|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 vim: noexpandtab |
|
28 |
|
29 *******************************************************************************/ |
|
30 |
|
31 #include "e1000-2.6.35-ethercat.h" |
|
32 #include <net/ip6_checksum.h> |
|
33 |
|
34 char e1000_driver_name[] = "ec_e1000"; |
|
35 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
|
36 #define DRV_VERSION "7.3.21-k6-NAPI" |
|
37 const char e1000_driver_version[] = DRV_VERSION; |
|
38 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
|
39 |
|
40 /* e1000_pci_tbl - PCI Device ID Table |
|
41 * |
|
42 * Last entry must be all 0s |
|
43 * |
|
44 * Macro expands to... |
|
45 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
|
46 */ |
|
47 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { |
|
48 INTEL_E1000_ETHERNET_DEVICE(0x1000), |
|
49 INTEL_E1000_ETHERNET_DEVICE(0x1001), |
|
50 INTEL_E1000_ETHERNET_DEVICE(0x1004), |
|
51 INTEL_E1000_ETHERNET_DEVICE(0x1008), |
|
52 INTEL_E1000_ETHERNET_DEVICE(0x1009), |
|
53 INTEL_E1000_ETHERNET_DEVICE(0x100C), |
|
54 INTEL_E1000_ETHERNET_DEVICE(0x100D), |
|
55 INTEL_E1000_ETHERNET_DEVICE(0x100E), |
|
56 INTEL_E1000_ETHERNET_DEVICE(0x100F), |
|
57 INTEL_E1000_ETHERNET_DEVICE(0x1010), |
|
58 INTEL_E1000_ETHERNET_DEVICE(0x1011), |
|
59 INTEL_E1000_ETHERNET_DEVICE(0x1012), |
|
60 INTEL_E1000_ETHERNET_DEVICE(0x1013), |
|
61 INTEL_E1000_ETHERNET_DEVICE(0x1014), |
|
62 INTEL_E1000_ETHERNET_DEVICE(0x1015), |
|
63 INTEL_E1000_ETHERNET_DEVICE(0x1016), |
|
64 INTEL_E1000_ETHERNET_DEVICE(0x1017), |
|
65 INTEL_E1000_ETHERNET_DEVICE(0x1018), |
|
66 INTEL_E1000_ETHERNET_DEVICE(0x1019), |
|
67 INTEL_E1000_ETHERNET_DEVICE(0x101A), |
|
68 INTEL_E1000_ETHERNET_DEVICE(0x101D), |
|
69 INTEL_E1000_ETHERNET_DEVICE(0x101E), |
|
70 INTEL_E1000_ETHERNET_DEVICE(0x1026), |
|
71 INTEL_E1000_ETHERNET_DEVICE(0x1027), |
|
72 INTEL_E1000_ETHERNET_DEVICE(0x1028), |
|
73 INTEL_E1000_ETHERNET_DEVICE(0x1075), |
|
74 INTEL_E1000_ETHERNET_DEVICE(0x1076), |
|
75 INTEL_E1000_ETHERNET_DEVICE(0x1077), |
|
76 INTEL_E1000_ETHERNET_DEVICE(0x1078), |
|
77 INTEL_E1000_ETHERNET_DEVICE(0x1079), |
|
78 INTEL_E1000_ETHERNET_DEVICE(0x107A), |
|
79 INTEL_E1000_ETHERNET_DEVICE(0x107B), |
|
80 INTEL_E1000_ETHERNET_DEVICE(0x107C), |
|
81 INTEL_E1000_ETHERNET_DEVICE(0x108A), |
|
82 INTEL_E1000_ETHERNET_DEVICE(0x1099), |
|
83 INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
|
84 /* required last entry */ |
|
85 {0,} |
|
86 }; |
|
87 |
|
88 // do not auto-load driver |
|
89 // MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
90 |
|
91 int e1000_up(struct e1000_adapter *adapter); |
|
92 void e1000_down(struct e1000_adapter *adapter); |
|
93 void e1000_reinit_locked(struct e1000_adapter *adapter); |
|
94 void e1000_reset(struct e1000_adapter *adapter); |
|
95 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); |
|
96 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
|
97 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
|
98 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
|
99 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
|
100 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
101 struct e1000_tx_ring *txdr); |
|
102 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
103 struct e1000_rx_ring *rxdr); |
|
104 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
105 struct e1000_tx_ring *tx_ring); |
|
106 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
107 struct e1000_rx_ring *rx_ring); |
|
108 void e1000_update_stats(struct e1000_adapter *adapter); |
|
109 |
|
110 static int e1000_init_module(void); |
|
111 static void e1000_exit_module(void); |
|
112 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
|
113 static void __devexit e1000_remove(struct pci_dev *pdev); |
|
114 static int e1000_alloc_queues(struct e1000_adapter *adapter); |
|
115 static int e1000_sw_init(struct e1000_adapter *adapter); |
|
116 static int e1000_open(struct net_device *netdev); |
|
117 static int e1000_close(struct net_device *netdev); |
|
118 static void e1000_configure_tx(struct e1000_adapter *adapter); |
|
119 static void e1000_configure_rx(struct e1000_adapter *adapter); |
|
120 static void e1000_setup_rctl(struct e1000_adapter *adapter); |
|
121 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
|
122 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
|
123 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
124 struct e1000_tx_ring *tx_ring); |
|
125 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
126 struct e1000_rx_ring *rx_ring); |
|
127 static void e1000_set_rx_mode(struct net_device *netdev); |
|
128 static void e1000_update_phy_info(unsigned long data); |
|
129 static void e1000_watchdog(unsigned long data); |
|
130 static void e1000_82547_tx_fifo_stall(unsigned long data); |
|
131 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
132 struct net_device *netdev); |
|
133 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
|
134 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
|
135 static int e1000_set_mac(struct net_device *netdev, void *p); |
|
136 void ec_poll(struct net_device *); |
|
137 static irqreturn_t e1000_intr(int irq, void *data); |
|
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
139 struct e1000_tx_ring *tx_ring); |
|
140 static int e1000_clean(struct napi_struct *napi, int budget); |
|
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
142 struct e1000_rx_ring *rx_ring, |
|
143 int *work_done, int work_to_do); |
|
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
145 struct e1000_rx_ring *rx_ring, |
|
146 int *work_done, int work_to_do); |
|
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
148 struct e1000_rx_ring *rx_ring, |
|
149 int cleaned_count); |
|
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
151 struct e1000_rx_ring *rx_ring, |
|
152 int cleaned_count); |
|
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
|
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
155 int cmd); |
|
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
|
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
|
158 static void e1000_tx_timeout(struct net_device *dev); |
|
159 static void e1000_reset_task(struct work_struct *work); |
|
160 static void e1000_smartspeed(struct e1000_adapter *adapter); |
|
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
162 struct sk_buff *skb); |
|
163 |
|
164 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); |
|
165 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); |
|
166 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); |
|
167 static void e1000_restore_vlan(struct e1000_adapter *adapter); |
|
168 |
|
169 #ifdef CONFIG_PM |
|
170 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
|
171 static int e1000_resume(struct pci_dev *pdev); |
|
172 #endif |
|
173 static void e1000_shutdown(struct pci_dev *pdev); |
|
174 |
|
175 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
176 /* for netdump / net console */ |
|
177 static void e1000_netpoll (struct net_device *netdev); |
|
178 #endif |
|
179 |
|
180 #define COPYBREAK_DEFAULT 256 |
|
181 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
|
182 module_param(copybreak, uint, 0644); |
|
183 MODULE_PARM_DESC(copybreak, |
|
184 "Maximum size of packet that is copied to a new buffer on receive"); |
|
185 |
|
186 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
187 pci_channel_state_t state); |
|
188 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
|
189 static void e1000_io_resume(struct pci_dev *pdev); |
|
190 |
|
191 static struct pci_error_handlers e1000_err_handler = { |
|
192 .error_detected = e1000_io_error_detected, |
|
193 .slot_reset = e1000_io_slot_reset, |
|
194 .resume = e1000_io_resume, |
|
195 }; |
|
196 |
|
197 static struct pci_driver e1000_driver = { |
|
198 .name = e1000_driver_name, |
|
199 .id_table = e1000_pci_tbl, |
|
200 .probe = e1000_probe, |
|
201 .remove = __devexit_p(e1000_remove), |
|
202 #ifdef CONFIG_PM |
|
203 /* Power Managment Hooks */ |
|
204 .suspend = e1000_suspend, |
|
205 .resume = e1000_resume, |
|
206 #endif |
|
207 .shutdown = e1000_shutdown, |
|
208 .err_handler = &e1000_err_handler |
|
209 }; |
|
210 |
|
211 MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>"); |
|
212 MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver"); |
|
213 MODULE_LICENSE("GPL"); |
|
214 MODULE_VERSION(DRV_VERSION); |
|
215 |
|
216 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
|
217 module_param(debug, int, 0); |
|
218 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
219 |
|
220 /** |
|
221 * e1000_get_hw_dev - return device |
|
222 * used by hardware layer to print debugging information |
|
223 * |
|
224 **/ |
|
225 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) |
|
226 { |
|
227 struct e1000_adapter *adapter = hw->back; |
|
228 return adapter->netdev; |
|
229 } |
|
230 |
|
231 /** |
|
232 * e1000_init_module - Driver Registration Routine |
|
233 * |
|
234 * e1000_init_module is the first routine called when the driver is |
|
235 * loaded. All it does is register with the PCI subsystem. |
|
236 **/ |
|
237 |
|
238 static int __init e1000_init_module(void) |
|
239 { |
|
240 int ret; |
|
241 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); |
|
242 |
|
243 pr_info("%s\n", e1000_copyright); |
|
244 |
|
245 ret = pci_register_driver(&e1000_driver); |
|
246 if (copybreak != COPYBREAK_DEFAULT) { |
|
247 if (copybreak == 0) |
|
248 pr_info("copybreak disabled\n"); |
|
249 else |
|
250 pr_info("copybreak enabled for " |
|
251 "packets <= %u bytes\n", copybreak); |
|
252 } |
|
253 return ret; |
|
254 } |
|
255 |
|
256 module_init(e1000_init_module); |
|
257 |
|
258 /** |
|
259 * e1000_exit_module - Driver Exit Cleanup Routine |
|
260 * |
|
261 * e1000_exit_module is called just before the driver is removed |
|
262 * from memory. |
|
263 **/ |
|
264 |
|
265 static void __exit e1000_exit_module(void) |
|
266 { |
|
267 pci_unregister_driver(&e1000_driver); |
|
268 } |
|
269 |
|
270 module_exit(e1000_exit_module); |
|
271 |
|
272 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
273 { |
|
274 struct net_device *netdev = adapter->netdev; |
|
275 irq_handler_t handler = e1000_intr; |
|
276 int irq_flags = IRQF_SHARED; |
|
277 int err; |
|
278 |
|
279 if (adapter->ecdev) |
|
280 return 0; |
|
281 |
|
282 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
|
283 netdev); |
|
284 if (err) { |
|
285 e_err("Unable to allocate interrupt Error: %d\n", err); |
|
286 } |
|
287 |
|
288 return err; |
|
289 } |
|
290 |
|
291 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
292 { |
|
293 struct net_device *netdev = adapter->netdev; |
|
294 |
|
295 if (adapter->ecdev) |
|
296 return; |
|
297 |
|
298 free_irq(adapter->pdev->irq, netdev); |
|
299 } |
|
300 |
|
301 /** |
|
302 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
303 * @adapter: board private structure |
|
304 **/ |
|
305 |
|
306 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
307 { |
|
308 struct e1000_hw *hw = &adapter->hw; |
|
309 |
|
310 if (adapter->ecdev) |
|
311 return; |
|
312 |
|
313 ew32(IMC, ~0); |
|
314 E1000_WRITE_FLUSH(); |
|
315 synchronize_irq(adapter->pdev->irq); |
|
316 } |
|
317 |
|
318 /** |
|
319 * e1000_irq_enable - Enable default interrupt generation settings |
|
320 * @adapter: board private structure |
|
321 **/ |
|
322 |
|
323 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
324 { |
|
325 struct e1000_hw *hw = &adapter->hw; |
|
326 |
|
327 if (adapter->ecdev) |
|
328 return; |
|
329 |
|
330 ew32(IMS, IMS_ENABLE_MASK); |
|
331 E1000_WRITE_FLUSH(); |
|
332 } |
|
333 |
|
334 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
335 { |
|
336 struct e1000_hw *hw = &adapter->hw; |
|
337 struct net_device *netdev = adapter->netdev; |
|
338 u16 vid = hw->mng_cookie.vlan_id; |
|
339 u16 old_vid = adapter->mng_vlan_id; |
|
340 if (adapter->vlgrp) { |
|
341 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
342 if (hw->mng_cookie.status & |
|
343 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
|
344 e1000_vlan_rx_add_vid(netdev, vid); |
|
345 adapter->mng_vlan_id = vid; |
|
346 } else |
|
347 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
348 |
|
349 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
350 (vid != old_vid) && |
|
351 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
352 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
353 } else |
|
354 adapter->mng_vlan_id = vid; |
|
355 } |
|
356 } |
|
357 |
|
358 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
359 { |
|
360 struct e1000_hw *hw = &adapter->hw; |
|
361 |
|
362 if (adapter->en_mng_pt) { |
|
363 u32 manc = er32(MANC); |
|
364 |
|
365 /* disable hardware interception of ARP */ |
|
366 manc &= ~(E1000_MANC_ARP_EN); |
|
367 |
|
368 ew32(MANC, manc); |
|
369 } |
|
370 } |
|
371 |
|
372 static void e1000_release_manageability(struct e1000_adapter *adapter) |
|
373 { |
|
374 struct e1000_hw *hw = &adapter->hw; |
|
375 |
|
376 if (adapter->en_mng_pt) { |
|
377 u32 manc = er32(MANC); |
|
378 |
|
379 /* re-enable hardware interception of ARP */ |
|
380 manc |= E1000_MANC_ARP_EN; |
|
381 |
|
382 ew32(MANC, manc); |
|
383 } |
|
384 } |
|
385 |
|
386 /** |
|
387 * e1000_configure - configure the hardware for RX and TX |
|
388 * @adapter = private board structure |
|
389 **/ |
|
390 static void e1000_configure(struct e1000_adapter *adapter) |
|
391 { |
|
392 struct net_device *netdev = adapter->netdev; |
|
393 int i; |
|
394 |
|
395 e1000_set_rx_mode(netdev); |
|
396 |
|
397 e1000_restore_vlan(adapter); |
|
398 e1000_init_manageability(adapter); |
|
399 |
|
400 e1000_configure_tx(adapter); |
|
401 e1000_setup_rctl(adapter); |
|
402 e1000_configure_rx(adapter); |
|
403 /* call E1000_DESC_UNUSED which always leaves |
|
404 * at least 1 descriptor unused to make sure |
|
405 * next_to_use != next_to_clean */ |
|
406 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
407 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
|
408 if (adapter->ecdev) { |
|
409 /* fill rx ring completely! */ |
|
410 adapter->alloc_rx_buf(adapter, ring, ring->count); |
|
411 } else { |
|
412 /* this one leaves the last ring element unallocated! */ |
|
413 adapter->alloc_rx_buf(adapter, ring, |
|
414 E1000_DESC_UNUSED(ring)); |
|
415 } |
|
416 } |
|
417 } |
|
418 |
|
419 int e1000_up(struct e1000_adapter *adapter) |
|
420 { |
|
421 struct e1000_hw *hw = &adapter->hw; |
|
422 |
|
423 /* hardware has been reset, we need to reload some things */ |
|
424 e1000_configure(adapter); |
|
425 |
|
426 clear_bit(__E1000_DOWN, &adapter->flags); |
|
427 |
|
428 if (!adapter->ecdev) { |
|
429 napi_enable(&adapter->napi); |
|
430 |
|
431 e1000_irq_enable(adapter); |
|
432 |
|
433 netif_wake_queue(adapter->netdev); |
|
434 |
|
435 /* fire a link change interrupt to start the watchdog */ |
|
436 ew32(ICS, E1000_ICS_LSC); |
|
437 } |
|
438 return 0; |
|
439 } |
|
440 |
|
441 /** |
|
442 * e1000_power_up_phy - restore link in case the phy was powered down |
|
443 * @adapter: address of board private structure |
|
444 * |
|
445 * The phy may be powered down to save power and turn off link when the |
|
446 * driver is unloaded and wake on lan is not enabled (among others) |
|
447 * *** this routine MUST be followed by a call to e1000_reset *** |
|
448 * |
|
449 **/ |
|
450 |
|
451 void e1000_power_up_phy(struct e1000_adapter *adapter) |
|
452 { |
|
453 struct e1000_hw *hw = &adapter->hw; |
|
454 u16 mii_reg = 0; |
|
455 |
|
456 /* Just clear the power down bit to wake the phy back up */ |
|
457 if (hw->media_type == e1000_media_type_copper) { |
|
458 /* according to the manual, the phy will retain its |
|
459 * settings across a power-down/up cycle */ |
|
460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
461 mii_reg &= ~MII_CR_POWER_DOWN; |
|
462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
463 } |
|
464 } |
|
465 |
|
466 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
467 { |
|
468 struct e1000_hw *hw = &adapter->hw; |
|
469 |
|
470 /* Power down the PHY so no link is implied when interface is down * |
|
471 * The PHY cannot be powered down if any of the following is true * |
|
472 * (a) WoL is enabled |
|
473 * (b) AMT is active |
|
474 * (c) SoL/IDER session is active */ |
|
475 if (!adapter->wol && hw->mac_type >= e1000_82540 && |
|
476 hw->media_type == e1000_media_type_copper) { |
|
477 u16 mii_reg = 0; |
|
478 |
|
479 switch (hw->mac_type) { |
|
480 case e1000_82540: |
|
481 case e1000_82545: |
|
482 case e1000_82545_rev_3: |
|
483 case e1000_82546: |
|
484 case e1000_82546_rev_3: |
|
485 case e1000_82541: |
|
486 case e1000_82541_rev_2: |
|
487 case e1000_82547: |
|
488 case e1000_82547_rev_2: |
|
489 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
490 goto out; |
|
491 break; |
|
492 default: |
|
493 goto out; |
|
494 } |
|
495 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
496 mii_reg |= MII_CR_POWER_DOWN; |
|
497 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
498 mdelay(1); |
|
499 } |
|
500 out: |
|
501 return; |
|
502 } |
|
503 |
|
504 void e1000_down(struct e1000_adapter *adapter) |
|
505 { |
|
506 struct e1000_hw *hw = &adapter->hw; |
|
507 struct net_device *netdev = adapter->netdev; |
|
508 u32 rctl, tctl; |
|
509 |
|
510 /* signal that we're down so the interrupt handler does not |
|
511 * reschedule our watchdog timer */ |
|
512 set_bit(__E1000_DOWN, &adapter->flags); |
|
513 |
|
514 /* disable receives in the hardware */ |
|
515 rctl = er32(RCTL); |
|
516 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
517 |
|
518 if (!adapter->ecdev) { |
|
519 /* flush and sleep below */ |
|
520 netif_tx_disable(netdev); |
|
521 } |
|
522 |
|
523 /* disable transmits in the hardware */ |
|
524 tctl = er32(TCTL); |
|
525 tctl &= ~E1000_TCTL_EN; |
|
526 ew32(TCTL, tctl); |
|
527 /* flush both disables and wait for them to finish */ |
|
528 E1000_WRITE_FLUSH(); |
|
529 msleep(10); |
|
530 |
|
531 if (!adapter->ecdev) { |
|
532 napi_disable(&adapter->napi); |
|
533 |
|
534 e1000_irq_disable(adapter); |
|
535 } |
|
536 |
|
537 if (!adapter->ecdev) { |
|
538 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
539 del_timer_sync(&adapter->watchdog_timer); |
|
540 del_timer_sync(&adapter->phy_info_timer); |
|
541 } |
|
542 |
|
543 adapter->link_speed = 0; |
|
544 adapter->link_duplex = 0; |
|
545 if (!adapter->ecdev) { |
|
546 netif_carrier_off(netdev); |
|
547 } |
|
548 |
|
549 e1000_reset(adapter); |
|
550 e1000_clean_all_tx_rings(adapter); |
|
551 e1000_clean_all_rx_rings(adapter); |
|
552 } |
|
553 |
|
554 void e1000_reinit_locked(struct e1000_adapter *adapter) |
|
555 { |
|
556 WARN_ON(in_interrupt()); |
|
557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
558 msleep(1); |
|
559 e1000_down(adapter); |
|
560 e1000_up(adapter); |
|
561 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
562 } |
|
563 |
|
564 void e1000_reset(struct e1000_adapter *adapter) |
|
565 { |
|
566 struct e1000_hw *hw = &adapter->hw; |
|
567 u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
|
568 bool legacy_pba_adjust = false; |
|
569 u16 hwm; |
|
570 |
|
571 /* Repartition Pba for greater than 9k mtu |
|
572 * To take effect CTRL.RST is required. |
|
573 */ |
|
574 |
|
575 switch (hw->mac_type) { |
|
576 case e1000_82542_rev2_0: |
|
577 case e1000_82542_rev2_1: |
|
578 case e1000_82543: |
|
579 case e1000_82544: |
|
580 case e1000_82540: |
|
581 case e1000_82541: |
|
582 case e1000_82541_rev_2: |
|
583 legacy_pba_adjust = true; |
|
584 pba = E1000_PBA_48K; |
|
585 break; |
|
586 case e1000_82545: |
|
587 case e1000_82545_rev_3: |
|
588 case e1000_82546: |
|
589 case e1000_82546_rev_3: |
|
590 pba = E1000_PBA_48K; |
|
591 break; |
|
592 case e1000_82547: |
|
593 case e1000_82547_rev_2: |
|
594 legacy_pba_adjust = true; |
|
595 pba = E1000_PBA_30K; |
|
596 break; |
|
597 case e1000_undefined: |
|
598 case e1000_num_macs: |
|
599 break; |
|
600 } |
|
601 |
|
602 if (legacy_pba_adjust) { |
|
603 if (hw->max_frame_size > E1000_RXBUFFER_8192) |
|
604 pba -= 8; /* allocate more FIFO for Tx */ |
|
605 |
|
606 if (hw->mac_type == e1000_82547) { |
|
607 adapter->tx_fifo_head = 0; |
|
608 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
|
609 adapter->tx_fifo_size = |
|
610 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
|
611 atomic_set(&adapter->tx_fifo_stall, 0); |
|
612 } |
|
613 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
614 /* adjust PBA for jumbo frames */ |
|
615 ew32(PBA, pba); |
|
616 |
|
617 /* To maintain wire speed transmits, the Tx FIFO should be |
|
618 * large enough to accommodate two full transmit packets, |
|
619 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
620 * the Rx FIFO should be large enough to accommodate at least |
|
621 * one full receive packet and is similarly rounded up and |
|
622 * expressed in KB. */ |
|
623 pba = er32(PBA); |
|
624 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
625 tx_space = pba >> 16; |
|
626 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
627 pba &= 0xffff; |
|
628 /* |
|
629 * the tx fifo also stores 16 bytes of information about the tx |
|
630 * but don't include ethernet FCS because hardware appends it |
|
631 */ |
|
632 min_tx_space = (hw->max_frame_size + |
|
633 sizeof(struct e1000_tx_desc) - |
|
634 ETH_FCS_LEN) * 2; |
|
635 min_tx_space = ALIGN(min_tx_space, 1024); |
|
636 min_tx_space >>= 10; |
|
637 /* software strips receive CRC, so leave room for it */ |
|
638 min_rx_space = hw->max_frame_size; |
|
639 min_rx_space = ALIGN(min_rx_space, 1024); |
|
640 min_rx_space >>= 10; |
|
641 |
|
642 /* If current Tx allocation is less than the min Tx FIFO size, |
|
643 * and the min Tx FIFO size is less than the current Rx FIFO |
|
644 * allocation, take space away from current Rx allocation */ |
|
645 if (tx_space < min_tx_space && |
|
646 ((min_tx_space - tx_space) < pba)) { |
|
647 pba = pba - (min_tx_space - tx_space); |
|
648 |
|
649 /* PCI/PCIx hardware has PBA alignment constraints */ |
|
650 switch (hw->mac_type) { |
|
651 case e1000_82545 ... e1000_82546_rev_3: |
|
652 pba &= ~(E1000_PBA_8K - 1); |
|
653 break; |
|
654 default: |
|
655 break; |
|
656 } |
|
657 |
|
658 /* if short on rx space, rx wins and must trump tx |
|
659 * adjustment or use Early Receive if available */ |
|
660 if (pba < min_rx_space) |
|
661 pba = min_rx_space; |
|
662 } |
|
663 } |
|
664 |
|
665 ew32(PBA, pba); |
|
666 |
|
667 /* |
|
668 * flow control settings: |
|
669 * The high water mark must be low enough to fit one full frame |
|
670 * (or the size used for early receive) above it in the Rx FIFO. |
|
671 * Set it to the lower of: |
|
672 * - 90% of the Rx FIFO size, and |
|
673 * - the full Rx FIFO size minus the early receive size (for parts |
|
674 * with ERT support assuming ERT set to E1000_ERT_2048), or |
|
675 * - the full Rx FIFO size minus one full frame |
|
676 */ |
|
677 hwm = min(((pba << 10) * 9 / 10), |
|
678 ((pba << 10) - hw->max_frame_size)); |
|
679 |
|
680 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ |
|
681 hw->fc_low_water = hw->fc_high_water - 8; |
|
682 hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
|
683 hw->fc_send_xon = 1; |
|
684 hw->fc = hw->original_fc; |
|
685 |
|
686 /* Allow time for pending master requests to run */ |
|
687 e1000_reset_hw(hw); |
|
688 if (hw->mac_type >= e1000_82544) |
|
689 ew32(WUC, 0); |
|
690 |
|
691 if (e1000_init_hw(hw)) |
|
692 e_err("Hardware Error\n"); |
|
693 e1000_update_mng_vlan(adapter); |
|
694 |
|
695 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
|
696 if (hw->mac_type >= e1000_82544 && |
|
697 hw->autoneg == 1 && |
|
698 hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
699 u32 ctrl = er32(CTRL); |
|
700 /* clear phy power management bit if we are in gig only mode, |
|
701 * which if enabled will attempt negotiation to 100Mb, which |
|
702 * can cause a loss of link at power off or driver unload */ |
|
703 ctrl &= ~E1000_CTRL_SWDPIN3; |
|
704 ew32(CTRL, ctrl); |
|
705 } |
|
706 |
|
707 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
708 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
|
709 |
|
710 e1000_reset_adaptive(hw); |
|
711 e1000_phy_get_info(hw, &adapter->phy_info); |
|
712 |
|
713 e1000_release_manageability(adapter); |
|
714 } |
|
715 |
|
716 /** |
|
717 * Dump the eeprom for users having checksum issues |
|
718 **/ |
|
719 static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
|
720 { |
|
721 struct net_device *netdev = adapter->netdev; |
|
722 struct ethtool_eeprom eeprom; |
|
723 const struct ethtool_ops *ops = netdev->ethtool_ops; |
|
724 u8 *data; |
|
725 int i; |
|
726 u16 csum_old, csum_new = 0; |
|
727 |
|
728 eeprom.len = ops->get_eeprom_len(netdev); |
|
729 eeprom.offset = 0; |
|
730 |
|
731 data = kmalloc(eeprom.len, GFP_KERNEL); |
|
732 if (!data) { |
|
733 pr_err("Unable to allocate memory to dump EEPROM data\n"); |
|
734 return; |
|
735 } |
|
736 |
|
737 ops->get_eeprom(netdev, &eeprom, data); |
|
738 |
|
739 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
|
740 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
|
741 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
|
742 csum_new += data[i] + (data[i + 1] << 8); |
|
743 csum_new = EEPROM_SUM - csum_new; |
|
744 |
|
745 pr_err("/*********************/\n"); |
|
746 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); |
|
747 pr_err("Calculated : 0x%04x\n", csum_new); |
|
748 |
|
749 pr_err("Offset Values\n"); |
|
750 pr_err("======== ======\n"); |
|
751 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
|
752 |
|
753 pr_err("Include this output when contacting your support provider.\n"); |
|
754 pr_err("This is not a software error! Something bad happened to\n"); |
|
755 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); |
|
756 pr_err("result in further problems, possibly loss of data,\n"); |
|
757 pr_err("corruption or system hangs!\n"); |
|
758 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); |
|
759 pr_err("which is invalid and requires you to set the proper MAC\n"); |
|
760 pr_err("address manually before continuing to enable this network\n"); |
|
761 pr_err("device. Please inspect the EEPROM dump and report the\n"); |
|
762 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); |
|
763 pr_err("/*********************/\n"); |
|
764 |
|
765 kfree(data); |
|
766 } |
|
767 |
|
768 /** |
|
769 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
|
770 * @pdev: PCI device information struct |
|
771 * |
|
772 * Return true if an adapter needs ioport resources |
|
773 **/ |
|
774 static int e1000_is_need_ioport(struct pci_dev *pdev) |
|
775 { |
|
776 switch (pdev->device) { |
|
777 case E1000_DEV_ID_82540EM: |
|
778 case E1000_DEV_ID_82540EM_LOM: |
|
779 case E1000_DEV_ID_82540EP: |
|
780 case E1000_DEV_ID_82540EP_LOM: |
|
781 case E1000_DEV_ID_82540EP_LP: |
|
782 case E1000_DEV_ID_82541EI: |
|
783 case E1000_DEV_ID_82541EI_MOBILE: |
|
784 case E1000_DEV_ID_82541ER: |
|
785 case E1000_DEV_ID_82541ER_LOM: |
|
786 case E1000_DEV_ID_82541GI: |
|
787 case E1000_DEV_ID_82541GI_LF: |
|
788 case E1000_DEV_ID_82541GI_MOBILE: |
|
789 case E1000_DEV_ID_82544EI_COPPER: |
|
790 case E1000_DEV_ID_82544EI_FIBER: |
|
791 case E1000_DEV_ID_82544GC_COPPER: |
|
792 case E1000_DEV_ID_82544GC_LOM: |
|
793 case E1000_DEV_ID_82545EM_COPPER: |
|
794 case E1000_DEV_ID_82545EM_FIBER: |
|
795 case E1000_DEV_ID_82546EB_COPPER: |
|
796 case E1000_DEV_ID_82546EB_FIBER: |
|
797 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
798 return true; |
|
799 default: |
|
800 return false; |
|
801 } |
|
802 } |
|
803 |
|
804 static const struct net_device_ops e1000_netdev_ops = { |
|
805 .ndo_open = e1000_open, |
|
806 .ndo_stop = e1000_close, |
|
807 .ndo_start_xmit = e1000_xmit_frame, |
|
808 .ndo_get_stats = e1000_get_stats, |
|
809 .ndo_set_rx_mode = e1000_set_rx_mode, |
|
810 .ndo_set_mac_address = e1000_set_mac, |
|
811 .ndo_tx_timeout = e1000_tx_timeout, |
|
812 .ndo_change_mtu = e1000_change_mtu, |
|
813 .ndo_do_ioctl = e1000_ioctl, |
|
814 .ndo_validate_addr = eth_validate_addr, |
|
815 |
|
816 .ndo_vlan_rx_register = e1000_vlan_rx_register, |
|
817 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
818 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
819 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
820 .ndo_poll_controller = e1000_netpoll, |
|
821 #endif |
|
822 }; |
|
823 |
|
824 /** |
|
825 * e1000_probe - Device Initialization Routine |
|
826 * @pdev: PCI device information struct |
|
827 * @ent: entry in e1000_pci_tbl |
|
828 * |
|
829 * Returns 0 on success, negative on failure |
|
830 * |
|
831 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
832 * The OS initialization, configuring of the adapter private structure, |
|
833 * and a hardware reset occur. |
|
834 **/ |
|
835 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
836 const struct pci_device_id *ent) |
|
837 { |
|
838 struct net_device *netdev; |
|
839 struct e1000_adapter *adapter; |
|
840 struct e1000_hw *hw; |
|
841 |
|
842 static int cards_found = 0; |
|
843 static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
|
844 int i, err, pci_using_dac; |
|
845 u16 eeprom_data = 0; |
|
846 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
847 int bars, need_ioport; |
|
848 |
|
849 /* do not allocate ioport bars when not needed */ |
|
850 need_ioport = e1000_is_need_ioport(pdev); |
|
851 if (need_ioport) { |
|
852 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
|
853 err = pci_enable_device(pdev); |
|
854 } else { |
|
855 bars = pci_select_bars(pdev, IORESOURCE_MEM); |
|
856 err = pci_enable_device_mem(pdev); |
|
857 } |
|
858 if (err) |
|
859 return err; |
|
860 |
|
861 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) && |
|
862 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) { |
|
863 pci_using_dac = 1; |
|
864 } else { |
|
865 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
|
866 if (err) { |
|
867 err = dma_set_coherent_mask(&pdev->dev, |
|
868 DMA_BIT_MASK(32)); |
|
869 if (err) { |
|
870 pr_err("No usable DMA config, aborting\n"); |
|
871 goto err_dma; |
|
872 } |
|
873 } |
|
874 pci_using_dac = 0; |
|
875 } |
|
876 |
|
877 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
|
878 if (err) |
|
879 goto err_pci_reg; |
|
880 |
|
881 pci_set_master(pdev); |
|
882 err = pci_save_state(pdev); |
|
883 if (err) |
|
884 goto err_alloc_etherdev; |
|
885 |
|
886 err = -ENOMEM; |
|
887 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
888 if (!netdev) |
|
889 goto err_alloc_etherdev; |
|
890 |
|
891 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
892 |
|
893 pci_set_drvdata(pdev, netdev); |
|
894 adapter = netdev_priv(netdev); |
|
895 adapter->netdev = netdev; |
|
896 adapter->pdev = pdev; |
|
897 adapter->msg_enable = (1 << debug) - 1; |
|
898 adapter->bars = bars; |
|
899 adapter->need_ioport = need_ioport; |
|
900 |
|
901 hw = &adapter->hw; |
|
902 hw->back = adapter; |
|
903 |
|
904 err = -EIO; |
|
905 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); |
|
906 if (!hw->hw_addr) |
|
907 goto err_ioremap; |
|
908 |
|
909 if (adapter->need_ioport) { |
|
910 for (i = BAR_1; i <= BAR_5; i++) { |
|
911 if (pci_resource_len(pdev, i) == 0) |
|
912 continue; |
|
913 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
|
914 hw->io_base = pci_resource_start(pdev, i); |
|
915 break; |
|
916 } |
|
917 } |
|
918 } |
|
919 |
|
920 netdev->netdev_ops = &e1000_netdev_ops; |
|
921 e1000_set_ethtool_ops(netdev); |
|
922 netdev->watchdog_timeo = 5 * HZ; |
|
923 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
924 |
|
925 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
926 |
|
927 adapter->bd_number = cards_found; |
|
928 |
|
929 /* setup the private structure */ |
|
930 |
|
931 err = e1000_sw_init(adapter); |
|
932 if (err) |
|
933 goto err_sw_init; |
|
934 |
|
935 err = -EIO; |
|
936 |
|
937 if (hw->mac_type >= e1000_82543) { |
|
938 netdev->features = NETIF_F_SG | |
|
939 NETIF_F_HW_CSUM | |
|
940 NETIF_F_HW_VLAN_TX | |
|
941 NETIF_F_HW_VLAN_RX | |
|
942 NETIF_F_HW_VLAN_FILTER; |
|
943 } |
|
944 |
|
945 if ((hw->mac_type >= e1000_82544) && |
|
946 (hw->mac_type != e1000_82547)) |
|
947 netdev->features |= NETIF_F_TSO; |
|
948 |
|
949 if (pci_using_dac) |
|
950 netdev->features |= NETIF_F_HIGHDMA; |
|
951 |
|
952 netdev->vlan_features |= NETIF_F_TSO; |
|
953 netdev->vlan_features |= NETIF_F_HW_CSUM; |
|
954 netdev->vlan_features |= NETIF_F_SG; |
|
955 |
|
956 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
|
957 |
|
958 /* initialize eeprom parameters */ |
|
959 if (e1000_init_eeprom_params(hw)) { |
|
960 e_err("EEPROM initialization failed\n"); |
|
961 goto err_eeprom; |
|
962 } |
|
963 |
|
964 /* before reading the EEPROM, reset the controller to |
|
965 * put the device in a known good starting state */ |
|
966 |
|
967 e1000_reset_hw(hw); |
|
968 |
|
969 /* make sure the EEPROM is good */ |
|
970 if (e1000_validate_eeprom_checksum(hw) < 0) { |
|
971 e_err("The EEPROM Checksum Is Not Valid\n"); |
|
972 e1000_dump_eeprom(adapter); |
|
973 /* |
|
974 * set MAC address to all zeroes to invalidate and temporary |
|
975 * disable this device for the user. This blocks regular |
|
976 * traffic while still permitting ethtool ioctls from reaching |
|
977 * the hardware as well as allowing the user to run the |
|
978 * interface after manually setting a hw addr using |
|
979 * `ip set address` |
|
980 */ |
|
981 memset(hw->mac_addr, 0, netdev->addr_len); |
|
982 } else { |
|
983 /* copy the MAC address out of the EEPROM */ |
|
984 if (e1000_read_mac_addr(hw)) |
|
985 e_err("EEPROM Read Error\n"); |
|
986 } |
|
987 /* don't block initalization here due to bad MAC address */ |
|
988 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
|
989 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); |
|
990 |
|
991 if (!is_valid_ether_addr(netdev->perm_addr)) |
|
992 e_err("Invalid MAC Address\n"); |
|
993 |
|
994 e1000_get_bus_info(hw); |
|
995 |
|
996 init_timer(&adapter->tx_fifo_stall_timer); |
|
997 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; |
|
998 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; |
|
999 |
|
1000 init_timer(&adapter->watchdog_timer); |
|
1001 adapter->watchdog_timer.function = &e1000_watchdog; |
|
1002 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
1003 |
|
1004 init_timer(&adapter->phy_info_timer); |
|
1005 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
1006 adapter->phy_info_timer.data = (unsigned long)adapter; |
|
1007 |
|
1008 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
1009 |
|
1010 e1000_check_options(adapter); |
|
1011 |
|
1012 /* Initial Wake on LAN setting |
|
1013 * If APM wake is enabled in the EEPROM, |
|
1014 * enable the ACPI Magic Packet filter |
|
1015 */ |
|
1016 |
|
1017 switch (hw->mac_type) { |
|
1018 case e1000_82542_rev2_0: |
|
1019 case e1000_82542_rev2_1: |
|
1020 case e1000_82543: |
|
1021 break; |
|
1022 case e1000_82544: |
|
1023 e1000_read_eeprom(hw, |
|
1024 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
|
1025 eeprom_apme_mask = E1000_EEPROM_82544_APM; |
|
1026 break; |
|
1027 case e1000_82546: |
|
1028 case e1000_82546_rev_3: |
|
1029 if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
|
1030 e1000_read_eeprom(hw, |
|
1031 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
1032 break; |
|
1033 } |
|
1034 /* Fall Through */ |
|
1035 default: |
|
1036 e1000_read_eeprom(hw, |
|
1037 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
1038 break; |
|
1039 } |
|
1040 if (eeprom_data & eeprom_apme_mask) |
|
1041 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
1042 |
|
1043 /* now that we have the eeprom settings, apply the special cases |
|
1044 * where the eeprom may be wrong or the board simply won't support |
|
1045 * wake on lan on a particular port */ |
|
1046 switch (pdev->device) { |
|
1047 case E1000_DEV_ID_82546GB_PCIE: |
|
1048 adapter->eeprom_wol = 0; |
|
1049 break; |
|
1050 case E1000_DEV_ID_82546EB_FIBER: |
|
1051 case E1000_DEV_ID_82546GB_FIBER: |
|
1052 /* Wake events only supported on port A for dual fiber |
|
1053 * regardless of eeprom setting */ |
|
1054 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
1055 adapter->eeprom_wol = 0; |
|
1056 break; |
|
1057 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1058 /* if quad port adapter, disable WoL on all but port A */ |
|
1059 if (global_quad_port_a != 0) |
|
1060 adapter->eeprom_wol = 0; |
|
1061 else |
|
1062 adapter->quad_port_a = 1; |
|
1063 /* Reset for multiple quad port adapters */ |
|
1064 if (++global_quad_port_a == 4) |
|
1065 global_quad_port_a = 0; |
|
1066 break; |
|
1067 } |
|
1068 |
|
1069 /* initialize the wol settings based on the eeprom settings */ |
|
1070 adapter->wol = adapter->eeprom_wol; |
|
1071 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1072 |
|
1073 /* reset the hardware with the new settings */ |
|
1074 e1000_reset(adapter); |
|
1075 |
|
1076 // offer device to EtherCAT master module |
|
1077 adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE); |
|
1078 if (adapter->ecdev) { |
|
1079 if (ecdev_open(adapter->ecdev)) { |
|
1080 ecdev_withdraw(adapter->ecdev); |
|
1081 goto err_register; |
|
1082 } |
|
1083 } else { |
|
1084 strcpy(netdev->name, "eth%d"); |
|
1085 err = register_netdev(netdev); |
|
1086 if (err) |
|
1087 goto err_register; |
|
1088 } |
|
1089 |
|
1090 /* print bus type/speed/width info */ |
|
1091 e_info("(PCI%s:%dMHz:%d-bit) %pM\n", |
|
1092 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), |
|
1093 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : |
|
1094 (hw->bus_speed == e1000_bus_speed_120) ? 120 : |
|
1095 (hw->bus_speed == e1000_bus_speed_100) ? 100 : |
|
1096 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), |
|
1097 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), |
|
1098 netdev->dev_addr); |
|
1099 |
|
1100 if (!adapter->ecdev) { |
|
1101 /* carrier off reporting is important to ethtool even BEFORE open */ |
|
1102 netif_carrier_off(netdev); |
|
1103 } |
|
1104 |
|
1105 e_info("Intel(R) PRO/1000 Network Connection\n"); |
|
1106 |
|
1107 cards_found++; |
|
1108 return 0; |
|
1109 |
|
1110 err_register: |
|
1111 err_eeprom: |
|
1112 e1000_phy_hw_reset(hw); |
|
1113 |
|
1114 if (hw->flash_address) |
|
1115 iounmap(hw->flash_address); |
|
1116 kfree(adapter->tx_ring); |
|
1117 kfree(adapter->rx_ring); |
|
1118 err_sw_init: |
|
1119 iounmap(hw->hw_addr); |
|
1120 err_ioremap: |
|
1121 free_netdev(netdev); |
|
1122 err_alloc_etherdev: |
|
1123 pci_release_selected_regions(pdev, bars); |
|
1124 err_pci_reg: |
|
1125 err_dma: |
|
1126 pci_disable_device(pdev); |
|
1127 return err; |
|
1128 } |
|
1129 |
|
1130 /** |
|
1131 * e1000_remove - Device Removal Routine |
|
1132 * @pdev: PCI device information struct |
|
1133 * |
|
1134 * e1000_remove is called by the PCI subsystem to alert the driver |
|
1135 * that it should release a PCI device. The could be caused by a |
|
1136 * Hot-Plug event, or because the driver is going to be removed from |
|
1137 * memory. |
|
1138 **/ |
|
1139 |
|
1140 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
1141 { |
|
1142 struct net_device *netdev = pci_get_drvdata(pdev); |
|
1143 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1144 struct e1000_hw *hw = &adapter->hw; |
|
1145 |
|
1146 set_bit(__E1000_DOWN, &adapter->flags); |
|
1147 |
|
1148 if (!adapter->ecdev) { |
|
1149 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
1150 del_timer_sync(&adapter->watchdog_timer); |
|
1151 del_timer_sync(&adapter->phy_info_timer); |
|
1152 } |
|
1153 |
|
1154 cancel_work_sync(&adapter->reset_task); |
|
1155 |
|
1156 e1000_release_manageability(adapter); |
|
1157 |
|
1158 if (adapter->ecdev) { |
|
1159 ecdev_close(adapter->ecdev); |
|
1160 ecdev_withdraw(adapter->ecdev); |
|
1161 } else { |
|
1162 unregister_netdev(netdev); |
|
1163 } |
|
1164 |
|
1165 e1000_phy_hw_reset(hw); |
|
1166 |
|
1167 kfree(adapter->tx_ring); |
|
1168 kfree(adapter->rx_ring); |
|
1169 |
|
1170 iounmap(hw->hw_addr); |
|
1171 if (hw->flash_address) |
|
1172 iounmap(hw->flash_address); |
|
1173 pci_release_selected_regions(pdev, adapter->bars); |
|
1174 |
|
1175 free_netdev(netdev); |
|
1176 |
|
1177 pci_disable_device(pdev); |
|
1178 } |
|
1179 |
|
1180 /** |
|
1181 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
1182 * @adapter: board private structure to initialize |
|
1183 * |
|
1184 * e1000_sw_init initializes the Adapter private data structure. |
|
1185 * Fields are initialized based on PCI device information and |
|
1186 * OS network device settings (MTU size). |
|
1187 **/ |
|
1188 |
|
1189 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
1190 { |
|
1191 struct e1000_hw *hw = &adapter->hw; |
|
1192 struct net_device *netdev = adapter->netdev; |
|
1193 struct pci_dev *pdev = adapter->pdev; |
|
1194 |
|
1195 /* PCI config space info */ |
|
1196 |
|
1197 hw->vendor_id = pdev->vendor; |
|
1198 hw->device_id = pdev->device; |
|
1199 hw->subsystem_vendor_id = pdev->subsystem_vendor; |
|
1200 hw->subsystem_id = pdev->subsystem_device; |
|
1201 hw->revision_id = pdev->revision; |
|
1202 |
|
1203 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
|
1204 |
|
1205 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
1206 hw->max_frame_size = netdev->mtu + |
|
1207 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
1208 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
|
1209 |
|
1210 /* identify the MAC */ |
|
1211 |
|
1212 if (e1000_set_mac_type(hw)) { |
|
1213 e_err("Unknown MAC Type\n"); |
|
1214 return -EIO; |
|
1215 } |
|
1216 |
|
1217 switch (hw->mac_type) { |
|
1218 default: |
|
1219 break; |
|
1220 case e1000_82541: |
|
1221 case e1000_82547: |
|
1222 case e1000_82541_rev_2: |
|
1223 case e1000_82547_rev_2: |
|
1224 hw->phy_init_script = 1; |
|
1225 break; |
|
1226 } |
|
1227 |
|
1228 e1000_set_media_type(hw); |
|
1229 |
|
1230 hw->wait_autoneg_complete = false; |
|
1231 hw->tbi_compatibility_en = true; |
|
1232 hw->adaptive_ifs = true; |
|
1233 |
|
1234 /* Copper options */ |
|
1235 |
|
1236 if (hw->media_type == e1000_media_type_copper) { |
|
1237 hw->mdix = AUTO_ALL_MODES; |
|
1238 hw->disable_polarity_correction = false; |
|
1239 hw->master_slave = E1000_MASTER_SLAVE; |
|
1240 } |
|
1241 |
|
1242 adapter->num_tx_queues = 1; |
|
1243 adapter->num_rx_queues = 1; |
|
1244 |
|
1245 if (e1000_alloc_queues(adapter)) { |
|
1246 e_err("Unable to allocate memory for queues\n"); |
|
1247 return -ENOMEM; |
|
1248 } |
|
1249 |
|
1250 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
1251 e1000_irq_disable(adapter); |
|
1252 |
|
1253 spin_lock_init(&adapter->stats_lock); |
|
1254 |
|
1255 set_bit(__E1000_DOWN, &adapter->flags); |
|
1256 |
|
1257 return 0; |
|
1258 } |
|
1259 |
|
1260 /** |
|
1261 * e1000_alloc_queues - Allocate memory for all rings |
|
1262 * @adapter: board private structure to initialize |
|
1263 * |
|
1264 * We allocate one ring per queue at run-time since we don't know the |
|
1265 * number of queues at compile-time. |
|
1266 **/ |
|
1267 |
|
1268 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1269 { |
|
1270 adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
|
1271 sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
1272 if (!adapter->tx_ring) |
|
1273 return -ENOMEM; |
|
1274 |
|
1275 adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
|
1276 sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
1277 if (!adapter->rx_ring) { |
|
1278 kfree(adapter->tx_ring); |
|
1279 return -ENOMEM; |
|
1280 } |
|
1281 |
|
1282 return E1000_SUCCESS; |
|
1283 } |
|
1284 |
|
1285 /** |
|
1286 * e1000_open - Called when a network interface is made active |
|
1287 * @netdev: network interface device structure |
|
1288 * |
|
1289 * Returns 0 on success, negative value on failure |
|
1290 * |
|
1291 * The open entry point is called when a network interface is made |
|
1292 * active by the system (IFF_UP). At this point all resources needed |
|
1293 * for transmit and receive operations are allocated, the interrupt |
|
1294 * handler is registered with the OS, the watchdog timer is started, |
|
1295 * and the stack is notified that the interface is ready. |
|
1296 **/ |
|
1297 |
|
1298 static int e1000_open(struct net_device *netdev) |
|
1299 { |
|
1300 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1301 struct e1000_hw *hw = &adapter->hw; |
|
1302 int err; |
|
1303 |
|
1304 /* disallow open during test */ |
|
1305 if (test_bit(__E1000_TESTING, &adapter->flags)) |
|
1306 return -EBUSY; |
|
1307 |
|
1308 netif_carrier_off(netdev); |
|
1309 |
|
1310 /* allocate transmit descriptors */ |
|
1311 err = e1000_setup_all_tx_resources(adapter); |
|
1312 if (err) |
|
1313 goto err_setup_tx; |
|
1314 |
|
1315 /* allocate receive descriptors */ |
|
1316 err = e1000_setup_all_rx_resources(adapter); |
|
1317 if (err) |
|
1318 goto err_setup_rx; |
|
1319 |
|
1320 e1000_power_up_phy(adapter); |
|
1321 |
|
1322 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
1323 if ((hw->mng_cookie.status & |
|
1324 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
|
1325 e1000_update_mng_vlan(adapter); |
|
1326 } |
|
1327 |
|
1328 /* before we allocate an interrupt, we must be ready to handle it. |
|
1329 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
1330 * as soon as we call pci_request_irq, so we have to setup our |
|
1331 * clean_rx handler before we do so. */ |
|
1332 e1000_configure(adapter); |
|
1333 |
|
1334 err = e1000_request_irq(adapter); |
|
1335 if (err) |
|
1336 goto err_req_irq; |
|
1337 |
|
1338 /* From here on the code is the same as e1000_up() */ |
|
1339 clear_bit(__E1000_DOWN, &adapter->flags); |
|
1340 |
|
1341 napi_enable(&adapter->napi); |
|
1342 |
|
1343 e1000_irq_enable(adapter); |
|
1344 |
|
1345 netif_start_queue(netdev); |
|
1346 |
|
1347 /* fire a link status change interrupt to start the watchdog */ |
|
1348 ew32(ICS, E1000_ICS_LSC); |
|
1349 |
|
1350 return E1000_SUCCESS; |
|
1351 |
|
1352 err_req_irq: |
|
1353 e1000_power_down_phy(adapter); |
|
1354 e1000_free_all_rx_resources(adapter); |
|
1355 err_setup_rx: |
|
1356 e1000_free_all_tx_resources(adapter); |
|
1357 err_setup_tx: |
|
1358 e1000_reset(adapter); |
|
1359 |
|
1360 return err; |
|
1361 } |
|
1362 |
|
1363 /** |
|
1364 * e1000_close - Disables a network interface |
|
1365 * @netdev: network interface device structure |
|
1366 * |
|
1367 * Returns 0, this is not allowed to fail |
|
1368 * |
|
1369 * The close entry point is called when an interface is de-activated |
|
1370 * by the OS. The hardware is still under the drivers control, but |
|
1371 * needs to be disabled. A global MAC reset is issued to stop the |
|
1372 * hardware, and all transmit and receive resources are freed. |
|
1373 **/ |
|
1374 |
|
1375 static int e1000_close(struct net_device *netdev) |
|
1376 { |
|
1377 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1378 struct e1000_hw *hw = &adapter->hw; |
|
1379 |
|
1380 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
1381 e1000_down(adapter); |
|
1382 e1000_power_down_phy(adapter); |
|
1383 e1000_free_irq(adapter); |
|
1384 |
|
1385 e1000_free_all_tx_resources(adapter); |
|
1386 e1000_free_all_rx_resources(adapter); |
|
1387 |
|
1388 /* kill manageability vlan ID if supported, but not if a vlan with |
|
1389 * the same ID is registered on the host OS (let 8021q kill it) */ |
|
1390 if ((hw->mng_cookie.status & |
|
1391 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
1392 !(adapter->vlgrp && |
|
1393 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { |
|
1394 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
1395 } |
|
1396 |
|
1397 return 0; |
|
1398 } |
|
1399 |
|
1400 /** |
|
1401 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
|
1402 * @adapter: address of board private structure |
|
1403 * @start: address of beginning of memory |
|
1404 * @len: length of memory |
|
1405 **/ |
|
1406 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
|
1407 unsigned long len) |
|
1408 { |
|
1409 struct e1000_hw *hw = &adapter->hw; |
|
1410 unsigned long begin = (unsigned long)start; |
|
1411 unsigned long end = begin + len; |
|
1412 |
|
1413 /* First rev 82545 and 82546 need to not allow any memory |
|
1414 * write location to cross 64k boundary due to errata 23 */ |
|
1415 if (hw->mac_type == e1000_82545 || |
|
1416 hw->mac_type == e1000_82546) { |
|
1417 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
|
1418 } |
|
1419 |
|
1420 return true; |
|
1421 } |
|
1422 |
|
1423 /** |
|
1424 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1425 * @adapter: board private structure |
|
1426 * @txdr: tx descriptor ring (for a specific queue) to setup |
|
1427 * |
|
1428 * Return 0 on success, negative on failure |
|
1429 **/ |
|
1430 |
|
1431 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
1432 struct e1000_tx_ring *txdr) |
|
1433 { |
|
1434 struct pci_dev *pdev = adapter->pdev; |
|
1435 int size; |
|
1436 |
|
1437 size = sizeof(struct e1000_buffer) * txdr->count; |
|
1438 txdr->buffer_info = vmalloc(size); |
|
1439 if (!txdr->buffer_info) { |
|
1440 e_err("Unable to allocate memory for the Tx descriptor ring\n"); |
|
1441 return -ENOMEM; |
|
1442 } |
|
1443 memset(txdr->buffer_info, 0, size); |
|
1444 |
|
1445 /* round up to nearest 4K */ |
|
1446 |
|
1447 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1448 txdr->size = ALIGN(txdr->size, 4096); |
|
1449 |
|
1450 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, |
|
1451 GFP_KERNEL); |
|
1452 if (!txdr->desc) { |
|
1453 setup_tx_desc_die: |
|
1454 vfree(txdr->buffer_info); |
|
1455 e_err("Unable to allocate memory for the Tx descriptor ring\n"); |
|
1456 return -ENOMEM; |
|
1457 } |
|
1458 |
|
1459 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1460 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1461 void *olddesc = txdr->desc; |
|
1462 dma_addr_t olddma = txdr->dma; |
|
1463 e_err("txdr align check failed: %u bytes at %p\n", |
|
1464 txdr->size, txdr->desc); |
|
1465 /* Try again, without freeing the previous */ |
|
1466 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, |
|
1467 &txdr->dma, GFP_KERNEL); |
|
1468 /* Failed allocation, critical failure */ |
|
1469 if (!txdr->desc) { |
|
1470 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1471 olddma); |
|
1472 goto setup_tx_desc_die; |
|
1473 } |
|
1474 |
|
1475 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1476 /* give up */ |
|
1477 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, |
|
1478 txdr->dma); |
|
1479 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1480 olddma); |
|
1481 e_err("Unable to allocate aligned memory " |
|
1482 "for the transmit descriptor ring\n"); |
|
1483 vfree(txdr->buffer_info); |
|
1484 return -ENOMEM; |
|
1485 } else { |
|
1486 /* Free old allocation, new allocation was successful */ |
|
1487 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1488 olddma); |
|
1489 } |
|
1490 } |
|
1491 memset(txdr->desc, 0, txdr->size); |
|
1492 |
|
1493 txdr->next_to_use = 0; |
|
1494 txdr->next_to_clean = 0; |
|
1495 |
|
1496 return 0; |
|
1497 } |
|
1498 |
|
1499 /** |
|
1500 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
|
1501 * (Descriptors) for all queues |
|
1502 * @adapter: board private structure |
|
1503 * |
|
1504 * Return 0 on success, negative on failure |
|
1505 **/ |
|
1506 |
|
1507 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
|
1508 { |
|
1509 int i, err = 0; |
|
1510 |
|
1511 for (i = 0; i < adapter->num_tx_queues; i++) { |
|
1512 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1513 if (err) { |
|
1514 e_err("Allocation for Tx Queue %u failed\n", i); |
|
1515 for (i-- ; i >= 0; i--) |
|
1516 e1000_free_tx_resources(adapter, |
|
1517 &adapter->tx_ring[i]); |
|
1518 break; |
|
1519 } |
|
1520 } |
|
1521 |
|
1522 return err; |
|
1523 } |
|
1524 |
|
1525 /** |
|
1526 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
1527 * @adapter: board private structure |
|
1528 * |
|
1529 * Configure the Tx unit of the MAC after a reset. |
|
1530 **/ |
|
1531 |
|
1532 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
1533 { |
|
1534 u64 tdba; |
|
1535 struct e1000_hw *hw = &adapter->hw; |
|
1536 u32 tdlen, tctl, tipg; |
|
1537 u32 ipgr1, ipgr2; |
|
1538 |
|
1539 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
1540 |
|
1541 switch (adapter->num_tx_queues) { |
|
1542 case 1: |
|
1543 default: |
|
1544 tdba = adapter->tx_ring[0].dma; |
|
1545 tdlen = adapter->tx_ring[0].count * |
|
1546 sizeof(struct e1000_tx_desc); |
|
1547 ew32(TDLEN, tdlen); |
|
1548 ew32(TDBAH, (tdba >> 32)); |
|
1549 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
|
1550 ew32(TDT, 0); |
|
1551 ew32(TDH, 0); |
|
1552 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); |
|
1553 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); |
|
1554 break; |
|
1555 } |
|
1556 |
|
1557 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
1558 if ((hw->media_type == e1000_media_type_fiber || |
|
1559 hw->media_type == e1000_media_type_internal_serdes)) |
|
1560 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
|
1561 else |
|
1562 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
|
1563 |
|
1564 switch (hw->mac_type) { |
|
1565 case e1000_82542_rev2_0: |
|
1566 case e1000_82542_rev2_1: |
|
1567 tipg = DEFAULT_82542_TIPG_IPGT; |
|
1568 ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
|
1569 ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
|
1570 break; |
|
1571 default: |
|
1572 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1573 ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
|
1574 break; |
|
1575 } |
|
1576 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
1577 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
1578 ew32(TIPG, tipg); |
|
1579 |
|
1580 /* Set the Tx Interrupt Delay register */ |
|
1581 |
|
1582 ew32(TIDV, adapter->tx_int_delay); |
|
1583 if (hw->mac_type >= e1000_82540) |
|
1584 ew32(TADV, adapter->tx_abs_int_delay); |
|
1585 |
|
1586 /* Program the Transmit Control Register */ |
|
1587 |
|
1588 tctl = er32(TCTL); |
|
1589 tctl &= ~E1000_TCTL_CT; |
|
1590 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
1591 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
1592 |
|
1593 e1000_config_collision_dist(hw); |
|
1594 |
|
1595 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
1596 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
1597 |
|
1598 /* only set IDE if we are delaying interrupts using the timers */ |
|
1599 if (adapter->tx_int_delay) |
|
1600 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
1601 |
|
1602 if (hw->mac_type < e1000_82543) |
|
1603 adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
|
1604 else |
|
1605 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
1606 |
|
1607 /* Cache if we're 82544 running in PCI-X because we'll |
|
1608 * need this to apply a workaround later in the send path. */ |
|
1609 if (hw->mac_type == e1000_82544 && |
|
1610 hw->bus_type == e1000_bus_type_pcix) |
|
1611 adapter->pcix_82544 = 1; |
|
1612 |
|
1613 ew32(TCTL, tctl); |
|
1614 |
|
1615 } |
|
1616 |
|
1617 /** |
|
1618 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1619 * @adapter: board private structure |
|
1620 * @rxdr: rx descriptor ring (for a specific queue) to setup |
|
1621 * |
|
1622 * Returns 0 on success, negative on failure |
|
1623 **/ |
|
1624 |
|
1625 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
1626 struct e1000_rx_ring *rxdr) |
|
1627 { |
|
1628 struct pci_dev *pdev = adapter->pdev; |
|
1629 int size, desc_len; |
|
1630 |
|
1631 size = sizeof(struct e1000_buffer) * rxdr->count; |
|
1632 rxdr->buffer_info = vmalloc(size); |
|
1633 if (!rxdr->buffer_info) { |
|
1634 e_err("Unable to allocate memory for the Rx descriptor ring\n"); |
|
1635 return -ENOMEM; |
|
1636 } |
|
1637 memset(rxdr->buffer_info, 0, size); |
|
1638 |
|
1639 desc_len = sizeof(struct e1000_rx_desc); |
|
1640 |
|
1641 /* Round up to nearest 4K */ |
|
1642 |
|
1643 rxdr->size = rxdr->count * desc_len; |
|
1644 rxdr->size = ALIGN(rxdr->size, 4096); |
|
1645 |
|
1646 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, |
|
1647 GFP_KERNEL); |
|
1648 |
|
1649 if (!rxdr->desc) { |
|
1650 e_err("Unable to allocate memory for the Rx descriptor ring\n"); |
|
1651 setup_rx_desc_die: |
|
1652 vfree(rxdr->buffer_info); |
|
1653 return -ENOMEM; |
|
1654 } |
|
1655 |
|
1656 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1657 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1658 void *olddesc = rxdr->desc; |
|
1659 dma_addr_t olddma = rxdr->dma; |
|
1660 e_err("rxdr align check failed: %u bytes at %p\n", |
|
1661 rxdr->size, rxdr->desc); |
|
1662 /* Try again, without freeing the previous */ |
|
1663 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, |
|
1664 &rxdr->dma, GFP_KERNEL); |
|
1665 /* Failed allocation, critical failure */ |
|
1666 if (!rxdr->desc) { |
|
1667 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1668 olddma); |
|
1669 e_err("Unable to allocate memory for the Rx descriptor " |
|
1670 "ring\n"); |
|
1671 goto setup_rx_desc_die; |
|
1672 } |
|
1673 |
|
1674 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1675 /* give up */ |
|
1676 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, |
|
1677 rxdr->dma); |
|
1678 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1679 olddma); |
|
1680 e_err("Unable to allocate aligned memory for the Rx " |
|
1681 "descriptor ring\n"); |
|
1682 goto setup_rx_desc_die; |
|
1683 } else { |
|
1684 /* Free old allocation, new allocation was successful */ |
|
1685 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1686 olddma); |
|
1687 } |
|
1688 } |
|
1689 memset(rxdr->desc, 0, rxdr->size); |
|
1690 |
|
1691 rxdr->next_to_clean = 0; |
|
1692 rxdr->next_to_use = 0; |
|
1693 rxdr->rx_skb_top = NULL; |
|
1694 |
|
1695 return 0; |
|
1696 } |
|
1697 |
|
1698 /** |
|
1699 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
|
1700 * (Descriptors) for all queues |
|
1701 * @adapter: board private structure |
|
1702 * |
|
1703 * Return 0 on success, negative on failure |
|
1704 **/ |
|
1705 |
|
1706 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
|
1707 { |
|
1708 int i, err = 0; |
|
1709 |
|
1710 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1711 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1712 if (err) { |
|
1713 e_err("Allocation for Rx Queue %u failed\n", i); |
|
1714 for (i-- ; i >= 0; i--) |
|
1715 e1000_free_rx_resources(adapter, |
|
1716 &adapter->rx_ring[i]); |
|
1717 break; |
|
1718 } |
|
1719 } |
|
1720 |
|
1721 return err; |
|
1722 } |
|
1723 |
|
1724 /** |
|
1725 * e1000_setup_rctl - configure the receive control registers |
|
1726 * @adapter: Board private structure |
|
1727 **/ |
|
1728 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
1729 { |
|
1730 struct e1000_hw *hw = &adapter->hw; |
|
1731 u32 rctl; |
|
1732 |
|
1733 rctl = er32(RCTL); |
|
1734 |
|
1735 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
1736 |
|
1737 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
1738 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1739 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1740 |
|
1741 if (hw->tbi_compatibility_on == 1) |
|
1742 rctl |= E1000_RCTL_SBP; |
|
1743 else |
|
1744 rctl &= ~E1000_RCTL_SBP; |
|
1745 |
|
1746 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
1747 rctl &= ~E1000_RCTL_LPE; |
|
1748 else |
|
1749 rctl |= E1000_RCTL_LPE; |
|
1750 |
|
1751 /* Setup buffer sizes */ |
|
1752 rctl &= ~E1000_RCTL_SZ_4096; |
|
1753 rctl |= E1000_RCTL_BSEX; |
|
1754 switch (adapter->rx_buffer_len) { |
|
1755 case E1000_RXBUFFER_2048: |
|
1756 default: |
|
1757 rctl |= E1000_RCTL_SZ_2048; |
|
1758 rctl &= ~E1000_RCTL_BSEX; |
|
1759 break; |
|
1760 case E1000_RXBUFFER_4096: |
|
1761 rctl |= E1000_RCTL_SZ_4096; |
|
1762 break; |
|
1763 case E1000_RXBUFFER_8192: |
|
1764 rctl |= E1000_RCTL_SZ_8192; |
|
1765 break; |
|
1766 case E1000_RXBUFFER_16384: |
|
1767 rctl |= E1000_RCTL_SZ_16384; |
|
1768 break; |
|
1769 } |
|
1770 |
|
1771 ew32(RCTL, rctl); |
|
1772 } |
|
1773 |
|
1774 /** |
|
1775 * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
|
1776 * @adapter: board private structure |
|
1777 * |
|
1778 * Configure the Rx unit of the MAC after a reset. |
|
1779 **/ |
|
1780 |
|
1781 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
1782 { |
|
1783 u64 rdba; |
|
1784 struct e1000_hw *hw = &adapter->hw; |
|
1785 u32 rdlen, rctl, rxcsum; |
|
1786 |
|
1787 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
1788 rdlen = adapter->rx_ring[0].count * |
|
1789 sizeof(struct e1000_rx_desc); |
|
1790 adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
|
1791 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
|
1792 } else { |
|
1793 rdlen = adapter->rx_ring[0].count * |
|
1794 sizeof(struct e1000_rx_desc); |
|
1795 adapter->clean_rx = e1000_clean_rx_irq; |
|
1796 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
1797 } |
|
1798 |
|
1799 /* disable receives while setting up the descriptors */ |
|
1800 rctl = er32(RCTL); |
|
1801 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1802 |
|
1803 /* set the Receive Delay Timer Register */ |
|
1804 ew32(RDTR, adapter->rx_int_delay); |
|
1805 |
|
1806 if (hw->mac_type >= e1000_82540) { |
|
1807 ew32(RADV, adapter->rx_abs_int_delay); |
|
1808 if (adapter->itr_setting != 0) |
|
1809 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
1810 } |
|
1811 |
|
1812 /* Setup the HW Rx Head and Tail Descriptor Pointers and |
|
1813 * the Base and Length of the Rx Descriptor Ring */ |
|
1814 switch (adapter->num_rx_queues) { |
|
1815 case 1: |
|
1816 default: |
|
1817 rdba = adapter->rx_ring[0].dma; |
|
1818 ew32(RDLEN, rdlen); |
|
1819 ew32(RDBAH, (rdba >> 32)); |
|
1820 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
|
1821 ew32(RDT, 0); |
|
1822 ew32(RDH, 0); |
|
1823 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); |
|
1824 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); |
|
1825 break; |
|
1826 } |
|
1827 |
|
1828 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
|
1829 if (hw->mac_type >= e1000_82543) { |
|
1830 rxcsum = er32(RXCSUM); |
|
1831 if (adapter->rx_csum) |
|
1832 rxcsum |= E1000_RXCSUM_TUOFL; |
|
1833 else |
|
1834 /* don't need to clear IPPCSE as it defaults to 0 */ |
|
1835 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
1836 ew32(RXCSUM, rxcsum); |
|
1837 } |
|
1838 |
|
1839 /* Enable Receives */ |
|
1840 ew32(RCTL, rctl); |
|
1841 } |
|
1842 |
|
1843 /** |
|
1844 * e1000_free_tx_resources - Free Tx Resources per Queue |
|
1845 * @adapter: board private structure |
|
1846 * @tx_ring: Tx descriptor ring for a specific queue |
|
1847 * |
|
1848 * Free all transmit software resources |
|
1849 **/ |
|
1850 |
|
1851 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
1852 struct e1000_tx_ring *tx_ring) |
|
1853 { |
|
1854 struct pci_dev *pdev = adapter->pdev; |
|
1855 |
|
1856 e1000_clean_tx_ring(adapter, tx_ring); |
|
1857 |
|
1858 vfree(tx_ring->buffer_info); |
|
1859 tx_ring->buffer_info = NULL; |
|
1860 |
|
1861 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
|
1862 tx_ring->dma); |
|
1863 |
|
1864 tx_ring->desc = NULL; |
|
1865 } |
|
1866 |
|
1867 /** |
|
1868 * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
|
1869 * @adapter: board private structure |
|
1870 * |
|
1871 * Free all transmit software resources |
|
1872 **/ |
|
1873 |
|
1874 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
|
1875 { |
|
1876 int i; |
|
1877 |
|
1878 for (i = 0; i < adapter->num_tx_queues; i++) |
|
1879 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1880 } |
|
1881 |
|
1882 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
|
1883 struct e1000_buffer *buffer_info) |
|
1884 { |
|
1885 if (adapter->ecdev) |
|
1886 return; |
|
1887 |
|
1888 if (buffer_info->dma) { |
|
1889 if (buffer_info->mapped_as_page) |
|
1890 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
|
1891 buffer_info->length, DMA_TO_DEVICE); |
|
1892 else |
|
1893 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
|
1894 buffer_info->length, |
|
1895 DMA_TO_DEVICE); |
|
1896 buffer_info->dma = 0; |
|
1897 } |
|
1898 if (buffer_info->skb) { |
|
1899 dev_kfree_skb_any(buffer_info->skb); |
|
1900 buffer_info->skb = NULL; |
|
1901 } |
|
1902 buffer_info->time_stamp = 0; |
|
1903 /* buffer_info must be completely set up in the transmit path */ |
|
1904 } |
|
1905 |
|
1906 /** |
|
1907 * e1000_clean_tx_ring - Free Tx Buffers |
|
1908 * @adapter: board private structure |
|
1909 * @tx_ring: ring to be cleaned |
|
1910 **/ |
|
1911 |
|
1912 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
1913 struct e1000_tx_ring *tx_ring) |
|
1914 { |
|
1915 struct e1000_hw *hw = &adapter->hw; |
|
1916 struct e1000_buffer *buffer_info; |
|
1917 unsigned long size; |
|
1918 unsigned int i; |
|
1919 |
|
1920 /* Free all the Tx ring sk_buffs */ |
|
1921 |
|
1922 for (i = 0; i < tx_ring->count; i++) { |
|
1923 buffer_info = &tx_ring->buffer_info[i]; |
|
1924 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
1925 } |
|
1926 |
|
1927 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
1928 memset(tx_ring->buffer_info, 0, size); |
|
1929 |
|
1930 /* Zero out the descriptor ring */ |
|
1931 |
|
1932 memset(tx_ring->desc, 0, tx_ring->size); |
|
1933 |
|
1934 tx_ring->next_to_use = 0; |
|
1935 tx_ring->next_to_clean = 0; |
|
1936 tx_ring->last_tx_tso = 0; |
|
1937 |
|
1938 writel(0, hw->hw_addr + tx_ring->tdh); |
|
1939 writel(0, hw->hw_addr + tx_ring->tdt); |
|
1940 } |
|
1941 |
|
1942 /** |
|
1943 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
|
1944 * @adapter: board private structure |
|
1945 **/ |
|
1946 |
|
1947 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
|
1948 { |
|
1949 int i; |
|
1950 |
|
1951 for (i = 0; i < adapter->num_tx_queues; i++) |
|
1952 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
|
1953 } |
|
1954 |
|
1955 /** |
|
1956 * e1000_free_rx_resources - Free Rx Resources |
|
1957 * @adapter: board private structure |
|
1958 * @rx_ring: ring to clean the resources from |
|
1959 * |
|
1960 * Free all receive software resources |
|
1961 **/ |
|
1962 |
|
1963 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
1964 struct e1000_rx_ring *rx_ring) |
|
1965 { |
|
1966 struct pci_dev *pdev = adapter->pdev; |
|
1967 |
|
1968 e1000_clean_rx_ring(adapter, rx_ring); |
|
1969 |
|
1970 vfree(rx_ring->buffer_info); |
|
1971 rx_ring->buffer_info = NULL; |
|
1972 |
|
1973 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
|
1974 rx_ring->dma); |
|
1975 |
|
1976 rx_ring->desc = NULL; |
|
1977 } |
|
1978 |
|
1979 /** |
|
1980 * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
|
1981 * @adapter: board private structure |
|
1982 * |
|
1983 * Free all receive software resources |
|
1984 **/ |
|
1985 |
|
1986 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
|
1987 { |
|
1988 int i; |
|
1989 |
|
1990 for (i = 0; i < adapter->num_rx_queues; i++) |
|
1991 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1992 } |
|
1993 |
|
1994 /** |
|
1995 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
1996 * @adapter: board private structure |
|
1997 * @rx_ring: ring to free buffers from |
|
1998 **/ |
|
1999 |
|
2000 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
2001 struct e1000_rx_ring *rx_ring) |
|
2002 { |
|
2003 struct e1000_hw *hw = &adapter->hw; |
|
2004 struct e1000_buffer *buffer_info; |
|
2005 struct pci_dev *pdev = adapter->pdev; |
|
2006 unsigned long size; |
|
2007 unsigned int i; |
|
2008 |
|
2009 /* Free all the Rx ring sk_buffs */ |
|
2010 for (i = 0; i < rx_ring->count; i++) { |
|
2011 buffer_info = &rx_ring->buffer_info[i]; |
|
2012 if (buffer_info->dma && |
|
2013 adapter->clean_rx == e1000_clean_rx_irq) { |
|
2014 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
2015 buffer_info->length, |
|
2016 DMA_FROM_DEVICE); |
|
2017 } else if (buffer_info->dma && |
|
2018 adapter->clean_rx == e1000_clean_jumbo_rx_irq) { |
|
2019 dma_unmap_page(&pdev->dev, buffer_info->dma, |
|
2020 buffer_info->length, |
|
2021 DMA_FROM_DEVICE); |
|
2022 } |
|
2023 |
|
2024 buffer_info->dma = 0; |
|
2025 if (buffer_info->page) { |
|
2026 put_page(buffer_info->page); |
|
2027 buffer_info->page = NULL; |
|
2028 } |
|
2029 if (buffer_info->skb) { |
|
2030 dev_kfree_skb(buffer_info->skb); |
|
2031 buffer_info->skb = NULL; |
|
2032 } |
|
2033 } |
|
2034 |
|
2035 /* there also may be some cached data from a chained receive */ |
|
2036 if (rx_ring->rx_skb_top) { |
|
2037 dev_kfree_skb(rx_ring->rx_skb_top); |
|
2038 rx_ring->rx_skb_top = NULL; |
|
2039 } |
|
2040 |
|
2041 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
2042 memset(rx_ring->buffer_info, 0, size); |
|
2043 |
|
2044 /* Zero out the descriptor ring */ |
|
2045 memset(rx_ring->desc, 0, rx_ring->size); |
|
2046 |
|
2047 rx_ring->next_to_clean = 0; |
|
2048 rx_ring->next_to_use = 0; |
|
2049 |
|
2050 writel(0, hw->hw_addr + rx_ring->rdh); |
|
2051 writel(0, hw->hw_addr + rx_ring->rdt); |
|
2052 } |
|
2053 |
|
2054 /** |
|
2055 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
|
2056 * @adapter: board private structure |
|
2057 **/ |
|
2058 |
|
2059 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
|
2060 { |
|
2061 int i; |
|
2062 |
|
2063 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2064 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
|
2065 } |
|
2066 |
|
2067 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
|
2068 * and memory write and invalidate disabled for certain operations |
|
2069 */ |
|
2070 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
|
2071 { |
|
2072 struct e1000_hw *hw = &adapter->hw; |
|
2073 struct net_device *netdev = adapter->netdev; |
|
2074 u32 rctl; |
|
2075 |
|
2076 e1000_pci_clear_mwi(hw); |
|
2077 |
|
2078 rctl = er32(RCTL); |
|
2079 rctl |= E1000_RCTL_RST; |
|
2080 ew32(RCTL, rctl); |
|
2081 E1000_WRITE_FLUSH(); |
|
2082 mdelay(5); |
|
2083 |
|
2084 if (!adapter->ecdev && netif_running(netdev)) |
|
2085 e1000_clean_all_rx_rings(adapter); |
|
2086 } |
|
2087 |
|
2088 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
|
2089 { |
|
2090 struct e1000_hw *hw = &adapter->hw; |
|
2091 struct net_device *netdev = adapter->netdev; |
|
2092 u32 rctl; |
|
2093 |
|
2094 rctl = er32(RCTL); |
|
2095 rctl &= ~E1000_RCTL_RST; |
|
2096 ew32(RCTL, rctl); |
|
2097 E1000_WRITE_FLUSH(); |
|
2098 mdelay(5); |
|
2099 |
|
2100 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
2101 e1000_pci_set_mwi(hw); |
|
2102 |
|
2103 if (!adapter->netdev && netif_running(netdev)) { |
|
2104 /* No need to loop, because 82542 supports only 1 queue */ |
|
2105 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
|
2106 e1000_configure_rx(adapter); |
|
2107 if (adapter->ecdev) { |
|
2108 /* fill rx ring completely! */ |
|
2109 adapter->alloc_rx_buf(adapter, ring, ring->count); |
|
2110 } else { |
|
2111 /* this one leaves the last ring element unallocated! */ |
|
2112 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
|
2113 } |
|
2114 |
|
2115 } |
|
2116 } |
|
2117 |
|
2118 /** |
|
2119 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
2120 * @netdev: network interface device structure |
|
2121 * @p: pointer to an address structure |
|
2122 * |
|
2123 * Returns 0 on success, negative on failure |
|
2124 **/ |
|
2125 |
|
2126 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
2127 { |
|
2128 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2129 struct e1000_hw *hw = &adapter->hw; |
|
2130 struct sockaddr *addr = p; |
|
2131 |
|
2132 if (!is_valid_ether_addr(addr->sa_data)) |
|
2133 return -EADDRNOTAVAIL; |
|
2134 |
|
2135 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2136 |
|
2137 if (hw->mac_type == e1000_82542_rev2_0) |
|
2138 e1000_enter_82542_rst(adapter); |
|
2139 |
|
2140 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2141 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
|
2142 |
|
2143 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2144 |
|
2145 if (hw->mac_type == e1000_82542_rev2_0) |
|
2146 e1000_leave_82542_rst(adapter); |
|
2147 |
|
2148 return 0; |
|
2149 } |
|
2150 |
|
2151 /** |
|
2152 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
|
2153 * @netdev: network interface device structure |
|
2154 * |
|
2155 * The set_rx_mode entry point is called whenever the unicast or multicast |
|
2156 * address lists or the network interface flags are updated. This routine is |
|
2157 * responsible for configuring the hardware for proper unicast, multicast, |
|
2158 * promiscuous mode, and all-multi behavior. |
|
2159 **/ |
|
2160 |
|
2161 static void e1000_set_rx_mode(struct net_device *netdev) |
|
2162 { |
|
2163 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2164 struct e1000_hw *hw = &adapter->hw; |
|
2165 struct netdev_hw_addr *ha; |
|
2166 bool use_uc = false; |
|
2167 u32 rctl; |
|
2168 u32 hash_value; |
|
2169 int i, rar_entries = E1000_RAR_ENTRIES; |
|
2170 int mta_reg_count = E1000_NUM_MTA_REGISTERS; |
|
2171 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); |
|
2172 |
|
2173 if (!mcarray) { |
|
2174 e_err("memory allocation failed\n"); |
|
2175 return; |
|
2176 } |
|
2177 |
|
2178 /* Check for Promiscuous and All Multicast modes */ |
|
2179 |
|
2180 rctl = er32(RCTL); |
|
2181 |
|
2182 if (netdev->flags & IFF_PROMISC) { |
|
2183 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2184 rctl &= ~E1000_RCTL_VFE; |
|
2185 } else { |
|
2186 if (netdev->flags & IFF_ALLMULTI) |
|
2187 rctl |= E1000_RCTL_MPE; |
|
2188 else |
|
2189 rctl &= ~E1000_RCTL_MPE; |
|
2190 /* Enable VLAN filter if there is a VLAN */ |
|
2191 if (adapter->vlgrp) |
|
2192 rctl |= E1000_RCTL_VFE; |
|
2193 } |
|
2194 |
|
2195 if (netdev_uc_count(netdev) > rar_entries - 1) { |
|
2196 rctl |= E1000_RCTL_UPE; |
|
2197 } else if (!(netdev->flags & IFF_PROMISC)) { |
|
2198 rctl &= ~E1000_RCTL_UPE; |
|
2199 use_uc = true; |
|
2200 } |
|
2201 |
|
2202 ew32(RCTL, rctl); |
|
2203 |
|
2204 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2205 |
|
2206 if (hw->mac_type == e1000_82542_rev2_0) |
|
2207 e1000_enter_82542_rst(adapter); |
|
2208 |
|
2209 /* load the first 14 addresses into the exact filters 1-14. Unicast |
|
2210 * addresses take precedence to avoid disabling unicast filtering |
|
2211 * when possible. |
|
2212 * |
|
2213 * RAR 0 is used for the station MAC adddress |
|
2214 * if there are not 14 addresses, go ahead and clear the filters |
|
2215 */ |
|
2216 i = 1; |
|
2217 if (use_uc) |
|
2218 netdev_for_each_uc_addr(ha, netdev) { |
|
2219 if (i == rar_entries) |
|
2220 break; |
|
2221 e1000_rar_set(hw, ha->addr, i++); |
|
2222 } |
|
2223 |
|
2224 netdev_for_each_mc_addr(ha, netdev) { |
|
2225 if (i == rar_entries) { |
|
2226 /* load any remaining addresses into the hash table */ |
|
2227 u32 hash_reg, hash_bit, mta; |
|
2228 hash_value = e1000_hash_mc_addr(hw, ha->addr); |
|
2229 hash_reg = (hash_value >> 5) & 0x7F; |
|
2230 hash_bit = hash_value & 0x1F; |
|
2231 mta = (1 << hash_bit); |
|
2232 mcarray[hash_reg] |= mta; |
|
2233 } else { |
|
2234 e1000_rar_set(hw, ha->addr, i++); |
|
2235 } |
|
2236 } |
|
2237 |
|
2238 for (; i < rar_entries; i++) { |
|
2239 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
|
2240 E1000_WRITE_FLUSH(); |
|
2241 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
|
2242 E1000_WRITE_FLUSH(); |
|
2243 } |
|
2244 |
|
2245 /* write the hash table completely, write from bottom to avoid |
|
2246 * both stupid write combining chipsets, and flushing each write */ |
|
2247 for (i = mta_reg_count - 1; i >= 0 ; i--) { |
|
2248 /* |
|
2249 * If we are on an 82544 has an errata where writing odd |
|
2250 * offsets overwrites the previous even offset, but writing |
|
2251 * backwards over the range solves the issue by always |
|
2252 * writing the odd offset first |
|
2253 */ |
|
2254 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); |
|
2255 } |
|
2256 E1000_WRITE_FLUSH(); |
|
2257 |
|
2258 if (hw->mac_type == e1000_82542_rev2_0) |
|
2259 e1000_leave_82542_rst(adapter); |
|
2260 |
|
2261 kfree(mcarray); |
|
2262 } |
|
2263 |
|
2264 /* Need to wait a few seconds after link up to get diagnostic information from |
|
2265 * the phy */ |
|
2266 |
|
2267 static void e1000_update_phy_info(unsigned long data) |
|
2268 { |
|
2269 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2270 struct e1000_hw *hw = &adapter->hw; |
|
2271 e1000_phy_get_info(hw, &adapter->phy_info); |
|
2272 } |
|
2273 |
|
2274 /** |
|
2275 * e1000_82547_tx_fifo_stall - Timer Call-back |
|
2276 * @data: pointer to adapter cast into an unsigned long |
|
2277 **/ |
|
2278 |
|
2279 static void e1000_82547_tx_fifo_stall(unsigned long data) |
|
2280 { |
|
2281 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2282 struct e1000_hw *hw = &adapter->hw; |
|
2283 struct net_device *netdev = adapter->netdev; |
|
2284 u32 tctl; |
|
2285 |
|
2286 if (atomic_read(&adapter->tx_fifo_stall)) { |
|
2287 if ((er32(TDT) == er32(TDH)) && |
|
2288 (er32(TDFT) == er32(TDFH)) && |
|
2289 (er32(TDFTS) == er32(TDFHS))) { |
|
2290 tctl = er32(TCTL); |
|
2291 ew32(TCTL, tctl & ~E1000_TCTL_EN); |
|
2292 ew32(TDFT, adapter->tx_head_addr); |
|
2293 ew32(TDFH, adapter->tx_head_addr); |
|
2294 ew32(TDFTS, adapter->tx_head_addr); |
|
2295 ew32(TDFHS, adapter->tx_head_addr); |
|
2296 ew32(TCTL, tctl); |
|
2297 E1000_WRITE_FLUSH(); |
|
2298 |
|
2299 adapter->tx_fifo_head = 0; |
|
2300 atomic_set(&adapter->tx_fifo_stall, 0); |
|
2301 if (!adapter->ecdev) |
|
2302 netif_wake_queue(netdev); |
|
2303 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { |
|
2304 if (!adapter->ecdev) |
|
2305 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
2306 } |
|
2307 } |
|
2308 } |
|
2309 |
|
2310 bool e1000_has_link(struct e1000_adapter *adapter) |
|
2311 { |
|
2312 struct e1000_hw *hw = &adapter->hw; |
|
2313 bool link_active = false; |
|
2314 |
|
2315 /* get_link_status is set on LSC (link status) interrupt or |
|
2316 * rx sequence error interrupt. get_link_status will stay |
|
2317 * false until the e1000_check_for_link establishes link |
|
2318 * for copper adapters ONLY |
|
2319 */ |
|
2320 switch (hw->media_type) { |
|
2321 case e1000_media_type_copper: |
|
2322 if (hw->get_link_status) { |
|
2323 e1000_check_for_link(hw); |
|
2324 link_active = !hw->get_link_status; |
|
2325 } else { |
|
2326 link_active = true; |
|
2327 } |
|
2328 break; |
|
2329 case e1000_media_type_fiber: |
|
2330 e1000_check_for_link(hw); |
|
2331 link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
|
2332 break; |
|
2333 case e1000_media_type_internal_serdes: |
|
2334 e1000_check_for_link(hw); |
|
2335 link_active = hw->serdes_has_link; |
|
2336 break; |
|
2337 default: |
|
2338 break; |
|
2339 } |
|
2340 |
|
2341 return link_active; |
|
2342 } |
|
2343 |
|
2344 /** |
|
2345 * e1000_watchdog - Timer Call-back |
|
2346 * @data: pointer to adapter cast into an unsigned long |
|
2347 **/ |
|
2348 static void e1000_watchdog(unsigned long data) |
|
2349 { |
|
2350 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2351 struct e1000_hw *hw = &adapter->hw; |
|
2352 struct net_device *netdev = adapter->netdev; |
|
2353 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
2354 u32 link, tctl; |
|
2355 |
|
2356 link = e1000_has_link(adapter); |
|
2357 if (!adapter->ecdev && (netif_carrier_ok(netdev)) && link) |
|
2358 goto link_up; |
|
2359 |
|
2360 if (link) { |
|
2361 if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) |
|
2362 || (!adapter->ecdev && !netif_carrier_ok(netdev))) { |
|
2363 u32 ctrl; |
|
2364 bool txb2b __attribute__ ((unused)) = true; |
|
2365 /* update snapshot of PHY registers on LSC */ |
|
2366 e1000_get_speed_and_duplex(hw, |
|
2367 &adapter->link_speed, |
|
2368 &adapter->link_duplex); |
|
2369 |
|
2370 ctrl = er32(CTRL); |
|
2371 pr_info("%s NIC Link is Up %d Mbps %s, " |
|
2372 "Flow Control: %s\n", |
|
2373 netdev->name, |
|
2374 adapter->link_speed, |
|
2375 adapter->link_duplex == FULL_DUPLEX ? |
|
2376 "Full Duplex" : "Half Duplex", |
|
2377 ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
|
2378 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
|
2379 E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
|
2380 E1000_CTRL_TFCE) ? "TX" : "None"))); |
|
2381 |
|
2382 /* adjust timeout factor according to speed/duplex */ |
|
2383 adapter->tx_timeout_factor = 1; |
|
2384 switch (adapter->link_speed) { |
|
2385 case SPEED_10: |
|
2386 txb2b = false; |
|
2387 adapter->tx_timeout_factor = 16; |
|
2388 break; |
|
2389 case SPEED_100: |
|
2390 txb2b = false; |
|
2391 /* maybe add some timeout factor ? */ |
|
2392 break; |
|
2393 } |
|
2394 |
|
2395 /* enable transmits in the hardware */ |
|
2396 tctl = er32(TCTL); |
|
2397 tctl |= E1000_TCTL_EN; |
|
2398 ew32(TCTL, tctl); |
|
2399 |
|
2400 if (adapter->ecdev) { |
|
2401 ecdev_set_link(adapter->ecdev, 1); |
|
2402 } else { |
|
2403 netif_carrier_on(netdev); |
|
2404 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2405 mod_timer(&adapter->phy_info_timer, |
|
2406 round_jiffies(jiffies + 2 * HZ)); |
|
2407 } |
|
2408 adapter->smartspeed = 0; |
|
2409 } |
|
2410 } else { |
|
2411 if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) |
|
2412 || (!adapter->ecdev && netif_carrier_ok(netdev))) { |
|
2413 adapter->link_speed = 0; |
|
2414 adapter->link_duplex = 0; |
|
2415 pr_info("%s NIC Link is Down\n", |
|
2416 netdev->name); |
|
2417 if (adapter->ecdev) { |
|
2418 ecdev_set_link(adapter->ecdev, 0); |
|
2419 } else { |
|
2420 netif_carrier_off(netdev); |
|
2421 |
|
2422 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2423 mod_timer(&adapter->phy_info_timer, |
|
2424 round_jiffies(jiffies + 2 * HZ)); |
|
2425 } |
|
2426 } |
|
2427 |
|
2428 e1000_smartspeed(adapter); |
|
2429 } |
|
2430 |
|
2431 link_up: |
|
2432 e1000_update_stats(adapter); |
|
2433 |
|
2434 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
2435 adapter->tpt_old = adapter->stats.tpt; |
|
2436 hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
2437 adapter->colc_old = adapter->stats.colc; |
|
2438 |
|
2439 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
|
2440 adapter->gorcl_old = adapter->stats.gorcl; |
|
2441 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
|
2442 adapter->gotcl_old = adapter->stats.gotcl; |
|
2443 |
|
2444 e1000_update_adaptive(hw); |
|
2445 |
|
2446 if (!adapter->ecdev && !netif_carrier_ok(netdev)) { |
|
2447 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
|
2448 /* We've lost link, so the controller stops DMA, |
|
2449 * but we've got queued Tx work that's never going |
|
2450 * to get done, so reset controller to flush Tx. |
|
2451 * (Do the reset outside of interrupt context). */ |
|
2452 adapter->tx_timeout_count++; |
|
2453 schedule_work(&adapter->reset_task); |
|
2454 /* return immediately since reset is imminent */ |
|
2455 return; |
|
2456 } |
|
2457 } |
|
2458 |
|
2459 /* Simple mode for Interrupt Throttle Rate (ITR) */ |
|
2460 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { |
|
2461 /* |
|
2462 * Symmetric Tx/Rx gets a reduced ITR=2000; |
|
2463 * Total asymmetrical Tx or Rx gets ITR=8000; |
|
2464 * everyone else is between 2000-8000. |
|
2465 */ |
|
2466 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; |
|
2467 u32 dif = (adapter->gotcl > adapter->gorcl ? |
|
2468 adapter->gotcl - adapter->gorcl : |
|
2469 adapter->gorcl - adapter->gotcl) / 10000; |
|
2470 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
|
2471 |
|
2472 ew32(ITR, 1000000000 / (itr * 256)); |
|
2473 } |
|
2474 |
|
2475 /* Cause software interrupt to ensure rx ring is cleaned */ |
|
2476 ew32(ICS, E1000_ICS_RXDMT0); |
|
2477 |
|
2478 /* Force detection of hung controller every watchdog period */ |
|
2479 if (!adapter->ecdev) |
|
2480 adapter->detect_tx_hung = true; |
|
2481 |
|
2482 /* Reset the timer */ |
|
2483 if (!adapter->ecdev) { |
|
2484 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2485 mod_timer(&adapter->watchdog_timer, |
|
2486 round_jiffies(jiffies + 2 * HZ)); |
|
2487 } |
|
2488 } |
|
2489 |
|
2490 enum latency_range { |
|
2491 lowest_latency = 0, |
|
2492 low_latency = 1, |
|
2493 bulk_latency = 2, |
|
2494 latency_invalid = 255 |
|
2495 }; |
|
2496 |
|
2497 /** |
|
2498 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2499 * @adapter: pointer to adapter |
|
2500 * @itr_setting: current adapter->itr |
|
2501 * @packets: the number of packets during this measurement interval |
|
2502 * @bytes: the number of bytes during this measurement interval |
|
2503 * |
|
2504 * Stores a new ITR value based on packets and byte |
|
2505 * counts during the last interrupt. The advantage of per interrupt |
|
2506 * computation is faster updates and more accurate ITR for the current |
|
2507 * traffic pattern. Constants in this function were computed |
|
2508 * based on theoretical maximum wire speed and thresholds were set based |
|
2509 * on testing data as well as attempting to minimize response time |
|
2510 * while increasing bulk throughput. |
|
2511 * this functionality is controlled by the InterruptThrottleRate module |
|
2512 * parameter (see e1000_param.c) |
|
2513 **/ |
|
2514 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2515 u16 itr_setting, int packets, int bytes) |
|
2516 { |
|
2517 unsigned int retval = itr_setting; |
|
2518 struct e1000_hw *hw = &adapter->hw; |
|
2519 |
|
2520 if (unlikely(hw->mac_type < e1000_82540)) |
|
2521 goto update_itr_done; |
|
2522 |
|
2523 if (packets == 0) |
|
2524 goto update_itr_done; |
|
2525 |
|
2526 switch (itr_setting) { |
|
2527 case lowest_latency: |
|
2528 /* jumbo frames get bulk treatment*/ |
|
2529 if (bytes/packets > 8000) |
|
2530 retval = bulk_latency; |
|
2531 else if ((packets < 5) && (bytes > 512)) |
|
2532 retval = low_latency; |
|
2533 break; |
|
2534 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2535 if (bytes > 10000) { |
|
2536 /* jumbo frames need bulk latency setting */ |
|
2537 if (bytes/packets > 8000) |
|
2538 retval = bulk_latency; |
|
2539 else if ((packets < 10) || ((bytes/packets) > 1200)) |
|
2540 retval = bulk_latency; |
|
2541 else if ((packets > 35)) |
|
2542 retval = lowest_latency; |
|
2543 } else if (bytes/packets > 2000) |
|
2544 retval = bulk_latency; |
|
2545 else if (packets <= 2 && bytes < 512) |
|
2546 retval = lowest_latency; |
|
2547 break; |
|
2548 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2549 if (bytes > 25000) { |
|
2550 if (packets > 35) |
|
2551 retval = low_latency; |
|
2552 } else if (bytes < 6000) { |
|
2553 retval = low_latency; |
|
2554 } |
|
2555 break; |
|
2556 } |
|
2557 |
|
2558 update_itr_done: |
|
2559 return retval; |
|
2560 } |
|
2561 |
|
2562 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2563 { |
|
2564 struct e1000_hw *hw = &adapter->hw; |
|
2565 u16 current_itr; |
|
2566 u32 new_itr = adapter->itr; |
|
2567 |
|
2568 if (unlikely(hw->mac_type < e1000_82540)) |
|
2569 return; |
|
2570 |
|
2571 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2572 if (unlikely(adapter->link_speed != SPEED_1000)) { |
|
2573 current_itr = 0; |
|
2574 new_itr = 4000; |
|
2575 goto set_itr_now; |
|
2576 } |
|
2577 |
|
2578 adapter->tx_itr = e1000_update_itr(adapter, |
|
2579 adapter->tx_itr, |
|
2580 adapter->total_tx_packets, |
|
2581 adapter->total_tx_bytes); |
|
2582 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2583 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2584 adapter->tx_itr = low_latency; |
|
2585 |
|
2586 adapter->rx_itr = e1000_update_itr(adapter, |
|
2587 adapter->rx_itr, |
|
2588 adapter->total_rx_packets, |
|
2589 adapter->total_rx_bytes); |
|
2590 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2591 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2592 adapter->rx_itr = low_latency; |
|
2593 |
|
2594 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2595 |
|
2596 switch (current_itr) { |
|
2597 /* counts and packets in update_itr are dependent on these numbers */ |
|
2598 case lowest_latency: |
|
2599 new_itr = 70000; |
|
2600 break; |
|
2601 case low_latency: |
|
2602 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2603 break; |
|
2604 case bulk_latency: |
|
2605 new_itr = 4000; |
|
2606 break; |
|
2607 default: |
|
2608 break; |
|
2609 } |
|
2610 |
|
2611 set_itr_now: |
|
2612 if (new_itr != adapter->itr) { |
|
2613 /* this attempts to bias the interrupt rate towards Bulk |
|
2614 * by adding intermediate steps when interrupt rate is |
|
2615 * increasing */ |
|
2616 new_itr = new_itr > adapter->itr ? |
|
2617 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2618 new_itr; |
|
2619 adapter->itr = new_itr; |
|
2620 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2621 } |
|
2622 } |
|
2623 |
|
2624 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
2625 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
2626 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
2627 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
2628 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
2629 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
2630 |
|
2631 static int e1000_tso(struct e1000_adapter *adapter, |
|
2632 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2633 { |
|
2634 struct e1000_context_desc *context_desc; |
|
2635 struct e1000_buffer *buffer_info; |
|
2636 unsigned int i; |
|
2637 u32 cmd_length = 0; |
|
2638 u16 ipcse = 0, tucse, mss; |
|
2639 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
2640 int err; |
|
2641 |
|
2642 if (skb_is_gso(skb)) { |
|
2643 if (skb_header_cloned(skb)) { |
|
2644 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
2645 if (err) |
|
2646 return err; |
|
2647 } |
|
2648 |
|
2649 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
2650 mss = skb_shinfo(skb)->gso_size; |
|
2651 if (skb->protocol == htons(ETH_P_IP)) { |
|
2652 struct iphdr *iph = ip_hdr(skb); |
|
2653 iph->tot_len = 0; |
|
2654 iph->check = 0; |
|
2655 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
2656 iph->daddr, 0, |
|
2657 IPPROTO_TCP, |
|
2658 0); |
|
2659 cmd_length = E1000_TXD_CMD_IP; |
|
2660 ipcse = skb_transport_offset(skb) - 1; |
|
2661 } else if (skb->protocol == htons(ETH_P_IPV6)) { |
|
2662 ipv6_hdr(skb)->payload_len = 0; |
|
2663 tcp_hdr(skb)->check = |
|
2664 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
2665 &ipv6_hdr(skb)->daddr, |
|
2666 0, IPPROTO_TCP, 0); |
|
2667 ipcse = 0; |
|
2668 } |
|
2669 ipcss = skb_network_offset(skb); |
|
2670 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
2671 tucss = skb_transport_offset(skb); |
|
2672 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
2673 tucse = 0; |
|
2674 |
|
2675 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
2676 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
2677 |
|
2678 i = tx_ring->next_to_use; |
|
2679 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2680 buffer_info = &tx_ring->buffer_info[i]; |
|
2681 |
|
2682 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
2683 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
2684 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
2685 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
2686 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
2687 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
2688 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
2689 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
2690 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
2691 |
|
2692 buffer_info->time_stamp = jiffies; |
|
2693 buffer_info->next_to_watch = i; |
|
2694 |
|
2695 if (++i == tx_ring->count) i = 0; |
|
2696 tx_ring->next_to_use = i; |
|
2697 |
|
2698 return true; |
|
2699 } |
|
2700 return false; |
|
2701 } |
|
2702 |
|
2703 static bool e1000_tx_csum(struct e1000_adapter *adapter, |
|
2704 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2705 { |
|
2706 struct e1000_context_desc *context_desc; |
|
2707 struct e1000_buffer *buffer_info; |
|
2708 unsigned int i; |
|
2709 u8 css; |
|
2710 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
2711 |
|
2712 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
2713 return false; |
|
2714 |
|
2715 switch (skb->protocol) { |
|
2716 case cpu_to_be16(ETH_P_IP): |
|
2717 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
2718 cmd_len |= E1000_TXD_CMD_TCP; |
|
2719 break; |
|
2720 case cpu_to_be16(ETH_P_IPV6): |
|
2721 /* XXX not handling all IPV6 headers */ |
|
2722 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
2723 cmd_len |= E1000_TXD_CMD_TCP; |
|
2724 break; |
|
2725 default: |
|
2726 if (unlikely(net_ratelimit())) |
|
2727 e_warn("checksum_partial proto=%x!\n", skb->protocol); |
|
2728 break; |
|
2729 } |
|
2730 |
|
2731 css = skb_transport_offset(skb); |
|
2732 |
|
2733 i = tx_ring->next_to_use; |
|
2734 buffer_info = &tx_ring->buffer_info[i]; |
|
2735 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2736 |
|
2737 context_desc->lower_setup.ip_config = 0; |
|
2738 context_desc->upper_setup.tcp_fields.tucss = css; |
|
2739 context_desc->upper_setup.tcp_fields.tucso = |
|
2740 css + skb->csum_offset; |
|
2741 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
2742 context_desc->tcp_seg_setup.data = 0; |
|
2743 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
2744 |
|
2745 buffer_info->time_stamp = jiffies; |
|
2746 buffer_info->next_to_watch = i; |
|
2747 |
|
2748 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2749 tx_ring->next_to_use = i; |
|
2750 |
|
2751 return true; |
|
2752 } |
|
2753 |
|
2754 #define E1000_MAX_TXD_PWR 12 |
|
2755 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
|
2756 |
|
2757 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
2758 struct e1000_tx_ring *tx_ring, |
|
2759 struct sk_buff *skb, unsigned int first, |
|
2760 unsigned int max_per_txd, unsigned int nr_frags, |
|
2761 unsigned int mss) |
|
2762 { |
|
2763 struct e1000_hw *hw = &adapter->hw; |
|
2764 struct pci_dev *pdev = adapter->pdev; |
|
2765 struct e1000_buffer *buffer_info; |
|
2766 unsigned int len = skb_headlen(skb); |
|
2767 unsigned int offset = 0, size, count = 0, i; |
|
2768 unsigned int f; |
|
2769 |
|
2770 i = tx_ring->next_to_use; |
|
2771 |
|
2772 while (len) { |
|
2773 buffer_info = &tx_ring->buffer_info[i]; |
|
2774 size = min(len, max_per_txd); |
|
2775 /* Workaround for Controller erratum -- |
|
2776 * descriptor for non-tso packet in a linear SKB that follows a |
|
2777 * tso gets written back prematurely before the data is fully |
|
2778 * DMA'd to the controller */ |
|
2779 if (!skb->data_len && tx_ring->last_tx_tso && |
|
2780 !skb_is_gso(skb)) { |
|
2781 tx_ring->last_tx_tso = 0; |
|
2782 size -= 4; |
|
2783 } |
|
2784 |
|
2785 /* Workaround for premature desc write-backs |
|
2786 * in TSO mode. Append 4-byte sentinel desc */ |
|
2787 if (unlikely(mss && !nr_frags && size == len && size > 8)) |
|
2788 size -= 4; |
|
2789 /* work-around for errata 10 and it applies |
|
2790 * to all controllers in PCI-X mode |
|
2791 * The fix is to make sure that the first descriptor of a |
|
2792 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
|
2793 */ |
|
2794 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
2795 (size > 2015) && count == 0)) |
|
2796 size = 2015; |
|
2797 |
|
2798 /* Workaround for potential 82544 hang in PCI-X. Avoid |
|
2799 * terminating buffers within evenly-aligned dwords. */ |
|
2800 if (unlikely(adapter->pcix_82544 && |
|
2801 !((unsigned long)(skb->data + offset + size - 1) & 4) && |
|
2802 size > 4)) |
|
2803 size -= 4; |
|
2804 |
|
2805 buffer_info->length = size; |
|
2806 /* set time_stamp *before* dma to help avoid a possible race */ |
|
2807 buffer_info->time_stamp = jiffies; |
|
2808 buffer_info->mapped_as_page = false; |
|
2809 buffer_info->dma = dma_map_single(&pdev->dev, |
|
2810 skb->data + offset, |
|
2811 size, DMA_TO_DEVICE); |
|
2812 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
2813 goto dma_error; |
|
2814 buffer_info->next_to_watch = i; |
|
2815 |
|
2816 len -= size; |
|
2817 offset += size; |
|
2818 count++; |
|
2819 if (len) { |
|
2820 i++; |
|
2821 if (unlikely(i == tx_ring->count)) |
|
2822 i = 0; |
|
2823 } |
|
2824 } |
|
2825 |
|
2826 for (f = 0; f < nr_frags; f++) { |
|
2827 struct skb_frag_struct *frag; |
|
2828 |
|
2829 frag = &skb_shinfo(skb)->frags[f]; |
|
2830 len = frag->size; |
|
2831 offset = frag->page_offset; |
|
2832 |
|
2833 while (len) { |
|
2834 i++; |
|
2835 if (unlikely(i == tx_ring->count)) |
|
2836 i = 0; |
|
2837 |
|
2838 buffer_info = &tx_ring->buffer_info[i]; |
|
2839 size = min(len, max_per_txd); |
|
2840 /* Workaround for premature desc write-backs |
|
2841 * in TSO mode. Append 4-byte sentinel desc */ |
|
2842 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) |
|
2843 size -= 4; |
|
2844 /* Workaround for potential 82544 hang in PCI-X. |
|
2845 * Avoid terminating buffers within evenly-aligned |
|
2846 * dwords. */ |
|
2847 if (unlikely(adapter->pcix_82544 && |
|
2848 !((unsigned long)(page_to_phys(frag->page) + offset |
|
2849 + size - 1) & 4) && |
|
2850 size > 4)) |
|
2851 size -= 4; |
|
2852 |
|
2853 buffer_info->length = size; |
|
2854 buffer_info->time_stamp = jiffies; |
|
2855 buffer_info->mapped_as_page = true; |
|
2856 buffer_info->dma = dma_map_page(&pdev->dev, frag->page, |
|
2857 offset, size, |
|
2858 DMA_TO_DEVICE); |
|
2859 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
2860 goto dma_error; |
|
2861 buffer_info->next_to_watch = i; |
|
2862 |
|
2863 len -= size; |
|
2864 offset += size; |
|
2865 count++; |
|
2866 } |
|
2867 } |
|
2868 |
|
2869 tx_ring->buffer_info[i].skb = skb; |
|
2870 tx_ring->buffer_info[first].next_to_watch = i; |
|
2871 |
|
2872 return count; |
|
2873 |
|
2874 dma_error: |
|
2875 dev_err(&pdev->dev, "TX DMA map failed\n"); |
|
2876 buffer_info->dma = 0; |
|
2877 if (count) |
|
2878 count--; |
|
2879 |
|
2880 while (count--) { |
|
2881 if (i==0) |
|
2882 i += tx_ring->count; |
|
2883 i--; |
|
2884 buffer_info = &tx_ring->buffer_info[i]; |
|
2885 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
2886 } |
|
2887 |
|
2888 return 0; |
|
2889 } |
|
2890 |
|
2891 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
2892 struct e1000_tx_ring *tx_ring, int tx_flags, |
|
2893 int count) |
|
2894 { |
|
2895 struct e1000_hw *hw = &adapter->hw; |
|
2896 struct e1000_tx_desc *tx_desc = NULL; |
|
2897 struct e1000_buffer *buffer_info; |
|
2898 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
2899 unsigned int i; |
|
2900 |
|
2901 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
|
2902 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
2903 E1000_TXD_CMD_TSE; |
|
2904 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
2905 |
|
2906 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
|
2907 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
2908 } |
|
2909 |
|
2910 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
|
2911 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
2912 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
2913 } |
|
2914 |
|
2915 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
|
2916 txd_lower |= E1000_TXD_CMD_VLE; |
|
2917 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
2918 } |
|
2919 |
|
2920 i = tx_ring->next_to_use; |
|
2921 |
|
2922 while (count--) { |
|
2923 buffer_info = &tx_ring->buffer_info[i]; |
|
2924 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
2925 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
2926 tx_desc->lower.data = |
|
2927 cpu_to_le32(txd_lower | buffer_info->length); |
|
2928 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
2929 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2930 } |
|
2931 |
|
2932 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
2933 |
|
2934 /* Force memory writes to complete before letting h/w |
|
2935 * know there are new descriptors to fetch. (Only |
|
2936 * applicable for weak-ordered memory model archs, |
|
2937 * such as IA-64). */ |
|
2938 wmb(); |
|
2939 |
|
2940 tx_ring->next_to_use = i; |
|
2941 writel(i, hw->hw_addr + tx_ring->tdt); |
|
2942 /* we need this if more than one processor can write to our tail |
|
2943 * at a time, it syncronizes IO on IA64/Altix systems */ |
|
2944 mmiowb(); |
|
2945 } |
|
2946 |
|
2947 /** |
|
2948 * 82547 workaround to avoid controller hang in half-duplex environment. |
|
2949 * The workaround is to avoid queuing a large packet that would span |
|
2950 * the internal Tx FIFO ring boundary by notifying the stack to resend |
|
2951 * the packet at a later time. This gives the Tx FIFO an opportunity to |
|
2952 * flush all packets. When that occurs, we reset the Tx FIFO pointers |
|
2953 * to the beginning of the Tx FIFO. |
|
2954 **/ |
|
2955 |
|
2956 #define E1000_FIFO_HDR 0x10 |
|
2957 #define E1000_82547_PAD_LEN 0x3E0 |
|
2958 |
|
2959 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
2960 struct sk_buff *skb) |
|
2961 { |
|
2962 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
|
2963 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
|
2964 |
|
2965 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
|
2966 |
|
2967 if (adapter->link_duplex != HALF_DUPLEX) |
|
2968 goto no_fifo_stall_required; |
|
2969 |
|
2970 if (atomic_read(&adapter->tx_fifo_stall)) |
|
2971 return 1; |
|
2972 |
|
2973 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
|
2974 atomic_set(&adapter->tx_fifo_stall, 1); |
|
2975 return 1; |
|
2976 } |
|
2977 |
|
2978 no_fifo_stall_required: |
|
2979 adapter->tx_fifo_head += skb_fifo_len; |
|
2980 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
|
2981 adapter->tx_fifo_head -= adapter->tx_fifo_size; |
|
2982 return 0; |
|
2983 } |
|
2984 |
|
2985 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
2986 { |
|
2987 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2988 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
2989 |
|
2990 netif_stop_queue(netdev); |
|
2991 /* Herbert's original patch had: |
|
2992 * smp_mb__after_netif_stop_queue(); |
|
2993 * but since that doesn't exist yet, just open code it. */ |
|
2994 smp_mb(); |
|
2995 |
|
2996 /* We need to check again in a case another CPU has just |
|
2997 * made room available. */ |
|
2998 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
|
2999 return -EBUSY; |
|
3000 |
|
3001 /* A reprieve! */ |
|
3002 netif_start_queue(netdev); |
|
3003 ++adapter->restart_queue; |
|
3004 return 0; |
|
3005 } |
|
3006 |
|
3007 static int e1000_maybe_stop_tx(struct net_device *netdev, |
|
3008 struct e1000_tx_ring *tx_ring, int size) |
|
3009 { |
|
3010 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
|
3011 return 0; |
|
3012 return __e1000_maybe_stop_tx(netdev, size); |
|
3013 } |
|
3014 |
|
3015 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
3016 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
3017 struct net_device *netdev) |
|
3018 { |
|
3019 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3020 struct e1000_hw *hw = &adapter->hw; |
|
3021 struct e1000_tx_ring *tx_ring; |
|
3022 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
|
3023 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
3024 unsigned int tx_flags = 0; |
|
3025 unsigned int len = skb_headlen(skb); |
|
3026 unsigned int nr_frags; |
|
3027 unsigned int mss; |
|
3028 int count = 0; |
|
3029 int tso; |
|
3030 unsigned int f; |
|
3031 |
|
3032 /* This goes back to the question of how to logically map a tx queue |
|
3033 * to a flow. Right now, performance is impacted slightly negatively |
|
3034 * if using multiple tx queues. If the stack breaks away from a |
|
3035 * single qdisc implementation, we can look at this again. */ |
|
3036 tx_ring = adapter->tx_ring; |
|
3037 |
|
3038 if (unlikely(skb->len <= 0)) { |
|
3039 if (!adapter->ecdev) |
|
3040 dev_kfree_skb_any(skb); |
|
3041 return NETDEV_TX_OK; |
|
3042 } |
|
3043 |
|
3044 mss = skb_shinfo(skb)->gso_size; |
|
3045 /* The controller does a simple calculation to |
|
3046 * make sure there is enough room in the FIFO before |
|
3047 * initiating the DMA for each buffer. The calc is: |
|
3048 * 4 = ceil(buffer len/mss). To make sure we don't |
|
3049 * overrun the FIFO, adjust the max buffer len if mss |
|
3050 * drops. */ |
|
3051 if (mss) { |
|
3052 u8 hdr_len; |
|
3053 max_per_txd = min(mss << 2, max_per_txd); |
|
3054 max_txd_pwr = fls(max_per_txd) - 1; |
|
3055 |
|
3056 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3057 if (skb->data_len && hdr_len == len) { |
|
3058 switch (hw->mac_type) { |
|
3059 unsigned int pull_size; |
|
3060 case e1000_82544: |
|
3061 /* Make sure we have room to chop off 4 bytes, |
|
3062 * and that the end alignment will work out to |
|
3063 * this hardware's requirements |
|
3064 * NOTE: this is a TSO only workaround |
|
3065 * if end byte alignment not correct move us |
|
3066 * into the next dword */ |
|
3067 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) |
|
3068 break; |
|
3069 /* fall through */ |
|
3070 pull_size = min((unsigned int)4, skb->data_len); |
|
3071 if (!__pskb_pull_tail(skb, pull_size)) { |
|
3072 e_err("__pskb_pull_tail failed.\n"); |
|
3073 dev_kfree_skb_any(skb); |
|
3074 return NETDEV_TX_OK; |
|
3075 } |
|
3076 len = skb_headlen(skb); |
|
3077 break; |
|
3078 default: |
|
3079 /* do nothing */ |
|
3080 break; |
|
3081 } |
|
3082 } |
|
3083 } |
|
3084 |
|
3085 /* reserve a descriptor for the offload context */ |
|
3086 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
3087 count++; |
|
3088 count++; |
|
3089 |
|
3090 /* Controller Erratum workaround */ |
|
3091 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
|
3092 count++; |
|
3093 |
|
3094 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
3095 |
|
3096 if (adapter->pcix_82544) |
|
3097 count++; |
|
3098 |
|
3099 /* work-around for errata 10 and it applies to all controllers |
|
3100 * in PCI-X mode, so add one more descriptor to the count |
|
3101 */ |
|
3102 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3103 (len > 2015))) |
|
3104 count++; |
|
3105 |
|
3106 nr_frags = skb_shinfo(skb)->nr_frags; |
|
3107 for (f = 0; f < nr_frags; f++) |
|
3108 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
3109 max_txd_pwr); |
|
3110 if (adapter->pcix_82544) |
|
3111 count += nr_frags; |
|
3112 |
|
3113 /* need: count + 2 desc gap to keep tail from touching |
|
3114 * head, otherwise try next time */ |
|
3115 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) |
|
3116 return NETDEV_TX_BUSY; |
|
3117 |
|
3118 if (unlikely(hw->mac_type == e1000_82547)) { |
|
3119 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { |
|
3120 if (!adapter->ecdev) { |
|
3121 netif_stop_queue(netdev); |
|
3122 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3123 mod_timer(&adapter->tx_fifo_stall_timer, |
|
3124 jiffies + 1); |
|
3125 } |
|
3126 return NETDEV_TX_BUSY; |
|
3127 } |
|
3128 } |
|
3129 |
|
3130 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { |
|
3131 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
3132 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
3133 } |
|
3134 |
|
3135 first = tx_ring->next_to_use; |
|
3136 |
|
3137 tso = e1000_tso(adapter, tx_ring, skb); |
|
3138 if (tso < 0) { |
|
3139 if (!adapter->ecdev) { |
|
3140 dev_kfree_skb_any(skb); |
|
3141 } |
|
3142 return NETDEV_TX_OK; |
|
3143 } |
|
3144 |
|
3145 if (likely(tso)) { |
|
3146 if (likely(hw->mac_type != e1000_82544)) |
|
3147 tx_ring->last_tx_tso = 1; |
|
3148 tx_flags |= E1000_TX_FLAGS_TSO; |
|
3149 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
|
3150 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
3151 |
|
3152 if (likely(skb->protocol == htons(ETH_P_IP))) |
|
3153 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
3154 |
|
3155 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, |
|
3156 nr_frags, mss); |
|
3157 |
|
3158 if (count) { |
|
3159 e1000_tx_queue(adapter, tx_ring, tx_flags, count); |
|
3160 if (!adapter->ecdev) { |
|
3161 /* Make sure there is space in the ring for the next send. */ |
|
3162 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
|
3163 } |
|
3164 |
|
3165 } else { |
|
3166 if (!adapter->ecdev) |
|
3167 dev_kfree_skb_any(skb); |
|
3168 tx_ring->buffer_info[first].time_stamp = 0; |
|
3169 tx_ring->next_to_use = first; |
|
3170 } |
|
3171 |
|
3172 return NETDEV_TX_OK; |
|
3173 } |
|
3174 |
|
3175 /** |
|
3176 * e1000_tx_timeout - Respond to a Tx Hang |
|
3177 * @netdev: network interface device structure |
|
3178 **/ |
|
3179 |
|
3180 static void e1000_tx_timeout(struct net_device *netdev) |
|
3181 { |
|
3182 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3183 |
|
3184 /* Do the reset outside of interrupt context */ |
|
3185 adapter->tx_timeout_count++; |
|
3186 schedule_work(&adapter->reset_task); |
|
3187 } |
|
3188 |
|
3189 static void e1000_reset_task(struct work_struct *work) |
|
3190 { |
|
3191 struct e1000_adapter *adapter = |
|
3192 container_of(work, struct e1000_adapter, reset_task); |
|
3193 |
|
3194 e1000_reinit_locked(adapter); |
|
3195 } |
|
3196 |
|
3197 /** |
|
3198 * e1000_get_stats - Get System Network Statistics |
|
3199 * @netdev: network interface device structure |
|
3200 * |
|
3201 * Returns the address of the device statistics structure. |
|
3202 * The statistics are actually updated from the timer callback. |
|
3203 **/ |
|
3204 |
|
3205 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
3206 { |
|
3207 /* only return the current stats */ |
|
3208 return &netdev->stats; |
|
3209 } |
|
3210 |
|
3211 /** |
|
3212 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
3213 * @netdev: network interface device structure |
|
3214 * @new_mtu: new value for maximum frame size |
|
3215 * |
|
3216 * Returns 0 on success, negative on failure |
|
3217 **/ |
|
3218 |
|
3219 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
3220 { |
|
3221 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3222 struct e1000_hw *hw = &adapter->hw; |
|
3223 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
3224 |
|
3225 if (adapter->ecdev) |
|
3226 return -EBUSY; |
|
3227 |
|
3228 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
|
3229 (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
|
3230 e_err("Invalid MTU setting\n"); |
|
3231 return -EINVAL; |
|
3232 } |
|
3233 |
|
3234 /* Adapter-specific max frame size limits. */ |
|
3235 switch (hw->mac_type) { |
|
3236 case e1000_undefined ... e1000_82542_rev2_1: |
|
3237 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { |
|
3238 e_err("Jumbo Frames not supported.\n"); |
|
3239 return -EINVAL; |
|
3240 } |
|
3241 break; |
|
3242 default: |
|
3243 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
|
3244 break; |
|
3245 } |
|
3246 |
|
3247 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
3248 msleep(1); |
|
3249 /* e1000_down has a dependency on max_frame_size */ |
|
3250 hw->max_frame_size = max_frame; |
|
3251 if (netif_running(netdev)) |
|
3252 e1000_down(adapter); |
|
3253 |
|
3254 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
3255 * means we reserve 2 more, this pushes us to allocate from the next |
|
3256 * larger slab size. |
|
3257 * i.e. RXBUFFER_2048 --> size-4096 slab |
|
3258 * however with the new *_jumbo_rx* routines, jumbo receives will use |
|
3259 * fragmented skbs */ |
|
3260 |
|
3261 if (max_frame <= E1000_RXBUFFER_2048) |
|
3262 adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
|
3263 else |
|
3264 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) |
|
3265 adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
|
3266 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) |
|
3267 adapter->rx_buffer_len = PAGE_SIZE; |
|
3268 #endif |
|
3269 |
|
3270 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
3271 if (!hw->tbi_compatibility_on && |
|
3272 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || |
|
3273 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
|
3274 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
3275 |
|
3276 pr_info("%s changing MTU from %d to %d\n", |
|
3277 netdev->name, netdev->mtu, new_mtu); |
|
3278 netdev->mtu = new_mtu; |
|
3279 |
|
3280 if (netif_running(netdev)) |
|
3281 e1000_up(adapter); |
|
3282 else |
|
3283 e1000_reset(adapter); |
|
3284 |
|
3285 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
3286 |
|
3287 return 0; |
|
3288 } |
|
3289 |
|
3290 /** |
|
3291 * e1000_update_stats - Update the board statistics counters |
|
3292 * @adapter: board private structure |
|
3293 **/ |
|
3294 |
|
3295 void e1000_update_stats(struct e1000_adapter *adapter) |
|
3296 { |
|
3297 struct net_device *netdev = adapter->netdev; |
|
3298 struct e1000_hw *hw = &adapter->hw; |
|
3299 struct pci_dev *pdev = adapter->pdev; |
|
3300 unsigned long flags = 0; |
|
3301 u16 phy_tmp; |
|
3302 |
|
3303 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
|
3304 |
|
3305 /* |
|
3306 * Prevent stats update while adapter is being reset, or if the pci |
|
3307 * connection is down. |
|
3308 */ |
|
3309 if (adapter->link_speed == 0) |
|
3310 return; |
|
3311 if (pci_channel_offline(pdev)) |
|
3312 return; |
|
3313 |
|
3314 if (!adapter->ecdev) |
|
3315 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3316 |
|
3317 /* these counters are modified from e1000_tbi_adjust_stats, |
|
3318 * called from the interrupt context, so they must only |
|
3319 * be written while holding adapter->stats_lock |
|
3320 */ |
|
3321 |
|
3322 adapter->stats.crcerrs += er32(CRCERRS); |
|
3323 adapter->stats.gprc += er32(GPRC); |
|
3324 adapter->stats.gorcl += er32(GORCL); |
|
3325 adapter->stats.gorch += er32(GORCH); |
|
3326 adapter->stats.bprc += er32(BPRC); |
|
3327 adapter->stats.mprc += er32(MPRC); |
|
3328 adapter->stats.roc += er32(ROC); |
|
3329 |
|
3330 adapter->stats.prc64 += er32(PRC64); |
|
3331 adapter->stats.prc127 += er32(PRC127); |
|
3332 adapter->stats.prc255 += er32(PRC255); |
|
3333 adapter->stats.prc511 += er32(PRC511); |
|
3334 adapter->stats.prc1023 += er32(PRC1023); |
|
3335 adapter->stats.prc1522 += er32(PRC1522); |
|
3336 |
|
3337 adapter->stats.symerrs += er32(SYMERRS); |
|
3338 adapter->stats.mpc += er32(MPC); |
|
3339 adapter->stats.scc += er32(SCC); |
|
3340 adapter->stats.ecol += er32(ECOL); |
|
3341 adapter->stats.mcc += er32(MCC); |
|
3342 adapter->stats.latecol += er32(LATECOL); |
|
3343 adapter->stats.dc += er32(DC); |
|
3344 adapter->stats.sec += er32(SEC); |
|
3345 adapter->stats.rlec += er32(RLEC); |
|
3346 adapter->stats.xonrxc += er32(XONRXC); |
|
3347 adapter->stats.xontxc += er32(XONTXC); |
|
3348 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3349 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3350 adapter->stats.fcruc += er32(FCRUC); |
|
3351 adapter->stats.gptc += er32(GPTC); |
|
3352 adapter->stats.gotcl += er32(GOTCL); |
|
3353 adapter->stats.gotch += er32(GOTCH); |
|
3354 adapter->stats.rnbc += er32(RNBC); |
|
3355 adapter->stats.ruc += er32(RUC); |
|
3356 adapter->stats.rfc += er32(RFC); |
|
3357 adapter->stats.rjc += er32(RJC); |
|
3358 adapter->stats.torl += er32(TORL); |
|
3359 adapter->stats.torh += er32(TORH); |
|
3360 adapter->stats.totl += er32(TOTL); |
|
3361 adapter->stats.toth += er32(TOTH); |
|
3362 adapter->stats.tpr += er32(TPR); |
|
3363 |
|
3364 adapter->stats.ptc64 += er32(PTC64); |
|
3365 adapter->stats.ptc127 += er32(PTC127); |
|
3366 adapter->stats.ptc255 += er32(PTC255); |
|
3367 adapter->stats.ptc511 += er32(PTC511); |
|
3368 adapter->stats.ptc1023 += er32(PTC1023); |
|
3369 adapter->stats.ptc1522 += er32(PTC1522); |
|
3370 |
|
3371 adapter->stats.mptc += er32(MPTC); |
|
3372 adapter->stats.bptc += er32(BPTC); |
|
3373 |
|
3374 /* used for adaptive IFS */ |
|
3375 |
|
3376 hw->tx_packet_delta = er32(TPT); |
|
3377 adapter->stats.tpt += hw->tx_packet_delta; |
|
3378 hw->collision_delta = er32(COLC); |
|
3379 adapter->stats.colc += hw->collision_delta; |
|
3380 |
|
3381 if (hw->mac_type >= e1000_82543) { |
|
3382 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3383 adapter->stats.rxerrc += er32(RXERRC); |
|
3384 adapter->stats.tncrs += er32(TNCRS); |
|
3385 adapter->stats.cexterr += er32(CEXTERR); |
|
3386 adapter->stats.tsctc += er32(TSCTC); |
|
3387 adapter->stats.tsctfc += er32(TSCTFC); |
|
3388 } |
|
3389 |
|
3390 /* Fill out the OS statistics structure */ |
|
3391 netdev->stats.multicast = adapter->stats.mprc; |
|
3392 netdev->stats.collisions = adapter->stats.colc; |
|
3393 |
|
3394 /* Rx Errors */ |
|
3395 |
|
3396 /* RLEC on some newer hardware can be incorrect so build |
|
3397 * our own version based on RUC and ROC */ |
|
3398 netdev->stats.rx_errors = adapter->stats.rxerrc + |
|
3399 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3400 adapter->stats.ruc + adapter->stats.roc + |
|
3401 adapter->stats.cexterr; |
|
3402 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
|
3403 netdev->stats.rx_length_errors = adapter->stats.rlerrc; |
|
3404 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3405 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3406 netdev->stats.rx_missed_errors = adapter->stats.mpc; |
|
3407 |
|
3408 /* Tx Errors */ |
|
3409 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
|
3410 netdev->stats.tx_errors = adapter->stats.txerrc; |
|
3411 netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
|
3412 netdev->stats.tx_window_errors = adapter->stats.latecol; |
|
3413 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3414 if (hw->bad_tx_carr_stats_fd && |
|
3415 adapter->link_duplex == FULL_DUPLEX) { |
|
3416 netdev->stats.tx_carrier_errors = 0; |
|
3417 adapter->stats.tncrs = 0; |
|
3418 } |
|
3419 |
|
3420 /* Tx Dropped needs to be maintained elsewhere */ |
|
3421 |
|
3422 /* Phy Stats */ |
|
3423 if (hw->media_type == e1000_media_type_copper) { |
|
3424 if ((adapter->link_speed == SPEED_1000) && |
|
3425 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
|
3426 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
|
3427 adapter->phy_stats.idle_errors += phy_tmp; |
|
3428 } |
|
3429 |
|
3430 if ((hw->mac_type <= e1000_82546) && |
|
3431 (hw->phy_type == e1000_phy_m88) && |
|
3432 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
|
3433 adapter->phy_stats.receive_errors += phy_tmp; |
|
3434 } |
|
3435 |
|
3436 /* Management Stats */ |
|
3437 if (hw->has_smbus) { |
|
3438 adapter->stats.mgptc += er32(MGTPTC); |
|
3439 adapter->stats.mgprc += er32(MGTPRC); |
|
3440 adapter->stats.mgpdc += er32(MGTPDC); |
|
3441 } |
|
3442 |
|
3443 if (!adapter->ecdev) |
|
3444 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
3445 } |
|
3446 |
|
3447 void ec_poll(struct net_device *netdev) |
|
3448 { |
|
3449 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3450 if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) { |
|
3451 e1000_watchdog((unsigned long) adapter); |
|
3452 adapter->ec_watchdog_jiffies = jiffies; |
|
3453 } |
|
3454 |
|
3455 e1000_intr(0, netdev); |
|
3456 } |
|
3457 |
|
3458 /** |
|
3459 * e1000_intr - Interrupt Handler |
|
3460 * @irq: interrupt number |
|
3461 * @data: pointer to a network interface device structure |
|
3462 **/ |
|
3463 |
|
3464 static irqreturn_t e1000_intr(int irq, void *data) |
|
3465 { |
|
3466 struct net_device *netdev = data; |
|
3467 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3468 struct e1000_hw *hw = &adapter->hw; |
|
3469 u32 icr = er32(ICR); |
|
3470 |
|
3471 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags))) |
|
3472 return IRQ_NONE; /* Not our interrupt */ |
|
3473 |
|
3474 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
|
3475 hw->get_link_status = 1; |
|
3476 /* guard against interrupt when we're going down */ |
|
3477 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->flags)) |
|
3478 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3479 } |
|
3480 |
|
3481 if (adapter->ecdev) { |
|
3482 int i, ec_work_done = 0; |
|
3483 for (i = 0; i < E1000_MAX_INTR; i++) { |
|
3484 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring, |
|
3485 &ec_work_done, 100) && |
|
3486 !e1000_clean_tx_irq(adapter, adapter->tx_ring))) { |
|
3487 break; |
|
3488 } |
|
3489 } |
|
3490 } else { |
|
3491 /* disable interrupts, without the synchronize_irq bit */ |
|
3492 ew32(IMC, ~0); |
|
3493 E1000_WRITE_FLUSH(); |
|
3494 |
|
3495 if (likely(napi_schedule_prep(&adapter->napi))) { |
|
3496 adapter->total_tx_bytes = 0; |
|
3497 adapter->total_tx_packets = 0; |
|
3498 adapter->total_rx_bytes = 0; |
|
3499 adapter->total_rx_packets = 0; |
|
3500 __napi_schedule(&adapter->napi); |
|
3501 } else { |
|
3502 /* this really should not happen! if it does it is basically a |
|
3503 * bug, but not a hard error, so enable ints and continue */ |
|
3504 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3505 e1000_irq_enable(adapter); |
|
3506 } |
|
3507 } |
|
3508 |
|
3509 return IRQ_HANDLED; |
|
3510 } |
|
3511 |
|
3512 /** |
|
3513 * e1000_clean - NAPI Rx polling callback |
|
3514 * @adapter: board private structure |
|
3515 * EtherCAT: never called |
|
3516 **/ |
|
3517 static int e1000_clean(struct napi_struct *napi, int budget) |
|
3518 { |
|
3519 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
3520 int tx_clean_complete = 0, work_done = 0; |
|
3521 |
|
3522 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); |
|
3523 |
|
3524 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); |
|
3525 |
|
3526 if (!tx_clean_complete) |
|
3527 work_done = budget; |
|
3528 |
|
3529 /* If budget not fully consumed, exit the polling mode */ |
|
3530 if (work_done < budget) { |
|
3531 if (likely(adapter->itr_setting & 3)) |
|
3532 e1000_set_itr(adapter); |
|
3533 napi_complete(napi); |
|
3534 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3535 e1000_irq_enable(adapter); |
|
3536 } |
|
3537 |
|
3538 return work_done; |
|
3539 } |
|
3540 |
|
3541 /** |
|
3542 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
3543 * @adapter: board private structure |
|
3544 **/ |
|
3545 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
3546 struct e1000_tx_ring *tx_ring) |
|
3547 { |
|
3548 struct e1000_hw *hw = &adapter->hw; |
|
3549 struct net_device *netdev = adapter->netdev; |
|
3550 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
3551 struct e1000_buffer *buffer_info; |
|
3552 unsigned int i, eop; |
|
3553 unsigned int count = 0; |
|
3554 unsigned int total_tx_bytes=0, total_tx_packets=0; |
|
3555 |
|
3556 i = tx_ring->next_to_clean; |
|
3557 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3558 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3559 |
|
3560 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
|
3561 (count < tx_ring->count)) { |
|
3562 bool cleaned = false; |
|
3563 rmb(); /* read buffer_info after eop_desc */ |
|
3564 for ( ; !cleaned; count++) { |
|
3565 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3566 buffer_info = &tx_ring->buffer_info[i]; |
|
3567 cleaned = (i == eop); |
|
3568 |
|
3569 if (cleaned) { |
|
3570 struct sk_buff *skb = buffer_info->skb; |
|
3571 unsigned int segs, bytecount; |
|
3572 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
3573 /* multiply data chunks by size of headers */ |
|
3574 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
3575 skb->len; |
|
3576 total_tx_packets += segs; |
|
3577 total_tx_bytes += bytecount; |
|
3578 } |
|
3579 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
3580 tx_desc->upper.data = 0; |
|
3581 |
|
3582 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3583 } |
|
3584 |
|
3585 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3586 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3587 } |
|
3588 |
|
3589 tx_ring->next_to_clean = i; |
|
3590 |
|
3591 #define TX_WAKE_THRESHOLD 32 |
|
3592 if (!adapter->ecdev && unlikely(count && netif_carrier_ok(netdev) && |
|
3593 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
|
3594 /* Make sure that anybody stopping the queue after this |
|
3595 * sees the new next_to_clean. |
|
3596 */ |
|
3597 smp_mb(); |
|
3598 |
|
3599 if (netif_queue_stopped(netdev) && |
|
3600 !(test_bit(__E1000_DOWN, &adapter->flags))) { |
|
3601 netif_wake_queue(netdev); |
|
3602 ++adapter->restart_queue; |
|
3603 } |
|
3604 } |
|
3605 |
|
3606 if (!adapter->ecdev && adapter->detect_tx_hung) { |
|
3607 /* Detect a transmit hang in hardware, this serializes the |
|
3608 * check with the clearing of time_stamp and movement of i */ |
|
3609 adapter->detect_tx_hung = false; |
|
3610 if (tx_ring->buffer_info[eop].time_stamp && |
|
3611 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
|
3612 (adapter->tx_timeout_factor * HZ)) && |
|
3613 !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
3614 |
|
3615 /* detected Tx unit hang */ |
|
3616 e_err("Detected Tx Unit Hang\n" |
|
3617 " Tx Queue <%lu>\n" |
|
3618 " TDH <%x>\n" |
|
3619 " TDT <%x>\n" |
|
3620 " next_to_use <%x>\n" |
|
3621 " next_to_clean <%x>\n" |
|
3622 "buffer_info[next_to_clean]\n" |
|
3623 " time_stamp <%lx>\n" |
|
3624 " next_to_watch <%x>\n" |
|
3625 " jiffies <%lx>\n" |
|
3626 " next_to_watch.status <%x>\n", |
|
3627 (unsigned long)((tx_ring - adapter->tx_ring) / |
|
3628 sizeof(struct e1000_tx_ring)), |
|
3629 readl(hw->hw_addr + tx_ring->tdh), |
|
3630 readl(hw->hw_addr + tx_ring->tdt), |
|
3631 tx_ring->next_to_use, |
|
3632 tx_ring->next_to_clean, |
|
3633 tx_ring->buffer_info[eop].time_stamp, |
|
3634 eop, |
|
3635 jiffies, |
|
3636 eop_desc->upper.fields.status); |
|
3637 netif_stop_queue(netdev); |
|
3638 } |
|
3639 } |
|
3640 adapter->total_tx_bytes += total_tx_bytes; |
|
3641 adapter->total_tx_packets += total_tx_packets; |
|
3642 netdev->stats.tx_bytes += total_tx_bytes; |
|
3643 netdev->stats.tx_packets += total_tx_packets; |
|
3644 return (count < tx_ring->count); |
|
3645 } |
|
3646 |
|
3647 /** |
|
3648 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
3649 * @adapter: board private structure |
|
3650 * @status_err: receive descriptor status and error fields |
|
3651 * @csum: receive descriptor csum field |
|
3652 * @sk_buff: socket buffer with received data |
|
3653 **/ |
|
3654 |
|
3655 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
3656 u32 csum, struct sk_buff *skb) |
|
3657 { |
|
3658 struct e1000_hw *hw = &adapter->hw; |
|
3659 u16 status = (u16)status_err; |
|
3660 u8 errors = (u8)(status_err >> 24); |
|
3661 skb->ip_summed = CHECKSUM_NONE; |
|
3662 |
|
3663 /* 82543 or newer only */ |
|
3664 if (unlikely(hw->mac_type < e1000_82543)) return; |
|
3665 /* Ignore Checksum bit is set */ |
|
3666 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
|
3667 /* TCP/UDP checksum error bit is set */ |
|
3668 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
|
3669 /* let the stack verify checksum errors */ |
|
3670 adapter->hw_csum_err++; |
|
3671 return; |
|
3672 } |
|
3673 /* TCP/UDP Checksum has not been calculated */ |
|
3674 if (!(status & E1000_RXD_STAT_TCPCS)) |
|
3675 return; |
|
3676 |
|
3677 /* It must be a TCP or UDP packet with a valid checksum */ |
|
3678 if (likely(status & E1000_RXD_STAT_TCPCS)) { |
|
3679 /* TCP checksum is good */ |
|
3680 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
3681 } |
|
3682 adapter->hw_csum_good++; |
|
3683 } |
|
3684 |
|
3685 /** |
|
3686 * e1000_consume_page - helper function |
|
3687 **/ |
|
3688 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
|
3689 u16 length) |
|
3690 { |
|
3691 bi->page = NULL; |
|
3692 skb->len += length; |
|
3693 skb->data_len += length; |
|
3694 skb->truesize += length; |
|
3695 } |
|
3696 |
|
3697 /** |
|
3698 * e1000_receive_skb - helper function to handle rx indications |
|
3699 * @adapter: board private structure |
|
3700 * @status: descriptor status field as written by hardware |
|
3701 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
|
3702 * @skb: pointer to sk_buff to be indicated to stack |
|
3703 */ |
|
3704 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, |
|
3705 __le16 vlan, struct sk_buff *skb) |
|
3706 { |
|
3707 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) { |
|
3708 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
3709 le16_to_cpu(vlan) & |
|
3710 E1000_RXD_SPC_VLAN_MASK); |
|
3711 } else { |
|
3712 netif_receive_skb(skb); |
|
3713 } |
|
3714 } |
|
3715 |
|
3716 /** |
|
3717 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
|
3718 * @adapter: board private structure |
|
3719 * @rx_ring: ring to clean |
|
3720 * @work_done: amount of napi work completed this call |
|
3721 * @work_to_do: max amount of work allowed for this call to do |
|
3722 * |
|
3723 * the return value indicates whether actual cleaning was done, there |
|
3724 * is no guarantee that everything was cleaned |
|
3725 */ |
|
3726 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
3727 struct e1000_rx_ring *rx_ring, |
|
3728 int *work_done, int work_to_do) |
|
3729 { |
|
3730 struct e1000_hw *hw = &adapter->hw; |
|
3731 struct net_device *netdev = adapter->netdev; |
|
3732 struct pci_dev *pdev = adapter->pdev; |
|
3733 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
3734 struct e1000_buffer *buffer_info, *next_buffer; |
|
3735 unsigned long irq_flags; |
|
3736 u32 length; |
|
3737 unsigned int i; |
|
3738 int cleaned_count = 0; |
|
3739 bool cleaned = false; |
|
3740 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
3741 |
|
3742 i = rx_ring->next_to_clean; |
|
3743 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
3744 buffer_info = &rx_ring->buffer_info[i]; |
|
3745 |
|
3746 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
3747 struct sk_buff *skb; |
|
3748 u8 status; |
|
3749 |
|
3750 if (*work_done >= work_to_do) |
|
3751 break; |
|
3752 (*work_done)++; |
|
3753 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
3754 |
|
3755 status = rx_desc->status; |
|
3756 skb = buffer_info->skb; |
|
3757 if (!adapter->ecdev) |
|
3758 buffer_info->skb = NULL; |
|
3759 |
|
3760 if (++i == rx_ring->count) i = 0; |
|
3761 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
3762 prefetch(next_rxd); |
|
3763 |
|
3764 next_buffer = &rx_ring->buffer_info[i]; |
|
3765 |
|
3766 cleaned = true; |
|
3767 cleaned_count++; |
|
3768 dma_unmap_page(&pdev->dev, buffer_info->dma, |
|
3769 buffer_info->length, DMA_FROM_DEVICE); |
|
3770 buffer_info->dma = 0; |
|
3771 |
|
3772 length = le16_to_cpu(rx_desc->length); |
|
3773 |
|
3774 /* errors is only valid for DD + EOP descriptors */ |
|
3775 if (!adapter->ecdev && |
|
3776 unlikely((status & E1000_RXD_STAT_EOP) && |
|
3777 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
|
3778 u8 last_byte = *(skb->data + length - 1); |
|
3779 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
3780 last_byte)) { |
|
3781 spin_lock_irqsave(&adapter->stats_lock, |
|
3782 irq_flags); |
|
3783 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
3784 length, skb->data); |
|
3785 spin_unlock_irqrestore(&adapter->stats_lock, |
|
3786 irq_flags); |
|
3787 length--; |
|
3788 } else { |
|
3789 /* recycle both page and skb */ |
|
3790 buffer_info->skb = skb; |
|
3791 /* an error means any chain goes out the window |
|
3792 * too */ |
|
3793 if (rx_ring->rx_skb_top) |
|
3794 dev_kfree_skb(rx_ring->rx_skb_top); |
|
3795 rx_ring->rx_skb_top = NULL; |
|
3796 goto next_desc; |
|
3797 } |
|
3798 } |
|
3799 |
|
3800 #define rxtop rx_ring->rx_skb_top |
|
3801 if (!(status & E1000_RXD_STAT_EOP)) { |
|
3802 /* this descriptor is only the beginning (or middle) */ |
|
3803 if (!rxtop) { |
|
3804 /* this is the beginning of a chain */ |
|
3805 rxtop = skb; |
|
3806 skb_fill_page_desc(rxtop, 0, buffer_info->page, |
|
3807 0, length); |
|
3808 } else { |
|
3809 /* this is the middle of a chain */ |
|
3810 skb_fill_page_desc(rxtop, |
|
3811 skb_shinfo(rxtop)->nr_frags, |
|
3812 buffer_info->page, 0, length); |
|
3813 /* re-use the skb, only consumed the page */ |
|
3814 buffer_info->skb = skb; |
|
3815 } |
|
3816 e1000_consume_page(buffer_info, rxtop, length); |
|
3817 goto next_desc; |
|
3818 } else { |
|
3819 if (rxtop) { |
|
3820 /* end of the chain */ |
|
3821 skb_fill_page_desc(rxtop, |
|
3822 skb_shinfo(rxtop)->nr_frags, |
|
3823 buffer_info->page, 0, length); |
|
3824 /* re-use the current skb, we only consumed the |
|
3825 * page */ |
|
3826 buffer_info->skb = skb; |
|
3827 skb = rxtop; |
|
3828 rxtop = NULL; |
|
3829 e1000_consume_page(buffer_info, skb, length); |
|
3830 } else { |
|
3831 /* no chain, got EOP, this buf is the packet |
|
3832 * copybreak to save the put_page/alloc_page */ |
|
3833 if (length <= copybreak && |
|
3834 skb_tailroom(skb) >= length) { |
|
3835 u8 *vaddr; |
|
3836 vaddr = kmap_atomic(buffer_info->page, |
|
3837 KM_SKB_DATA_SOFTIRQ); |
|
3838 memcpy(skb_tail_pointer(skb), vaddr, length); |
|
3839 kunmap_atomic(vaddr, |
|
3840 KM_SKB_DATA_SOFTIRQ); |
|
3841 /* re-use the page, so don't erase |
|
3842 * buffer_info->page */ |
|
3843 skb_put(skb, length); |
|
3844 } else { |
|
3845 skb_fill_page_desc(skb, 0, |
|
3846 buffer_info->page, 0, |
|
3847 length); |
|
3848 e1000_consume_page(buffer_info, skb, |
|
3849 length); |
|
3850 } |
|
3851 } |
|
3852 } |
|
3853 |
|
3854 /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
|
3855 e1000_rx_checksum(adapter, |
|
3856 (u32)(status) | |
|
3857 ((u32)(rx_desc->errors) << 24), |
|
3858 le16_to_cpu(rx_desc->csum), skb); |
|
3859 |
|
3860 pskb_trim(skb, skb->len - 4); |
|
3861 |
|
3862 /* probably a little skewed due to removing CRC */ |
|
3863 total_rx_bytes += skb->len; |
|
3864 total_rx_packets++; |
|
3865 |
|
3866 /* eth type trans needs skb->data to point to something */ |
|
3867 if (!pskb_may_pull(skb, ETH_HLEN)) { |
|
3868 e_err("pskb_may_pull failed.\n"); |
|
3869 if (!adapter->ecdev) { |
|
3870 dev_kfree_skb(skb); |
|
3871 } |
|
3872 goto next_desc; |
|
3873 } |
|
3874 |
|
3875 skb->protocol = eth_type_trans(skb, netdev); |
|
3876 |
|
3877 if (adapter->ecdev) { |
|
3878 ecdev_receive(adapter->ecdev, skb->data, length); |
|
3879 |
|
3880 // No need to detect link status as |
|
3881 // long as frames are received: Reset watchdog. |
|
3882 adapter->ec_watchdog_jiffies = jiffies; |
|
3883 } else { |
|
3884 e1000_receive_skb(adapter, status, rx_desc->special, skb); |
|
3885 } |
|
3886 |
|
3887 next_desc: |
|
3888 rx_desc->status = 0; |
|
3889 |
|
3890 /* return some buffers to hardware, one at a time is too slow */ |
|
3891 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
3892 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
3893 cleaned_count = 0; |
|
3894 } |
|
3895 |
|
3896 /* use prefetched values */ |
|
3897 rx_desc = next_rxd; |
|
3898 buffer_info = next_buffer; |
|
3899 } |
|
3900 rx_ring->next_to_clean = i; |
|
3901 |
|
3902 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
3903 if (cleaned_count) |
|
3904 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
3905 |
|
3906 adapter->total_rx_packets += total_rx_packets; |
|
3907 adapter->total_rx_bytes += total_rx_bytes; |
|
3908 netdev->stats.rx_bytes += total_rx_bytes; |
|
3909 netdev->stats.rx_packets += total_rx_packets; |
|
3910 return cleaned; |
|
3911 } |
|
3912 |
|
3913 /* |
|
3914 * this should improve performance for small packets with large amounts |
|
3915 * of reassembly being done in the stack |
|
3916 */ |
|
3917 static void e1000_check_copybreak(struct net_device *netdev, |
|
3918 struct e1000_buffer *buffer_info, |
|
3919 u32 length, struct sk_buff **skb) |
|
3920 { |
|
3921 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3922 struct sk_buff *new_skb; |
|
3923 |
|
3924 if (adapter->ecdev || length > copybreak) |
|
3925 return; |
|
3926 |
|
3927 new_skb = netdev_alloc_skb_ip_align(netdev, length); |
|
3928 if (!new_skb) |
|
3929 return; |
|
3930 |
|
3931 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, |
|
3932 (*skb)->data - NET_IP_ALIGN, |
|
3933 length + NET_IP_ALIGN); |
|
3934 /* save the skb in buffer_info as good */ |
|
3935 buffer_info->skb = *skb; |
|
3936 *skb = new_skb; |
|
3937 } |
|
3938 |
|
3939 /** |
|
3940 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
3941 * @adapter: board private structure |
|
3942 * @rx_ring: ring to clean |
|
3943 * @work_done: amount of napi work completed this call |
|
3944 * @work_to_do: max amount of work allowed for this call to do |
|
3945 */ |
|
3946 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
3947 struct e1000_rx_ring *rx_ring, |
|
3948 int *work_done, int work_to_do) |
|
3949 { |
|
3950 struct e1000_hw *hw = &adapter->hw; |
|
3951 struct net_device *netdev = adapter->netdev; |
|
3952 struct pci_dev *pdev = adapter->pdev; |
|
3953 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
3954 struct e1000_buffer *buffer_info, *next_buffer; |
|
3955 unsigned long flags; |
|
3956 u32 length; |
|
3957 unsigned int i; |
|
3958 int cleaned_count = 0; |
|
3959 bool cleaned = false; |
|
3960 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
3961 |
|
3962 i = rx_ring->next_to_clean; |
|
3963 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
3964 buffer_info = &rx_ring->buffer_info[i]; |
|
3965 |
|
3966 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
3967 struct sk_buff *skb; |
|
3968 u8 status; |
|
3969 |
|
3970 if (*work_done >= work_to_do) |
|
3971 break; |
|
3972 (*work_done)++; |
|
3973 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
3974 |
|
3975 status = rx_desc->status; |
|
3976 skb = buffer_info->skb; |
|
3977 if (!adapter->ecdev) |
|
3978 buffer_info->skb = NULL; |
|
3979 |
|
3980 prefetch(skb->data - NET_IP_ALIGN); |
|
3981 |
|
3982 if (++i == rx_ring->count) i = 0; |
|
3983 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
3984 prefetch(next_rxd); |
|
3985 |
|
3986 next_buffer = &rx_ring->buffer_info[i]; |
|
3987 |
|
3988 cleaned = true; |
|
3989 cleaned_count++; |
|
3990 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
3991 buffer_info->length, DMA_FROM_DEVICE); |
|
3992 buffer_info->dma = 0; |
|
3993 |
|
3994 length = le16_to_cpu(rx_desc->length); |
|
3995 /* !EOP means multiple descriptors were used to store a single |
|
3996 * packet, if thats the case we need to toss it. In fact, we |
|
3997 * to toss every packet with the EOP bit clear and the next |
|
3998 * frame that _does_ have the EOP bit set, as it is by |
|
3999 * definition only a frame fragment |
|
4000 */ |
|
4001 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
4002 adapter->discarding = true; |
|
4003 |
|
4004 if (adapter->discarding) { |
|
4005 /* All receives must fit into a single buffer */ |
|
4006 e_info("Receive packet consumed multiple buffers\n"); |
|
4007 /* recycle */ |
|
4008 buffer_info->skb = skb; |
|
4009 if (status & E1000_RXD_STAT_EOP) |
|
4010 adapter->discarding = false; |
|
4011 goto next_desc; |
|
4012 } |
|
4013 |
|
4014 if (!adapter->ecdev && |
|
4015 unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
4016 u8 last_byte = *(skb->data + length - 1); |
|
4017 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
4018 last_byte)) { |
|
4019 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4020 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
4021 length, skb->data); |
|
4022 spin_unlock_irqrestore(&adapter->stats_lock, |
|
4023 flags); |
|
4024 length--; |
|
4025 } else { |
|
4026 /* recycle */ |
|
4027 buffer_info->skb = skb; |
|
4028 goto next_desc; |
|
4029 } |
|
4030 } |
|
4031 |
|
4032 /* adjust length to remove Ethernet CRC, this must be |
|
4033 * done after the TBI_ACCEPT workaround above */ |
|
4034 length -= 4; |
|
4035 |
|
4036 /* probably a little skewed due to removing CRC */ |
|
4037 total_rx_bytes += length; |
|
4038 total_rx_packets++; |
|
4039 |
|
4040 e1000_check_copybreak(netdev, buffer_info, length, &skb); |
|
4041 |
|
4042 skb_put(skb, length); |
|
4043 |
|
4044 /* Receive Checksum Offload */ |
|
4045 e1000_rx_checksum(adapter, |
|
4046 (u32)(status) | |
|
4047 ((u32)(rx_desc->errors) << 24), |
|
4048 le16_to_cpu(rx_desc->csum), skb); |
|
4049 |
|
4050 skb->protocol = eth_type_trans(skb, netdev); |
|
4051 |
|
4052 if (adapter->ecdev) { |
|
4053 ecdev_receive(adapter->ecdev, skb->data, length); |
|
4054 |
|
4055 // No need to detect link status as |
|
4056 // long as frames are received: Reset watchdog. |
|
4057 adapter->ec_watchdog_jiffies = jiffies; |
|
4058 } else { |
|
4059 e1000_receive_skb(adapter, status, rx_desc->special, skb); |
|
4060 } |
|
4061 |
|
4062 next_desc: |
|
4063 rx_desc->status = 0; |
|
4064 |
|
4065 /* return some buffers to hardware, one at a time is too slow */ |
|
4066 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4067 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4068 cleaned_count = 0; |
|
4069 } |
|
4070 |
|
4071 /* use prefetched values */ |
|
4072 rx_desc = next_rxd; |
|
4073 buffer_info = next_buffer; |
|
4074 } |
|
4075 rx_ring->next_to_clean = i; |
|
4076 |
|
4077 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4078 if (cleaned_count) |
|
4079 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4080 |
|
4081 adapter->total_rx_packets += total_rx_packets; |
|
4082 adapter->total_rx_bytes += total_rx_bytes; |
|
4083 netdev->stats.rx_bytes += total_rx_bytes; |
|
4084 netdev->stats.rx_packets += total_rx_packets; |
|
4085 return cleaned; |
|
4086 } |
|
4087 |
|
4088 /** |
|
4089 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
|
4090 * @adapter: address of board private structure |
|
4091 * @rx_ring: pointer to receive ring structure |
|
4092 * @cleaned_count: number of buffers to allocate this pass |
|
4093 **/ |
|
4094 |
|
4095 static void |
|
4096 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
4097 struct e1000_rx_ring *rx_ring, int cleaned_count) |
|
4098 { |
|
4099 struct net_device *netdev = adapter->netdev; |
|
4100 struct pci_dev *pdev = adapter->pdev; |
|
4101 struct e1000_rx_desc *rx_desc; |
|
4102 struct e1000_buffer *buffer_info; |
|
4103 struct sk_buff *skb; |
|
4104 unsigned int i; |
|
4105 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; |
|
4106 |
|
4107 i = rx_ring->next_to_use; |
|
4108 buffer_info = &rx_ring->buffer_info[i]; |
|
4109 |
|
4110 while (cleaned_count--) { |
|
4111 skb = buffer_info->skb; |
|
4112 if (skb) { |
|
4113 skb_trim(skb, 0); |
|
4114 goto check_page; |
|
4115 } |
|
4116 |
|
4117 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4118 if (unlikely(!skb)) { |
|
4119 /* Better luck next round */ |
|
4120 adapter->alloc_rx_buff_failed++; |
|
4121 break; |
|
4122 } |
|
4123 |
|
4124 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4125 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4126 struct sk_buff *oldskb = skb; |
|
4127 e_err("skb align check failed: %u bytes at %p\n", |
|
4128 bufsz, skb->data); |
|
4129 /* Try again, without freeing the previous */ |
|
4130 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4131 /* Failed allocation, critical failure */ |
|
4132 if (!skb) { |
|
4133 dev_kfree_skb(oldskb); |
|
4134 adapter->alloc_rx_buff_failed++; |
|
4135 break; |
|
4136 } |
|
4137 |
|
4138 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4139 /* give up */ |
|
4140 dev_kfree_skb(skb); |
|
4141 dev_kfree_skb(oldskb); |
|
4142 break; /* while (cleaned_count--) */ |
|
4143 } |
|
4144 |
|
4145 /* Use new allocation */ |
|
4146 dev_kfree_skb(oldskb); |
|
4147 } |
|
4148 buffer_info->skb = skb; |
|
4149 buffer_info->length = adapter->rx_buffer_len; |
|
4150 check_page: |
|
4151 /* allocate a new page if necessary */ |
|
4152 if (!buffer_info->page) { |
|
4153 buffer_info->page = alloc_page(GFP_ATOMIC); |
|
4154 if (unlikely(!buffer_info->page)) { |
|
4155 adapter->alloc_rx_buff_failed++; |
|
4156 break; |
|
4157 } |
|
4158 } |
|
4159 |
|
4160 if (!buffer_info->dma) { |
|
4161 buffer_info->dma = dma_map_page(&pdev->dev, |
|
4162 buffer_info->page, 0, |
|
4163 buffer_info->length, |
|
4164 DMA_FROM_DEVICE); |
|
4165 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
4166 put_page(buffer_info->page); |
|
4167 dev_kfree_skb(skb); |
|
4168 buffer_info->page = NULL; |
|
4169 buffer_info->skb = NULL; |
|
4170 buffer_info->dma = 0; |
|
4171 adapter->alloc_rx_buff_failed++; |
|
4172 break; /* while !buffer_info->skb */ |
|
4173 } |
|
4174 } |
|
4175 |
|
4176 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4177 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4178 |
|
4179 if (unlikely(++i == rx_ring->count)) |
|
4180 i = 0; |
|
4181 buffer_info = &rx_ring->buffer_info[i]; |
|
4182 } |
|
4183 |
|
4184 if (likely(rx_ring->next_to_use != i)) { |
|
4185 rx_ring->next_to_use = i; |
|
4186 if (unlikely(i-- == 0)) |
|
4187 i = (rx_ring->count - 1); |
|
4188 |
|
4189 /* Force memory writes to complete before letting h/w |
|
4190 * know there are new descriptors to fetch. (Only |
|
4191 * applicable for weak-ordered memory model archs, |
|
4192 * such as IA-64). */ |
|
4193 wmb(); |
|
4194 writel(i, adapter->hw.hw_addr + rx_ring->rdt); |
|
4195 } |
|
4196 } |
|
4197 |
|
4198 /** |
|
4199 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
4200 * @adapter: address of board private structure |
|
4201 **/ |
|
4202 |
|
4203 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
4204 struct e1000_rx_ring *rx_ring, |
|
4205 int cleaned_count) |
|
4206 { |
|
4207 struct e1000_hw *hw = &adapter->hw; |
|
4208 struct net_device *netdev = adapter->netdev; |
|
4209 struct pci_dev *pdev = adapter->pdev; |
|
4210 struct e1000_rx_desc *rx_desc; |
|
4211 struct e1000_buffer *buffer_info; |
|
4212 struct sk_buff *skb; |
|
4213 unsigned int i; |
|
4214 unsigned int bufsz = adapter->rx_buffer_len; |
|
4215 |
|
4216 i = rx_ring->next_to_use; |
|
4217 buffer_info = &rx_ring->buffer_info[i]; |
|
4218 |
|
4219 while (cleaned_count--) { |
|
4220 skb = buffer_info->skb; |
|
4221 if (skb) { |
|
4222 skb_trim(skb, 0); |
|
4223 goto map_skb; |
|
4224 } |
|
4225 |
|
4226 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4227 if (unlikely(!skb)) { |
|
4228 /* Better luck next round */ |
|
4229 adapter->alloc_rx_buff_failed++; |
|
4230 break; |
|
4231 } |
|
4232 |
|
4233 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4234 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4235 struct sk_buff *oldskb = skb; |
|
4236 e_err("skb align check failed: %u bytes at %p\n", |
|
4237 bufsz, skb->data); |
|
4238 /* Try again, without freeing the previous */ |
|
4239 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4240 /* Failed allocation, critical failure */ |
|
4241 if (!skb) { |
|
4242 dev_kfree_skb(oldskb); |
|
4243 adapter->alloc_rx_buff_failed++; |
|
4244 break; |
|
4245 } |
|
4246 |
|
4247 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4248 /* give up */ |
|
4249 dev_kfree_skb(skb); |
|
4250 dev_kfree_skb(oldskb); |
|
4251 adapter->alloc_rx_buff_failed++; |
|
4252 break; /* while !buffer_info->skb */ |
|
4253 } |
|
4254 |
|
4255 /* Use new allocation */ |
|
4256 dev_kfree_skb(oldskb); |
|
4257 } |
|
4258 buffer_info->skb = skb; |
|
4259 buffer_info->length = adapter->rx_buffer_len; |
|
4260 map_skb: |
|
4261 buffer_info->dma = dma_map_single(&pdev->dev, |
|
4262 skb->data, |
|
4263 buffer_info->length, |
|
4264 DMA_FROM_DEVICE); |
|
4265 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
4266 dev_kfree_skb(skb); |
|
4267 buffer_info->skb = NULL; |
|
4268 buffer_info->dma = 0; |
|
4269 adapter->alloc_rx_buff_failed++; |
|
4270 break; /* while !buffer_info->skb */ |
|
4271 } |
|
4272 |
|
4273 /* |
|
4274 * XXX if it was allocated cleanly it will never map to a |
|
4275 * boundary crossing |
|
4276 */ |
|
4277 |
|
4278 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4279 if (!e1000_check_64k_bound(adapter, |
|
4280 (void *)(unsigned long)buffer_info->dma, |
|
4281 adapter->rx_buffer_len)) { |
|
4282 e_err("dma align check failed: %u bytes at %p\n", |
|
4283 adapter->rx_buffer_len, |
|
4284 (void *)(unsigned long)buffer_info->dma); |
|
4285 dev_kfree_skb(skb); |
|
4286 buffer_info->skb = NULL; |
|
4287 |
|
4288 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
4289 adapter->rx_buffer_len, |
|
4290 DMA_FROM_DEVICE); |
|
4291 buffer_info->dma = 0; |
|
4292 |
|
4293 adapter->alloc_rx_buff_failed++; |
|
4294 break; /* while !buffer_info->skb */ |
|
4295 } |
|
4296 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4297 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4298 |
|
4299 if (unlikely(++i == rx_ring->count)) |
|
4300 i = 0; |
|
4301 buffer_info = &rx_ring->buffer_info[i]; |
|
4302 } |
|
4303 |
|
4304 if (likely(rx_ring->next_to_use != i)) { |
|
4305 rx_ring->next_to_use = i; |
|
4306 if (unlikely(i-- == 0)) |
|
4307 i = (rx_ring->count - 1); |
|
4308 |
|
4309 /* Force memory writes to complete before letting h/w |
|
4310 * know there are new descriptors to fetch. (Only |
|
4311 * applicable for weak-ordered memory model archs, |
|
4312 * such as IA-64). */ |
|
4313 wmb(); |
|
4314 writel(i, hw->hw_addr + rx_ring->rdt); |
|
4315 } |
|
4316 } |
|
4317 |
|
4318 /** |
|
4319 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
|
4320 * @adapter: |
|
4321 **/ |
|
4322 |
|
4323 static void e1000_smartspeed(struct e1000_adapter *adapter) |
|
4324 { |
|
4325 struct e1000_hw *hw = &adapter->hw; |
|
4326 u16 phy_status; |
|
4327 u16 phy_ctrl; |
|
4328 |
|
4329 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
|
4330 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
|
4331 return; |
|
4332 |
|
4333 if (adapter->smartspeed == 0) { |
|
4334 /* If Master/Slave config fault is asserted twice, |
|
4335 * we assume back-to-back */ |
|
4336 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4337 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4338 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4339 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4340 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4341 if (phy_ctrl & CR_1000T_MS_ENABLE) { |
|
4342 phy_ctrl &= ~CR_1000T_MS_ENABLE; |
|
4343 e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
4344 phy_ctrl); |
|
4345 adapter->smartspeed++; |
|
4346 if (!e1000_phy_setup_autoneg(hw) && |
|
4347 !e1000_read_phy_reg(hw, PHY_CTRL, |
|
4348 &phy_ctrl)) { |
|
4349 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4350 MII_CR_RESTART_AUTO_NEG); |
|
4351 e1000_write_phy_reg(hw, PHY_CTRL, |
|
4352 phy_ctrl); |
|
4353 } |
|
4354 } |
|
4355 return; |
|
4356 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
|
4357 /* If still no link, perhaps using 2/3 pair cable */ |
|
4358 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4359 phy_ctrl |= CR_1000T_MS_ENABLE; |
|
4360 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
|
4361 if (!e1000_phy_setup_autoneg(hw) && |
|
4362 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
|
4363 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4364 MII_CR_RESTART_AUTO_NEG); |
|
4365 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
|
4366 } |
|
4367 } |
|
4368 /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
|
4369 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
|
4370 adapter->smartspeed = 0; |
|
4371 } |
|
4372 |
|
4373 /** |
|
4374 * e1000_ioctl - |
|
4375 * @netdev: |
|
4376 * @ifreq: |
|
4377 * @cmd: |
|
4378 **/ |
|
4379 |
|
4380 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4381 { |
|
4382 switch (cmd) { |
|
4383 case SIOCGMIIPHY: |
|
4384 case SIOCGMIIREG: |
|
4385 case SIOCSMIIREG: |
|
4386 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4387 default: |
|
4388 return -EOPNOTSUPP; |
|
4389 } |
|
4390 } |
|
4391 |
|
4392 /** |
|
4393 * e1000_mii_ioctl - |
|
4394 * @netdev: |
|
4395 * @ifreq: |
|
4396 * @cmd: |
|
4397 **/ |
|
4398 |
|
4399 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4400 int cmd) |
|
4401 { |
|
4402 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4403 struct e1000_hw *hw = &adapter->hw; |
|
4404 struct mii_ioctl_data *data = if_mii(ifr); |
|
4405 int retval; |
|
4406 u16 mii_reg; |
|
4407 u16 spddplx; |
|
4408 unsigned long flags; |
|
4409 |
|
4410 if (hw->media_type != e1000_media_type_copper) |
|
4411 return -EOPNOTSUPP; |
|
4412 |
|
4413 switch (cmd) { |
|
4414 case SIOCGMIIPHY: |
|
4415 data->phy_id = hw->phy_addr; |
|
4416 break; |
|
4417 case SIOCGMIIREG: |
|
4418 if (adapter->ecdev) |
|
4419 return -EPERM; |
|
4420 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4421 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
|
4422 &data->val_out)) { |
|
4423 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4424 return -EIO; |
|
4425 } |
|
4426 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4427 break; |
|
4428 case SIOCSMIIREG: |
|
4429 if (adapter->ecdev) |
|
4430 return -EPERM; |
|
4431 if (data->reg_num & ~(0x1F)) |
|
4432 return -EFAULT; |
|
4433 mii_reg = data->val_in; |
|
4434 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4435 if (e1000_write_phy_reg(hw, data->reg_num, |
|
4436 mii_reg)) { |
|
4437 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4438 return -EIO; |
|
4439 } |
|
4440 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4441 if (hw->media_type == e1000_media_type_copper) { |
|
4442 switch (data->reg_num) { |
|
4443 case PHY_CTRL: |
|
4444 if (mii_reg & MII_CR_POWER_DOWN) |
|
4445 break; |
|
4446 if (mii_reg & MII_CR_AUTO_NEG_EN) { |
|
4447 hw->autoneg = 1; |
|
4448 hw->autoneg_advertised = 0x2F; |
|
4449 } else { |
|
4450 if (mii_reg & 0x40) |
|
4451 spddplx = SPEED_1000; |
|
4452 else if (mii_reg & 0x2000) |
|
4453 spddplx = SPEED_100; |
|
4454 else |
|
4455 spddplx = SPEED_10; |
|
4456 spddplx += (mii_reg & 0x100) |
|
4457 ? DUPLEX_FULL : |
|
4458 DUPLEX_HALF; |
|
4459 retval = e1000_set_spd_dplx(adapter, |
|
4460 spddplx); |
|
4461 if (retval) |
|
4462 return retval; |
|
4463 } |
|
4464 if (netif_running(adapter->netdev)) |
|
4465 e1000_reinit_locked(adapter); |
|
4466 else |
|
4467 e1000_reset(adapter); |
|
4468 break; |
|
4469 case M88E1000_PHY_SPEC_CTRL: |
|
4470 case M88E1000_EXT_PHY_SPEC_CTRL: |
|
4471 if (e1000_phy_reset(hw)) |
|
4472 return -EIO; |
|
4473 break; |
|
4474 } |
|
4475 } else { |
|
4476 switch (data->reg_num) { |
|
4477 case PHY_CTRL: |
|
4478 if (mii_reg & MII_CR_POWER_DOWN) |
|
4479 break; |
|
4480 if (netif_running(adapter->netdev)) |
|
4481 e1000_reinit_locked(adapter); |
|
4482 else |
|
4483 e1000_reset(adapter); |
|
4484 break; |
|
4485 } |
|
4486 } |
|
4487 break; |
|
4488 default: |
|
4489 return -EOPNOTSUPP; |
|
4490 } |
|
4491 return E1000_SUCCESS; |
|
4492 } |
|
4493 |
|
4494 void e1000_pci_set_mwi(struct e1000_hw *hw) |
|
4495 { |
|
4496 struct e1000_adapter *adapter = hw->back; |
|
4497 int ret_val = pci_set_mwi(adapter->pdev); |
|
4498 |
|
4499 if (ret_val) |
|
4500 e_err("Error in setting MWI\n"); |
|
4501 } |
|
4502 |
|
4503 void e1000_pci_clear_mwi(struct e1000_hw *hw) |
|
4504 { |
|
4505 struct e1000_adapter *adapter = hw->back; |
|
4506 |
|
4507 pci_clear_mwi(adapter->pdev); |
|
4508 } |
|
4509 |
|
4510 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
|
4511 { |
|
4512 struct e1000_adapter *adapter = hw->back; |
|
4513 return pcix_get_mmrbc(adapter->pdev); |
|
4514 } |
|
4515 |
|
4516 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
|
4517 { |
|
4518 struct e1000_adapter *adapter = hw->back; |
|
4519 pcix_set_mmrbc(adapter->pdev, mmrbc); |
|
4520 } |
|
4521 |
|
4522 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
|
4523 { |
|
4524 outl(value, port); |
|
4525 } |
|
4526 |
|
4527 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
4528 struct vlan_group *grp) |
|
4529 { |
|
4530 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4531 struct e1000_hw *hw = &adapter->hw; |
|
4532 u32 ctrl, rctl; |
|
4533 |
|
4534 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4535 e1000_irq_disable(adapter); |
|
4536 adapter->vlgrp = grp; |
|
4537 |
|
4538 if (grp) { |
|
4539 /* enable VLAN tag insert/strip */ |
|
4540 ctrl = er32(CTRL); |
|
4541 ctrl |= E1000_CTRL_VME; |
|
4542 ew32(CTRL, ctrl); |
|
4543 |
|
4544 /* enable VLAN receive filtering */ |
|
4545 rctl = er32(RCTL); |
|
4546 rctl &= ~E1000_RCTL_CFIEN; |
|
4547 if (!(netdev->flags & IFF_PROMISC)) |
|
4548 rctl |= E1000_RCTL_VFE; |
|
4549 ew32(RCTL, rctl); |
|
4550 e1000_update_mng_vlan(adapter); |
|
4551 } else { |
|
4552 /* disable VLAN tag insert/strip */ |
|
4553 ctrl = er32(CTRL); |
|
4554 ctrl &= ~E1000_CTRL_VME; |
|
4555 ew32(CTRL, ctrl); |
|
4556 |
|
4557 /* disable VLAN receive filtering */ |
|
4558 rctl = er32(RCTL); |
|
4559 rctl &= ~E1000_RCTL_VFE; |
|
4560 ew32(RCTL, rctl); |
|
4561 |
|
4562 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { |
|
4563 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
4564 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
4565 } |
|
4566 } |
|
4567 |
|
4568 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4569 e1000_irq_enable(adapter); |
|
4570 } |
|
4571 |
|
4572 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
4573 { |
|
4574 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4575 struct e1000_hw *hw = &adapter->hw; |
|
4576 u32 vfta, index; |
|
4577 |
|
4578 if ((hw->mng_cookie.status & |
|
4579 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4580 (vid == adapter->mng_vlan_id)) |
|
4581 return; |
|
4582 /* add VID to filter table */ |
|
4583 index = (vid >> 5) & 0x7F; |
|
4584 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4585 vfta |= (1 << (vid & 0x1F)); |
|
4586 e1000_write_vfta(hw, index, vfta); |
|
4587 } |
|
4588 |
|
4589 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
4590 { |
|
4591 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4592 struct e1000_hw *hw = &adapter->hw; |
|
4593 u32 vfta, index; |
|
4594 |
|
4595 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4596 e1000_irq_disable(adapter); |
|
4597 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
4598 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4599 e1000_irq_enable(adapter); |
|
4600 |
|
4601 /* remove VID from filter table */ |
|
4602 index = (vid >> 5) & 0x7F; |
|
4603 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4604 vfta &= ~(1 << (vid & 0x1F)); |
|
4605 e1000_write_vfta(hw, index, vfta); |
|
4606 } |
|
4607 |
|
4608 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
4609 { |
|
4610 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
4611 |
|
4612 if (adapter->vlgrp) { |
|
4613 u16 vid; |
|
4614 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
4615 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
4616 continue; |
|
4617 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
4618 } |
|
4619 } |
|
4620 } |
|
4621 |
|
4622 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
|
4623 { |
|
4624 struct e1000_hw *hw = &adapter->hw; |
|
4625 |
|
4626 hw->autoneg = 0; |
|
4627 |
|
4628 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
4629 if ((hw->media_type == e1000_media_type_fiber) && |
|
4630 spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
|
4631 e_err("Unsupported Speed/Duplex configuration\n"); |
|
4632 return -EINVAL; |
|
4633 } |
|
4634 |
|
4635 switch (spddplx) { |
|
4636 case SPEED_10 + DUPLEX_HALF: |
|
4637 hw->forced_speed_duplex = e1000_10_half; |
|
4638 break; |
|
4639 case SPEED_10 + DUPLEX_FULL: |
|
4640 hw->forced_speed_duplex = e1000_10_full; |
|
4641 break; |
|
4642 case SPEED_100 + DUPLEX_HALF: |
|
4643 hw->forced_speed_duplex = e1000_100_half; |
|
4644 break; |
|
4645 case SPEED_100 + DUPLEX_FULL: |
|
4646 hw->forced_speed_duplex = e1000_100_full; |
|
4647 break; |
|
4648 case SPEED_1000 + DUPLEX_FULL: |
|
4649 hw->autoneg = 1; |
|
4650 hw->autoneg_advertised = ADVERTISE_1000_FULL; |
|
4651 break; |
|
4652 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
4653 default: |
|
4654 e_err("Unsupported Speed/Duplex configuration\n"); |
|
4655 return -EINVAL; |
|
4656 } |
|
4657 return 0; |
|
4658 } |
|
4659 |
|
4660 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
4661 { |
|
4662 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4663 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4664 struct e1000_hw *hw = &adapter->hw; |
|
4665 u32 ctrl, ctrl_ext, rctl, status; |
|
4666 u32 wufc = adapter->wol; |
|
4667 #ifdef CONFIG_PM |
|
4668 int retval = 0; |
|
4669 #endif |
|
4670 |
|
4671 if (adapter->ecdev) |
|
4672 return -EBUSY; |
|
4673 |
|
4674 netif_device_detach(netdev); |
|
4675 |
|
4676 if (netif_running(netdev)) { |
|
4677 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
4678 e1000_down(adapter); |
|
4679 } |
|
4680 |
|
4681 #ifdef CONFIG_PM |
|
4682 retval = pci_save_state(pdev); |
|
4683 if (retval) |
|
4684 return retval; |
|
4685 #endif |
|
4686 |
|
4687 status = er32(STATUS); |
|
4688 if (status & E1000_STATUS_LU) |
|
4689 wufc &= ~E1000_WUFC_LNKC; |
|
4690 |
|
4691 if (wufc) { |
|
4692 e1000_setup_rctl(adapter); |
|
4693 e1000_set_rx_mode(netdev); |
|
4694 |
|
4695 /* turn on all-multi mode if wake on multicast is enabled */ |
|
4696 if (wufc & E1000_WUFC_MC) { |
|
4697 rctl = er32(RCTL); |
|
4698 rctl |= E1000_RCTL_MPE; |
|
4699 ew32(RCTL, rctl); |
|
4700 } |
|
4701 |
|
4702 if (hw->mac_type >= e1000_82540) { |
|
4703 ctrl = er32(CTRL); |
|
4704 /* advertise wake from D3Cold */ |
|
4705 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
4706 /* phy power management enable */ |
|
4707 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
4708 ctrl |= E1000_CTRL_ADVD3WUC | |
|
4709 E1000_CTRL_EN_PHY_PWR_MGMT; |
|
4710 ew32(CTRL, ctrl); |
|
4711 } |
|
4712 |
|
4713 if (hw->media_type == e1000_media_type_fiber || |
|
4714 hw->media_type == e1000_media_type_internal_serdes) { |
|
4715 /* keep the laser running in D3 */ |
|
4716 ctrl_ext = er32(CTRL_EXT); |
|
4717 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
4718 ew32(CTRL_EXT, ctrl_ext); |
|
4719 } |
|
4720 |
|
4721 ew32(WUC, E1000_WUC_PME_EN); |
|
4722 ew32(WUFC, wufc); |
|
4723 } else { |
|
4724 ew32(WUC, 0); |
|
4725 ew32(WUFC, 0); |
|
4726 } |
|
4727 |
|
4728 e1000_release_manageability(adapter); |
|
4729 |
|
4730 *enable_wake = !!wufc; |
|
4731 |
|
4732 /* make sure adapter isn't asleep if manageability is enabled */ |
|
4733 if (adapter->en_mng_pt) |
|
4734 *enable_wake = true; |
|
4735 |
|
4736 if (netif_running(netdev)) |
|
4737 e1000_free_irq(adapter); |
|
4738 |
|
4739 pci_disable_device(pdev); |
|
4740 |
|
4741 return 0; |
|
4742 } |
|
4743 |
|
4744 #ifdef CONFIG_PM |
|
4745 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
4746 { |
|
4747 int retval; |
|
4748 bool wake; |
|
4749 |
|
4750 retval = __e1000_shutdown(pdev, &wake); |
|
4751 if (retval) |
|
4752 return retval; |
|
4753 |
|
4754 if (wake) { |
|
4755 pci_prepare_to_sleep(pdev); |
|
4756 } else { |
|
4757 pci_wake_from_d3(pdev, false); |
|
4758 pci_set_power_state(pdev, PCI_D3hot); |
|
4759 } |
|
4760 |
|
4761 return 0; |
|
4762 } |
|
4763 |
|
4764 static int e1000_resume(struct pci_dev *pdev) |
|
4765 { |
|
4766 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4767 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4768 struct e1000_hw *hw = &adapter->hw; |
|
4769 u32 err; |
|
4770 |
|
4771 if (adapter->ecdev) |
|
4772 return -EBUSY; |
|
4773 |
|
4774 pci_set_power_state(pdev, PCI_D0); |
|
4775 pci_restore_state(pdev); |
|
4776 pci_save_state(pdev); |
|
4777 |
|
4778 if (adapter->need_ioport) |
|
4779 err = pci_enable_device(pdev); |
|
4780 else |
|
4781 err = pci_enable_device_mem(pdev); |
|
4782 if (err) { |
|
4783 pr_err("Cannot enable PCI device from suspend\n"); |
|
4784 return err; |
|
4785 } |
|
4786 pci_set_master(pdev); |
|
4787 |
|
4788 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4789 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4790 |
|
4791 if (netif_running(netdev)) { |
|
4792 err = e1000_request_irq(adapter); |
|
4793 if (err) |
|
4794 return err; |
|
4795 } |
|
4796 |
|
4797 e1000_power_up_phy(adapter); |
|
4798 e1000_reset(adapter); |
|
4799 ew32(WUS, ~0); |
|
4800 |
|
4801 e1000_init_manageability(adapter); |
|
4802 |
|
4803 if (netif_running(netdev)) |
|
4804 e1000_up(adapter); |
|
4805 |
|
4806 if (!adapter->ecdev) |
|
4807 netif_device_attach(netdev); |
|
4808 |
|
4809 return 0; |
|
4810 } |
|
4811 #endif |
|
4812 |
|
4813 static void e1000_shutdown(struct pci_dev *pdev) |
|
4814 { |
|
4815 bool wake; |
|
4816 |
|
4817 __e1000_shutdown(pdev, &wake); |
|
4818 |
|
4819 if (system_state == SYSTEM_POWER_OFF) { |
|
4820 pci_wake_from_d3(pdev, wake); |
|
4821 pci_set_power_state(pdev, PCI_D3hot); |
|
4822 } |
|
4823 } |
|
4824 |
|
4825 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
4826 /* |
|
4827 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
4828 * without having to re-enable interrupts. It's not called while |
|
4829 * the interrupt routine is executing. |
|
4830 */ |
|
4831 static void e1000_netpoll(struct net_device *netdev) |
|
4832 { |
|
4833 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4834 |
|
4835 disable_irq(adapter->pdev->irq); |
|
4836 e1000_intr(adapter->pdev->irq, netdev); |
|
4837 enable_irq(adapter->pdev->irq); |
|
4838 } |
|
4839 #endif |
|
4840 |
|
4841 /** |
|
4842 * e1000_io_error_detected - called when PCI error is detected |
|
4843 * @pdev: Pointer to PCI device |
|
4844 * @state: The current pci connection state |
|
4845 * |
|
4846 * This function is called after a PCI bus error affecting |
|
4847 * this device has been detected. |
|
4848 */ |
|
4849 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
4850 pci_channel_state_t state) |
|
4851 { |
|
4852 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4853 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4854 |
|
4855 netif_device_detach(netdev); |
|
4856 |
|
4857 if (state == pci_channel_io_perm_failure) |
|
4858 return PCI_ERS_RESULT_DISCONNECT; |
|
4859 |
|
4860 if (netif_running(netdev)) |
|
4861 e1000_down(adapter); |
|
4862 pci_disable_device(pdev); |
|
4863 |
|
4864 /* Request a slot slot reset. */ |
|
4865 return PCI_ERS_RESULT_NEED_RESET; |
|
4866 } |
|
4867 |
|
4868 /** |
|
4869 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
4870 * @pdev: Pointer to PCI device |
|
4871 * |
|
4872 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
4873 * resembles the first-half of the e1000_resume routine. |
|
4874 */ |
|
4875 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
4876 { |
|
4877 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4878 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4879 struct e1000_hw *hw = &adapter->hw; |
|
4880 int err; |
|
4881 |
|
4882 if (adapter->need_ioport) |
|
4883 err = pci_enable_device(pdev); |
|
4884 else |
|
4885 err = pci_enable_device_mem(pdev); |
|
4886 if (err) { |
|
4887 pr_err("Cannot re-enable PCI device after reset.\n"); |
|
4888 return PCI_ERS_RESULT_DISCONNECT; |
|
4889 } |
|
4890 pci_set_master(pdev); |
|
4891 |
|
4892 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4893 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4894 |
|
4895 e1000_reset(adapter); |
|
4896 ew32(WUS, ~0); |
|
4897 |
|
4898 return PCI_ERS_RESULT_RECOVERED; |
|
4899 } |
|
4900 |
|
4901 /** |
|
4902 * e1000_io_resume - called when traffic can start flowing again. |
|
4903 * @pdev: Pointer to PCI device |
|
4904 * |
|
4905 * This callback is called when the error recovery driver tells us that |
|
4906 * its OK to resume normal operation. Implementation resembles the |
|
4907 * second-half of the e1000_resume routine. |
|
4908 */ |
|
4909 static void e1000_io_resume(struct pci_dev *pdev) |
|
4910 { |
|
4911 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4912 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4913 |
|
4914 e1000_init_manageability(adapter); |
|
4915 |
|
4916 if (netif_running(netdev)) { |
|
4917 if (e1000_up(adapter)) { |
|
4918 pr_info("can't bring device back up after reset\n"); |
|
4919 return; |
|
4920 } |
|
4921 } |
|
4922 |
|
4923 netif_device_attach(netdev); |
|
4924 } |
|
4925 |
|
4926 /* e1000_main.c */ |