devices/e1000e/ich8lan-2.6.35-ethercat.c
branchstable-1.5
changeset 2378 ca345abf0565
parent 2290 0a6fc3f5f418
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000e/ich8lan-2.6.35-ethercat.c	Tue Apr 10 19:10:56 2012 +0200
@@ -0,0 +1,3506 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2009 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/*
+ * 82562G 10/100 Network Connection
+ * 82562G-2 10/100 Network Connection
+ * 82562GT 10/100 Network Connection
+ * 82562GT-2 10/100 Network Connection
+ * 82562V 10/100 Network Connection
+ * 82562V-2 10/100 Network Connection
+ * 82566DC-2 Gigabit Network Connection
+ * 82566DC Gigabit Network Connection
+ * 82566DM-2 Gigabit Network Connection
+ * 82566DM Gigabit Network Connection
+ * 82566MC Gigabit Network Connection
+ * 82566MM Gigabit Network Connection
+ * 82567LM Gigabit Network Connection
+ * 82567LF Gigabit Network Connection
+ * 82567V Gigabit Network Connection
+ * 82567LM-2 Gigabit Network Connection
+ * 82567LF-2 Gigabit Network Connection
+ * 82567V-2 Gigabit Network Connection
+ * 82567LF-3 Gigabit Network Connection
+ * 82567LM-3 Gigabit Network Connection
+ * 82567LM-4 Gigabit Network Connection
+ * 82577LM Gigabit Network Connection
+ * 82577LC Gigabit Network Connection
+ * 82578DM Gigabit Network Connection
+ * 82578DC Gigabit Network Connection
+ */
+
+#include "e1000-2.6.35-ethercat.h"
+
+#define ICH_FLASH_GFPREG		0x0000
+#define ICH_FLASH_HSFSTS		0x0004
+#define ICH_FLASH_HSFCTL		0x0006
+#define ICH_FLASH_FADDR			0x0008
+#define ICH_FLASH_FDATA0		0x0010
+#define ICH_FLASH_PR0			0x0074
+
+#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
+#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
+
+#define ICH_CYCLE_READ			0
+#define ICH_CYCLE_WRITE			2
+#define ICH_CYCLE_ERASE			3
+
+#define FLASH_GFPREG_BASE_MASK		0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT		12
+
+#define ICH_FLASH_SEG_SIZE_256		256
+#define ICH_FLASH_SEG_SIZE_4K		4096
+#define ICH_FLASH_SEG_SIZE_8K		8192
+#define ICH_FLASH_SEG_SIZE_64K		65536
+
+
+#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID		0x00008000
+
+#define E1000_ICH_MNG_IAMT_MODE		0x2
+
+#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
+				 (ID_LED_DEF1_OFF2 <<  8) | \
+				 (ID_LED_DEF1_ON2  <<  4) | \
+				 (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD		0x13
+#define E1000_ICH_NVM_SIG_MASK		0xC000
+#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
+#define E1000_ICH_NVM_SIG_VALUE         0x80
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
+
+#define E1000_FEXTNVM_SW_CONFIG		1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
+
+#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES		7
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+			   ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
+
+#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
+
+#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
+
+/* SMBus Address Phy Register */
+#define HV_SMB_ADDR            PHY_REG(768, 26)
+#define HV_SMB_ADDR_PEC_EN     0x0200
+#define HV_SMB_ADDR_VALID      0x0080
+
+/* Strapping Option Register - RO */
+#define E1000_STRAP                     0x0000C
+#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
+#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
+
+/* OEM Bits Phy Register */
+#define HV_OEM_BITS            PHY_REG(768, 25)
+#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
+#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
+#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
+
+#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
+#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
+
+/* KMRN Mode Control */
+#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
+#define HV_KMRN_MDIO_SLOW      0x0400
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+	struct ich8_hsfsts {
+		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
+		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
+		u16 dael       :1; /* bit 2 Direct Access error Log */
+		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
+		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
+		u16 reserved1  :2; /* bit 13:6 Reserved */
+		u16 reserved2  :6; /* bit 13:6 Reserved */
+		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
+		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
+	} hsf_status;
+	u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+	struct ich8_hsflctl {
+		u16 flcgo      :1;   /* 0 Flash Cycle Go */
+		u16 flcycle    :2;   /* 2:1 Flash Cycle */
+		u16 reserved   :5;   /* 7:3 Reserved  */
+		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
+		u16 flockdn    :6;   /* 15:10 Reserved */
+	} hsf_ctrl;
+	u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+	struct ich8_flracc {
+		u32 grra      :8; /* 0:7 GbE region Read Access */
+		u32 grwa      :8; /* 8:15 GbE region Write Access */
+		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
+		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
+	} hsf_flregacc;
+	u16 regval;
+};
+
+/* ICH Flash Protected Region */
+union ich8_flash_protected_range {
+	struct ich8_pr {
+		u32 base:13;     /* 0:12 Protected Range Base */
+		u32 reserved1:2; /* 13:14 Reserved */
+		u32 rpe:1;       /* 15 Read Protection Enable */
+		u32 limit:13;    /* 16:28 Protected Range Limit */
+		u32 reserved2:2; /* 29:30 Reserved */
+		u32 wpe:1;       /* 31 Write Protection Enable */
+	} range;
+	u32 regval;
+};
+
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						u32 offset, u8 byte);
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 *data);
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u16 *data);
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 size, u16 *data);
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
+static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
+
+static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
+{
+	return readw(hw->flash_address + reg);
+}
+
+static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
+{
+	return readl(hw->flash_address + reg);
+}
+
+static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
+{
+	writew(val, hw->flash_address + reg);
+}
+
+static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
+{
+	writel(val, hw->flash_address + reg);
+}
+
+#define er16flash(reg)		__er16flash(hw, (reg))
+#define er32flash(reg)		__er32flash(hw, (reg))
+#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
+#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
+
+/**
+ *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 ctrl;
+	s32 ret_val = 0;
+
+	phy->addr                     = 1;
+	phy->reset_delay_us           = 100;
+
+	phy->ops.read_reg             = e1000_read_phy_reg_hv;
+	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
+	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
+	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
+	phy->ops.write_reg            = e1000_write_phy_reg_hv;
+	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
+	phy->ops.power_up             = e1000_power_up_phy_copper;
+	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
+	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
+		/*
+		 * The MAC-PHY interconnect may still be in SMBus mode
+		 * after Sx->S0.  Toggle the LANPHYPC Value bit to force
+		 * the interconnect to PCIe mode, but only if there is no
+		 * firmware present otherwise firmware will have done it.
+		 */
+		ctrl = er32(CTRL);
+		ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
+		ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
+		ew32(CTRL, ctrl);
+		udelay(10);
+		ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
+		ew32(CTRL, ctrl);
+		msleep(50);
+	}
+
+	/*
+	 * Reset the PHY before any acccess to it.  Doing so, ensures that
+	 * the PHY is in a known good state before we read/write PHY registers.
+	 * The generic reset is sufficient here, because we haven't determined
+	 * the PHY type yet.
+	 */
+	ret_val = e1000e_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	phy->id = e1000_phy_unknown;
+	ret_val = e1000e_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+	if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
+		/*
+		 * In case the PHY needs to be in mdio slow mode (eg. 82577),
+		 * set slow mode and try to get the PHY id again.
+		 */
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (ret_val)
+			goto out;
+		ret_val = e1000e_get_phy_id(hw);
+		if (ret_val)
+			goto out;
+	}
+	phy->type = e1000e_get_phy_type_from_id(phy->id);
+
+	switch (phy->type) {
+	case e1000_phy_82577:
+		phy->ops.check_polarity = e1000_check_polarity_82577;
+		phy->ops.force_speed_duplex =
+			e1000_phy_force_speed_duplex_82577;
+		phy->ops.get_cable_length = e1000_get_cable_length_82577;
+		phy->ops.get_info = e1000_get_phy_info_82577;
+		phy->ops.commit = e1000e_phy_sw_reset;
+		break;
+	case e1000_phy_82578:
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
+		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
+		phy->ops.get_info = e1000e_get_phy_info_m88;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 i = 0;
+
+	phy->addr			= 1;
+	phy->reset_delay_us		= 100;
+
+	phy->ops.power_up               = e1000_power_up_phy_copper;
+	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
+
+	/*
+	 * We may need to do this twice - once for IGP and if that fails,
+	 * we'll set BM func pointers and try again
+	 */
+	ret_val = e1000e_determine_phy_address(hw);
+	if (ret_val) {
+		phy->ops.write_reg = e1000e_write_phy_reg_bm;
+		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
+		ret_val = e1000e_determine_phy_address(hw);
+		if (ret_val) {
+			e_dbg("Cannot determine PHY addr. Erroring out\n");
+			return ret_val;
+		}
+	}
+
+	phy->id = 0;
+	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
+	       (i++ < 100)) {
+		msleep(1);
+		ret_val = e1000e_get_phy_id(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Verify phy id */
+	switch (phy->id) {
+	case IGP03E1000_E_PHY_ID:
+		phy->type = e1000_phy_igp_3;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
+		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
+		phy->ops.get_info = e1000e_get_phy_info_igp;
+		phy->ops.check_polarity = e1000_check_polarity_igp;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy->type = e1000_phy_ife;
+		phy->autoneg_mask = E1000_ALL_NOT_GIG;
+		phy->ops.get_info = e1000_get_phy_info_ife;
+		phy->ops.check_polarity = e1000_check_polarity_ife;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
+		break;
+	case BME1000_E_PHY_ID:
+		phy->type = e1000_phy_bm;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg = e1000e_read_phy_reg_bm;
+		phy->ops.write_reg = e1000e_write_phy_reg_bm;
+		phy->ops.commit = e1000e_phy_sw_reset;
+		phy->ops.get_info = e1000e_get_phy_info_m88;
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific NVM parameters and function
+ *  pointers.
+ **/
+static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 gfpreg, sector_base_addr, sector_end_addr;
+	u16 i;
+
+	/* Can't read flash registers if the register set isn't mapped. */
+	if (!hw->flash_address) {
+		e_dbg("ERROR: Flash registers not mapped\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	nvm->type = e1000_nvm_flash_sw;
+
+	gfpreg = er32flash(ICH_FLASH_GFPREG);
+
+	/*
+	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
+	 * Add 1 to sector_end_addr since this sector is included in
+	 * the overall size.
+	 */
+	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+	/* flash_base_addr is byte-aligned */
+	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+	/*
+	 * find total size of the NVM, then cut in half since the total
+	 * size represents two separate NVM banks.
+	 */
+	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
+				<< FLASH_SECTOR_ADDR_SHIFT;
+	nvm->flash_bank_size /= 2;
+	/* Adjust to word count */
+	nvm->flash_bank_size /= sizeof(u16);
+
+	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
+
+	/* Clear shadow ram */
+	for (i = 0; i < nvm->word_size; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value    = 0xFFFF;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific MAC parameters and function
+ *  pointers.
+ **/
+static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_mac_info *mac = &hw->mac;
+
+	/* Set media type function pointer */
+	hw->phy.media_type = e1000_media_type_copper;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 32;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+	if (mac->type == e1000_ich8lan)
+		mac->rar_entry_count--;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC subsystem not supported */
+	mac->arc_subsystem_valid = false;
+	/* Adaptive IFS supported */
+	mac->adaptive_ifs = true;
+
+	/* LED operations */
+	switch (mac->type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+		/* ID LED init */
+		mac->ops.id_led_init = e1000e_id_led_init;
+		/* setup LED */
+		mac->ops.setup_led = e1000e_setup_led_generic;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_ich8lan;
+		mac->ops.led_off = e1000_led_off_ich8lan;
+		break;
+	case e1000_pchlan:
+		/* ID LED init */
+		mac->ops.id_led_init = e1000_id_led_init_pchlan;
+		/* setup LED */
+		mac->ops.setup_led = e1000_setup_led_pchlan;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_pchlan;
+		mac->ops.led_off = e1000_led_off_pchlan;
+		break;
+	default:
+		break;
+	}
+
+	/* Enable PCS Lock-loss workaround for ICH8 */
+	if (mac->type == e1000_ich8lan)
+		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
+
+	return 0;
+}
+
+/**
+ *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = 0;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type == e1000_pchlan) {
+		ret_val = e1000_k1_gig_workaround_hv(hw, link);
+		if (ret_val)
+			goto out;
+	}
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = false;
+
+	if (hw->phy.type == e1000_phy_82578) {
+		ret_val = e1000_link_stall_workaround_hv(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000e_check_downshift(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000e_config_collision_dist(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000e_config_fc_after_link_up(hw);
+	if (ret_val)
+		e_dbg("Error configuring flow control\n");
+
+out:
+	return ret_val;
+}
+
+static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	s32 rc;
+
+	rc = e1000_init_mac_params_ich8lan(adapter);
+	if (rc)
+		return rc;
+
+	rc = e1000_init_nvm_params_ich8lan(hw);
+	if (rc)
+		return rc;
+
+	if (hw->mac.type == e1000_pchlan)
+		rc = e1000_init_phy_params_pchlan(hw);
+	else
+		rc = e1000_init_phy_params_ich8lan(hw);
+	if (rc)
+		return rc;
+
+	if (adapter->hw.phy.type == e1000_phy_ife) {
+		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
+		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
+	}
+
+	if ((adapter->hw.mac.type == e1000_ich8lan) &&
+	    (adapter->hw.phy.type == e1000_phy_igp_3))
+		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
+
+	return 0;
+}
+
+static DEFINE_MUTEX(nvm_mutex);
+
+/**
+ *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the mutex for performing NVM operations.
+ **/
+static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
+{
+	mutex_lock(&nvm_mutex);
+
+	return 0;
+}
+
+/**
+ *  e1000_release_nvm_ich8lan - Release NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the mutex used while performing NVM operations.
+ **/
+static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
+{
+	mutex_unlock(&nvm_mutex);
+}
+
+static DEFINE_MUTEX(swflag_mutex);
+
+/**
+ *  e1000_acquire_swflag_ich8lan - Acquire software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = 0;
+
+	mutex_lock(&swflag_mutex);
+
+	while (timeout) {
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
+			break;
+
+		mdelay(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("SW/FW/HW has locked the resource for too long.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	timeout = SW_FLAG_TIMEOUT;
+
+	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+	ew32(EXTCNF_CTRL, extcnf_ctrl);
+
+	while (timeout) {
+		extcnf_ctrl = er32(EXTCNF_CTRL);
+		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+			break;
+
+		mdelay(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		e_dbg("Failed to acquire the semaphore.\n");
+		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+		ew32(EXTCNF_CTRL, extcnf_ctrl);
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	if (ret_val)
+		mutex_unlock(&swflag_mutex);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swflag_ich8lan - Release software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+
+	extcnf_ctrl = er32(EXTCNF_CTRL);
+	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+	ew32(EXTCNF_CTRL, extcnf_ctrl);
+
+	mutex_unlock(&swflag_mutex);
+}
+
+/**
+ *  e1000_check_mng_mode_ich8lan - Checks management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has manageability enabled.
+ *  This is a function pointer entry point only called by read/write
+ *  routines for the PHY and NVM parts.
+ **/
+static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	fwsm = er32(FWSM);
+
+	return (fwsm & E1000_FWSM_MODE_MASK) ==
+		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks if firmware is blocking the reset of the PHY.
+ *  This is a function pointer entry point only called by
+ *  reset routines.
+ **/
+static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	fwsm = er32(FWSM);
+
+	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
+}
+
+/**
+ *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
+ *  @hw:   pointer to the HW structure
+ *
+ *  SW should configure the LCD from the NVM extended configuration region
+ *  as a workaround for certain parts.
+ **/
+static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->adapter;
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+	s32 ret_val = 0;
+	u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+	if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) &&
+		!(hw->mac.type == e1000_pchlan))
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * Initialize the PHY from the NVM on ICH platforms.  This
+	 * is needed due to an issue where the NVM configuration is
+	 * not properly autoloaded after power transitions.
+	 * Therefore, after each PHY reset, we will load the
+	 * configuration data out of the NVM manually.
+	 */
+	if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
+	    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
+	    (hw->mac.type == e1000_pchlan))
+		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+	else
+		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+
+	data = er32(FEXTNVM);
+	if (!(data & sw_cfg_mask))
+		goto out;
+
+	/*
+	 * Make sure HW does not configure LCD from PHY
+	 * extended configuration before SW configuration
+	 */
+	data = er32(EXTCNF_CTRL);
+	if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+		goto out;
+
+	cnf_size = er32(EXTCNF_SIZE);
+	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+	if (!cnf_size)
+		goto out;
+
+	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+	if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
+	    (hw->mac.type == e1000_pchlan)) {
+		/*
+		 * HW configures the SMBus address and LEDs when the
+		 * OEM and LCD Write Enable bits are set in the NVM.
+		 * When both NVM bits are cleared, SW will configure
+		 * them instead.
+		 */
+		data = er32(STRAP);
+		data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
+		reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
+		reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
+		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
+							reg_data);
+		if (ret_val)
+			goto out;
+
+		data = er32(LEDCTL);
+		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
+							(u16)data);
+		if (ret_val)
+			goto out;
+	}
+
+	/* Configure LCD from extended configuration region. */
+
+	/* cnf_base_addr is in DWORD */
+	word_addr = (u16)(cnf_base_addr << 1);
+
+	for (i = 0; i < cnf_size; i++) {
+		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
+					 &reg_data);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
+					 1, &reg_addr);
+		if (ret_val)
+			goto out;
+
+		/* Save off the PHY page for future writes. */
+		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+			phy_page = reg_data;
+			continue;
+		}
+
+		reg_addr &= PHY_REG_MASK;
+		reg_addr |= phy_page;
+
+		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
+						    reg_data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_k1_gig_workaround_hv - K1 Si workaround
+ *  @hw:   pointer to the HW structure
+ *  @link: link up bool flag
+ *
+ *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
+ *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
+ *  If link is down, the function will restore the default K1 setting located
+ *  in the NVM.
+ **/
+static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
+{
+	s32 ret_val = 0;
+	u16 status_reg = 0;
+	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
+
+	if (hw->mac.type != e1000_pchlan)
+		goto out;
+
+	/* Wrap the whole flow with the sw flag */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
+	if (link) {
+		if (hw->phy.type == e1000_phy_82578) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
+			                                          &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= BM_CS_STATUS_LINK_UP |
+			              BM_CS_STATUS_RESOLVED |
+			              BM_CS_STATUS_SPEED_MASK;
+
+			if (status_reg == (BM_CS_STATUS_LINK_UP |
+			                   BM_CS_STATUS_RESOLVED |
+			                   BM_CS_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		if (hw->phy.type == e1000_phy_82577) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
+			                                          &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= HV_M_STATUS_LINK_UP |
+			              HV_M_STATUS_AUTONEG_COMPLETE |
+			              HV_M_STATUS_SPEED_MASK;
+
+			if (status_reg == (HV_M_STATUS_LINK_UP |
+			                   HV_M_STATUS_AUTONEG_COMPLETE |
+			                   HV_M_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		/* Link stall fix for link up */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+		                                           0x0100);
+		if (ret_val)
+			goto release;
+
+	} else {
+		/* Link stall fix for link down */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+		                                           0x4100);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
+
+release:
+	hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_configure_k1_ich8lan - Configure K1 power state
+ *  @hw: pointer to the HW structure
+ *  @enable: K1 state to configure
+ *
+ *  Configure the K1 power state based on the provided parameter.
+ *  Assumes semaphore already acquired.
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ **/
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
+{
+	s32 ret_val = 0;
+	u32 ctrl_reg = 0;
+	u32 ctrl_ext = 0;
+	u32 reg = 0;
+	u16 kmrn_reg = 0;
+
+	ret_val = e1000e_read_kmrn_reg_locked(hw,
+	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
+	                                     &kmrn_reg);
+	if (ret_val)
+		goto out;
+
+	if (k1_enable)
+		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
+	else
+		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
+
+	ret_val = e1000e_write_kmrn_reg_locked(hw,
+	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
+	                                      kmrn_reg);
+	if (ret_val)
+		goto out;
+
+	udelay(20);
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_reg = er32(CTRL);
+
+	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+	reg |= E1000_CTRL_FRCSPD;
+	ew32(CTRL, reg);
+
+	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
+	udelay(20);
+	ew32(CTRL, ctrl_reg);
+	ew32(CTRL_EXT, ctrl_ext);
+	udelay(20);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
+ *  @hw:       pointer to the HW structure
+ *  @d0_state: boolean if entering d0 or d3 device state
+ *
+ *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
+ *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
+ *  in NVM determines whether HW should configure LPLU and Gbe Disable.
+ **/
+static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
+{
+	s32 ret_val = 0;
+	u32 mac_reg;
+	u16 oem_reg;
+
+	if (hw->mac.type != e1000_pchlan)
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	mac_reg = er32(EXTCNF_CTRL);
+	if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
+		goto out;
+
+	mac_reg = er32(FEXTNVM);
+	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
+		goto out;
+
+	mac_reg = er32(PHY_CTRL);
+
+	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		goto out;
+
+	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
+
+	if (d0_state) {
+		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
+			oem_reg |= HV_OEM_BITS_LPLU;
+	} else {
+		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
+			oem_reg |= HV_OEM_BITS_LPLU;
+	}
+	/* Restart auto-neg to activate the bits */
+	if (!e1000_check_reset_block(hw))
+		oem_reg |= HV_OEM_BITS_RESTART_AN;
+	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
+
+out:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+
+/**
+ *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
+ *  @hw:   pointer to the HW structure
+ **/
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= HV_KMRN_MDIO_SLOW;
+
+	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ *  done after every PHY reset.
+ **/
+static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 phy_data;
+
+	if (hw->mac.type != e1000_pchlan)
+		return ret_val;
+
+	/* Set MDIO slow mode before any other MDIO access */
+	if (hw->phy.type == e1000_phy_82577) {
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	if (((hw->phy.type == e1000_phy_82577) &&
+	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
+	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
+		/* Disable generation of early preamble */
+		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
+		if (ret_val)
+			return ret_val;
+
+		/* Preamble tuning for SSC */
+		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->phy.type == e1000_phy_82578) {
+		/*
+		 * Return registers to default by doing a soft reset then
+		 * writing 0x3140 to the control register.
+		 */
+		if (hw->phy.revision < 2) {
+			e1000e_phy_sw_reset(hw);
+			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
+		}
+	}
+
+	/* Select page 0 */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy.addr = 1;
+	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
+	hw->phy.ops.release(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Configure the K1 Si workaround during phy reset assuming there is
+	 * link so that it disables K1 if link is in 1Gbps.
+	 */
+	ret_val = e1000_k1_gig_workaround_hv(hw, true);
+	if (ret_val)
+		goto out;
+
+	/* Workaround for link disconnects on a busy hub in half duplex */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+	ret_val = hw->phy.ops.read_reg_locked(hw,
+	                                      PHY_REG(BM_PORT_CTRL_PAGE, 17),
+	                                      &phy_data);
+	if (ret_val)
+		goto release;
+	ret_val = hw->phy.ops.write_reg_locked(hw,
+	                                       PHY_REG(BM_PORT_CTRL_PAGE, 17),
+	                                       phy_data & 0x00FF);
+release:
+	hw->phy.ops.release(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_lan_init_done_ich8lan - Check for PHY config completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check the appropriate indication the MAC has finished configuring the
+ *  PHY after a software reset.
+ **/
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
+{
+	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+
+	/* Wait for basic configuration completes before proceeding */
+	do {
+		data = er32(STATUS);
+		data &= E1000_STATUS_LAN_INIT_DONE;
+		udelay(100);
+	} while ((!data) && --loop);
+
+	/*
+	 * If basic configuration is incomplete before the above loop
+	 * count reaches 0, loading the configuration from NVM will
+	 * leave the PHY in a bad state possibly resulting in no link.
+	 */
+	if (loop == 0)
+		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
+
+	/* Clear the Init Done bit for the next init event */
+	data = er32(STATUS);
+	data &= ~E1000_STATUS_LAN_INIT_DONE;
+	ew32(STATUS, data);
+}
+
+/**
+ *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
+ *  @hw: pointer to the HW structure
+ **/
+static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 reg;
+
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	/* Perform any necessary post-reset workarounds */
+	switch (hw->mac.type) {
+	case e1000_pchlan:
+		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
+		if (ret_val)
+			goto out;
+		break;
+	default:
+		break;
+	}
+
+	/* Dummy read to clear the phy wakeup bit after lcd reset */
+	if (hw->mac.type == e1000_pchlan)
+		e1e_rphy(hw, BM_WUC, &reg);
+
+	/* Configure the LCD with the extended configuration region in NVM */
+	ret_val = e1000_sw_lcd_config_ich8lan(hw);
+	if (ret_val)
+		goto out;
+
+	/* Configure the LCD with the OEM bits in NVM */
+	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the PHY
+ *  This is a function pointer entry point called by drivers
+ *  or other shared routines.
+ **/
+static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	ret_val = e1000e_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_post_phy_reset_ich8lan(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
+ *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
+ *  the phy speed. This function will manually set the LPLU bit and restart
+ *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
+ *  since it configures the same bit.
+ **/
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val = 0;
+	u16 oem_reg;
+
+	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		goto out;
+
+	if (active)
+		oem_reg |= HV_OEM_BITS_LPLU;
+	else
+		oem_reg &= ~HV_OEM_BITS_LPLU;
+
+	oem_reg |= HV_OEM_BITS_RESTART_AN;
+	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = 0;
+	u16 data;
+
+	if (phy->type == e1000_phy_ife)
+		return ret_val;
+
+	phy_ctrl = er32(PHY_CTRL);
+
+	if (active) {
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D3 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val;
+	u16 data;
+
+	phy_ctrl = er32(PHY_CTRL);
+
+	if (!active) {
+		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+					   data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return 0;
+
+		/*
+		 * Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ *  @hw: pointer to the HW structure
+ *  @bank:  pointer to the variable that returns the active bank
+ *
+ *  Reads signature byte from the NVM using the flash access registers.
+ *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
+ **/
+static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+	u32 eecd;
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
+	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
+	u8 sig_byte = 0;
+	s32 ret_val = 0;
+
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		eecd = er32(EECD);
+		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
+		    E1000_EECD_SEC1VAL_VALID_MASK) {
+			if (eecd & E1000_EECD_SEC1VAL)
+				*bank = 1;
+			else
+				*bank = 0;
+
+			return 0;
+		}
+		e_dbg("Unable to determine valid NVM bank via EEC - "
+		       "reading flash signature\n");
+		/* fall-thru */
+	default:
+		/* set bank to 0 in case flash read fails */
+		*bank = 0;
+
+		/* Check bank 0 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
+		                                        &sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 0;
+			return 0;
+		}
+
+		/* Check bank 1 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
+		                                        bank1_offset,
+		                                        &sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 1;
+			return 0;
+		}
+
+		e_dbg("ERROR: No valid NVM bank present\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to read.
+ *  @words: Size of data to read in words
+ *  @data: Pointer to the word(s) to read at offset.
+ *
+ *  Reads a word(s) from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 act_offset;
+	s32 ret_val = 0;
+	u32 bank = 0;
+	u16 i, word;
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	nvm->ops.acquire(hw);
+
+	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val) {
+		e_dbg("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	act_offset = (bank) ? nvm->flash_bank_size : 0;
+	act_offset += offset;
+
+	ret_val = 0;
+	for (i = 0; i < words; i++) {
+		if ((dev_spec->shadow_ram) &&
+		    (dev_spec->shadow_ram[offset+i].modified)) {
+			data[i] = dev_spec->shadow_ram[offset+i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw,
+								act_offset + i,
+								&word);
+			if (ret_val)
+				break;
+			data[i] = word;
+		}
+	}
+
+	nvm->ops.release(hw);
+
+out:
+	if (ret_val)
+		e_dbg("NVM read error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_init_ich8lan - Initialize flash
+ *  @hw: pointer to the HW structure
+ *
+ *  This function does initial flash setup so that a new read/write/erase cycle
+ *  can be started.
+ **/
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	s32 i = 0;
+
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+
+	/* Check if the flash descriptor is valid */
+	if (hsfsts.hsf_status.fldesvalid == 0) {
+		e_dbg("Flash descriptor invalid.  "
+			 "SW Sequencing must be used.\n");
+		return -E1000_ERR_NVM;
+	}
+
+	/* Clear FCERR and DAEL in hw status by writing 1 */
+	hsfsts.hsf_status.flcerr = 1;
+	hsfsts.hsf_status.dael = 1;
+
+	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	/*
+	 * Either we should have a hardware SPI cycle in progress
+	 * bit to check against, in order to start a new cycle or
+	 * FDONE bit should be changed in the hardware so that it
+	 * is 1 after hardware reset, which can then be used as an
+	 * indication whether a cycle is in progress or has been
+	 * completed.
+	 */
+
+	if (hsfsts.hsf_status.flcinprog == 0) {
+		/*
+		 * There is no cycle running at present,
+		 * so we can start a cycle.
+		 * Begin by setting Flash Cycle Done.
+		 */
+		hsfsts.hsf_status.flcdone = 1;
+		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+		ret_val = 0;
+	} else {
+		/*
+		 * Otherwise poll for sometime so the current
+		 * cycle has a chance to end before giving up.
+		 */
+		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcinprog == 0) {
+				ret_val = 0;
+				break;
+			}
+			udelay(1);
+		}
+		if (ret_val == 0) {
+			/*
+			 * Successful in waiting for previous cycle to timeout,
+			 * now set the Flash Cycle Done.
+			 */
+			hsfsts.hsf_status.flcdone = 1;
+			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+		} else {
+			e_dbg("Flash controller busy, cannot get access\n");
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ *  @hw: pointer to the HW structure
+ *  @timeout: maximum time to wait for completion
+ *
+ *  This function starts a flash cycle and waits for its completion.
+ **/
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+	union ich8_hws_flash_ctrl hsflctl;
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+	u32 i = 0;
+
+	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+	hsflctl.hsf_ctrl.flcgo = 1;
+	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+	/* wait till FDONE bit is set to 1 */
+	do {
+		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcdone == 1)
+			break;
+		udelay(1);
+	} while (i++ < timeout);
+
+	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+		return 0;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_flash_word_ich8lan - Read word from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: offset to data location
+ *  @data: pointer to the location for storing the data
+ *
+ *  Reads the flash word at offset into data.  Offset is converted
+ *  to bytes before read.
+ **/
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u16 *data)
+{
+	/* Must convert offset into bytes. */
+	offset <<= 1;
+
+	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+}
+
+/**
+ *  e1000_read_flash_byte_ich8lan - Read byte from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to read.
+ *  @data: Pointer to a byte to store the value read.
+ *
+ *  Reads a single byte from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 *data)
+{
+	s32 ret_val;
+	u16 word = 0;
+
+	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
+	if (ret_val)
+		return ret_val;
+
+	*data = (u8)word;
+
+	return 0;
+}
+
+/**
+ *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte or word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: Pointer to the word to store the value read.
+ *
+ *  Reads a byte or word from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 size, u16 *data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			    hw->nvm.flash_base_addr;
+
+	do {
+		udelay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != 0)
+			break;
+
+		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+						ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+		/*
+		 * Check if FCERR is set to 1, if set to 1, clear it
+		 * and try the whole sequence a few more times, else
+		 * read in (shift in) the Flash Data0, the order is
+		 * least significant byte first msb to lsb
+		 */
+		if (ret_val == 0) {
+			flash_data = er32flash(ICH_FLASH_FDATA0);
+			if (size == 1) {
+				*data = (u8)(flash_data & 0x000000FF);
+			} else if (size == 2) {
+				*data = (u16)(flash_data & 0x0000FFFF);
+			}
+			break;
+		} else {
+			/*
+			 * If we've gotten here, then things are probably
+			 * completely hosed, but if the error condition is
+			 * detected, it won't hurt to give it another try...
+			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (hsfsts.hsf_status.flcdone == 0) {
+				e_dbg("Timeout error - flash cycle "
+					 "did not complete.\n");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to write.
+ *  @words: Size of data to write in words
+ *  @data: Pointer to the word(s) to write at offset.
+ *
+ *  Writes a byte or word to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				   u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 i;
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		e_dbg("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	nvm->ops.acquire(hw);
+
+	for (i = 0; i < words; i++) {
+		dev_spec->shadow_ram[offset+i].modified = true;
+		dev_spec->shadow_ram[offset+i].value = data[i];
+	}
+
+	nvm->ops.release(hw);
+
+	return 0;
+}
+
+/**
+ *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  The NVM checksum is updated by calling the generic update_nvm_checksum,
+ *  which writes the checksum to the shadow ram.  The changes in the shadow
+ *  ram are then committed to the EEPROM by processing each bank at a time
+ *  checking for the modified bit and writing only the pending changes.
+ *  After a successful commit, the shadow ram is cleared and is ready for
+ *  future writes.
+ **/
+static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+	s32 ret_val;
+	u16 data;
+
+	ret_val = e1000e_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	if (nvm->type != e1000_nvm_flash_sw)
+		goto out;
+
+	nvm->ops.acquire(hw);
+
+	/*
+	 * We're writing to the opposite bank so if we're on bank 1,
+	 * write to bank 0 etc.  We also need to erase the segment that
+	 * is going to be written
+	 */
+	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val) {
+		e_dbg("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	if (bank == 0) {
+		new_bank_offset = nvm->flash_bank_size;
+		old_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
+		if (ret_val)
+			goto release;
+	} else {
+		old_bank_offset = nvm->flash_bank_size;
+		new_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
+		if (ret_val)
+			goto release;
+	}
+
+	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
+		/*
+		 * Determine whether to write the value stored
+		 * in the other NVM bank or a modified value stored
+		 * in the shadow RAM
+		 */
+		if (dev_spec->shadow_ram[i].modified) {
+			data = dev_spec->shadow_ram[i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw, i +
+			                                        old_bank_offset,
+			                                        &data);
+			if (ret_val)
+				break;
+		}
+
+		/*
+		 * If the word is 0x13, then make sure the signature bits
+		 * (15:14) are 11b until the commit has completed.
+		 * This will allow us to write 10b which indicates the
+		 * signature is valid.  We want to do this after the write
+		 * has completed so that we don't mark the segment valid
+		 * while the write is still in progress
+		 */
+		if (i == E1000_ICH_NVM_SIG_WORD)
+			data |= E1000_ICH_NVM_SIG_MASK;
+
+		/* Convert offset to bytes. */
+		act_offset = (i + new_bank_offset) << 1;
+
+		udelay(100);
+		/* Write the bytes to the new bank. */
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							       act_offset,
+							       (u8)data);
+		if (ret_val)
+			break;
+
+		udelay(100);
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							  act_offset + 1,
+							  (u8)(data >> 8));
+		if (ret_val)
+			break;
+	}
+
+	/*
+	 * Don't bother writing the segment valid bits if sector
+	 * programming failed.
+	 */
+	if (ret_val) {
+		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
+		e_dbg("Flash commit failed.\n");
+		goto release;
+	}
+
+	/*
+	 * Finally validate the new segment by setting bit 15:14
+	 * to 10b in word 0x13 , this can be done without an
+	 * erase as well since these bits are 11 to start with
+	 * and we need to change bit 14 to 0b
+	 */
+	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+	if (ret_val)
+		goto release;
+
+	data &= 0xBFFF;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+						       act_offset * 2 + 1,
+						       (u8)(data >> 8));
+	if (ret_val)
+		goto release;
+
+	/*
+	 * And invalidate the previously valid segment by setting
+	 * its signature word (0x13) high_byte to 0b. This can be
+	 * done without an erase because flash erase sets all bits
+	 * to 1's. We can write 1's to 0's without an erase
+	 */
+	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+	if (ret_val)
+		goto release;
+
+	/* Great!  Everything worked, we can now clear the cached entries. */
+	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value = 0xFFFF;
+	}
+
+release:
+	nvm->ops.release(hw);
+
+	/*
+	 * Reload the EEPROM, or else modifications will not appear
+	 * until after the next adapter reset.
+	 */
+	if (!ret_val) {
+		e1000e_reload_nvm(hw);
+		msleep(10);
+	}
+
+out:
+	if (ret_val)
+		e_dbg("NVM update error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ *  calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+
+	/*
+	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
+	 * needs to be fixed.  This bit is an indication that the NVM
+	 * was prepared by OEM software and did not calculate the
+	 * checksum...a likely scenario.
+	 */
+	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
+	if (ret_val)
+		return ret_val;
+
+	if ((data & 0x40) == 0) {
+		data |= 0x40;
+		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000e_update_nvm_checksum(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000e_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
+ *  @hw: pointer to the HW structure
+ *
+ *  To prevent malicious write/erase of the NVM, set it to be read-only
+ *  so that the hardware ignores all write/erase cycles of the NVM via
+ *  the flash control registers.  The shadow-ram copy of the NVM will
+ *  still be updated, however any updates to this copy will not stick
+ *  across driver reloads.
+ **/
+void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_flash_protected_range pr0;
+	union ich8_hws_flash_status hsfsts;
+	u32 gfpreg;
+
+	nvm->ops.acquire(hw);
+
+	gfpreg = er32flash(ICH_FLASH_GFPREG);
+
+	/* Write-protect GbE Sector of NVM */
+	pr0.regval = er32flash(ICH_FLASH_PR0);
+	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
+	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
+	pr0.range.wpe = true;
+	ew32flash(ICH_FLASH_PR0, pr0.regval);
+
+	/*
+	 * Lock down a subset of GbE Flash Control Registers, e.g.
+	 * PR0 to prevent the write-protection from being lifted.
+	 * Once FLOCKDN is set, the registers protected by it cannot
+	 * be written until FLOCKDN is cleared by a hardware reset.
+	 */
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+	hsfsts.hsf_status.flockdn = true;
+	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	nvm->ops.release(hw);
+}
+
+/**
+ *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte/word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: The byte(s) to write to the NVM.
+ *
+ *  Writes one/two bytes to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 size, u16 data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val;
+	u8 count = 0;
+
+	if (size < 1 || size > 2 || data > size * 0xff ||
+	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+
+	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			    hw->nvm.flash_base_addr;
+
+	do {
+		udelay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val)
+			break;
+
+		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size -1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+		if (size == 1)
+			flash_data = (u32)data & 0x00FF;
+		else
+			flash_data = (u32)data;
+
+		ew32flash(ICH_FLASH_FDATA0, flash_data);
+
+		/*
+		 * check if FCERR is set to 1 , if set to 1, clear it
+		 * and try the whole sequence a few more times else done
+		 */
+		ret_val = e1000_flash_cycle_ich8lan(hw,
+					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+		if (!ret_val)
+			break;
+
+		/*
+		 * If we're here, then things are most likely
+		 * completely hosed, but if the error condition
+		 * is detected, it won't hurt to give it another
+		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+		 */
+		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcerr == 1)
+			/* Repeat for some time before giving up. */
+			continue;
+		if (hsfsts.hsf_status.flcdone == 0) {
+			e_dbg("Timeout error - flash cycle "
+				 "did not complete.");
+			break;
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The index of the byte to read.
+ *  @data: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 data)
+{
+	u16 word = (u16)data;
+
+	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to write.
+ *  @byte: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ *  Goes through a retry algorithm before giving up.
+ **/
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						u32 offset, u8 byte)
+{
+	s32 ret_val;
+	u16 program_retries;
+
+	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+	if (!ret_val)
+		return ret_val;
+
+	for (program_retries = 0; program_retries < 100; program_retries++) {
+		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
+		udelay(100);
+		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+		if (!ret_val)
+			break;
+	}
+	if (program_retries == 100)
+		return -E1000_ERR_NVM;
+
+	return 0;
+}
+
+/**
+ *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ *  @hw: pointer to the HW structure
+ *  @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ *  bank N is 4096 * N + flash_reg_addr.
+ **/
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	/* bank size is in 16bit words - adjust to bytes */
+	u32 flash_bank_size = nvm->flash_bank_size * 2;
+	s32 ret_val;
+	s32 count = 0;
+	s32 j, iteration, sector_size;
+
+	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+
+	/*
+	 * Determine HW Sector size: Read BERASE bits of hw flash status
+	 * register
+	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
+	 *     consecutive sectors.  The start index for the nth Hw sector
+	 *     can be calculated as = bank * 4096 + n * 256
+	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+	 *     The start index for the nth Hw sector can be calculated
+	 *     as = bank * 4096
+	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+	 *     (ich9 only, otherwise error condition)
+	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+	 */
+	switch (hsfsts.hsf_status.berasesz) {
+	case 0:
+		/* Hw sector size 256 */
+		sector_size = ICH_FLASH_SEG_SIZE_256;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+		break;
+	case 1:
+		sector_size = ICH_FLASH_SEG_SIZE_4K;
+		iteration = 1;
+		break;
+	case 2:
+		sector_size = ICH_FLASH_SEG_SIZE_8K;
+		iteration = 1;
+		break;
+	case 3:
+		sector_size = ICH_FLASH_SEG_SIZE_64K;
+		iteration = 1;
+		break;
+	default:
+		return -E1000_ERR_NVM;
+	}
+
+	/* Start with the base address, then add the sector offset. */
+	flash_linear_addr = hw->nvm.flash_base_addr;
+	flash_linear_addr += (bank) ? flash_bank_size : 0;
+
+	for (j = 0; j < iteration ; j++) {
+		do {
+			/* Steps */
+			ret_val = e1000_flash_cycle_init_ich8lan(hw);
+			if (ret_val)
+				return ret_val;
+
+			/*
+			 * Write a value 11 (block Erase) in Flash
+			 * Cycle field in hw flash control
+			 */
+			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
+			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
+
+			/*
+			 * Write the last 24 bits of an index within the
+			 * block into Flash Linear address field in Flash
+			 * Address.
+			 */
+			flash_linear_addr += (j * sector_size);
+			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
+
+			ret_val = e1000_flash_cycle_ich8lan(hw,
+					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+			if (ret_val == 0)
+				break;
+
+			/*
+			 * Check if FCERR is set to 1.  If 1,
+			 * clear it and try the whole sequence
+			 * a few more times else Done
+			 */
+			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr == 1)
+				/* repeat for some time before giving up */
+				continue;
+			else if (hsfsts.hsf_status.flcdone == 0)
+				return ret_val;
+		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+	}
+
+	return 0;
+}
+
+/**
+ *  e1000_valid_led_default_ich8lan - Set the default LED settings
+ *  @hw: pointer to the HW structure
+ *  @data: Pointer to the LED settings
+ *
+ *  Reads the LED default settings from the NVM to data.  If the NVM LED
+ *  settings is all 0's or F's, set the LED default to a valid LED default
+ *  setting.
+ **/
+static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		e_dbg("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 ||
+	    *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT_ICH8LAN;
+
+	return 0;
+}
+
+/**
+ *  e1000_id_led_init_pchlan - store LED configurations
+ *  @hw: pointer to the HW structure
+ *
+ *  PCH does not control LEDs via the LEDCTL register, rather it uses
+ *  the PHY LED configuration register.
+ *
+ *  PCH also does not have an "always on" or "always off" mode which
+ *  complicates the ID feature.  Instead of using the "on" mode to indicate
+ *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
+ *  use "link_up" mode.  The LEDs will still ID on request if there is no
+ *  link based on logic in e1000_led_[on|off]_pchlan().
+ **/
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
+	u16 data, i, temp, shift;
+
+	/* Get default ID LED modes */
+	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+	if (ret_val)
+		goto out;
+
+	mac->ledctl_default = er32(LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
+		shift = (i * 5);
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_on << shift);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_on << shift);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ *  @hw: pointer to the HW structure
+ *
+ *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ *  register, so the the bus width is hard coded.
+ **/
+static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+
+	ret_val = e1000e_get_bus_info_pcie(hw);
+
+	/*
+	 * ICH devices are "PCI Express"-ish.  They have
+	 * a configuration space, but do not contain
+	 * PCI Express Capability registers, so bus width
+	 * must be hardcoded.
+	 */
+	if (bus->width == e1000_bus_width_unknown)
+		bus->width = e1000_bus_width_pcie_x1;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_ich8lan - Reset the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a full reset of the hardware which includes a reset of the PHY and
+ *  MAC.
+ **/
+static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 reg;
+	u32 ctrl, icr, kab;
+	s32 ret_val;
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000e_disable_pcie_master(hw);
+	if (ret_val)
+		e_dbg("PCI-E Master disable polling has failed.\n");
+
+	e_dbg("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/*
+	 * Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC
+	 * with the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	e1e_flush();
+
+	msleep(10);
+
+	/* Workaround for ICH8 bit corruption issue in FIFO memory */
+	if (hw->mac.type == e1000_ich8lan) {
+		/* Set Tx and Rx buffer allocation to 8k apiece. */
+		ew32(PBA, E1000_PBA_8K);
+		/* Set Packet Buffer Size to 16k. */
+		ew32(PBS, E1000_PBS_16K);
+	}
+
+	if (hw->mac.type == e1000_pchlan) {
+		/* Save the NVM K1 bit setting*/
+		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
+		if (ret_val)
+			return ret_val;
+
+		if (reg & E1000_NVM_K1_ENABLE)
+			dev_spec->nvm_k1_enabled = true;
+		else
+			dev_spec->nvm_k1_enabled = false;
+	}
+
+	ctrl = er32(CTRL);
+
+	if (!e1000_check_reset_block(hw)) {
+		/*
+		 * Full-chip reset requires MAC and PHY reset at the same
+		 * time to make sure the interface between MAC and the
+		 * external PHY is reset.
+		 */
+		ctrl |= E1000_CTRL_PHY_RST;
+	}
+	ret_val = e1000_acquire_swflag_ich8lan(hw);
+	e_dbg("Issuing a global reset to ich8lan\n");
+	ew32(CTRL, (ctrl | E1000_CTRL_RST));
+	msleep(20);
+
+	if (!ret_val)
+		e1000_release_swflag_ich8lan(hw);
+
+	if (ctrl & E1000_CTRL_PHY_RST) {
+		ret_val = hw->phy.ops.get_cfg_done(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_post_phy_reset_ich8lan(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/*
+	 * For PCH, this write will make sure that any noise
+	 * will be detected as a CRC error and be dropped rather than show up
+	 * as a bad packet to the DMA engine.
+	 */
+	if (hw->mac.type == e1000_pchlan)
+		ew32(CRC_OFFSET, 0x65656565);
+
+	ew32(IMC, 0xffffffff);
+	icr = er32(ICR);
+
+	kab = er32(KABGTXD);
+	kab |= E1000_KABGTXD_BGSQLBIAS;
+	ew32(KABGTXD, kab);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_ich8lan - Initialize the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Prepares the hardware for transmit and receive by doing the following:
+ *   - initialize hardware bits
+ *   - initialize LED identification
+ *   - setup receive address registers
+ *   - setup flow control
+ *   - setup transmit descriptors
+ *   - clear statistics
+ **/
+static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl_ext, txdctl, snoop;
+	s32 ret_val;
+	u16 i;
+
+	e1000_initialize_hw_bits_ich8lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	if (ret_val)
+		e_dbg("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+
+	/* Setup the receive address. */
+	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	e_dbg("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/*
+	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
+	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
+	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
+	 */
+	if (hw->phy.type == e1000_phy_82578) {
+		hw->phy.ops.read_reg(hw, BM_WUC, &i);
+		ret_val = e1000_phy_hw_reset_ich8lan(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_ich8lan(hw);
+
+	/* Set the transmit descriptor write-back policy for both queues */
+	txdctl = er32(TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	ew32(TXDCTL(0), txdctl);
+	txdctl = er32(TXDCTL(1));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		 E1000_TXDCTL_FULL_TX_DESC_WB;
+	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+	ew32(TXDCTL(1), txdctl);
+
+	/*
+	 * ICH8 has opposite polarity of no_snoop bits.
+	 * By default, we should use snoop behavior.
+	 */
+	if (mac->type == e1000_ich8lan)
+		snoop = PCIE_ICH8_SNOOP_ALL;
+	else
+		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
+	e1000e_set_pcie_no_snoop(hw, snoop);
+
+	ctrl_ext = er32(CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+	ew32(CTRL_EXT, ctrl_ext);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_ich8lan(hw);
+
+	return 0;
+}
+/**
+ *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets/Clears required hardware bits necessary for correctly setting up the
+ *  hardware for transmit and receive.
+ **/
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	/* Extended Device Control */
+	reg = er32(CTRL_EXT);
+	reg |= (1 << 22);
+	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
+	if (hw->mac.type >= e1000_pchlan)
+		reg |= E1000_CTRL_EXT_PHYPDEN;
+	ew32(CTRL_EXT, reg);
+
+	/* Transmit Descriptor Control 0 */
+	reg = er32(TXDCTL(0));
+	reg |= (1 << 22);
+	ew32(TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = er32(TXDCTL(1));
+	reg |= (1 << 22);
+	ew32(TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = er32(TARC(0));
+	if (hw->mac.type == e1000_ich8lan)
+		reg |= (1 << 28) | (1 << 29);
+	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+	ew32(TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = er32(TARC(1));
+	if (er32(TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	reg |= (1 << 24) | (1 << 26) | (1 << 30);
+	ew32(TARC(1), reg);
+
+	/* Device Status */
+	if (hw->mac.type == e1000_ich8lan) {
+		reg = er32(STATUS);
+		reg &= ~(1 << 31);
+		ew32(STATUS, reg);
+	}
+
+	/*
+	 * work-around descriptor data corruption issue during nfs v2 udp
+	 * traffic, just disable the nfs filtering capability
+	 */
+	reg = er32(RFCTL);
+	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
+	ew32(RFCTL, reg);
+}
+
+/**
+ *  e1000_setup_link_ich8lan - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	if (e1000_check_reset_block(hw))
+		return 0;
+
+	/*
+	 * ICH parts do not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default) {
+		/* Workaround h/w hang when Tx flow control enabled */
+		if (hw->mac.type == e1000_pchlan)
+			hw->fc.requested_mode = e1000_fc_rx_pause;
+		else
+			hw->fc.requested_mode = e1000_fc_full;
+	}
+
+	/*
+	 * Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	e_dbg("After fix-ups FlowControl is now = %x\n",
+		hw->fc.current_mode);
+
+	/* Continue to configure the copper link. */
+	ret_val = e1000_setup_copper_link_ich8lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	ew32(FCTTV, hw->fc.pause_time);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		ew32(FCRTV_PCH, hw->fc.refresh_time);
+
+		ret_val = hw->phy.ops.write_reg(hw,
+		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
+		                             hw->fc.pause_time);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000e_set_fc_watermarks(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the kumeran interface to the PHY to wait the appropriate time
+ *  when polling the PHY, then call the generic setup_copper_link to finish
+ *  configuring the copper link.
+ **/
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	ctrl = er32(CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ew32(CTRL, ctrl);
+
+	/*
+	 * Set the mac to wait the maximum time between each iteration
+	 * and increase the max iterations when polling the phy;
+	 * this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+	                               &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= 0x3F;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+	                                reg_data);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->phy.type) {
+	case e1000_phy_igp_3:
+		ret_val = e1000e_copper_link_setup_igp(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_bm:
+	case e1000_phy_82578:
+		ret_val = e1000e_copper_link_setup_m88(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_82577:
+		ret_val = e1000_copper_link_setup_82577(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_ife:
+		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
+		                               &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+		switch (hw->phy.mdix) {
+		case 1:
+			reg_data &= ~IFE_PMC_FORCE_MDIX;
+			break;
+		case 2:
+			reg_data |= IFE_PMC_FORCE_MDIX;
+			break;
+		case 0:
+		default:
+			reg_data |= IFE_PMC_AUTO_MDIX;
+			break;
+		}
+		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
+		                                reg_data);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		break;
+	}
+	return e1000e_setup_copper_link(hw);
+}
+
+/**
+ *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to store current link speed
+ *  @duplex: pointer to store the current link duplex
+ *
+ *  Calls the generic get_speed_and_duplex to retrieve the current link
+ *  information and then calls the Kumeran lock loss workaround for links at
+ *  gigabit speeds.
+ **/
+static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+					  u16 *duplex)
+{
+	s32 ret_val;
+
+	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac.type == e1000_ich8lan) &&
+	    (hw->phy.type == e1000_phy_igp_3) &&
+	    (*speed == SPEED_1000)) {
+		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  Work-around for 82566 Kumeran PCS lock loss:
+ *  On link status change (i.e. PCI reset, speed change) and link is up and
+ *  speed is gigabit-
+ *    0) if workaround is optionally disabled do nothing
+ *    1) wait 1ms for Kumeran link to come up
+ *    2) check Kumeran Diagnostic register PCS lock loss bit
+ *    3) if not set the link is locked (all is good), otherwise...
+ *    4) reset the PHY
+ *    5) repeat up to 10 times
+ *  Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 phy_ctrl;
+	s32 ret_val;
+	u16 i, data;
+	bool link;
+
+	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
+		return 0;
+
+	/*
+	 * Make sure link is up before proceeding.  If not just return.
+	 * Attempting this while link is negotiating fouled up link
+	 * stability
+	 */
+	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+	if (!link)
+		return 0;
+
+	for (i = 0; i < 10; i++) {
+		/* read once to clear */
+		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+		/* and again to get new status */
+		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+
+		/* check for PCS lock */
+		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+			return 0;
+
+		/* Issue PHY reset */
+		e1000_phy_hw_reset(hw);
+		mdelay(5);
+	}
+	/* Disable GigE link negotiation */
+	phy_ctrl = er32(PHY_CTRL);
+	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+	ew32(PHY_CTRL, phy_ctrl);
+
+	/*
+	 * Call gig speed drop workaround on Gig disable before accessing
+	 * any PHY registers
+	 */
+	e1000e_gig_downshift_workaround_ich8lan(hw);
+
+	/* unable to acquire PCS lock */
+	return -E1000_ERR_PHY;
+}
+
+/**
+ *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
+ *  @hw: pointer to the HW structure
+ *  @state: boolean value used to set the current Kumeran workaround state
+ *
+ *  If ICH8, set the current Kumeran workaround state (enabled - true
+ *  /disabled - false).
+ **/
+void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+						 bool state)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+
+	if (hw->mac.type != e1000_ich8lan) {
+		e_dbg("Workaround applies to ICH8 only.\n");
+		return;
+	}
+
+	dev_spec->kmrn_lock_loss_workaround_enabled = state;
+}
+
+/**
+ *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ *  @hw: pointer to the HW structure
+ *
+ *  Workaround for 82566 power-down on D3 entry:
+ *    1) disable gigabit link
+ *    2) write VR power-down enable
+ *    3) read it back
+ *  Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+	u16 data;
+	u8  retry = 0;
+
+	if (hw->phy.type != e1000_phy_igp_3)
+		return;
+
+	/* Try the workaround twice (if needed) */
+	do {
+		/* Disable link */
+		reg = er32(PHY_CTRL);
+		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+		ew32(PHY_CTRL, reg);
+
+		/*
+		 * Call gig speed drop workaround on Gig disable before
+		 * accessing any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000e_gig_downshift_workaround_ich8lan(hw);
+
+		/* Write VR power-down enable */
+		e1e_rphy(hw, IGP3_VR_CTRL, &data);
+		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+		/* Read it back and test */
+		e1e_rphy(hw, IGP3_VR_CTRL, &data);
+		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+			break;
+
+		/* Issue PHY reset and repeat at most one more time */
+		reg = er32(CTRL);
+		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
+		retry++;
+	} while (retry);
+}
+
+/**
+ *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ *  @hw: pointer to the HW structure
+ *
+ *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ *  LPLU, Gig disable, MDIC PHY reset):
+ *    1) Set Kumeran Near-end loopback
+ *    2) Clear Kumeran Near-end loopback
+ *  Should only be called for ICH8[m] devices with IGP_3 Phy.
+ **/
+void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 reg_data;
+
+	if ((hw->mac.type != e1000_ich8lan) ||
+	    (hw->phy.type != e1000_phy_igp_3))
+		return;
+
+	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				      &reg_data);
+	if (ret_val)
+		return;
+	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				       reg_data);
+	if (ret_val)
+		return;
+	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				       reg_data);
+}
+
+/**
+ *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
+ *  @hw: pointer to the HW structure
+ *
+ *  During S0 to Sx transition, it is possible the link remains at gig
+ *  instead of negotiating to a lower speed.  Before going to Sx, set
+ *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
+ *  to a lower speed.
+ *
+ *  Should only be called for applicable parts.
+ **/
+void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
+{
+	u32 phy_ctrl;
+
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+	case e1000_pchlan:
+		phy_ctrl = er32(PHY_CTRL);
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
+		            E1000_PHY_CTRL_GBE_DISABLE;
+		ew32(PHY_CTRL, phy_ctrl);
+
+		if (hw->mac.type == e1000_pchlan)
+			e1000_phy_hw_reset_ich8lan(hw);
+	default:
+		break;
+	}
+}
+
+/**
+ *  e1000_cleanup_led_ich8lan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+
+	ew32(LEDCTL, hw->mac.ledctl_default);
+	return 0;
+}
+
+/**
+ *  e1000_led_on_ich8lan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+
+	ew32(LEDCTL, hw->mac.ledctl_mode2);
+	return 0;
+}
+
+/**
+ *  e1000_led_off_ich8lan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+	if (hw->phy.type == e1000_phy_ife)
+		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+
+	ew32(LEDCTL, hw->mac.ledctl_mode1);
+	return 0;
+}
+
+/**
+ *  e1000_setup_led_pchlan - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use.
+ **/
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
+{
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+					(u16)hw->mac.ledctl_mode1);
+}
+
+/**
+ *  e1000_cleanup_led_pchlan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
+{
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+					(u16)hw->mac.ledctl_default);
+}
+
+/**
+ *  e1000_led_on_pchlan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode2;
+	u32 i, led;
+
+	/*
+	 * If no link, then turn LED on by setting the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode2.
+	 */
+	if (!(er32(STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_led_off_pchlan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode1;
+	u32 i, led;
+
+	/*
+	 * If no link, then turn LED off by clearing the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode1.
+	 */
+	if (!(er32(STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Read appropriate register for the config done bit for completion status
+ *  and configure the PHY through s/w for EEPROM-less parts.
+ *
+ *  NOTE: some silicon which is EEPROM-less will fail trying to read the
+ *  config done bit, so only an error is logged and continues.  If we were
+ *  to return with error, EEPROM-less silicon would not be able to be reset
+ *  or change link.
+ **/
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u32 bank = 0;
+	u32 status;
+
+	e1000e_get_cfg_done(hw);
+
+	/* Wait for indication from h/w that it has completed basic config */
+	if (hw->mac.type >= e1000_ich10lan) {
+		e1000_lan_init_done_ich8lan(hw);
+	} else {
+		ret_val = e1000e_get_auto_rd_done(hw);
+		if (ret_val) {
+			/*
+			 * When auto config read does not complete, do not
+			 * return with an error. This can happen in situations
+			 * where there is no eeprom and prevents getting link.
+			 */
+			e_dbg("Auto Read Done did not complete\n");
+			ret_val = 0;
+		}
+	}
+
+	/* Clear PHY Reset Asserted bit */
+	status = er32(STATUS);
+	if (status & E1000_STATUS_PHYRA)
+		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
+	else
+		e_dbg("PHY Reset Asserted not set - needs delay\n");
+
+	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
+	if (hw->mac.type <= e1000_ich9lan) {
+		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
+		    (hw->phy.type == e1000_phy_igp_3)) {
+			e1000e_phy_init_script_igp3(hw);
+		}
+	} else {
+		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
+			/* Maybe we should do a basic PHY config */
+			e_dbg("EEPROM not present\n");
+			ret_val = -E1000_ERR_CONFIG;
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(hw->mac.ops.check_mng_mode(hw) ||
+	      hw->phy.ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+}
+
+/**
+ *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears hardware counters specific to the silicon family and calls
+ *  clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+	u16 phy_data;
+
+	e1000e_clear_hw_cntrs_base(hw);
+
+	er32(ALGNERRC);
+	er32(RXERRC);
+	er32(TNCRS);
+	er32(CEXTERR);
+	er32(TSCTC);
+	er32(TSCTFC);
+
+	er32(MGTPRC);
+	er32(MGTPDC);
+	er32(MGTPTC);
+
+	er32(IAC);
+	er32(ICRXOC);
+
+	/* Clear PHY statistics registers */
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
+		hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
+	}
+}
+
+static struct e1000_mac_operations ich8_mac_ops = {
+	.id_led_init		= e1000e_id_led_init,
+	.check_mng_mode		= e1000_check_mng_mode_ich8lan,
+	.check_for_link		= e1000_check_for_copper_link_ich8lan,
+	/* cleanup_led dependent on mac type */
+	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
+	.get_bus_info		= e1000_get_bus_info_ich8lan,
+	.set_lan_id		= e1000_set_lan_id_single_port,
+	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
+	/* led_on dependent on mac type */
+	/* led_off dependent on mac type */
+	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
+	.reset_hw		= e1000_reset_hw_ich8lan,
+	.init_hw		= e1000_init_hw_ich8lan,
+	.setup_link		= e1000_setup_link_ich8lan,
+	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
+	/* id_led_init dependent on mac type */
+};
+
+static struct e1000_phy_operations ich8_phy_ops = {
+	.acquire		= e1000_acquire_swflag_ich8lan,
+	.check_reset_block	= e1000_check_reset_block_ich8lan,
+	.commit			= NULL,
+	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
+	.get_cable_length	= e1000e_get_cable_length_igp_2,
+	.read_reg		= e1000e_read_phy_reg_igp,
+	.release		= e1000_release_swflag_ich8lan,
+	.reset			= e1000_phy_hw_reset_ich8lan,
+	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
+	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
+	.write_reg		= e1000e_write_phy_reg_igp,
+};
+
+static struct e1000_nvm_operations ich8_nvm_ops = {
+	.acquire		= e1000_acquire_nvm_ich8lan,
+	.read		 	= e1000_read_nvm_ich8lan,
+	.release		= e1000_release_nvm_ich8lan,
+	.update			= e1000_update_nvm_checksum_ich8lan,
+	.valid_led_default	= e1000_valid_led_default_ich8lan,
+	.validate		= e1000_validate_nvm_checksum_ich8lan,
+	.write			= e1000_write_nvm_ich8lan,
+};
+
+struct e1000_info e1000_ich8_info = {
+	.mac			= e1000_ich8lan,
+	.flags			= FLAG_HAS_WOL
+				  | FLAG_IS_ICH
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 8,
+	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_ich9_info = {
+	.mac			= e1000_ich9lan,
+	.flags			= FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_ERT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 10,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_ich10_info = {
+	.mac			= e1000_ich10lan,
+	.flags			= FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_ERT
+				  | FLAG_HAS_FLASH
+				  | FLAG_APME_IN_WUC,
+	.pba			= 10,
+	.max_hw_frame_size	= DEFAULT_JUMBO,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};
+
+struct e1000_info e1000_pch_info = {
+	.mac			= e1000_pchlan,
+	.flags			= FLAG_IS_ICH
+				  | FLAG_HAS_WOL
+				  | FLAG_RX_CSUM_ENABLED
+				  | FLAG_HAS_CTRLEXT_ON_LOAD
+				  | FLAG_HAS_AMT
+				  | FLAG_HAS_FLASH
+				  | FLAG_HAS_JUMBO_FRAMES
+				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
+				  | FLAG_APME_IN_WUC,
+	.pba			= 26,
+	.max_hw_frame_size	= 4096,
+	.get_variants		= e1000_get_variants_ich8lan,
+	.mac_ops		= &ich8_mac_ops,
+	.phy_ops		= &ich8_phy_ops,
+	.nvm_ops		= &ich8_nvm_ops,
+};