|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2009 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * 82562G 10/100 Network Connection |
|
31 * 82562G-2 10/100 Network Connection |
|
32 * 82562GT 10/100 Network Connection |
|
33 * 82562GT-2 10/100 Network Connection |
|
34 * 82562V 10/100 Network Connection |
|
35 * 82562V-2 10/100 Network Connection |
|
36 * 82566DC-2 Gigabit Network Connection |
|
37 * 82566DC Gigabit Network Connection |
|
38 * 82566DM-2 Gigabit Network Connection |
|
39 * 82566DM Gigabit Network Connection |
|
40 * 82566MC Gigabit Network Connection |
|
41 * 82566MM Gigabit Network Connection |
|
42 * 82567LM Gigabit Network Connection |
|
43 * 82567LF Gigabit Network Connection |
|
44 * 82567V Gigabit Network Connection |
|
45 * 82567LM-2 Gigabit Network Connection |
|
46 * 82567LF-2 Gigabit Network Connection |
|
47 * 82567V-2 Gigabit Network Connection |
|
48 * 82567LF-3 Gigabit Network Connection |
|
49 * 82567LM-3 Gigabit Network Connection |
|
50 * 82567LM-4 Gigabit Network Connection |
|
51 * 82577LM Gigabit Network Connection |
|
52 * 82577LC Gigabit Network Connection |
|
53 * 82578DM Gigabit Network Connection |
|
54 * 82578DC Gigabit Network Connection |
|
55 */ |
|
56 |
|
57 #include "e1000-2.6.35-ethercat.h" |
|
58 |
|
59 #define ICH_FLASH_GFPREG 0x0000 |
|
60 #define ICH_FLASH_HSFSTS 0x0004 |
|
61 #define ICH_FLASH_HSFCTL 0x0006 |
|
62 #define ICH_FLASH_FADDR 0x0008 |
|
63 #define ICH_FLASH_FDATA0 0x0010 |
|
64 #define ICH_FLASH_PR0 0x0074 |
|
65 |
|
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 |
|
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 |
|
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 |
|
69 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF |
|
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 |
|
71 |
|
72 #define ICH_CYCLE_READ 0 |
|
73 #define ICH_CYCLE_WRITE 2 |
|
74 #define ICH_CYCLE_ERASE 3 |
|
75 |
|
76 #define FLASH_GFPREG_BASE_MASK 0x1FFF |
|
77 #define FLASH_SECTOR_ADDR_SHIFT 12 |
|
78 |
|
79 #define ICH_FLASH_SEG_SIZE_256 256 |
|
80 #define ICH_FLASH_SEG_SIZE_4K 4096 |
|
81 #define ICH_FLASH_SEG_SIZE_8K 8192 |
|
82 #define ICH_FLASH_SEG_SIZE_64K 65536 |
|
83 |
|
84 |
|
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ |
|
86 /* FW established a valid mode */ |
|
87 #define E1000_ICH_FWSM_FW_VALID 0x00008000 |
|
88 |
|
89 #define E1000_ICH_MNG_IAMT_MODE 0x2 |
|
90 |
|
91 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ |
|
92 (ID_LED_DEF1_OFF2 << 8) | \ |
|
93 (ID_LED_DEF1_ON2 << 4) | \ |
|
94 (ID_LED_DEF1_DEF2)) |
|
95 |
|
96 #define E1000_ICH_NVM_SIG_WORD 0x13 |
|
97 #define E1000_ICH_NVM_SIG_MASK 0xC000 |
|
98 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 |
|
99 #define E1000_ICH_NVM_SIG_VALUE 0x80 |
|
100 |
|
101 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 |
|
102 |
|
103 #define E1000_FEXTNVM_SW_CONFIG 1 |
|
104 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ |
|
105 |
|
106 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL |
|
107 |
|
108 #define E1000_ICH_RAR_ENTRIES 7 |
|
109 |
|
110 #define PHY_PAGE_SHIFT 5 |
|
111 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ |
|
112 ((reg) & MAX_PHY_REG_ADDRESS)) |
|
113 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ |
|
114 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ |
|
115 |
|
116 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 |
|
117 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 |
|
118 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 |
|
119 |
|
120 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ |
|
121 |
|
122 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ |
|
123 |
|
124 /* SMBus Address Phy Register */ |
|
125 #define HV_SMB_ADDR PHY_REG(768, 26) |
|
126 #define HV_SMB_ADDR_PEC_EN 0x0200 |
|
127 #define HV_SMB_ADDR_VALID 0x0080 |
|
128 |
|
129 /* Strapping Option Register - RO */ |
|
130 #define E1000_STRAP 0x0000C |
|
131 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 |
|
132 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 |
|
133 |
|
134 /* OEM Bits Phy Register */ |
|
135 #define HV_OEM_BITS PHY_REG(768, 25) |
|
136 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ |
|
137 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ |
|
138 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ |
|
139 |
|
140 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ |
|
141 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ |
|
142 |
|
143 /* KMRN Mode Control */ |
|
144 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16) |
|
145 #define HV_KMRN_MDIO_SLOW 0x0400 |
|
146 |
|
147 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ |
|
148 /* Offset 04h HSFSTS */ |
|
149 union ich8_hws_flash_status { |
|
150 struct ich8_hsfsts { |
|
151 u16 flcdone :1; /* bit 0 Flash Cycle Done */ |
|
152 u16 flcerr :1; /* bit 1 Flash Cycle Error */ |
|
153 u16 dael :1; /* bit 2 Direct Access error Log */ |
|
154 u16 berasesz :2; /* bit 4:3 Sector Erase Size */ |
|
155 u16 flcinprog :1; /* bit 5 flash cycle in Progress */ |
|
156 u16 reserved1 :2; /* bit 13:6 Reserved */ |
|
157 u16 reserved2 :6; /* bit 13:6 Reserved */ |
|
158 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ |
|
159 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ |
|
160 } hsf_status; |
|
161 u16 regval; |
|
162 }; |
|
163 |
|
164 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ |
|
165 /* Offset 06h FLCTL */ |
|
166 union ich8_hws_flash_ctrl { |
|
167 struct ich8_hsflctl { |
|
168 u16 flcgo :1; /* 0 Flash Cycle Go */ |
|
169 u16 flcycle :2; /* 2:1 Flash Cycle */ |
|
170 u16 reserved :5; /* 7:3 Reserved */ |
|
171 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ |
|
172 u16 flockdn :6; /* 15:10 Reserved */ |
|
173 } hsf_ctrl; |
|
174 u16 regval; |
|
175 }; |
|
176 |
|
177 /* ICH Flash Region Access Permissions */ |
|
178 union ich8_hws_flash_regacc { |
|
179 struct ich8_flracc { |
|
180 u32 grra :8; /* 0:7 GbE region Read Access */ |
|
181 u32 grwa :8; /* 8:15 GbE region Write Access */ |
|
182 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ |
|
183 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ |
|
184 } hsf_flregacc; |
|
185 u16 regval; |
|
186 }; |
|
187 |
|
188 /* ICH Flash Protected Region */ |
|
189 union ich8_flash_protected_range { |
|
190 struct ich8_pr { |
|
191 u32 base:13; /* 0:12 Protected Range Base */ |
|
192 u32 reserved1:2; /* 13:14 Reserved */ |
|
193 u32 rpe:1; /* 15 Read Protection Enable */ |
|
194 u32 limit:13; /* 16:28 Protected Range Limit */ |
|
195 u32 reserved2:2; /* 29:30 Reserved */ |
|
196 u32 wpe:1; /* 31 Write Protection Enable */ |
|
197 } range; |
|
198 u32 regval; |
|
199 }; |
|
200 |
|
201 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); |
|
202 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); |
|
203 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); |
|
204 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); |
|
205 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
|
206 u32 offset, u8 byte); |
|
207 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
208 u8 *data); |
|
209 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
|
210 u16 *data); |
|
211 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
212 u8 size, u16 *data); |
|
213 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); |
|
214 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); |
|
215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); |
|
216 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); |
|
217 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); |
|
218 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); |
|
219 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); |
|
220 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); |
|
221 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); |
|
222 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); |
|
223 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); |
|
224 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); |
|
225 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); |
|
226 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); |
|
227 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); |
|
228 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); |
|
229 |
|
230 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) |
|
231 { |
|
232 return readw(hw->flash_address + reg); |
|
233 } |
|
234 |
|
235 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) |
|
236 { |
|
237 return readl(hw->flash_address + reg); |
|
238 } |
|
239 |
|
240 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) |
|
241 { |
|
242 writew(val, hw->flash_address + reg); |
|
243 } |
|
244 |
|
245 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) |
|
246 { |
|
247 writel(val, hw->flash_address + reg); |
|
248 } |
|
249 |
|
250 #define er16flash(reg) __er16flash(hw, (reg)) |
|
251 #define er32flash(reg) __er32flash(hw, (reg)) |
|
252 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) |
|
253 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) |
|
254 |
|
255 /** |
|
256 * e1000_init_phy_params_pchlan - Initialize PHY function pointers |
|
257 * @hw: pointer to the HW structure |
|
258 * |
|
259 * Initialize family-specific PHY parameters and function pointers. |
|
260 **/ |
|
261 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) |
|
262 { |
|
263 struct e1000_phy_info *phy = &hw->phy; |
|
264 u32 ctrl; |
|
265 s32 ret_val = 0; |
|
266 |
|
267 phy->addr = 1; |
|
268 phy->reset_delay_us = 100; |
|
269 |
|
270 phy->ops.read_reg = e1000_read_phy_reg_hv; |
|
271 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; |
|
272 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; |
|
273 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; |
|
274 phy->ops.write_reg = e1000_write_phy_reg_hv; |
|
275 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; |
|
276 phy->ops.power_up = e1000_power_up_phy_copper; |
|
277 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
|
278 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
279 |
|
280 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
|
281 /* |
|
282 * The MAC-PHY interconnect may still be in SMBus mode |
|
283 * after Sx->S0. Toggle the LANPHYPC Value bit to force |
|
284 * the interconnect to PCIe mode, but only if there is no |
|
285 * firmware present otherwise firmware will have done it. |
|
286 */ |
|
287 ctrl = er32(CTRL); |
|
288 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; |
|
289 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; |
|
290 ew32(CTRL, ctrl); |
|
291 udelay(10); |
|
292 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; |
|
293 ew32(CTRL, ctrl); |
|
294 msleep(50); |
|
295 } |
|
296 |
|
297 /* |
|
298 * Reset the PHY before any acccess to it. Doing so, ensures that |
|
299 * the PHY is in a known good state before we read/write PHY registers. |
|
300 * The generic reset is sufficient here, because we haven't determined |
|
301 * the PHY type yet. |
|
302 */ |
|
303 ret_val = e1000e_phy_hw_reset_generic(hw); |
|
304 if (ret_val) |
|
305 goto out; |
|
306 |
|
307 phy->id = e1000_phy_unknown; |
|
308 ret_val = e1000e_get_phy_id(hw); |
|
309 if (ret_val) |
|
310 goto out; |
|
311 if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) { |
|
312 /* |
|
313 * In case the PHY needs to be in mdio slow mode (eg. 82577), |
|
314 * set slow mode and try to get the PHY id again. |
|
315 */ |
|
316 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
317 if (ret_val) |
|
318 goto out; |
|
319 ret_val = e1000e_get_phy_id(hw); |
|
320 if (ret_val) |
|
321 goto out; |
|
322 } |
|
323 phy->type = e1000e_get_phy_type_from_id(phy->id); |
|
324 |
|
325 switch (phy->type) { |
|
326 case e1000_phy_82577: |
|
327 phy->ops.check_polarity = e1000_check_polarity_82577; |
|
328 phy->ops.force_speed_duplex = |
|
329 e1000_phy_force_speed_duplex_82577; |
|
330 phy->ops.get_cable_length = e1000_get_cable_length_82577; |
|
331 phy->ops.get_info = e1000_get_phy_info_82577; |
|
332 phy->ops.commit = e1000e_phy_sw_reset; |
|
333 break; |
|
334 case e1000_phy_82578: |
|
335 phy->ops.check_polarity = e1000_check_polarity_m88; |
|
336 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
|
337 phy->ops.get_cable_length = e1000e_get_cable_length_m88; |
|
338 phy->ops.get_info = e1000e_get_phy_info_m88; |
|
339 break; |
|
340 default: |
|
341 ret_val = -E1000_ERR_PHY; |
|
342 break; |
|
343 } |
|
344 |
|
345 out: |
|
346 return ret_val; |
|
347 } |
|
348 |
|
349 /** |
|
350 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers |
|
351 * @hw: pointer to the HW structure |
|
352 * |
|
353 * Initialize family-specific PHY parameters and function pointers. |
|
354 **/ |
|
355 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) |
|
356 { |
|
357 struct e1000_phy_info *phy = &hw->phy; |
|
358 s32 ret_val; |
|
359 u16 i = 0; |
|
360 |
|
361 phy->addr = 1; |
|
362 phy->reset_delay_us = 100; |
|
363 |
|
364 phy->ops.power_up = e1000_power_up_phy_copper; |
|
365 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
|
366 |
|
367 /* |
|
368 * We may need to do this twice - once for IGP and if that fails, |
|
369 * we'll set BM func pointers and try again |
|
370 */ |
|
371 ret_val = e1000e_determine_phy_address(hw); |
|
372 if (ret_val) { |
|
373 phy->ops.write_reg = e1000e_write_phy_reg_bm; |
|
374 phy->ops.read_reg = e1000e_read_phy_reg_bm; |
|
375 ret_val = e1000e_determine_phy_address(hw); |
|
376 if (ret_val) { |
|
377 e_dbg("Cannot determine PHY addr. Erroring out\n"); |
|
378 return ret_val; |
|
379 } |
|
380 } |
|
381 |
|
382 phy->id = 0; |
|
383 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && |
|
384 (i++ < 100)) { |
|
385 msleep(1); |
|
386 ret_val = e1000e_get_phy_id(hw); |
|
387 if (ret_val) |
|
388 return ret_val; |
|
389 } |
|
390 |
|
391 /* Verify phy id */ |
|
392 switch (phy->id) { |
|
393 case IGP03E1000_E_PHY_ID: |
|
394 phy->type = e1000_phy_igp_3; |
|
395 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
396 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; |
|
397 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; |
|
398 phy->ops.get_info = e1000e_get_phy_info_igp; |
|
399 phy->ops.check_polarity = e1000_check_polarity_igp; |
|
400 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; |
|
401 break; |
|
402 case IFE_E_PHY_ID: |
|
403 case IFE_PLUS_E_PHY_ID: |
|
404 case IFE_C_E_PHY_ID: |
|
405 phy->type = e1000_phy_ife; |
|
406 phy->autoneg_mask = E1000_ALL_NOT_GIG; |
|
407 phy->ops.get_info = e1000_get_phy_info_ife; |
|
408 phy->ops.check_polarity = e1000_check_polarity_ife; |
|
409 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; |
|
410 break; |
|
411 case BME1000_E_PHY_ID: |
|
412 phy->type = e1000_phy_bm; |
|
413 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
414 phy->ops.read_reg = e1000e_read_phy_reg_bm; |
|
415 phy->ops.write_reg = e1000e_write_phy_reg_bm; |
|
416 phy->ops.commit = e1000e_phy_sw_reset; |
|
417 phy->ops.get_info = e1000e_get_phy_info_m88; |
|
418 phy->ops.check_polarity = e1000_check_polarity_m88; |
|
419 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
|
420 break; |
|
421 default: |
|
422 return -E1000_ERR_PHY; |
|
423 break; |
|
424 } |
|
425 |
|
426 return 0; |
|
427 } |
|
428 |
|
429 /** |
|
430 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers |
|
431 * @hw: pointer to the HW structure |
|
432 * |
|
433 * Initialize family-specific NVM parameters and function |
|
434 * pointers. |
|
435 **/ |
|
436 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) |
|
437 { |
|
438 struct e1000_nvm_info *nvm = &hw->nvm; |
|
439 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
440 u32 gfpreg, sector_base_addr, sector_end_addr; |
|
441 u16 i; |
|
442 |
|
443 /* Can't read flash registers if the register set isn't mapped. */ |
|
444 if (!hw->flash_address) { |
|
445 e_dbg("ERROR: Flash registers not mapped\n"); |
|
446 return -E1000_ERR_CONFIG; |
|
447 } |
|
448 |
|
449 nvm->type = e1000_nvm_flash_sw; |
|
450 |
|
451 gfpreg = er32flash(ICH_FLASH_GFPREG); |
|
452 |
|
453 /* |
|
454 * sector_X_addr is a "sector"-aligned address (4096 bytes) |
|
455 * Add 1 to sector_end_addr since this sector is included in |
|
456 * the overall size. |
|
457 */ |
|
458 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; |
|
459 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; |
|
460 |
|
461 /* flash_base_addr is byte-aligned */ |
|
462 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; |
|
463 |
|
464 /* |
|
465 * find total size of the NVM, then cut in half since the total |
|
466 * size represents two separate NVM banks. |
|
467 */ |
|
468 nvm->flash_bank_size = (sector_end_addr - sector_base_addr) |
|
469 << FLASH_SECTOR_ADDR_SHIFT; |
|
470 nvm->flash_bank_size /= 2; |
|
471 /* Adjust to word count */ |
|
472 nvm->flash_bank_size /= sizeof(u16); |
|
473 |
|
474 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; |
|
475 |
|
476 /* Clear shadow ram */ |
|
477 for (i = 0; i < nvm->word_size; i++) { |
|
478 dev_spec->shadow_ram[i].modified = false; |
|
479 dev_spec->shadow_ram[i].value = 0xFFFF; |
|
480 } |
|
481 |
|
482 return 0; |
|
483 } |
|
484 |
|
485 /** |
|
486 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers |
|
487 * @hw: pointer to the HW structure |
|
488 * |
|
489 * Initialize family-specific MAC parameters and function |
|
490 * pointers. |
|
491 **/ |
|
492 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) |
|
493 { |
|
494 struct e1000_hw *hw = &adapter->hw; |
|
495 struct e1000_mac_info *mac = &hw->mac; |
|
496 |
|
497 /* Set media type function pointer */ |
|
498 hw->phy.media_type = e1000_media_type_copper; |
|
499 |
|
500 /* Set mta register count */ |
|
501 mac->mta_reg_count = 32; |
|
502 /* Set rar entry count */ |
|
503 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; |
|
504 if (mac->type == e1000_ich8lan) |
|
505 mac->rar_entry_count--; |
|
506 /* FWSM register */ |
|
507 mac->has_fwsm = true; |
|
508 /* ARC subsystem not supported */ |
|
509 mac->arc_subsystem_valid = false; |
|
510 /* Adaptive IFS supported */ |
|
511 mac->adaptive_ifs = true; |
|
512 |
|
513 /* LED operations */ |
|
514 switch (mac->type) { |
|
515 case e1000_ich8lan: |
|
516 case e1000_ich9lan: |
|
517 case e1000_ich10lan: |
|
518 /* ID LED init */ |
|
519 mac->ops.id_led_init = e1000e_id_led_init; |
|
520 /* setup LED */ |
|
521 mac->ops.setup_led = e1000e_setup_led_generic; |
|
522 /* cleanup LED */ |
|
523 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; |
|
524 /* turn on/off LED */ |
|
525 mac->ops.led_on = e1000_led_on_ich8lan; |
|
526 mac->ops.led_off = e1000_led_off_ich8lan; |
|
527 break; |
|
528 case e1000_pchlan: |
|
529 /* ID LED init */ |
|
530 mac->ops.id_led_init = e1000_id_led_init_pchlan; |
|
531 /* setup LED */ |
|
532 mac->ops.setup_led = e1000_setup_led_pchlan; |
|
533 /* cleanup LED */ |
|
534 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; |
|
535 /* turn on/off LED */ |
|
536 mac->ops.led_on = e1000_led_on_pchlan; |
|
537 mac->ops.led_off = e1000_led_off_pchlan; |
|
538 break; |
|
539 default: |
|
540 break; |
|
541 } |
|
542 |
|
543 /* Enable PCS Lock-loss workaround for ICH8 */ |
|
544 if (mac->type == e1000_ich8lan) |
|
545 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); |
|
546 |
|
547 return 0; |
|
548 } |
|
549 |
|
550 /** |
|
551 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) |
|
552 * @hw: pointer to the HW structure |
|
553 * |
|
554 * Checks to see of the link status of the hardware has changed. If a |
|
555 * change in link status has been detected, then we read the PHY registers |
|
556 * to get the current speed/duplex if link exists. |
|
557 **/ |
|
558 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) |
|
559 { |
|
560 struct e1000_mac_info *mac = &hw->mac; |
|
561 s32 ret_val; |
|
562 bool link; |
|
563 |
|
564 /* |
|
565 * We only want to go out to the PHY registers to see if Auto-Neg |
|
566 * has completed and/or if our link status has changed. The |
|
567 * get_link_status flag is set upon receiving a Link Status |
|
568 * Change or Rx Sequence Error interrupt. |
|
569 */ |
|
570 if (!mac->get_link_status) { |
|
571 ret_val = 0; |
|
572 goto out; |
|
573 } |
|
574 |
|
575 /* |
|
576 * First we want to see if the MII Status Register reports |
|
577 * link. If so, then we want to get the current speed/duplex |
|
578 * of the PHY. |
|
579 */ |
|
580 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
|
581 if (ret_val) |
|
582 goto out; |
|
583 |
|
584 if (hw->mac.type == e1000_pchlan) { |
|
585 ret_val = e1000_k1_gig_workaround_hv(hw, link); |
|
586 if (ret_val) |
|
587 goto out; |
|
588 } |
|
589 |
|
590 if (!link) |
|
591 goto out; /* No link detected */ |
|
592 |
|
593 mac->get_link_status = false; |
|
594 |
|
595 if (hw->phy.type == e1000_phy_82578) { |
|
596 ret_val = e1000_link_stall_workaround_hv(hw); |
|
597 if (ret_val) |
|
598 goto out; |
|
599 } |
|
600 |
|
601 /* |
|
602 * Check if there was DownShift, must be checked |
|
603 * immediately after link-up |
|
604 */ |
|
605 e1000e_check_downshift(hw); |
|
606 |
|
607 /* |
|
608 * If we are forcing speed/duplex, then we simply return since |
|
609 * we have already determined whether we have link or not. |
|
610 */ |
|
611 if (!mac->autoneg) { |
|
612 ret_val = -E1000_ERR_CONFIG; |
|
613 goto out; |
|
614 } |
|
615 |
|
616 /* |
|
617 * Auto-Neg is enabled. Auto Speed Detection takes care |
|
618 * of MAC speed/duplex configuration. So we only need to |
|
619 * configure Collision Distance in the MAC. |
|
620 */ |
|
621 e1000e_config_collision_dist(hw); |
|
622 |
|
623 /* |
|
624 * Configure Flow Control now that Auto-Neg has completed. |
|
625 * First, we need to restore the desired flow control |
|
626 * settings because we may have had to re-autoneg with a |
|
627 * different link partner. |
|
628 */ |
|
629 ret_val = e1000e_config_fc_after_link_up(hw); |
|
630 if (ret_val) |
|
631 e_dbg("Error configuring flow control\n"); |
|
632 |
|
633 out: |
|
634 return ret_val; |
|
635 } |
|
636 |
|
637 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) |
|
638 { |
|
639 struct e1000_hw *hw = &adapter->hw; |
|
640 s32 rc; |
|
641 |
|
642 rc = e1000_init_mac_params_ich8lan(adapter); |
|
643 if (rc) |
|
644 return rc; |
|
645 |
|
646 rc = e1000_init_nvm_params_ich8lan(hw); |
|
647 if (rc) |
|
648 return rc; |
|
649 |
|
650 if (hw->mac.type == e1000_pchlan) |
|
651 rc = e1000_init_phy_params_pchlan(hw); |
|
652 else |
|
653 rc = e1000_init_phy_params_ich8lan(hw); |
|
654 if (rc) |
|
655 return rc; |
|
656 |
|
657 if (adapter->hw.phy.type == e1000_phy_ife) { |
|
658 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; |
|
659 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; |
|
660 } |
|
661 |
|
662 if ((adapter->hw.mac.type == e1000_ich8lan) && |
|
663 (adapter->hw.phy.type == e1000_phy_igp_3)) |
|
664 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; |
|
665 |
|
666 return 0; |
|
667 } |
|
668 |
|
669 static DEFINE_MUTEX(nvm_mutex); |
|
670 |
|
671 /** |
|
672 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex |
|
673 * @hw: pointer to the HW structure |
|
674 * |
|
675 * Acquires the mutex for performing NVM operations. |
|
676 **/ |
|
677 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) |
|
678 { |
|
679 mutex_lock(&nvm_mutex); |
|
680 |
|
681 return 0; |
|
682 } |
|
683 |
|
684 /** |
|
685 * e1000_release_nvm_ich8lan - Release NVM mutex |
|
686 * @hw: pointer to the HW structure |
|
687 * |
|
688 * Releases the mutex used while performing NVM operations. |
|
689 **/ |
|
690 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) |
|
691 { |
|
692 mutex_unlock(&nvm_mutex); |
|
693 } |
|
694 |
|
695 static DEFINE_MUTEX(swflag_mutex); |
|
696 |
|
697 /** |
|
698 * e1000_acquire_swflag_ich8lan - Acquire software control flag |
|
699 * @hw: pointer to the HW structure |
|
700 * |
|
701 * Acquires the software control flag for performing PHY and select |
|
702 * MAC CSR accesses. |
|
703 **/ |
|
704 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) |
|
705 { |
|
706 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; |
|
707 s32 ret_val = 0; |
|
708 |
|
709 mutex_lock(&swflag_mutex); |
|
710 |
|
711 while (timeout) { |
|
712 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
713 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) |
|
714 break; |
|
715 |
|
716 mdelay(1); |
|
717 timeout--; |
|
718 } |
|
719 |
|
720 if (!timeout) { |
|
721 e_dbg("SW/FW/HW has locked the resource for too long.\n"); |
|
722 ret_val = -E1000_ERR_CONFIG; |
|
723 goto out; |
|
724 } |
|
725 |
|
726 timeout = SW_FLAG_TIMEOUT; |
|
727 |
|
728 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
|
729 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
730 |
|
731 while (timeout) { |
|
732 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
733 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
|
734 break; |
|
735 |
|
736 mdelay(1); |
|
737 timeout--; |
|
738 } |
|
739 |
|
740 if (!timeout) { |
|
741 e_dbg("Failed to acquire the semaphore.\n"); |
|
742 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
|
743 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
744 ret_val = -E1000_ERR_CONFIG; |
|
745 goto out; |
|
746 } |
|
747 |
|
748 out: |
|
749 if (ret_val) |
|
750 mutex_unlock(&swflag_mutex); |
|
751 |
|
752 return ret_val; |
|
753 } |
|
754 |
|
755 /** |
|
756 * e1000_release_swflag_ich8lan - Release software control flag |
|
757 * @hw: pointer to the HW structure |
|
758 * |
|
759 * Releases the software control flag for performing PHY and select |
|
760 * MAC CSR accesses. |
|
761 **/ |
|
762 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) |
|
763 { |
|
764 u32 extcnf_ctrl; |
|
765 |
|
766 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
767 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
|
768 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
769 |
|
770 mutex_unlock(&swflag_mutex); |
|
771 } |
|
772 |
|
773 /** |
|
774 * e1000_check_mng_mode_ich8lan - Checks management mode |
|
775 * @hw: pointer to the HW structure |
|
776 * |
|
777 * This checks if the adapter has manageability enabled. |
|
778 * This is a function pointer entry point only called by read/write |
|
779 * routines for the PHY and NVM parts. |
|
780 **/ |
|
781 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) |
|
782 { |
|
783 u32 fwsm; |
|
784 |
|
785 fwsm = er32(FWSM); |
|
786 |
|
787 return (fwsm & E1000_FWSM_MODE_MASK) == |
|
788 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); |
|
789 } |
|
790 |
|
791 /** |
|
792 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked |
|
793 * @hw: pointer to the HW structure |
|
794 * |
|
795 * Checks if firmware is blocking the reset of the PHY. |
|
796 * This is a function pointer entry point only called by |
|
797 * reset routines. |
|
798 **/ |
|
799 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) |
|
800 { |
|
801 u32 fwsm; |
|
802 |
|
803 fwsm = er32(FWSM); |
|
804 |
|
805 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; |
|
806 } |
|
807 |
|
808 /** |
|
809 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration |
|
810 * @hw: pointer to the HW structure |
|
811 * |
|
812 * SW should configure the LCD from the NVM extended configuration region |
|
813 * as a workaround for certain parts. |
|
814 **/ |
|
815 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) |
|
816 { |
|
817 struct e1000_adapter *adapter = hw->adapter; |
|
818 struct e1000_phy_info *phy = &hw->phy; |
|
819 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; |
|
820 s32 ret_val = 0; |
|
821 u16 word_addr, reg_data, reg_addr, phy_page = 0; |
|
822 |
|
823 if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) && |
|
824 !(hw->mac.type == e1000_pchlan)) |
|
825 return ret_val; |
|
826 |
|
827 ret_val = hw->phy.ops.acquire(hw); |
|
828 if (ret_val) |
|
829 return ret_val; |
|
830 |
|
831 /* |
|
832 * Initialize the PHY from the NVM on ICH platforms. This |
|
833 * is needed due to an issue where the NVM configuration is |
|
834 * not properly autoloaded after power transitions. |
|
835 * Therefore, after each PHY reset, we will load the |
|
836 * configuration data out of the NVM manually. |
|
837 */ |
|
838 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) || |
|
839 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) || |
|
840 (hw->mac.type == e1000_pchlan)) |
|
841 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; |
|
842 else |
|
843 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; |
|
844 |
|
845 data = er32(FEXTNVM); |
|
846 if (!(data & sw_cfg_mask)) |
|
847 goto out; |
|
848 |
|
849 /* |
|
850 * Make sure HW does not configure LCD from PHY |
|
851 * extended configuration before SW configuration |
|
852 */ |
|
853 data = er32(EXTCNF_CTRL); |
|
854 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) |
|
855 goto out; |
|
856 |
|
857 cnf_size = er32(EXTCNF_SIZE); |
|
858 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; |
|
859 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; |
|
860 if (!cnf_size) |
|
861 goto out; |
|
862 |
|
863 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; |
|
864 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; |
|
865 |
|
866 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && |
|
867 (hw->mac.type == e1000_pchlan)) { |
|
868 /* |
|
869 * HW configures the SMBus address and LEDs when the |
|
870 * OEM and LCD Write Enable bits are set in the NVM. |
|
871 * When both NVM bits are cleared, SW will configure |
|
872 * them instead. |
|
873 */ |
|
874 data = er32(STRAP); |
|
875 data &= E1000_STRAP_SMBUS_ADDRESS_MASK; |
|
876 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT; |
|
877 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; |
|
878 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, |
|
879 reg_data); |
|
880 if (ret_val) |
|
881 goto out; |
|
882 |
|
883 data = er32(LEDCTL); |
|
884 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, |
|
885 (u16)data); |
|
886 if (ret_val) |
|
887 goto out; |
|
888 } |
|
889 |
|
890 /* Configure LCD from extended configuration region. */ |
|
891 |
|
892 /* cnf_base_addr is in DWORD */ |
|
893 word_addr = (u16)(cnf_base_addr << 1); |
|
894 |
|
895 for (i = 0; i < cnf_size; i++) { |
|
896 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, |
|
897 ®_data); |
|
898 if (ret_val) |
|
899 goto out; |
|
900 |
|
901 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), |
|
902 1, ®_addr); |
|
903 if (ret_val) |
|
904 goto out; |
|
905 |
|
906 /* Save off the PHY page for future writes. */ |
|
907 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { |
|
908 phy_page = reg_data; |
|
909 continue; |
|
910 } |
|
911 |
|
912 reg_addr &= PHY_REG_MASK; |
|
913 reg_addr |= phy_page; |
|
914 |
|
915 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, |
|
916 reg_data); |
|
917 if (ret_val) |
|
918 goto out; |
|
919 } |
|
920 |
|
921 out: |
|
922 hw->phy.ops.release(hw); |
|
923 return ret_val; |
|
924 } |
|
925 |
|
926 /** |
|
927 * e1000_k1_gig_workaround_hv - K1 Si workaround |
|
928 * @hw: pointer to the HW structure |
|
929 * @link: link up bool flag |
|
930 * |
|
931 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning |
|
932 * from a lower speed. This workaround disables K1 whenever link is at 1Gig |
|
933 * If link is down, the function will restore the default K1 setting located |
|
934 * in the NVM. |
|
935 **/ |
|
936 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) |
|
937 { |
|
938 s32 ret_val = 0; |
|
939 u16 status_reg = 0; |
|
940 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; |
|
941 |
|
942 if (hw->mac.type != e1000_pchlan) |
|
943 goto out; |
|
944 |
|
945 /* Wrap the whole flow with the sw flag */ |
|
946 ret_val = hw->phy.ops.acquire(hw); |
|
947 if (ret_val) |
|
948 goto out; |
|
949 |
|
950 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ |
|
951 if (link) { |
|
952 if (hw->phy.type == e1000_phy_82578) { |
|
953 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, |
|
954 &status_reg); |
|
955 if (ret_val) |
|
956 goto release; |
|
957 |
|
958 status_reg &= BM_CS_STATUS_LINK_UP | |
|
959 BM_CS_STATUS_RESOLVED | |
|
960 BM_CS_STATUS_SPEED_MASK; |
|
961 |
|
962 if (status_reg == (BM_CS_STATUS_LINK_UP | |
|
963 BM_CS_STATUS_RESOLVED | |
|
964 BM_CS_STATUS_SPEED_1000)) |
|
965 k1_enable = false; |
|
966 } |
|
967 |
|
968 if (hw->phy.type == e1000_phy_82577) { |
|
969 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, |
|
970 &status_reg); |
|
971 if (ret_val) |
|
972 goto release; |
|
973 |
|
974 status_reg &= HV_M_STATUS_LINK_UP | |
|
975 HV_M_STATUS_AUTONEG_COMPLETE | |
|
976 HV_M_STATUS_SPEED_MASK; |
|
977 |
|
978 if (status_reg == (HV_M_STATUS_LINK_UP | |
|
979 HV_M_STATUS_AUTONEG_COMPLETE | |
|
980 HV_M_STATUS_SPEED_1000)) |
|
981 k1_enable = false; |
|
982 } |
|
983 |
|
984 /* Link stall fix for link up */ |
|
985 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), |
|
986 0x0100); |
|
987 if (ret_val) |
|
988 goto release; |
|
989 |
|
990 } else { |
|
991 /* Link stall fix for link down */ |
|
992 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), |
|
993 0x4100); |
|
994 if (ret_val) |
|
995 goto release; |
|
996 } |
|
997 |
|
998 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); |
|
999 |
|
1000 release: |
|
1001 hw->phy.ops.release(hw); |
|
1002 out: |
|
1003 return ret_val; |
|
1004 } |
|
1005 |
|
1006 /** |
|
1007 * e1000_configure_k1_ich8lan - Configure K1 power state |
|
1008 * @hw: pointer to the HW structure |
|
1009 * @enable: K1 state to configure |
|
1010 * |
|
1011 * Configure the K1 power state based on the provided parameter. |
|
1012 * Assumes semaphore already acquired. |
|
1013 * |
|
1014 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
|
1015 **/ |
|
1016 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) |
|
1017 { |
|
1018 s32 ret_val = 0; |
|
1019 u32 ctrl_reg = 0; |
|
1020 u32 ctrl_ext = 0; |
|
1021 u32 reg = 0; |
|
1022 u16 kmrn_reg = 0; |
|
1023 |
|
1024 ret_val = e1000e_read_kmrn_reg_locked(hw, |
|
1025 E1000_KMRNCTRLSTA_K1_CONFIG, |
|
1026 &kmrn_reg); |
|
1027 if (ret_val) |
|
1028 goto out; |
|
1029 |
|
1030 if (k1_enable) |
|
1031 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; |
|
1032 else |
|
1033 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; |
|
1034 |
|
1035 ret_val = e1000e_write_kmrn_reg_locked(hw, |
|
1036 E1000_KMRNCTRLSTA_K1_CONFIG, |
|
1037 kmrn_reg); |
|
1038 if (ret_val) |
|
1039 goto out; |
|
1040 |
|
1041 udelay(20); |
|
1042 ctrl_ext = er32(CTRL_EXT); |
|
1043 ctrl_reg = er32(CTRL); |
|
1044 |
|
1045 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
|
1046 reg |= E1000_CTRL_FRCSPD; |
|
1047 ew32(CTRL, reg); |
|
1048 |
|
1049 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); |
|
1050 udelay(20); |
|
1051 ew32(CTRL, ctrl_reg); |
|
1052 ew32(CTRL_EXT, ctrl_ext); |
|
1053 udelay(20); |
|
1054 |
|
1055 out: |
|
1056 return ret_val; |
|
1057 } |
|
1058 |
|
1059 /** |
|
1060 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration |
|
1061 * @hw: pointer to the HW structure |
|
1062 * @d0_state: boolean if entering d0 or d3 device state |
|
1063 * |
|
1064 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are |
|
1065 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit |
|
1066 * in NVM determines whether HW should configure LPLU and Gbe Disable. |
|
1067 **/ |
|
1068 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) |
|
1069 { |
|
1070 s32 ret_val = 0; |
|
1071 u32 mac_reg; |
|
1072 u16 oem_reg; |
|
1073 |
|
1074 if (hw->mac.type != e1000_pchlan) |
|
1075 return ret_val; |
|
1076 |
|
1077 ret_val = hw->phy.ops.acquire(hw); |
|
1078 if (ret_val) |
|
1079 return ret_val; |
|
1080 |
|
1081 mac_reg = er32(EXTCNF_CTRL); |
|
1082 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) |
|
1083 goto out; |
|
1084 |
|
1085 mac_reg = er32(FEXTNVM); |
|
1086 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) |
|
1087 goto out; |
|
1088 |
|
1089 mac_reg = er32(PHY_CTRL); |
|
1090 |
|
1091 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); |
|
1092 if (ret_val) |
|
1093 goto out; |
|
1094 |
|
1095 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); |
|
1096 |
|
1097 if (d0_state) { |
|
1098 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) |
|
1099 oem_reg |= HV_OEM_BITS_GBE_DIS; |
|
1100 |
|
1101 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) |
|
1102 oem_reg |= HV_OEM_BITS_LPLU; |
|
1103 } else { |
|
1104 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE) |
|
1105 oem_reg |= HV_OEM_BITS_GBE_DIS; |
|
1106 |
|
1107 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU) |
|
1108 oem_reg |= HV_OEM_BITS_LPLU; |
|
1109 } |
|
1110 /* Restart auto-neg to activate the bits */ |
|
1111 if (!e1000_check_reset_block(hw)) |
|
1112 oem_reg |= HV_OEM_BITS_RESTART_AN; |
|
1113 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); |
|
1114 |
|
1115 out: |
|
1116 hw->phy.ops.release(hw); |
|
1117 |
|
1118 return ret_val; |
|
1119 } |
|
1120 |
|
1121 |
|
1122 /** |
|
1123 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode |
|
1124 * @hw: pointer to the HW structure |
|
1125 **/ |
|
1126 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) |
|
1127 { |
|
1128 s32 ret_val; |
|
1129 u16 data; |
|
1130 |
|
1131 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); |
|
1132 if (ret_val) |
|
1133 return ret_val; |
|
1134 |
|
1135 data |= HV_KMRN_MDIO_SLOW; |
|
1136 |
|
1137 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); |
|
1138 |
|
1139 return ret_val; |
|
1140 } |
|
1141 |
|
1142 /** |
|
1143 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
|
1144 * done after every PHY reset. |
|
1145 **/ |
|
1146 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
|
1147 { |
|
1148 s32 ret_val = 0; |
|
1149 u16 phy_data; |
|
1150 |
|
1151 if (hw->mac.type != e1000_pchlan) |
|
1152 return ret_val; |
|
1153 |
|
1154 /* Set MDIO slow mode before any other MDIO access */ |
|
1155 if (hw->phy.type == e1000_phy_82577) { |
|
1156 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
1157 if (ret_val) |
|
1158 goto out; |
|
1159 } |
|
1160 |
|
1161 if (((hw->phy.type == e1000_phy_82577) && |
|
1162 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || |
|
1163 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { |
|
1164 /* Disable generation of early preamble */ |
|
1165 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); |
|
1166 if (ret_val) |
|
1167 return ret_val; |
|
1168 |
|
1169 /* Preamble tuning for SSC */ |
|
1170 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204); |
|
1171 if (ret_val) |
|
1172 return ret_val; |
|
1173 } |
|
1174 |
|
1175 if (hw->phy.type == e1000_phy_82578) { |
|
1176 /* |
|
1177 * Return registers to default by doing a soft reset then |
|
1178 * writing 0x3140 to the control register. |
|
1179 */ |
|
1180 if (hw->phy.revision < 2) { |
|
1181 e1000e_phy_sw_reset(hw); |
|
1182 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); |
|
1183 } |
|
1184 } |
|
1185 |
|
1186 /* Select page 0 */ |
|
1187 ret_val = hw->phy.ops.acquire(hw); |
|
1188 if (ret_val) |
|
1189 return ret_val; |
|
1190 |
|
1191 hw->phy.addr = 1; |
|
1192 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); |
|
1193 hw->phy.ops.release(hw); |
|
1194 if (ret_val) |
|
1195 goto out; |
|
1196 |
|
1197 /* |
|
1198 * Configure the K1 Si workaround during phy reset assuming there is |
|
1199 * link so that it disables K1 if link is in 1Gbps. |
|
1200 */ |
|
1201 ret_val = e1000_k1_gig_workaround_hv(hw, true); |
|
1202 if (ret_val) |
|
1203 goto out; |
|
1204 |
|
1205 /* Workaround for link disconnects on a busy hub in half duplex */ |
|
1206 ret_val = hw->phy.ops.acquire(hw); |
|
1207 if (ret_val) |
|
1208 goto out; |
|
1209 ret_val = hw->phy.ops.read_reg_locked(hw, |
|
1210 PHY_REG(BM_PORT_CTRL_PAGE, 17), |
|
1211 &phy_data); |
|
1212 if (ret_val) |
|
1213 goto release; |
|
1214 ret_val = hw->phy.ops.write_reg_locked(hw, |
|
1215 PHY_REG(BM_PORT_CTRL_PAGE, 17), |
|
1216 phy_data & 0x00FF); |
|
1217 release: |
|
1218 hw->phy.ops.release(hw); |
|
1219 out: |
|
1220 return ret_val; |
|
1221 } |
|
1222 |
|
1223 /** |
|
1224 * e1000_lan_init_done_ich8lan - Check for PHY config completion |
|
1225 * @hw: pointer to the HW structure |
|
1226 * |
|
1227 * Check the appropriate indication the MAC has finished configuring the |
|
1228 * PHY after a software reset. |
|
1229 **/ |
|
1230 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) |
|
1231 { |
|
1232 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; |
|
1233 |
|
1234 /* Wait for basic configuration completes before proceeding */ |
|
1235 do { |
|
1236 data = er32(STATUS); |
|
1237 data &= E1000_STATUS_LAN_INIT_DONE; |
|
1238 udelay(100); |
|
1239 } while ((!data) && --loop); |
|
1240 |
|
1241 /* |
|
1242 * If basic configuration is incomplete before the above loop |
|
1243 * count reaches 0, loading the configuration from NVM will |
|
1244 * leave the PHY in a bad state possibly resulting in no link. |
|
1245 */ |
|
1246 if (loop == 0) |
|
1247 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); |
|
1248 |
|
1249 /* Clear the Init Done bit for the next init event */ |
|
1250 data = er32(STATUS); |
|
1251 data &= ~E1000_STATUS_LAN_INIT_DONE; |
|
1252 ew32(STATUS, data); |
|
1253 } |
|
1254 |
|
1255 /** |
|
1256 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset |
|
1257 * @hw: pointer to the HW structure |
|
1258 **/ |
|
1259 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) |
|
1260 { |
|
1261 s32 ret_val = 0; |
|
1262 u16 reg; |
|
1263 |
|
1264 if (e1000_check_reset_block(hw)) |
|
1265 goto out; |
|
1266 |
|
1267 /* Perform any necessary post-reset workarounds */ |
|
1268 switch (hw->mac.type) { |
|
1269 case e1000_pchlan: |
|
1270 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); |
|
1271 if (ret_val) |
|
1272 goto out; |
|
1273 break; |
|
1274 default: |
|
1275 break; |
|
1276 } |
|
1277 |
|
1278 /* Dummy read to clear the phy wakeup bit after lcd reset */ |
|
1279 if (hw->mac.type == e1000_pchlan) |
|
1280 e1e_rphy(hw, BM_WUC, ®); |
|
1281 |
|
1282 /* Configure the LCD with the extended configuration region in NVM */ |
|
1283 ret_val = e1000_sw_lcd_config_ich8lan(hw); |
|
1284 if (ret_val) |
|
1285 goto out; |
|
1286 |
|
1287 /* Configure the LCD with the OEM bits in NVM */ |
|
1288 ret_val = e1000_oem_bits_config_ich8lan(hw, true); |
|
1289 |
|
1290 out: |
|
1291 return ret_val; |
|
1292 } |
|
1293 |
|
1294 /** |
|
1295 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset |
|
1296 * @hw: pointer to the HW structure |
|
1297 * |
|
1298 * Resets the PHY |
|
1299 * This is a function pointer entry point called by drivers |
|
1300 * or other shared routines. |
|
1301 **/ |
|
1302 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) |
|
1303 { |
|
1304 s32 ret_val = 0; |
|
1305 |
|
1306 ret_val = e1000e_phy_hw_reset_generic(hw); |
|
1307 if (ret_val) |
|
1308 goto out; |
|
1309 |
|
1310 ret_val = e1000_post_phy_reset_ich8lan(hw); |
|
1311 |
|
1312 out: |
|
1313 return ret_val; |
|
1314 } |
|
1315 |
|
1316 /** |
|
1317 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state |
|
1318 * @hw: pointer to the HW structure |
|
1319 * @active: true to enable LPLU, false to disable |
|
1320 * |
|
1321 * Sets the LPLU state according to the active flag. For PCH, if OEM write |
|
1322 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set |
|
1323 * the phy speed. This function will manually set the LPLU bit and restart |
|
1324 * auto-neg as hw would do. D3 and D0 LPLU will call the same function |
|
1325 * since it configures the same bit. |
|
1326 **/ |
|
1327 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) |
|
1328 { |
|
1329 s32 ret_val = 0; |
|
1330 u16 oem_reg; |
|
1331 |
|
1332 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); |
|
1333 if (ret_val) |
|
1334 goto out; |
|
1335 |
|
1336 if (active) |
|
1337 oem_reg |= HV_OEM_BITS_LPLU; |
|
1338 else |
|
1339 oem_reg &= ~HV_OEM_BITS_LPLU; |
|
1340 |
|
1341 oem_reg |= HV_OEM_BITS_RESTART_AN; |
|
1342 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg); |
|
1343 |
|
1344 out: |
|
1345 return ret_val; |
|
1346 } |
|
1347 |
|
1348 /** |
|
1349 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state |
|
1350 * @hw: pointer to the HW structure |
|
1351 * @active: true to enable LPLU, false to disable |
|
1352 * |
|
1353 * Sets the LPLU D0 state according to the active flag. When |
|
1354 * activating LPLU this function also disables smart speed |
|
1355 * and vice versa. LPLU will not be activated unless the |
|
1356 * device autonegotiation advertisement meets standards of |
|
1357 * either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
1358 * This is a function pointer entry point only called by |
|
1359 * PHY setup routines. |
|
1360 **/ |
|
1361 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
|
1362 { |
|
1363 struct e1000_phy_info *phy = &hw->phy; |
|
1364 u32 phy_ctrl; |
|
1365 s32 ret_val = 0; |
|
1366 u16 data; |
|
1367 |
|
1368 if (phy->type == e1000_phy_ife) |
|
1369 return ret_val; |
|
1370 |
|
1371 phy_ctrl = er32(PHY_CTRL); |
|
1372 |
|
1373 if (active) { |
|
1374 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
|
1375 ew32(PHY_CTRL, phy_ctrl); |
|
1376 |
|
1377 if (phy->type != e1000_phy_igp_3) |
|
1378 return 0; |
|
1379 |
|
1380 /* |
|
1381 * Call gig speed drop workaround on LPLU before accessing |
|
1382 * any PHY registers |
|
1383 */ |
|
1384 if (hw->mac.type == e1000_ich8lan) |
|
1385 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
1386 |
|
1387 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
1388 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
1389 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1390 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
1391 if (ret_val) |
|
1392 return ret_val; |
|
1393 } else { |
|
1394 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
|
1395 ew32(PHY_CTRL, phy_ctrl); |
|
1396 |
|
1397 if (phy->type != e1000_phy_igp_3) |
|
1398 return 0; |
|
1399 |
|
1400 /* |
|
1401 * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
1402 * during Dx states where the power conservation is most |
|
1403 * important. During driver activity we should enable |
|
1404 * SmartSpeed, so performance is maintained. |
|
1405 */ |
|
1406 if (phy->smart_speed == e1000_smart_speed_on) { |
|
1407 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1408 &data); |
|
1409 if (ret_val) |
|
1410 return ret_val; |
|
1411 |
|
1412 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
1413 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1414 data); |
|
1415 if (ret_val) |
|
1416 return ret_val; |
|
1417 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
1418 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1419 &data); |
|
1420 if (ret_val) |
|
1421 return ret_val; |
|
1422 |
|
1423 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1424 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1425 data); |
|
1426 if (ret_val) |
|
1427 return ret_val; |
|
1428 } |
|
1429 } |
|
1430 |
|
1431 return 0; |
|
1432 } |
|
1433 |
|
1434 /** |
|
1435 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state |
|
1436 * @hw: pointer to the HW structure |
|
1437 * @active: true to enable LPLU, false to disable |
|
1438 * |
|
1439 * Sets the LPLU D3 state according to the active flag. When |
|
1440 * activating LPLU this function also disables smart speed |
|
1441 * and vice versa. LPLU will not be activated unless the |
|
1442 * device autonegotiation advertisement meets standards of |
|
1443 * either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
1444 * This is a function pointer entry point only called by |
|
1445 * PHY setup routines. |
|
1446 **/ |
|
1447 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
|
1448 { |
|
1449 struct e1000_phy_info *phy = &hw->phy; |
|
1450 u32 phy_ctrl; |
|
1451 s32 ret_val; |
|
1452 u16 data; |
|
1453 |
|
1454 phy_ctrl = er32(PHY_CTRL); |
|
1455 |
|
1456 if (!active) { |
|
1457 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
|
1458 ew32(PHY_CTRL, phy_ctrl); |
|
1459 |
|
1460 if (phy->type != e1000_phy_igp_3) |
|
1461 return 0; |
|
1462 |
|
1463 /* |
|
1464 * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
1465 * during Dx states where the power conservation is most |
|
1466 * important. During driver activity we should enable |
|
1467 * SmartSpeed, so performance is maintained. |
|
1468 */ |
|
1469 if (phy->smart_speed == e1000_smart_speed_on) { |
|
1470 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1471 &data); |
|
1472 if (ret_val) |
|
1473 return ret_val; |
|
1474 |
|
1475 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
1476 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1477 data); |
|
1478 if (ret_val) |
|
1479 return ret_val; |
|
1480 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
1481 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1482 &data); |
|
1483 if (ret_val) |
|
1484 return ret_val; |
|
1485 |
|
1486 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1487 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1488 data); |
|
1489 if (ret_val) |
|
1490 return ret_val; |
|
1491 } |
|
1492 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
|
1493 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
|
1494 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
|
1495 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
|
1496 ew32(PHY_CTRL, phy_ctrl); |
|
1497 |
|
1498 if (phy->type != e1000_phy_igp_3) |
|
1499 return 0; |
|
1500 |
|
1501 /* |
|
1502 * Call gig speed drop workaround on LPLU before accessing |
|
1503 * any PHY registers |
|
1504 */ |
|
1505 if (hw->mac.type == e1000_ich8lan) |
|
1506 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
1507 |
|
1508 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
1509 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
1510 if (ret_val) |
|
1511 return ret_val; |
|
1512 |
|
1513 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1514 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
1515 } |
|
1516 |
|
1517 return 0; |
|
1518 } |
|
1519 |
|
1520 /** |
|
1521 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 |
|
1522 * @hw: pointer to the HW structure |
|
1523 * @bank: pointer to the variable that returns the active bank |
|
1524 * |
|
1525 * Reads signature byte from the NVM using the flash access registers. |
|
1526 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. |
|
1527 **/ |
|
1528 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) |
|
1529 { |
|
1530 u32 eecd; |
|
1531 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1532 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); |
|
1533 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; |
|
1534 u8 sig_byte = 0; |
|
1535 s32 ret_val = 0; |
|
1536 |
|
1537 switch (hw->mac.type) { |
|
1538 case e1000_ich8lan: |
|
1539 case e1000_ich9lan: |
|
1540 eecd = er32(EECD); |
|
1541 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == |
|
1542 E1000_EECD_SEC1VAL_VALID_MASK) { |
|
1543 if (eecd & E1000_EECD_SEC1VAL) |
|
1544 *bank = 1; |
|
1545 else |
|
1546 *bank = 0; |
|
1547 |
|
1548 return 0; |
|
1549 } |
|
1550 e_dbg("Unable to determine valid NVM bank via EEC - " |
|
1551 "reading flash signature\n"); |
|
1552 /* fall-thru */ |
|
1553 default: |
|
1554 /* set bank to 0 in case flash read fails */ |
|
1555 *bank = 0; |
|
1556 |
|
1557 /* Check bank 0 */ |
|
1558 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, |
|
1559 &sig_byte); |
|
1560 if (ret_val) |
|
1561 return ret_val; |
|
1562 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
|
1563 E1000_ICH_NVM_SIG_VALUE) { |
|
1564 *bank = 0; |
|
1565 return 0; |
|
1566 } |
|
1567 |
|
1568 /* Check bank 1 */ |
|
1569 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + |
|
1570 bank1_offset, |
|
1571 &sig_byte); |
|
1572 if (ret_val) |
|
1573 return ret_val; |
|
1574 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
|
1575 E1000_ICH_NVM_SIG_VALUE) { |
|
1576 *bank = 1; |
|
1577 return 0; |
|
1578 } |
|
1579 |
|
1580 e_dbg("ERROR: No valid NVM bank present\n"); |
|
1581 return -E1000_ERR_NVM; |
|
1582 } |
|
1583 |
|
1584 return 0; |
|
1585 } |
|
1586 |
|
1587 /** |
|
1588 * e1000_read_nvm_ich8lan - Read word(s) from the NVM |
|
1589 * @hw: pointer to the HW structure |
|
1590 * @offset: The offset (in bytes) of the word(s) to read. |
|
1591 * @words: Size of data to read in words |
|
1592 * @data: Pointer to the word(s) to read at offset. |
|
1593 * |
|
1594 * Reads a word(s) from the NVM using the flash access registers. |
|
1595 **/ |
|
1596 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
|
1597 u16 *data) |
|
1598 { |
|
1599 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1600 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
1601 u32 act_offset; |
|
1602 s32 ret_val = 0; |
|
1603 u32 bank = 0; |
|
1604 u16 i, word; |
|
1605 |
|
1606 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
|
1607 (words == 0)) { |
|
1608 e_dbg("nvm parameter(s) out of bounds\n"); |
|
1609 ret_val = -E1000_ERR_NVM; |
|
1610 goto out; |
|
1611 } |
|
1612 |
|
1613 nvm->ops.acquire(hw); |
|
1614 |
|
1615 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
|
1616 if (ret_val) { |
|
1617 e_dbg("Could not detect valid bank, assuming bank 0\n"); |
|
1618 bank = 0; |
|
1619 } |
|
1620 |
|
1621 act_offset = (bank) ? nvm->flash_bank_size : 0; |
|
1622 act_offset += offset; |
|
1623 |
|
1624 ret_val = 0; |
|
1625 for (i = 0; i < words; i++) { |
|
1626 if ((dev_spec->shadow_ram) && |
|
1627 (dev_spec->shadow_ram[offset+i].modified)) { |
|
1628 data[i] = dev_spec->shadow_ram[offset+i].value; |
|
1629 } else { |
|
1630 ret_val = e1000_read_flash_word_ich8lan(hw, |
|
1631 act_offset + i, |
|
1632 &word); |
|
1633 if (ret_val) |
|
1634 break; |
|
1635 data[i] = word; |
|
1636 } |
|
1637 } |
|
1638 |
|
1639 nvm->ops.release(hw); |
|
1640 |
|
1641 out: |
|
1642 if (ret_val) |
|
1643 e_dbg("NVM read error: %d\n", ret_val); |
|
1644 |
|
1645 return ret_val; |
|
1646 } |
|
1647 |
|
1648 /** |
|
1649 * e1000_flash_cycle_init_ich8lan - Initialize flash |
|
1650 * @hw: pointer to the HW structure |
|
1651 * |
|
1652 * This function does initial flash setup so that a new read/write/erase cycle |
|
1653 * can be started. |
|
1654 **/ |
|
1655 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) |
|
1656 { |
|
1657 union ich8_hws_flash_status hsfsts; |
|
1658 s32 ret_val = -E1000_ERR_NVM; |
|
1659 s32 i = 0; |
|
1660 |
|
1661 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
1662 |
|
1663 /* Check if the flash descriptor is valid */ |
|
1664 if (hsfsts.hsf_status.fldesvalid == 0) { |
|
1665 e_dbg("Flash descriptor invalid. " |
|
1666 "SW Sequencing must be used.\n"); |
|
1667 return -E1000_ERR_NVM; |
|
1668 } |
|
1669 |
|
1670 /* Clear FCERR and DAEL in hw status by writing 1 */ |
|
1671 hsfsts.hsf_status.flcerr = 1; |
|
1672 hsfsts.hsf_status.dael = 1; |
|
1673 |
|
1674 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
1675 |
|
1676 /* |
|
1677 * Either we should have a hardware SPI cycle in progress |
|
1678 * bit to check against, in order to start a new cycle or |
|
1679 * FDONE bit should be changed in the hardware so that it |
|
1680 * is 1 after hardware reset, which can then be used as an |
|
1681 * indication whether a cycle is in progress or has been |
|
1682 * completed. |
|
1683 */ |
|
1684 |
|
1685 if (hsfsts.hsf_status.flcinprog == 0) { |
|
1686 /* |
|
1687 * There is no cycle running at present, |
|
1688 * so we can start a cycle. |
|
1689 * Begin by setting Flash Cycle Done. |
|
1690 */ |
|
1691 hsfsts.hsf_status.flcdone = 1; |
|
1692 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
1693 ret_val = 0; |
|
1694 } else { |
|
1695 /* |
|
1696 * Otherwise poll for sometime so the current |
|
1697 * cycle has a chance to end before giving up. |
|
1698 */ |
|
1699 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { |
|
1700 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); |
|
1701 if (hsfsts.hsf_status.flcinprog == 0) { |
|
1702 ret_val = 0; |
|
1703 break; |
|
1704 } |
|
1705 udelay(1); |
|
1706 } |
|
1707 if (ret_val == 0) { |
|
1708 /* |
|
1709 * Successful in waiting for previous cycle to timeout, |
|
1710 * now set the Flash Cycle Done. |
|
1711 */ |
|
1712 hsfsts.hsf_status.flcdone = 1; |
|
1713 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
1714 } else { |
|
1715 e_dbg("Flash controller busy, cannot get access\n"); |
|
1716 } |
|
1717 } |
|
1718 |
|
1719 return ret_val; |
|
1720 } |
|
1721 |
|
1722 /** |
|
1723 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) |
|
1724 * @hw: pointer to the HW structure |
|
1725 * @timeout: maximum time to wait for completion |
|
1726 * |
|
1727 * This function starts a flash cycle and waits for its completion. |
|
1728 **/ |
|
1729 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) |
|
1730 { |
|
1731 union ich8_hws_flash_ctrl hsflctl; |
|
1732 union ich8_hws_flash_status hsfsts; |
|
1733 s32 ret_val = -E1000_ERR_NVM; |
|
1734 u32 i = 0; |
|
1735 |
|
1736 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
|
1737 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
1738 hsflctl.hsf_ctrl.flcgo = 1; |
|
1739 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
1740 |
|
1741 /* wait till FDONE bit is set to 1 */ |
|
1742 do { |
|
1743 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
1744 if (hsfsts.hsf_status.flcdone == 1) |
|
1745 break; |
|
1746 udelay(1); |
|
1747 } while (i++ < timeout); |
|
1748 |
|
1749 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) |
|
1750 return 0; |
|
1751 |
|
1752 return ret_val; |
|
1753 } |
|
1754 |
|
1755 /** |
|
1756 * e1000_read_flash_word_ich8lan - Read word from flash |
|
1757 * @hw: pointer to the HW structure |
|
1758 * @offset: offset to data location |
|
1759 * @data: pointer to the location for storing the data |
|
1760 * |
|
1761 * Reads the flash word at offset into data. Offset is converted |
|
1762 * to bytes before read. |
|
1763 **/ |
|
1764 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
|
1765 u16 *data) |
|
1766 { |
|
1767 /* Must convert offset into bytes. */ |
|
1768 offset <<= 1; |
|
1769 |
|
1770 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); |
|
1771 } |
|
1772 |
|
1773 /** |
|
1774 * e1000_read_flash_byte_ich8lan - Read byte from flash |
|
1775 * @hw: pointer to the HW structure |
|
1776 * @offset: The offset of the byte to read. |
|
1777 * @data: Pointer to a byte to store the value read. |
|
1778 * |
|
1779 * Reads a single byte from the NVM using the flash access registers. |
|
1780 **/ |
|
1781 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
1782 u8 *data) |
|
1783 { |
|
1784 s32 ret_val; |
|
1785 u16 word = 0; |
|
1786 |
|
1787 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); |
|
1788 if (ret_val) |
|
1789 return ret_val; |
|
1790 |
|
1791 *data = (u8)word; |
|
1792 |
|
1793 return 0; |
|
1794 } |
|
1795 |
|
1796 /** |
|
1797 * e1000_read_flash_data_ich8lan - Read byte or word from NVM |
|
1798 * @hw: pointer to the HW structure |
|
1799 * @offset: The offset (in bytes) of the byte or word to read. |
|
1800 * @size: Size of data to read, 1=byte 2=word |
|
1801 * @data: Pointer to the word to store the value read. |
|
1802 * |
|
1803 * Reads a byte or word from the NVM using the flash access registers. |
|
1804 **/ |
|
1805 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
1806 u8 size, u16 *data) |
|
1807 { |
|
1808 union ich8_hws_flash_status hsfsts; |
|
1809 union ich8_hws_flash_ctrl hsflctl; |
|
1810 u32 flash_linear_addr; |
|
1811 u32 flash_data = 0; |
|
1812 s32 ret_val = -E1000_ERR_NVM; |
|
1813 u8 count = 0; |
|
1814 |
|
1815 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
|
1816 return -E1000_ERR_NVM; |
|
1817 |
|
1818 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
|
1819 hw->nvm.flash_base_addr; |
|
1820 |
|
1821 do { |
|
1822 udelay(1); |
|
1823 /* Steps */ |
|
1824 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
1825 if (ret_val != 0) |
|
1826 break; |
|
1827 |
|
1828 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
1829 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
1830 hsflctl.hsf_ctrl.fldbcount = size - 1; |
|
1831 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
|
1832 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
1833 |
|
1834 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
1835 |
|
1836 ret_val = e1000_flash_cycle_ich8lan(hw, |
|
1837 ICH_FLASH_READ_COMMAND_TIMEOUT); |
|
1838 |
|
1839 /* |
|
1840 * Check if FCERR is set to 1, if set to 1, clear it |
|
1841 * and try the whole sequence a few more times, else |
|
1842 * read in (shift in) the Flash Data0, the order is |
|
1843 * least significant byte first msb to lsb |
|
1844 */ |
|
1845 if (ret_val == 0) { |
|
1846 flash_data = er32flash(ICH_FLASH_FDATA0); |
|
1847 if (size == 1) { |
|
1848 *data = (u8)(flash_data & 0x000000FF); |
|
1849 } else if (size == 2) { |
|
1850 *data = (u16)(flash_data & 0x0000FFFF); |
|
1851 } |
|
1852 break; |
|
1853 } else { |
|
1854 /* |
|
1855 * If we've gotten here, then things are probably |
|
1856 * completely hosed, but if the error condition is |
|
1857 * detected, it won't hurt to give it another try... |
|
1858 * ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
1859 */ |
|
1860 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
1861 if (hsfsts.hsf_status.flcerr == 1) { |
|
1862 /* Repeat for some time before giving up. */ |
|
1863 continue; |
|
1864 } else if (hsfsts.hsf_status.flcdone == 0) { |
|
1865 e_dbg("Timeout error - flash cycle " |
|
1866 "did not complete.\n"); |
|
1867 break; |
|
1868 } |
|
1869 } |
|
1870 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
1871 |
|
1872 return ret_val; |
|
1873 } |
|
1874 |
|
1875 /** |
|
1876 * e1000_write_nvm_ich8lan - Write word(s) to the NVM |
|
1877 * @hw: pointer to the HW structure |
|
1878 * @offset: The offset (in bytes) of the word(s) to write. |
|
1879 * @words: Size of data to write in words |
|
1880 * @data: Pointer to the word(s) to write at offset. |
|
1881 * |
|
1882 * Writes a byte or word to the NVM using the flash access registers. |
|
1883 **/ |
|
1884 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
|
1885 u16 *data) |
|
1886 { |
|
1887 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1888 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
1889 u16 i; |
|
1890 |
|
1891 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
|
1892 (words == 0)) { |
|
1893 e_dbg("nvm parameter(s) out of bounds\n"); |
|
1894 return -E1000_ERR_NVM; |
|
1895 } |
|
1896 |
|
1897 nvm->ops.acquire(hw); |
|
1898 |
|
1899 for (i = 0; i < words; i++) { |
|
1900 dev_spec->shadow_ram[offset+i].modified = true; |
|
1901 dev_spec->shadow_ram[offset+i].value = data[i]; |
|
1902 } |
|
1903 |
|
1904 nvm->ops.release(hw); |
|
1905 |
|
1906 return 0; |
|
1907 } |
|
1908 |
|
1909 /** |
|
1910 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM |
|
1911 * @hw: pointer to the HW structure |
|
1912 * |
|
1913 * The NVM checksum is updated by calling the generic update_nvm_checksum, |
|
1914 * which writes the checksum to the shadow ram. The changes in the shadow |
|
1915 * ram are then committed to the EEPROM by processing each bank at a time |
|
1916 * checking for the modified bit and writing only the pending changes. |
|
1917 * After a successful commit, the shadow ram is cleared and is ready for |
|
1918 * future writes. |
|
1919 **/ |
|
1920 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) |
|
1921 { |
|
1922 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1923 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
1924 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; |
|
1925 s32 ret_val; |
|
1926 u16 data; |
|
1927 |
|
1928 ret_val = e1000e_update_nvm_checksum_generic(hw); |
|
1929 if (ret_val) |
|
1930 goto out; |
|
1931 |
|
1932 if (nvm->type != e1000_nvm_flash_sw) |
|
1933 goto out; |
|
1934 |
|
1935 nvm->ops.acquire(hw); |
|
1936 |
|
1937 /* |
|
1938 * We're writing to the opposite bank so if we're on bank 1, |
|
1939 * write to bank 0 etc. We also need to erase the segment that |
|
1940 * is going to be written |
|
1941 */ |
|
1942 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
|
1943 if (ret_val) { |
|
1944 e_dbg("Could not detect valid bank, assuming bank 0\n"); |
|
1945 bank = 0; |
|
1946 } |
|
1947 |
|
1948 if (bank == 0) { |
|
1949 new_bank_offset = nvm->flash_bank_size; |
|
1950 old_bank_offset = 0; |
|
1951 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); |
|
1952 if (ret_val) |
|
1953 goto release; |
|
1954 } else { |
|
1955 old_bank_offset = nvm->flash_bank_size; |
|
1956 new_bank_offset = 0; |
|
1957 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); |
|
1958 if (ret_val) |
|
1959 goto release; |
|
1960 } |
|
1961 |
|
1962 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
|
1963 /* |
|
1964 * Determine whether to write the value stored |
|
1965 * in the other NVM bank or a modified value stored |
|
1966 * in the shadow RAM |
|
1967 */ |
|
1968 if (dev_spec->shadow_ram[i].modified) { |
|
1969 data = dev_spec->shadow_ram[i].value; |
|
1970 } else { |
|
1971 ret_val = e1000_read_flash_word_ich8lan(hw, i + |
|
1972 old_bank_offset, |
|
1973 &data); |
|
1974 if (ret_val) |
|
1975 break; |
|
1976 } |
|
1977 |
|
1978 /* |
|
1979 * If the word is 0x13, then make sure the signature bits |
|
1980 * (15:14) are 11b until the commit has completed. |
|
1981 * This will allow us to write 10b which indicates the |
|
1982 * signature is valid. We want to do this after the write |
|
1983 * has completed so that we don't mark the segment valid |
|
1984 * while the write is still in progress |
|
1985 */ |
|
1986 if (i == E1000_ICH_NVM_SIG_WORD) |
|
1987 data |= E1000_ICH_NVM_SIG_MASK; |
|
1988 |
|
1989 /* Convert offset to bytes. */ |
|
1990 act_offset = (i + new_bank_offset) << 1; |
|
1991 |
|
1992 udelay(100); |
|
1993 /* Write the bytes to the new bank. */ |
|
1994 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
1995 act_offset, |
|
1996 (u8)data); |
|
1997 if (ret_val) |
|
1998 break; |
|
1999 |
|
2000 udelay(100); |
|
2001 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
2002 act_offset + 1, |
|
2003 (u8)(data >> 8)); |
|
2004 if (ret_val) |
|
2005 break; |
|
2006 } |
|
2007 |
|
2008 /* |
|
2009 * Don't bother writing the segment valid bits if sector |
|
2010 * programming failed. |
|
2011 */ |
|
2012 if (ret_val) { |
|
2013 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ |
|
2014 e_dbg("Flash commit failed.\n"); |
|
2015 goto release; |
|
2016 } |
|
2017 |
|
2018 /* |
|
2019 * Finally validate the new segment by setting bit 15:14 |
|
2020 * to 10b in word 0x13 , this can be done without an |
|
2021 * erase as well since these bits are 11 to start with |
|
2022 * and we need to change bit 14 to 0b |
|
2023 */ |
|
2024 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; |
|
2025 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); |
|
2026 if (ret_val) |
|
2027 goto release; |
|
2028 |
|
2029 data &= 0xBFFF; |
|
2030 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
2031 act_offset * 2 + 1, |
|
2032 (u8)(data >> 8)); |
|
2033 if (ret_val) |
|
2034 goto release; |
|
2035 |
|
2036 /* |
|
2037 * And invalidate the previously valid segment by setting |
|
2038 * its signature word (0x13) high_byte to 0b. This can be |
|
2039 * done without an erase because flash erase sets all bits |
|
2040 * to 1's. We can write 1's to 0's without an erase |
|
2041 */ |
|
2042 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; |
|
2043 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); |
|
2044 if (ret_val) |
|
2045 goto release; |
|
2046 |
|
2047 /* Great! Everything worked, we can now clear the cached entries. */ |
|
2048 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
|
2049 dev_spec->shadow_ram[i].modified = false; |
|
2050 dev_spec->shadow_ram[i].value = 0xFFFF; |
|
2051 } |
|
2052 |
|
2053 release: |
|
2054 nvm->ops.release(hw); |
|
2055 |
|
2056 /* |
|
2057 * Reload the EEPROM, or else modifications will not appear |
|
2058 * until after the next adapter reset. |
|
2059 */ |
|
2060 if (!ret_val) { |
|
2061 e1000e_reload_nvm(hw); |
|
2062 msleep(10); |
|
2063 } |
|
2064 |
|
2065 out: |
|
2066 if (ret_val) |
|
2067 e_dbg("NVM update error: %d\n", ret_val); |
|
2068 |
|
2069 return ret_val; |
|
2070 } |
|
2071 |
|
2072 /** |
|
2073 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum |
|
2074 * @hw: pointer to the HW structure |
|
2075 * |
|
2076 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. |
|
2077 * If the bit is 0, that the EEPROM had been modified, but the checksum was not |
|
2078 * calculated, in which case we need to calculate the checksum and set bit 6. |
|
2079 **/ |
|
2080 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) |
|
2081 { |
|
2082 s32 ret_val; |
|
2083 u16 data; |
|
2084 |
|
2085 /* |
|
2086 * Read 0x19 and check bit 6. If this bit is 0, the checksum |
|
2087 * needs to be fixed. This bit is an indication that the NVM |
|
2088 * was prepared by OEM software and did not calculate the |
|
2089 * checksum...a likely scenario. |
|
2090 */ |
|
2091 ret_val = e1000_read_nvm(hw, 0x19, 1, &data); |
|
2092 if (ret_val) |
|
2093 return ret_val; |
|
2094 |
|
2095 if ((data & 0x40) == 0) { |
|
2096 data |= 0x40; |
|
2097 ret_val = e1000_write_nvm(hw, 0x19, 1, &data); |
|
2098 if (ret_val) |
|
2099 return ret_val; |
|
2100 ret_val = e1000e_update_nvm_checksum(hw); |
|
2101 if (ret_val) |
|
2102 return ret_val; |
|
2103 } |
|
2104 |
|
2105 return e1000e_validate_nvm_checksum_generic(hw); |
|
2106 } |
|
2107 |
|
2108 /** |
|
2109 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only |
|
2110 * @hw: pointer to the HW structure |
|
2111 * |
|
2112 * To prevent malicious write/erase of the NVM, set it to be read-only |
|
2113 * so that the hardware ignores all write/erase cycles of the NVM via |
|
2114 * the flash control registers. The shadow-ram copy of the NVM will |
|
2115 * still be updated, however any updates to this copy will not stick |
|
2116 * across driver reloads. |
|
2117 **/ |
|
2118 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) |
|
2119 { |
|
2120 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2121 union ich8_flash_protected_range pr0; |
|
2122 union ich8_hws_flash_status hsfsts; |
|
2123 u32 gfpreg; |
|
2124 |
|
2125 nvm->ops.acquire(hw); |
|
2126 |
|
2127 gfpreg = er32flash(ICH_FLASH_GFPREG); |
|
2128 |
|
2129 /* Write-protect GbE Sector of NVM */ |
|
2130 pr0.regval = er32flash(ICH_FLASH_PR0); |
|
2131 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; |
|
2132 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); |
|
2133 pr0.range.wpe = true; |
|
2134 ew32flash(ICH_FLASH_PR0, pr0.regval); |
|
2135 |
|
2136 /* |
|
2137 * Lock down a subset of GbE Flash Control Registers, e.g. |
|
2138 * PR0 to prevent the write-protection from being lifted. |
|
2139 * Once FLOCKDN is set, the registers protected by it cannot |
|
2140 * be written until FLOCKDN is cleared by a hardware reset. |
|
2141 */ |
|
2142 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2143 hsfsts.hsf_status.flockdn = true; |
|
2144 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2145 |
|
2146 nvm->ops.release(hw); |
|
2147 } |
|
2148 |
|
2149 /** |
|
2150 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM |
|
2151 * @hw: pointer to the HW structure |
|
2152 * @offset: The offset (in bytes) of the byte/word to read. |
|
2153 * @size: Size of data to read, 1=byte 2=word |
|
2154 * @data: The byte(s) to write to the NVM. |
|
2155 * |
|
2156 * Writes one/two bytes to the NVM using the flash access registers. |
|
2157 **/ |
|
2158 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2159 u8 size, u16 data) |
|
2160 { |
|
2161 union ich8_hws_flash_status hsfsts; |
|
2162 union ich8_hws_flash_ctrl hsflctl; |
|
2163 u32 flash_linear_addr; |
|
2164 u32 flash_data = 0; |
|
2165 s32 ret_val; |
|
2166 u8 count = 0; |
|
2167 |
|
2168 if (size < 1 || size > 2 || data > size * 0xff || |
|
2169 offset > ICH_FLASH_LINEAR_ADDR_MASK) |
|
2170 return -E1000_ERR_NVM; |
|
2171 |
|
2172 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
|
2173 hw->nvm.flash_base_addr; |
|
2174 |
|
2175 do { |
|
2176 udelay(1); |
|
2177 /* Steps */ |
|
2178 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
2179 if (ret_val) |
|
2180 break; |
|
2181 |
|
2182 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2183 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
2184 hsflctl.hsf_ctrl.fldbcount = size -1; |
|
2185 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
|
2186 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2187 |
|
2188 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
2189 |
|
2190 if (size == 1) |
|
2191 flash_data = (u32)data & 0x00FF; |
|
2192 else |
|
2193 flash_data = (u32)data; |
|
2194 |
|
2195 ew32flash(ICH_FLASH_FDATA0, flash_data); |
|
2196 |
|
2197 /* |
|
2198 * check if FCERR is set to 1 , if set to 1, clear it |
|
2199 * and try the whole sequence a few more times else done |
|
2200 */ |
|
2201 ret_val = e1000_flash_cycle_ich8lan(hw, |
|
2202 ICH_FLASH_WRITE_COMMAND_TIMEOUT); |
|
2203 if (!ret_val) |
|
2204 break; |
|
2205 |
|
2206 /* |
|
2207 * If we're here, then things are most likely |
|
2208 * completely hosed, but if the error condition |
|
2209 * is detected, it won't hurt to give it another |
|
2210 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
2211 */ |
|
2212 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2213 if (hsfsts.hsf_status.flcerr == 1) |
|
2214 /* Repeat for some time before giving up. */ |
|
2215 continue; |
|
2216 if (hsfsts.hsf_status.flcdone == 0) { |
|
2217 e_dbg("Timeout error - flash cycle " |
|
2218 "did not complete."); |
|
2219 break; |
|
2220 } |
|
2221 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
2222 |
|
2223 return ret_val; |
|
2224 } |
|
2225 |
|
2226 /** |
|
2227 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM |
|
2228 * @hw: pointer to the HW structure |
|
2229 * @offset: The index of the byte to read. |
|
2230 * @data: The byte to write to the NVM. |
|
2231 * |
|
2232 * Writes a single byte to the NVM using the flash access registers. |
|
2233 **/ |
|
2234 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2235 u8 data) |
|
2236 { |
|
2237 u16 word = (u16)data; |
|
2238 |
|
2239 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); |
|
2240 } |
|
2241 |
|
2242 /** |
|
2243 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM |
|
2244 * @hw: pointer to the HW structure |
|
2245 * @offset: The offset of the byte to write. |
|
2246 * @byte: The byte to write to the NVM. |
|
2247 * |
|
2248 * Writes a single byte to the NVM using the flash access registers. |
|
2249 * Goes through a retry algorithm before giving up. |
|
2250 **/ |
|
2251 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
|
2252 u32 offset, u8 byte) |
|
2253 { |
|
2254 s32 ret_val; |
|
2255 u16 program_retries; |
|
2256 |
|
2257 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
|
2258 if (!ret_val) |
|
2259 return ret_val; |
|
2260 |
|
2261 for (program_retries = 0; program_retries < 100; program_retries++) { |
|
2262 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); |
|
2263 udelay(100); |
|
2264 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
|
2265 if (!ret_val) |
|
2266 break; |
|
2267 } |
|
2268 if (program_retries == 100) |
|
2269 return -E1000_ERR_NVM; |
|
2270 |
|
2271 return 0; |
|
2272 } |
|
2273 |
|
2274 /** |
|
2275 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM |
|
2276 * @hw: pointer to the HW structure |
|
2277 * @bank: 0 for first bank, 1 for second bank, etc. |
|
2278 * |
|
2279 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. |
|
2280 * bank N is 4096 * N + flash_reg_addr. |
|
2281 **/ |
|
2282 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) |
|
2283 { |
|
2284 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2285 union ich8_hws_flash_status hsfsts; |
|
2286 union ich8_hws_flash_ctrl hsflctl; |
|
2287 u32 flash_linear_addr; |
|
2288 /* bank size is in 16bit words - adjust to bytes */ |
|
2289 u32 flash_bank_size = nvm->flash_bank_size * 2; |
|
2290 s32 ret_val; |
|
2291 s32 count = 0; |
|
2292 s32 j, iteration, sector_size; |
|
2293 |
|
2294 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2295 |
|
2296 /* |
|
2297 * Determine HW Sector size: Read BERASE bits of hw flash status |
|
2298 * register |
|
2299 * 00: The Hw sector is 256 bytes, hence we need to erase 16 |
|
2300 * consecutive sectors. The start index for the nth Hw sector |
|
2301 * can be calculated as = bank * 4096 + n * 256 |
|
2302 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
|
2303 * The start index for the nth Hw sector can be calculated |
|
2304 * as = bank * 4096 |
|
2305 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 |
|
2306 * (ich9 only, otherwise error condition) |
|
2307 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 |
|
2308 */ |
|
2309 switch (hsfsts.hsf_status.berasesz) { |
|
2310 case 0: |
|
2311 /* Hw sector size 256 */ |
|
2312 sector_size = ICH_FLASH_SEG_SIZE_256; |
|
2313 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; |
|
2314 break; |
|
2315 case 1: |
|
2316 sector_size = ICH_FLASH_SEG_SIZE_4K; |
|
2317 iteration = 1; |
|
2318 break; |
|
2319 case 2: |
|
2320 sector_size = ICH_FLASH_SEG_SIZE_8K; |
|
2321 iteration = 1; |
|
2322 break; |
|
2323 case 3: |
|
2324 sector_size = ICH_FLASH_SEG_SIZE_64K; |
|
2325 iteration = 1; |
|
2326 break; |
|
2327 default: |
|
2328 return -E1000_ERR_NVM; |
|
2329 } |
|
2330 |
|
2331 /* Start with the base address, then add the sector offset. */ |
|
2332 flash_linear_addr = hw->nvm.flash_base_addr; |
|
2333 flash_linear_addr += (bank) ? flash_bank_size : 0; |
|
2334 |
|
2335 for (j = 0; j < iteration ; j++) { |
|
2336 do { |
|
2337 /* Steps */ |
|
2338 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
2339 if (ret_val) |
|
2340 return ret_val; |
|
2341 |
|
2342 /* |
|
2343 * Write a value 11 (block Erase) in Flash |
|
2344 * Cycle field in hw flash control |
|
2345 */ |
|
2346 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2347 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
|
2348 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2349 |
|
2350 /* |
|
2351 * Write the last 24 bits of an index within the |
|
2352 * block into Flash Linear address field in Flash |
|
2353 * Address. |
|
2354 */ |
|
2355 flash_linear_addr += (j * sector_size); |
|
2356 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
2357 |
|
2358 ret_val = e1000_flash_cycle_ich8lan(hw, |
|
2359 ICH_FLASH_ERASE_COMMAND_TIMEOUT); |
|
2360 if (ret_val == 0) |
|
2361 break; |
|
2362 |
|
2363 /* |
|
2364 * Check if FCERR is set to 1. If 1, |
|
2365 * clear it and try the whole sequence |
|
2366 * a few more times else Done |
|
2367 */ |
|
2368 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2369 if (hsfsts.hsf_status.flcerr == 1) |
|
2370 /* repeat for some time before giving up */ |
|
2371 continue; |
|
2372 else if (hsfsts.hsf_status.flcdone == 0) |
|
2373 return ret_val; |
|
2374 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
2375 } |
|
2376 |
|
2377 return 0; |
|
2378 } |
|
2379 |
|
2380 /** |
|
2381 * e1000_valid_led_default_ich8lan - Set the default LED settings |
|
2382 * @hw: pointer to the HW structure |
|
2383 * @data: Pointer to the LED settings |
|
2384 * |
|
2385 * Reads the LED default settings from the NVM to data. If the NVM LED |
|
2386 * settings is all 0's or F's, set the LED default to a valid LED default |
|
2387 * setting. |
|
2388 **/ |
|
2389 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) |
|
2390 { |
|
2391 s32 ret_val; |
|
2392 |
|
2393 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
|
2394 if (ret_val) { |
|
2395 e_dbg("NVM Read Error\n"); |
|
2396 return ret_val; |
|
2397 } |
|
2398 |
|
2399 if (*data == ID_LED_RESERVED_0000 || |
|
2400 *data == ID_LED_RESERVED_FFFF) |
|
2401 *data = ID_LED_DEFAULT_ICH8LAN; |
|
2402 |
|
2403 return 0; |
|
2404 } |
|
2405 |
|
2406 /** |
|
2407 * e1000_id_led_init_pchlan - store LED configurations |
|
2408 * @hw: pointer to the HW structure |
|
2409 * |
|
2410 * PCH does not control LEDs via the LEDCTL register, rather it uses |
|
2411 * the PHY LED configuration register. |
|
2412 * |
|
2413 * PCH also does not have an "always on" or "always off" mode which |
|
2414 * complicates the ID feature. Instead of using the "on" mode to indicate |
|
2415 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()), |
|
2416 * use "link_up" mode. The LEDs will still ID on request if there is no |
|
2417 * link based on logic in e1000_led_[on|off]_pchlan(). |
|
2418 **/ |
|
2419 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) |
|
2420 { |
|
2421 struct e1000_mac_info *mac = &hw->mac; |
|
2422 s32 ret_val; |
|
2423 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; |
|
2424 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; |
|
2425 u16 data, i, temp, shift; |
|
2426 |
|
2427 /* Get default ID LED modes */ |
|
2428 ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
|
2429 if (ret_val) |
|
2430 goto out; |
|
2431 |
|
2432 mac->ledctl_default = er32(LEDCTL); |
|
2433 mac->ledctl_mode1 = mac->ledctl_default; |
|
2434 mac->ledctl_mode2 = mac->ledctl_default; |
|
2435 |
|
2436 for (i = 0; i < 4; i++) { |
|
2437 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; |
|
2438 shift = (i * 5); |
|
2439 switch (temp) { |
|
2440 case ID_LED_ON1_DEF2: |
|
2441 case ID_LED_ON1_ON2: |
|
2442 case ID_LED_ON1_OFF2: |
|
2443 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2444 mac->ledctl_mode1 |= (ledctl_on << shift); |
|
2445 break; |
|
2446 case ID_LED_OFF1_DEF2: |
|
2447 case ID_LED_OFF1_ON2: |
|
2448 case ID_LED_OFF1_OFF2: |
|
2449 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2450 mac->ledctl_mode1 |= (ledctl_off << shift); |
|
2451 break; |
|
2452 default: |
|
2453 /* Do nothing */ |
|
2454 break; |
|
2455 } |
|
2456 switch (temp) { |
|
2457 case ID_LED_DEF1_ON2: |
|
2458 case ID_LED_ON1_ON2: |
|
2459 case ID_LED_OFF1_ON2: |
|
2460 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2461 mac->ledctl_mode2 |= (ledctl_on << shift); |
|
2462 break; |
|
2463 case ID_LED_DEF1_OFF2: |
|
2464 case ID_LED_ON1_OFF2: |
|
2465 case ID_LED_OFF1_OFF2: |
|
2466 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2467 mac->ledctl_mode2 |= (ledctl_off << shift); |
|
2468 break; |
|
2469 default: |
|
2470 /* Do nothing */ |
|
2471 break; |
|
2472 } |
|
2473 } |
|
2474 |
|
2475 out: |
|
2476 return ret_val; |
|
2477 } |
|
2478 |
|
2479 /** |
|
2480 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width |
|
2481 * @hw: pointer to the HW structure |
|
2482 * |
|
2483 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability |
|
2484 * register, so the the bus width is hard coded. |
|
2485 **/ |
|
2486 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) |
|
2487 { |
|
2488 struct e1000_bus_info *bus = &hw->bus; |
|
2489 s32 ret_val; |
|
2490 |
|
2491 ret_val = e1000e_get_bus_info_pcie(hw); |
|
2492 |
|
2493 /* |
|
2494 * ICH devices are "PCI Express"-ish. They have |
|
2495 * a configuration space, but do not contain |
|
2496 * PCI Express Capability registers, so bus width |
|
2497 * must be hardcoded. |
|
2498 */ |
|
2499 if (bus->width == e1000_bus_width_unknown) |
|
2500 bus->width = e1000_bus_width_pcie_x1; |
|
2501 |
|
2502 return ret_val; |
|
2503 } |
|
2504 |
|
2505 /** |
|
2506 * e1000_reset_hw_ich8lan - Reset the hardware |
|
2507 * @hw: pointer to the HW structure |
|
2508 * |
|
2509 * Does a full reset of the hardware which includes a reset of the PHY and |
|
2510 * MAC. |
|
2511 **/ |
|
2512 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) |
|
2513 { |
|
2514 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2515 u16 reg; |
|
2516 u32 ctrl, icr, kab; |
|
2517 s32 ret_val; |
|
2518 |
|
2519 /* |
|
2520 * Prevent the PCI-E bus from sticking if there is no TLP connection |
|
2521 * on the last TLP read/write transaction when MAC is reset. |
|
2522 */ |
|
2523 ret_val = e1000e_disable_pcie_master(hw); |
|
2524 if (ret_val) |
|
2525 e_dbg("PCI-E Master disable polling has failed.\n"); |
|
2526 |
|
2527 e_dbg("Masking off all interrupts\n"); |
|
2528 ew32(IMC, 0xffffffff); |
|
2529 |
|
2530 /* |
|
2531 * Disable the Transmit and Receive units. Then delay to allow |
|
2532 * any pending transactions to complete before we hit the MAC |
|
2533 * with the global reset. |
|
2534 */ |
|
2535 ew32(RCTL, 0); |
|
2536 ew32(TCTL, E1000_TCTL_PSP); |
|
2537 e1e_flush(); |
|
2538 |
|
2539 msleep(10); |
|
2540 |
|
2541 /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
|
2542 if (hw->mac.type == e1000_ich8lan) { |
|
2543 /* Set Tx and Rx buffer allocation to 8k apiece. */ |
|
2544 ew32(PBA, E1000_PBA_8K); |
|
2545 /* Set Packet Buffer Size to 16k. */ |
|
2546 ew32(PBS, E1000_PBS_16K); |
|
2547 } |
|
2548 |
|
2549 if (hw->mac.type == e1000_pchlan) { |
|
2550 /* Save the NVM K1 bit setting*/ |
|
2551 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); |
|
2552 if (ret_val) |
|
2553 return ret_val; |
|
2554 |
|
2555 if (reg & E1000_NVM_K1_ENABLE) |
|
2556 dev_spec->nvm_k1_enabled = true; |
|
2557 else |
|
2558 dev_spec->nvm_k1_enabled = false; |
|
2559 } |
|
2560 |
|
2561 ctrl = er32(CTRL); |
|
2562 |
|
2563 if (!e1000_check_reset_block(hw)) { |
|
2564 /* |
|
2565 * Full-chip reset requires MAC and PHY reset at the same |
|
2566 * time to make sure the interface between MAC and the |
|
2567 * external PHY is reset. |
|
2568 */ |
|
2569 ctrl |= E1000_CTRL_PHY_RST; |
|
2570 } |
|
2571 ret_val = e1000_acquire_swflag_ich8lan(hw); |
|
2572 e_dbg("Issuing a global reset to ich8lan\n"); |
|
2573 ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
|
2574 msleep(20); |
|
2575 |
|
2576 if (!ret_val) |
|
2577 e1000_release_swflag_ich8lan(hw); |
|
2578 |
|
2579 if (ctrl & E1000_CTRL_PHY_RST) { |
|
2580 ret_val = hw->phy.ops.get_cfg_done(hw); |
|
2581 if (ret_val) |
|
2582 goto out; |
|
2583 |
|
2584 ret_val = e1000_post_phy_reset_ich8lan(hw); |
|
2585 if (ret_val) |
|
2586 goto out; |
|
2587 } |
|
2588 |
|
2589 /* |
|
2590 * For PCH, this write will make sure that any noise |
|
2591 * will be detected as a CRC error and be dropped rather than show up |
|
2592 * as a bad packet to the DMA engine. |
|
2593 */ |
|
2594 if (hw->mac.type == e1000_pchlan) |
|
2595 ew32(CRC_OFFSET, 0x65656565); |
|
2596 |
|
2597 ew32(IMC, 0xffffffff); |
|
2598 icr = er32(ICR); |
|
2599 |
|
2600 kab = er32(KABGTXD); |
|
2601 kab |= E1000_KABGTXD_BGSQLBIAS; |
|
2602 ew32(KABGTXD, kab); |
|
2603 |
|
2604 out: |
|
2605 return ret_val; |
|
2606 } |
|
2607 |
|
2608 /** |
|
2609 * e1000_init_hw_ich8lan - Initialize the hardware |
|
2610 * @hw: pointer to the HW structure |
|
2611 * |
|
2612 * Prepares the hardware for transmit and receive by doing the following: |
|
2613 * - initialize hardware bits |
|
2614 * - initialize LED identification |
|
2615 * - setup receive address registers |
|
2616 * - setup flow control |
|
2617 * - setup transmit descriptors |
|
2618 * - clear statistics |
|
2619 **/ |
|
2620 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) |
|
2621 { |
|
2622 struct e1000_mac_info *mac = &hw->mac; |
|
2623 u32 ctrl_ext, txdctl, snoop; |
|
2624 s32 ret_val; |
|
2625 u16 i; |
|
2626 |
|
2627 e1000_initialize_hw_bits_ich8lan(hw); |
|
2628 |
|
2629 /* Initialize identification LED */ |
|
2630 ret_val = mac->ops.id_led_init(hw); |
|
2631 if (ret_val) |
|
2632 e_dbg("Error initializing identification LED\n"); |
|
2633 /* This is not fatal and we should not stop init due to this */ |
|
2634 |
|
2635 /* Setup the receive address. */ |
|
2636 e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
|
2637 |
|
2638 /* Zero out the Multicast HASH table */ |
|
2639 e_dbg("Zeroing the MTA\n"); |
|
2640 for (i = 0; i < mac->mta_reg_count; i++) |
|
2641 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
2642 |
|
2643 /* |
|
2644 * The 82578 Rx buffer will stall if wakeup is enabled in host and |
|
2645 * the ME. Reading the BM_WUC register will clear the host wakeup bit. |
|
2646 * Reset the phy after disabling host wakeup to reset the Rx buffer. |
|
2647 */ |
|
2648 if (hw->phy.type == e1000_phy_82578) { |
|
2649 hw->phy.ops.read_reg(hw, BM_WUC, &i); |
|
2650 ret_val = e1000_phy_hw_reset_ich8lan(hw); |
|
2651 if (ret_val) |
|
2652 return ret_val; |
|
2653 } |
|
2654 |
|
2655 /* Setup link and flow control */ |
|
2656 ret_val = e1000_setup_link_ich8lan(hw); |
|
2657 |
|
2658 /* Set the transmit descriptor write-back policy for both queues */ |
|
2659 txdctl = er32(TXDCTL(0)); |
|
2660 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
|
2661 E1000_TXDCTL_FULL_TX_DESC_WB; |
|
2662 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
|
2663 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
|
2664 ew32(TXDCTL(0), txdctl); |
|
2665 txdctl = er32(TXDCTL(1)); |
|
2666 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
|
2667 E1000_TXDCTL_FULL_TX_DESC_WB; |
|
2668 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
|
2669 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
|
2670 ew32(TXDCTL(1), txdctl); |
|
2671 |
|
2672 /* |
|
2673 * ICH8 has opposite polarity of no_snoop bits. |
|
2674 * By default, we should use snoop behavior. |
|
2675 */ |
|
2676 if (mac->type == e1000_ich8lan) |
|
2677 snoop = PCIE_ICH8_SNOOP_ALL; |
|
2678 else |
|
2679 snoop = (u32) ~(PCIE_NO_SNOOP_ALL); |
|
2680 e1000e_set_pcie_no_snoop(hw, snoop); |
|
2681 |
|
2682 ctrl_ext = er32(CTRL_EXT); |
|
2683 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
|
2684 ew32(CTRL_EXT, ctrl_ext); |
|
2685 |
|
2686 /* |
|
2687 * Clear all of the statistics registers (clear on read). It is |
|
2688 * important that we do this after we have tried to establish link |
|
2689 * because the symbol error count will increment wildly if there |
|
2690 * is no link. |
|
2691 */ |
|
2692 e1000_clear_hw_cntrs_ich8lan(hw); |
|
2693 |
|
2694 return 0; |
|
2695 } |
|
2696 /** |
|
2697 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits |
|
2698 * @hw: pointer to the HW structure |
|
2699 * |
|
2700 * Sets/Clears required hardware bits necessary for correctly setting up the |
|
2701 * hardware for transmit and receive. |
|
2702 **/ |
|
2703 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) |
|
2704 { |
|
2705 u32 reg; |
|
2706 |
|
2707 /* Extended Device Control */ |
|
2708 reg = er32(CTRL_EXT); |
|
2709 reg |= (1 << 22); |
|
2710 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ |
|
2711 if (hw->mac.type >= e1000_pchlan) |
|
2712 reg |= E1000_CTRL_EXT_PHYPDEN; |
|
2713 ew32(CTRL_EXT, reg); |
|
2714 |
|
2715 /* Transmit Descriptor Control 0 */ |
|
2716 reg = er32(TXDCTL(0)); |
|
2717 reg |= (1 << 22); |
|
2718 ew32(TXDCTL(0), reg); |
|
2719 |
|
2720 /* Transmit Descriptor Control 1 */ |
|
2721 reg = er32(TXDCTL(1)); |
|
2722 reg |= (1 << 22); |
|
2723 ew32(TXDCTL(1), reg); |
|
2724 |
|
2725 /* Transmit Arbitration Control 0 */ |
|
2726 reg = er32(TARC(0)); |
|
2727 if (hw->mac.type == e1000_ich8lan) |
|
2728 reg |= (1 << 28) | (1 << 29); |
|
2729 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); |
|
2730 ew32(TARC(0), reg); |
|
2731 |
|
2732 /* Transmit Arbitration Control 1 */ |
|
2733 reg = er32(TARC(1)); |
|
2734 if (er32(TCTL) & E1000_TCTL_MULR) |
|
2735 reg &= ~(1 << 28); |
|
2736 else |
|
2737 reg |= (1 << 28); |
|
2738 reg |= (1 << 24) | (1 << 26) | (1 << 30); |
|
2739 ew32(TARC(1), reg); |
|
2740 |
|
2741 /* Device Status */ |
|
2742 if (hw->mac.type == e1000_ich8lan) { |
|
2743 reg = er32(STATUS); |
|
2744 reg &= ~(1 << 31); |
|
2745 ew32(STATUS, reg); |
|
2746 } |
|
2747 |
|
2748 /* |
|
2749 * work-around descriptor data corruption issue during nfs v2 udp |
|
2750 * traffic, just disable the nfs filtering capability |
|
2751 */ |
|
2752 reg = er32(RFCTL); |
|
2753 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); |
|
2754 ew32(RFCTL, reg); |
|
2755 } |
|
2756 |
|
2757 /** |
|
2758 * e1000_setup_link_ich8lan - Setup flow control and link settings |
|
2759 * @hw: pointer to the HW structure |
|
2760 * |
|
2761 * Determines which flow control settings to use, then configures flow |
|
2762 * control. Calls the appropriate media-specific link configuration |
|
2763 * function. Assuming the adapter has a valid link partner, a valid link |
|
2764 * should be established. Assumes the hardware has previously been reset |
|
2765 * and the transmitter and receiver are not enabled. |
|
2766 **/ |
|
2767 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) |
|
2768 { |
|
2769 s32 ret_val; |
|
2770 |
|
2771 if (e1000_check_reset_block(hw)) |
|
2772 return 0; |
|
2773 |
|
2774 /* |
|
2775 * ICH parts do not have a word in the NVM to determine |
|
2776 * the default flow control setting, so we explicitly |
|
2777 * set it to full. |
|
2778 */ |
|
2779 if (hw->fc.requested_mode == e1000_fc_default) { |
|
2780 /* Workaround h/w hang when Tx flow control enabled */ |
|
2781 if (hw->mac.type == e1000_pchlan) |
|
2782 hw->fc.requested_mode = e1000_fc_rx_pause; |
|
2783 else |
|
2784 hw->fc.requested_mode = e1000_fc_full; |
|
2785 } |
|
2786 |
|
2787 /* |
|
2788 * Save off the requested flow control mode for use later. Depending |
|
2789 * on the link partner's capabilities, we may or may not use this mode. |
|
2790 */ |
|
2791 hw->fc.current_mode = hw->fc.requested_mode; |
|
2792 |
|
2793 e_dbg("After fix-ups FlowControl is now = %x\n", |
|
2794 hw->fc.current_mode); |
|
2795 |
|
2796 /* Continue to configure the copper link. */ |
|
2797 ret_val = e1000_setup_copper_link_ich8lan(hw); |
|
2798 if (ret_val) |
|
2799 return ret_val; |
|
2800 |
|
2801 ew32(FCTTV, hw->fc.pause_time); |
|
2802 if ((hw->phy.type == e1000_phy_82578) || |
|
2803 (hw->phy.type == e1000_phy_82577)) { |
|
2804 ew32(FCRTV_PCH, hw->fc.refresh_time); |
|
2805 |
|
2806 ret_val = hw->phy.ops.write_reg(hw, |
|
2807 PHY_REG(BM_PORT_CTRL_PAGE, 27), |
|
2808 hw->fc.pause_time); |
|
2809 if (ret_val) |
|
2810 return ret_val; |
|
2811 } |
|
2812 |
|
2813 return e1000e_set_fc_watermarks(hw); |
|
2814 } |
|
2815 |
|
2816 /** |
|
2817 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface |
|
2818 * @hw: pointer to the HW structure |
|
2819 * |
|
2820 * Configures the kumeran interface to the PHY to wait the appropriate time |
|
2821 * when polling the PHY, then call the generic setup_copper_link to finish |
|
2822 * configuring the copper link. |
|
2823 **/ |
|
2824 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) |
|
2825 { |
|
2826 u32 ctrl; |
|
2827 s32 ret_val; |
|
2828 u16 reg_data; |
|
2829 |
|
2830 ctrl = er32(CTRL); |
|
2831 ctrl |= E1000_CTRL_SLU; |
|
2832 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
2833 ew32(CTRL, ctrl); |
|
2834 |
|
2835 /* |
|
2836 * Set the mac to wait the maximum time between each iteration |
|
2837 * and increase the max iterations when polling the phy; |
|
2838 * this fixes erroneous timeouts at 10Mbps. |
|
2839 */ |
|
2840 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); |
|
2841 if (ret_val) |
|
2842 return ret_val; |
|
2843 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
|
2844 ®_data); |
|
2845 if (ret_val) |
|
2846 return ret_val; |
|
2847 reg_data |= 0x3F; |
|
2848 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
|
2849 reg_data); |
|
2850 if (ret_val) |
|
2851 return ret_val; |
|
2852 |
|
2853 switch (hw->phy.type) { |
|
2854 case e1000_phy_igp_3: |
|
2855 ret_val = e1000e_copper_link_setup_igp(hw); |
|
2856 if (ret_val) |
|
2857 return ret_val; |
|
2858 break; |
|
2859 case e1000_phy_bm: |
|
2860 case e1000_phy_82578: |
|
2861 ret_val = e1000e_copper_link_setup_m88(hw); |
|
2862 if (ret_val) |
|
2863 return ret_val; |
|
2864 break; |
|
2865 case e1000_phy_82577: |
|
2866 ret_val = e1000_copper_link_setup_82577(hw); |
|
2867 if (ret_val) |
|
2868 return ret_val; |
|
2869 break; |
|
2870 case e1000_phy_ife: |
|
2871 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, |
|
2872 ®_data); |
|
2873 if (ret_val) |
|
2874 return ret_val; |
|
2875 |
|
2876 reg_data &= ~IFE_PMC_AUTO_MDIX; |
|
2877 |
|
2878 switch (hw->phy.mdix) { |
|
2879 case 1: |
|
2880 reg_data &= ~IFE_PMC_FORCE_MDIX; |
|
2881 break; |
|
2882 case 2: |
|
2883 reg_data |= IFE_PMC_FORCE_MDIX; |
|
2884 break; |
|
2885 case 0: |
|
2886 default: |
|
2887 reg_data |= IFE_PMC_AUTO_MDIX; |
|
2888 break; |
|
2889 } |
|
2890 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, |
|
2891 reg_data); |
|
2892 if (ret_val) |
|
2893 return ret_val; |
|
2894 break; |
|
2895 default: |
|
2896 break; |
|
2897 } |
|
2898 return e1000e_setup_copper_link(hw); |
|
2899 } |
|
2900 |
|
2901 /** |
|
2902 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex |
|
2903 * @hw: pointer to the HW structure |
|
2904 * @speed: pointer to store current link speed |
|
2905 * @duplex: pointer to store the current link duplex |
|
2906 * |
|
2907 * Calls the generic get_speed_and_duplex to retrieve the current link |
|
2908 * information and then calls the Kumeran lock loss workaround for links at |
|
2909 * gigabit speeds. |
|
2910 **/ |
|
2911 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, |
|
2912 u16 *duplex) |
|
2913 { |
|
2914 s32 ret_val; |
|
2915 |
|
2916 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); |
|
2917 if (ret_val) |
|
2918 return ret_val; |
|
2919 |
|
2920 if ((hw->mac.type == e1000_ich8lan) && |
|
2921 (hw->phy.type == e1000_phy_igp_3) && |
|
2922 (*speed == SPEED_1000)) { |
|
2923 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); |
|
2924 } |
|
2925 |
|
2926 return ret_val; |
|
2927 } |
|
2928 |
|
2929 /** |
|
2930 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround |
|
2931 * @hw: pointer to the HW structure |
|
2932 * |
|
2933 * Work-around for 82566 Kumeran PCS lock loss: |
|
2934 * On link status change (i.e. PCI reset, speed change) and link is up and |
|
2935 * speed is gigabit- |
|
2936 * 0) if workaround is optionally disabled do nothing |
|
2937 * 1) wait 1ms for Kumeran link to come up |
|
2938 * 2) check Kumeran Diagnostic register PCS lock loss bit |
|
2939 * 3) if not set the link is locked (all is good), otherwise... |
|
2940 * 4) reset the PHY |
|
2941 * 5) repeat up to 10 times |
|
2942 * Note: this is only called for IGP3 copper when speed is 1gb. |
|
2943 **/ |
|
2944 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) |
|
2945 { |
|
2946 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2947 u32 phy_ctrl; |
|
2948 s32 ret_val; |
|
2949 u16 i, data; |
|
2950 bool link; |
|
2951 |
|
2952 if (!dev_spec->kmrn_lock_loss_workaround_enabled) |
|
2953 return 0; |
|
2954 |
|
2955 /* |
|
2956 * Make sure link is up before proceeding. If not just return. |
|
2957 * Attempting this while link is negotiating fouled up link |
|
2958 * stability |
|
2959 */ |
|
2960 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
|
2961 if (!link) |
|
2962 return 0; |
|
2963 |
|
2964 for (i = 0; i < 10; i++) { |
|
2965 /* read once to clear */ |
|
2966 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
|
2967 if (ret_val) |
|
2968 return ret_val; |
|
2969 /* and again to get new status */ |
|
2970 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
|
2971 if (ret_val) |
|
2972 return ret_val; |
|
2973 |
|
2974 /* check for PCS lock */ |
|
2975 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
|
2976 return 0; |
|
2977 |
|
2978 /* Issue PHY reset */ |
|
2979 e1000_phy_hw_reset(hw); |
|
2980 mdelay(5); |
|
2981 } |
|
2982 /* Disable GigE link negotiation */ |
|
2983 phy_ctrl = er32(PHY_CTRL); |
|
2984 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | |
|
2985 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
2986 ew32(PHY_CTRL, phy_ctrl); |
|
2987 |
|
2988 /* |
|
2989 * Call gig speed drop workaround on Gig disable before accessing |
|
2990 * any PHY registers |
|
2991 */ |
|
2992 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
2993 |
|
2994 /* unable to acquire PCS lock */ |
|
2995 return -E1000_ERR_PHY; |
|
2996 } |
|
2997 |
|
2998 /** |
|
2999 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state |
|
3000 * @hw: pointer to the HW structure |
|
3001 * @state: boolean value used to set the current Kumeran workaround state |
|
3002 * |
|
3003 * If ICH8, set the current Kumeran workaround state (enabled - true |
|
3004 * /disabled - false). |
|
3005 **/ |
|
3006 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, |
|
3007 bool state) |
|
3008 { |
|
3009 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
3010 |
|
3011 if (hw->mac.type != e1000_ich8lan) { |
|
3012 e_dbg("Workaround applies to ICH8 only.\n"); |
|
3013 return; |
|
3014 } |
|
3015 |
|
3016 dev_spec->kmrn_lock_loss_workaround_enabled = state; |
|
3017 } |
|
3018 |
|
3019 /** |
|
3020 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 |
|
3021 * @hw: pointer to the HW structure |
|
3022 * |
|
3023 * Workaround for 82566 power-down on D3 entry: |
|
3024 * 1) disable gigabit link |
|
3025 * 2) write VR power-down enable |
|
3026 * 3) read it back |
|
3027 * Continue if successful, else issue LCD reset and repeat |
|
3028 **/ |
|
3029 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) |
|
3030 { |
|
3031 u32 reg; |
|
3032 u16 data; |
|
3033 u8 retry = 0; |
|
3034 |
|
3035 if (hw->phy.type != e1000_phy_igp_3) |
|
3036 return; |
|
3037 |
|
3038 /* Try the workaround twice (if needed) */ |
|
3039 do { |
|
3040 /* Disable link */ |
|
3041 reg = er32(PHY_CTRL); |
|
3042 reg |= (E1000_PHY_CTRL_GBE_DISABLE | |
|
3043 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
3044 ew32(PHY_CTRL, reg); |
|
3045 |
|
3046 /* |
|
3047 * Call gig speed drop workaround on Gig disable before |
|
3048 * accessing any PHY registers |
|
3049 */ |
|
3050 if (hw->mac.type == e1000_ich8lan) |
|
3051 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
3052 |
|
3053 /* Write VR power-down enable */ |
|
3054 e1e_rphy(hw, IGP3_VR_CTRL, &data); |
|
3055 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
|
3056 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); |
|
3057 |
|
3058 /* Read it back and test */ |
|
3059 e1e_rphy(hw, IGP3_VR_CTRL, &data); |
|
3060 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
|
3061 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) |
|
3062 break; |
|
3063 |
|
3064 /* Issue PHY reset and repeat at most one more time */ |
|
3065 reg = er32(CTRL); |
|
3066 ew32(CTRL, reg | E1000_CTRL_PHY_RST); |
|
3067 retry++; |
|
3068 } while (retry); |
|
3069 } |
|
3070 |
|
3071 /** |
|
3072 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working |
|
3073 * @hw: pointer to the HW structure |
|
3074 * |
|
3075 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), |
|
3076 * LPLU, Gig disable, MDIC PHY reset): |
|
3077 * 1) Set Kumeran Near-end loopback |
|
3078 * 2) Clear Kumeran Near-end loopback |
|
3079 * Should only be called for ICH8[m] devices with IGP_3 Phy. |
|
3080 **/ |
|
3081 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) |
|
3082 { |
|
3083 s32 ret_val; |
|
3084 u16 reg_data; |
|
3085 |
|
3086 if ((hw->mac.type != e1000_ich8lan) || |
|
3087 (hw->phy.type != e1000_phy_igp_3)) |
|
3088 return; |
|
3089 |
|
3090 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
3091 ®_data); |
|
3092 if (ret_val) |
|
3093 return; |
|
3094 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; |
|
3095 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
3096 reg_data); |
|
3097 if (ret_val) |
|
3098 return; |
|
3099 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; |
|
3100 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
3101 reg_data); |
|
3102 } |
|
3103 |
|
3104 /** |
|
3105 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL |
|
3106 * @hw: pointer to the HW structure |
|
3107 * |
|
3108 * During S0 to Sx transition, it is possible the link remains at gig |
|
3109 * instead of negotiating to a lower speed. Before going to Sx, set |
|
3110 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation |
|
3111 * to a lower speed. |
|
3112 * |
|
3113 * Should only be called for applicable parts. |
|
3114 **/ |
|
3115 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw) |
|
3116 { |
|
3117 u32 phy_ctrl; |
|
3118 |
|
3119 switch (hw->mac.type) { |
|
3120 case e1000_ich8lan: |
|
3121 case e1000_ich9lan: |
|
3122 case e1000_ich10lan: |
|
3123 case e1000_pchlan: |
|
3124 phy_ctrl = er32(PHY_CTRL); |
|
3125 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | |
|
3126 E1000_PHY_CTRL_GBE_DISABLE; |
|
3127 ew32(PHY_CTRL, phy_ctrl); |
|
3128 |
|
3129 if (hw->mac.type == e1000_pchlan) |
|
3130 e1000_phy_hw_reset_ich8lan(hw); |
|
3131 default: |
|
3132 break; |
|
3133 } |
|
3134 } |
|
3135 |
|
3136 /** |
|
3137 * e1000_cleanup_led_ich8lan - Restore the default LED operation |
|
3138 * @hw: pointer to the HW structure |
|
3139 * |
|
3140 * Return the LED back to the default configuration. |
|
3141 **/ |
|
3142 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) |
|
3143 { |
|
3144 if (hw->phy.type == e1000_phy_ife) |
|
3145 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
|
3146 |
|
3147 ew32(LEDCTL, hw->mac.ledctl_default); |
|
3148 return 0; |
|
3149 } |
|
3150 |
|
3151 /** |
|
3152 * e1000_led_on_ich8lan - Turn LEDs on |
|
3153 * @hw: pointer to the HW structure |
|
3154 * |
|
3155 * Turn on the LEDs. |
|
3156 **/ |
|
3157 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) |
|
3158 { |
|
3159 if (hw->phy.type == e1000_phy_ife) |
|
3160 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
3161 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
|
3162 |
|
3163 ew32(LEDCTL, hw->mac.ledctl_mode2); |
|
3164 return 0; |
|
3165 } |
|
3166 |
|
3167 /** |
|
3168 * e1000_led_off_ich8lan - Turn LEDs off |
|
3169 * @hw: pointer to the HW structure |
|
3170 * |
|
3171 * Turn off the LEDs. |
|
3172 **/ |
|
3173 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) |
|
3174 { |
|
3175 if (hw->phy.type == e1000_phy_ife) |
|
3176 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
3177 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); |
|
3178 |
|
3179 ew32(LEDCTL, hw->mac.ledctl_mode1); |
|
3180 return 0; |
|
3181 } |
|
3182 |
|
3183 /** |
|
3184 * e1000_setup_led_pchlan - Configures SW controllable LED |
|
3185 * @hw: pointer to the HW structure |
|
3186 * |
|
3187 * This prepares the SW controllable LED for use. |
|
3188 **/ |
|
3189 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) |
|
3190 { |
|
3191 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, |
|
3192 (u16)hw->mac.ledctl_mode1); |
|
3193 } |
|
3194 |
|
3195 /** |
|
3196 * e1000_cleanup_led_pchlan - Restore the default LED operation |
|
3197 * @hw: pointer to the HW structure |
|
3198 * |
|
3199 * Return the LED back to the default configuration. |
|
3200 **/ |
|
3201 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) |
|
3202 { |
|
3203 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, |
|
3204 (u16)hw->mac.ledctl_default); |
|
3205 } |
|
3206 |
|
3207 /** |
|
3208 * e1000_led_on_pchlan - Turn LEDs on |
|
3209 * @hw: pointer to the HW structure |
|
3210 * |
|
3211 * Turn on the LEDs. |
|
3212 **/ |
|
3213 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) |
|
3214 { |
|
3215 u16 data = (u16)hw->mac.ledctl_mode2; |
|
3216 u32 i, led; |
|
3217 |
|
3218 /* |
|
3219 * If no link, then turn LED on by setting the invert bit |
|
3220 * for each LED that's mode is "link_up" in ledctl_mode2. |
|
3221 */ |
|
3222 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
3223 for (i = 0; i < 3; i++) { |
|
3224 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
|
3225 if ((led & E1000_PHY_LED0_MODE_MASK) != |
|
3226 E1000_LEDCTL_MODE_LINK_UP) |
|
3227 continue; |
|
3228 if (led & E1000_PHY_LED0_IVRT) |
|
3229 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
|
3230 else |
|
3231 data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
|
3232 } |
|
3233 } |
|
3234 |
|
3235 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); |
|
3236 } |
|
3237 |
|
3238 /** |
|
3239 * e1000_led_off_pchlan - Turn LEDs off |
|
3240 * @hw: pointer to the HW structure |
|
3241 * |
|
3242 * Turn off the LEDs. |
|
3243 **/ |
|
3244 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) |
|
3245 { |
|
3246 u16 data = (u16)hw->mac.ledctl_mode1; |
|
3247 u32 i, led; |
|
3248 |
|
3249 /* |
|
3250 * If no link, then turn LED off by clearing the invert bit |
|
3251 * for each LED that's mode is "link_up" in ledctl_mode1. |
|
3252 */ |
|
3253 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
3254 for (i = 0; i < 3; i++) { |
|
3255 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
|
3256 if ((led & E1000_PHY_LED0_MODE_MASK) != |
|
3257 E1000_LEDCTL_MODE_LINK_UP) |
|
3258 continue; |
|
3259 if (led & E1000_PHY_LED0_IVRT) |
|
3260 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
|
3261 else |
|
3262 data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
|
3263 } |
|
3264 } |
|
3265 |
|
3266 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); |
|
3267 } |
|
3268 |
|
3269 /** |
|
3270 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset |
|
3271 * @hw: pointer to the HW structure |
|
3272 * |
|
3273 * Read appropriate register for the config done bit for completion status |
|
3274 * and configure the PHY through s/w for EEPROM-less parts. |
|
3275 * |
|
3276 * NOTE: some silicon which is EEPROM-less will fail trying to read the |
|
3277 * config done bit, so only an error is logged and continues. If we were |
|
3278 * to return with error, EEPROM-less silicon would not be able to be reset |
|
3279 * or change link. |
|
3280 **/ |
|
3281 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) |
|
3282 { |
|
3283 s32 ret_val = 0; |
|
3284 u32 bank = 0; |
|
3285 u32 status; |
|
3286 |
|
3287 e1000e_get_cfg_done(hw); |
|
3288 |
|
3289 /* Wait for indication from h/w that it has completed basic config */ |
|
3290 if (hw->mac.type >= e1000_ich10lan) { |
|
3291 e1000_lan_init_done_ich8lan(hw); |
|
3292 } else { |
|
3293 ret_val = e1000e_get_auto_rd_done(hw); |
|
3294 if (ret_val) { |
|
3295 /* |
|
3296 * When auto config read does not complete, do not |
|
3297 * return with an error. This can happen in situations |
|
3298 * where there is no eeprom and prevents getting link. |
|
3299 */ |
|
3300 e_dbg("Auto Read Done did not complete\n"); |
|
3301 ret_val = 0; |
|
3302 } |
|
3303 } |
|
3304 |
|
3305 /* Clear PHY Reset Asserted bit */ |
|
3306 status = er32(STATUS); |
|
3307 if (status & E1000_STATUS_PHYRA) |
|
3308 ew32(STATUS, status & ~E1000_STATUS_PHYRA); |
|
3309 else |
|
3310 e_dbg("PHY Reset Asserted not set - needs delay\n"); |
|
3311 |
|
3312 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ |
|
3313 if (hw->mac.type <= e1000_ich9lan) { |
|
3314 if (((er32(EECD) & E1000_EECD_PRES) == 0) && |
|
3315 (hw->phy.type == e1000_phy_igp_3)) { |
|
3316 e1000e_phy_init_script_igp3(hw); |
|
3317 } |
|
3318 } else { |
|
3319 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { |
|
3320 /* Maybe we should do a basic PHY config */ |
|
3321 e_dbg("EEPROM not present\n"); |
|
3322 ret_val = -E1000_ERR_CONFIG; |
|
3323 } |
|
3324 } |
|
3325 |
|
3326 return ret_val; |
|
3327 } |
|
3328 |
|
3329 /** |
|
3330 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down |
|
3331 * @hw: pointer to the HW structure |
|
3332 * |
|
3333 * In the case of a PHY power down to save power, or to turn off link during a |
|
3334 * driver unload, or wake on lan is not enabled, remove the link. |
|
3335 **/ |
|
3336 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) |
|
3337 { |
|
3338 /* If the management interface is not enabled, then power down */ |
|
3339 if (!(hw->mac.ops.check_mng_mode(hw) || |
|
3340 hw->phy.ops.check_reset_block(hw))) |
|
3341 e1000_power_down_phy_copper(hw); |
|
3342 } |
|
3343 |
|
3344 /** |
|
3345 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters |
|
3346 * @hw: pointer to the HW structure |
|
3347 * |
|
3348 * Clears hardware counters specific to the silicon family and calls |
|
3349 * clear_hw_cntrs_generic to clear all general purpose counters. |
|
3350 **/ |
|
3351 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) |
|
3352 { |
|
3353 u16 phy_data; |
|
3354 |
|
3355 e1000e_clear_hw_cntrs_base(hw); |
|
3356 |
|
3357 er32(ALGNERRC); |
|
3358 er32(RXERRC); |
|
3359 er32(TNCRS); |
|
3360 er32(CEXTERR); |
|
3361 er32(TSCTC); |
|
3362 er32(TSCTFC); |
|
3363 |
|
3364 er32(MGTPRC); |
|
3365 er32(MGTPDC); |
|
3366 er32(MGTPTC); |
|
3367 |
|
3368 er32(IAC); |
|
3369 er32(ICRXOC); |
|
3370 |
|
3371 /* Clear PHY statistics registers */ |
|
3372 if ((hw->phy.type == e1000_phy_82578) || |
|
3373 (hw->phy.type == e1000_phy_82577)) { |
|
3374 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data); |
|
3375 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data); |
|
3376 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data); |
|
3377 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data); |
|
3378 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data); |
|
3379 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data); |
|
3380 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data); |
|
3381 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data); |
|
3382 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data); |
|
3383 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data); |
|
3384 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data); |
|
3385 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data); |
|
3386 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data); |
|
3387 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data); |
|
3388 } |
|
3389 } |
|
3390 |
|
3391 static struct e1000_mac_operations ich8_mac_ops = { |
|
3392 .id_led_init = e1000e_id_led_init, |
|
3393 .check_mng_mode = e1000_check_mng_mode_ich8lan, |
|
3394 .check_for_link = e1000_check_for_copper_link_ich8lan, |
|
3395 /* cleanup_led dependent on mac type */ |
|
3396 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, |
|
3397 .get_bus_info = e1000_get_bus_info_ich8lan, |
|
3398 .set_lan_id = e1000_set_lan_id_single_port, |
|
3399 .get_link_up_info = e1000_get_link_up_info_ich8lan, |
|
3400 /* led_on dependent on mac type */ |
|
3401 /* led_off dependent on mac type */ |
|
3402 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
3403 .reset_hw = e1000_reset_hw_ich8lan, |
|
3404 .init_hw = e1000_init_hw_ich8lan, |
|
3405 .setup_link = e1000_setup_link_ich8lan, |
|
3406 .setup_physical_interface= e1000_setup_copper_link_ich8lan, |
|
3407 /* id_led_init dependent on mac type */ |
|
3408 }; |
|
3409 |
|
3410 static struct e1000_phy_operations ich8_phy_ops = { |
|
3411 .acquire = e1000_acquire_swflag_ich8lan, |
|
3412 .check_reset_block = e1000_check_reset_block_ich8lan, |
|
3413 .commit = NULL, |
|
3414 .get_cfg_done = e1000_get_cfg_done_ich8lan, |
|
3415 .get_cable_length = e1000e_get_cable_length_igp_2, |
|
3416 .read_reg = e1000e_read_phy_reg_igp, |
|
3417 .release = e1000_release_swflag_ich8lan, |
|
3418 .reset = e1000_phy_hw_reset_ich8lan, |
|
3419 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, |
|
3420 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, |
|
3421 .write_reg = e1000e_write_phy_reg_igp, |
|
3422 }; |
|
3423 |
|
3424 static struct e1000_nvm_operations ich8_nvm_ops = { |
|
3425 .acquire = e1000_acquire_nvm_ich8lan, |
|
3426 .read = e1000_read_nvm_ich8lan, |
|
3427 .release = e1000_release_nvm_ich8lan, |
|
3428 .update = e1000_update_nvm_checksum_ich8lan, |
|
3429 .valid_led_default = e1000_valid_led_default_ich8lan, |
|
3430 .validate = e1000_validate_nvm_checksum_ich8lan, |
|
3431 .write = e1000_write_nvm_ich8lan, |
|
3432 }; |
|
3433 |
|
3434 struct e1000_info e1000_ich8_info = { |
|
3435 .mac = e1000_ich8lan, |
|
3436 .flags = FLAG_HAS_WOL |
|
3437 | FLAG_IS_ICH |
|
3438 | FLAG_RX_CSUM_ENABLED |
|
3439 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3440 | FLAG_HAS_AMT |
|
3441 | FLAG_HAS_FLASH |
|
3442 | FLAG_APME_IN_WUC, |
|
3443 .pba = 8, |
|
3444 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
3445 .get_variants = e1000_get_variants_ich8lan, |
|
3446 .mac_ops = &ich8_mac_ops, |
|
3447 .phy_ops = &ich8_phy_ops, |
|
3448 .nvm_ops = &ich8_nvm_ops, |
|
3449 }; |
|
3450 |
|
3451 struct e1000_info e1000_ich9_info = { |
|
3452 .mac = e1000_ich9lan, |
|
3453 .flags = FLAG_HAS_JUMBO_FRAMES |
|
3454 | FLAG_IS_ICH |
|
3455 | FLAG_HAS_WOL |
|
3456 | FLAG_RX_CSUM_ENABLED |
|
3457 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3458 | FLAG_HAS_AMT |
|
3459 | FLAG_HAS_ERT |
|
3460 | FLAG_HAS_FLASH |
|
3461 | FLAG_APME_IN_WUC, |
|
3462 .pba = 10, |
|
3463 .max_hw_frame_size = DEFAULT_JUMBO, |
|
3464 .get_variants = e1000_get_variants_ich8lan, |
|
3465 .mac_ops = &ich8_mac_ops, |
|
3466 .phy_ops = &ich8_phy_ops, |
|
3467 .nvm_ops = &ich8_nvm_ops, |
|
3468 }; |
|
3469 |
|
3470 struct e1000_info e1000_ich10_info = { |
|
3471 .mac = e1000_ich10lan, |
|
3472 .flags = FLAG_HAS_JUMBO_FRAMES |
|
3473 | FLAG_IS_ICH |
|
3474 | FLAG_HAS_WOL |
|
3475 | FLAG_RX_CSUM_ENABLED |
|
3476 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3477 | FLAG_HAS_AMT |
|
3478 | FLAG_HAS_ERT |
|
3479 | FLAG_HAS_FLASH |
|
3480 | FLAG_APME_IN_WUC, |
|
3481 .pba = 10, |
|
3482 .max_hw_frame_size = DEFAULT_JUMBO, |
|
3483 .get_variants = e1000_get_variants_ich8lan, |
|
3484 .mac_ops = &ich8_mac_ops, |
|
3485 .phy_ops = &ich8_phy_ops, |
|
3486 .nvm_ops = &ich8_nvm_ops, |
|
3487 }; |
|
3488 |
|
3489 struct e1000_info e1000_pch_info = { |
|
3490 .mac = e1000_pchlan, |
|
3491 .flags = FLAG_IS_ICH |
|
3492 | FLAG_HAS_WOL |
|
3493 | FLAG_RX_CSUM_ENABLED |
|
3494 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3495 | FLAG_HAS_AMT |
|
3496 | FLAG_HAS_FLASH |
|
3497 | FLAG_HAS_JUMBO_FRAMES |
|
3498 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
|
3499 | FLAG_APME_IN_WUC, |
|
3500 .pba = 26, |
|
3501 .max_hw_frame_size = 4096, |
|
3502 .get_variants = e1000_get_variants_ich8lan, |
|
3503 .mac_ops = &ich8_mac_ops, |
|
3504 .phy_ops = &ich8_phy_ops, |
|
3505 .nvm_ops = &ich8_nvm_ops, |
|
3506 }; |