+
+	opts1 = DescOwn | rtl8169_tso_csum(skb, dev);
+
+	frags = rtl8169_xmit_frags(tp, skb, opts1);
+	if (frags) {
+		len = skb_headlen(skb);
+		opts1 |= FirstFrag;
+	} else {
+		len = skb->len;
+		opts1 |= FirstFrag | LastFrag;
+		tp->tx_skb[entry].skb = skb;
+	}
+
+	mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
+
+	tp->tx_skb[entry].len = len;
+	txd->addr = cpu_to_le64(mapping);
+	txd->opts2 = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb));
+
+	wmb();
+
+	/* anti gcc 2.95.3 bugware (sic) */
+	status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
+	txd->opts1 = cpu_to_le32(status);
+
+	tp->cur_tx += frags + 1;
+
+	wmb();
+
+	RTL_W8(TxPoll, NPQ);	/* set polling bit */
+
+	if (!tp->ecdev && TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) {
+		netif_stop_queue(dev);
+		smp_rmb();
+		if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)
+			netif_wake_queue(dev);
+	}
+
+	return NETDEV_TX_OK;
+
+err_stop:
+	if (!tp->ecdev)
+		netif_stop_queue(dev);
+	dev->stats.tx_dropped++;
+	return NETDEV_TX_BUSY;
+}
+
+static void rtl8169_pcierr_interrupt(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+	void __iomem *ioaddr = tp->mmio_addr;
+	u16 pci_status, pci_cmd;
+
+	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
+	pci_read_config_word(pdev, PCI_STATUS, &pci_status);
+
+	netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n",
+		  pci_cmd, pci_status);
+
+	/*
+	 * The recovery sequence below admits a very elaborated explanation:
+	 * - it seems to work;
+	 * - I did not see what else could be done;
+	 * - it makes iop3xx happy.
+	 *
+	 * Feel free to adjust to your needs.
+	 */
+	if (pdev->broken_parity_status)
+		pci_cmd &= ~PCI_COMMAND_PARITY;
+	else
+		pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
+
+	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
+
+	pci_write_config_word(pdev, PCI_STATUS,
+		pci_status & (PCI_STATUS_DETECTED_PARITY |
+		PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |
+		PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));
+
+	/* The infamous DAC f*ckup only happens at boot time */
+	if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) {
+		netif_info(tp, intr, dev, "disabling PCI DAC\n");
+		tp->cp_cmd &= ~PCIDAC;
+		RTL_W16(CPlusCmd, tp->cp_cmd);
+		dev->features &= ~NETIF_F_HIGHDMA;
+	}
+
+	rtl8169_hw_reset(ioaddr);
+
+	rtl8169_schedule_work(dev, rtl8169_reinit_task);
+}
+
+static void rtl8169_tx_interrupt(struct net_device *dev,
+				 struct rtl8169_private *tp,
+				 void __iomem *ioaddr)
+{
+	unsigned int dirty_tx, tx_left;
+
+	dirty_tx = tp->dirty_tx;
+	smp_rmb();
+	tx_left = tp->cur_tx - dirty_tx;
+
+	while (tx_left > 0) {
+		unsigned int entry = dirty_tx % NUM_TX_DESC;
+		struct ring_info *tx_skb = tp->tx_skb + entry;
+		u32 len = tx_skb->len;
+		u32 status;
+
+		rmb();
+		status = le32_to_cpu(tp->TxDescArray[entry].opts1);
+		if (status & DescOwn)
+			break;
+
+		dev->stats.tx_bytes += len;
+		dev->stats.tx_packets++;
+
+		rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry);
+
+		if (status & LastFrag) {
+			if (!tp->ecdev)
+				dev_kfree_skb(tx_skb->skb);
+			tx_skb->skb = NULL;
+		}
+		dirty_tx++;
+		tx_left--;
+	}
+
+	if (tp->dirty_tx != dirty_tx) {
+		tp->dirty_tx = dirty_tx;
+		smp_wmb();
+		if (!tp->ecdev && netif_queue_stopped(dev) &&
+		    (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) {
+			netif_wake_queue(dev);
+		}
+		/*
+		 * 8168 hack: TxPoll requests are lost when the Tx packets are
+		 * too close. Let's kick an extra TxPoll request when a burst
+		 * of start_xmit activity is detected (if it is not detected,
+		 * it is slow enough). -- FR
+		 */
+		smp_rmb();
+		if (tp->cur_tx != dirty_tx)
+			RTL_W8(TxPoll, NPQ);
+	}
+}
+
+static inline int rtl8169_fragmented_frame(u32 status)
+{
+	return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
+}
+
+static inline void rtl8169_rx_csum(struct sk_buff *skb, struct RxDesc *desc)
+{
+	u32 opts1 = le32_to_cpu(desc->opts1);
+	u32 status = opts1 & RxProtoMask;
+
+	if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
+	    ((status == RxProtoUDP) && !(opts1 & UDPFail)) ||
+	    ((status == RxProtoIP) && !(opts1 & IPFail)))
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	else
+		skb->ip_summed = CHECKSUM_NONE;
+}
+
+static inline bool rtl8169_try_rx_copy(struct sk_buff **sk_buff,
+				       struct rtl8169_private *tp, int pkt_size,
+				       dma_addr_t addr)
+{
+	struct sk_buff *skb;
+	bool done = false;
+
+	if (pkt_size >= rx_copybreak)
+		goto out;
+
+	skb = netdev_alloc_skb_ip_align(tp->dev, pkt_size);
+	if (!skb)
+		goto out;
+
+	pci_dma_sync_single_for_cpu(tp->pci_dev, addr, pkt_size,
+				    PCI_DMA_FROMDEVICE);
+	skb_copy_from_linear_data(*sk_buff, skb->data, pkt_size);
+	*sk_buff = skb;
+	done = true;
+out:
+	return done;
+}
+
+/*
+ * Warning : rtl8169_rx_interrupt() might be called :
+ * 1) from NAPI (softirq) context
+ *	(polling = 1 : we should call netif_receive_skb())
+ * 2) from process context (rtl8169_reset_task())
+ *	(polling = 0 : we must call netif_rx() instead)
+ */
+static int rtl8169_rx_interrupt(struct net_device *dev,
+				struct rtl8169_private *tp,
+				void __iomem *ioaddr, u32 budget)
+{
+	unsigned int cur_rx, rx_left;
+	unsigned int delta, count;
+	int polling = (budget != ~(u32)0) ? 1 : 0;
+
+	cur_rx = tp->cur_rx;
+	rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx;
+	rx_left = min(rx_left, budget);
+
+	for (; rx_left > 0; rx_left--, cur_rx++) {
+		unsigned int entry = cur_rx % NUM_RX_DESC;
+		struct RxDesc *desc = tp->RxDescArray + entry;
+		u32 status;
+
+		rmb();
+		status = le32_to_cpu(desc->opts1);
+
+		if (status & DescOwn)
+			break;
+		if (unlikely(status & RxRES)) {
+			netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n",
+				   status);
+			dev->stats.rx_errors++;
+			if (status & (RxRWT | RxRUNT))
+				dev->stats.rx_length_errors++;
+			if (status & RxCRC)
+				dev->stats.rx_crc_errors++;
+			if (status & RxFOVF) {
+				if (!tp->ecdev)
+					rtl8169_schedule_work(dev, rtl8169_reset_task);
+				dev->stats.rx_fifo_errors++;
+			}
+			rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
+		} else {
+			struct sk_buff *skb = tp->Rx_skbuff[entry];
+			dma_addr_t addr = le64_to_cpu(desc->addr);
+			int pkt_size = (status & 0x00001FFF) - 4;
+			struct pci_dev *pdev = tp->pci_dev;
+
+			/*
+			 * The driver does not support incoming fragmented
+			 * frames. They are seen as a symptom of over-mtu
+			 * sized frames.
+			 */
+			if (unlikely(rtl8169_fragmented_frame(status))) {
+				dev->stats.rx_dropped++;
+				dev->stats.rx_length_errors++;
+				rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
+				continue;
+			}
+
+			rtl8169_rx_csum(skb, desc);
+
+			if (tp->ecdev) {
+				/* reusing parts of rtl8169_try_rx_copy() */
+				pci_dma_sync_single_for_cpu(pdev, addr, pkt_size,
+						PCI_DMA_FROMDEVICE);
+
+				ecdev_receive(tp->ecdev, skb->data, pkt_size);
+
+				pci_dma_sync_single_for_device(pdev, addr,
+					pkt_size, PCI_DMA_FROMDEVICE);
+				rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
+
+				// No need to detect link status as
+				// long as frames are received: Reset watchdog.
+				tp->ec_watchdog_jiffies = jiffies;
+			} else {
+				if (rtl8169_try_rx_copy(&skb, tp, pkt_size, addr)) {
+					pci_dma_sync_single_for_device(pdev, addr,
+						pkt_size, PCI_DMA_FROMDEVICE);
+					rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
+				} else {
+					pci_unmap_single(pdev, addr, tp->rx_buf_sz,
+							 PCI_DMA_FROMDEVICE);
+					tp->Rx_skbuff[entry] = NULL;
+				}
+
+				skb_put(skb, pkt_size);
+				skb->protocol = eth_type_trans(skb, dev);
+
+				if (rtl8169_rx_vlan_skb(tp, desc, skb, polling) < 0) {
+					if (likely(polling))
+						netif_receive_skb(skb);
+					else
+						netif_rx(skb);
+				}
+			}
+
+			dev->stats.rx_bytes += pkt_size;
+			dev->stats.rx_packets++;
+		}
+
+		/* Work around for AMD plateform. */
+		if ((desc->opts2 & cpu_to_le32(0xfffe000)) &&
+		    (tp->mac_version == RTL_GIGA_MAC_VER_05)) {
+			desc->opts2 = 0;
+			cur_rx++;
+		}
+	}
+
+	count = cur_rx - tp->cur_rx;
+	tp->cur_rx = cur_rx;
+
+	delta = rtl8169_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx, GFP_ATOMIC);
+	if (!delta && count)
+		netif_info(tp, intr, dev, "no Rx buffer allocated\n");
+	tp->dirty_rx += delta;
+
+	/*
+	 * FIXME: until there is periodic timer to try and refill the ring,
+	 * a temporary shortage may definitely kill the Rx process.
+	 * - disable the asic to try and avoid an overflow and kick it again
+	 *   after refill ?
+	 * - how do others driver handle this condition (Uh oh...).
+	 */
+	if (tp->dirty_rx + NUM_RX_DESC == tp->cur_rx)
+		netif_emerg(tp, intr, dev, "Rx buffers exhausted\n");
+
+	return count;
+}
+
+static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
+{
+	struct net_device *dev = dev_instance;
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	int handled = 0;
+	int status;
+
+	/* loop handling interrupts until we have no new ones or
+	 * we hit a invalid/hotplug case.
+	 */
+	status = RTL_R16(IntrStatus);
+	while (status && status != 0xffff) {
+		handled = 1;
+
+		/* Handle all of the error cases first. These will reset
+		 * the chip, so just exit the loop.
+		 */
+		if (unlikely(!tp->ecdev && !netif_running(dev))) {
+			rtl8169_asic_down(ioaddr);
+			break;
+		}
+
+		/* Work around for rx fifo overflow */
+		if (unlikely(!tp->ecdev && (status & RxFIFOOver)) &&
+		(tp->mac_version == RTL_GIGA_MAC_VER_11)) {
+			netif_stop_queue(dev);
+			rtl8169_tx_timeout(dev);
+			break;
+		}
+
+		if (unlikely(status & SYSErr)) {
+			rtl8169_pcierr_interrupt(dev);
+			break;
+		}
+
+		if (status & LinkChg)
+			rtl8169_check_link_status(dev, tp, ioaddr);
+
+		/* We need to see the lastest version of tp->intr_mask to
+		 * avoid ignoring an MSI interrupt and having to wait for
+		 * another event which may never come.
+		 */
+		smp_rmb();
+		if (status & tp->intr_mask & tp->napi_event) {
+			RTL_W16(IntrMask, tp->intr_event & ~tp->napi_event);
+			tp->intr_mask = ~tp->napi_event;
+
+			if (likely(napi_schedule_prep(&tp->napi)))
+				__napi_schedule(&tp->napi);
+			else
+				netif_info(tp, intr, dev,
+					   "interrupt %04x in poll\n", status);
+		}
+
+		/* We only get a new MSI interrupt when all active irq
+		 * sources on the chip have been acknowledged. So, ack
+		 * everything we've seen and check if new sources have become
+		 * active to avoid blocking all interrupts from the chip.
+		 */
+		RTL_W16(IntrStatus,
+			(status & RxFIFOOver) ? (status | RxOverflow) : status);
+		status = RTL_R16(IntrStatus);
+	}
+
+	return IRQ_RETVAL(handled);
+}
+
+static void ec_poll(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+
+	rtl8169_interrupt(pdev->irq, dev);
+	rtl8169_rx_interrupt(dev, tp, tp->mmio_addr, 100); // FIXME
+	rtl8169_tx_interrupt(dev, tp, tp->mmio_addr);
+
+	if (jiffies - tp->ec_watchdog_jiffies >= 2 * HZ) {
+		rtl8169_phy_timer((unsigned long) dev);
+		tp->ec_watchdog_jiffies = jiffies;
+	}
+}
+
+static int rtl8169_poll(struct napi_struct *napi, int budget)
+{
+	struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);
+	struct net_device *dev = tp->dev;
+	void __iomem *ioaddr = tp->mmio_addr;
+	int work_done;
+
+	work_done = rtl8169_rx_interrupt(dev, tp, ioaddr, (u32) budget);
+	rtl8169_tx_interrupt(dev, tp, ioaddr);
+
+	if (work_done < budget) {
+		napi_complete(napi);
+
+		/* We need for force the visibility of tp->intr_mask
+		 * for other CPUs, as we can loose an MSI interrupt
+		 * and potentially wait for a retransmit timeout if we don't.
+		 * The posted write to IntrMask is safe, as it will
+		 * eventually make it to the chip and we won't loose anything
+		 * until it does.
+		 */
+		tp->intr_mask = 0xffff;
+		wmb();
+		RTL_W16(IntrMask, tp->intr_event);
+	}
+
+	return work_done;
+}
+
+static void rtl8169_rx_missed(struct net_device *dev, void __iomem *ioaddr)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (tp->mac_version > RTL_GIGA_MAC_VER_06)
+		return;
+
+	dev->stats.rx_missed_errors += (RTL_R32(RxMissed) & 0xffffff);
+	RTL_W32(RxMissed, 0);
+}
+
+static void rtl8169_down(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int intrmask;
+
+	if (!tp->ecdev) {
+		rtl8169_delete_timer(dev);
+
+		netif_stop_queue(dev);
+
+		napi_disable(&tp->napi);
+	}
+
+core_down:
+	if (!tp->ecdev) {
+		spin_lock_irq(&tp->lock);
+	}
+
+	rtl8169_asic_down(ioaddr);
+
+	rtl8169_rx_missed(dev, ioaddr);
+
+	if (!tp->ecdev) {
+		spin_unlock_irq(&tp->lock);
+
+		synchronize_irq(dev->irq);
+	}
+
+	/* Give a racing hard_start_xmit a few cycles to complete. */
+	synchronize_sched();  /* FIXME: should this be synchronize_irq()? */
+
+	/*
+	 * And now for the 50k$ question: are IRQ disabled or not ?
+	 *
+	 * Two paths lead here:
+	 * 1) dev->close
+	 *    -> netif_running() is available to sync the current code and the
+	 *       IRQ handler. See rtl8169_interrupt for details.
+	 * 2) dev->change_mtu
+	 *    -> rtl8169_poll can not be issued again and re-enable the
+	 *       interruptions. Let's simply issue the IRQ down sequence again.
+	 *
+	 * No loop if hotpluged or major error (0xffff).
+	 */
+	intrmask = RTL_R16(IntrMask);
+	if (intrmask && (intrmask != 0xffff))
+		goto core_down;
+
+	rtl8169_tx_clear(tp);
+
+	rtl8169_rx_clear(tp);
+}
+
+static int rtl8169_close(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	/* update counters before going down */
+	rtl8169_update_counters(dev);
+
+	rtl8169_down(dev);
+
+	if (!tp->ecdev)
+		free_irq(dev->irq, dev);
+
+	pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
+			    tp->RxPhyAddr);
+	pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
+			    tp->TxPhyAddr);
+	tp->TxDescArray = NULL;
+	tp->RxDescArray = NULL;
+
+	pm_runtime_put_sync(&pdev->dev);
+
+	return 0;
+}
+
+static void rtl_set_rx_mode(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+	u32 mc_filter[2];	/* Multicast hash filter */
+	int rx_mode;
+	u32 tmp = 0;
+
+	if (dev->flags & IFF_PROMISC) {
+		/* Unconditionally log net taps. */
+		netif_notice(tp, link, dev, "Promiscuous mode enabled\n");
+		rx_mode =
+		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
+		    AcceptAllPhys;
+		mc_filter[1] = mc_filter[0] = 0xffffffff;
+	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
+		   (dev->flags & IFF_ALLMULTI)) {
+		/* Too many to filter perfectly -- accept all multicasts. */
+		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
+		mc_filter[1] = mc_filter[0] = 0xffffffff;
+	} else {
+		struct netdev_hw_addr *ha;
+
+		rx_mode = AcceptBroadcast | AcceptMyPhys;
+		mc_filter[1] = mc_filter[0] = 0;
+		netdev_for_each_mc_addr(ha, dev) {
+			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
+			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
+			rx_mode |= AcceptMulticast;
+		}
+	}
+
+	spin_lock_irqsave(&tp->lock, flags);
+
+	tmp = rtl8169_rx_config | rx_mode |
+	      (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
+
+	if (tp->mac_version > RTL_GIGA_MAC_VER_06) {
+		u32 data = mc_filter[0];
+
+		mc_filter[0] = swab32(mc_filter[1]);
+		mc_filter[1] = swab32(data);
+	}
+
+	RTL_W32(MAR0 + 4, mc_filter[1]);
+	RTL_W32(MAR0 + 0, mc_filter[0]);
+
+	RTL_W32(RxConfig, tmp);
+
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+/**
+ *  rtl8169_get_stats - Get rtl8169 read/write statistics
+ *  @dev: The Ethernet Device to get statistics for
+ *
+ *  Get TX/RX statistics for rtl8169
+ */
+static struct net_device_stats *rtl8169_get_stats(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+
+	if (netif_running(dev)) {
+		spin_lock_irqsave(&tp->lock, flags);
+		rtl8169_rx_missed(dev, ioaddr);
+		spin_unlock_irqrestore(&tp->lock, flags);
+	}
+
+	return &dev->stats;
+}
+
+static void rtl8169_net_suspend(struct net_device *dev)
+{
+	if (!netif_running(dev))
+		return;
+
+	netif_device_detach(dev);
+	netif_stop_queue(dev);
+}
+
+#ifdef CONFIG_PM
+
+static int rtl8169_suspend(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (tp->ecdev)
+		return -EBUSY;
+
+	rtl8169_net_suspend(dev);
+
+	return 0;
+}
+
+static void __rtl8169_resume(struct net_device *dev)
+{
+	netif_device_attach(dev);
+	rtl8169_schedule_work(dev, rtl8169_reset_task);
+}
+
+static int rtl8169_resume(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (tp->ecdev)
+		return -EBUSY;
+
+	if (netif_running(dev))
+		__rtl8169_resume(dev);
+
+	return 0;
+}
+
+static int rtl8169_runtime_suspend(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (!tp->TxDescArray)
+		return 0;
+
+	spin_lock_irq(&tp->lock);
+	tp->saved_wolopts = __rtl8169_get_wol(tp);
+	__rtl8169_set_wol(tp, WAKE_ANY);
+	spin_unlock_irq(&tp->lock);
+
+	rtl8169_net_suspend(dev);
+
+	return 0;
+}
+
+static int rtl8169_runtime_resume(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (!tp->TxDescArray)
+		return 0;
+
+	spin_lock_irq(&tp->lock);
+	__rtl8169_set_wol(tp, tp->saved_wolopts);
+	tp->saved_wolopts = 0;
+	spin_unlock_irq(&tp->lock);
+
+	__rtl8169_resume(dev);
+
+	return 0;
+}
+
+static int rtl8169_runtime_idle(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (!tp->TxDescArray)
+		return 0;
+
+	rtl8169_check_link_status(dev, tp, tp->mmio_addr);
+	return -EBUSY;
+}
+
+static const struct dev_pm_ops rtl8169_pm_ops = {
+	.suspend = rtl8169_suspend,
+	.resume = rtl8169_resume,
+	.freeze = rtl8169_suspend,
+	.thaw = rtl8169_resume,
+	.poweroff = rtl8169_suspend,
+	.restore = rtl8169_resume,
+	.runtime_suspend = rtl8169_runtime_suspend,
+	.runtime_resume = rtl8169_runtime_resume,
+	.runtime_idle = rtl8169_runtime_idle,
+};
+
+#define RTL8169_PM_OPS	(&rtl8169_pm_ops)
+
+#else /* !CONFIG_PM */
+
+#define RTL8169_PM_OPS	NULL
+
+#endif /* !CONFIG_PM */
+
+static void rtl_shutdown(struct pci_dev *pdev)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	rtl8169_net_suspend(dev);
+
+	/* restore original MAC address */
+	rtl_rar_set(tp, dev->perm_addr);
+
+	spin_lock_irq(&tp->lock);
+
+	rtl8169_asic_down(ioaddr);
+
+	spin_unlock_irq(&tp->lock);
+
+	if (system_state == SYSTEM_POWER_OFF) {
+		/* WoL fails with some 8168 when the receiver is disabled. */
+		if (tp->features & RTL_FEATURE_WOL) {
+			pci_clear_master(pdev);
+
+			RTL_W8(ChipCmd, CmdRxEnb);
+			/* PCI commit */
+			RTL_R8(ChipCmd);
+		}
+
+		pci_wake_from_d3(pdev, true);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+}
+
+static struct pci_driver rtl8169_pci_driver = {
+	.name		= MODULENAME,
+	.id_table	= rtl8169_pci_tbl,
+	.probe		= rtl8169_init_one,
+	.remove		= __devexit_p(rtl8169_remove_one),
+	.shutdown	= rtl_shutdown,
+	.driver.pm	= RTL8169_PM_OPS,
+};
+
+static int __init rtl8169_init_module(void)
+{
+	return pci_register_driver(&rtl8169_pci_driver);
+}
+
+static void __exit rtl8169_cleanup_module(void)
+{
+	pci_unregister_driver(&rtl8169_pci_driver);
+}
+
+module_init(rtl8169_init_module);
+module_exit(rtl8169_cleanup_module);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/r8169-2.6.35-orig.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,5028 @@
+/*
+ * r8169.c: RealTek 8169/8168/8101 ethernet driver.
+ *
+ * Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>
+ * Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>
+ * Copyright (c) a lot of people too. Please respect their work.
+ *
+ * See MAINTAINERS file for support contact information.
+ */
+
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/delay.h>
+#include <linux/ethtool.h>
+#include <linux/mii.h>
+#include <linux/if_vlan.h>
+#include <linux/crc32.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/tcp.h>
+#include <linux/init.h>
+#include <linux/dma-mapping.h>
+#include <linux/pm_runtime.h>
+
+#include <asm/system.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+
+#define RTL8169_VERSION "2.3LK-NAPI"
+#define MODULENAME "r8169"
+#define PFX MODULENAME ": "
+
+#ifdef RTL8169_DEBUG
+#define assert(expr) \
+	if (!(expr)) {					\
+		printk( "Assertion failed! %s,%s,%s,line=%d\n",	\
+		#expr,__FILE__,__func__,__LINE__);		\
+	}
+#define dprintk(fmt, args...) \
+	do { printk(KERN_DEBUG PFX fmt, ## args); } while (0)
+#else
+#define assert(expr) do {} while (0)
+#define dprintk(fmt, args...)	do {} while (0)
+#endif /* RTL8169_DEBUG */
+
+#define R8169_MSG_DEFAULT \
+	(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)
+
+#define TX_BUFFS_AVAIL(tp) \
+	(tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1)
+
+/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
+   The RTL chips use a 64 element hash table based on the Ethernet CRC. */
+static const int multicast_filter_limit = 32;
+
+/* MAC address length */
+#define MAC_ADDR_LEN	6
+
+#define MAX_READ_REQUEST_SHIFT	12
+#define RX_FIFO_THRESH	7	/* 7 means NO threshold, Rx buffer level before first PCI xfer. */
+#define RX_DMA_BURST	6	/* Maximum PCI burst, '6' is 1024 */
+#define TX_DMA_BURST	6	/* Maximum PCI burst, '6' is 1024 */
+#define EarlyTxThld	0x3F	/* 0x3F means NO early transmit */
+#define SafeMtu		0x1c20	/* ... actually life sucks beyond ~7k */
+#define InterFrameGap	0x03	/* 3 means InterFrameGap = the shortest one */
+
+#define R8169_REGS_SIZE		256
+#define R8169_NAPI_WEIGHT	64
+#define NUM_TX_DESC	64	/* Number of Tx descriptor registers */
+#define NUM_RX_DESC	256	/* Number of Rx descriptor registers */
+#define RX_BUF_SIZE	1536	/* Rx Buffer size */
+#define R8169_TX_RING_BYTES	(NUM_TX_DESC * sizeof(struct TxDesc))
+#define R8169_RX_RING_BYTES	(NUM_RX_DESC * sizeof(struct RxDesc))
+
+#define RTL8169_TX_TIMEOUT	(6*HZ)
+#define RTL8169_PHY_TIMEOUT	(10*HZ)
+
+#define RTL_EEPROM_SIG		cpu_to_le32(0x8129)
+#define RTL_EEPROM_SIG_MASK	cpu_to_le32(0xffff)
+#define RTL_EEPROM_SIG_ADDR	0x0000
+
+/* write/read MMIO register */
+#define RTL_W8(reg, val8)	writeb ((val8), ioaddr + (reg))
+#define RTL_W16(reg, val16)	writew ((val16), ioaddr + (reg))
+#define RTL_W32(reg, val32)	writel ((val32), ioaddr + (reg))
+#define RTL_R8(reg)		readb (ioaddr + (reg))
+#define RTL_R16(reg)		readw (ioaddr + (reg))
+#define RTL_R32(reg)		((unsigned long) readl (ioaddr + (reg)))
+
+enum mac_version {
+	RTL_GIGA_MAC_NONE   = 0x00,
+	RTL_GIGA_MAC_VER_01 = 0x01, // 8169
+	RTL_GIGA_MAC_VER_02 = 0x02, // 8169S
+	RTL_GIGA_MAC_VER_03 = 0x03, // 8110S
+	RTL_GIGA_MAC_VER_04 = 0x04, // 8169SB
+	RTL_GIGA_MAC_VER_05 = 0x05, // 8110SCd
+	RTL_GIGA_MAC_VER_06 = 0x06, // 8110SCe
+	RTL_GIGA_MAC_VER_07 = 0x07, // 8102e
+	RTL_GIGA_MAC_VER_08 = 0x08, // 8102e
+	RTL_GIGA_MAC_VER_09 = 0x09, // 8102e
+	RTL_GIGA_MAC_VER_10 = 0x0a, // 8101e
+	RTL_GIGA_MAC_VER_11 = 0x0b, // 8168Bb
+	RTL_GIGA_MAC_VER_12 = 0x0c, // 8168Be
+	RTL_GIGA_MAC_VER_13 = 0x0d, // 8101Eb
+	RTL_GIGA_MAC_VER_14 = 0x0e, // 8101 ?
+	RTL_GIGA_MAC_VER_15 = 0x0f, // 8101 ?
+	RTL_GIGA_MAC_VER_16 = 0x11, // 8101Ec
+	RTL_GIGA_MAC_VER_17 = 0x10, // 8168Bf
+	RTL_GIGA_MAC_VER_18 = 0x12, // 8168CP
+	RTL_GIGA_MAC_VER_19 = 0x13, // 8168C
+	RTL_GIGA_MAC_VER_20 = 0x14, // 8168C
+	RTL_GIGA_MAC_VER_21 = 0x15, // 8168C
+	RTL_GIGA_MAC_VER_22 = 0x16, // 8168C
+	RTL_GIGA_MAC_VER_23 = 0x17, // 8168CP
+	RTL_GIGA_MAC_VER_24 = 0x18, // 8168CP
+	RTL_GIGA_MAC_VER_25 = 0x19, // 8168D
+	RTL_GIGA_MAC_VER_26 = 0x1a, // 8168D
+	RTL_GIGA_MAC_VER_27 = 0x1b  // 8168DP
+};
+
+#define _R(NAME,MAC,MASK) \
+	{ .name = NAME, .mac_version = MAC, .RxConfigMask = MASK }
+
+static const struct {
+	const char *name;
+	u8 mac_version;
+	u32 RxConfigMask;	/* Clears the bits supported by this chip */
+} rtl_chip_info[] = {
+	_R("RTL8169",		RTL_GIGA_MAC_VER_01, 0xff7e1880), // 8169
+	_R("RTL8169s",		RTL_GIGA_MAC_VER_02, 0xff7e1880), // 8169S
+	_R("RTL8110s",		RTL_GIGA_MAC_VER_03, 0xff7e1880), // 8110S
+	_R("RTL8169sb/8110sb",	RTL_GIGA_MAC_VER_04, 0xff7e1880), // 8169SB
+	_R("RTL8169sc/8110sc",	RTL_GIGA_MAC_VER_05, 0xff7e1880), // 8110SCd
+	_R("RTL8169sc/8110sc",	RTL_GIGA_MAC_VER_06, 0xff7e1880), // 8110SCe
+	_R("RTL8102e",		RTL_GIGA_MAC_VER_07, 0xff7e1880), // PCI-E
+	_R("RTL8102e",		RTL_GIGA_MAC_VER_08, 0xff7e1880), // PCI-E
+	_R("RTL8102e",		RTL_GIGA_MAC_VER_09, 0xff7e1880), // PCI-E
+	_R("RTL8101e",		RTL_GIGA_MAC_VER_10, 0xff7e1880), // PCI-E
+	_R("RTL8168b/8111b",	RTL_GIGA_MAC_VER_11, 0xff7e1880), // PCI-E
+	_R("RTL8168b/8111b",	RTL_GIGA_MAC_VER_12, 0xff7e1880), // PCI-E
+	_R("RTL8101e",		RTL_GIGA_MAC_VER_13, 0xff7e1880), // PCI-E 8139
+	_R("RTL8100e",		RTL_GIGA_MAC_VER_14, 0xff7e1880), // PCI-E 8139
+	_R("RTL8100e",		RTL_GIGA_MAC_VER_15, 0xff7e1880), // PCI-E 8139
+	_R("RTL8168b/8111b",	RTL_GIGA_MAC_VER_17, 0xff7e1880), // PCI-E
+	_R("RTL8101e",		RTL_GIGA_MAC_VER_16, 0xff7e1880), // PCI-E
+	_R("RTL8168cp/8111cp",	RTL_GIGA_MAC_VER_18, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_19, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_20, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_21, 0xff7e1880), // PCI-E
+	_R("RTL8168c/8111c",	RTL_GIGA_MAC_VER_22, 0xff7e1880), // PCI-E
+	_R("RTL8168cp/8111cp",	RTL_GIGA_MAC_VER_23, 0xff7e1880), // PCI-E
+	_R("RTL8168cp/8111cp",	RTL_GIGA_MAC_VER_24, 0xff7e1880), // PCI-E
+	_R("RTL8168d/8111d",	RTL_GIGA_MAC_VER_25, 0xff7e1880), // PCI-E
+	_R("RTL8168d/8111d",	RTL_GIGA_MAC_VER_26, 0xff7e1880), // PCI-E
+	_R("RTL8168dp/8111dp",	RTL_GIGA_MAC_VER_27, 0xff7e1880)  // PCI-E
+};
+#undef _R
+
+enum cfg_version {
+	RTL_CFG_0 = 0x00,
+	RTL_CFG_1,
+	RTL_CFG_2
+};
+
+static void rtl_hw_start_8169(struct net_device *);
+static void rtl_hw_start_8168(struct net_device *);
+static void rtl_hw_start_8101(struct net_device *);
+
+static DEFINE_PCI_DEVICE_TABLE(rtl8169_pci_tbl) = {
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8129), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8136), 0, 0, RTL_CFG_2 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8167), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8168), 0, 0, RTL_CFG_1 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8169), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK,	0x4300), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(PCI_VENDOR_ID_AT,		0xc107), 0, 0, RTL_CFG_0 },
+	{ PCI_DEVICE(0x16ec,			0x0116), 0, 0, RTL_CFG_0 },
+	{ PCI_VENDOR_ID_LINKSYS,		0x1032,
+		PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 },
+	{ 0x0001,				0x8168,
+		PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 },
+	{0,},
+};
+
+MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);
+
+/*
+ * we set our copybreak very high so that we don't have
+ * to allocate 16k frames all the time (see note in
+ * rtl8169_open()
+ */
+static int rx_copybreak = 16383;
+static int use_dac;
+static struct {
+	u32 msg_enable;
+} debug = { -1 };
+
+enum rtl_registers {
+	MAC0		= 0,	/* Ethernet hardware address. */
+	MAC4		= 4,
+	MAR0		= 8,	/* Multicast filter. */
+	CounterAddrLow		= 0x10,
+	CounterAddrHigh		= 0x14,
+	TxDescStartAddrLow	= 0x20,
+	TxDescStartAddrHigh	= 0x24,
+	TxHDescStartAddrLow	= 0x28,
+	TxHDescStartAddrHigh	= 0x2c,
+	FLASH		= 0x30,
+	ERSR		= 0x36,
+	ChipCmd		= 0x37,
+	TxPoll		= 0x38,
+	IntrMask	= 0x3c,
+	IntrStatus	= 0x3e,
+	TxConfig	= 0x40,
+	RxConfig	= 0x44,
+	RxMissed	= 0x4c,
+	Cfg9346		= 0x50,
+	Config0		= 0x51,
+	Config1		= 0x52,
+	Config2		= 0x53,
+	Config3		= 0x54,
+	Config4		= 0x55,
+	Config5		= 0x56,
+	MultiIntr	= 0x5c,
+	PHYAR		= 0x60,
+	PHYstatus	= 0x6c,
+	RxMaxSize	= 0xda,
+	CPlusCmd	= 0xe0,
+	IntrMitigate	= 0xe2,
+	RxDescAddrLow	= 0xe4,
+	RxDescAddrHigh	= 0xe8,
+	EarlyTxThres	= 0xec,
+	FuncEvent	= 0xf0,
+	FuncEventMask	= 0xf4,
+	FuncPresetState	= 0xf8,
+	FuncForceEvent	= 0xfc,
+};
+
+enum rtl8110_registers {
+	TBICSR			= 0x64,
+	TBI_ANAR		= 0x68,
+	TBI_LPAR		= 0x6a,
+};
+
+enum rtl8168_8101_registers {
+	CSIDR			= 0x64,
+	CSIAR			= 0x68,
+#define	CSIAR_FLAG			0x80000000
+#define	CSIAR_WRITE_CMD			0x80000000
+#define	CSIAR_BYTE_ENABLE		0x0f
+#define	CSIAR_BYTE_ENABLE_SHIFT		12
+#define	CSIAR_ADDR_MASK			0x0fff
+
+	EPHYAR			= 0x80,
+#define	EPHYAR_FLAG			0x80000000
+#define	EPHYAR_WRITE_CMD		0x80000000
+#define	EPHYAR_REG_MASK			0x1f
+#define	EPHYAR_REG_SHIFT		16
+#define	EPHYAR_DATA_MASK		0xffff
+	DBG_REG			= 0xd1,
+#define	FIX_NAK_1			(1 << 4)
+#define	FIX_NAK_2			(1 << 3)
+	EFUSEAR			= 0xdc,
+#define	EFUSEAR_FLAG			0x80000000
+#define	EFUSEAR_WRITE_CMD		0x80000000
+#define	EFUSEAR_READ_CMD		0x00000000
+#define	EFUSEAR_REG_MASK		0x03ff
+#define	EFUSEAR_REG_SHIFT		8
+#define	EFUSEAR_DATA_MASK		0xff
+};
+
+enum rtl_register_content {
+	/* InterruptStatusBits */
+	SYSErr		= 0x8000,
+	PCSTimeout	= 0x4000,
+	SWInt		= 0x0100,
+	TxDescUnavail	= 0x0080,
+	RxFIFOOver	= 0x0040,
+	LinkChg		= 0x0020,
+	RxOverflow	= 0x0010,
+	TxErr		= 0x0008,
+	TxOK		= 0x0004,
+	RxErr		= 0x0002,
+	RxOK		= 0x0001,
+
+	/* RxStatusDesc */
+	RxFOVF	= (1 << 23),
+	RxRWT	= (1 << 22),
+	RxRES	= (1 << 21),
+	RxRUNT	= (1 << 20),
+	RxCRC	= (1 << 19),
+
+	/* ChipCmdBits */
+	CmdReset	= 0x10,
+	CmdRxEnb	= 0x08,
+	CmdTxEnb	= 0x04,
+	RxBufEmpty	= 0x01,
+
+	/* TXPoll register p.5 */
+	HPQ		= 0x80,		/* Poll cmd on the high prio queue */
+	NPQ		= 0x40,		/* Poll cmd on the low prio queue */
+	FSWInt		= 0x01,		/* Forced software interrupt */
+
+	/* Cfg9346Bits */
+	Cfg9346_Lock	= 0x00,
+	Cfg9346_Unlock	= 0xc0,
+
+	/* rx_mode_bits */
+	AcceptErr	= 0x20,
+	AcceptRunt	= 0x10,
+	AcceptBroadcast	= 0x08,
+	AcceptMulticast	= 0x04,
+	AcceptMyPhys	= 0x02,
+	AcceptAllPhys	= 0x01,
+
+	/* RxConfigBits */
+	RxCfgFIFOShift	= 13,
+	RxCfgDMAShift	=  8,
+
+	/* TxConfigBits */
+	TxInterFrameGapShift = 24,
+	TxDMAShift = 8,	/* DMA burst value (0-7) is shift this many bits */
+
+	/* Config1 register p.24 */
+	LEDS1		= (1 << 7),
+	LEDS0		= (1 << 6),
+	MSIEnable	= (1 << 5),	/* Enable Message Signaled Interrupt */
+	Speed_down	= (1 << 4),
+	MEMMAP		= (1 << 3),
+	IOMAP		= (1 << 2),
+	VPD		= (1 << 1),
+	PMEnable	= (1 << 0),	/* Power Management Enable */
+
+	/* Config2 register p. 25 */
+	PCI_Clock_66MHz = 0x01,
+	PCI_Clock_33MHz = 0x00,
+
+	/* Config3 register p.25 */
+	MagicPacket	= (1 << 5),	/* Wake up when receives a Magic Packet */
+	LinkUp		= (1 << 4),	/* Wake up when the cable connection is re-established */
+	Beacon_en	= (1 << 0),	/* 8168 only. Reserved in the 8168b */
+
+	/* Config5 register p.27 */
+	BWF		= (1 << 6),	/* Accept Broadcast wakeup frame */
+	MWF		= (1 << 5),	/* Accept Multicast wakeup frame */
+	UWF		= (1 << 4),	/* Accept Unicast wakeup frame */
+	LanWake		= (1 << 1),	/* LanWake enable/disable */
+	PMEStatus	= (1 << 0),	/* PME status can be reset by PCI RST# */
+
+	/* TBICSR p.28 */
+	TBIReset	= 0x80000000,
+	TBILoopback	= 0x40000000,
+	TBINwEnable	= 0x20000000,
+	TBINwRestart	= 0x10000000,
+	TBILinkOk	= 0x02000000,
+	TBINwComplete	= 0x01000000,
+
+	/* CPlusCmd p.31 */
+	EnableBist	= (1 << 15),	// 8168 8101
+	Mac_dbgo_oe	= (1 << 14),	// 8168 8101
+	Normal_mode	= (1 << 13),	// unused
+	Force_half_dup	= (1 << 12),	// 8168 8101
+	Force_rxflow_en	= (1 << 11),	// 8168 8101
+	Force_txflow_en	= (1 << 10),	// 8168 8101
+	Cxpl_dbg_sel	= (1 << 9),	// 8168 8101
+	ASF		= (1 << 8),	// 8168 8101
+	PktCntrDisable	= (1 << 7),	// 8168 8101
+	Mac_dbgo_sel	= 0x001c,	// 8168
+	RxVlan		= (1 << 6),
+	RxChkSum	= (1 << 5),
+	PCIDAC		= (1 << 4),
+	PCIMulRW	= (1 << 3),
+	INTT_0		= 0x0000,	// 8168
+	INTT_1		= 0x0001,	// 8168
+	INTT_2		= 0x0002,	// 8168
+	INTT_3		= 0x0003,	// 8168
+
+	/* rtl8169_PHYstatus */
+	TBI_Enable	= 0x80,
+	TxFlowCtrl	= 0x40,
+	RxFlowCtrl	= 0x20,
+	_1000bpsF	= 0x10,
+	_100bps		= 0x08,
+	_10bps		= 0x04,
+	LinkStatus	= 0x02,
+	FullDup		= 0x01,
+
+	/* _TBICSRBit */
+	TBILinkOK	= 0x02000000,
+
+	/* DumpCounterCommand */
+	CounterDump	= 0x8,
+};
+
+enum desc_status_bit {
+	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
+	RingEnd		= (1 << 30), /* End of descriptor ring */
+	FirstFrag	= (1 << 29), /* First segment of a packet */
+	LastFrag	= (1 << 28), /* Final segment of a packet */
+
+	/* Tx private */
+	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
+	MSSShift	= 16,        /* MSS value position */
+	MSSMask		= 0xfff,     /* MSS value + LargeSend bit: 12 bits */
+	IPCS		= (1 << 18), /* Calculate IP checksum */
+	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
+	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
+	TxVlanTag	= (1 << 17), /* Add VLAN tag */
+
+	/* Rx private */
+	PID1		= (1 << 18), /* Protocol ID bit 1/2 */
+	PID0		= (1 << 17), /* Protocol ID bit 2/2 */
+
+#define RxProtoUDP	(PID1)
+#define RxProtoTCP	(PID0)
+#define RxProtoIP	(PID1 | PID0)
+#define RxProtoMask	RxProtoIP
+
+	IPFail		= (1 << 16), /* IP checksum failed */
+	UDPFail		= (1 << 15), /* UDP/IP checksum failed */
+	TCPFail		= (1 << 14), /* TCP/IP checksum failed */
+	RxVlanTag	= (1 << 16), /* VLAN tag available */
+};
+
+#define RsvdMask	0x3fffc000
+
+struct TxDesc {
+	__le32 opts1;
+	__le32 opts2;
+	__le64 addr;
+};
+
+struct RxDesc {
+	__le32 opts1;
+	__le32 opts2;
+	__le64 addr;
+};
+
+struct ring_info {
+	struct sk_buff	*skb;
+	u32		len;
+	u8		__pad[sizeof(void *) - sizeof(u32)];
+};
+
+enum features {
+	RTL_FEATURE_WOL		= (1 << 0),
+	RTL_FEATURE_MSI		= (1 << 1),
+	RTL_FEATURE_GMII	= (1 << 2),
+};
+
+struct rtl8169_counters {
+	__le64	tx_packets;
+	__le64	rx_packets;
+	__le64	tx_errors;
+	__le32	rx_errors;
+	__le16	rx_missed;
+	__le16	align_errors;
+	__le32	tx_one_collision;
+	__le32	tx_multi_collision;
+	__le64	rx_unicast;
+	__le64	rx_broadcast;
+	__le32	rx_multicast;
+	__le16	tx_aborted;
+	__le16	tx_underun;
+};
+
+struct rtl8169_private {
+	void __iomem *mmio_addr;	/* memory map physical address */
+	struct pci_dev *pci_dev;	/* Index of PCI device */
+	struct net_device *dev;
+	struct napi_struct napi;
+	spinlock_t lock;		/* spin lock flag */
+	u32 msg_enable;
+	int chipset;
+	int mac_version;
+	u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
+	u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
+	u32 dirty_rx;
+	u32 dirty_tx;
+	struct TxDesc *TxDescArray;	/* 256-aligned Tx descriptor ring */
+	struct RxDesc *RxDescArray;	/* 256-aligned Rx descriptor ring */
+	dma_addr_t TxPhyAddr;
+	dma_addr_t RxPhyAddr;
+	struct sk_buff *Rx_skbuff[NUM_RX_DESC];	/* Rx data buffers */
+	struct ring_info tx_skb[NUM_TX_DESC];	/* Tx data buffers */
+	unsigned align;
+	unsigned rx_buf_sz;
+	struct timer_list timer;
+	u16 cp_cmd;
+	u16 intr_event;
+	u16 napi_event;
+	u16 intr_mask;
+	int phy_1000_ctrl_reg;
+#ifdef CONFIG_R8169_VLAN
+	struct vlan_group *vlgrp;
+#endif
+	int (*set_speed)(struct net_device *, u8 autoneg, u16 speed, u8 duplex);
+	int (*get_settings)(struct net_device *, struct ethtool_cmd *);
+	void (*phy_reset_enable)(void __iomem *);
+	void (*hw_start)(struct net_device *);
+	unsigned int (*phy_reset_pending)(void __iomem *);
+	unsigned int (*link_ok)(void __iomem *);
+	int (*do_ioctl)(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd);
+	int pcie_cap;
+	struct delayed_work task;
+	unsigned features;
+
+	struct mii_if_info mii;
+	struct rtl8169_counters counters;
+	u32 saved_wolopts;
+};
+
+MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
+MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver");
+module_param(rx_copybreak, int, 0);
+MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
+module_param(use_dac, int, 0);
+MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot.");
+module_param_named(debug, debug.msg_enable, int, 0);
+MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(RTL8169_VERSION);
+
+static int rtl8169_open(struct net_device *dev);
+static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
+				      struct net_device *dev);
+static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance);
+static int rtl8169_init_ring(struct net_device *dev);
+static void rtl_hw_start(struct net_device *dev);
+static int rtl8169_close(struct net_device *dev);
+static void rtl_set_rx_mode(struct net_device *dev);
+static void rtl8169_tx_timeout(struct net_device *dev);
+static struct net_device_stats *rtl8169_get_stats(struct net_device *dev);
+static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *,
+				void __iomem *, u32 budget);
+static int rtl8169_change_mtu(struct net_device *dev, int new_mtu);
+static void rtl8169_down(struct net_device *dev);
+static void rtl8169_rx_clear(struct rtl8169_private *tp);
+static int rtl8169_poll(struct napi_struct *napi, int budget);
+
+static const unsigned int rtl8169_rx_config =
+	(RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);
+
+static void mdio_write(void __iomem *ioaddr, int reg_addr, int value)
+{
+	int i;
+
+	RTL_W32(PHYAR, 0x80000000 | (reg_addr & 0x1f) << 16 | (value & 0xffff));
+
+	for (i = 20; i > 0; i--) {
+		/*
+		 * Check if the RTL8169 has completed writing to the specified
+		 * MII register.
+		 */
+		if (!(RTL_R32(PHYAR) & 0x80000000))
+			break;
+		udelay(25);
+	}
+	/*
+	 * According to hardware specs a 20us delay is required after write
+	 * complete indication, but before sending next command.
+	 */
+	udelay(20);
+}
+
+static int mdio_read(void __iomem *ioaddr, int reg_addr)
+{
+	int i, value = -1;
+
+	RTL_W32(PHYAR, 0x0 | (reg_addr & 0x1f) << 16);
+
+	for (i = 20; i > 0; i--) {
+		/*
+		 * Check if the RTL8169 has completed retrieving data from
+		 * the specified MII register.
+		 */
+		if (RTL_R32(PHYAR) & 0x80000000) {
+			value = RTL_R32(PHYAR) & 0xffff;
+			break;
+		}
+		udelay(25);
+	}
+	/*
+	 * According to hardware specs a 20us delay is required after read
+	 * complete indication, but before sending next command.
+	 */
+	udelay(20);
+
+	return value;
+}
+
+static void mdio_patch(void __iomem *ioaddr, int reg_addr, int value)
+{
+	mdio_write(ioaddr, reg_addr, mdio_read(ioaddr, reg_addr) | value);
+}
+
+static void mdio_plus_minus(void __iomem *ioaddr, int reg_addr, int p, int m)
+{
+	int val;
+
+	val = mdio_read(ioaddr, reg_addr);
+	mdio_write(ioaddr, reg_addr, (val | p) & ~m);
+}
+
+static void rtl_mdio_write(struct net_device *dev, int phy_id, int location,
+			   int val)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	mdio_write(ioaddr, location, val);
+}
+
+static int rtl_mdio_read(struct net_device *dev, int phy_id, int location)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	return mdio_read(ioaddr, location);
+}
+
+static void rtl_ephy_write(void __iomem *ioaddr, int reg_addr, int value)
+{
+	unsigned int i;
+
+	RTL_W32(EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |
+		(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (!(RTL_R32(EPHYAR) & EPHYAR_FLAG))
+			break;
+		udelay(10);
+	}
+}
+
+static u16 rtl_ephy_read(void __iomem *ioaddr, int reg_addr)
+{
+	u16 value = 0xffff;
+	unsigned int i;
+
+	RTL_W32(EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (RTL_R32(EPHYAR) & EPHYAR_FLAG) {
+			value = RTL_R32(EPHYAR) & EPHYAR_DATA_MASK;
+			break;
+		}
+		udelay(10);
+	}
+
+	return value;
+}
+
+static void rtl_csi_write(void __iomem *ioaddr, int addr, int value)
+{
+	unsigned int i;
+
+	RTL_W32(CSIDR, value);
+	RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
+		CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (!(RTL_R32(CSIAR) & CSIAR_FLAG))
+			break;
+		udelay(10);
+	}
+}
+
+static u32 rtl_csi_read(void __iomem *ioaddr, int addr)
+{
+	u32 value = ~0x00;
+	unsigned int i;
+
+	RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) |
+		CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
+
+	for (i = 0; i < 100; i++) {
+		if (RTL_R32(CSIAR) & CSIAR_FLAG) {
+			value = RTL_R32(CSIDR);
+			break;
+		}
+		udelay(10);
+	}
+
+	return value;
+}
+
+static u8 rtl8168d_efuse_read(void __iomem *ioaddr, int reg_addr)
+{
+	u8 value = 0xff;
+	unsigned int i;
+
+	RTL_W32(EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT);
+
+	for (i = 0; i < 300; i++) {
+		if (RTL_R32(EFUSEAR) & EFUSEAR_FLAG) {
+			value = RTL_R32(EFUSEAR) & EFUSEAR_DATA_MASK;
+			break;
+		}
+		udelay(100);
+	}
+
+	return value;
+}
+
+static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr)
+{
+	RTL_W16(IntrMask, 0x0000);
+
+	RTL_W16(IntrStatus, 0xffff);
+}
+
+static void rtl8169_asic_down(void __iomem *ioaddr)
+{
+	RTL_W8(ChipCmd, 0x00);
+	rtl8169_irq_mask_and_ack(ioaddr);
+	RTL_R16(CPlusCmd);
+}
+
+static unsigned int rtl8169_tbi_reset_pending(void __iomem *ioaddr)
+{
+	return RTL_R32(TBICSR) & TBIReset;
+}
+
+static unsigned int rtl8169_xmii_reset_pending(void __iomem *ioaddr)
+{
+	return mdio_read(ioaddr, MII_BMCR) & BMCR_RESET;
+}
+
+static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr)
+{
+	return RTL_R32(TBICSR) & TBILinkOk;
+}
+
+static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr)
+{
+	return RTL_R8(PHYstatus) & LinkStatus;
+}
+
+static void rtl8169_tbi_reset_enable(void __iomem *ioaddr)
+{
+	RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset);
+}
+
+static void rtl8169_xmii_reset_enable(void __iomem *ioaddr)
+{
+	unsigned int val;
+
+	val = mdio_read(ioaddr, MII_BMCR) | BMCR_RESET;
+	mdio_write(ioaddr, MII_BMCR, val & 0xffff);
+}
+
+static void rtl8169_check_link_status(struct net_device *dev,
+				      struct rtl8169_private *tp,
+				      void __iomem *ioaddr)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&tp->lock, flags);
+	if (tp->link_ok(ioaddr)) {
+		/* This is to cancel a scheduled suspend if there's one. */
+		pm_request_resume(&tp->pci_dev->dev);
+		netif_carrier_on(dev);
+		netif_info(tp, ifup, dev, "link up\n");
+	} else {
+		netif_carrier_off(dev);
+		netif_info(tp, ifdown, dev, "link down\n");
+		pm_schedule_suspend(&tp->pci_dev->dev, 100);
+	}
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
+
+static u32 __rtl8169_get_wol(struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	u8 options;
+	u32 wolopts = 0;
+
+	options = RTL_R8(Config1);
+	if (!(options & PMEnable))
+		return 0;
+
+	options = RTL_R8(Config3);
+	if (options & LinkUp)
+		wolopts |= WAKE_PHY;
+	if (options & MagicPacket)
+		wolopts |= WAKE_MAGIC;
+
+	options = RTL_R8(Config5);
+	if (options & UWF)
+		wolopts |= WAKE_UCAST;
+	if (options & BWF)
+		wolopts |= WAKE_BCAST;
+	if (options & MWF)
+		wolopts |= WAKE_MCAST;
+
+	return wolopts;
+}
+
+static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	spin_lock_irq(&tp->lock);
+
+	wol->supported = WAKE_ANY;
+	wol->wolopts = __rtl8169_get_wol(tp);
+
+	spin_unlock_irq(&tp->lock);
+}
+
+static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int i;
+	static const struct {
+		u32 opt;
+		u16 reg;
+		u8  mask;
+	} cfg[] = {
+		{ WAKE_ANY,   Config1, PMEnable },
+		{ WAKE_PHY,   Config3, LinkUp },
+		{ WAKE_MAGIC, Config3, MagicPacket },
+		{ WAKE_UCAST, Config5, UWF },
+		{ WAKE_BCAST, Config5, BWF },
+		{ WAKE_MCAST, Config5, MWF },
+		{ WAKE_ANY,   Config5, LanWake }
+	};
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	for (i = 0; i < ARRAY_SIZE(cfg); i++) {
+		u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask;
+		if (wolopts & cfg[i].opt)
+			options |= cfg[i].mask;
+		RTL_W8(cfg[i].reg, options);
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+}
+
+static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	spin_lock_irq(&tp->lock);
+
+	if (wol->wolopts)
+		tp->features |= RTL_FEATURE_WOL;
+	else
+		tp->features &= ~RTL_FEATURE_WOL;
+	__rtl8169_set_wol(tp, wol->wolopts);
+	device_set_wakeup_enable(&tp->pci_dev->dev, wol->wolopts);
+
+	spin_unlock_irq(&tp->lock);
+
+	return 0;
+}
+
+static void rtl8169_get_drvinfo(struct net_device *dev,
+				struct ethtool_drvinfo *info)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	strcpy(info->driver, MODULENAME);
+	strcpy(info->version, RTL8169_VERSION);
+	strcpy(info->bus_info, pci_name(tp->pci_dev));
+}
+
+static int rtl8169_get_regs_len(struct net_device *dev)
+{
+	return R8169_REGS_SIZE;
+}
+
+static int rtl8169_set_speed_tbi(struct net_device *dev,
+				 u8 autoneg, u16 speed, u8 duplex)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	int ret = 0;
+	u32 reg;
+
+	reg = RTL_R32(TBICSR);
+	if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) &&
+	    (duplex == DUPLEX_FULL)) {
+		RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart));
+	} else if (autoneg == AUTONEG_ENABLE)
+		RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart);
+	else {
+		netif_warn(tp, link, dev,
+			   "incorrect speed setting refused in TBI mode\n");
+		ret = -EOPNOTSUPP;
+	}
+
+	return ret;
+}
+
+static int rtl8169_set_speed_xmii(struct net_device *dev,
+				  u8 autoneg, u16 speed, u8 duplex)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	int giga_ctrl, bmcr;
+
+	if (autoneg == AUTONEG_ENABLE) {
+		int auto_nego;
+
+		auto_nego = mdio_read(ioaddr, MII_ADVERTISE);
+		auto_nego |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
+			      ADVERTISE_100HALF | ADVERTISE_100FULL);
+		auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
+
+		giga_ctrl = mdio_read(ioaddr, MII_CTRL1000);
+		giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
+
+		/* The 8100e/8101e/8102e do Fast Ethernet only. */
+		if ((tp->mac_version != RTL_GIGA_MAC_VER_07) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_08) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_09) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_10) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_13) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_14) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_15) &&
+		    (tp->mac_version != RTL_GIGA_MAC_VER_16)) {
+			giga_ctrl |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
+		} else {
+			netif_info(tp, link, dev,
+				   "PHY does not support 1000Mbps\n");
+		}
+
+		bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
+
+		if ((tp->mac_version == RTL_GIGA_MAC_VER_11) ||
+		    (tp->mac_version == RTL_GIGA_MAC_VER_12) ||
+		    (tp->mac_version >= RTL_GIGA_MAC_VER_17)) {
+			/*
+			 * Wake up the PHY.
+			 * Vendor specific (0x1f) and reserved (0x0e) MII
+			 * registers.
+			 */
+			mdio_write(ioaddr, 0x1f, 0x0000);
+			mdio_write(ioaddr, 0x0e, 0x0000);
+		}
+
+		mdio_write(ioaddr, MII_ADVERTISE, auto_nego);
+		mdio_write(ioaddr, MII_CTRL1000, giga_ctrl);
+	} else {
+		giga_ctrl = 0;
+
+		if (speed == SPEED_10)
+			bmcr = 0;
+		else if (speed == SPEED_100)
+			bmcr = BMCR_SPEED100;
+		else
+			return -EINVAL;
+
+		if (duplex == DUPLEX_FULL)
+			bmcr |= BMCR_FULLDPLX;
+
+		mdio_write(ioaddr, 0x1f, 0x0000);
+	}
+
+	tp->phy_1000_ctrl_reg = giga_ctrl;
+
+	mdio_write(ioaddr, MII_BMCR, bmcr);
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03)) {
+		if ((speed == SPEED_100) && (autoneg != AUTONEG_ENABLE)) {
+			mdio_write(ioaddr, 0x17, 0x2138);
+			mdio_write(ioaddr, 0x0e, 0x0260);
+		} else {
+			mdio_write(ioaddr, 0x17, 0x2108);
+			mdio_write(ioaddr, 0x0e, 0x0000);
+		}
+	}
+
+	return 0;
+}
+
+static int rtl8169_set_speed(struct net_device *dev,
+			     u8 autoneg, u16 speed, u8 duplex)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int ret;
+
+	ret = tp->set_speed(dev, autoneg, speed, duplex);
+
+	if (netif_running(dev) && (tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL))
+		mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT);
+
+	return ret;
+}
+
+static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned long flags;
+	int ret;
+
+	spin_lock_irqsave(&tp->lock, flags);
+	ret = rtl8169_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex);
+	spin_unlock_irqrestore(&tp->lock, flags);
+
+	return ret;
+}
+
+static u32 rtl8169_get_rx_csum(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	return tp->cp_cmd & RxChkSum;
+}
+
+static int rtl8169_set_rx_csum(struct net_device *dev, u32 data)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+
+	spin_lock_irqsave(&tp->lock, flags);
+
+	if (data)
+		tp->cp_cmd |= RxChkSum;
+	else
+		tp->cp_cmd &= ~RxChkSum;
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+	RTL_R16(CPlusCmd);
+
+	spin_unlock_irqrestore(&tp->lock, flags);
+
+	return 0;
+}
+
+#ifdef CONFIG_R8169_VLAN
+
+static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
+				      struct sk_buff *skb)
+{
+	return (tp->vlgrp && vlan_tx_tag_present(skb)) ?
+		TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
+}
+
+static void rtl8169_vlan_rx_register(struct net_device *dev,
+				     struct vlan_group *grp)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+
+	spin_lock_irqsave(&tp->lock, flags);
+	tp->vlgrp = grp;
+	/*
+	 * Do not disable RxVlan on 8110SCd.
+	 */
+	if (tp->vlgrp || (tp->mac_version == RTL_GIGA_MAC_VER_05))
+		tp->cp_cmd |= RxVlan;
+	else
+		tp->cp_cmd &= ~RxVlan;
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+	RTL_R16(CPlusCmd);
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
+			       struct sk_buff *skb, int polling)
+{
+	u32 opts2 = le32_to_cpu(desc->opts2);
+	struct vlan_group *vlgrp = tp->vlgrp;
+	int ret;
+
+	if (vlgrp && (opts2 & RxVlanTag)) {
+		__vlan_hwaccel_rx(skb, vlgrp, swab16(opts2 & 0xffff), polling);
+		ret = 0;
+	} else
+		ret = -1;
+	desc->opts2 = 0;
+	return ret;
+}
+
+#else /* !CONFIG_R8169_VLAN */
+
+static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
+				      struct sk_buff *skb)
+{
+	return 0;
+}
+
+static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
+			       struct sk_buff *skb, int polling)
+{
+	return -1;
+}
+
+#endif
+
+static int rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	u32 status;
+
+	cmd->supported =
+		SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE;
+	cmd->port = PORT_FIBRE;
+	cmd->transceiver = XCVR_INTERNAL;
+
+	status = RTL_R32(TBICSR);
+	cmd->advertising = (status & TBINwEnable) ?  ADVERTISED_Autoneg : 0;
+	cmd->autoneg = !!(status & TBINwEnable);
+
+	cmd->speed = SPEED_1000;
+	cmd->duplex = DUPLEX_FULL; /* Always set */
+
+	return 0;
+}
+
+static int rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	return mii_ethtool_gset(&tp->mii, cmd);
+}
+
+static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned long flags;
+	int rc;
+
+	spin_lock_irqsave(&tp->lock, flags);
+
+	rc = tp->get_settings(dev, cmd);
+
+	spin_unlock_irqrestore(&tp->lock, flags);
+	return rc;
+}
+
+static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
+			     void *p)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned long flags;
+
+	if (regs->len > R8169_REGS_SIZE)
+		regs->len = R8169_REGS_SIZE;
+
+	spin_lock_irqsave(&tp->lock, flags);
+	memcpy_fromio(p, tp->mmio_addr, regs->len);
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+static u32 rtl8169_get_msglevel(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	return tp->msg_enable;
+}
+
+static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	tp->msg_enable = value;
+}
+
+static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
+	"tx_packets",
+	"rx_packets",
+	"tx_errors",
+	"rx_errors",
+	"rx_missed",
+	"align_errors",
+	"tx_single_collisions",
+	"tx_multi_collisions",
+	"unicast",
+	"broadcast",
+	"multicast",
+	"tx_aborted",
+	"tx_underrun",
+};
+
+static int rtl8169_get_sset_count(struct net_device *dev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_STATS:
+		return ARRAY_SIZE(rtl8169_gstrings);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void rtl8169_update_counters(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct rtl8169_counters *counters;
+	dma_addr_t paddr;
+	u32 cmd;
+	int wait = 1000;
+
+	/*
+	 * Some chips are unable to dump tally counters when the receiver
+	 * is disabled.
+	 */
+	if ((RTL_R8(ChipCmd) & CmdRxEnb) == 0)
+		return;
+
+	counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr);
+	if (!counters)
+		return;
+
+	RTL_W32(CounterAddrHigh, (u64)paddr >> 32);
+	cmd = (u64)paddr & DMA_BIT_MASK(32);
+	RTL_W32(CounterAddrLow, cmd);
+	RTL_W32(CounterAddrLow, cmd | CounterDump);
+
+	while (wait--) {
+		if ((RTL_R32(CounterAddrLow) & CounterDump) == 0) {
+			/* copy updated counters */
+			memcpy(&tp->counters, counters, sizeof(*counters));
+			break;
+		}
+		udelay(10);
+	}
+
+	RTL_W32(CounterAddrLow, 0);
+	RTL_W32(CounterAddrHigh, 0);
+
+	pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr);
+}
+
+static void rtl8169_get_ethtool_stats(struct net_device *dev,
+				      struct ethtool_stats *stats, u64 *data)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	ASSERT_RTNL();
+
+	rtl8169_update_counters(dev);
+
+	data[0] = le64_to_cpu(tp->counters.tx_packets);
+	data[1] = le64_to_cpu(tp->counters.rx_packets);
+	data[2] = le64_to_cpu(tp->counters.tx_errors);
+	data[3] = le32_to_cpu(tp->counters.rx_errors);
+	data[4] = le16_to_cpu(tp->counters.rx_missed);
+	data[5] = le16_to_cpu(tp->counters.align_errors);
+	data[6] = le32_to_cpu(tp->counters.tx_one_collision);
+	data[7] = le32_to_cpu(tp->counters.tx_multi_collision);
+	data[8] = le64_to_cpu(tp->counters.rx_unicast);
+	data[9] = le64_to_cpu(tp->counters.rx_broadcast);
+	data[10] = le32_to_cpu(tp->counters.rx_multicast);
+	data[11] = le16_to_cpu(tp->counters.tx_aborted);
+	data[12] = le16_to_cpu(tp->counters.tx_underun);
+}
+
+static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
+{
+	switch(stringset) {
+	case ETH_SS_STATS:
+		memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
+		break;
+	}
+}
+
+static const struct ethtool_ops rtl8169_ethtool_ops = {
+	.get_drvinfo		= rtl8169_get_drvinfo,
+	.get_regs_len		= rtl8169_get_regs_len,
+	.get_link		= ethtool_op_get_link,
+	.get_settings		= rtl8169_get_settings,
+	.set_settings		= rtl8169_set_settings,
+	.get_msglevel		= rtl8169_get_msglevel,
+	.set_msglevel		= rtl8169_set_msglevel,
+	.get_rx_csum		= rtl8169_get_rx_csum,
+	.set_rx_csum		= rtl8169_set_rx_csum,
+	.set_tx_csum		= ethtool_op_set_tx_csum,
+	.set_sg			= ethtool_op_set_sg,
+	.set_tso		= ethtool_op_set_tso,
+	.get_regs		= rtl8169_get_regs,
+	.get_wol		= rtl8169_get_wol,
+	.set_wol		= rtl8169_set_wol,
+	.get_strings		= rtl8169_get_strings,
+	.get_sset_count		= rtl8169_get_sset_count,
+	.get_ethtool_stats	= rtl8169_get_ethtool_stats,
+};
+
+static void rtl8169_get_mac_version(struct rtl8169_private *tp,
+				    void __iomem *ioaddr)
+{
+	/*
+	 * The driver currently handles the 8168Bf and the 8168Be identically
+	 * but they can be identified more specifically through the test below
+	 * if needed:
+	 *
+	 * (RTL_R32(TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be
+	 *
+	 * Same thing for the 8101Eb and the 8101Ec:
+	 *
+	 * (RTL_R32(TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec
+	 */
+	static const struct {
+		u32 mask;
+		u32 val;
+		int mac_version;
+	} mac_info[] = {
+		/* 8168D family. */
+		{ 0x7cf00000, 0x28300000,	RTL_GIGA_MAC_VER_26 },
+		{ 0x7cf00000, 0x28100000,	RTL_GIGA_MAC_VER_25 },
+		{ 0x7c800000, 0x28800000,	RTL_GIGA_MAC_VER_27 },
+		{ 0x7c800000, 0x28000000,	RTL_GIGA_MAC_VER_26 },
+
+		/* 8168C family. */
+		{ 0x7cf00000, 0x3cb00000,	RTL_GIGA_MAC_VER_24 },
+		{ 0x7cf00000, 0x3c900000,	RTL_GIGA_MAC_VER_23 },
+		{ 0x7cf00000, 0x3c800000,	RTL_GIGA_MAC_VER_18 },
+		{ 0x7c800000, 0x3c800000,	RTL_GIGA_MAC_VER_24 },
+		{ 0x7cf00000, 0x3c000000,	RTL_GIGA_MAC_VER_19 },
+		{ 0x7cf00000, 0x3c200000,	RTL_GIGA_MAC_VER_20 },
+		{ 0x7cf00000, 0x3c300000,	RTL_GIGA_MAC_VER_21 },
+		{ 0x7cf00000, 0x3c400000,	RTL_GIGA_MAC_VER_22 },
+		{ 0x7c800000, 0x3c000000,	RTL_GIGA_MAC_VER_22 },
+
+		/* 8168B family. */
+		{ 0x7cf00000, 0x38000000,	RTL_GIGA_MAC_VER_12 },
+		{ 0x7cf00000, 0x38500000,	RTL_GIGA_MAC_VER_17 },
+		{ 0x7c800000, 0x38000000,	RTL_GIGA_MAC_VER_17 },
+		{ 0x7c800000, 0x30000000,	RTL_GIGA_MAC_VER_11 },
+
+		/* 8101 family. */
+		{ 0x7cf00000, 0x34a00000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7cf00000, 0x24a00000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7cf00000, 0x34900000,	RTL_GIGA_MAC_VER_08 },
+		{ 0x7cf00000, 0x24900000,	RTL_GIGA_MAC_VER_08 },
+		{ 0x7cf00000, 0x34800000,	RTL_GIGA_MAC_VER_07 },
+		{ 0x7cf00000, 0x24800000,	RTL_GIGA_MAC_VER_07 },
+		{ 0x7cf00000, 0x34000000,	RTL_GIGA_MAC_VER_13 },
+		{ 0x7cf00000, 0x34300000,	RTL_GIGA_MAC_VER_10 },
+		{ 0x7cf00000, 0x34200000,	RTL_GIGA_MAC_VER_16 },
+		{ 0x7c800000, 0x34800000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7c800000, 0x24800000,	RTL_GIGA_MAC_VER_09 },
+		{ 0x7c800000, 0x34000000,	RTL_GIGA_MAC_VER_16 },
+		/* FIXME: where did these entries come from ? -- FR */
+		{ 0xfc800000, 0x38800000,	RTL_GIGA_MAC_VER_15 },
+		{ 0xfc800000, 0x30800000,	RTL_GIGA_MAC_VER_14 },
+
+		/* 8110 family. */
+		{ 0xfc800000, 0x98000000,	RTL_GIGA_MAC_VER_06 },
+		{ 0xfc800000, 0x18000000,	RTL_GIGA_MAC_VER_05 },
+		{ 0xfc800000, 0x10000000,	RTL_GIGA_MAC_VER_04 },
+		{ 0xfc800000, 0x04000000,	RTL_GIGA_MAC_VER_03 },
+		{ 0xfc800000, 0x00800000,	RTL_GIGA_MAC_VER_02 },
+		{ 0xfc800000, 0x00000000,	RTL_GIGA_MAC_VER_01 },
+
+		/* Catch-all */
+		{ 0x00000000, 0x00000000,	RTL_GIGA_MAC_NONE   }
+	}, *p = mac_info;
+	u32 reg;
+
+	reg = RTL_R32(TxConfig);
+	while ((reg & p->mask) != p->val)
+		p++;
+	tp->mac_version = p->mac_version;
+}
+
+static void rtl8169_print_mac_version(struct rtl8169_private *tp)
+{
+	dprintk("mac_version = 0x%02x\n", tp->mac_version);
+}
+
+struct phy_reg {
+	u16 reg;
+	u16 val;
+};
+
+static void rtl_phy_write(void __iomem *ioaddr, const struct phy_reg *regs, int len)
+{
+	while (len-- > 0) {
+		mdio_write(ioaddr, regs->reg, regs->val);
+		regs++;
+	}
+}
+
+static void rtl8169s_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x06, 0x006e },
+		{ 0x08, 0x0708 },
+		{ 0x15, 0x4000 },
+		{ 0x18, 0x65c7 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x03, 0x00a1 },
+		{ 0x02, 0x0008 },
+		{ 0x01, 0x0120 },
+		{ 0x00, 0x1000 },
+		{ 0x04, 0x0800 },
+		{ 0x04, 0x0000 },
+
+		{ 0x03, 0xff41 },
+		{ 0x02, 0xdf60 },
+		{ 0x01, 0x0140 },
+		{ 0x00, 0x0077 },
+		{ 0x04, 0x7800 },
+		{ 0x04, 0x7000 },
+
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf0f9 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0x9000 },
+
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0xff95 },
+		{ 0x00, 0xba00 },
+		{ 0x04, 0xa800 },
+		{ 0x04, 0xa000 },
+
+		{ 0x03, 0xff41 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x0140 },
+		{ 0x00, 0x00bb },
+		{ 0x04, 0xb800 },
+		{ 0x04, 0xb000 },
+
+		{ 0x03, 0xdf41 },
+		{ 0x02, 0xdc60 },
+		{ 0x01, 0x6340 },
+		{ 0x00, 0x007d },
+		{ 0x04, 0xd800 },
+		{ 0x04, 0xd000 },
+
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x100a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0xf000 },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0b, 0x0000 },
+		{ 0x00, 0x9200 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8169sb_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0002 },
+		{ 0x01, 0x90d0 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp,
+					   void __iomem *ioaddr)
+{
+	struct pci_dev *pdev = tp->pci_dev;
+	u16 vendor_id, device_id;
+
+	pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &vendor_id);
+	pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &device_id);
+
+	if ((vendor_id != PCI_VENDOR_ID_GIGABYTE) || (device_id != 0xe000))
+		return;
+
+	mdio_write(ioaddr, 0x1f, 0x0001);
+	mdio_write(ioaddr, 0x10, 0xf01b);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp,
+				     void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x04, 0x0000 },
+		{ 0x03, 0x00a1 },
+		{ 0x02, 0x0008 },
+		{ 0x01, 0x0120 },
+		{ 0x00, 0x1000 },
+		{ 0x04, 0x0800 },
+		{ 0x04, 0x9000 },
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf099 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0xa000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0xff95 },
+		{ 0x00, 0xba00 },
+		{ 0x04, 0xa800 },
+		{ 0x04, 0xf000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x101a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0x0000 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x10, 0xf41b },
+		{ 0x14, 0xfb54 },
+		{ 0x18, 0xf5c7 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x17, 0x0cc0 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	rtl8169scd_hw_phy_config_quirk(tp, ioaddr);
+}
+
+static void rtl8169sce_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x04, 0x0000 },
+		{ 0x03, 0x00a1 },
+		{ 0x02, 0x0008 },
+		{ 0x01, 0x0120 },
+		{ 0x00, 0x1000 },
+		{ 0x04, 0x0800 },
+		{ 0x04, 0x9000 },
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf099 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0xa000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0xff95 },
+		{ 0x00, 0xba00 },
+		{ 0x04, 0xa800 },
+		{ 0x04, 0xf000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x101a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0x0000 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x0b, 0x8480 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x18, 0x67c7 },
+		{ 0x04, 0x2000 },
+		{ 0x03, 0x002f },
+		{ 0x02, 0x4360 },
+		{ 0x01, 0x0109 },
+		{ 0x00, 0x3022 },
+		{ 0x04, 0x2800 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x17, 0x0cc0 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168bb_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x10, 0xf41b },
+		{ 0x1f, 0x0000 }
+	};
+
+	mdio_write(ioaddr, 0x1f, 0x0001);
+	mdio_patch(ioaddr, 0x16, 1 << 0);
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168bef_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x10, 0xf41b },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168cp_1_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0000 },
+		{ 0x1d, 0x0f00 },
+		{ 0x1f, 0x0002 },
+		{ 0x0c, 0x1ec8 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168cp_2_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x1d, 0x3d98 },
+		{ 0x1f, 0x0000 }
+	};
+
+	mdio_write(ioaddr, 0x1f, 0x0000);
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8168c_1_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x12, 0x2300 },
+		{ 0x1f, 0x0002 },
+		{ 0x00, 0x88d4 },
+		{ 0x01, 0x82b1 },
+		{ 0x03, 0x7002 },
+		{ 0x08, 0x9e30 },
+		{ 0x09, 0x01f0 },
+		{ 0x0a, 0x5500 },
+		{ 0x0c, 0x00c8 },
+		{ 0x1f, 0x0003 },
+		{ 0x12, 0xc096 },
+		{ 0x16, 0x000a },
+		{ 0x1f, 0x0000 },
+		{ 0x1f, 0x0000 },
+		{ 0x09, 0x2000 },
+		{ 0x09, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8168c_2_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x12, 0x2300 },
+		{ 0x03, 0x802f },
+		{ 0x02, 0x4f02 },
+		{ 0x01, 0x0409 },
+		{ 0x00, 0xf099 },
+		{ 0x04, 0x9800 },
+		{ 0x04, 0x9000 },
+		{ 0x1d, 0x3d98 },
+		{ 0x1f, 0x0002 },
+		{ 0x0c, 0x7eb8 },
+		{ 0x06, 0x0761 },
+		{ 0x1f, 0x0003 },
+		{ 0x16, 0x0f0a },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	mdio_patch(ioaddr, 0x16, 1 << 0);
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8168c_3_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x12, 0x2300 },
+		{ 0x1d, 0x3d98 },
+		{ 0x1f, 0x0002 },
+		{ 0x0c, 0x7eb8 },
+		{ 0x06, 0x5461 },
+		{ 0x1f, 0x0003 },
+		{ 0x16, 0x0f0a },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+	mdio_patch(ioaddr, 0x16, 1 << 0);
+	mdio_patch(ioaddr, 0x14, 1 << 5);
+	mdio_patch(ioaddr, 0x0d, 1 << 5);
+	mdio_write(ioaddr, 0x1f, 0x0000);
+}
+
+static void rtl8168c_4_hw_phy_config(void __iomem *ioaddr)
+{
+	rtl8168c_3_hw_phy_config(ioaddr);
+}
+
+static void rtl8168d_1_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init_0[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x06, 0x4064 },
+		{ 0x07, 0x2863 },
+		{ 0x08, 0x059c },
+		{ 0x09, 0x26b4 },
+		{ 0x0a, 0x6a19 },
+		{ 0x0b, 0xdcc8 },
+		{ 0x10, 0xf06d },
+		{ 0x14, 0x7f68 },
+		{ 0x18, 0x7fd9 },
+		{ 0x1c, 0xf0ff },
+		{ 0x1d, 0x3d9c },
+		{ 0x1f, 0x0003 },
+		{ 0x12, 0xf49f },
+		{ 0x13, 0x070b },
+		{ 0x1a, 0x05ad },
+		{ 0x14, 0x94c0 }
+	};
+	static const struct phy_reg phy_reg_init_1[] = {
+		{ 0x1f, 0x0002 },
+		{ 0x06, 0x5561 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8332 },
+		{ 0x06, 0x5561 }
+	};
+	static const struct phy_reg phy_reg_init_2[] = {
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0xffc2 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8000 },
+		{ 0x06, 0xf8f9 },
+		{ 0x06, 0xfaef },
+		{ 0x06, 0x59ee },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x00e0 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x7d59 },
+		{ 0x06, 0x0fef },
+		{ 0x06, 0x0139 },
+		{ 0x06, 0x029e },
+		{ 0x06, 0x06ef },
+		{ 0x06, 0x1039 },
+		{ 0x06, 0x089f },
+		{ 0x06, 0x2aee },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x01e0 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x7d58 },
+		{ 0x06, 0x409e },
+		{ 0x06, 0x0f39 },
+		{ 0x06, 0x46aa },
+		{ 0x06, 0x0bbf },
+		{ 0x06, 0x8290 },
+		{ 0x06, 0xd682 },
+		{ 0x06, 0x9802 },
+		{ 0x06, 0x014f },
+		{ 0x06, 0xae09 },
+		{ 0x06, 0xbf82 },
+		{ 0x06, 0x98d6 },
+		{ 0x06, 0x82a0 },
+		{ 0x06, 0x0201 },
+		{ 0x06, 0x4fef },
+		{ 0x06, 0x95fe },
+		{ 0x06, 0xfdfc },
+		{ 0x06, 0x05f8 },
+		{ 0x06, 0xf9fa },
+		{ 0x06, 0xeef8 },
+		{ 0x06, 0xea00 },
+		{ 0x06, 0xeef8 },
+		{ 0x06, 0xeb00 },
+		{ 0x06, 0xe2f8 },
+		{ 0x06, 0x7ce3 },
+		{ 0x06, 0xf87d },
+		{ 0x06, 0xa511 },
+		{ 0x06, 0x1112 },
+		{ 0x06, 0xd240 },
+		{ 0x06, 0xd644 },
+		{ 0x06, 0x4402 },
+		{ 0x06, 0x8217 },
+		{ 0x06, 0xd2a0 },
+		{ 0x06, 0xd6aa },
+		{ 0x06, 0xaa02 },
+		{ 0x06, 0x8217 },
+		{ 0x06, 0xae0f },
+		{ 0x06, 0xa544 },
+		{ 0x06, 0x4402 },
+		{ 0x06, 0xae4d },
+		{ 0x06, 0xa5aa },
+		{ 0x06, 0xaa02 },
+		{ 0x06, 0xae47 },
+		{ 0x06, 0xaf82 },
+		{ 0x06, 0x13ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x0fee },
+		{ 0x06, 0x834c },
+		{ 0x06, 0x0fee },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x8351 },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x834a },
+		{ 0x06, 0xffee },
+		{ 0x06, 0x834b },
+		{ 0x06, 0xffe0 },
+		{ 0x06, 0x8330 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3158 },
+		{ 0x06, 0xfee4 },
+		{ 0x06, 0xf88a },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8be0 },
+		{ 0x06, 0x8332 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3359 },
+		{ 0x06, 0x0fe2 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x0c24 },
+		{ 0x06, 0x5af0 },
+		{ 0x06, 0x1e12 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ce5 },
+		{ 0x06, 0xf88d },
+		{ 0x06, 0xaf82 },
+		{ 0x06, 0x13e0 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x10e4 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x009f },
+		{ 0x06, 0x0ae0 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0xa010 },
+		{ 0x06, 0xa5ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x01e0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7805 },
+		{ 0x06, 0x9e9a },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x049e },
+		{ 0x06, 0x10e0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7803 },
+		{ 0x06, 0x9e0f },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x019e },
+		{ 0x06, 0x05ae },
+		{ 0x06, 0x0caf },
+		{ 0x06, 0x81f8 },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0xa3af },
+		{ 0x06, 0x81dc },
+		{ 0x06, 0xaf82 },
+		{ 0x06, 0x13ee },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0x00e0 },
+		{ 0x06, 0x8351 },
+		{ 0x06, 0x10e4 },
+		{ 0x06, 0x8351 },
+		{ 0x06, 0x5801 },
+		{ 0x06, 0x9fea },
+		{ 0x06, 0xd000 },
+		{ 0x06, 0xd180 },
+		{ 0x06, 0x1f66 },
+		{ 0x06, 0xe2f8 },
+		{ 0x06, 0xeae3 },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x5af8 },
+		{ 0x06, 0x1e20 },
+		{ 0x06, 0xe6f8 },
+		{ 0x06, 0xeae5 },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0xd302 },
+		{ 0x06, 0xb3fe },
+		{ 0x06, 0xe2f8 },
+		{ 0x06, 0x7cef },
+		{ 0x06, 0x325b },
+		{ 0x06, 0x80e3 },
+		{ 0x06, 0xf87d },
+		{ 0x06, 0x9e03 },
+		{ 0x06, 0x7dff },
+		{ 0x06, 0xff0d },
+		{ 0x06, 0x581c },
+		{ 0x06, 0x551a },
+		{ 0x06, 0x6511 },
+		{ 0x06, 0xa190 },
+		{ 0x06, 0xd3e2 },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0xe383 },
+		{ 0x06, 0x491b },
+		{ 0x06, 0x56ab },
+		{ 0x06, 0x08ef },
+		{ 0x06, 0x56e6 },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0xe783 },
+		{ 0x06, 0x4910 },
+		{ 0x06, 0xd180 },
+		{ 0x06, 0x1f66 },
+		{ 0x06, 0xa004 },
+		{ 0x06, 0xb9e2 },
+		{ 0x06, 0x8348 },
+		{ 0x06, 0xe383 },
+		{ 0x06, 0x49ef },
+		{ 0x06, 0x65e2 },
+		{ 0x06, 0x834a },
+		{ 0x06, 0xe383 },
+		{ 0x06, 0x4b1b },
+		{ 0x06, 0x56aa },
+		{ 0x06, 0x0eef },
+		{ 0x06, 0x56e6 },
+		{ 0x06, 0x834a },
+		{ 0x06, 0xe783 },
+		{ 0x06, 0x4be2 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xe683 },
+		{ 0x06, 0x4ce0 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xa000 },
+		{ 0x06, 0x0caf },
+		{ 0x06, 0x81dc },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4d10 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x4dae },
+		{ 0x06, 0x0480 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x4de0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7803 },
+		{ 0x06, 0x9e0b },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x049e },
+		{ 0x06, 0x04ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x02e0 },
+		{ 0x06, 0x8332 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3359 },
+		{ 0x06, 0x0fe2 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x0c24 },
+		{ 0x06, 0x5af0 },
+		{ 0x06, 0x1e12 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ce5 },
+		{ 0x06, 0xf88d },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x30e1 },
+		{ 0x06, 0x8331 },
+		{ 0x06, 0x6801 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ae5 },
+		{ 0x06, 0xf88b },
+		{ 0x06, 0xae37 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e03 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4ce1 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x1b01 },
+		{ 0x06, 0x9e04 },
+		{ 0x06, 0xaaa1 },
+		{ 0x06, 0xaea8 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e04 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4f00 },
+		{ 0x06, 0xaeab },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4f78 },
+		{ 0x06, 0x039f },
+		{ 0x06, 0x14ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x05d2 },
+		{ 0x06, 0x40d6 },
+		{ 0x06, 0x5554 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x17d2 },
+		{ 0x06, 0xa0d6 },
+		{ 0x06, 0xba00 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x17fe },
+		{ 0x06, 0xfdfc },
+		{ 0x06, 0x05f8 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x60e1 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0x6802 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x60e5 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x48e1 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0x580f },
+		{ 0x06, 0x1e02 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x48e5 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0xd000 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x5bbf },
+		{ 0x06, 0x8350 },
+		{ 0x06, 0xef46 },
+		{ 0x06, 0xdc19 },
+		{ 0x06, 0xddd0 },
+		{ 0x06, 0x0102 },
+		{ 0x06, 0x825b },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x77e0 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x6158 },
+		{ 0x06, 0xfde4 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x61fc },
+		{ 0x06, 0x04f9 },
+		{ 0x06, 0xfafb },
+		{ 0x06, 0xc6bf },
+		{ 0x06, 0xf840 },
+		{ 0x06, 0xbe83 },
+		{ 0x06, 0x50a0 },
+		{ 0x06, 0x0101 },
+		{ 0x06, 0x071b },
+		{ 0x06, 0x89cf },
+		{ 0x06, 0xd208 },
+		{ 0x06, 0xebdb },
+		{ 0x06, 0x19b2 },
+		{ 0x06, 0xfbff },
+		{ 0x06, 0xfefd },
+		{ 0x06, 0x04f8 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x48e1 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0x6808 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x48e5 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0x58f7 },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x48e5 },
+		{ 0x06, 0xf849 },
+		{ 0x06, 0xfc04 },
+		{ 0x06, 0x4d20 },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x4e22 },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x4ddf },
+		{ 0x06, 0xff01 },
+		{ 0x06, 0x4edd },
+		{ 0x06, 0xff01 },
+		{ 0x05, 0x83d4 },
+		{ 0x06, 0x8000 },
+		{ 0x05, 0x83d8 },
+		{ 0x06, 0x8051 },
+		{ 0x02, 0x6010 },
+		{ 0x03, 0xdc00 },
+		{ 0x05, 0xfff6 },
+		{ 0x06, 0x00fc },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0d, 0xf880 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_plus_minus(ioaddr, 0x0b, 0x0010, 0x00ef);
+	mdio_plus_minus(ioaddr, 0x0c, 0xa200, 0x5d00);
+
+	rtl_phy_write(ioaddr, phy_reg_init_1, ARRAY_SIZE(phy_reg_init_1));
+
+	if (rtl8168d_efuse_read(ioaddr, 0x01) == 0xb1) {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x669a },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x669a },
+			{ 0x1f, 0x0002 }
+		};
+		int val;
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+		val = mdio_read(ioaddr, 0x0d);
+
+		if ((val & 0x00ff) != 0x006c) {
+			static const u32 set[] = {
+				0x0065, 0x0066, 0x0067, 0x0068,
+				0x0069, 0x006a, 0x006b, 0x006c
+			};
+			int i;
+
+			mdio_write(ioaddr, 0x1f, 0x0002);
+
+			val &= 0xff00;
+			for (i = 0; i < ARRAY_SIZE(set); i++)
+				mdio_write(ioaddr, 0x0d, val | set[i]);
+		}
+	} else {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x6662 },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x6662 }
+		};
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+	}
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_patch(ioaddr, 0x0d, 0x0300);
+	mdio_patch(ioaddr, 0x0f, 0x0010);
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_plus_minus(ioaddr, 0x02, 0x0100, 0x0600);
+	mdio_plus_minus(ioaddr, 0x03, 0x0000, 0xe000);
+
+	rtl_phy_write(ioaddr, phy_reg_init_2, ARRAY_SIZE(phy_reg_init_2));
+}
+
+static void rtl8168d_2_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init_0[] = {
+		{ 0x1f, 0x0001 },
+		{ 0x06, 0x4064 },
+		{ 0x07, 0x2863 },
+		{ 0x08, 0x059c },
+		{ 0x09, 0x26b4 },
+		{ 0x0a, 0x6a19 },
+		{ 0x0b, 0xdcc8 },
+		{ 0x10, 0xf06d },
+		{ 0x14, 0x7f68 },
+		{ 0x18, 0x7fd9 },
+		{ 0x1c, 0xf0ff },
+		{ 0x1d, 0x3d9c },
+		{ 0x1f, 0x0003 },
+		{ 0x12, 0xf49f },
+		{ 0x13, 0x070b },
+		{ 0x1a, 0x05ad },
+		{ 0x14, 0x94c0 },
+
+		{ 0x1f, 0x0002 },
+		{ 0x06, 0x5561 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8332 },
+		{ 0x06, 0x5561 }
+	};
+	static const struct phy_reg phy_reg_init_1[] = {
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0xffc2 },
+		{ 0x1f, 0x0005 },
+		{ 0x05, 0x8000 },
+		{ 0x06, 0xf8f9 },
+		{ 0x06, 0xfaee },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0x00ee },
+		{ 0x06, 0xf8eb },
+		{ 0x06, 0x00e2 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xe3f8 },
+		{ 0x06, 0x7da5 },
+		{ 0x06, 0x1111 },
+		{ 0x06, 0x12d2 },
+		{ 0x06, 0x40d6 },
+		{ 0x06, 0x4444 },
+		{ 0x06, 0x0281 },
+		{ 0x06, 0xc6d2 },
+		{ 0x06, 0xa0d6 },
+		{ 0x06, 0xaaaa },
+		{ 0x06, 0x0281 },
+		{ 0x06, 0xc6ae },
+		{ 0x06, 0x0fa5 },
+		{ 0x06, 0x4444 },
+		{ 0x06, 0x02ae },
+		{ 0x06, 0x4da5 },
+		{ 0x06, 0xaaaa },
+		{ 0x06, 0x02ae },
+		{ 0x06, 0x47af },
+		{ 0x06, 0x81c2 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e00 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4d0f },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4c0f },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4f00 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x5100 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4aff },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4bff },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x30e1 },
+		{ 0x06, 0x8331 },
+		{ 0x06, 0x58fe },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x8ae5 },
+		{ 0x06, 0xf88b },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x32e1 },
+		{ 0x06, 0x8333 },
+		{ 0x06, 0x590f },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4d0c },
+		{ 0x06, 0x245a },
+		{ 0x06, 0xf01e },
+		{ 0x06, 0x12e4 },
+		{ 0x06, 0xf88c },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8daf },
+		{ 0x06, 0x81c2 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4f10 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x4fe0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7800 },
+		{ 0x06, 0x9f0a },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4fa0 },
+		{ 0x06, 0x10a5 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e01 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x059e },
+		{ 0x06, 0x9ae0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7804 },
+		{ 0x06, 0x9e10 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x039e },
+		{ 0x06, 0x0fe0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7801 },
+		{ 0x06, 0x9e05 },
+		{ 0x06, 0xae0c },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0xa7af },
+		{ 0x06, 0x8152 },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0x8baf },
+		{ 0x06, 0x81c2 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4800 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4900 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x5110 },
+		{ 0x06, 0xe483 },
+		{ 0x06, 0x5158 },
+		{ 0x06, 0x019f },
+		{ 0x06, 0xead0 },
+		{ 0x06, 0x00d1 },
+		{ 0x06, 0x801f },
+		{ 0x06, 0x66e2 },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0xe3f8 },
+		{ 0x06, 0xeb5a },
+		{ 0x06, 0xf81e },
+		{ 0x06, 0x20e6 },
+		{ 0x06, 0xf8ea },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0xebd3 },
+		{ 0x06, 0x02b3 },
+		{ 0x06, 0xfee2 },
+		{ 0x06, 0xf87c },
+		{ 0x06, 0xef32 },
+		{ 0x06, 0x5b80 },
+		{ 0x06, 0xe3f8 },
+		{ 0x06, 0x7d9e },
+		{ 0x06, 0x037d },
+		{ 0x06, 0xffff },
+		{ 0x06, 0x0d58 },
+		{ 0x06, 0x1c55 },
+		{ 0x06, 0x1a65 },
+		{ 0x06, 0x11a1 },
+		{ 0x06, 0x90d3 },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x48e3 },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0x1b56 },
+		{ 0x06, 0xab08 },
+		{ 0x06, 0xef56 },
+		{ 0x06, 0xe683 },
+		{ 0x06, 0x48e7 },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0x10d1 },
+		{ 0x06, 0x801f },
+		{ 0x06, 0x66a0 },
+		{ 0x06, 0x04b9 },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x48e3 },
+		{ 0x06, 0x8349 },
+		{ 0x06, 0xef65 },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4ae3 },
+		{ 0x06, 0x834b },
+		{ 0x06, 0x1b56 },
+		{ 0x06, 0xaa0e },
+		{ 0x06, 0xef56 },
+		{ 0x06, 0xe683 },
+		{ 0x06, 0x4ae7 },
+		{ 0x06, 0x834b },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4de6 },
+		{ 0x06, 0x834c },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4da0 },
+		{ 0x06, 0x000c },
+		{ 0x06, 0xaf81 },
+		{ 0x06, 0x8be0 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0x10e4 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xae04 },
+		{ 0x06, 0x80e4 },
+		{ 0x06, 0x834d },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x4e78 },
+		{ 0x06, 0x039e },
+		{ 0x06, 0x0be0 },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x7804 },
+		{ 0x06, 0x9e04 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e02 },
+		{ 0x06, 0xe083 },
+		{ 0x06, 0x32e1 },
+		{ 0x06, 0x8333 },
+		{ 0x06, 0x590f },
+		{ 0x06, 0xe283 },
+		{ 0x06, 0x4d0c },
+		{ 0x06, 0x245a },
+		{ 0x06, 0xf01e },
+		{ 0x06, 0x12e4 },
+		{ 0x06, 0xf88c },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8de0 },
+		{ 0x06, 0x8330 },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x3168 },
+		{ 0x06, 0x01e4 },
+		{ 0x06, 0xf88a },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x8bae },
+		{ 0x06, 0x37ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x03e0 },
+		{ 0x06, 0x834c },
+		{ 0x06, 0xe183 },
+		{ 0x06, 0x4d1b },
+		{ 0x06, 0x019e },
+		{ 0x06, 0x04aa },
+		{ 0x06, 0xa1ae },
+		{ 0x06, 0xa8ee },
+		{ 0x06, 0x834e },
+		{ 0x06, 0x04ee },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x00ae },
+		{ 0x06, 0xabe0 },
+		{ 0x06, 0x834f },
+		{ 0x06, 0x7803 },
+		{ 0x06, 0x9f14 },
+		{ 0x06, 0xee83 },
+		{ 0x06, 0x4e05 },
+		{ 0x06, 0xd240 },
+		{ 0x06, 0xd655 },
+		{ 0x06, 0x5402 },
+		{ 0x06, 0x81c6 },
+		{ 0x06, 0xd2a0 },
+		{ 0x06, 0xd6ba },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x81c6 },
+		{ 0x06, 0xfefd },
+		{ 0x06, 0xfc05 },
+		{ 0x06, 0xf8e0 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x6168 },
+		{ 0x06, 0x02e4 },
+		{ 0x06, 0xf860 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x61e0 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x4958 },
+		{ 0x06, 0x0f1e },
+		{ 0x06, 0x02e4 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x49d0 },
+		{ 0x06, 0x0002 },
+		{ 0x06, 0x820a },
+		{ 0x06, 0xbf83 },
+		{ 0x06, 0x50ef },
+		{ 0x06, 0x46dc },
+		{ 0x06, 0x19dd },
+		{ 0x06, 0xd001 },
+		{ 0x06, 0x0282 },
+		{ 0x06, 0x0a02 },
+		{ 0x06, 0x8226 },
+		{ 0x06, 0xe0f8 },
+		{ 0x06, 0x60e1 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0x58fd },
+		{ 0x06, 0xe4f8 },
+		{ 0x06, 0x60e5 },
+		{ 0x06, 0xf861 },
+		{ 0x06, 0xfc04 },
+		{ 0x06, 0xf9fa },
+		{ 0x06, 0xfbc6 },
+		{ 0x06, 0xbff8 },
+		{ 0x06, 0x40be },
+		{ 0x06, 0x8350 },
+		{ 0x06, 0xa001 },
+		{ 0x06, 0x0107 },
+		{ 0x06, 0x1b89 },
+		{ 0x06, 0xcfd2 },
+		{ 0x06, 0x08eb },
+		{ 0x06, 0xdb19 },
+		{ 0x06, 0xb2fb },
+		{ 0x06, 0xfffe },
+		{ 0x06, 0xfd04 },
+		{ 0x06, 0xf8e0 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe1f8 },
+		{ 0x06, 0x4968 },
+		{ 0x06, 0x08e4 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x4958 },
+		{ 0x06, 0xf7e4 },
+		{ 0x06, 0xf848 },
+		{ 0x06, 0xe5f8 },
+		{ 0x06, 0x49fc },
+		{ 0x06, 0x044d },
+		{ 0x06, 0x2000 },
+		{ 0x06, 0x024e },
+		{ 0x06, 0x2200 },
+		{ 0x06, 0x024d },
+		{ 0x06, 0xdfff },
+		{ 0x06, 0x014e },
+		{ 0x06, 0xddff },
+		{ 0x06, 0x0100 },
+		{ 0x05, 0x83d8 },
+		{ 0x06, 0x8000 },
+		{ 0x03, 0xdc00 },
+		{ 0x05, 0xfff6 },
+		{ 0x06, 0x00fc },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0d, 0xf880 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
+
+	if (rtl8168d_efuse_read(ioaddr, 0x01) == 0xb1) {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x669a },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x669a },
+
+			{ 0x1f, 0x0002 }
+		};
+		int val;
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+
+		val = mdio_read(ioaddr, 0x0d);
+		if ((val & 0x00ff) != 0x006c) {
+			u32 set[] = {
+				0x0065, 0x0066, 0x0067, 0x0068,
+				0x0069, 0x006a, 0x006b, 0x006c
+			};
+			int i;
+
+			mdio_write(ioaddr, 0x1f, 0x0002);
+
+			val &= 0xff00;
+			for (i = 0; i < ARRAY_SIZE(set); i++)
+				mdio_write(ioaddr, 0x0d, val | set[i]);
+		}
+	} else {
+		static const struct phy_reg phy_reg_init[] = {
+			{ 0x1f, 0x0002 },
+			{ 0x05, 0x2642 },
+			{ 0x1f, 0x0005 },
+			{ 0x05, 0x8330 },
+			{ 0x06, 0x2642 }
+		};
+
+		rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+	}
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_plus_minus(ioaddr, 0x02, 0x0100, 0x0600);
+	mdio_plus_minus(ioaddr, 0x03, 0x0000, 0xe000);
+
+	mdio_write(ioaddr, 0x1f, 0x0001);
+	mdio_write(ioaddr, 0x17, 0x0cc0);
+
+	mdio_write(ioaddr, 0x1f, 0x0002);
+	mdio_patch(ioaddr, 0x0f, 0x0017);
+
+	rtl_phy_write(ioaddr, phy_reg_init_1, ARRAY_SIZE(phy_reg_init_1));
+}
+
+static void rtl8168d_3_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0002 },
+		{ 0x10, 0x0008 },
+		{ 0x0d, 0x006c },
+
+		{ 0x1f, 0x0000 },
+		{ 0x0d, 0xf880 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x17, 0x0cc0 },
+
+		{ 0x1f, 0x0001 },
+		{ 0x0b, 0xa4d8 },
+		{ 0x09, 0x281c },
+		{ 0x07, 0x2883 },
+		{ 0x0a, 0x6b35 },
+		{ 0x1d, 0x3da4 },
+		{ 0x1c, 0xeffd },
+		{ 0x14, 0x7f52 },
+		{ 0x18, 0x7fc6 },
+		{ 0x08, 0x0601 },
+		{ 0x06, 0x4063 },
+		{ 0x10, 0xf074 },
+		{ 0x1f, 0x0003 },
+		{ 0x13, 0x0789 },
+		{ 0x12, 0xf4bd },
+		{ 0x1a, 0x04fd },
+		{ 0x14, 0x84b0 },
+		{ 0x1f, 0x0000 },
+		{ 0x00, 0x9200 },
+
+		{ 0x1f, 0x0005 },
+		{ 0x01, 0x0340 },
+		{ 0x1f, 0x0001 },
+		{ 0x04, 0x4000 },
+		{ 0x03, 0x1d21 },
+		{ 0x02, 0x0c32 },
+		{ 0x01, 0x0200 },
+		{ 0x00, 0x5554 },
+		{ 0x04, 0x4800 },
+		{ 0x04, 0x4000 },
+		{ 0x04, 0xf000 },
+		{ 0x03, 0xdf01 },
+		{ 0x02, 0xdf20 },
+		{ 0x01, 0x101a },
+		{ 0x00, 0xa0ff },
+		{ 0x04, 0xf800 },
+		{ 0x04, 0xf000 },
+		{ 0x1f, 0x0000 },
+
+		{ 0x1f, 0x0007 },
+		{ 0x1e, 0x0023 },
+		{ 0x16, 0x0000 },
+		{ 0x1f, 0x0000 }
+	};
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl8102e_hw_phy_config(void __iomem *ioaddr)
+{
+	static const struct phy_reg phy_reg_init[] = {
+		{ 0x1f, 0x0003 },
+		{ 0x08, 0x441d },
+		{ 0x01, 0x9100 },
+		{ 0x1f, 0x0000 }
+	};
+
+	mdio_write(ioaddr, 0x1f, 0x0000);
+	mdio_patch(ioaddr, 0x11, 1 << 12);
+	mdio_patch(ioaddr, 0x19, 1 << 13);
+	mdio_patch(ioaddr, 0x10, 1 << 15);
+
+	rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
+}
+
+static void rtl_hw_phy_config(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	rtl8169_print_mac_version(tp);
+
+	switch (tp->mac_version) {
+	case RTL_GIGA_MAC_VER_01:
+		break;
+	case RTL_GIGA_MAC_VER_02:
+	case RTL_GIGA_MAC_VER_03:
+		rtl8169s_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_04:
+		rtl8169sb_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_05:
+		rtl8169scd_hw_phy_config(tp, ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_06:
+		rtl8169sce_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_07:
+	case RTL_GIGA_MAC_VER_08:
+	case RTL_GIGA_MAC_VER_09:
+		rtl8102e_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_11:
+		rtl8168bb_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_12:
+		rtl8168bef_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_17:
+		rtl8168bef_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_18:
+		rtl8168cp_1_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_19:
+		rtl8168c_1_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_20:
+		rtl8168c_2_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_21:
+		rtl8168c_3_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_22:
+		rtl8168c_4_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_23:
+	case RTL_GIGA_MAC_VER_24:
+		rtl8168cp_2_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_25:
+		rtl8168d_1_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_26:
+		rtl8168d_2_hw_phy_config(ioaddr);
+		break;
+	case RTL_GIGA_MAC_VER_27:
+		rtl8168d_3_hw_phy_config(ioaddr);
+		break;
+
+	default:
+		break;
+	}
+}
+
+static void rtl8169_phy_timer(unsigned long __opaque)
+{
+	struct net_device *dev = (struct net_device *)__opaque;
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct timer_list *timer = &tp->timer;
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long timeout = RTL8169_PHY_TIMEOUT;
+
+	assert(tp->mac_version > RTL_GIGA_MAC_VER_01);
+
+	if (!(tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL))
+		return;
+
+	spin_lock_irq(&tp->lock);
+
+	if (tp->phy_reset_pending(ioaddr)) {
+		/*
+		 * A busy loop could burn quite a few cycles on nowadays CPU.
+		 * Let's delay the execution of the timer for a few ticks.
+		 */
+		timeout = HZ/10;
+		goto out_mod_timer;
+	}
+
+	if (tp->link_ok(ioaddr))
+		goto out_unlock;
+
+	netif_warn(tp, link, dev, "PHY reset until link up\n");
+
+	tp->phy_reset_enable(ioaddr);
+
+out_mod_timer:
+	mod_timer(timer, jiffies + timeout);
+out_unlock:
+	spin_unlock_irq(&tp->lock);
+}
+
+static inline void rtl8169_delete_timer(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct timer_list *timer = &tp->timer;
+
+	if (tp->mac_version <= RTL_GIGA_MAC_VER_01)
+		return;
+
+	del_timer_sync(timer);
+}
+
+static inline void rtl8169_request_timer(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct timer_list *timer = &tp->timer;
+
+	if (tp->mac_version <= RTL_GIGA_MAC_VER_01)
+		return;
+
+	mod_timer(timer, jiffies + RTL8169_PHY_TIMEOUT);
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void rtl8169_netpoll(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+
+	disable_irq(pdev->irq);
+	rtl8169_interrupt(pdev->irq, dev);
+	enable_irq(pdev->irq);
+}
+#endif
+
+static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev,
+				  void __iomem *ioaddr)
+{
+	iounmap(ioaddr);
+	pci_release_regions(pdev);
+	pci_clear_mwi(pdev);
+	pci_disable_device(pdev);
+	free_netdev(dev);
+}
+
+static void rtl8169_phy_reset(struct net_device *dev,
+			      struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int i;
+
+	tp->phy_reset_enable(ioaddr);
+	for (i = 0; i < 100; i++) {
+		if (!tp->phy_reset_pending(ioaddr))
+			return;
+		msleep(1);
+	}
+	netif_err(tp, link, dev, "PHY reset failed\n");
+}
+
+static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	rtl_hw_phy_config(dev);
+
+	if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
+		dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
+		RTL_W8(0x82, 0x01);
+	}
+
+	pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);
+
+	if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
+		pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
+
+	if (tp->mac_version == RTL_GIGA_MAC_VER_02) {
+		dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
+		RTL_W8(0x82, 0x01);
+		dprintk("Set PHY Reg 0x0bh = 0x00h\n");
+		mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0
+	}
+
+	rtl8169_phy_reset(dev, tp);
+
+	/*
+	 * rtl8169_set_speed_xmii takes good care of the Fast Ethernet
+	 * only 8101. Don't panic.
+	 */
+	rtl8169_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL);
+
+	if (RTL_R8(PHYstatus) & TBI_Enable)
+		netif_info(tp, link, dev, "TBI auto-negotiating\n");
+}
+
+static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	u32 high;
+	u32 low;
+
+	low  = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24);
+	high = addr[4] | (addr[5] << 8);
+
+	spin_lock_irq(&tp->lock);
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	RTL_W32(MAC4, high);
+	RTL_R32(MAC4);
+
+	RTL_W32(MAC0, low);
+	RTL_R32(MAC0);
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	spin_unlock_irq(&tp->lock);
+}
+
+static int rtl_set_mac_address(struct net_device *dev, void *p)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
+
+	rtl_rar_set(tp, dev->dev_addr);
+
+	return 0;
+}
+
+static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct mii_ioctl_data *data = if_mii(ifr);
+
+	return netif_running(dev) ? tp->do_ioctl(tp, data, cmd) : -ENODEV;
+}
+
+static int rtl_xmii_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = 32; /* Internal PHY */
+		return 0;
+
+	case SIOCGMIIREG:
+		data->val_out = mdio_read(tp->mmio_addr, data->reg_num & 0x1f);
+		return 0;
+
+	case SIOCSMIIREG:
+		mdio_write(tp->mmio_addr, data->reg_num & 0x1f, data->val_in);
+		return 0;
+	}
+	return -EOPNOTSUPP;
+}
+
+static int rtl_tbi_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd)
+{
+	return -EOPNOTSUPP;
+}
+
+static const struct rtl_cfg_info {
+	void (*hw_start)(struct net_device *);
+	unsigned int region;
+	unsigned int align;
+	u16 intr_event;
+	u16 napi_event;
+	unsigned features;
+	u8 default_ver;
+} rtl_cfg_infos [] = {
+	[RTL_CFG_0] = {
+		.hw_start	= rtl_hw_start_8169,
+		.region		= 1,
+		.align		= 0,
+		.intr_event	= SYSErr | LinkChg | RxOverflow |
+				  RxFIFOOver | TxErr | TxOK | RxOK | RxErr,
+		.napi_event	= RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow,
+		.features	= RTL_FEATURE_GMII,
+		.default_ver	= RTL_GIGA_MAC_VER_01,
+	},
+	[RTL_CFG_1] = {
+		.hw_start	= rtl_hw_start_8168,
+		.region		= 2,
+		.align		= 8,
+		.intr_event	= SYSErr | LinkChg | RxOverflow |
+				  TxErr | TxOK | RxOK | RxErr,
+		.napi_event	= TxErr | TxOK | RxOK | RxOverflow,
+		.features	= RTL_FEATURE_GMII | RTL_FEATURE_MSI,
+		.default_ver	= RTL_GIGA_MAC_VER_11,
+	},
+	[RTL_CFG_2] = {
+		.hw_start	= rtl_hw_start_8101,
+		.region		= 2,
+		.align		= 8,
+		.intr_event	= SYSErr | LinkChg | RxOverflow | PCSTimeout |
+				  RxFIFOOver | TxErr | TxOK | RxOK | RxErr,
+		.napi_event	= RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow,
+		.features	= RTL_FEATURE_MSI,
+		.default_ver	= RTL_GIGA_MAC_VER_13,
+	}
+};
+
+/* Cfg9346_Unlock assumed. */
+static unsigned rtl_try_msi(struct pci_dev *pdev, void __iomem *ioaddr,
+			    const struct rtl_cfg_info *cfg)
+{
+	unsigned msi = 0;
+	u8 cfg2;
+
+	cfg2 = RTL_R8(Config2) & ~MSIEnable;
+	if (cfg->features & RTL_FEATURE_MSI) {
+		if (pci_enable_msi(pdev)) {
+			dev_info(&pdev->dev, "no MSI. Back to INTx.\n");
+		} else {
+			cfg2 |= MSIEnable;
+			msi = RTL_FEATURE_MSI;
+		}
+	}
+	RTL_W8(Config2, cfg2);
+	return msi;
+}
+
+static void rtl_disable_msi(struct pci_dev *pdev, struct rtl8169_private *tp)
+{
+	if (tp->features & RTL_FEATURE_MSI) {
+		pci_disable_msi(pdev);
+		tp->features &= ~RTL_FEATURE_MSI;
+	}
+}
+
+static const struct net_device_ops rtl8169_netdev_ops = {
+	.ndo_open		= rtl8169_open,
+	.ndo_stop		= rtl8169_close,
+	.ndo_get_stats		= rtl8169_get_stats,
+	.ndo_start_xmit		= rtl8169_start_xmit,
+	.ndo_tx_timeout		= rtl8169_tx_timeout,
+	.ndo_validate_addr	= eth_validate_addr,
+	.ndo_change_mtu		= rtl8169_change_mtu,
+	.ndo_set_mac_address	= rtl_set_mac_address,
+	.ndo_do_ioctl		= rtl8169_ioctl,
+	.ndo_set_multicast_list	= rtl_set_rx_mode,
+#ifdef CONFIG_R8169_VLAN
+	.ndo_vlan_rx_register	= rtl8169_vlan_rx_register,
+#endif
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= rtl8169_netpoll,
+#endif
+
+};
+
+static int __devinit
+rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+	const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data;
+	const unsigned int region = cfg->region;
+	struct rtl8169_private *tp;
+	struct mii_if_info *mii;
+	struct net_device *dev;
+	void __iomem *ioaddr;
+	unsigned int i;
+	int rc;
+
+	if (netif_msg_drv(&debug)) {
+		printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n",
+		       MODULENAME, RTL8169_VERSION);
+	}
+
+	dev = alloc_etherdev(sizeof (*tp));
+	if (!dev) {
+		if (netif_msg_drv(&debug))
+			dev_err(&pdev->dev, "unable to alloc new ethernet\n");
+		rc = -ENOMEM;
+		goto out;
+	}
+
+	SET_NETDEV_DEV(dev, &pdev->dev);
+	dev->netdev_ops = &rtl8169_netdev_ops;
+	tp = netdev_priv(dev);
+	tp->dev = dev;
+	tp->pci_dev = pdev;
+	tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);
+
+	mii = &tp->mii;
+	mii->dev = dev;
+	mii->mdio_read = rtl_mdio_read;
+	mii->mdio_write = rtl_mdio_write;
+	mii->phy_id_mask = 0x1f;
+	mii->reg_num_mask = 0x1f;
+	mii->supports_gmii = !!(cfg->features & RTL_FEATURE_GMII);
+
+	/* enable device (incl. PCI PM wakeup and hotplug setup) */
+	rc = pci_enable_device(pdev);
+	if (rc < 0) {
+		netif_err(tp, probe, dev, "enable failure\n");
+		goto err_out_free_dev_1;
+	}
+
+	if (pci_set_mwi(pdev) < 0)
+		netif_info(tp, probe, dev, "Mem-Wr-Inval unavailable\n");
+
+	/* make sure PCI base addr 1 is MMIO */
+	if (!(pci_resource_flags(pdev, region) & IORESOURCE_MEM)) {
+		netif_err(tp, probe, dev,
+			  "region #%d not an MMIO resource, aborting\n",
+			  region);
+		rc = -ENODEV;
+		goto err_out_mwi_2;
+	}
+
+	/* check for weird/broken PCI region reporting */
+	if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) {
+		netif_err(tp, probe, dev,
+			  "Invalid PCI region size(s), aborting\n");
+		rc = -ENODEV;
+		goto err_out_mwi_2;
+	}
+
+	rc = pci_request_regions(pdev, MODULENAME);
+	if (rc < 0) {
+		netif_err(tp, probe, dev, "could not request regions\n");
+		goto err_out_mwi_2;
+	}
+
+	tp->cp_cmd = PCIMulRW | RxChkSum;
+
+	if ((sizeof(dma_addr_t) > 4) &&
+	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && use_dac) {
+		tp->cp_cmd |= PCIDAC;
+		dev->features |= NETIF_F_HIGHDMA;
+	} else {
+		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+		if (rc < 0) {
+			netif_err(tp, probe, dev, "DMA configuration failed\n");
+			goto err_out_free_res_3;
+		}
+	}
+
+	/* ioremap MMIO region */
+	ioaddr = ioremap(pci_resource_start(pdev, region), R8169_REGS_SIZE);
+	if (!ioaddr) {
+		netif_err(tp, probe, dev, "cannot remap MMIO, aborting\n");
+		rc = -EIO;
+		goto err_out_free_res_3;
+	}
+
+	tp->pcie_cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
+	if (!tp->pcie_cap)
+		netif_info(tp, probe, dev, "no PCI Express capability\n");
+
+	RTL_W16(IntrMask, 0x0000);
+
+	/* Soft reset the chip. */
+	RTL_W8(ChipCmd, CmdReset);
+
+	/* Check that the chip has finished the reset. */
+	for (i = 0; i < 100; i++) {
+		if ((RTL_R8(ChipCmd) & CmdReset) == 0)
+			break;
+		msleep_interruptible(1);
+	}
+
+	RTL_W16(IntrStatus, 0xffff);
+
+	pci_set_master(pdev);
+
+	/* Identify chip attached to board */
+	rtl8169_get_mac_version(tp, ioaddr);
+
+	/* Use appropriate default if unknown */
+	if (tp->mac_version == RTL_GIGA_MAC_NONE) {
+		netif_notice(tp, probe, dev,
+			     "unknown MAC, using family default\n");
+		tp->mac_version = cfg->default_ver;
+	}
+
+	rtl8169_print_mac_version(tp);
+
+	for (i = 0; i < ARRAY_SIZE(rtl_chip_info); i++) {
+		if (tp->mac_version == rtl_chip_info[i].mac_version)
+			break;
+	}
+	if (i == ARRAY_SIZE(rtl_chip_info)) {
+		dev_err(&pdev->dev,
+			"driver bug, MAC version not found in rtl_chip_info\n");
+		goto err_out_msi_4;
+	}
+	tp->chipset = i;
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+	RTL_W8(Config1, RTL_R8(Config1) | PMEnable);
+	RTL_W8(Config5, RTL_R8(Config5) & PMEStatus);
+	if ((RTL_R8(Config3) & (LinkUp | MagicPacket)) != 0)
+		tp->features |= RTL_FEATURE_WOL;
+	if ((RTL_R8(Config5) & (UWF | BWF | MWF)) != 0)
+		tp->features |= RTL_FEATURE_WOL;
+	tp->features |= rtl_try_msi(pdev, ioaddr, cfg);
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	if ((tp->mac_version <= RTL_GIGA_MAC_VER_06) &&
+	    (RTL_R8(PHYstatus) & TBI_Enable)) {
+		tp->set_speed = rtl8169_set_speed_tbi;
+		tp->get_settings = rtl8169_gset_tbi;
+		tp->phy_reset_enable = rtl8169_tbi_reset_enable;
+		tp->phy_reset_pending = rtl8169_tbi_reset_pending;
+		tp->link_ok = rtl8169_tbi_link_ok;
+		tp->do_ioctl = rtl_tbi_ioctl;
+
+		tp->phy_1000_ctrl_reg = ADVERTISE_1000FULL; /* Implied by TBI */
+	} else {
+		tp->set_speed = rtl8169_set_speed_xmii;
+		tp->get_settings = rtl8169_gset_xmii;
+		tp->phy_reset_enable = rtl8169_xmii_reset_enable;
+		tp->phy_reset_pending = rtl8169_xmii_reset_pending;
+		tp->link_ok = rtl8169_xmii_link_ok;
+		tp->do_ioctl = rtl_xmii_ioctl;
+	}
+
+	spin_lock_init(&tp->lock);
+
+	tp->mmio_addr = ioaddr;
+
+	/* Get MAC address */
+	for (i = 0; i < MAC_ADDR_LEN; i++)
+		dev->dev_addr[i] = RTL_R8(MAC0 + i);
+	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
+
+	SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops);
+	dev->watchdog_timeo = RTL8169_TX_TIMEOUT;
+	dev->irq = pdev->irq;
+	dev->base_addr = (unsigned long) ioaddr;
+
+	netif_napi_add(dev, &tp->napi, rtl8169_poll, R8169_NAPI_WEIGHT);
+
+#ifdef CONFIG_R8169_VLAN
+	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
+#endif
+
+	tp->intr_mask = 0xffff;
+	tp->align = cfg->align;
+	tp->hw_start = cfg->hw_start;
+	tp->intr_event = cfg->intr_event;
+	tp->napi_event = cfg->napi_event;
+
+	init_timer(&tp->timer);
+	tp->timer.data = (unsigned long) dev;
+	tp->timer.function = rtl8169_phy_timer;
+
+	rc = register_netdev(dev);
+	if (rc < 0)
+		goto err_out_msi_4;
+
+	pci_set_drvdata(pdev, dev);
+
+	netif_info(tp, probe, dev, "%s at 0x%lx, %pM, XID %08x IRQ %d\n",
+		   rtl_chip_info[tp->chipset].name,
+		   dev->base_addr, dev->dev_addr,
+		   (u32)(RTL_R32(TxConfig) & 0x9cf0f8ff), dev->irq);
+
+	rtl8169_init_phy(dev, tp);
+
+	/*
+	 * Pretend we are using VLANs; This bypasses a nasty bug where
+	 * Interrupts stop flowing on high load on 8110SCd controllers.
+	 */
+	if (tp->mac_version == RTL_GIGA_MAC_VER_05)
+		RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | RxVlan);
+
+	device_set_wakeup_enable(&pdev->dev, tp->features & RTL_FEATURE_WOL);
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_set_active(&pdev->dev);
+		pm_runtime_enable(&pdev->dev);
+	}
+	pm_runtime_idle(&pdev->dev);
+
+out:
+	return rc;
+
+err_out_msi_4:
+	rtl_disable_msi(pdev, tp);
+	iounmap(ioaddr);
+err_out_free_res_3:
+	pci_release_regions(pdev);
+err_out_mwi_2:
+	pci_clear_mwi(pdev);
+	pci_disable_device(pdev);
+err_out_free_dev_1:
+	free_netdev(dev);
+	goto out;
+}
+
+static void __devexit rtl8169_remove_one(struct pci_dev *pdev)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	flush_scheduled_work();
+
+	unregister_netdev(dev);
+
+	if (pci_dev_run_wake(pdev)) {
+		pm_runtime_disable(&pdev->dev);
+		pm_runtime_set_suspended(&pdev->dev);
+	}
+	pm_runtime_put_noidle(&pdev->dev);
+
+	/* restore original MAC address */
+	rtl_rar_set(tp, dev->perm_addr);
+
+	rtl_disable_msi(pdev, tp);
+	rtl8169_release_board(pdev, dev, tp->mmio_addr);
+	pci_set_drvdata(pdev, NULL);
+}
+
+static void rtl8169_set_rxbufsize(struct rtl8169_private *tp,
+				  unsigned int mtu)
+{
+	unsigned int max_frame = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
+
+	if (max_frame != 16383)
+		printk(KERN_WARNING PFX "WARNING! Changing of MTU on this "
+			"NIC may lead to frame reception errors!\n");
+
+	tp->rx_buf_sz = (max_frame > RX_BUF_SIZE) ? max_frame : RX_BUF_SIZE;
+}
+
+static int rtl8169_open(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+	int retval = -ENOMEM;
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	/*
+	 * Note that we use a magic value here, its wierd I know
+	 * its done because, some subset of rtl8169 hardware suffers from
+	 * a problem in which frames received that are longer than
+	 * the size set in RxMaxSize register return garbage sizes
+	 * when received.  To avoid this we need to turn off filtering,
+	 * which is done by setting a value of 16383 in the RxMaxSize register
+	 * and allocating 16k frames to handle the largest possible rx value
+	 * thats what the magic math below does.
+	 */
+	rtl8169_set_rxbufsize(tp, 16383 - VLAN_ETH_HLEN - ETH_FCS_LEN);
+
+	/*
+	 * Rx and Tx desscriptors needs 256 bytes alignment.
+	 * pci_alloc_consistent provides more.
+	 */
+	tp->TxDescArray = pci_alloc_consistent(pdev, R8169_TX_RING_BYTES,
+					       &tp->TxPhyAddr);
+	if (!tp->TxDescArray)
+		goto err_pm_runtime_put;
+
+	tp->RxDescArray = pci_alloc_consistent(pdev, R8169_RX_RING_BYTES,
+					       &tp->RxPhyAddr);
+	if (!tp->RxDescArray)
+		goto err_free_tx_0;
+
+	retval = rtl8169_init_ring(dev);
+	if (retval < 0)
+		goto err_free_rx_1;
+
+	INIT_DELAYED_WORK(&tp->task, NULL);
+
+	smp_mb();
+
+	retval = request_irq(dev->irq, rtl8169_interrupt,
+			     (tp->features & RTL_FEATURE_MSI) ? 0 : IRQF_SHARED,
+			     dev->name, dev);
+	if (retval < 0)
+		goto err_release_ring_2;
+
+	napi_enable(&tp->napi);
+
+	rtl_hw_start(dev);
+
+	rtl8169_request_timer(dev);
+
+	tp->saved_wolopts = 0;
+	pm_runtime_put_noidle(&pdev->dev);
+
+	rtl8169_check_link_status(dev, tp, tp->mmio_addr);
+out:
+	return retval;
+
+err_release_ring_2:
+	rtl8169_rx_clear(tp);
+err_free_rx_1:
+	pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
+			    tp->RxPhyAddr);
+	tp->RxDescArray = NULL;
+err_free_tx_0:
+	pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
+			    tp->TxPhyAddr);
+	tp->TxDescArray = NULL;
+err_pm_runtime_put:
+	pm_runtime_put_noidle(&pdev->dev);
+	goto out;
+}
+
+static void rtl8169_hw_reset(void __iomem *ioaddr)
+{
+	/* Disable interrupts */
+	rtl8169_irq_mask_and_ack(ioaddr);
+
+	/* Reset the chipset */
+	RTL_W8(ChipCmd, CmdReset);
+
+	/* PCI commit */
+	RTL_R8(ChipCmd);
+}
+
+static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp)
+{
+	void __iomem *ioaddr = tp->mmio_addr;
+	u32 cfg = rtl8169_rx_config;
+
+	cfg |= (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
+	RTL_W32(RxConfig, cfg);
+
+	/* Set DMA burst size and Interframe Gap Time */
+	RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
+		(InterFrameGap << TxInterFrameGapShift));
+}
+
+static void rtl_hw_start(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int i;
+
+	/* Soft reset the chip. */
+	RTL_W8(ChipCmd, CmdReset);
+
+	/* Check that the chip has finished the reset. */
+	for (i = 0; i < 100; i++) {
+		if ((RTL_R8(ChipCmd) & CmdReset) == 0)
+			break;
+		msleep_interruptible(1);
+	}
+
+	tp->hw_start(dev);
+
+	netif_start_queue(dev);
+}
+
+
+static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp,
+					 void __iomem *ioaddr)
+{
+	/*
+	 * Magic spell: some iop3xx ARM board needs the TxDescAddrHigh
+	 * register to be written before TxDescAddrLow to work.
+	 * Switching from MMIO to I/O access fixes the issue as well.
+	 */
+	RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32);
+	RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32));
+	RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32);
+	RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32));
+}
+
+static u16 rtl_rw_cpluscmd(void __iomem *ioaddr)
+{
+	u16 cmd;
+
+	cmd = RTL_R16(CPlusCmd);
+	RTL_W16(CPlusCmd, cmd);
+	return cmd;
+}
+
+static void rtl_set_rx_max_size(void __iomem *ioaddr, unsigned int rx_buf_sz)
+{
+	/* Low hurts. Let's disable the filtering. */
+	RTL_W16(RxMaxSize, rx_buf_sz + 1);
+}
+
+static void rtl8169_set_magic_reg(void __iomem *ioaddr, unsigned mac_version)
+{
+	static const struct {
+		u32 mac_version;
+		u32 clk;
+		u32 val;
+	} cfg2_info [] = {
+		{ RTL_GIGA_MAC_VER_05, PCI_Clock_33MHz, 0x000fff00 }, // 8110SCd
+		{ RTL_GIGA_MAC_VER_05, PCI_Clock_66MHz, 0x000fffff },
+		{ RTL_GIGA_MAC_VER_06, PCI_Clock_33MHz, 0x00ffff00 }, // 8110SCe
+		{ RTL_GIGA_MAC_VER_06, PCI_Clock_66MHz, 0x00ffffff }
+	}, *p = cfg2_info;
+	unsigned int i;
+	u32 clk;
+
+	clk = RTL_R8(Config2) & PCI_Clock_66MHz;
+	for (i = 0; i < ARRAY_SIZE(cfg2_info); i++, p++) {
+		if ((p->mac_version == mac_version) && (p->clk == clk)) {
+			RTL_W32(0x7c, p->val);
+			break;
+		}
+	}
+}
+
+static void rtl_hw_start_8169(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct pci_dev *pdev = tp->pci_dev;
+
+	if (tp->mac_version == RTL_GIGA_MAC_VER_05) {
+		RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | PCIMulRW);
+		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_01) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_04))
+		RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_set_rx_max_size(ioaddr, tp->rx_buf_sz);
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_01) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_04))
+		rtl_set_rx_tx_config_registers(tp);
+
+	tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_02) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_03)) {
+		dprintk("Set MAC Reg C+CR Offset 0xE0. "
+			"Bit-3 and bit-14 MUST be 1\n");
+		tp->cp_cmd |= (1 << 14);
+	}
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+
+	rtl8169_set_magic_reg(ioaddr, tp->mac_version);
+
+	/*
+	 * Undocumented corner. Supposedly:
+	 * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets
+	 */
+	RTL_W16(IntrMitigate, 0x0000);
+
+	rtl_set_rx_tx_desc_registers(tp, ioaddr);
+
+	if ((tp->mac_version != RTL_GIGA_MAC_VER_01) &&
+	    (tp->mac_version != RTL_GIGA_MAC_VER_02) &&
+	    (tp->mac_version != RTL_GIGA_MAC_VER_03) &&
+	    (tp->mac_version != RTL_GIGA_MAC_VER_04)) {
+		RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+		rtl_set_rx_tx_config_registers(tp);
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	/* Initially a 10 us delay. Turned it into a PCI commit. - FR */
+	RTL_R8(IntrMask);
+
+	RTL_W32(RxMissed, 0);
+
+	rtl_set_rx_mode(dev);
+
+	/* no early-rx interrupts */
+	RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
+
+	/* Enable all known interrupts by setting the interrupt mask. */
+	RTL_W16(IntrMask, tp->intr_event);
+}
+
+static void rtl_tx_performance_tweak(struct pci_dev *pdev, u16 force)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int cap = tp->pcie_cap;
+
+	if (cap) {
+		u16 ctl;
+
+		pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl);
+		ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | force;
+		pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl);
+	}
+}
+
+static void rtl_csi_access_enable(void __iomem *ioaddr)
+{
+	u32 csi;
+
+	csi = rtl_csi_read(ioaddr, 0x070c) & 0x00ffffff;
+	rtl_csi_write(ioaddr, 0x070c, csi | 0x27000000);
+}
+
+struct ephy_info {
+	unsigned int offset;
+	u16 mask;
+	u16 bits;
+};
+
+static void rtl_ephy_init(void __iomem *ioaddr, const struct ephy_info *e, int len)
+{
+	u16 w;
+
+	while (len-- > 0) {
+		w = (rtl_ephy_read(ioaddr, e->offset) & ~e->mask) | e->bits;
+		rtl_ephy_write(ioaddr, e->offset, w);
+		e++;
+	}
+}
+
+static void rtl_disable_clock_request(struct pci_dev *pdev)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int cap = tp->pcie_cap;
+
+	if (cap) {
+		u16 ctl;
+
+		pci_read_config_word(pdev, cap + PCI_EXP_LNKCTL, &ctl);
+		ctl &= ~PCI_EXP_LNKCTL_CLKREQ_EN;
+		pci_write_config_word(pdev, cap + PCI_EXP_LNKCTL, ctl);
+	}
+}
+
+#define R8168_CPCMD_QUIRK_MASK (\
+	EnableBist | \
+	Mac_dbgo_oe | \
+	Force_half_dup | \
+	Force_rxflow_en | \
+	Force_txflow_en | \
+	Cxpl_dbg_sel | \
+	ASF | \
+	PktCntrDisable | \
+	Mac_dbgo_sel)
+
+static void rtl_hw_start_8168bb(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+
+	rtl_tx_performance_tweak(pdev,
+		(0x5 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN);
+}
+
+static void rtl_hw_start_8168bef(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_hw_start_8168bb(ioaddr, pdev);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0));
+}
+
+static void __rtl_hw_start_8168cp(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	RTL_W8(Config1, RTL_R8(Config1) | Speed_down);
+
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	rtl_disable_clock_request(pdev);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168cp_1(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8168cp[] = {
+		{ 0x01, 0,	0x0001 },
+		{ 0x02, 0x0800,	0x1000 },
+		{ 0x03, 0,	0x0042 },
+		{ 0x06, 0x0080,	0x0000 },
+		{ 0x07, 0,	0x2000 }
+	};
+
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_ephy_init(ioaddr, e_info_8168cp, ARRAY_SIZE(e_info_8168cp));
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168cp_2(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168cp_3(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	/* Magic. */
+	RTL_W8(DBG_REG, 0x20);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168c_1(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8168c_1[] = {
+		{ 0x02, 0x0800,	0x1000 },
+		{ 0x03, 0,	0x0002 },
+		{ 0x06, 0x0080,	0x0000 }
+	};
+
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);
+
+	rtl_ephy_init(ioaddr, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1));
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168c_2(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8168c_2[] = {
+		{ 0x01, 0,	0x0001 },
+		{ 0x03, 0x0400,	0x0220 }
+	};
+
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_ephy_init(ioaddr, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2));
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168c_3(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_hw_start_8168c_2(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168c_4(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	__rtl_hw_start_8168cp(ioaddr, pdev);
+}
+
+static void rtl_hw_start_8168d(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_disable_clock_request(pdev);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8168(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct pci_dev *pdev = tp->pci_dev;
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_set_rx_max_size(ioaddr, tp->rx_buf_sz);
+
+	tp->cp_cmd |= RTL_R16(CPlusCmd) | PktCntrDisable | INTT_1;
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+
+	RTL_W16(IntrMitigate, 0x5151);
+
+	/* Work around for RxFIFO overflow. */
+	if (tp->mac_version == RTL_GIGA_MAC_VER_11) {
+		tp->intr_event |= RxFIFOOver | PCSTimeout;
+		tp->intr_event &= ~RxOverflow;
+	}
+
+	rtl_set_rx_tx_desc_registers(tp, ioaddr);
+
+	rtl_set_rx_mode(dev);
+
+	RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
+		(InterFrameGap << TxInterFrameGapShift));
+
+	RTL_R8(IntrMask);
+
+	switch (tp->mac_version) {
+	case RTL_GIGA_MAC_VER_11:
+		rtl_hw_start_8168bb(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_12:
+	case RTL_GIGA_MAC_VER_17:
+		rtl_hw_start_8168bef(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_18:
+		rtl_hw_start_8168cp_1(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_19:
+		rtl_hw_start_8168c_1(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_20:
+		rtl_hw_start_8168c_2(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_21:
+		rtl_hw_start_8168c_3(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_22:
+		rtl_hw_start_8168c_4(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_23:
+		rtl_hw_start_8168cp_2(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_24:
+		rtl_hw_start_8168cp_3(ioaddr, pdev);
+	break;
+
+	case RTL_GIGA_MAC_VER_25:
+	case RTL_GIGA_MAC_VER_26:
+	case RTL_GIGA_MAC_VER_27:
+		rtl_hw_start_8168d(ioaddr, pdev);
+	break;
+
+	default:
+		printk(KERN_ERR PFX "%s: unknown chipset (mac_version = %d).\n",
+			dev->name, tp->mac_version);
+	break;
+	}
+
+	RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
+
+	RTL_W16(IntrMask, tp->intr_event);
+}
+
+#define R810X_CPCMD_QUIRK_MASK (\
+	EnableBist | \
+	Mac_dbgo_oe | \
+	Force_half_dup | \
+	Force_rxflow_en | \
+	Force_txflow_en | \
+	Cxpl_dbg_sel | \
+	ASF | \
+	PktCntrDisable | \
+	PCIDAC | \
+	PCIMulRW)
+
+static void rtl_hw_start_8102e_1(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	static const struct ephy_info e_info_8102e_1[] = {
+		{ 0x01,	0, 0x6e65 },
+		{ 0x02,	0, 0x091f },
+		{ 0x03,	0, 0xc2f9 },
+		{ 0x06,	0, 0xafb5 },
+		{ 0x07,	0, 0x0e00 },
+		{ 0x19,	0, 0xec80 },
+		{ 0x01,	0, 0x2e65 },
+		{ 0x01,	0, 0x6e65 }
+	};
+	u8 cfg1;
+
+	rtl_csi_access_enable(ioaddr);
+
+	RTL_W8(DBG_REG, FIX_NAK_1);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W8(Config1,
+	       LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable);
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	cfg1 = RTL_R8(Config1);
+	if ((cfg1 & LEDS0) && (cfg1 & LEDS1))
+		RTL_W8(Config1, cfg1 & ~LEDS0);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK);
+
+	rtl_ephy_init(ioaddr, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1));
+}
+
+static void rtl_hw_start_8102e_2(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_csi_access_enable(ioaddr);
+
+	rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
+
+	RTL_W8(Config1, MEMMAP | IOMAP | VPD | PMEnable);
+	RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
+
+	RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK);
+}
+
+static void rtl_hw_start_8102e_3(void __iomem *ioaddr, struct pci_dev *pdev)
+{
+	rtl_hw_start_8102e_2(ioaddr, pdev);
+
+	rtl_ephy_write(ioaddr, 0x03, 0xc2f9);
+}
+
+static void rtl_hw_start_8101(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	struct pci_dev *pdev = tp->pci_dev;
+
+	if ((tp->mac_version == RTL_GIGA_MAC_VER_13) ||
+	    (tp->mac_version == RTL_GIGA_MAC_VER_16)) {
+		int cap = tp->pcie_cap;
+
+		if (cap) {
+			pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL,
+					      PCI_EXP_DEVCTL_NOSNOOP_EN);
+		}
+	}
+
+	switch (tp->mac_version) {
+	case RTL_GIGA_MAC_VER_07:
+		rtl_hw_start_8102e_1(ioaddr, pdev);
+		break;
+
+	case RTL_GIGA_MAC_VER_08:
+		rtl_hw_start_8102e_3(ioaddr, pdev);
+		break;
+
+	case RTL_GIGA_MAC_VER_09:
+		rtl_hw_start_8102e_2(ioaddr, pdev);
+		break;
+	}
+
+	RTL_W8(Cfg9346, Cfg9346_Unlock);
+
+	RTL_W8(EarlyTxThres, EarlyTxThld);
+
+	rtl_set_rx_max_size(ioaddr, tp->rx_buf_sz);
+
+	tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;
+
+	RTL_W16(CPlusCmd, tp->cp_cmd);
+
+	RTL_W16(IntrMitigate, 0x0000);
+
+	rtl_set_rx_tx_desc_registers(tp, ioaddr);
+
+	RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+	rtl_set_rx_tx_config_registers(tp);
+
+	RTL_W8(Cfg9346, Cfg9346_Lock);
+
+	RTL_R8(IntrMask);
+
+	rtl_set_rx_mode(dev);
+
+	RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
+
+	RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xf000);
+
+	RTL_W16(IntrMask, tp->intr_event);
+}
+
+static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	int ret = 0;
+
+	if (new_mtu < ETH_ZLEN || new_mtu > SafeMtu)
+		return -EINVAL;
+
+	dev->mtu = new_mtu;
+
+	if (!netif_running(dev))
+		goto out;
+
+	rtl8169_down(dev);
+
+	rtl8169_set_rxbufsize(tp, dev->mtu);
+
+	ret = rtl8169_init_ring(dev);
+	if (ret < 0)
+		goto out;
+
+	napi_enable(&tp->napi);
+
+	rtl_hw_start(dev);
+
+	rtl8169_request_timer(dev);
+
+out:
+	return ret;
+}
+
+static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
+{
+	desc->addr = cpu_to_le64(0x0badbadbadbadbadull);
+	desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
+}
+
+static void rtl8169_free_rx_skb(struct rtl8169_private *tp,
+				struct sk_buff **sk_buff, struct RxDesc *desc)
+{
+	struct pci_dev *pdev = tp->pci_dev;
+
+	pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz,
+			 PCI_DMA_FROMDEVICE);
+	dev_kfree_skb(*sk_buff);
+	*sk_buff = NULL;
+	rtl8169_make_unusable_by_asic(desc);
+}
+
+static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
+{
+	u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
+
+	desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz);
+}
+
+static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,
+				       u32 rx_buf_sz)
+{
+	desc->addr = cpu_to_le64(mapping);
+	wmb();
+	rtl8169_mark_to_asic(desc, rx_buf_sz);
+}
+
+static struct sk_buff *rtl8169_alloc_rx_skb(struct pci_dev *pdev,
+					    struct net_device *dev,
+					    struct RxDesc *desc, int rx_buf_sz,
+					    unsigned int align, gfp_t gfp)
+{
+	struct sk_buff *skb;
+	dma_addr_t mapping;
+	unsigned int pad;
+
+	pad = align ? align : NET_IP_ALIGN;
+
+	skb = __netdev_alloc_skb(dev, rx_buf_sz + pad, gfp);
+	if (!skb)
+		goto err_out;
+
+	skb_reserve(skb, align ? ((pad - 1) & (unsigned long)skb->data) : pad);
+
+	mapping = pci_map_single(pdev, skb->data, rx_buf_sz,
+				 PCI_DMA_FROMDEVICE);
+
+	rtl8169_map_to_asic(desc, mapping, rx_buf_sz);
+out:
+	return skb;
+
+err_out:
+	rtl8169_make_unusable_by_asic(desc);
+	goto out;
+}
+
+static void rtl8169_rx_clear(struct rtl8169_private *tp)
+{
+	unsigned int i;
+
+	for (i = 0; i < NUM_RX_DESC; i++) {
+		if (tp->Rx_skbuff[i]) {
+			rtl8169_free_rx_skb(tp, tp->Rx_skbuff + i,
+					    tp->RxDescArray + i);
+		}
+	}
+}
+
+static u32 rtl8169_rx_fill(struct rtl8169_private *tp, struct net_device *dev,
+			   u32 start, u32 end, gfp_t gfp)
+{
+	u32 cur;
+
+	for (cur = start; end - cur != 0; cur++) {
+		struct sk_buff *skb;
+		unsigned int i = cur % NUM_RX_DESC;
+
+		WARN_ON((s32)(end - cur) < 0);
+
+		if (tp->Rx_skbuff[i])
+			continue;
+
+		skb = rtl8169_alloc_rx_skb(tp->pci_dev, dev,
+					   tp->RxDescArray + i,
+					   tp->rx_buf_sz, tp->align, gfp);
+		if (!skb)
+			break;
+
+		tp->Rx_skbuff[i] = skb;
+	}
+	return cur - start;
+}
+
+static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
+{
+	desc->opts1 |= cpu_to_le32(RingEnd);
+}
+
+static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
+{
+	tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0;
+}
+
+static int rtl8169_init_ring(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	rtl8169_init_ring_indexes(tp);
+
+	memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info));
+	memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *));
+
+	if (rtl8169_rx_fill(tp, dev, 0, NUM_RX_DESC, GFP_KERNEL) != NUM_RX_DESC)
+		goto err_out;
+
+	rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);
+
+	return 0;
+
+err_out:
+	rtl8169_rx_clear(tp);
+	return -ENOMEM;
+}
+
+static void rtl8169_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb,
+				 struct TxDesc *desc)
+{
+	unsigned int len = tx_skb->len;
+
+	pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE);
+	desc->opts1 = 0x00;
+	desc->opts2 = 0x00;
+	desc->addr = 0x00;
+	tx_skb->len = 0;
+}
+
+static void rtl8169_tx_clear(struct rtl8169_private *tp)
+{
+	unsigned int i;
+
+	for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) {
+		unsigned int entry = i % NUM_TX_DESC;
+		struct ring_info *tx_skb = tp->tx_skb + entry;
+		unsigned int len = tx_skb->len;
+
+		if (len) {
+			struct sk_buff *skb = tx_skb->skb;
+
+			rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb,
+					     tp->TxDescArray + entry);
+			if (skb) {
+				dev_kfree_skb(skb);
+				tx_skb->skb = NULL;
+			}
+			tp->dev->stats.tx_dropped++;
+		}
+	}
+	tp->cur_tx = tp->dirty_tx = 0;
+}
+
+static void rtl8169_schedule_work(struct net_device *dev, work_func_t task)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	PREPARE_DELAYED_WORK(&tp->task, task);
+	schedule_delayed_work(&tp->task, 4);
+}
+
+static void rtl8169_wait_for_quiescence(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	synchronize_irq(dev->irq);
+
+	/* Wait for any pending NAPI task to complete */
+	napi_disable(&tp->napi);
+
+	rtl8169_irq_mask_and_ack(ioaddr);
+
+	tp->intr_mask = 0xffff;
+	RTL_W16(IntrMask, tp->intr_event);
+	napi_enable(&tp->napi);
+}
+
+static void rtl8169_reinit_task(struct work_struct *work)
+{
+	struct rtl8169_private *tp =
+		container_of(work, struct rtl8169_private, task.work);
+	struct net_device *dev = tp->dev;
+	int ret;
+
+	rtnl_lock();
+
+	if (!netif_running(dev))
+		goto out_unlock;
+
+	rtl8169_wait_for_quiescence(dev);
+	rtl8169_close(dev);
+
+	ret = rtl8169_open(dev);
+	if (unlikely(ret < 0)) {
+		if (net_ratelimit())
+			netif_err(tp, drv, dev,
+				  "reinit failure (status = %d). Rescheduling\n",
+				  ret);
+		rtl8169_schedule_work(dev, rtl8169_reinit_task);
+	}
+
+out_unlock:
+	rtnl_unlock();
+}
+
+static void rtl8169_reset_task(struct work_struct *work)
+{
+	struct rtl8169_private *tp =
+		container_of(work, struct rtl8169_private, task.work);
+	struct net_device *dev = tp->dev;
+
+	rtnl_lock();
+
+	if (!netif_running(dev))
+		goto out_unlock;
+
+	rtl8169_wait_for_quiescence(dev);
+
+	rtl8169_rx_interrupt(dev, tp, tp->mmio_addr, ~(u32)0);
+	rtl8169_tx_clear(tp);
+
+	if (tp->dirty_rx == tp->cur_rx) {
+		rtl8169_init_ring_indexes(tp);
+		rtl_hw_start(dev);
+		netif_wake_queue(dev);
+		rtl8169_check_link_status(dev, tp, tp->mmio_addr);
+	} else {
+		if (net_ratelimit())
+			netif_emerg(tp, intr, dev, "Rx buffers shortage\n");
+		rtl8169_schedule_work(dev, rtl8169_reset_task);
+	}
+
+out_unlock:
+	rtnl_unlock();
+}
+
+static void rtl8169_tx_timeout(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	rtl8169_hw_reset(tp->mmio_addr);
+
+	/* Let's wait a bit while any (async) irq lands on */
+	rtl8169_schedule_work(dev, rtl8169_reset_task);
+}
+
+static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
+			      u32 opts1)
+{
+	struct skb_shared_info *info = skb_shinfo(skb);
+	unsigned int cur_frag, entry;
+	struct TxDesc * uninitialized_var(txd);
+
+	entry = tp->cur_tx;
+	for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
+		skb_frag_t *frag = info->frags + cur_frag;
+		dma_addr_t mapping;
+		u32 status, len;
+		void *addr;
+
+		entry = (entry + 1) % NUM_TX_DESC;
+
+		txd = tp->TxDescArray + entry;
+		len = frag->size;
+		addr = ((void *) page_address(frag->page)) + frag->page_offset;
+		mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE);
+
+		/* anti gcc 2.95.3 bugware (sic) */
+		status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
+
+		txd->opts1 = cpu_to_le32(status);
+		txd->addr = cpu_to_le64(mapping);
+
+		tp->tx_skb[entry].len = len;
+	}
+
+	if (cur_frag) {
+		tp->tx_skb[entry].skb = skb;
+		txd->opts1 |= cpu_to_le32(LastFrag);
+	}
+
+	return cur_frag;
+}
+
+static inline u32 rtl8169_tso_csum(struct sk_buff *skb, struct net_device *dev)
+{
+	if (dev->features & NETIF_F_TSO) {
+		u32 mss = skb_shinfo(skb)->gso_size;
+
+		if (mss)
+			return LargeSend | ((mss & MSSMask) << MSSShift);
+	}
+	if (skb->ip_summed == CHECKSUM_PARTIAL) {
+		const struct iphdr *ip = ip_hdr(skb);
+
+		if (ip->protocol == IPPROTO_TCP)
+			return IPCS | TCPCS;
+		else if (ip->protocol == IPPROTO_UDP)
+			return IPCS | UDPCS;
+		WARN_ON(1);	/* we need a WARN() */
+	}
+	return 0;
+}
+
+static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
+				      struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC;
+	struct TxDesc *txd = tp->TxDescArray + entry;
+	void __iomem *ioaddr = tp->mmio_addr;
+	dma_addr_t mapping;
+	u32 status, len;
+	u32 opts1;
+
+	if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) {
+		netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n");
+		goto err_stop;
+	}
+
+	if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))
+		goto err_stop;
+
+	opts1 = DescOwn | rtl8169_tso_csum(skb, dev);
+
+	frags = rtl8169_xmit_frags(tp, skb, opts1);
+	if (frags) {
+		len = skb_headlen(skb);
+		opts1 |= FirstFrag;
+	} else {
+		len = skb->len;
+		opts1 |= FirstFrag | LastFrag;
+		tp->tx_skb[entry].skb = skb;
+	}
+
+	mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
+
+	tp->tx_skb[entry].len = len;
+	txd->addr = cpu_to_le64(mapping);
+	txd->opts2 = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb));
+
+	wmb();
+
+	/* anti gcc 2.95.3 bugware (sic) */
+	status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
+	txd->opts1 = cpu_to_le32(status);
+
+	tp->cur_tx += frags + 1;
+
+	wmb();
+
+	RTL_W8(TxPoll, NPQ);	/* set polling bit */
+
+	if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) {
+		netif_stop_queue(dev);
+		smp_rmb();
+		if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)
+			netif_wake_queue(dev);
+	}
+
+	return NETDEV_TX_OK;
+
+err_stop:
+	netif_stop_queue(dev);
+	dev->stats.tx_dropped++;
+	return NETDEV_TX_BUSY;
+}
+
+static void rtl8169_pcierr_interrupt(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+	void __iomem *ioaddr = tp->mmio_addr;
+	u16 pci_status, pci_cmd;
+
+	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
+	pci_read_config_word(pdev, PCI_STATUS, &pci_status);
+
+	netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n",
+		  pci_cmd, pci_status);
+
+	/*
+	 * The recovery sequence below admits a very elaborated explanation:
+	 * - it seems to work;
+	 * - I did not see what else could be done;
+	 * - it makes iop3xx happy.
+	 *
+	 * Feel free to adjust to your needs.
+	 */
+	if (pdev->broken_parity_status)
+		pci_cmd &= ~PCI_COMMAND_PARITY;
+	else
+		pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
+
+	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
+
+	pci_write_config_word(pdev, PCI_STATUS,
+		pci_status & (PCI_STATUS_DETECTED_PARITY |
+		PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |
+		PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));
+
+	/* The infamous DAC f*ckup only happens at boot time */
+	if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) {
+		netif_info(tp, intr, dev, "disabling PCI DAC\n");
+		tp->cp_cmd &= ~PCIDAC;
+		RTL_W16(CPlusCmd, tp->cp_cmd);
+		dev->features &= ~NETIF_F_HIGHDMA;
+	}
+
+	rtl8169_hw_reset(ioaddr);
+
+	rtl8169_schedule_work(dev, rtl8169_reinit_task);
+}
+
+static void rtl8169_tx_interrupt(struct net_device *dev,
+				 struct rtl8169_private *tp,
+				 void __iomem *ioaddr)
+{
+	unsigned int dirty_tx, tx_left;
+
+	dirty_tx = tp->dirty_tx;
+	smp_rmb();
+	tx_left = tp->cur_tx - dirty_tx;
+
+	while (tx_left > 0) {
+		unsigned int entry = dirty_tx % NUM_TX_DESC;
+		struct ring_info *tx_skb = tp->tx_skb + entry;
+		u32 len = tx_skb->len;
+		u32 status;
+
+		rmb();
+		status = le32_to_cpu(tp->TxDescArray[entry].opts1);
+		if (status & DescOwn)
+			break;
+
+		dev->stats.tx_bytes += len;
+		dev->stats.tx_packets++;
+
+		rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry);
+
+		if (status & LastFrag) {
+			dev_kfree_skb(tx_skb->skb);
+			tx_skb->skb = NULL;
+		}
+		dirty_tx++;
+		tx_left--;
+	}
+
+	if (tp->dirty_tx != dirty_tx) {
+		tp->dirty_tx = dirty_tx;
+		smp_wmb();
+		if (netif_queue_stopped(dev) &&
+		    (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) {
+			netif_wake_queue(dev);
+		}
+		/*
+		 * 8168 hack: TxPoll requests are lost when the Tx packets are
+		 * too close. Let's kick an extra TxPoll request when a burst
+		 * of start_xmit activity is detected (if it is not detected,
+		 * it is slow enough). -- FR
+		 */
+		smp_rmb();
+		if (tp->cur_tx != dirty_tx)
+			RTL_W8(TxPoll, NPQ);
+	}
+}
+
+static inline int rtl8169_fragmented_frame(u32 status)
+{
+	return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
+}
+
+static inline void rtl8169_rx_csum(struct sk_buff *skb, struct RxDesc *desc)
+{
+	u32 opts1 = le32_to_cpu(desc->opts1);
+	u32 status = opts1 & RxProtoMask;
+
+	if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
+	    ((status == RxProtoUDP) && !(opts1 & UDPFail)) ||
+	    ((status == RxProtoIP) && !(opts1 & IPFail)))
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	else
+		skb->ip_summed = CHECKSUM_NONE;
+}
+
+static inline bool rtl8169_try_rx_copy(struct sk_buff **sk_buff,
+				       struct rtl8169_private *tp, int pkt_size,
+				       dma_addr_t addr)
+{
+	struct sk_buff *skb;
+	bool done = false;
+
+	if (pkt_size >= rx_copybreak)
+		goto out;
+
+	skb = netdev_alloc_skb_ip_align(tp->dev, pkt_size);
+	if (!skb)
+		goto out;
+
+	pci_dma_sync_single_for_cpu(tp->pci_dev, addr, pkt_size,
+				    PCI_DMA_FROMDEVICE);
+	skb_copy_from_linear_data(*sk_buff, skb->data, pkt_size);
+	*sk_buff = skb;
+	done = true;
+out:
+	return done;
+}
+
+/*
+ * Warning : rtl8169_rx_interrupt() might be called :
+ * 1) from NAPI (softirq) context
+ *	(polling = 1 : we should call netif_receive_skb())
+ * 2) from process context (rtl8169_reset_task())
+ *	(polling = 0 : we must call netif_rx() instead)
+ */
+static int rtl8169_rx_interrupt(struct net_device *dev,
+				struct rtl8169_private *tp,
+				void __iomem *ioaddr, u32 budget)
+{
+	unsigned int cur_rx, rx_left;
+	unsigned int delta, count;
+	int polling = (budget != ~(u32)0) ? 1 : 0;
+
+	cur_rx = tp->cur_rx;
+	rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx;
+	rx_left = min(rx_left, budget);
+
+	for (; rx_left > 0; rx_left--, cur_rx++) {
+		unsigned int entry = cur_rx % NUM_RX_DESC;
+		struct RxDesc *desc = tp->RxDescArray + entry;
+		u32 status;
+
+		rmb();
+		status = le32_to_cpu(desc->opts1);
+
+		if (status & DescOwn)
+			break;
+		if (unlikely(status & RxRES)) {
+			netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n",
+				   status);
+			dev->stats.rx_errors++;
+			if (status & (RxRWT | RxRUNT))
+				dev->stats.rx_length_errors++;
+			if (status & RxCRC)
+				dev->stats.rx_crc_errors++;
+			if (status & RxFOVF) {
+				rtl8169_schedule_work(dev, rtl8169_reset_task);
+				dev->stats.rx_fifo_errors++;
+			}
+			rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
+		} else {
+			struct sk_buff *skb = tp->Rx_skbuff[entry];
+			dma_addr_t addr = le64_to_cpu(desc->addr);
+			int pkt_size = (status & 0x00001FFF) - 4;
+			struct pci_dev *pdev = tp->pci_dev;
+
+			/*
+			 * The driver does not support incoming fragmented
+			 * frames. They are seen as a symptom of over-mtu
+			 * sized frames.
+			 */
+			if (unlikely(rtl8169_fragmented_frame(status))) {
+				dev->stats.rx_dropped++;
+				dev->stats.rx_length_errors++;
+				rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
+				continue;
+			}
+
+			rtl8169_rx_csum(skb, desc);
+
+			if (rtl8169_try_rx_copy(&skb, tp, pkt_size, addr)) {
+				pci_dma_sync_single_for_device(pdev, addr,
+					pkt_size, PCI_DMA_FROMDEVICE);
+				rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
+			} else {
+				pci_unmap_single(pdev, addr, tp->rx_buf_sz,
+						 PCI_DMA_FROMDEVICE);
+				tp->Rx_skbuff[entry] = NULL;
+			}
+
+			skb_put(skb, pkt_size);
+			skb->protocol = eth_type_trans(skb, dev);
+
+			if (rtl8169_rx_vlan_skb(tp, desc, skb, polling) < 0) {
+				if (likely(polling))
+					netif_receive_skb(skb);
+				else
+					netif_rx(skb);
+			}
+
+			dev->stats.rx_bytes += pkt_size;
+			dev->stats.rx_packets++;
+		}
+
+		/* Work around for AMD plateform. */
+		if ((desc->opts2 & cpu_to_le32(0xfffe000)) &&
+		    (tp->mac_version == RTL_GIGA_MAC_VER_05)) {
+			desc->opts2 = 0;
+			cur_rx++;
+		}
+	}
+
+	count = cur_rx - tp->cur_rx;
+	tp->cur_rx = cur_rx;
+
+	delta = rtl8169_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx, GFP_ATOMIC);
+	if (!delta && count)
+		netif_info(tp, intr, dev, "no Rx buffer allocated\n");
+	tp->dirty_rx += delta;
+
+	/*
+	 * FIXME: until there is periodic timer to try and refill the ring,
+	 * a temporary shortage may definitely kill the Rx process.
+	 * - disable the asic to try and avoid an overflow and kick it again
+	 *   after refill ?
+	 * - how do others driver handle this condition (Uh oh...).
+	 */
+	if (tp->dirty_rx + NUM_RX_DESC == tp->cur_rx)
+		netif_emerg(tp, intr, dev, "Rx buffers exhausted\n");
+
+	return count;
+}
+
+static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
+{
+	struct net_device *dev = dev_instance;
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	int handled = 0;
+	int status;
+
+	/* loop handling interrupts until we have no new ones or
+	 * we hit a invalid/hotplug case.
+	 */
+	status = RTL_R16(IntrStatus);
+	while (status && status != 0xffff) {
+		handled = 1;
+
+		/* Handle all of the error cases first. These will reset
+		 * the chip, so just exit the loop.
+		 */
+		if (unlikely(!netif_running(dev))) {
+			rtl8169_asic_down(ioaddr);
+			break;
+		}
+
+		/* Work around for rx fifo overflow */
+		if (unlikely(status & RxFIFOOver) &&
+		(tp->mac_version == RTL_GIGA_MAC_VER_11)) {
+			netif_stop_queue(dev);
+			rtl8169_tx_timeout(dev);
+			break;
+		}
+
+		if (unlikely(status & SYSErr)) {
+			rtl8169_pcierr_interrupt(dev);
+			break;
+		}
+
+		if (status & LinkChg)
+			rtl8169_check_link_status(dev, tp, ioaddr);
+
+		/* We need to see the lastest version of tp->intr_mask to
+		 * avoid ignoring an MSI interrupt and having to wait for
+		 * another event which may never come.
+		 */
+		smp_rmb();
+		if (status & tp->intr_mask & tp->napi_event) {
+			RTL_W16(IntrMask, tp->intr_event & ~tp->napi_event);
+			tp->intr_mask = ~tp->napi_event;
+
+			if (likely(napi_schedule_prep(&tp->napi)))
+				__napi_schedule(&tp->napi);
+			else
+				netif_info(tp, intr, dev,
+					   "interrupt %04x in poll\n", status);
+		}
+
+		/* We only get a new MSI interrupt when all active irq
+		 * sources on the chip have been acknowledged. So, ack
+		 * everything we've seen and check if new sources have become
+		 * active to avoid blocking all interrupts from the chip.
+		 */
+		RTL_W16(IntrStatus,
+			(status & RxFIFOOver) ? (status | RxOverflow) : status);
+		status = RTL_R16(IntrStatus);
+	}
+
+	return IRQ_RETVAL(handled);
+}
+
+static int rtl8169_poll(struct napi_struct *napi, int budget)
+{
+	struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);
+	struct net_device *dev = tp->dev;
+	void __iomem *ioaddr = tp->mmio_addr;
+	int work_done;
+
+	work_done = rtl8169_rx_interrupt(dev, tp, ioaddr, (u32) budget);
+	rtl8169_tx_interrupt(dev, tp, ioaddr);
+
+	if (work_done < budget) {
+		napi_complete(napi);
+
+		/* We need for force the visibility of tp->intr_mask
+		 * for other CPUs, as we can loose an MSI interrupt
+		 * and potentially wait for a retransmit timeout if we don't.
+		 * The posted write to IntrMask is safe, as it will
+		 * eventually make it to the chip and we won't loose anything
+		 * until it does.
+		 */
+		tp->intr_mask = 0xffff;
+		wmb();
+		RTL_W16(IntrMask, tp->intr_event);
+	}
+
+	return work_done;
+}
+
+static void rtl8169_rx_missed(struct net_device *dev, void __iomem *ioaddr)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (tp->mac_version > RTL_GIGA_MAC_VER_06)
+		return;
+
+	dev->stats.rx_missed_errors += (RTL_R32(RxMissed) & 0xffffff);
+	RTL_W32(RxMissed, 0);
+}
+
+static void rtl8169_down(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned int intrmask;
+
+	rtl8169_delete_timer(dev);
+
+	netif_stop_queue(dev);
+
+	napi_disable(&tp->napi);
+
+core_down:
+	spin_lock_irq(&tp->lock);
+
+	rtl8169_asic_down(ioaddr);
+
+	rtl8169_rx_missed(dev, ioaddr);
+
+	spin_unlock_irq(&tp->lock);
+
+	synchronize_irq(dev->irq);
+
+	/* Give a racing hard_start_xmit a few cycles to complete. */
+	synchronize_sched();  /* FIXME: should this be synchronize_irq()? */
+
+	/*
+	 * And now for the 50k$ question: are IRQ disabled or not ?
+	 *
+	 * Two paths lead here:
+	 * 1) dev->close
+	 *    -> netif_running() is available to sync the current code and the
+	 *       IRQ handler. See rtl8169_interrupt for details.
+	 * 2) dev->change_mtu
+	 *    -> rtl8169_poll can not be issued again and re-enable the
+	 *       interruptions. Let's simply issue the IRQ down sequence again.
+	 *
+	 * No loop if hotpluged or major error (0xffff).
+	 */
+	intrmask = RTL_R16(IntrMask);
+	if (intrmask && (intrmask != 0xffff))
+		goto core_down;
+
+	rtl8169_tx_clear(tp);
+
+	rtl8169_rx_clear(tp);
+}
+
+static int rtl8169_close(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	struct pci_dev *pdev = tp->pci_dev;
+
+	pm_runtime_get_sync(&pdev->dev);
+
+	/* update counters before going down */
+	rtl8169_update_counters(dev);
+
+	rtl8169_down(dev);
+
+	free_irq(dev->irq, dev);
+
+	pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
+			    tp->RxPhyAddr);
+	pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
+			    tp->TxPhyAddr);
+	tp->TxDescArray = NULL;
+	tp->RxDescArray = NULL;
+
+	pm_runtime_put_sync(&pdev->dev);
+
+	return 0;
+}
+
+static void rtl_set_rx_mode(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+	u32 mc_filter[2];	/* Multicast hash filter */
+	int rx_mode;
+	u32 tmp = 0;
+
+	if (dev->flags & IFF_PROMISC) {
+		/* Unconditionally log net taps. */
+		netif_notice(tp, link, dev, "Promiscuous mode enabled\n");
+		rx_mode =
+		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
+		    AcceptAllPhys;
+		mc_filter[1] = mc_filter[0] = 0xffffffff;
+	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
+		   (dev->flags & IFF_ALLMULTI)) {
+		/* Too many to filter perfectly -- accept all multicasts. */
+		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
+		mc_filter[1] = mc_filter[0] = 0xffffffff;
+	} else {
+		struct netdev_hw_addr *ha;
+
+		rx_mode = AcceptBroadcast | AcceptMyPhys;
+		mc_filter[1] = mc_filter[0] = 0;
+		netdev_for_each_mc_addr(ha, dev) {
+			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
+			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
+			rx_mode |= AcceptMulticast;
+		}
+	}
+
+	spin_lock_irqsave(&tp->lock, flags);
+
+	tmp = rtl8169_rx_config | rx_mode |
+	      (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
+
+	if (tp->mac_version > RTL_GIGA_MAC_VER_06) {
+		u32 data = mc_filter[0];
+
+		mc_filter[0] = swab32(mc_filter[1]);
+		mc_filter[1] = swab32(data);
+	}
+
+	RTL_W32(MAR0 + 4, mc_filter[1]);
+	RTL_W32(MAR0 + 0, mc_filter[0]);
+
+	RTL_W32(RxConfig, tmp);
+
+	spin_unlock_irqrestore(&tp->lock, flags);
+}
+
+/**
+ *  rtl8169_get_stats - Get rtl8169 read/write statistics
+ *  @dev: The Ethernet Device to get statistics for
+ *
+ *  Get TX/RX statistics for rtl8169
+ */
+static struct net_device_stats *rtl8169_get_stats(struct net_device *dev)
+{
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+	unsigned long flags;
+
+	if (netif_running(dev)) {
+		spin_lock_irqsave(&tp->lock, flags);
+		rtl8169_rx_missed(dev, ioaddr);
+		spin_unlock_irqrestore(&tp->lock, flags);
+	}
+
+	return &dev->stats;
+}
+
+static void rtl8169_net_suspend(struct net_device *dev)
+{
+	if (!netif_running(dev))
+		return;
+
+	netif_device_detach(dev);
+	netif_stop_queue(dev);
+}
+
+#ifdef CONFIG_PM
+
+static int rtl8169_suspend(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+
+	rtl8169_net_suspend(dev);
+
+	return 0;
+}
+
+static void __rtl8169_resume(struct net_device *dev)
+{
+	netif_device_attach(dev);
+	rtl8169_schedule_work(dev, rtl8169_reset_task);
+}
+
+static int rtl8169_resume(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+
+	if (netif_running(dev))
+		__rtl8169_resume(dev);
+
+	return 0;
+}
+
+static int rtl8169_runtime_suspend(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (!tp->TxDescArray)
+		return 0;
+
+	spin_lock_irq(&tp->lock);
+	tp->saved_wolopts = __rtl8169_get_wol(tp);
+	__rtl8169_set_wol(tp, WAKE_ANY);
+	spin_unlock_irq(&tp->lock);
+
+	rtl8169_net_suspend(dev);
+
+	return 0;
+}
+
+static int rtl8169_runtime_resume(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (!tp->TxDescArray)
+		return 0;
+
+	spin_lock_irq(&tp->lock);
+	__rtl8169_set_wol(tp, tp->saved_wolopts);
+	tp->saved_wolopts = 0;
+	spin_unlock_irq(&tp->lock);
+
+	__rtl8169_resume(dev);
+
+	return 0;
+}
+
+static int rtl8169_runtime_idle(struct device *device)
+{
+	struct pci_dev *pdev = to_pci_dev(device);
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+
+	if (!tp->TxDescArray)
+		return 0;
+
+	rtl8169_check_link_status(dev, tp, tp->mmio_addr);
+	return -EBUSY;
+}
+
+static const struct dev_pm_ops rtl8169_pm_ops = {
+	.suspend = rtl8169_suspend,
+	.resume = rtl8169_resume,
+	.freeze = rtl8169_suspend,
+	.thaw = rtl8169_resume,
+	.poweroff = rtl8169_suspend,
+	.restore = rtl8169_resume,
+	.runtime_suspend = rtl8169_runtime_suspend,
+	.runtime_resume = rtl8169_runtime_resume,
+	.runtime_idle = rtl8169_runtime_idle,
+};
+
+#define RTL8169_PM_OPS	(&rtl8169_pm_ops)
+
+#else /* !CONFIG_PM */
+
+#define RTL8169_PM_OPS	NULL
+
+#endif /* !CONFIG_PM */
+
+static void rtl_shutdown(struct pci_dev *pdev)
+{
+	struct net_device *dev = pci_get_drvdata(pdev);
+	struct rtl8169_private *tp = netdev_priv(dev);
+	void __iomem *ioaddr = tp->mmio_addr;
+
+	rtl8169_net_suspend(dev);
+
+	/* restore original MAC address */
+	rtl_rar_set(tp, dev->perm_addr);
+
+	spin_lock_irq(&tp->lock);
+
+	rtl8169_asic_down(ioaddr);
+
+	spin_unlock_irq(&tp->lock);
+
+	if (system_state == SYSTEM_POWER_OFF) {
+		/* WoL fails with some 8168 when the receiver is disabled. */
+		if (tp->features & RTL_FEATURE_WOL) {
+			pci_clear_master(pdev);
+
+			RTL_W8(ChipCmd, CmdRxEnb);
+			/* PCI commit */
+			RTL_R8(ChipCmd);
+		}
+
+		pci_wake_from_d3(pdev, true);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+}
+
+static struct pci_driver rtl8169_pci_driver = {
+	.name		= MODULENAME,
+	.id_table	= rtl8169_pci_tbl,
+	.probe		= rtl8169_init_one,
+	.remove		= __devexit_p(rtl8169_remove_one),
+	.shutdown	= rtl_shutdown,
+	.driver.pm	= RTL8169_PM_OPS,
+};
+
+static int __init rtl8169_init_module(void)
+{
+	return pci_register_driver(&rtl8169_pci_driver);
+}
+
+static void __exit rtl8169_cleanup_module(void)
+{
+	pci_unregister_driver(&rtl8169_pci_driver);
+}
+
+module_init(rtl8169_init_module);
+module_exit(rtl8169_cleanup_module);
--- a/devices/r8169-2.6.37-ethercat.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/devices/r8169-2.6.37-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -4956,6 +4956,9 @@
 	struct net_device *dev = pci_get_drvdata(pdev);
 	struct rtl8169_private *tp = netdev_priv(dev);
 
+	if (tp->ecdev)
+		return -EBUSY;
+
 	rtl8169_init_phy(dev, tp);
 
 	if (netif_running(dev))
--- a/include/ecrt.h	Tue Apr 10 19:09:51 2012 +0200
+++ b/include/ecrt.h	Tue Apr 10 19:10:56 2012 +0200
@@ -5,7 +5,7 @@
  *  Copyright (C) 2006-2008  Florian Pose, Ingenieurgemeinschaft IgH
  *
  *  This file is part of the IgH EtherCAT master userspace library.
- *  
+ *
  *  The IgH EtherCAT master userspace library is free software; you can
  *  redistribute it and/or modify it under the terms of the GNU Lesser General
  *  Public License as published by the Free Software Foundation; version 2.1
@@ -19,9 +19,9 @@
  *  You should have received a copy of the GNU Lesser General Public License
  *  along with the IgH EtherCAT master userspace library. If not, see
  *  <http://www.gnu.org/licenses/>.
- *  
+ *
  *  ---
- *  
+ *
  *  The license mentioned above concerns the source code only. Using the
  *  EtherCAT technology and brand is only permitted in compliance with the
  *  industrial property and similar rights of Beckhoff Automation GmbH.
@@ -47,7 +47,7 @@
  *   ecrt_master_sync_slave_clocks() for offset and drift compensation. The
  *   EC_TIMEVAL2NANO() macro can be used for epoch time conversion, while the
  *   ecrt_master_sync_monitor_queue() and ecrt_master_sync_monitor_process()
- *   methods can be used to monitor the synchrony. 
+ *   methods can be used to monitor the synchrony.
  * - Improved the callback mechanism. ecrt_master_callbacks() now takes two
  *   callback functions for sending and receiving datagrams.
  *   ecrt_master_send_ext() is used to execute the sending of non-application
@@ -137,6 +137,9 @@
  */
 #define EC_MAX_STRING_LENGTH 64
 
+/** Maximum number of slave ports. */
+#define EC_MAX_PORTS 4
+
 /** Timeval to nanoseconds conversion.
  *
  * This macro converts a Unix epoch time to EtherCAT DC time.
@@ -149,7 +152,7 @@
     (((TV).tv_sec - 946684800ULL) * 1000000000ULL + (TV).tv_usec * 1000ULL)
 
 /******************************************************************************
- * Data types 
+ * Data types
  *****************************************************************************/
 
 struct ec_master;
@@ -194,7 +197,7 @@
 /** Slave configuration state.
  *
  * This is used as an output parameter of ecrt_slave_config_state().
- * 
+ *
  * \see ecrt_slave_config_state().
  */
 typedef struct  {
@@ -222,12 +225,33 @@
 typedef struct {
    unsigned int slave_count; /**< Number of slaves in the bus. */
    unsigned int link_up : 1; /**< \a true, if the network link is up. */
-   uint8_t scan_busy; /**< \a true, while the master is scanning the bus */   
+   uint8_t scan_busy; /**< \a true, while the master is scanning the bus */
    uint64_t app_time; /**< Application time. */
 } ec_master_info_t;
 
 /*****************************************************************************/
 
+/** EtherCAT slave port descriptor.
+ */
+typedef enum {
+    EC_PORT_NOT_IMPLEMENTED, /**< Port is not implemented. */
+    EC_PORT_NOT_CONFIGURED, /**< Port is not configured. */
+    EC_PORT_EBUS, /**< Port is an e-bus. */
+    EC_PORT_MII /**< Port is a mii. */
+} ec_slave_port_desc_t;
+
+/*****************************************************************************/
+
+/** EtherCAT slave port information.
+ */
+typedef struct {
+    uint8_t link_up; /**< Link detected. */
+    uint8_t loop_closed; /**< Loop closed. */
+    uint8_t signal_detected; /**< Detected signal on RX port. */
+} ec_slave_port_link_t;
+
+/*****************************************************************************/
+
 /** Slave information.
  *
  * This is used as an output parameter of ecrt_master_get_slave().
@@ -242,6 +266,15 @@
     uint32_t serial_number; /**< Serial-Number stored on the slave. */
     uint16_t alias; /**< The slaves alias if not equal to 0. */
     int16_t current_on_ebus; /**< Used current in mA. */
+    struct {
+        ec_slave_port_desc_t desc; /**< Physical port type. */
+        ec_slave_port_link_t link; /**< Port link state. */
+        uint32_t receive_time; /**< Receive time on DC transmission delay
+                                 measurement. */
+        uint16_t next_slave; /**< Ring position of next DC slave on that
+                               port.  */
+        uint32_t delay_to_next_dc; /**< Delay [ns] to next DC slave. */
+    } ports[EC_MAX_PORTS]; /**< Port information. */
     uint8_t al_state; /**< Current state of the slave. */
     uint8_t error_flag; /**< Error flag for that slave. */
     uint8_t sync_count; /**< Number of sync managers. */
@@ -313,9 +346,9 @@
 /*****************************************************************************/
 
 /** PDO configuration information.
- * 
+ *
  * This is the data type of the \a pdos field in ec_sync_info_t.
- * 
+ *
  * \see ecrt_slave_config_pdos().
  */
 typedef struct {
@@ -364,7 +397,7 @@
     uint8_t subindex; /**< PDO entry subindex. */
     unsigned int *offset; /**< Pointer to a variable to store the PDO entry's
                        (byte-)offset in the process data. */
-    unsigned int *bit_position; /**< Pointer to a variable to store a bit 
+    unsigned int *bit_position; /**< Pointer to a variable to store a bit
                                   position (0-7) within the \a offset. Can be
                                   NULL, in which case an error is raised if the
                                   PDO entry does not byte-align. */
@@ -410,7 +443,7 @@
 unsigned int ecrt_version_magic(void);
 
 /** Requests an EtherCAT master for realtime operation.
- * 
+ *
  * Before an application can access an EtherCAT master, it has to reserve one
  * for exclusive use.
  *
@@ -826,12 +859,12 @@
  * The master has to know the application's time when operating slaves with
  * distributed clocks. The time is not incremented by the master itself, so
  * this method has to be called cyclically.
- * 
+ *
  * The time is used when setting the slaves' <tt>System Time Offset</tt> and
  * <tt>Cyclic Operation Start Time</tt> registers and when synchronizing the
  * DC reference clock to the application time via
  * ecrt_master_sync_reference_clock().
- * 
+ *
  * The time is defined as nanoseconds from 2000-01-01 00:00. Converting an
  * epoch time can be done with the EC_TIMEVAL2NANO() macro.
  */
@@ -940,7 +973,7 @@
  * This can be called before assigning PDOs via
  * ecrt_slave_config_pdo_assign_add(), to clear the default assignment of a
  * sync manager.
- * 
+ *
  * \see ecrt_slave_config_pdos()
  */
 void ecrt_slave_config_pdo_assign_clear(
@@ -994,28 +1027,28 @@
  *     {0x3101, 1,  8}, // status
  *     {0x3101, 2, 16}  // value
  * };
- * 
+ *
  * ec_pdo_entry_info_t el3162_channel2[] = {
  *     {0x3102, 1,  8}, // status
  *     {0x3102, 2, 16}  // value
  * };
- * 
+ *
  * ec_pdo_info_t el3162_pdos[] = {
  *     {0x1A00, 2, el3162_channel1},
  *     {0x1A01, 2, el3162_channel2}
  * };
- * 
+ *
  * ec_sync_info_t el3162_syncs[] = {
  *     {2, EC_DIR_OUTPUT},
  *     {3, EC_DIR_INPUT, 2, el3162_pdos},
  *     {0xff}
  * };
- * 
+ *
  * if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el3162_syncs)) {
  *     // handle error
  * }
  * \endcode
- * 
+ *
  * The next example shows, how to configure the PDO assignment only. The
  * entries for each assigned PDO are taken from the PDO's default mapping.
  * Please note, that PDO entry registration will fail, if the PDO
@@ -1026,11 +1059,11 @@
  *     {0x1600}, // Channel 1
  *     {0x1601}  // Channel 2
  * };
- * 
+ *
  * ec_sync_info_t syncs[] = {
  *     {3, EC_DIR_INPUT, 2, pdos},
  * };
- * 
+ *
  * if (ecrt_slave_config_pdos(slave_config_ana_in, 1, syncs)) {
  *     // handle error
  * }
@@ -1072,7 +1105,7 @@
         uint16_t entry_index, /**< Index of the PDO entry to register. */
         uint8_t entry_subindex, /**< Subindex of the PDO entry to register. */
         ec_domain_t *domain, /**< Domain. */
-        unsigned int *bit_position /**< Optional address if bit addressing 
+        unsigned int *bit_position /**< Optional address if bit addressing
                                  is desired */
         );
 
--- a/lib/master.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/lib/master.c	Tue Apr 10 19:10:56 2012 +0200
@@ -1,11 +1,11 @@
 /******************************************************************************
- *  
+ *
  *  $Id$
- *  
+ *
  *  Copyright (C) 2006-2009  Florian Pose, Ingenieurgemeinschaft IgH
- *  
+ *
  *  This file is part of the IgH EtherCAT master userspace library.
- *  
+ *
  *  The IgH EtherCAT master userspace library is free software; you can
  *  redistribute it and/or modify it under the terms of the GNU Lesser General
  *  Public License as published by the Free Software Foundation; version 2.1
@@ -19,9 +19,9 @@
  *  You should have received a copy of the GNU Lesser General Public License
  *  along with the IgH EtherCAT master userspace library. If not, see
  *  <http://www.gnu.org/licenses/>.
- *  
+ *
  *  ---
- *  
+ *
  *  The license mentioned above concerns the source code only. Using the
  *  EtherCAT technology and brand is only permitted in compliance with the
  *  industrial property and similar rights of Beckhoff Automation GmbH.
@@ -118,12 +118,12 @@
         fprintf(stderr, "Failed to allocate memory.\n");
         return 0;
     }
-    
+
     index = ioctl(master->fd, EC_IOCTL_CREATE_DOMAIN, NULL);
     if (index == -1) {
         fprintf(stderr, "Failed to create domain: %s\n", strerror(errno));
         free(domain);
-        return 0; 
+        return 0;
     }
 
     domain->next = NULL;
@@ -166,17 +166,17 @@
         fprintf(stderr, "Failed to allocate memory.\n");
         return 0;
     }
-    
+
     data.alias = alias;
     data.position = position;
     data.vendor_id = vendor_id;
     data.product_code = product_code;
-    
+
     if (ioctl(master->fd, EC_IOCTL_CREATE_SLAVE_CONFIG, &data) == -1) {
         fprintf(stderr, "Failed to create slave config: %s\n",
                 strerror(errno));
         free(sc);
-        return 0; 
+        return 0;
     }
 
     sc->next = NULL;
@@ -216,7 +216,7 @@
         ec_slave_info_t *slave_info)
 {
     ec_ioctl_slave_t data;
-    int index;
+    int index, i;
 
     data.position = slave_position;
 
@@ -232,6 +232,15 @@
     slave_info->serial_number = data.serial_number;
     slave_info->alias = data.alias;
     slave_info->current_on_ebus = data.current_on_ebus;
+    for ( i = 0; i < EC_MAX_PORTS; i++ ) {
+    	slave_info->ports[i].desc = data.ports[i].desc;
+    	slave_info->ports[i].link.link_up = data.ports[i].link.link_up;
+    	slave_info->ports[i].link.loop_closed = data.ports[i].link.loop_closed;
+    	slave_info->ports[i].link.signal_detected = data.ports[i].link.signal_detected;
+    	slave_info->ports[i].receive_time = data.ports[i].receive_time;
+    	slave_info->ports[i].next_slave = data.ports[i].next_slave;
+    	slave_info->ports[i].delay_to_next_dc = data.ports[i].delay_to_next_dc;
+    }
     slave_info->al_state = data.al_state;
     slave_info->error_flag = data.error_flag;
     slave_info->sync_count = data.sync_count;
--- a/master/cdev.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/master/cdev.c	Tue Apr 10 19:10:56 2012 +0200
@@ -1395,43 +1395,55 @@
         unsigned long arg /**< ioctl() argument. */
         )
 {
-    ec_ioctl_config_sdo_t data;
+    ec_ioctl_config_sdo_t *ioctl;
     const ec_slave_config_t *sc;
     const ec_sdo_request_t *req;
 
-    if (copy_from_user(&data, (void __user *) arg, sizeof(data))) {
-        return -EFAULT;
-    }
-
-    if (down_interruptible(&master->master_sem))
+    if (!(ioctl = kmalloc(sizeof(*ioctl), GFP_KERNEL))) {
+        return -ENOMEM;
+    }
+
+    if (copy_from_user(ioctl, (void __user *) arg, sizeof(*ioctl))) {
+        kfree(ioctl);
+        return -EFAULT;
+    }
+
+    if (down_interruptible(&master->master_sem)) {
+        kfree(ioctl);
         return -EINTR;
+    }
 
     if (!(sc = ec_master_get_config_const(
-                    master, data.config_index))) {
+                    master, ioctl->config_index))) {
         up(&master->master_sem);
         EC_MASTER_ERR(master, "Slave config %u does not exist!\n",
-                data.config_index);
+                ioctl->config_index);
+        kfree(ioctl);
         return -EINVAL;
     }
 
     if (!(req = ec_slave_config_get_sdo_by_pos_const(
-                    sc, data.sdo_pos))) {
+                    sc, ioctl->sdo_pos))) {
         up(&master->master_sem);
         EC_MASTER_ERR(master, "Invalid SDO position!\n");
-        return -EINVAL;
-    }
-
-    data.index = req->index;
-    data.subindex = req->subindex;
-    data.size = req->data_size;
-    memcpy(&data.data, req->data,
-            min((u32) data.size, (u32) EC_MAX_SDO_DATA_SIZE));
+        kfree(ioctl);
+        return -EINVAL;
+    }
+
+    ioctl->index = req->index;
+    ioctl->subindex = req->subindex;
+    ioctl->size = req->data_size;
+    memcpy(ioctl->data, req->data,
+            min((u32) ioctl->size, (u32) EC_MAX_SDO_DATA_SIZE));
 
     up(&master->master_sem);
 
-    if (copy_to_user((void __user *) arg, &data, sizeof(data)))
-        return -EFAULT;
-
+    if (copy_to_user((void __user *) arg, ioctl, sizeof(*ioctl))) {
+        kfree(ioctl);
+        return -EFAULT;
+    }
+
+    kfree(ioctl);
     return 0;
 }
 
@@ -1444,44 +1456,56 @@
         unsigned long arg /**< ioctl() argument. */
         )
 {
-    ec_ioctl_config_idn_t data;
+    ec_ioctl_config_idn_t *ioctl;
     const ec_slave_config_t *sc;
     const ec_soe_request_t *req;
 
-    if (copy_from_user(&data, (void __user *) arg, sizeof(data))) {
-        return -EFAULT;
-    }
-
-    if (down_interruptible(&master->master_sem))
+    if (!(ioctl = kmalloc(sizeof(*ioctl), GFP_KERNEL))) {
+        return -ENOMEM;
+    }
+
+    if (copy_from_user(ioctl, (void __user *) arg, sizeof(*ioctl))) {
+        kfree(ioctl);
+        return -EFAULT;
+    }
+
+    if (down_interruptible(&master->master_sem)) {
+        kfree(ioctl);
         return -EINTR;
+    }
 
     if (!(sc = ec_master_get_config_const(
-                    master, data.config_index))) {
+                    master, ioctl->config_index))) {
         up(&master->master_sem);
         EC_MASTER_ERR(master, "Slave config %u does not exist!\n",
-                data.config_index);
+                ioctl->config_index);
+        kfree(ioctl);
         return -EINVAL;
     }
 
     if (!(req = ec_slave_config_get_idn_by_pos_const(
-                    sc, data.idn_pos))) {
+                    sc, ioctl->idn_pos))) {
         up(&master->master_sem);
         EC_MASTER_ERR(master, "Invalid IDN position!\n");
-        return -EINVAL;
-    }
-
-    data.drive_no = req->drive_no;
-    data.idn = req->idn;
-    data.state = req->state;
-    data.size = req->data_size;
-    memcpy(&data.data, req->data,
-            min((u32) data.size, (u32) EC_MAX_IDN_DATA_SIZE));
+        kfree(ioctl);
+        return -EINVAL;
+    }
+
+    ioctl->drive_no = req->drive_no;
+    ioctl->idn = req->idn;
+    ioctl->state = req->state;
+    ioctl->size = req->data_size;
+    memcpy(ioctl->data, req->data,
+            min((u32) ioctl->size, (u32) EC_MAX_IDN_DATA_SIZE));
 
     up(&master->master_sem);
 
-    if (copy_to_user((void __user *) arg, &data, sizeof(data)))
-        return -EFAULT;
-
+    if (copy_to_user((void __user *) arg, ioctl, sizeof(*ioctl))) {
+        kfree(ioctl);
+        return -EFAULT;
+    }
+
+    kfree(ioctl);
     return 0;
 }
 
--- a/master/ethernet.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/master/ethernet.c	Tue Apr 10 19:10:56 2012 +0200
@@ -441,7 +441,10 @@
 {
     size_t rec_size, data_size;
     uint8_t *data, frame_type, last_fragment, time_appended, mbox_prot;
-    uint8_t frame_number, fragment_offset, fragment_number;
+    uint8_t fragment_offset, fragment_number;
+#if EOE_DEBUG_LEVEL >= 2
+    uint8_t frame_number;
+#endif
     off_t offset;
 #if EOE_DEBUG_LEVEL >= 3
     unsigned int i;
@@ -497,7 +500,9 @@
     time_appended = (EC_READ_U16(data) >> 9) & 0x0001;
     fragment_number = EC_READ_U16(data + 2) & 0x003F;
     fragment_offset = (EC_READ_U16(data + 2) >> 6) & 0x003F;
+#if EOE_DEBUG_LEVEL >= 2
     frame_number = (EC_READ_U16(data + 2) >> 12) & 0x000F;
+#endif
 
 #if EOE_DEBUG_LEVEL >= 2
     EC_SLAVE_DBG(eoe->slave, 0, "EoE %s RX fragment %u%s, offset %u,"
--- a/master/ethernet.h	Tue Apr 10 19:09:51 2012 +0200
+++ b/master/ethernet.h	Tue Apr 10 19:10:56 2012 +0200
@@ -39,7 +39,12 @@
 
 #include <linux/list.h>
 #include <linux/netdevice.h>
+
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
 #include <linux/semaphore.h>
+#else
+#include <asm/semaphore.h>
+#endif
 
 #include "globals.h"
 #include "slave.h"
--- a/master/fsm_foe.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/master/fsm_foe.c	Tue Apr 10 19:10:56 2012 +0200
@@ -622,15 +622,12 @@
         ec_fsm_foe_t *fsm /**< FoE statemachine. */
         )
 {
-    size_t current_size;
     ec_slave_t *slave = fsm->slave;
 
     fsm->rx_buffer_offset = 0;
     fsm->rx_expected_packet_no = 1;
     fsm->rx_last_packet = 0;
 
-    current_size = fsm->rx_filename_len;
-
 #ifdef DEBUG_FOE
     printk("ec_fsm_foe_read_start()\n");
 #endif
@@ -732,7 +729,8 @@
         return;
     }
 
-    if (!(data = ec_slave_mbox_fetch(slave, datagram, &mbox_prot, &rec_size))) {
+    if (!(data = ec_slave_mbox_fetch(slave, datagram, &mbox_prot,
+                    &rec_size))) {
         ec_foe_set_rx_error(fsm, FOE_MBOX_FETCH_ERROR);
         return;
     }
@@ -758,7 +756,7 @@
         EC_SLAVE_ERR(slave, "Received FoE Error Request (code 0x%08x).\n",
                 fsm->request->error_code);
         if (rec_size > 6) {
-            uint8_t text[1024];
+            uint8_t text[256];
             strncpy(text, data + 6, min(rec_size - 6, sizeof(text)));
             EC_SLAVE_ERR(slave, "FoE Error Text: %s\n", text);
         }
--- a/master/globals.h	Tue Apr 10 19:09:51 2012 +0200
+++ b/master/globals.h	Tue Apr 10 19:10:56 2012 +0200
@@ -97,9 +97,6 @@
 /** Word offset of first SII category. */
 #define EC_FIRST_SII_CATEGORY_OFFSET 0x40
 
-/** Maximum number of slave ports. */
-#define EC_MAX_PORTS 4
-
 /** Size of a sync manager configuration page. */
 #define EC_SYNC_PAGE_SIZE 8
 
@@ -173,23 +170,6 @@
     uint8_t enable_not_lrw : 1; /**< Slave does not support LRW. */
 } ec_sii_general_flags_t;
 
-/** EtherCAT slave port descriptor.
- */
-typedef enum {
-    EC_PORT_NOT_IMPLEMENTED,
-    EC_PORT_NOT_CONFIGURED,
-    EC_PORT_EBUS,
-    EC_PORT_MII
-} ec_slave_port_desc_t;
-
-/** EtherCAT slave port information.
- */
-typedef struct {
-    uint8_t link_up; /**< Link detected. */
-    uint8_t loop_closed; /**< Loop closed. */
-    uint8_t signal_detected; /**< Detected signal on RX port. */
-} ec_slave_port_link_t;
-
 /** EtherCAT slave distributed clocks range.
  */
 typedef enum {
--- a/master/master.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/master/master.c	Tue Apr 10 19:10:56 2012 +0200
@@ -605,7 +605,7 @@
         if (ret) {
             EC_MASTER_INFO(master, "Finishing slave configuration"
                     " interrupted by signal.\n");
-            goto out_allow;
+            goto out_return;
         }
 
         EC_MASTER_DBG(master, 1, "Waiting for pending slave"
@@ -656,6 +656,7 @@
     
 out_allow:
     master->allow_scan = 1;
+out_return:
     return ret;
 }
 
@@ -673,6 +674,9 @@
         ec_master_clear_config(master);
     }
 
+    /* Re-allow scanning for IDLE phase. */
+    master->allow_scan = 1;
+
     EC_MASTER_DBG(master, 1, "OPERATION -> IDLE.\n");
 
     master->phase = EC_IDLE;
@@ -1236,7 +1240,9 @@
     ec_master_t *master = (ec_master_t *) priv_data;
     ec_slave_t *slave = NULL;
     int fsm_exec;
+#ifdef EC_USE_HRTIMER
     size_t sent_bytes;
+#endif
 
     // send interval in IDLE phase
     ec_master_set_send_interval(master, 1000000 / HZ); 
@@ -1271,8 +1277,10 @@
             ec_master_queue_datagram(master, &master->fsm_datagram);
         }
         ecrt_master_send(master);
+#ifdef EC_USE_HRTIMER
         sent_bytes = master->main_device.tx_skb[
             master->main_device.tx_ring_index]->len;
+#endif
         up(&master->io_sem);
 
         if (ec_fsm_master_idle(&master->fsm)) {
@@ -1789,24 +1797,33 @@
         )
 {
     ec_slave_t *slave = master->slaves + *slave_position;
-    unsigned int i;
+    unsigned int port_index;
     int ret;
 
+    static const unsigned int next_table[EC_MAX_PORTS] = {
+        3, 2, 0, 1
+    };
+
     slave->ports[0].next_slave = port0_slave;
 
-    for (i = 1; i < EC_MAX_PORTS; i++) {
-        if (!slave->ports[i].link.loop_closed) {
+    port_index = 3;
+    while (port_index != 0) {
+        if (!slave->ports[port_index].link.loop_closed) {
             *slave_position = *slave_position + 1;
             if (*slave_position < master->slave_count) {
-                slave->ports[i].next_slave = master->slaves + *slave_position;
+                slave->ports[port_index].next_slave =
+                    master->slaves + *slave_position;
                 ret = ec_master_calc_topology_rec(master,
                         slave, slave_position);
-                if (ret)
+                if (ret) {
                     return ret;
+                }
             } else {
                 return -1;
             }
         }
+
+        port_index = next_table[port_index];
     }
 
     return 0;
@@ -2012,7 +2029,9 @@
         return ret;
     }
 
-    master->allow_scan = 1; // allow re-scanning on topology change
+    /* Allow scanning after a topology change. */
+    master->allow_scan = 1;
+
     master->active = 1;
 
     // notify state machine, that the configuration shall now be applied
@@ -2084,7 +2103,10 @@
                 "EtherCAT-IDLE"))
         EC_MASTER_WARN(master, "Failed to restart master thread!\n");
 
-    master->allow_scan = 1;
+    /* Disallow scanning to get into the same state like after a master
+     * request (after ec_master_enter_operation_phase() is called). */
+    master->allow_scan = 0;
+
     master->active = 0;
 }
 
@@ -2269,6 +2291,7 @@
         ec_slave_info_t *slave_info)
 {
     const ec_slave_t *slave;
+    unsigned int i;
 
     if (down_interruptible(&master->master_sem)) {
         return -EINTR;
@@ -2283,6 +2306,25 @@
     slave_info->serial_number = slave->sii.serial_number;
     slave_info->alias = slave->effective_alias;
     slave_info->current_on_ebus = slave->sii.current_on_ebus;
+
+    for (i = 0; i < EC_MAX_PORTS; i++) {
+        slave_info->ports[i].desc = slave->ports[i].desc;
+        slave_info->ports[i].link.link_up = slave->ports[i].link.link_up;
+        slave_info->ports[i].link.loop_closed =
+            slave->ports[i].link.loop_closed;
+        slave_info->ports[i].link.signal_detected =
+            slave->ports[i].link.signal_detected;
+        slave_info->ports[i].receive_time = slave->ports[i].receive_time;
+        if (slave->ports[i].next_slave) {
+            slave_info->ports[i].next_slave =
+                slave->ports[i].next_slave->ring_position;
+        } else {
+            slave_info->ports[i].next_slave = 0xffff;
+        }
+        slave_info->ports[i].delay_to_next_dc =
+            slave->ports[i].delay_to_next_dc;
+    }
+
     slave_info->al_state = slave->current_state;
     slave_info->error_flag = slave->error_flag;
     slave_info->sync_count = slave->sii.sync_count;
--- a/master/slave.c	Tue Apr 10 19:09:51 2012 +0200
+++ b/master/slave.c	Tue Apr 10 19:10:56 2012 +0200
@@ -803,6 +803,62 @@
 
 /*****************************************************************************/
 
+/** Returns the previous connected port of a given port.
+ */
+unsigned int ec_slave_get_previous_port(
+        ec_slave_t *slave, /**< EtherCAT slave. */
+        unsigned int port_index /**< Port index. */
+        )
+{
+    static const unsigned int prev_table[EC_MAX_PORTS] = {
+        2, 3, 1, 0
+    };
+
+    if (port_index >= EC_MAX_PORTS) {
+        EC_SLAVE_WARN(slave, "%s(port_index=%u): Invalid port index!\n",
+                __func__, port_index);
+    }
+
+    do {
+        port_index = prev_table[port_index];
+        if (slave->ports[port_index].next_slave) {
+            return port_index;
+        }
+    } while (port_index);
+
+    return 0;
+}
+
+/*****************************************************************************/
+
+/** Returns the next connected port of a given port.
+ */
+unsigned int ec_slave_get_next_port(
+        ec_slave_t *slave, /**< EtherCAT slave. */
+        unsigned int port_index /**< Port index. */
+        )
+{
+    static const unsigned int next_table[EC_MAX_PORTS] = {
+        3, 2, 0, 1
+    };
+
+    if (port_index >= EC_MAX_PORTS) {
+        EC_SLAVE_WARN(slave, "%s(port_index=%u): Invalid port index!\n",
+                __func__, port_index);
+    }
+
+    do {
+        port_index = next_table[port_index];
+        if (slave->ports[port_index].next_slave) {
+            return port_index;
+        }
+    } while (port_index);
+
+    return 0;
+}
+
+/*****************************************************************************/
+
 /** Calculates the sum of round-trip-times of connected ports 1-3.
  */
 uint32_t ec_slave_calc_rtt_sum(
@@ -810,13 +866,16 @@
         )
 {
     uint32_t rtt_sum = 0, rtt;
-    unsigned int i;
-    
-    for (i = 1; i < EC_MAX_PORTS; i++) {
-        if (slave->ports[i].next_slave) {
-            rtt = slave->ports[i].receive_time - slave->ports[i - 1].receive_time;
-            rtt_sum += rtt;
-        }
+    unsigned int port_index = ec_slave_get_next_port(slave, 0);
+
+    while (port_index != 0) {
+        unsigned int prev_index =
+            ec_slave_get_previous_port(slave, port_index);
+
+        rtt = slave->ports[port_index].receive_time -
+            slave->ports[prev_index].receive_time;
+        rtt_sum += rtt;
+        port_index = ec_slave_get_next_port(slave, port_index);
     }
 
     return rtt_sum;
@@ -830,20 +889,25 @@
         ec_slave_t *slave /**< EtherCAT slave. */
         )
 {
+    unsigned int port_index;
     ec_slave_t *dc_slave = NULL;
 
     if (slave->base_dc_supported) {
         dc_slave = slave;
     } else {
-        unsigned int i;
-
-        for (i = 1; i < EC_MAX_PORTS; i++) {
-            ec_slave_t *next = slave->ports[i].next_slave;
+        port_index = ec_slave_get_next_port(slave, 0);
+
+        while (port_index != 0) {
+            ec_slave_t *next = slave->ports[port_index].next_slave;
+
             if (next) {
                 dc_slave = ec_slave_find_next_dc_slave(next);
-                if (dc_slave)
+
+                if (dc_slave) {
                     break;
+                }
             }
+            port_index = ec_slave_get_next_port(slave, port_index);
         }
     }
 
@@ -858,33 +922,41 @@
         ec_slave_t *slave /**< EtherCAT slave. */
         )
 {
-    unsigned int i;
-    ec_slave_t *next, *next_dc;
+    unsigned int port_index;
+    ec_slave_t *next_slave, *next_dc;
     uint32_t rtt, next_rtt_sum;
 
     if (!slave->base_dc_supported)
         return;
 
-    for (i = 1; i < EC_MAX_PORTS; i++) {
-        next = slave->ports[i].next_slave;
-        if (!next)
-            continue;
-        next_dc = ec_slave_find_next_dc_slave(next);
-        if (!next_dc)
-            continue;
-
-        rtt = slave->ports[i].receive_time - slave->ports[i - 1].receive_time;
-        next_rtt_sum = ec_slave_calc_rtt_sum(next_dc);
-
-        slave->ports[i].delay_to_next_dc = (rtt - next_rtt_sum) / 2; // FIXME
-        next_dc->ports[0].delay_to_next_dc = (rtt - next_rtt_sum) / 2;
+    port_index = ec_slave_get_next_port(slave, 0);
+
+    while (port_index != 0) {
+        next_slave = slave->ports[port_index].next_slave;
+        next_dc = ec_slave_find_next_dc_slave(next_slave);
+
+        if (next_dc) {
+            unsigned int prev_port =
+                ec_slave_get_previous_port(slave, port_index);
+
+            rtt = slave->ports[port_index].receive_time -
+                slave->ports[prev_port].receive_time;
+            next_rtt_sum = ec_slave_calc_rtt_sum(next_dc);
+
+            slave->ports[port_index].delay_to_next_dc =
+                (rtt - next_rtt_sum) / 2; // FIXME
+            next_dc->ports[0].delay_to_next_dc =
+                (rtt - next_rtt_sum) / 2;
 
 #if 0
-        EC_SLAVE_DBG(slave, 1, "delay %u:%u rtt=%u"
-                " next_rtt_sum=%u delay=%u\n",
-                slave->ring_position, i, rtt, next_rtt_sum,
-                slave->ports[i].delay_to_next_dc);
+            EC_SLAVE_DBG(slave, 1, "delay %u:%u rtt=%u"
+                    " next_rtt_sum=%u delay=%u\n",
+                    slave->ring_position, port_index, rtt, next_rtt_sum,
+                    slave->ports[port_index].delay_to_next_dc);
 #endif
+        }
+
+        port_index = ec_slave_get_next_port(slave, port_index);
     }
 }
 
@@ -898,28 +970,27 @@
         )
 {
     unsigned int i;
-    ec_slave_t *next, *next_dc;
-
+    ec_slave_t *next_dc;
+
+    EC_SLAVE_DBG(slave, 1, "%s(delay = %u ns)\n", __func__, *delay);
+
+    slave->transmission_delay = *delay;
+
+    i = ec_slave_get_next_port(slave, 0);
+
+    while (i != 0) {
+        ec_slave_port_t *port = &slave->ports[i];
+        next_dc = ec_slave_find_next_dc_slave(port->next_slave);
+        if (next_dc) {
+            *delay = *delay + port->delay_to_next_dc;
 #if 0
-    EC_SLAVE_DBG(slave, 1, "%u\n", *delay);
+            EC_SLAVE_DBG(slave, 1, "%u:%u %u\n",
+                    slave->ring_position, i, *delay);
 #endif
-
-    slave->transmission_delay = *delay;
-
-    for (i = 1; i < EC_MAX_PORTS; i++) {
-        ec_slave_port_t *port = &slave->ports[i];
-        next = port->next_slave;
-        if (!next)
-            continue;
-        next_dc = ec_slave_find_next_dc_slave(next);
-        if (!next_dc)
-            continue;
-
-        *delay = *delay + port->delay_to_next_dc;
-#if 0
-        EC_SLAVE_DBG(slave, 1, "%u:%u %u\n", slave->ring_position, i, *delay);
-#endif
-        ec_slave_calc_transmission_delays_rec(next_dc, delay);
+            ec_slave_calc_transmission_delays_rec(next_dc, delay);
+        }
+
+        i = ec_slave_get_next_port(slave, i);
     }
 
     *delay = *delay + slave->ports[0].delay_to_next_dc;
--- a/script/Makefile.am	Tue Apr 10 19:09:51 2012 +0200
+++ b/script/Makefile.am	Tue Apr 10 19:10:56 2012 +0200
@@ -38,7 +38,7 @@
 systemddir = $(libdir)/systemd/system
 systemd_DATA = ethercat.service
 
-sysconf_DATA = ethercat.conf
+dist_sysconf_DATA = ethercat.conf
 
 EXTRA_DIST = \
 	ethercatctl.in \