|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/100 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * e100.c: Intel(R) PRO/100 ethernet driver |
|
31 * |
|
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on |
|
33 * original e100 driver, but better described as a munging of |
|
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. |
|
35 * |
|
36 * References: |
|
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, |
|
38 * Open Source Software Developers Manual, |
|
39 * http://sourceforge.net/projects/e1000 |
|
40 * |
|
41 * |
|
42 * Theory of Operation |
|
43 * |
|
44 * I. General |
|
45 * |
|
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet |
|
47 * controller family, which includes the 82557, 82558, 82559, 82550, |
|
48 * 82551, and 82562 devices. 82558 and greater controllers |
|
49 * integrate the Intel 82555 PHY. The controllers are used in |
|
50 * server and client network interface cards, as well as in |
|
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx |
|
52 * configurations. 8255x supports a 32-bit linear addressing |
|
53 * mode and operates at 33Mhz PCI clock rate. |
|
54 * |
|
55 * II. Driver Operation |
|
56 * |
|
57 * Memory-mapped mode is used exclusively to access the device's |
|
58 * shared-memory structure, the Control/Status Registers (CSR). All |
|
59 * setup, configuration, and control of the device, including queuing |
|
60 * of Tx, Rx, and configuration commands is through the CSR. |
|
61 * cmd_lock serializes accesses to the CSR command register. cb_lock |
|
62 * protects the shared Command Block List (CBL). |
|
63 * |
|
64 * 8255x is highly MII-compliant and all access to the PHY go |
|
65 * through the Management Data Interface (MDI). Consequently, the |
|
66 * driver leverages the mii.c library shared with other MII-compliant |
|
67 * devices. |
|
68 * |
|
69 * Big- and Little-Endian byte order as well as 32- and 64-bit |
|
70 * archs are supported. Weak-ordered memory and non-cache-coherent |
|
71 * archs are supported. |
|
72 * |
|
73 * III. Transmit |
|
74 * |
|
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked |
|
76 * together in a fixed-size ring (CBL) thus forming the flexible mode |
|
77 * memory structure. A TCB marked with the suspend-bit indicates |
|
78 * the end of the ring. The last TCB processed suspends the |
|
79 * controller, and the controller can be restarted by issue a CU |
|
80 * resume command to continue from the suspend point, or a CU start |
|
81 * command to start at a given position in the ring. |
|
82 * |
|
83 * Non-Tx commands (config, multicast setup, etc) are linked |
|
84 * into the CBL ring along with Tx commands. The common structure |
|
85 * used for both Tx and non-Tx commands is the Command Block (CB). |
|
86 * |
|
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean |
|
88 * is the next CB to check for completion; cb_to_send is the first |
|
89 * CB to start on in case of a previous failure to resume. CB clean |
|
90 * up happens in interrupt context in response to a CU interrupt. |
|
91 * cbs_avail keeps track of number of free CB resources available. |
|
92 * |
|
93 * Hardware padding of short packets to minimum packet size is |
|
94 * enabled. 82557 pads with 7Eh, while the later controllers pad |
|
95 * with 00h. |
|
96 * |
|
97 * IV. Receive |
|
98 * |
|
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame |
|
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode |
|
101 * memory structure. Rx skbs are allocated to contain both the RFD |
|
102 * and the data buffer, but the RFD is pulled off before the skb is |
|
103 * indicated. The data buffer is aligned such that encapsulated |
|
104 * protocol headers are u32-aligned. Since the RFD is part of the |
|
105 * mapped shared memory, and completion status is contained within |
|
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent |
|
107 * view from software and hardware. |
|
108 * |
|
109 * In order to keep updates to the RFD link field from colliding with |
|
110 * hardware writes to mark packets complete, we use the feature that |
|
111 * hardware will not write to a size 0 descriptor and mark the previous |
|
112 * packet as end-of-list (EL). After updating the link, we remove EL |
|
113 * and only then restore the size such that hardware may use the |
|
114 * previous-to-end RFD. |
|
115 * |
|
116 * Under typical operation, the receive unit (RU) is start once, |
|
117 * and the controller happily fills RFDs as frames arrive. If |
|
118 * replacement RFDs cannot be allocated, or the RU goes non-active, |
|
119 * the RU must be restarted. Frame arrival generates an interrupt, |
|
120 * and Rx indication and re-allocation happen in the same context, |
|
121 * therefore no locking is required. A software-generated interrupt |
|
122 * is generated from the watchdog to recover from a failed allocation |
|
123 * scenario where all Rx resources have been indicated and none re- |
|
124 * placed. |
|
125 * |
|
126 * V. Miscellaneous |
|
127 * |
|
128 * VLAN offloading of tagging, stripping and filtering is not |
|
129 * supported, but driver will accommodate the extra 4-byte VLAN tag |
|
130 * for processing by upper layers. Tx/Rx Checksum offloading is not |
|
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is |
|
132 * not supported (hardware limitation). |
|
133 * |
|
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. |
|
135 * |
|
136 * Thanks to JC (jchapman@katalix.com) for helping with |
|
137 * testing/troubleshooting the development driver. |
|
138 * |
|
139 * TODO: |
|
140 * o several entry points race with dev->close |
|
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q |
|
142 * |
|
143 * FIXES: |
|
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> |
|
145 * - Stratus87247: protect MDI control register manipulations |
|
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> |
|
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs |
|
148 */ |
|
149 |
|
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
|
151 |
|
152 #include <linux/module.h> |
|
153 #include <linux/moduleparam.h> |
|
154 #include <linux/kernel.h> |
|
155 #include <linux/types.h> |
|
156 #include <linux/sched.h> |
|
157 #include <linux/slab.h> |
|
158 #include <linux/delay.h> |
|
159 #include <linux/init.h> |
|
160 #include <linux/pci.h> |
|
161 #include <linux/dma-mapping.h> |
|
162 #include <linux/dmapool.h> |
|
163 #include <linux/netdevice.h> |
|
164 #include <linux/etherdevice.h> |
|
165 #include <linux/mii.h> |
|
166 #include <linux/if_vlan.h> |
|
167 #include <linux/skbuff.h> |
|
168 #include <linux/ethtool.h> |
|
169 #include <linux/string.h> |
|
170 #include <linux/firmware.h> |
|
171 #include <linux/rtnetlink.h> |
|
172 #include <asm/unaligned.h> |
|
173 |
|
174 |
|
175 #define DRV_NAME "e100" |
|
176 #define DRV_EXT "-NAPI" |
|
177 #define DRV_VERSION "3.5.24-k2"DRV_EXT |
|
178 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" |
|
179 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" |
|
180 |
|
181 #define E100_WATCHDOG_PERIOD (2 * HZ) |
|
182 #define E100_NAPI_WEIGHT 16 |
|
183 |
|
184 #define FIRMWARE_D101M "e100/d101m_ucode.bin" |
|
185 #define FIRMWARE_D101S "e100/d101s_ucode.bin" |
|
186 #define FIRMWARE_D102E "e100/d102e_ucode.bin" |
|
187 |
|
188 MODULE_DESCRIPTION(DRV_DESCRIPTION); |
|
189 MODULE_AUTHOR(DRV_COPYRIGHT); |
|
190 MODULE_LICENSE("GPL"); |
|
191 MODULE_VERSION(DRV_VERSION); |
|
192 MODULE_FIRMWARE(FIRMWARE_D101M); |
|
193 MODULE_FIRMWARE(FIRMWARE_D101S); |
|
194 MODULE_FIRMWARE(FIRMWARE_D102E); |
|
195 |
|
196 static int debug = 3; |
|
197 static int eeprom_bad_csum_allow = 0; |
|
198 static int use_io = 0; |
|
199 module_param(debug, int, 0); |
|
200 module_param(eeprom_bad_csum_allow, int, 0); |
|
201 module_param(use_io, int, 0); |
|
202 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
203 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); |
|
204 MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); |
|
205 |
|
206 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ |
|
207 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ |
|
208 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } |
|
209 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = { |
|
210 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), |
|
211 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), |
|
212 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), |
|
213 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), |
|
214 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), |
|
215 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), |
|
216 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), |
|
217 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), |
|
218 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), |
|
219 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), |
|
220 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), |
|
221 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), |
|
222 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), |
|
223 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), |
|
224 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), |
|
225 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), |
|
226 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), |
|
227 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), |
|
228 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), |
|
229 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), |
|
230 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), |
|
231 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), |
|
232 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), |
|
233 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), |
|
234 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), |
|
235 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), |
|
236 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), |
|
237 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), |
|
238 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), |
|
239 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), |
|
240 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), |
|
241 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), |
|
242 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), |
|
243 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), |
|
244 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), |
|
245 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), |
|
246 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), |
|
247 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), |
|
248 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), |
|
249 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), |
|
250 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), |
|
251 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), |
|
252 { 0, } |
|
253 }; |
|
254 MODULE_DEVICE_TABLE(pci, e100_id_table); |
|
255 |
|
256 enum mac { |
|
257 mac_82557_D100_A = 0, |
|
258 mac_82557_D100_B = 1, |
|
259 mac_82557_D100_C = 2, |
|
260 mac_82558_D101_A4 = 4, |
|
261 mac_82558_D101_B0 = 5, |
|
262 mac_82559_D101M = 8, |
|
263 mac_82559_D101S = 9, |
|
264 mac_82550_D102 = 12, |
|
265 mac_82550_D102_C = 13, |
|
266 mac_82551_E = 14, |
|
267 mac_82551_F = 15, |
|
268 mac_82551_10 = 16, |
|
269 mac_unknown = 0xFF, |
|
270 }; |
|
271 |
|
272 enum phy { |
|
273 phy_100a = 0x000003E0, |
|
274 phy_100c = 0x035002A8, |
|
275 phy_82555_tx = 0x015002A8, |
|
276 phy_nsc_tx = 0x5C002000, |
|
277 phy_82562_et = 0x033002A8, |
|
278 phy_82562_em = 0x032002A8, |
|
279 phy_82562_ek = 0x031002A8, |
|
280 phy_82562_eh = 0x017002A8, |
|
281 phy_82552_v = 0xd061004d, |
|
282 phy_unknown = 0xFFFFFFFF, |
|
283 }; |
|
284 |
|
285 /* CSR (Control/Status Registers) */ |
|
286 struct csr { |
|
287 struct { |
|
288 u8 status; |
|
289 u8 stat_ack; |
|
290 u8 cmd_lo; |
|
291 u8 cmd_hi; |
|
292 u32 gen_ptr; |
|
293 } scb; |
|
294 u32 port; |
|
295 u16 flash_ctrl; |
|
296 u8 eeprom_ctrl_lo; |
|
297 u8 eeprom_ctrl_hi; |
|
298 u32 mdi_ctrl; |
|
299 u32 rx_dma_count; |
|
300 }; |
|
301 |
|
302 enum scb_status { |
|
303 rus_no_res = 0x08, |
|
304 rus_ready = 0x10, |
|
305 rus_mask = 0x3C, |
|
306 }; |
|
307 |
|
308 enum ru_state { |
|
309 RU_SUSPENDED = 0, |
|
310 RU_RUNNING = 1, |
|
311 RU_UNINITIALIZED = -1, |
|
312 }; |
|
313 |
|
314 enum scb_stat_ack { |
|
315 stat_ack_not_ours = 0x00, |
|
316 stat_ack_sw_gen = 0x04, |
|
317 stat_ack_rnr = 0x10, |
|
318 stat_ack_cu_idle = 0x20, |
|
319 stat_ack_frame_rx = 0x40, |
|
320 stat_ack_cu_cmd_done = 0x80, |
|
321 stat_ack_not_present = 0xFF, |
|
322 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), |
|
323 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), |
|
324 }; |
|
325 |
|
326 enum scb_cmd_hi { |
|
327 irq_mask_none = 0x00, |
|
328 irq_mask_all = 0x01, |
|
329 irq_sw_gen = 0x02, |
|
330 }; |
|
331 |
|
332 enum scb_cmd_lo { |
|
333 cuc_nop = 0x00, |
|
334 ruc_start = 0x01, |
|
335 ruc_load_base = 0x06, |
|
336 cuc_start = 0x10, |
|
337 cuc_resume = 0x20, |
|
338 cuc_dump_addr = 0x40, |
|
339 cuc_dump_stats = 0x50, |
|
340 cuc_load_base = 0x60, |
|
341 cuc_dump_reset = 0x70, |
|
342 }; |
|
343 |
|
344 enum cuc_dump { |
|
345 cuc_dump_complete = 0x0000A005, |
|
346 cuc_dump_reset_complete = 0x0000A007, |
|
347 }; |
|
348 |
|
349 enum port { |
|
350 software_reset = 0x0000, |
|
351 selftest = 0x0001, |
|
352 selective_reset = 0x0002, |
|
353 }; |
|
354 |
|
355 enum eeprom_ctrl_lo { |
|
356 eesk = 0x01, |
|
357 eecs = 0x02, |
|
358 eedi = 0x04, |
|
359 eedo = 0x08, |
|
360 }; |
|
361 |
|
362 enum mdi_ctrl { |
|
363 mdi_write = 0x04000000, |
|
364 mdi_read = 0x08000000, |
|
365 mdi_ready = 0x10000000, |
|
366 }; |
|
367 |
|
368 enum eeprom_op { |
|
369 op_write = 0x05, |
|
370 op_read = 0x06, |
|
371 op_ewds = 0x10, |
|
372 op_ewen = 0x13, |
|
373 }; |
|
374 |
|
375 enum eeprom_offsets { |
|
376 eeprom_cnfg_mdix = 0x03, |
|
377 eeprom_phy_iface = 0x06, |
|
378 eeprom_id = 0x0A, |
|
379 eeprom_config_asf = 0x0D, |
|
380 eeprom_smbus_addr = 0x90, |
|
381 }; |
|
382 |
|
383 enum eeprom_cnfg_mdix { |
|
384 eeprom_mdix_enabled = 0x0080, |
|
385 }; |
|
386 |
|
387 enum eeprom_phy_iface { |
|
388 NoSuchPhy = 0, |
|
389 I82553AB, |
|
390 I82553C, |
|
391 I82503, |
|
392 DP83840, |
|
393 S80C240, |
|
394 S80C24, |
|
395 I82555, |
|
396 DP83840A = 10, |
|
397 }; |
|
398 |
|
399 enum eeprom_id { |
|
400 eeprom_id_wol = 0x0020, |
|
401 }; |
|
402 |
|
403 enum eeprom_config_asf { |
|
404 eeprom_asf = 0x8000, |
|
405 eeprom_gcl = 0x4000, |
|
406 }; |
|
407 |
|
408 enum cb_status { |
|
409 cb_complete = 0x8000, |
|
410 cb_ok = 0x2000, |
|
411 }; |
|
412 |
|
413 enum cb_command { |
|
414 cb_nop = 0x0000, |
|
415 cb_iaaddr = 0x0001, |
|
416 cb_config = 0x0002, |
|
417 cb_multi = 0x0003, |
|
418 cb_tx = 0x0004, |
|
419 cb_ucode = 0x0005, |
|
420 cb_dump = 0x0006, |
|
421 cb_tx_sf = 0x0008, |
|
422 cb_cid = 0x1f00, |
|
423 cb_i = 0x2000, |
|
424 cb_s = 0x4000, |
|
425 cb_el = 0x8000, |
|
426 }; |
|
427 |
|
428 struct rfd { |
|
429 __le16 status; |
|
430 __le16 command; |
|
431 __le32 link; |
|
432 __le32 rbd; |
|
433 __le16 actual_size; |
|
434 __le16 size; |
|
435 }; |
|
436 |
|
437 struct rx { |
|
438 struct rx *next, *prev; |
|
439 struct sk_buff *skb; |
|
440 dma_addr_t dma_addr; |
|
441 }; |
|
442 |
|
443 #if defined(__BIG_ENDIAN_BITFIELD) |
|
444 #define X(a,b) b,a |
|
445 #else |
|
446 #define X(a,b) a,b |
|
447 #endif |
|
448 struct config { |
|
449 /*0*/ u8 X(byte_count:6, pad0:2); |
|
450 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); |
|
451 /*2*/ u8 adaptive_ifs; |
|
452 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), |
|
453 term_write_cache_line:1), pad3:4); |
|
454 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); |
|
455 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); |
|
456 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), |
|
457 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), |
|
458 rx_discard_overruns:1), rx_save_bad_frames:1); |
|
459 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), |
|
460 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), |
|
461 tx_dynamic_tbd:1); |
|
462 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); |
|
463 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), |
|
464 link_status_wake:1), arp_wake:1), mcmatch_wake:1); |
|
465 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), |
|
466 loopback:2); |
|
467 /*11*/ u8 X(linear_priority:3, pad11:5); |
|
468 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); |
|
469 /*13*/ u8 ip_addr_lo; |
|
470 /*14*/ u8 ip_addr_hi; |
|
471 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), |
|
472 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), |
|
473 pad15_2:1), crs_or_cdt:1); |
|
474 /*16*/ u8 fc_delay_lo; |
|
475 /*17*/ u8 fc_delay_hi; |
|
476 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), |
|
477 rx_long_ok:1), fc_priority_threshold:3), pad18:1); |
|
478 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), |
|
479 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), |
|
480 full_duplex_force:1), full_duplex_pin:1); |
|
481 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); |
|
482 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); |
|
483 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); |
|
484 u8 pad_d102[9]; |
|
485 }; |
|
486 |
|
487 #define E100_MAX_MULTICAST_ADDRS 64 |
|
488 struct multi { |
|
489 __le16 count; |
|
490 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; |
|
491 }; |
|
492 |
|
493 /* Important: keep total struct u32-aligned */ |
|
494 #define UCODE_SIZE 134 |
|
495 struct cb { |
|
496 __le16 status; |
|
497 __le16 command; |
|
498 __le32 link; |
|
499 union { |
|
500 u8 iaaddr[ETH_ALEN]; |
|
501 __le32 ucode[UCODE_SIZE]; |
|
502 struct config config; |
|
503 struct multi multi; |
|
504 struct { |
|
505 u32 tbd_array; |
|
506 u16 tcb_byte_count; |
|
507 u8 threshold; |
|
508 u8 tbd_count; |
|
509 struct { |
|
510 __le32 buf_addr; |
|
511 __le16 size; |
|
512 u16 eol; |
|
513 } tbd; |
|
514 } tcb; |
|
515 __le32 dump_buffer_addr; |
|
516 } u; |
|
517 struct cb *next, *prev; |
|
518 dma_addr_t dma_addr; |
|
519 struct sk_buff *skb; |
|
520 }; |
|
521 |
|
522 enum loopback { |
|
523 lb_none = 0, lb_mac = 1, lb_phy = 3, |
|
524 }; |
|
525 |
|
526 struct stats { |
|
527 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, |
|
528 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, |
|
529 tx_multiple_collisions, tx_total_collisions; |
|
530 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, |
|
531 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, |
|
532 rx_short_frame_errors; |
|
533 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; |
|
534 __le16 xmt_tco_frames, rcv_tco_frames; |
|
535 __le32 complete; |
|
536 }; |
|
537 |
|
538 struct mem { |
|
539 struct { |
|
540 u32 signature; |
|
541 u32 result; |
|
542 } selftest; |
|
543 struct stats stats; |
|
544 u8 dump_buf[596]; |
|
545 }; |
|
546 |
|
547 struct param_range { |
|
548 u32 min; |
|
549 u32 max; |
|
550 u32 count; |
|
551 }; |
|
552 |
|
553 struct params { |
|
554 struct param_range rfds; |
|
555 struct param_range cbs; |
|
556 }; |
|
557 |
|
558 struct nic { |
|
559 /* Begin: frequently used values: keep adjacent for cache effect */ |
|
560 u32 msg_enable ____cacheline_aligned; |
|
561 struct net_device *netdev; |
|
562 struct pci_dev *pdev; |
|
563 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); |
|
564 |
|
565 struct rx *rxs ____cacheline_aligned; |
|
566 struct rx *rx_to_use; |
|
567 struct rx *rx_to_clean; |
|
568 struct rfd blank_rfd; |
|
569 enum ru_state ru_running; |
|
570 |
|
571 spinlock_t cb_lock ____cacheline_aligned; |
|
572 spinlock_t cmd_lock; |
|
573 struct csr __iomem *csr; |
|
574 enum scb_cmd_lo cuc_cmd; |
|
575 unsigned int cbs_avail; |
|
576 struct napi_struct napi; |
|
577 struct cb *cbs; |
|
578 struct cb *cb_to_use; |
|
579 struct cb *cb_to_send; |
|
580 struct cb *cb_to_clean; |
|
581 __le16 tx_command; |
|
582 /* End: frequently used values: keep adjacent for cache effect */ |
|
583 |
|
584 enum { |
|
585 ich = (1 << 0), |
|
586 promiscuous = (1 << 1), |
|
587 multicast_all = (1 << 2), |
|
588 wol_magic = (1 << 3), |
|
589 ich_10h_workaround = (1 << 4), |
|
590 } flags ____cacheline_aligned; |
|
591 |
|
592 enum mac mac; |
|
593 enum phy phy; |
|
594 struct params params; |
|
595 struct timer_list watchdog; |
|
596 struct timer_list blink_timer; |
|
597 struct mii_if_info mii; |
|
598 struct work_struct tx_timeout_task; |
|
599 enum loopback loopback; |
|
600 |
|
601 struct mem *mem; |
|
602 dma_addr_t dma_addr; |
|
603 |
|
604 struct pci_pool *cbs_pool; |
|
605 dma_addr_t cbs_dma_addr; |
|
606 u8 adaptive_ifs; |
|
607 u8 tx_threshold; |
|
608 u32 tx_frames; |
|
609 u32 tx_collisions; |
|
610 u32 tx_deferred; |
|
611 u32 tx_single_collisions; |
|
612 u32 tx_multiple_collisions; |
|
613 u32 tx_fc_pause; |
|
614 u32 tx_tco_frames; |
|
615 |
|
616 u32 rx_fc_pause; |
|
617 u32 rx_fc_unsupported; |
|
618 u32 rx_tco_frames; |
|
619 u32 rx_over_length_errors; |
|
620 |
|
621 u16 leds; |
|
622 u16 eeprom_wc; |
|
623 __le16 eeprom[256]; |
|
624 spinlock_t mdio_lock; |
|
625 const struct firmware *fw; |
|
626 }; |
|
627 |
|
628 static inline void e100_write_flush(struct nic *nic) |
|
629 { |
|
630 /* Flush previous PCI writes through intermediate bridges |
|
631 * by doing a benign read */ |
|
632 (void)ioread8(&nic->csr->scb.status); |
|
633 } |
|
634 |
|
635 static void e100_enable_irq(struct nic *nic) |
|
636 { |
|
637 unsigned long flags; |
|
638 |
|
639 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
640 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); |
|
641 e100_write_flush(nic); |
|
642 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
643 } |
|
644 |
|
645 static void e100_disable_irq(struct nic *nic) |
|
646 { |
|
647 unsigned long flags; |
|
648 |
|
649 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
650 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); |
|
651 e100_write_flush(nic); |
|
652 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
653 } |
|
654 |
|
655 static void e100_hw_reset(struct nic *nic) |
|
656 { |
|
657 /* Put CU and RU into idle with a selective reset to get |
|
658 * device off of PCI bus */ |
|
659 iowrite32(selective_reset, &nic->csr->port); |
|
660 e100_write_flush(nic); udelay(20); |
|
661 |
|
662 /* Now fully reset device */ |
|
663 iowrite32(software_reset, &nic->csr->port); |
|
664 e100_write_flush(nic); udelay(20); |
|
665 |
|
666 /* Mask off our interrupt line - it's unmasked after reset */ |
|
667 e100_disable_irq(nic); |
|
668 } |
|
669 |
|
670 static int e100_self_test(struct nic *nic) |
|
671 { |
|
672 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); |
|
673 |
|
674 /* Passing the self-test is a pretty good indication |
|
675 * that the device can DMA to/from host memory */ |
|
676 |
|
677 nic->mem->selftest.signature = 0; |
|
678 nic->mem->selftest.result = 0xFFFFFFFF; |
|
679 |
|
680 iowrite32(selftest | dma_addr, &nic->csr->port); |
|
681 e100_write_flush(nic); |
|
682 /* Wait 10 msec for self-test to complete */ |
|
683 msleep(10); |
|
684 |
|
685 /* Interrupts are enabled after self-test */ |
|
686 e100_disable_irq(nic); |
|
687 |
|
688 /* Check results of self-test */ |
|
689 if (nic->mem->selftest.result != 0) { |
|
690 netif_err(nic, hw, nic->netdev, |
|
691 "Self-test failed: result=0x%08X\n", |
|
692 nic->mem->selftest.result); |
|
693 return -ETIMEDOUT; |
|
694 } |
|
695 if (nic->mem->selftest.signature == 0) { |
|
696 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); |
|
697 return -ETIMEDOUT; |
|
698 } |
|
699 |
|
700 return 0; |
|
701 } |
|
702 |
|
703 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) |
|
704 { |
|
705 u32 cmd_addr_data[3]; |
|
706 u8 ctrl; |
|
707 int i, j; |
|
708 |
|
709 /* Three cmds: write/erase enable, write data, write/erase disable */ |
|
710 cmd_addr_data[0] = op_ewen << (addr_len - 2); |
|
711 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | |
|
712 le16_to_cpu(data); |
|
713 cmd_addr_data[2] = op_ewds << (addr_len - 2); |
|
714 |
|
715 /* Bit-bang cmds to write word to eeprom */ |
|
716 for (j = 0; j < 3; j++) { |
|
717 |
|
718 /* Chip select */ |
|
719 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
720 e100_write_flush(nic); udelay(4); |
|
721 |
|
722 for (i = 31; i >= 0; i--) { |
|
723 ctrl = (cmd_addr_data[j] & (1 << i)) ? |
|
724 eecs | eedi : eecs; |
|
725 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
726 e100_write_flush(nic); udelay(4); |
|
727 |
|
728 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
729 e100_write_flush(nic); udelay(4); |
|
730 } |
|
731 /* Wait 10 msec for cmd to complete */ |
|
732 msleep(10); |
|
733 |
|
734 /* Chip deselect */ |
|
735 iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
|
736 e100_write_flush(nic); udelay(4); |
|
737 } |
|
738 }; |
|
739 |
|
740 /* General technique stolen from the eepro100 driver - very clever */ |
|
741 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) |
|
742 { |
|
743 u32 cmd_addr_data; |
|
744 u16 data = 0; |
|
745 u8 ctrl; |
|
746 int i; |
|
747 |
|
748 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; |
|
749 |
|
750 /* Chip select */ |
|
751 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
752 e100_write_flush(nic); udelay(4); |
|
753 |
|
754 /* Bit-bang to read word from eeprom */ |
|
755 for (i = 31; i >= 0; i--) { |
|
756 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; |
|
757 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
758 e100_write_flush(nic); udelay(4); |
|
759 |
|
760 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
761 e100_write_flush(nic); udelay(4); |
|
762 |
|
763 /* Eeprom drives a dummy zero to EEDO after receiving |
|
764 * complete address. Use this to adjust addr_len. */ |
|
765 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); |
|
766 if (!(ctrl & eedo) && i > 16) { |
|
767 *addr_len -= (i - 16); |
|
768 i = 17; |
|
769 } |
|
770 |
|
771 data = (data << 1) | (ctrl & eedo ? 1 : 0); |
|
772 } |
|
773 |
|
774 /* Chip deselect */ |
|
775 iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
|
776 e100_write_flush(nic); udelay(4); |
|
777 |
|
778 return cpu_to_le16(data); |
|
779 }; |
|
780 |
|
781 /* Load entire EEPROM image into driver cache and validate checksum */ |
|
782 static int e100_eeprom_load(struct nic *nic) |
|
783 { |
|
784 u16 addr, addr_len = 8, checksum = 0; |
|
785 |
|
786 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
787 e100_eeprom_read(nic, &addr_len, 0); |
|
788 nic->eeprom_wc = 1 << addr_len; |
|
789 |
|
790 for (addr = 0; addr < nic->eeprom_wc; addr++) { |
|
791 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); |
|
792 if (addr < nic->eeprom_wc - 1) |
|
793 checksum += le16_to_cpu(nic->eeprom[addr]); |
|
794 } |
|
795 |
|
796 /* The checksum, stored in the last word, is calculated such that |
|
797 * the sum of words should be 0xBABA */ |
|
798 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { |
|
799 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); |
|
800 if (!eeprom_bad_csum_allow) |
|
801 return -EAGAIN; |
|
802 } |
|
803 |
|
804 return 0; |
|
805 } |
|
806 |
|
807 /* Save (portion of) driver EEPROM cache to device and update checksum */ |
|
808 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) |
|
809 { |
|
810 u16 addr, addr_len = 8, checksum = 0; |
|
811 |
|
812 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
813 e100_eeprom_read(nic, &addr_len, 0); |
|
814 nic->eeprom_wc = 1 << addr_len; |
|
815 |
|
816 if (start + count >= nic->eeprom_wc) |
|
817 return -EINVAL; |
|
818 |
|
819 for (addr = start; addr < start + count; addr++) |
|
820 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); |
|
821 |
|
822 /* The checksum, stored in the last word, is calculated such that |
|
823 * the sum of words should be 0xBABA */ |
|
824 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) |
|
825 checksum += le16_to_cpu(nic->eeprom[addr]); |
|
826 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); |
|
827 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, |
|
828 nic->eeprom[nic->eeprom_wc - 1]); |
|
829 |
|
830 return 0; |
|
831 } |
|
832 |
|
833 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ |
|
834 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ |
|
835 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) |
|
836 { |
|
837 unsigned long flags; |
|
838 unsigned int i; |
|
839 int err = 0; |
|
840 |
|
841 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
842 |
|
843 /* Previous command is accepted when SCB clears */ |
|
844 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { |
|
845 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) |
|
846 break; |
|
847 cpu_relax(); |
|
848 if (unlikely(i > E100_WAIT_SCB_FAST)) |
|
849 udelay(5); |
|
850 } |
|
851 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { |
|
852 err = -EAGAIN; |
|
853 goto err_unlock; |
|
854 } |
|
855 |
|
856 if (unlikely(cmd != cuc_resume)) |
|
857 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); |
|
858 iowrite8(cmd, &nic->csr->scb.cmd_lo); |
|
859 |
|
860 err_unlock: |
|
861 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
862 |
|
863 return err; |
|
864 } |
|
865 |
|
866 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, |
|
867 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) |
|
868 { |
|
869 struct cb *cb; |
|
870 unsigned long flags; |
|
871 int err = 0; |
|
872 |
|
873 spin_lock_irqsave(&nic->cb_lock, flags); |
|
874 |
|
875 if (unlikely(!nic->cbs_avail)) { |
|
876 err = -ENOMEM; |
|
877 goto err_unlock; |
|
878 } |
|
879 |
|
880 cb = nic->cb_to_use; |
|
881 nic->cb_to_use = cb->next; |
|
882 nic->cbs_avail--; |
|
883 cb->skb = skb; |
|
884 |
|
885 if (unlikely(!nic->cbs_avail)) |
|
886 err = -ENOSPC; |
|
887 |
|
888 cb_prepare(nic, cb, skb); |
|
889 |
|
890 /* Order is important otherwise we'll be in a race with h/w: |
|
891 * set S-bit in current first, then clear S-bit in previous. */ |
|
892 cb->command |= cpu_to_le16(cb_s); |
|
893 wmb(); |
|
894 cb->prev->command &= cpu_to_le16(~cb_s); |
|
895 |
|
896 while (nic->cb_to_send != nic->cb_to_use) { |
|
897 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, |
|
898 nic->cb_to_send->dma_addr))) { |
|
899 /* Ok, here's where things get sticky. It's |
|
900 * possible that we can't schedule the command |
|
901 * because the controller is too busy, so |
|
902 * let's just queue the command and try again |
|
903 * when another command is scheduled. */ |
|
904 if (err == -ENOSPC) { |
|
905 //request a reset |
|
906 schedule_work(&nic->tx_timeout_task); |
|
907 } |
|
908 break; |
|
909 } else { |
|
910 nic->cuc_cmd = cuc_resume; |
|
911 nic->cb_to_send = nic->cb_to_send->next; |
|
912 } |
|
913 } |
|
914 |
|
915 err_unlock: |
|
916 spin_unlock_irqrestore(&nic->cb_lock, flags); |
|
917 |
|
918 return err; |
|
919 } |
|
920 |
|
921 static int mdio_read(struct net_device *netdev, int addr, int reg) |
|
922 { |
|
923 struct nic *nic = netdev_priv(netdev); |
|
924 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); |
|
925 } |
|
926 |
|
927 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) |
|
928 { |
|
929 struct nic *nic = netdev_priv(netdev); |
|
930 |
|
931 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); |
|
932 } |
|
933 |
|
934 /* the standard mdio_ctrl() function for usual MII-compliant hardware */ |
|
935 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) |
|
936 { |
|
937 u32 data_out = 0; |
|
938 unsigned int i; |
|
939 unsigned long flags; |
|
940 |
|
941 |
|
942 /* |
|
943 * Stratus87247: we shouldn't be writing the MDI control |
|
944 * register until the Ready bit shows True. Also, since |
|
945 * manipulation of the MDI control registers is a multi-step |
|
946 * procedure it should be done under lock. |
|
947 */ |
|
948 spin_lock_irqsave(&nic->mdio_lock, flags); |
|
949 for (i = 100; i; --i) { |
|
950 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) |
|
951 break; |
|
952 udelay(20); |
|
953 } |
|
954 if (unlikely(!i)) { |
|
955 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); |
|
956 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
957 return 0; /* No way to indicate timeout error */ |
|
958 } |
|
959 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); |
|
960 |
|
961 for (i = 0; i < 100; i++) { |
|
962 udelay(20); |
|
963 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) |
|
964 break; |
|
965 } |
|
966 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
967 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
968 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", |
|
969 dir == mdi_read ? "READ" : "WRITE", |
|
970 addr, reg, data, data_out); |
|
971 return (u16)data_out; |
|
972 } |
|
973 |
|
974 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ |
|
975 static u16 mdio_ctrl_phy_82552_v(struct nic *nic, |
|
976 u32 addr, |
|
977 u32 dir, |
|
978 u32 reg, |
|
979 u16 data) |
|
980 { |
|
981 if ((reg == MII_BMCR) && (dir == mdi_write)) { |
|
982 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { |
|
983 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, |
|
984 MII_ADVERTISE); |
|
985 |
|
986 /* |
|
987 * Workaround Si issue where sometimes the part will not |
|
988 * autoneg to 100Mbps even when advertised. |
|
989 */ |
|
990 if (advert & ADVERTISE_100FULL) |
|
991 data |= BMCR_SPEED100 | BMCR_FULLDPLX; |
|
992 else if (advert & ADVERTISE_100HALF) |
|
993 data |= BMCR_SPEED100; |
|
994 } |
|
995 } |
|
996 return mdio_ctrl_hw(nic, addr, dir, reg, data); |
|
997 } |
|
998 |
|
999 /* Fully software-emulated mdio_ctrl() function for cards without |
|
1000 * MII-compliant PHYs. |
|
1001 * For now, this is mainly geared towards 80c24 support; in case of further |
|
1002 * requirements for other types (i82503, ...?) either extend this mechanism |
|
1003 * or split it, whichever is cleaner. |
|
1004 */ |
|
1005 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, |
|
1006 u32 addr, |
|
1007 u32 dir, |
|
1008 u32 reg, |
|
1009 u16 data) |
|
1010 { |
|
1011 /* might need to allocate a netdev_priv'ed register array eventually |
|
1012 * to be able to record state changes, but for now |
|
1013 * some fully hardcoded register handling ought to be ok I guess. */ |
|
1014 |
|
1015 if (dir == mdi_read) { |
|
1016 switch (reg) { |
|
1017 case MII_BMCR: |
|
1018 /* Auto-negotiation, right? */ |
|
1019 return BMCR_ANENABLE | |
|
1020 BMCR_FULLDPLX; |
|
1021 case MII_BMSR: |
|
1022 return BMSR_LSTATUS /* for mii_link_ok() */ | |
|
1023 BMSR_ANEGCAPABLE | |
|
1024 BMSR_10FULL; |
|
1025 case MII_ADVERTISE: |
|
1026 /* 80c24 is a "combo card" PHY, right? */ |
|
1027 return ADVERTISE_10HALF | |
|
1028 ADVERTISE_10FULL; |
|
1029 default: |
|
1030 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1031 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
|
1032 dir == mdi_read ? "READ" : "WRITE", |
|
1033 addr, reg, data); |
|
1034 return 0xFFFF; |
|
1035 } |
|
1036 } else { |
|
1037 switch (reg) { |
|
1038 default: |
|
1039 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
|
1041 dir == mdi_read ? "READ" : "WRITE", |
|
1042 addr, reg, data); |
|
1043 return 0xFFFF; |
|
1044 } |
|
1045 } |
|
1046 } |
|
1047 static inline int e100_phy_supports_mii(struct nic *nic) |
|
1048 { |
|
1049 /* for now, just check it by comparing whether we |
|
1050 are using MII software emulation. |
|
1051 */ |
|
1052 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); |
|
1053 } |
|
1054 |
|
1055 static void e100_get_defaults(struct nic *nic) |
|
1056 { |
|
1057 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; |
|
1058 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; |
|
1059 |
|
1060 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ |
|
1061 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; |
|
1062 if (nic->mac == mac_unknown) |
|
1063 nic->mac = mac_82557_D100_A; |
|
1064 |
|
1065 nic->params.rfds = rfds; |
|
1066 nic->params.cbs = cbs; |
|
1067 |
|
1068 /* Quadwords to DMA into FIFO before starting frame transmit */ |
|
1069 nic->tx_threshold = 0xE0; |
|
1070 |
|
1071 /* no interrupt for every tx completion, delay = 256us if not 557 */ |
|
1072 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | |
|
1073 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); |
|
1074 |
|
1075 /* Template for a freshly allocated RFD */ |
|
1076 nic->blank_rfd.command = 0; |
|
1077 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); |
|
1078 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); |
|
1079 |
|
1080 /* MII setup */ |
|
1081 nic->mii.phy_id_mask = 0x1F; |
|
1082 nic->mii.reg_num_mask = 0x1F; |
|
1083 nic->mii.dev = nic->netdev; |
|
1084 nic->mii.mdio_read = mdio_read; |
|
1085 nic->mii.mdio_write = mdio_write; |
|
1086 } |
|
1087 |
|
1088 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1089 { |
|
1090 struct config *config = &cb->u.config; |
|
1091 u8 *c = (u8 *)config; |
|
1092 |
|
1093 cb->command = cpu_to_le16(cb_config); |
|
1094 |
|
1095 memset(config, 0, sizeof(struct config)); |
|
1096 |
|
1097 config->byte_count = 0x16; /* bytes in this struct */ |
|
1098 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ |
|
1099 config->direct_rx_dma = 0x1; /* reserved */ |
|
1100 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ |
|
1101 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ |
|
1102 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ |
|
1103 config->tx_underrun_retry = 0x3; /* # of underrun retries */ |
|
1104 if (e100_phy_supports_mii(nic)) |
|
1105 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ |
|
1106 config->pad10 = 0x6; |
|
1107 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ |
|
1108 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ |
|
1109 config->ifs = 0x6; /* x16 = inter frame spacing */ |
|
1110 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ |
|
1111 config->pad15_1 = 0x1; |
|
1112 config->pad15_2 = 0x1; |
|
1113 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ |
|
1114 config->fc_delay_hi = 0x40; /* time delay for fc frame */ |
|
1115 config->tx_padding = 0x1; /* 1=pad short frames */ |
|
1116 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ |
|
1117 config->pad18 = 0x1; |
|
1118 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ |
|
1119 config->pad20_1 = 0x1F; |
|
1120 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ |
|
1121 config->pad21_1 = 0x5; |
|
1122 |
|
1123 config->adaptive_ifs = nic->adaptive_ifs; |
|
1124 config->loopback = nic->loopback; |
|
1125 |
|
1126 if (nic->mii.force_media && nic->mii.full_duplex) |
|
1127 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ |
|
1128 |
|
1129 if (nic->flags & promiscuous || nic->loopback) { |
|
1130 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ |
|
1131 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ |
|
1132 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ |
|
1133 } |
|
1134 |
|
1135 if (nic->flags & multicast_all) |
|
1136 config->multicast_all = 0x1; /* 1=accept, 0=no */ |
|
1137 |
|
1138 /* disable WoL when up */ |
|
1139 if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) |
|
1140 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ |
|
1141 |
|
1142 if (nic->mac >= mac_82558_D101_A4) { |
|
1143 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ |
|
1144 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ |
|
1145 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ |
|
1146 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ |
|
1147 if (nic->mac >= mac_82559_D101M) { |
|
1148 config->tno_intr = 0x1; /* TCO stats enable */ |
|
1149 /* Enable TCO in extended config */ |
|
1150 if (nic->mac >= mac_82551_10) { |
|
1151 config->byte_count = 0x20; /* extended bytes */ |
|
1152 config->rx_d102_mode = 0x1; /* GMRC for TCO */ |
|
1153 } |
|
1154 } else { |
|
1155 config->standard_stat_counter = 0x0; |
|
1156 } |
|
1157 } |
|
1158 |
|
1159 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1160 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1161 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); |
|
1162 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1163 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1164 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); |
|
1165 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1166 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1167 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); |
|
1168 } |
|
1169 |
|
1170 /************************************************************************* |
|
1171 * CPUSaver parameters |
|
1172 * |
|
1173 * All CPUSaver parameters are 16-bit literals that are part of a |
|
1174 * "move immediate value" instruction. By changing the value of |
|
1175 * the literal in the instruction before the code is loaded, the |
|
1176 * driver can change the algorithm. |
|
1177 * |
|
1178 * INTDELAY - This loads the dead-man timer with its initial value. |
|
1179 * When this timer expires the interrupt is asserted, and the |
|
1180 * timer is reset each time a new packet is received. (see |
|
1181 * BUNDLEMAX below to set the limit on number of chained packets) |
|
1182 * The current default is 0x600 or 1536. Experiments show that |
|
1183 * the value should probably stay within the 0x200 - 0x1000. |
|
1184 * |
|
1185 * BUNDLEMAX - |
|
1186 * This sets the maximum number of frames that will be bundled. In |
|
1187 * some situations, such as the TCP windowing algorithm, it may be |
|
1188 * better to limit the growth of the bundle size than let it go as |
|
1189 * high as it can, because that could cause too much added latency. |
|
1190 * The default is six, because this is the number of packets in the |
|
1191 * default TCP window size. A value of 1 would make CPUSaver indicate |
|
1192 * an interrupt for every frame received. If you do not want to put |
|
1193 * a limit on the bundle size, set this value to xFFFF. |
|
1194 * |
|
1195 * BUNDLESMALL - |
|
1196 * This contains a bit-mask describing the minimum size frame that |
|
1197 * will be bundled. The default masks the lower 7 bits, which means |
|
1198 * that any frame less than 128 bytes in length will not be bundled, |
|
1199 * but will instead immediately generate an interrupt. This does |
|
1200 * not affect the current bundle in any way. Any frame that is 128 |
|
1201 * bytes or large will be bundled normally. This feature is meant |
|
1202 * to provide immediate indication of ACK frames in a TCP environment. |
|
1203 * Customers were seeing poor performance when a machine with CPUSaver |
|
1204 * enabled was sending but not receiving. The delay introduced when |
|
1205 * the ACKs were received was enough to reduce total throughput, because |
|
1206 * the sender would sit idle until the ACK was finally seen. |
|
1207 * |
|
1208 * The current default is 0xFF80, which masks out the lower 7 bits. |
|
1209 * This means that any frame which is x7F (127) bytes or smaller |
|
1210 * will cause an immediate interrupt. Because this value must be a |
|
1211 * bit mask, there are only a few valid values that can be used. To |
|
1212 * turn this feature off, the driver can write the value xFFFF to the |
|
1213 * lower word of this instruction (in the same way that the other |
|
1214 * parameters are used). Likewise, a value of 0xF800 (2047) would |
|
1215 * cause an interrupt to be generated for every frame, because all |
|
1216 * standard Ethernet frames are <= 2047 bytes in length. |
|
1217 *************************************************************************/ |
|
1218 |
|
1219 /* if you wish to disable the ucode functionality, while maintaining the |
|
1220 * workarounds it provides, set the following defines to: |
|
1221 * BUNDLESMALL 0 |
|
1222 * BUNDLEMAX 1 |
|
1223 * INTDELAY 1 |
|
1224 */ |
|
1225 #define BUNDLESMALL 1 |
|
1226 #define BUNDLEMAX (u16)6 |
|
1227 #define INTDELAY (u16)1536 /* 0x600 */ |
|
1228 |
|
1229 /* Initialize firmware */ |
|
1230 static const struct firmware *e100_request_firmware(struct nic *nic) |
|
1231 { |
|
1232 const char *fw_name; |
|
1233 const struct firmware *fw = nic->fw; |
|
1234 u8 timer, bundle, min_size; |
|
1235 int err = 0; |
|
1236 |
|
1237 /* do not load u-code for ICH devices */ |
|
1238 if (nic->flags & ich) |
|
1239 return NULL; |
|
1240 |
|
1241 /* Search for ucode match against h/w revision */ |
|
1242 if (nic->mac == mac_82559_D101M) |
|
1243 fw_name = FIRMWARE_D101M; |
|
1244 else if (nic->mac == mac_82559_D101S) |
|
1245 fw_name = FIRMWARE_D101S; |
|
1246 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) |
|
1247 fw_name = FIRMWARE_D102E; |
|
1248 else /* No ucode on other devices */ |
|
1249 return NULL; |
|
1250 |
|
1251 /* If the firmware has not previously been loaded, request a pointer |
|
1252 * to it. If it was previously loaded, we are reinitializing the |
|
1253 * adapter, possibly in a resume from hibernate, in which case |
|
1254 * request_firmware() cannot be used. |
|
1255 */ |
|
1256 if (!fw) |
|
1257 err = request_firmware(&fw, fw_name, &nic->pdev->dev); |
|
1258 |
|
1259 if (err) { |
|
1260 netif_err(nic, probe, nic->netdev, |
|
1261 "Failed to load firmware \"%s\": %d\n", |
|
1262 fw_name, err); |
|
1263 return ERR_PTR(err); |
|
1264 } |
|
1265 |
|
1266 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes |
|
1267 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ |
|
1268 if (fw->size != UCODE_SIZE * 4 + 3) { |
|
1269 netif_err(nic, probe, nic->netdev, |
|
1270 "Firmware \"%s\" has wrong size %zu\n", |
|
1271 fw_name, fw->size); |
|
1272 release_firmware(fw); |
|
1273 return ERR_PTR(-EINVAL); |
|
1274 } |
|
1275 |
|
1276 /* Read timer, bundle and min_size from end of firmware blob */ |
|
1277 timer = fw->data[UCODE_SIZE * 4]; |
|
1278 bundle = fw->data[UCODE_SIZE * 4 + 1]; |
|
1279 min_size = fw->data[UCODE_SIZE * 4 + 2]; |
|
1280 |
|
1281 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || |
|
1282 min_size >= UCODE_SIZE) { |
|
1283 netif_err(nic, probe, nic->netdev, |
|
1284 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", |
|
1285 fw_name, timer, bundle, min_size); |
|
1286 release_firmware(fw); |
|
1287 return ERR_PTR(-EINVAL); |
|
1288 } |
|
1289 |
|
1290 /* OK, firmware is validated and ready to use. Save a pointer |
|
1291 * to it in the nic */ |
|
1292 nic->fw = fw; |
|
1293 return fw; |
|
1294 } |
|
1295 |
|
1296 static void e100_setup_ucode(struct nic *nic, struct cb *cb, |
|
1297 struct sk_buff *skb) |
|
1298 { |
|
1299 const struct firmware *fw = (void *)skb; |
|
1300 u8 timer, bundle, min_size; |
|
1301 |
|
1302 /* It's not a real skb; we just abused the fact that e100_exec_cb |
|
1303 will pass it through to here... */ |
|
1304 cb->skb = NULL; |
|
1305 |
|
1306 /* firmware is stored as little endian already */ |
|
1307 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); |
|
1308 |
|
1309 /* Read timer, bundle and min_size from end of firmware blob */ |
|
1310 timer = fw->data[UCODE_SIZE * 4]; |
|
1311 bundle = fw->data[UCODE_SIZE * 4 + 1]; |
|
1312 min_size = fw->data[UCODE_SIZE * 4 + 2]; |
|
1313 |
|
1314 /* Insert user-tunable settings in cb->u.ucode */ |
|
1315 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); |
|
1316 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); |
|
1317 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); |
|
1318 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); |
|
1319 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); |
|
1320 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); |
|
1321 |
|
1322 cb->command = cpu_to_le16(cb_ucode | cb_el); |
|
1323 } |
|
1324 |
|
1325 static inline int e100_load_ucode_wait(struct nic *nic) |
|
1326 { |
|
1327 const struct firmware *fw; |
|
1328 int err = 0, counter = 50; |
|
1329 struct cb *cb = nic->cb_to_clean; |
|
1330 |
|
1331 fw = e100_request_firmware(nic); |
|
1332 /* If it's NULL, then no ucode is required */ |
|
1333 if (!fw || IS_ERR(fw)) |
|
1334 return PTR_ERR(fw); |
|
1335 |
|
1336 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) |
|
1337 netif_err(nic, probe, nic->netdev, |
|
1338 "ucode cmd failed with error %d\n", err); |
|
1339 |
|
1340 /* must restart cuc */ |
|
1341 nic->cuc_cmd = cuc_start; |
|
1342 |
|
1343 /* wait for completion */ |
|
1344 e100_write_flush(nic); |
|
1345 udelay(10); |
|
1346 |
|
1347 /* wait for possibly (ouch) 500ms */ |
|
1348 while (!(cb->status & cpu_to_le16(cb_complete))) { |
|
1349 msleep(10); |
|
1350 if (!--counter) break; |
|
1351 } |
|
1352 |
|
1353 /* ack any interrupts, something could have been set */ |
|
1354 iowrite8(~0, &nic->csr->scb.stat_ack); |
|
1355 |
|
1356 /* if the command failed, or is not OK, notify and return */ |
|
1357 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { |
|
1358 netif_err(nic, probe, nic->netdev, "ucode load failed\n"); |
|
1359 err = -EPERM; |
|
1360 } |
|
1361 |
|
1362 return err; |
|
1363 } |
|
1364 |
|
1365 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, |
|
1366 struct sk_buff *skb) |
|
1367 { |
|
1368 cb->command = cpu_to_le16(cb_iaaddr); |
|
1369 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); |
|
1370 } |
|
1371 |
|
1372 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1373 { |
|
1374 cb->command = cpu_to_le16(cb_dump); |
|
1375 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + |
|
1376 offsetof(struct mem, dump_buf)); |
|
1377 } |
|
1378 |
|
1379 static int e100_phy_check_without_mii(struct nic *nic) |
|
1380 { |
|
1381 u8 phy_type; |
|
1382 int without_mii; |
|
1383 |
|
1384 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; |
|
1385 |
|
1386 switch (phy_type) { |
|
1387 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ |
|
1388 case I82503: /* Non-MII PHY; UNTESTED! */ |
|
1389 case S80C24: /* Non-MII PHY; tested and working */ |
|
1390 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": |
|
1391 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter |
|
1392 * doesn't have a programming interface of any sort. The |
|
1393 * media is sensed automatically based on how the link partner |
|
1394 * is configured. This is, in essence, manual configuration. |
|
1395 */ |
|
1396 netif_info(nic, probe, nic->netdev, |
|
1397 "found MII-less i82503 or 80c24 or other PHY\n"); |
|
1398 |
|
1399 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; |
|
1400 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ |
|
1401 |
|
1402 /* these might be needed for certain MII-less cards... |
|
1403 * nic->flags |= ich; |
|
1404 * nic->flags |= ich_10h_workaround; */ |
|
1405 |
|
1406 without_mii = 1; |
|
1407 break; |
|
1408 default: |
|
1409 without_mii = 0; |
|
1410 break; |
|
1411 } |
|
1412 return without_mii; |
|
1413 } |
|
1414 |
|
1415 #define NCONFIG_AUTO_SWITCH 0x0080 |
|
1416 #define MII_NSC_CONG MII_RESV1 |
|
1417 #define NSC_CONG_ENABLE 0x0100 |
|
1418 #define NSC_CONG_TXREADY 0x0400 |
|
1419 #define ADVERTISE_FC_SUPPORTED 0x0400 |
|
1420 static int e100_phy_init(struct nic *nic) |
|
1421 { |
|
1422 struct net_device *netdev = nic->netdev; |
|
1423 u32 addr; |
|
1424 u16 bmcr, stat, id_lo, id_hi, cong; |
|
1425 |
|
1426 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ |
|
1427 for (addr = 0; addr < 32; addr++) { |
|
1428 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; |
|
1429 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
|
1430 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1431 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1432 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) |
|
1433 break; |
|
1434 } |
|
1435 if (addr == 32) { |
|
1436 /* uhoh, no PHY detected: check whether we seem to be some |
|
1437 * weird, rare variant which is *known* to not have any MII. |
|
1438 * But do this AFTER MII checking only, since this does |
|
1439 * lookup of EEPROM values which may easily be unreliable. */ |
|
1440 if (e100_phy_check_without_mii(nic)) |
|
1441 return 0; /* simply return and hope for the best */ |
|
1442 else { |
|
1443 /* for unknown cases log a fatal error */ |
|
1444 netif_err(nic, hw, nic->netdev, |
|
1445 "Failed to locate any known PHY, aborting\n"); |
|
1446 return -EAGAIN; |
|
1447 } |
|
1448 } else |
|
1449 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1450 "phy_addr = %d\n", nic->mii.phy_id); |
|
1451 |
|
1452 /* Get phy ID */ |
|
1453 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); |
|
1454 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); |
|
1455 nic->phy = (u32)id_hi << 16 | (u32)id_lo; |
|
1456 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1457 "phy ID = 0x%08X\n", nic->phy); |
|
1458 |
|
1459 /* Select the phy and isolate the rest */ |
|
1460 for (addr = 0; addr < 32; addr++) { |
|
1461 if (addr != nic->mii.phy_id) { |
|
1462 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); |
|
1463 } else if (nic->phy != phy_82552_v) { |
|
1464 bmcr = mdio_read(netdev, addr, MII_BMCR); |
|
1465 mdio_write(netdev, addr, MII_BMCR, |
|
1466 bmcr & ~BMCR_ISOLATE); |
|
1467 } |
|
1468 } |
|
1469 /* |
|
1470 * Workaround for 82552: |
|
1471 * Clear the ISOLATE bit on selected phy_id last (mirrored on all |
|
1472 * other phy_id's) using bmcr value from addr discovery loop above. |
|
1473 */ |
|
1474 if (nic->phy == phy_82552_v) |
|
1475 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, |
|
1476 bmcr & ~BMCR_ISOLATE); |
|
1477 |
|
1478 /* Handle National tx phys */ |
|
1479 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF |
|
1480 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { |
|
1481 /* Disable congestion control */ |
|
1482 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); |
|
1483 cong |= NSC_CONG_TXREADY; |
|
1484 cong &= ~NSC_CONG_ENABLE; |
|
1485 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); |
|
1486 } |
|
1487 |
|
1488 if (nic->phy == phy_82552_v) { |
|
1489 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); |
|
1490 |
|
1491 /* assign special tweaked mdio_ctrl() function */ |
|
1492 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; |
|
1493 |
|
1494 /* Workaround Si not advertising flow-control during autoneg */ |
|
1495 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; |
|
1496 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); |
|
1497 |
|
1498 /* Reset for the above changes to take effect */ |
|
1499 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
|
1500 bmcr |= BMCR_RESET; |
|
1501 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); |
|
1502 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && |
|
1503 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && |
|
1504 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { |
|
1505 /* enable/disable MDI/MDI-X auto-switching. */ |
|
1506 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, |
|
1507 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); |
|
1508 } |
|
1509 |
|
1510 return 0; |
|
1511 } |
|
1512 |
|
1513 static int e100_hw_init(struct nic *nic) |
|
1514 { |
|
1515 int err; |
|
1516 |
|
1517 e100_hw_reset(nic); |
|
1518 |
|
1519 netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); |
|
1520 if (!in_interrupt() && (err = e100_self_test(nic))) |
|
1521 return err; |
|
1522 |
|
1523 if ((err = e100_phy_init(nic))) |
|
1524 return err; |
|
1525 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) |
|
1526 return err; |
|
1527 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) |
|
1528 return err; |
|
1529 if ((err = e100_load_ucode_wait(nic))) |
|
1530 return err; |
|
1531 if ((err = e100_exec_cb(nic, NULL, e100_configure))) |
|
1532 return err; |
|
1533 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) |
|
1534 return err; |
|
1535 if ((err = e100_exec_cmd(nic, cuc_dump_addr, |
|
1536 nic->dma_addr + offsetof(struct mem, stats)))) |
|
1537 return err; |
|
1538 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) |
|
1539 return err; |
|
1540 |
|
1541 e100_disable_irq(nic); |
|
1542 |
|
1543 return 0; |
|
1544 } |
|
1545 |
|
1546 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1547 { |
|
1548 struct net_device *netdev = nic->netdev; |
|
1549 struct netdev_hw_addr *ha; |
|
1550 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); |
|
1551 |
|
1552 cb->command = cpu_to_le16(cb_multi); |
|
1553 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); |
|
1554 i = 0; |
|
1555 netdev_for_each_mc_addr(ha, netdev) { |
|
1556 if (i == count) |
|
1557 break; |
|
1558 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, |
|
1559 ETH_ALEN); |
|
1560 } |
|
1561 } |
|
1562 |
|
1563 static void e100_set_multicast_list(struct net_device *netdev) |
|
1564 { |
|
1565 struct nic *nic = netdev_priv(netdev); |
|
1566 |
|
1567 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1568 "mc_count=%d, flags=0x%04X\n", |
|
1569 netdev_mc_count(netdev), netdev->flags); |
|
1570 |
|
1571 if (netdev->flags & IFF_PROMISC) |
|
1572 nic->flags |= promiscuous; |
|
1573 else |
|
1574 nic->flags &= ~promiscuous; |
|
1575 |
|
1576 if (netdev->flags & IFF_ALLMULTI || |
|
1577 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) |
|
1578 nic->flags |= multicast_all; |
|
1579 else |
|
1580 nic->flags &= ~multicast_all; |
|
1581 |
|
1582 e100_exec_cb(nic, NULL, e100_configure); |
|
1583 e100_exec_cb(nic, NULL, e100_multi); |
|
1584 } |
|
1585 |
|
1586 static void e100_update_stats(struct nic *nic) |
|
1587 { |
|
1588 struct net_device *dev = nic->netdev; |
|
1589 struct net_device_stats *ns = &dev->stats; |
|
1590 struct stats *s = &nic->mem->stats; |
|
1591 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : |
|
1592 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : |
|
1593 &s->complete; |
|
1594 |
|
1595 /* Device's stats reporting may take several microseconds to |
|
1596 * complete, so we're always waiting for results of the |
|
1597 * previous command. */ |
|
1598 |
|
1599 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { |
|
1600 *complete = 0; |
|
1601 nic->tx_frames = le32_to_cpu(s->tx_good_frames); |
|
1602 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); |
|
1603 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); |
|
1604 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); |
|
1605 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); |
|
1606 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); |
|
1607 ns->collisions += nic->tx_collisions; |
|
1608 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + |
|
1609 le32_to_cpu(s->tx_lost_crs); |
|
1610 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + |
|
1611 nic->rx_over_length_errors; |
|
1612 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); |
|
1613 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); |
|
1614 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1615 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1616 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); |
|
1617 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + |
|
1618 le32_to_cpu(s->rx_alignment_errors) + |
|
1619 le32_to_cpu(s->rx_short_frame_errors) + |
|
1620 le32_to_cpu(s->rx_cdt_errors); |
|
1621 nic->tx_deferred += le32_to_cpu(s->tx_deferred); |
|
1622 nic->tx_single_collisions += |
|
1623 le32_to_cpu(s->tx_single_collisions); |
|
1624 nic->tx_multiple_collisions += |
|
1625 le32_to_cpu(s->tx_multiple_collisions); |
|
1626 if (nic->mac >= mac_82558_D101_A4) { |
|
1627 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); |
|
1628 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); |
|
1629 nic->rx_fc_unsupported += |
|
1630 le32_to_cpu(s->fc_rcv_unsupported); |
|
1631 if (nic->mac >= mac_82559_D101M) { |
|
1632 nic->tx_tco_frames += |
|
1633 le16_to_cpu(s->xmt_tco_frames); |
|
1634 nic->rx_tco_frames += |
|
1635 le16_to_cpu(s->rcv_tco_frames); |
|
1636 } |
|
1637 } |
|
1638 } |
|
1639 |
|
1640 |
|
1641 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) |
|
1642 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1643 "exec cuc_dump_reset failed\n"); |
|
1644 } |
|
1645 |
|
1646 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) |
|
1647 { |
|
1648 /* Adjust inter-frame-spacing (IFS) between two transmits if |
|
1649 * we're getting collisions on a half-duplex connection. */ |
|
1650 |
|
1651 if (duplex == DUPLEX_HALF) { |
|
1652 u32 prev = nic->adaptive_ifs; |
|
1653 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; |
|
1654 |
|
1655 if ((nic->tx_frames / 32 < nic->tx_collisions) && |
|
1656 (nic->tx_frames > min_frames)) { |
|
1657 if (nic->adaptive_ifs < 60) |
|
1658 nic->adaptive_ifs += 5; |
|
1659 } else if (nic->tx_frames < min_frames) { |
|
1660 if (nic->adaptive_ifs >= 5) |
|
1661 nic->adaptive_ifs -= 5; |
|
1662 } |
|
1663 if (nic->adaptive_ifs != prev) |
|
1664 e100_exec_cb(nic, NULL, e100_configure); |
|
1665 } |
|
1666 } |
|
1667 |
|
1668 static void e100_watchdog(unsigned long data) |
|
1669 { |
|
1670 struct nic *nic = (struct nic *)data; |
|
1671 struct ethtool_cmd cmd; |
|
1672 |
|
1673 netif_printk(nic, timer, KERN_DEBUG, nic->netdev, |
|
1674 "right now = %ld\n", jiffies); |
|
1675 |
|
1676 /* mii library handles link maintenance tasks */ |
|
1677 |
|
1678 mii_ethtool_gset(&nic->mii, &cmd); |
|
1679 |
|
1680 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { |
|
1681 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", |
|
1682 cmd.speed == SPEED_100 ? 100 : 10, |
|
1683 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); |
|
1684 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { |
|
1685 netdev_info(nic->netdev, "NIC Link is Down\n"); |
|
1686 } |
|
1687 |
|
1688 mii_check_link(&nic->mii); |
|
1689 |
|
1690 /* Software generated interrupt to recover from (rare) Rx |
|
1691 * allocation failure. |
|
1692 * Unfortunately have to use a spinlock to not re-enable interrupts |
|
1693 * accidentally, due to hardware that shares a register between the |
|
1694 * interrupt mask bit and the SW Interrupt generation bit */ |
|
1695 spin_lock_irq(&nic->cmd_lock); |
|
1696 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); |
|
1697 e100_write_flush(nic); |
|
1698 spin_unlock_irq(&nic->cmd_lock); |
|
1699 |
|
1700 e100_update_stats(nic); |
|
1701 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); |
|
1702 |
|
1703 if (nic->mac <= mac_82557_D100_C) |
|
1704 /* Issue a multicast command to workaround a 557 lock up */ |
|
1705 e100_set_multicast_list(nic->netdev); |
|
1706 |
|
1707 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) |
|
1708 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ |
|
1709 nic->flags |= ich_10h_workaround; |
|
1710 else |
|
1711 nic->flags &= ~ich_10h_workaround; |
|
1712 |
|
1713 mod_timer(&nic->watchdog, |
|
1714 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); |
|
1715 } |
|
1716 |
|
1717 static void e100_xmit_prepare(struct nic *nic, struct cb *cb, |
|
1718 struct sk_buff *skb) |
|
1719 { |
|
1720 cb->command = nic->tx_command; |
|
1721 /* interrupt every 16 packets regardless of delay */ |
|
1722 if ((nic->cbs_avail & ~15) == nic->cbs_avail) |
|
1723 cb->command |= cpu_to_le16(cb_i); |
|
1724 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); |
|
1725 cb->u.tcb.tcb_byte_count = 0; |
|
1726 cb->u.tcb.threshold = nic->tx_threshold; |
|
1727 cb->u.tcb.tbd_count = 1; |
|
1728 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, |
|
1729 skb->data, skb->len, PCI_DMA_TODEVICE)); |
|
1730 /* check for mapping failure? */ |
|
1731 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); |
|
1732 } |
|
1733 |
|
1734 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, |
|
1735 struct net_device *netdev) |
|
1736 { |
|
1737 struct nic *nic = netdev_priv(netdev); |
|
1738 int err; |
|
1739 |
|
1740 if (nic->flags & ich_10h_workaround) { |
|
1741 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. |
|
1742 Issue a NOP command followed by a 1us delay before |
|
1743 issuing the Tx command. */ |
|
1744 if (e100_exec_cmd(nic, cuc_nop, 0)) |
|
1745 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1746 "exec cuc_nop failed\n"); |
|
1747 udelay(1); |
|
1748 } |
|
1749 |
|
1750 err = e100_exec_cb(nic, skb, e100_xmit_prepare); |
|
1751 |
|
1752 switch (err) { |
|
1753 case -ENOSPC: |
|
1754 /* We queued the skb, but now we're out of space. */ |
|
1755 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1756 "No space for CB\n"); |
|
1757 netif_stop_queue(netdev); |
|
1758 break; |
|
1759 case -ENOMEM: |
|
1760 /* This is a hard error - log it. */ |
|
1761 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1762 "Out of Tx resources, returning skb\n"); |
|
1763 netif_stop_queue(netdev); |
|
1764 return NETDEV_TX_BUSY; |
|
1765 } |
|
1766 |
|
1767 return NETDEV_TX_OK; |
|
1768 } |
|
1769 |
|
1770 static int e100_tx_clean(struct nic *nic) |
|
1771 { |
|
1772 struct net_device *dev = nic->netdev; |
|
1773 struct cb *cb; |
|
1774 int tx_cleaned = 0; |
|
1775 |
|
1776 spin_lock(&nic->cb_lock); |
|
1777 |
|
1778 /* Clean CBs marked complete */ |
|
1779 for (cb = nic->cb_to_clean; |
|
1780 cb->status & cpu_to_le16(cb_complete); |
|
1781 cb = nic->cb_to_clean = cb->next) { |
|
1782 rmb(); /* read skb after status */ |
|
1783 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, |
|
1784 "cb[%d]->status = 0x%04X\n", |
|
1785 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), |
|
1786 cb->status); |
|
1787 |
|
1788 if (likely(cb->skb != NULL)) { |
|
1789 dev->stats.tx_packets++; |
|
1790 dev->stats.tx_bytes += cb->skb->len; |
|
1791 |
|
1792 pci_unmap_single(nic->pdev, |
|
1793 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1794 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1795 PCI_DMA_TODEVICE); |
|
1796 dev_kfree_skb_any(cb->skb); |
|
1797 cb->skb = NULL; |
|
1798 tx_cleaned = 1; |
|
1799 } |
|
1800 cb->status = 0; |
|
1801 nic->cbs_avail++; |
|
1802 } |
|
1803 |
|
1804 spin_unlock(&nic->cb_lock); |
|
1805 |
|
1806 /* Recover from running out of Tx resources in xmit_frame */ |
|
1807 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) |
|
1808 netif_wake_queue(nic->netdev); |
|
1809 |
|
1810 return tx_cleaned; |
|
1811 } |
|
1812 |
|
1813 static void e100_clean_cbs(struct nic *nic) |
|
1814 { |
|
1815 if (nic->cbs) { |
|
1816 while (nic->cbs_avail != nic->params.cbs.count) { |
|
1817 struct cb *cb = nic->cb_to_clean; |
|
1818 if (cb->skb) { |
|
1819 pci_unmap_single(nic->pdev, |
|
1820 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1821 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1822 PCI_DMA_TODEVICE); |
|
1823 dev_kfree_skb(cb->skb); |
|
1824 } |
|
1825 nic->cb_to_clean = nic->cb_to_clean->next; |
|
1826 nic->cbs_avail++; |
|
1827 } |
|
1828 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); |
|
1829 nic->cbs = NULL; |
|
1830 nic->cbs_avail = 0; |
|
1831 } |
|
1832 nic->cuc_cmd = cuc_start; |
|
1833 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = |
|
1834 nic->cbs; |
|
1835 } |
|
1836 |
|
1837 static int e100_alloc_cbs(struct nic *nic) |
|
1838 { |
|
1839 struct cb *cb; |
|
1840 unsigned int i, count = nic->params.cbs.count; |
|
1841 |
|
1842 nic->cuc_cmd = cuc_start; |
|
1843 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; |
|
1844 nic->cbs_avail = 0; |
|
1845 |
|
1846 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, |
|
1847 &nic->cbs_dma_addr); |
|
1848 if (!nic->cbs) |
|
1849 return -ENOMEM; |
|
1850 memset(nic->cbs, 0, count * sizeof(struct cb)); |
|
1851 |
|
1852 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { |
|
1853 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; |
|
1854 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; |
|
1855 |
|
1856 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); |
|
1857 cb->link = cpu_to_le32(nic->cbs_dma_addr + |
|
1858 ((i+1) % count) * sizeof(struct cb)); |
|
1859 } |
|
1860 |
|
1861 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; |
|
1862 nic->cbs_avail = count; |
|
1863 |
|
1864 return 0; |
|
1865 } |
|
1866 |
|
1867 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) |
|
1868 { |
|
1869 if (!nic->rxs) return; |
|
1870 if (RU_SUSPENDED != nic->ru_running) return; |
|
1871 |
|
1872 /* handle init time starts */ |
|
1873 if (!rx) rx = nic->rxs; |
|
1874 |
|
1875 /* (Re)start RU if suspended or idle and RFA is non-NULL */ |
|
1876 if (rx->skb) { |
|
1877 e100_exec_cmd(nic, ruc_start, rx->dma_addr); |
|
1878 nic->ru_running = RU_RUNNING; |
|
1879 } |
|
1880 } |
|
1881 |
|
1882 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) |
|
1883 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) |
|
1884 { |
|
1885 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) |
|
1886 return -ENOMEM; |
|
1887 |
|
1888 /* Init, and map the RFD. */ |
|
1889 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); |
|
1890 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, |
|
1891 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
1892 |
|
1893 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { |
|
1894 dev_kfree_skb_any(rx->skb); |
|
1895 rx->skb = NULL; |
|
1896 rx->dma_addr = 0; |
|
1897 return -ENOMEM; |
|
1898 } |
|
1899 |
|
1900 /* Link the RFD to end of RFA by linking previous RFD to |
|
1901 * this one. We are safe to touch the previous RFD because |
|
1902 * it is protected by the before last buffer's el bit being set */ |
|
1903 if (rx->prev->skb) { |
|
1904 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; |
|
1905 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); |
|
1906 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, |
|
1907 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
1908 } |
|
1909 |
|
1910 return 0; |
|
1911 } |
|
1912 |
|
1913 static int e100_rx_indicate(struct nic *nic, struct rx *rx, |
|
1914 unsigned int *work_done, unsigned int work_to_do) |
|
1915 { |
|
1916 struct net_device *dev = nic->netdev; |
|
1917 struct sk_buff *skb = rx->skb; |
|
1918 struct rfd *rfd = (struct rfd *)skb->data; |
|
1919 u16 rfd_status, actual_size; |
|
1920 |
|
1921 if (unlikely(work_done && *work_done >= work_to_do)) |
|
1922 return -EAGAIN; |
|
1923 |
|
1924 /* Need to sync before taking a peek at cb_complete bit */ |
|
1925 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, |
|
1926 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
1927 rfd_status = le16_to_cpu(rfd->status); |
|
1928 |
|
1929 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, |
|
1930 "status=0x%04X\n", rfd_status); |
|
1931 rmb(); /* read size after status bit */ |
|
1932 |
|
1933 /* If data isn't ready, nothing to indicate */ |
|
1934 if (unlikely(!(rfd_status & cb_complete))) { |
|
1935 /* If the next buffer has the el bit, but we think the receiver |
|
1936 * is still running, check to see if it really stopped while |
|
1937 * we had interrupts off. |
|
1938 * This allows for a fast restart without re-enabling |
|
1939 * interrupts */ |
|
1940 if ((le16_to_cpu(rfd->command) & cb_el) && |
|
1941 (RU_RUNNING == nic->ru_running)) |
|
1942 |
|
1943 if (ioread8(&nic->csr->scb.status) & rus_no_res) |
|
1944 nic->ru_running = RU_SUSPENDED; |
|
1945 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
|
1946 sizeof(struct rfd), |
|
1947 PCI_DMA_FROMDEVICE); |
|
1948 return -ENODATA; |
|
1949 } |
|
1950 |
|
1951 /* Get actual data size */ |
|
1952 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; |
|
1953 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) |
|
1954 actual_size = RFD_BUF_LEN - sizeof(struct rfd); |
|
1955 |
|
1956 /* Get data */ |
|
1957 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
1958 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
1959 |
|
1960 /* If this buffer has the el bit, but we think the receiver |
|
1961 * is still running, check to see if it really stopped while |
|
1962 * we had interrupts off. |
|
1963 * This allows for a fast restart without re-enabling interrupts. |
|
1964 * This can happen when the RU sees the size change but also sees |
|
1965 * the el bit set. */ |
|
1966 if ((le16_to_cpu(rfd->command) & cb_el) && |
|
1967 (RU_RUNNING == nic->ru_running)) { |
|
1968 |
|
1969 if (ioread8(&nic->csr->scb.status) & rus_no_res) |
|
1970 nic->ru_running = RU_SUSPENDED; |
|
1971 } |
|
1972 |
|
1973 /* Pull off the RFD and put the actual data (minus eth hdr) */ |
|
1974 skb_reserve(skb, sizeof(struct rfd)); |
|
1975 skb_put(skb, actual_size); |
|
1976 skb->protocol = eth_type_trans(skb, nic->netdev); |
|
1977 |
|
1978 if (unlikely(!(rfd_status & cb_ok))) { |
|
1979 /* Don't indicate if hardware indicates errors */ |
|
1980 dev_kfree_skb_any(skb); |
|
1981 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { |
|
1982 /* Don't indicate oversized frames */ |
|
1983 nic->rx_over_length_errors++; |
|
1984 dev_kfree_skb_any(skb); |
|
1985 } else { |
|
1986 dev->stats.rx_packets++; |
|
1987 dev->stats.rx_bytes += actual_size; |
|
1988 netif_receive_skb(skb); |
|
1989 if (work_done) |
|
1990 (*work_done)++; |
|
1991 } |
|
1992 |
|
1993 rx->skb = NULL; |
|
1994 |
|
1995 return 0; |
|
1996 } |
|
1997 |
|
1998 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, |
|
1999 unsigned int work_to_do) |
|
2000 { |
|
2001 struct rx *rx; |
|
2002 int restart_required = 0, err = 0; |
|
2003 struct rx *old_before_last_rx, *new_before_last_rx; |
|
2004 struct rfd *old_before_last_rfd, *new_before_last_rfd; |
|
2005 |
|
2006 /* Indicate newly arrived packets */ |
|
2007 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { |
|
2008 err = e100_rx_indicate(nic, rx, work_done, work_to_do); |
|
2009 /* Hit quota or no more to clean */ |
|
2010 if (-EAGAIN == err || -ENODATA == err) |
|
2011 break; |
|
2012 } |
|
2013 |
|
2014 |
|
2015 /* On EAGAIN, hit quota so have more work to do, restart once |
|
2016 * cleanup is complete. |
|
2017 * Else, are we already rnr? then pay attention!!! this ensures that |
|
2018 * the state machine progression never allows a start with a |
|
2019 * partially cleaned list, avoiding a race between hardware |
|
2020 * and rx_to_clean when in NAPI mode */ |
|
2021 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) |
|
2022 restart_required = 1; |
|
2023 |
|
2024 old_before_last_rx = nic->rx_to_use->prev->prev; |
|
2025 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; |
|
2026 |
|
2027 /* Alloc new skbs to refill list */ |
|
2028 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { |
|
2029 if (unlikely(e100_rx_alloc_skb(nic, rx))) |
|
2030 break; /* Better luck next time (see watchdog) */ |
|
2031 } |
|
2032 |
|
2033 new_before_last_rx = nic->rx_to_use->prev->prev; |
|
2034 if (new_before_last_rx != old_before_last_rx) { |
|
2035 /* Set the el-bit on the buffer that is before the last buffer. |
|
2036 * This lets us update the next pointer on the last buffer |
|
2037 * without worrying about hardware touching it. |
|
2038 * We set the size to 0 to prevent hardware from touching this |
|
2039 * buffer. |
|
2040 * When the hardware hits the before last buffer with el-bit |
|
2041 * and size of 0, it will RNR interrupt, the RUS will go into |
|
2042 * the No Resources state. It will not complete nor write to |
|
2043 * this buffer. */ |
|
2044 new_before_last_rfd = |
|
2045 (struct rfd *)new_before_last_rx->skb->data; |
|
2046 new_before_last_rfd->size = 0; |
|
2047 new_before_last_rfd->command |= cpu_to_le16(cb_el); |
|
2048 pci_dma_sync_single_for_device(nic->pdev, |
|
2049 new_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2050 PCI_DMA_BIDIRECTIONAL); |
|
2051 |
|
2052 /* Now that we have a new stopping point, we can clear the old |
|
2053 * stopping point. We must sync twice to get the proper |
|
2054 * ordering on the hardware side of things. */ |
|
2055 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); |
|
2056 pci_dma_sync_single_for_device(nic->pdev, |
|
2057 old_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2058 PCI_DMA_BIDIRECTIONAL); |
|
2059 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); |
|
2060 pci_dma_sync_single_for_device(nic->pdev, |
|
2061 old_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2062 PCI_DMA_BIDIRECTIONAL); |
|
2063 } |
|
2064 |
|
2065 if (restart_required) { |
|
2066 // ack the rnr? |
|
2067 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); |
|
2068 e100_start_receiver(nic, nic->rx_to_clean); |
|
2069 if (work_done) |
|
2070 (*work_done)++; |
|
2071 } |
|
2072 } |
|
2073 |
|
2074 static void e100_rx_clean_list(struct nic *nic) |
|
2075 { |
|
2076 struct rx *rx; |
|
2077 unsigned int i, count = nic->params.rfds.count; |
|
2078 |
|
2079 nic->ru_running = RU_UNINITIALIZED; |
|
2080 |
|
2081 if (nic->rxs) { |
|
2082 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
2083 if (rx->skb) { |
|
2084 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
2085 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2086 dev_kfree_skb(rx->skb); |
|
2087 } |
|
2088 } |
|
2089 kfree(nic->rxs); |
|
2090 nic->rxs = NULL; |
|
2091 } |
|
2092 |
|
2093 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
2094 } |
|
2095 |
|
2096 static int e100_rx_alloc_list(struct nic *nic) |
|
2097 { |
|
2098 struct rx *rx; |
|
2099 unsigned int i, count = nic->params.rfds.count; |
|
2100 struct rfd *before_last; |
|
2101 |
|
2102 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
2103 nic->ru_running = RU_UNINITIALIZED; |
|
2104 |
|
2105 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) |
|
2106 return -ENOMEM; |
|
2107 |
|
2108 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
2109 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; |
|
2110 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; |
|
2111 if (e100_rx_alloc_skb(nic, rx)) { |
|
2112 e100_rx_clean_list(nic); |
|
2113 return -ENOMEM; |
|
2114 } |
|
2115 } |
|
2116 /* Set the el-bit on the buffer that is before the last buffer. |
|
2117 * This lets us update the next pointer on the last buffer without |
|
2118 * worrying about hardware touching it. |
|
2119 * We set the size to 0 to prevent hardware from touching this buffer. |
|
2120 * When the hardware hits the before last buffer with el-bit and size |
|
2121 * of 0, it will RNR interrupt, the RU will go into the No Resources |
|
2122 * state. It will not complete nor write to this buffer. */ |
|
2123 rx = nic->rxs->prev->prev; |
|
2124 before_last = (struct rfd *)rx->skb->data; |
|
2125 before_last->command |= cpu_to_le16(cb_el); |
|
2126 before_last->size = 0; |
|
2127 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
|
2128 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
2129 |
|
2130 nic->rx_to_use = nic->rx_to_clean = nic->rxs; |
|
2131 nic->ru_running = RU_SUSPENDED; |
|
2132 |
|
2133 return 0; |
|
2134 } |
|
2135 |
|
2136 static irqreturn_t e100_intr(int irq, void *dev_id) |
|
2137 { |
|
2138 struct net_device *netdev = dev_id; |
|
2139 struct nic *nic = netdev_priv(netdev); |
|
2140 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); |
|
2141 |
|
2142 netif_printk(nic, intr, KERN_DEBUG, nic->netdev, |
|
2143 "stat_ack = 0x%02X\n", stat_ack); |
|
2144 |
|
2145 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ |
|
2146 stat_ack == stat_ack_not_present) /* Hardware is ejected */ |
|
2147 return IRQ_NONE; |
|
2148 |
|
2149 /* Ack interrupt(s) */ |
|
2150 iowrite8(stat_ack, &nic->csr->scb.stat_ack); |
|
2151 |
|
2152 /* We hit Receive No Resource (RNR); restart RU after cleaning */ |
|
2153 if (stat_ack & stat_ack_rnr) |
|
2154 nic->ru_running = RU_SUSPENDED; |
|
2155 |
|
2156 if (likely(napi_schedule_prep(&nic->napi))) { |
|
2157 e100_disable_irq(nic); |
|
2158 __napi_schedule(&nic->napi); |
|
2159 } |
|
2160 |
|
2161 return IRQ_HANDLED; |
|
2162 } |
|
2163 |
|
2164 static int e100_poll(struct napi_struct *napi, int budget) |
|
2165 { |
|
2166 struct nic *nic = container_of(napi, struct nic, napi); |
|
2167 unsigned int work_done = 0; |
|
2168 |
|
2169 e100_rx_clean(nic, &work_done, budget); |
|
2170 e100_tx_clean(nic); |
|
2171 |
|
2172 /* If budget not fully consumed, exit the polling mode */ |
|
2173 if (work_done < budget) { |
|
2174 napi_complete(napi); |
|
2175 e100_enable_irq(nic); |
|
2176 } |
|
2177 |
|
2178 return work_done; |
|
2179 } |
|
2180 |
|
2181 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2182 static void e100_netpoll(struct net_device *netdev) |
|
2183 { |
|
2184 struct nic *nic = netdev_priv(netdev); |
|
2185 |
|
2186 e100_disable_irq(nic); |
|
2187 e100_intr(nic->pdev->irq, netdev); |
|
2188 e100_tx_clean(nic); |
|
2189 e100_enable_irq(nic); |
|
2190 } |
|
2191 #endif |
|
2192 |
|
2193 static int e100_set_mac_address(struct net_device *netdev, void *p) |
|
2194 { |
|
2195 struct nic *nic = netdev_priv(netdev); |
|
2196 struct sockaddr *addr = p; |
|
2197 |
|
2198 if (!is_valid_ether_addr(addr->sa_data)) |
|
2199 return -EADDRNOTAVAIL; |
|
2200 |
|
2201 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2202 e100_exec_cb(nic, NULL, e100_setup_iaaddr); |
|
2203 |
|
2204 return 0; |
|
2205 } |
|
2206 |
|
2207 static int e100_change_mtu(struct net_device *netdev, int new_mtu) |
|
2208 { |
|
2209 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) |
|
2210 return -EINVAL; |
|
2211 netdev->mtu = new_mtu; |
|
2212 return 0; |
|
2213 } |
|
2214 |
|
2215 static int e100_asf(struct nic *nic) |
|
2216 { |
|
2217 /* ASF can be enabled from eeprom */ |
|
2218 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && |
|
2219 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && |
|
2220 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && |
|
2221 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); |
|
2222 } |
|
2223 |
|
2224 static int e100_up(struct nic *nic) |
|
2225 { |
|
2226 int err; |
|
2227 |
|
2228 if ((err = e100_rx_alloc_list(nic))) |
|
2229 return err; |
|
2230 if ((err = e100_alloc_cbs(nic))) |
|
2231 goto err_rx_clean_list; |
|
2232 if ((err = e100_hw_init(nic))) |
|
2233 goto err_clean_cbs; |
|
2234 e100_set_multicast_list(nic->netdev); |
|
2235 e100_start_receiver(nic, NULL); |
|
2236 mod_timer(&nic->watchdog, jiffies); |
|
2237 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, |
|
2238 nic->netdev->name, nic->netdev))) |
|
2239 goto err_no_irq; |
|
2240 netif_wake_queue(nic->netdev); |
|
2241 napi_enable(&nic->napi); |
|
2242 /* enable ints _after_ enabling poll, preventing a race between |
|
2243 * disable ints+schedule */ |
|
2244 e100_enable_irq(nic); |
|
2245 return 0; |
|
2246 |
|
2247 err_no_irq: |
|
2248 del_timer_sync(&nic->watchdog); |
|
2249 err_clean_cbs: |
|
2250 e100_clean_cbs(nic); |
|
2251 err_rx_clean_list: |
|
2252 e100_rx_clean_list(nic); |
|
2253 return err; |
|
2254 } |
|
2255 |
|
2256 static void e100_down(struct nic *nic) |
|
2257 { |
|
2258 /* wait here for poll to complete */ |
|
2259 napi_disable(&nic->napi); |
|
2260 netif_stop_queue(nic->netdev); |
|
2261 e100_hw_reset(nic); |
|
2262 free_irq(nic->pdev->irq, nic->netdev); |
|
2263 del_timer_sync(&nic->watchdog); |
|
2264 netif_carrier_off(nic->netdev); |
|
2265 e100_clean_cbs(nic); |
|
2266 e100_rx_clean_list(nic); |
|
2267 } |
|
2268 |
|
2269 static void e100_tx_timeout(struct net_device *netdev) |
|
2270 { |
|
2271 struct nic *nic = netdev_priv(netdev); |
|
2272 |
|
2273 /* Reset outside of interrupt context, to avoid request_irq |
|
2274 * in interrupt context */ |
|
2275 schedule_work(&nic->tx_timeout_task); |
|
2276 } |
|
2277 |
|
2278 static void e100_tx_timeout_task(struct work_struct *work) |
|
2279 { |
|
2280 struct nic *nic = container_of(work, struct nic, tx_timeout_task); |
|
2281 struct net_device *netdev = nic->netdev; |
|
2282 |
|
2283 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
2284 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); |
|
2285 |
|
2286 rtnl_lock(); |
|
2287 if (netif_running(netdev)) { |
|
2288 e100_down(netdev_priv(netdev)); |
|
2289 e100_up(netdev_priv(netdev)); |
|
2290 } |
|
2291 rtnl_unlock(); |
|
2292 } |
|
2293 |
|
2294 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) |
|
2295 { |
|
2296 int err; |
|
2297 struct sk_buff *skb; |
|
2298 |
|
2299 /* Use driver resources to perform internal MAC or PHY |
|
2300 * loopback test. A single packet is prepared and transmitted |
|
2301 * in loopback mode, and the test passes if the received |
|
2302 * packet compares byte-for-byte to the transmitted packet. */ |
|
2303 |
|
2304 if ((err = e100_rx_alloc_list(nic))) |
|
2305 return err; |
|
2306 if ((err = e100_alloc_cbs(nic))) |
|
2307 goto err_clean_rx; |
|
2308 |
|
2309 /* ICH PHY loopback is broken so do MAC loopback instead */ |
|
2310 if (nic->flags & ich && loopback_mode == lb_phy) |
|
2311 loopback_mode = lb_mac; |
|
2312 |
|
2313 nic->loopback = loopback_mode; |
|
2314 if ((err = e100_hw_init(nic))) |
|
2315 goto err_loopback_none; |
|
2316 |
|
2317 if (loopback_mode == lb_phy) |
|
2318 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, |
|
2319 BMCR_LOOPBACK); |
|
2320 |
|
2321 e100_start_receiver(nic, NULL); |
|
2322 |
|
2323 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { |
|
2324 err = -ENOMEM; |
|
2325 goto err_loopback_none; |
|
2326 } |
|
2327 skb_put(skb, ETH_DATA_LEN); |
|
2328 memset(skb->data, 0xFF, ETH_DATA_LEN); |
|
2329 e100_xmit_frame(skb, nic->netdev); |
|
2330 |
|
2331 msleep(10); |
|
2332 |
|
2333 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, |
|
2334 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2335 |
|
2336 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), |
|
2337 skb->data, ETH_DATA_LEN)) |
|
2338 err = -EAGAIN; |
|
2339 |
|
2340 err_loopback_none: |
|
2341 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); |
|
2342 nic->loopback = lb_none; |
|
2343 e100_clean_cbs(nic); |
|
2344 e100_hw_reset(nic); |
|
2345 err_clean_rx: |
|
2346 e100_rx_clean_list(nic); |
|
2347 return err; |
|
2348 } |
|
2349 |
|
2350 #define MII_LED_CONTROL 0x1B |
|
2351 #define E100_82552_LED_OVERRIDE 0x19 |
|
2352 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ |
|
2353 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ |
|
2354 static void e100_blink_led(unsigned long data) |
|
2355 { |
|
2356 struct nic *nic = (struct nic *)data; |
|
2357 enum led_state { |
|
2358 led_on = 0x01, |
|
2359 led_off = 0x04, |
|
2360 led_on_559 = 0x05, |
|
2361 led_on_557 = 0x07, |
|
2362 }; |
|
2363 u16 led_reg = MII_LED_CONTROL; |
|
2364 |
|
2365 if (nic->phy == phy_82552_v) { |
|
2366 led_reg = E100_82552_LED_OVERRIDE; |
|
2367 |
|
2368 nic->leds = (nic->leds == E100_82552_LED_ON) ? |
|
2369 E100_82552_LED_OFF : E100_82552_LED_ON; |
|
2370 } else { |
|
2371 nic->leds = (nic->leds & led_on) ? led_off : |
|
2372 (nic->mac < mac_82559_D101M) ? led_on_557 : |
|
2373 led_on_559; |
|
2374 } |
|
2375 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds); |
|
2376 mod_timer(&nic->blink_timer, jiffies + HZ / 4); |
|
2377 } |
|
2378 |
|
2379 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2380 { |
|
2381 struct nic *nic = netdev_priv(netdev); |
|
2382 return mii_ethtool_gset(&nic->mii, cmd); |
|
2383 } |
|
2384 |
|
2385 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2386 { |
|
2387 struct nic *nic = netdev_priv(netdev); |
|
2388 int err; |
|
2389 |
|
2390 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); |
|
2391 err = mii_ethtool_sset(&nic->mii, cmd); |
|
2392 e100_exec_cb(nic, NULL, e100_configure); |
|
2393 |
|
2394 return err; |
|
2395 } |
|
2396 |
|
2397 static void e100_get_drvinfo(struct net_device *netdev, |
|
2398 struct ethtool_drvinfo *info) |
|
2399 { |
|
2400 struct nic *nic = netdev_priv(netdev); |
|
2401 strcpy(info->driver, DRV_NAME); |
|
2402 strcpy(info->version, DRV_VERSION); |
|
2403 strcpy(info->fw_version, "N/A"); |
|
2404 strcpy(info->bus_info, pci_name(nic->pdev)); |
|
2405 } |
|
2406 |
|
2407 #define E100_PHY_REGS 0x1C |
|
2408 static int e100_get_regs_len(struct net_device *netdev) |
|
2409 { |
|
2410 struct nic *nic = netdev_priv(netdev); |
|
2411 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); |
|
2412 } |
|
2413 |
|
2414 static void e100_get_regs(struct net_device *netdev, |
|
2415 struct ethtool_regs *regs, void *p) |
|
2416 { |
|
2417 struct nic *nic = netdev_priv(netdev); |
|
2418 u32 *buff = p; |
|
2419 int i; |
|
2420 |
|
2421 regs->version = (1 << 24) | nic->pdev->revision; |
|
2422 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | |
|
2423 ioread8(&nic->csr->scb.cmd_lo) << 16 | |
|
2424 ioread16(&nic->csr->scb.status); |
|
2425 for (i = E100_PHY_REGS; i >= 0; i--) |
|
2426 buff[1 + E100_PHY_REGS - i] = |
|
2427 mdio_read(netdev, nic->mii.phy_id, i); |
|
2428 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); |
|
2429 e100_exec_cb(nic, NULL, e100_dump); |
|
2430 msleep(10); |
|
2431 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, |
|
2432 sizeof(nic->mem->dump_buf)); |
|
2433 } |
|
2434 |
|
2435 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2436 { |
|
2437 struct nic *nic = netdev_priv(netdev); |
|
2438 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; |
|
2439 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; |
|
2440 } |
|
2441 |
|
2442 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2443 { |
|
2444 struct nic *nic = netdev_priv(netdev); |
|
2445 |
|
2446 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || |
|
2447 !device_can_wakeup(&nic->pdev->dev)) |
|
2448 return -EOPNOTSUPP; |
|
2449 |
|
2450 if (wol->wolopts) |
|
2451 nic->flags |= wol_magic; |
|
2452 else |
|
2453 nic->flags &= ~wol_magic; |
|
2454 |
|
2455 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); |
|
2456 |
|
2457 e100_exec_cb(nic, NULL, e100_configure); |
|
2458 |
|
2459 return 0; |
|
2460 } |
|
2461 |
|
2462 static u32 e100_get_msglevel(struct net_device *netdev) |
|
2463 { |
|
2464 struct nic *nic = netdev_priv(netdev); |
|
2465 return nic->msg_enable; |
|
2466 } |
|
2467 |
|
2468 static void e100_set_msglevel(struct net_device *netdev, u32 value) |
|
2469 { |
|
2470 struct nic *nic = netdev_priv(netdev); |
|
2471 nic->msg_enable = value; |
|
2472 } |
|
2473 |
|
2474 static int e100_nway_reset(struct net_device *netdev) |
|
2475 { |
|
2476 struct nic *nic = netdev_priv(netdev); |
|
2477 return mii_nway_restart(&nic->mii); |
|
2478 } |
|
2479 |
|
2480 static u32 e100_get_link(struct net_device *netdev) |
|
2481 { |
|
2482 struct nic *nic = netdev_priv(netdev); |
|
2483 return mii_link_ok(&nic->mii); |
|
2484 } |
|
2485 |
|
2486 static int e100_get_eeprom_len(struct net_device *netdev) |
|
2487 { |
|
2488 struct nic *nic = netdev_priv(netdev); |
|
2489 return nic->eeprom_wc << 1; |
|
2490 } |
|
2491 |
|
2492 #define E100_EEPROM_MAGIC 0x1234 |
|
2493 static int e100_get_eeprom(struct net_device *netdev, |
|
2494 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2495 { |
|
2496 struct nic *nic = netdev_priv(netdev); |
|
2497 |
|
2498 eeprom->magic = E100_EEPROM_MAGIC; |
|
2499 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); |
|
2500 |
|
2501 return 0; |
|
2502 } |
|
2503 |
|
2504 static int e100_set_eeprom(struct net_device *netdev, |
|
2505 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2506 { |
|
2507 struct nic *nic = netdev_priv(netdev); |
|
2508 |
|
2509 if (eeprom->magic != E100_EEPROM_MAGIC) |
|
2510 return -EINVAL; |
|
2511 |
|
2512 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); |
|
2513 |
|
2514 return e100_eeprom_save(nic, eeprom->offset >> 1, |
|
2515 (eeprom->len >> 1) + 1); |
|
2516 } |
|
2517 |
|
2518 static void e100_get_ringparam(struct net_device *netdev, |
|
2519 struct ethtool_ringparam *ring) |
|
2520 { |
|
2521 struct nic *nic = netdev_priv(netdev); |
|
2522 struct param_range *rfds = &nic->params.rfds; |
|
2523 struct param_range *cbs = &nic->params.cbs; |
|
2524 |
|
2525 ring->rx_max_pending = rfds->max; |
|
2526 ring->tx_max_pending = cbs->max; |
|
2527 ring->rx_mini_max_pending = 0; |
|
2528 ring->rx_jumbo_max_pending = 0; |
|
2529 ring->rx_pending = rfds->count; |
|
2530 ring->tx_pending = cbs->count; |
|
2531 ring->rx_mini_pending = 0; |
|
2532 ring->rx_jumbo_pending = 0; |
|
2533 } |
|
2534 |
|
2535 static int e100_set_ringparam(struct net_device *netdev, |
|
2536 struct ethtool_ringparam *ring) |
|
2537 { |
|
2538 struct nic *nic = netdev_priv(netdev); |
|
2539 struct param_range *rfds = &nic->params.rfds; |
|
2540 struct param_range *cbs = &nic->params.cbs; |
|
2541 |
|
2542 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
|
2543 return -EINVAL; |
|
2544 |
|
2545 if (netif_running(netdev)) |
|
2546 e100_down(nic); |
|
2547 rfds->count = max(ring->rx_pending, rfds->min); |
|
2548 rfds->count = min(rfds->count, rfds->max); |
|
2549 cbs->count = max(ring->tx_pending, cbs->min); |
|
2550 cbs->count = min(cbs->count, cbs->max); |
|
2551 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", |
|
2552 rfds->count, cbs->count); |
|
2553 if (netif_running(netdev)) |
|
2554 e100_up(nic); |
|
2555 |
|
2556 return 0; |
|
2557 } |
|
2558 |
|
2559 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { |
|
2560 "Link test (on/offline)", |
|
2561 "Eeprom test (on/offline)", |
|
2562 "Self test (offline)", |
|
2563 "Mac loopback (offline)", |
|
2564 "Phy loopback (offline)", |
|
2565 }; |
|
2566 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) |
|
2567 |
|
2568 static void e100_diag_test(struct net_device *netdev, |
|
2569 struct ethtool_test *test, u64 *data) |
|
2570 { |
|
2571 struct ethtool_cmd cmd; |
|
2572 struct nic *nic = netdev_priv(netdev); |
|
2573 int i, err; |
|
2574 |
|
2575 memset(data, 0, E100_TEST_LEN * sizeof(u64)); |
|
2576 data[0] = !mii_link_ok(&nic->mii); |
|
2577 data[1] = e100_eeprom_load(nic); |
|
2578 if (test->flags & ETH_TEST_FL_OFFLINE) { |
|
2579 |
|
2580 /* save speed, duplex & autoneg settings */ |
|
2581 err = mii_ethtool_gset(&nic->mii, &cmd); |
|
2582 |
|
2583 if (netif_running(netdev)) |
|
2584 e100_down(nic); |
|
2585 data[2] = e100_self_test(nic); |
|
2586 data[3] = e100_loopback_test(nic, lb_mac); |
|
2587 data[4] = e100_loopback_test(nic, lb_phy); |
|
2588 |
|
2589 /* restore speed, duplex & autoneg settings */ |
|
2590 err = mii_ethtool_sset(&nic->mii, &cmd); |
|
2591 |
|
2592 if (netif_running(netdev)) |
|
2593 e100_up(nic); |
|
2594 } |
|
2595 for (i = 0; i < E100_TEST_LEN; i++) |
|
2596 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; |
|
2597 |
|
2598 msleep_interruptible(4 * 1000); |
|
2599 } |
|
2600 |
|
2601 static int e100_phys_id(struct net_device *netdev, u32 data) |
|
2602 { |
|
2603 struct nic *nic = netdev_priv(netdev); |
|
2604 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : |
|
2605 MII_LED_CONTROL; |
|
2606 |
|
2607 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) |
|
2608 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); |
|
2609 mod_timer(&nic->blink_timer, jiffies); |
|
2610 msleep_interruptible(data * 1000); |
|
2611 del_timer_sync(&nic->blink_timer); |
|
2612 mdio_write(netdev, nic->mii.phy_id, led_reg, 0); |
|
2613 |
|
2614 return 0; |
|
2615 } |
|
2616 |
|
2617 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { |
|
2618 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", |
|
2619 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", |
|
2620 "rx_length_errors", "rx_over_errors", "rx_crc_errors", |
|
2621 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", |
|
2622 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", |
|
2623 "tx_heartbeat_errors", "tx_window_errors", |
|
2624 /* device-specific stats */ |
|
2625 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", |
|
2626 "tx_flow_control_pause", "rx_flow_control_pause", |
|
2627 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", |
|
2628 }; |
|
2629 #define E100_NET_STATS_LEN 21 |
|
2630 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) |
|
2631 |
|
2632 static int e100_get_sset_count(struct net_device *netdev, int sset) |
|
2633 { |
|
2634 switch (sset) { |
|
2635 case ETH_SS_TEST: |
|
2636 return E100_TEST_LEN; |
|
2637 case ETH_SS_STATS: |
|
2638 return E100_STATS_LEN; |
|
2639 default: |
|
2640 return -EOPNOTSUPP; |
|
2641 } |
|
2642 } |
|
2643 |
|
2644 static void e100_get_ethtool_stats(struct net_device *netdev, |
|
2645 struct ethtool_stats *stats, u64 *data) |
|
2646 { |
|
2647 struct nic *nic = netdev_priv(netdev); |
|
2648 int i; |
|
2649 |
|
2650 for (i = 0; i < E100_NET_STATS_LEN; i++) |
|
2651 data[i] = ((unsigned long *)&netdev->stats)[i]; |
|
2652 |
|
2653 data[i++] = nic->tx_deferred; |
|
2654 data[i++] = nic->tx_single_collisions; |
|
2655 data[i++] = nic->tx_multiple_collisions; |
|
2656 data[i++] = nic->tx_fc_pause; |
|
2657 data[i++] = nic->rx_fc_pause; |
|
2658 data[i++] = nic->rx_fc_unsupported; |
|
2659 data[i++] = nic->tx_tco_frames; |
|
2660 data[i++] = nic->rx_tco_frames; |
|
2661 } |
|
2662 |
|
2663 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) |
|
2664 { |
|
2665 switch (stringset) { |
|
2666 case ETH_SS_TEST: |
|
2667 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); |
|
2668 break; |
|
2669 case ETH_SS_STATS: |
|
2670 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); |
|
2671 break; |
|
2672 } |
|
2673 } |
|
2674 |
|
2675 static const struct ethtool_ops e100_ethtool_ops = { |
|
2676 .get_settings = e100_get_settings, |
|
2677 .set_settings = e100_set_settings, |
|
2678 .get_drvinfo = e100_get_drvinfo, |
|
2679 .get_regs_len = e100_get_regs_len, |
|
2680 .get_regs = e100_get_regs, |
|
2681 .get_wol = e100_get_wol, |
|
2682 .set_wol = e100_set_wol, |
|
2683 .get_msglevel = e100_get_msglevel, |
|
2684 .set_msglevel = e100_set_msglevel, |
|
2685 .nway_reset = e100_nway_reset, |
|
2686 .get_link = e100_get_link, |
|
2687 .get_eeprom_len = e100_get_eeprom_len, |
|
2688 .get_eeprom = e100_get_eeprom, |
|
2689 .set_eeprom = e100_set_eeprom, |
|
2690 .get_ringparam = e100_get_ringparam, |
|
2691 .set_ringparam = e100_set_ringparam, |
|
2692 .self_test = e100_diag_test, |
|
2693 .get_strings = e100_get_strings, |
|
2694 .phys_id = e100_phys_id, |
|
2695 .get_ethtool_stats = e100_get_ethtool_stats, |
|
2696 .get_sset_count = e100_get_sset_count, |
|
2697 }; |
|
2698 |
|
2699 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
2700 { |
|
2701 struct nic *nic = netdev_priv(netdev); |
|
2702 |
|
2703 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); |
|
2704 } |
|
2705 |
|
2706 static int e100_alloc(struct nic *nic) |
|
2707 { |
|
2708 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), |
|
2709 &nic->dma_addr); |
|
2710 return nic->mem ? 0 : -ENOMEM; |
|
2711 } |
|
2712 |
|
2713 static void e100_free(struct nic *nic) |
|
2714 { |
|
2715 if (nic->mem) { |
|
2716 pci_free_consistent(nic->pdev, sizeof(struct mem), |
|
2717 nic->mem, nic->dma_addr); |
|
2718 nic->mem = NULL; |
|
2719 } |
|
2720 } |
|
2721 |
|
2722 static int e100_open(struct net_device *netdev) |
|
2723 { |
|
2724 struct nic *nic = netdev_priv(netdev); |
|
2725 int err = 0; |
|
2726 |
|
2727 netif_carrier_off(netdev); |
|
2728 if ((err = e100_up(nic))) |
|
2729 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); |
|
2730 return err; |
|
2731 } |
|
2732 |
|
2733 static int e100_close(struct net_device *netdev) |
|
2734 { |
|
2735 e100_down(netdev_priv(netdev)); |
|
2736 return 0; |
|
2737 } |
|
2738 |
|
2739 static const struct net_device_ops e100_netdev_ops = { |
|
2740 .ndo_open = e100_open, |
|
2741 .ndo_stop = e100_close, |
|
2742 .ndo_start_xmit = e100_xmit_frame, |
|
2743 .ndo_validate_addr = eth_validate_addr, |
|
2744 .ndo_set_multicast_list = e100_set_multicast_list, |
|
2745 .ndo_set_mac_address = e100_set_mac_address, |
|
2746 .ndo_change_mtu = e100_change_mtu, |
|
2747 .ndo_do_ioctl = e100_do_ioctl, |
|
2748 .ndo_tx_timeout = e100_tx_timeout, |
|
2749 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2750 .ndo_poll_controller = e100_netpoll, |
|
2751 #endif |
|
2752 }; |
|
2753 |
|
2754 static int __devinit e100_probe(struct pci_dev *pdev, |
|
2755 const struct pci_device_id *ent) |
|
2756 { |
|
2757 struct net_device *netdev; |
|
2758 struct nic *nic; |
|
2759 int err; |
|
2760 |
|
2761 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) { |
|
2762 if (((1 << debug) - 1) & NETIF_MSG_PROBE) |
|
2763 pr_err("Etherdev alloc failed, aborting\n"); |
|
2764 return -ENOMEM; |
|
2765 } |
|
2766 |
|
2767 netdev->netdev_ops = &e100_netdev_ops; |
|
2768 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); |
|
2769 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; |
|
2770 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
2771 |
|
2772 nic = netdev_priv(netdev); |
|
2773 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); |
|
2774 nic->netdev = netdev; |
|
2775 nic->pdev = pdev; |
|
2776 nic->msg_enable = (1 << debug) - 1; |
|
2777 nic->mdio_ctrl = mdio_ctrl_hw; |
|
2778 pci_set_drvdata(pdev, netdev); |
|
2779 |
|
2780 if ((err = pci_enable_device(pdev))) { |
|
2781 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); |
|
2782 goto err_out_free_dev; |
|
2783 } |
|
2784 |
|
2785 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
|
2786 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); |
|
2787 err = -ENODEV; |
|
2788 goto err_out_disable_pdev; |
|
2789 } |
|
2790 |
|
2791 if ((err = pci_request_regions(pdev, DRV_NAME))) { |
|
2792 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); |
|
2793 goto err_out_disable_pdev; |
|
2794 } |
|
2795 |
|
2796 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { |
|
2797 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); |
|
2798 goto err_out_free_res; |
|
2799 } |
|
2800 |
|
2801 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
2802 |
|
2803 if (use_io) |
|
2804 netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); |
|
2805 |
|
2806 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); |
|
2807 if (!nic->csr) { |
|
2808 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); |
|
2809 err = -ENOMEM; |
|
2810 goto err_out_free_res; |
|
2811 } |
|
2812 |
|
2813 if (ent->driver_data) |
|
2814 nic->flags |= ich; |
|
2815 else |
|
2816 nic->flags &= ~ich; |
|
2817 |
|
2818 e100_get_defaults(nic); |
|
2819 |
|
2820 /* locks must be initialized before calling hw_reset */ |
|
2821 spin_lock_init(&nic->cb_lock); |
|
2822 spin_lock_init(&nic->cmd_lock); |
|
2823 spin_lock_init(&nic->mdio_lock); |
|
2824 |
|
2825 /* Reset the device before pci_set_master() in case device is in some |
|
2826 * funky state and has an interrupt pending - hint: we don't have the |
|
2827 * interrupt handler registered yet. */ |
|
2828 e100_hw_reset(nic); |
|
2829 |
|
2830 pci_set_master(pdev); |
|
2831 |
|
2832 init_timer(&nic->watchdog); |
|
2833 nic->watchdog.function = e100_watchdog; |
|
2834 nic->watchdog.data = (unsigned long)nic; |
|
2835 init_timer(&nic->blink_timer); |
|
2836 nic->blink_timer.function = e100_blink_led; |
|
2837 nic->blink_timer.data = (unsigned long)nic; |
|
2838 |
|
2839 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); |
|
2840 |
|
2841 if ((err = e100_alloc(nic))) { |
|
2842 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); |
|
2843 goto err_out_iounmap; |
|
2844 } |
|
2845 |
|
2846 if ((err = e100_eeprom_load(nic))) |
|
2847 goto err_out_free; |
|
2848 |
|
2849 e100_phy_init(nic); |
|
2850 |
|
2851 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); |
|
2852 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); |
|
2853 if (!is_valid_ether_addr(netdev->perm_addr)) { |
|
2854 if (!eeprom_bad_csum_allow) { |
|
2855 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); |
|
2856 err = -EAGAIN; |
|
2857 goto err_out_free; |
|
2858 } else { |
|
2859 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); |
|
2860 } |
|
2861 } |
|
2862 |
|
2863 /* Wol magic packet can be enabled from eeprom */ |
|
2864 if ((nic->mac >= mac_82558_D101_A4) && |
|
2865 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { |
|
2866 nic->flags |= wol_magic; |
|
2867 device_set_wakeup_enable(&pdev->dev, true); |
|
2868 } |
|
2869 |
|
2870 /* ack any pending wake events, disable PME */ |
|
2871 pci_pme_active(pdev, false); |
|
2872 |
|
2873 strcpy(netdev->name, "eth%d"); |
|
2874 if ((err = register_netdev(netdev))) { |
|
2875 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); |
|
2876 goto err_out_free; |
|
2877 } |
|
2878 nic->cbs_pool = pci_pool_create(netdev->name, |
|
2879 nic->pdev, |
|
2880 nic->params.cbs.max * sizeof(struct cb), |
|
2881 sizeof(u32), |
|
2882 0); |
|
2883 netif_info(nic, probe, nic->netdev, |
|
2884 "addr 0x%llx, irq %d, MAC addr %pM\n", |
|
2885 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), |
|
2886 pdev->irq, netdev->dev_addr); |
|
2887 |
|
2888 return 0; |
|
2889 |
|
2890 err_out_free: |
|
2891 e100_free(nic); |
|
2892 err_out_iounmap: |
|
2893 pci_iounmap(pdev, nic->csr); |
|
2894 err_out_free_res: |
|
2895 pci_release_regions(pdev); |
|
2896 err_out_disable_pdev: |
|
2897 pci_disable_device(pdev); |
|
2898 err_out_free_dev: |
|
2899 pci_set_drvdata(pdev, NULL); |
|
2900 free_netdev(netdev); |
|
2901 return err; |
|
2902 } |
|
2903 |
|
2904 static void __devexit e100_remove(struct pci_dev *pdev) |
|
2905 { |
|
2906 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2907 |
|
2908 if (netdev) { |
|
2909 struct nic *nic = netdev_priv(netdev); |
|
2910 unregister_netdev(netdev); |
|
2911 e100_free(nic); |
|
2912 pci_iounmap(pdev, nic->csr); |
|
2913 pci_pool_destroy(nic->cbs_pool); |
|
2914 free_netdev(netdev); |
|
2915 pci_release_regions(pdev); |
|
2916 pci_disable_device(pdev); |
|
2917 pci_set_drvdata(pdev, NULL); |
|
2918 } |
|
2919 } |
|
2920 |
|
2921 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ |
|
2922 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ |
|
2923 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ |
|
2924 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
2925 { |
|
2926 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2927 struct nic *nic = netdev_priv(netdev); |
|
2928 |
|
2929 if (netif_running(netdev)) |
|
2930 e100_down(nic); |
|
2931 netif_device_detach(netdev); |
|
2932 |
|
2933 pci_save_state(pdev); |
|
2934 |
|
2935 if ((nic->flags & wol_magic) | e100_asf(nic)) { |
|
2936 /* enable reverse auto-negotiation */ |
|
2937 if (nic->phy == phy_82552_v) { |
|
2938 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
|
2939 E100_82552_SMARTSPEED); |
|
2940 |
|
2941 mdio_write(netdev, nic->mii.phy_id, |
|
2942 E100_82552_SMARTSPEED, smartspeed | |
|
2943 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); |
|
2944 } |
|
2945 *enable_wake = true; |
|
2946 } else { |
|
2947 *enable_wake = false; |
|
2948 } |
|
2949 |
|
2950 pci_disable_device(pdev); |
|
2951 } |
|
2952 |
|
2953 static int __e100_power_off(struct pci_dev *pdev, bool wake) |
|
2954 { |
|
2955 if (wake) |
|
2956 return pci_prepare_to_sleep(pdev); |
|
2957 |
|
2958 pci_wake_from_d3(pdev, false); |
|
2959 pci_set_power_state(pdev, PCI_D3hot); |
|
2960 |
|
2961 return 0; |
|
2962 } |
|
2963 |
|
2964 #ifdef CONFIG_PM |
|
2965 static int e100_suspend(struct pci_dev *pdev, pm_message_t state) |
|
2966 { |
|
2967 bool wake; |
|
2968 __e100_shutdown(pdev, &wake); |
|
2969 return __e100_power_off(pdev, wake); |
|
2970 } |
|
2971 |
|
2972 static int e100_resume(struct pci_dev *pdev) |
|
2973 { |
|
2974 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2975 struct nic *nic = netdev_priv(netdev); |
|
2976 |
|
2977 pci_set_power_state(pdev, PCI_D0); |
|
2978 pci_restore_state(pdev); |
|
2979 /* ack any pending wake events, disable PME */ |
|
2980 pci_enable_wake(pdev, 0, 0); |
|
2981 |
|
2982 /* disable reverse auto-negotiation */ |
|
2983 if (nic->phy == phy_82552_v) { |
|
2984 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
|
2985 E100_82552_SMARTSPEED); |
|
2986 |
|
2987 mdio_write(netdev, nic->mii.phy_id, |
|
2988 E100_82552_SMARTSPEED, |
|
2989 smartspeed & ~(E100_82552_REV_ANEG)); |
|
2990 } |
|
2991 |
|
2992 netif_device_attach(netdev); |
|
2993 if (netif_running(netdev)) |
|
2994 e100_up(nic); |
|
2995 |
|
2996 return 0; |
|
2997 } |
|
2998 #endif /* CONFIG_PM */ |
|
2999 |
|
3000 static void e100_shutdown(struct pci_dev *pdev) |
|
3001 { |
|
3002 bool wake; |
|
3003 __e100_shutdown(pdev, &wake); |
|
3004 if (system_state == SYSTEM_POWER_OFF) |
|
3005 __e100_power_off(pdev, wake); |
|
3006 } |
|
3007 |
|
3008 /* ------------------ PCI Error Recovery infrastructure -------------- */ |
|
3009 /** |
|
3010 * e100_io_error_detected - called when PCI error is detected. |
|
3011 * @pdev: Pointer to PCI device |
|
3012 * @state: The current pci connection state |
|
3013 */ |
|
3014 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) |
|
3015 { |
|
3016 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3017 struct nic *nic = netdev_priv(netdev); |
|
3018 |
|
3019 netif_device_detach(netdev); |
|
3020 |
|
3021 if (state == pci_channel_io_perm_failure) |
|
3022 return PCI_ERS_RESULT_DISCONNECT; |
|
3023 |
|
3024 if (netif_running(netdev)) |
|
3025 e100_down(nic); |
|
3026 pci_disable_device(pdev); |
|
3027 |
|
3028 /* Request a slot reset. */ |
|
3029 return PCI_ERS_RESULT_NEED_RESET; |
|
3030 } |
|
3031 |
|
3032 /** |
|
3033 * e100_io_slot_reset - called after the pci bus has been reset. |
|
3034 * @pdev: Pointer to PCI device |
|
3035 * |
|
3036 * Restart the card from scratch. |
|
3037 */ |
|
3038 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) |
|
3039 { |
|
3040 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3041 struct nic *nic = netdev_priv(netdev); |
|
3042 |
|
3043 if (pci_enable_device(pdev)) { |
|
3044 pr_err("Cannot re-enable PCI device after reset\n"); |
|
3045 return PCI_ERS_RESULT_DISCONNECT; |
|
3046 } |
|
3047 pci_set_master(pdev); |
|
3048 |
|
3049 /* Only one device per card can do a reset */ |
|
3050 if (0 != PCI_FUNC(pdev->devfn)) |
|
3051 return PCI_ERS_RESULT_RECOVERED; |
|
3052 e100_hw_reset(nic); |
|
3053 e100_phy_init(nic); |
|
3054 |
|
3055 return PCI_ERS_RESULT_RECOVERED; |
|
3056 } |
|
3057 |
|
3058 /** |
|
3059 * e100_io_resume - resume normal operations |
|
3060 * @pdev: Pointer to PCI device |
|
3061 * |
|
3062 * Resume normal operations after an error recovery |
|
3063 * sequence has been completed. |
|
3064 */ |
|
3065 static void e100_io_resume(struct pci_dev *pdev) |
|
3066 { |
|
3067 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3068 struct nic *nic = netdev_priv(netdev); |
|
3069 |
|
3070 /* ack any pending wake events, disable PME */ |
|
3071 pci_enable_wake(pdev, 0, 0); |
|
3072 |
|
3073 netif_device_attach(netdev); |
|
3074 if (netif_running(netdev)) { |
|
3075 e100_open(netdev); |
|
3076 mod_timer(&nic->watchdog, jiffies); |
|
3077 } |
|
3078 } |
|
3079 |
|
3080 static struct pci_error_handlers e100_err_handler = { |
|
3081 .error_detected = e100_io_error_detected, |
|
3082 .slot_reset = e100_io_slot_reset, |
|
3083 .resume = e100_io_resume, |
|
3084 }; |
|
3085 |
|
3086 static struct pci_driver e100_driver = { |
|
3087 .name = DRV_NAME, |
|
3088 .id_table = e100_id_table, |
|
3089 .probe = e100_probe, |
|
3090 .remove = __devexit_p(e100_remove), |
|
3091 #ifdef CONFIG_PM |
|
3092 /* Power Management hooks */ |
|
3093 .suspend = e100_suspend, |
|
3094 .resume = e100_resume, |
|
3095 #endif |
|
3096 .shutdown = e100_shutdown, |
|
3097 .err_handler = &e100_err_handler, |
|
3098 }; |
|
3099 |
|
3100 static int __init e100_init_module(void) |
|
3101 { |
|
3102 if (((1 << debug) - 1) & NETIF_MSG_DRV) { |
|
3103 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); |
|
3104 pr_info("%s\n", DRV_COPYRIGHT); |
|
3105 } |
|
3106 return pci_register_driver(&e100_driver); |
|
3107 } |
|
3108 |
|
3109 static void __exit e100_cleanup_module(void) |
|
3110 { |
|
3111 pci_unregister_driver(&e100_driver); |
|
3112 } |
|
3113 |
|
3114 module_init(e100_init_module); |
|
3115 module_exit(e100_cleanup_module); |