--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/graphics/GraphicCommons.py Sun Sep 09 23:05:01 2012 +0200
@@ -0,0 +1,3269 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
+#based on the plcopen standard.
+#
+#Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
+#
+#See COPYING file for copyrights details.
+#
+#This library is free software; you can redistribute it and/or
+#modify it under the terms of the GNU General Public
+#License as published by the Free Software Foundation; either
+#version 2.1 of the License, or (at your option) any later version.
+#
+#This library is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+#General Public License for more details.
+#
+#You should have received a copy of the GNU General Public
+#License along with this library; if not, write to the Free Software
+#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+import wx
+from time import time as gettime
+from math import *
+from types import *
+import datetime
+from threading import Semaphore
+
+#-------------------------------------------------------------------------------
+# Common constants
+#-------------------------------------------------------------------------------
+
+"""
+Definition of constants for dimensions of graphic elements
+"""
+
+# FBD and SFC constants
+MIN_MOVE = 5 # Minimum move before starting a element dragging
+CONNECTOR_SIZE = 8 # Size of connectors
+BLOCK_LINE_SIZE = 20 # Minimum size of each line in a block
+HANDLE_SIZE = 6 # Size of the squares for handles
+ANCHOR_DISTANCE = 5 # Distance where wire is automativally attached to a connector
+POINT_RADIUS = 2 # Radius of the point of wire ends
+MIN_SEGMENT_SIZE = 2 # Minimum size of the endling segments of a wire
+
+# LD constants
+LD_LINE_SIZE = 40 # Distance between two lines in a ladder rung
+LD_ELEMENT_SIZE = (21, 15) # Size (width, height) of a ladder element (contact or coil)
+LD_WIRE_SIZE = 30 # Size of a wire between two contact
+LD_WIRECOIL_SIZE = 70 # Size of a wire between a coil and a contact
+LD_POWERRAIL_WIDTH = 3 # Width of a Powerrail
+LD_OFFSET = (10, 10) # Distance (x, y) between each comment and rung of the ladder
+LD_COMMENT_DEFAULTSIZE = (600, 40) # Size (width, height) of a comment box
+
+# SFC constants
+SFC_STEP_DEFAULT_SIZE = (40, 30) # Default size of a SFC step
+SFC_TRANSITION_SIZE = (20, 2) # Size of a SFC transition
+SFC_DEFAULT_SEQUENCE_INTERVAL = 40 # Default size of the interval between two divergence branches
+SFC_SIMULTANEOUS_SEQUENCE_EXTRA = 20 # Size of extra lines for simultaneous divergence and convergence
+SFC_JUMP_SIZE = (12, 13) # Size of a SFC jump to step
+SFC_WIRE_MIN_SIZE = 25 # Size of a wire between two elements
+SFC_ACTION_MIN_SIZE = (100, 30) # Minimum size of an action block line
+
+# Type definition constants for graphic elements
+[INPUT, OUTPUT, INOUT] = range(3)
+[CONNECTOR, CONTINUATION] = range(2)
+[LEFTRAIL, RIGHTRAIL] = range(2)
+[CONTACT_NORMAL, CONTACT_REVERSE, CONTACT_RISING, CONTACT_FALLING] = range(4)
+[COIL_NORMAL, COIL_REVERSE, COIL_SET, COIL_RESET, COIL_RISING, COIL_FALLING] = range(6)
+[SELECTION_DIVERGENCE, SELECTION_CONVERGENCE, SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE] = range(4)
+
+# Constants for defining the type of dragging that has been selected
+[HANDLE_MOVE, HANDLE_RESIZE, HANDLE_POINT, HANDLE_SEGMENT, HANDLE_CONNECTOR] = range(5)
+
+# List of value for resize handle that are valid
+VALID_HANDLES = [(1,1), (1,2), (1,3), (2,3), (3,3), (3,2), (3,1), (2,1)]
+
+# Contants for defining the direction of a connector
+[EAST, NORTH, WEST, SOUTH] = [(1,0), (0,-1), (-1,0), (0,1)]
+
+# Contants for defining which mode is selected for each view
+[MODE_SELECTION, MODE_BLOCK, MODE_VARIABLE, MODE_CONNECTION, MODE_COMMENT,
+ MODE_COIL, MODE_CONTACT, MODE_POWERRAIL, MODE_INITIALSTEP, MODE_STEP,
+ MODE_TRANSITION, MODE_DIVERGENCE, MODE_JUMP, MODE_ACTION, MODE_MOTION] = range(15)
+
+# Contants for defining alignment types for graphic group
+[ALIGN_LEFT, ALIGN_CENTER, ALIGN_RIGHT, ALIGN_TOP, ALIGN_MIDDLE, ALIGN_BOTTOM] = range(6)
+
+# Contants for defining which drawing mode is selected for app
+[FREEDRAWING_MODE, DRIVENDRAWING_MODE] = [1, 2]
+
+# Color for Highlighting
+HIGHLIGHTCOLOR = wx.CYAN
+
+# Define highlight types
+ERROR_HIGHLIGHT = (wx.Colour(255, 255, 0), wx.RED)
+SEARCH_RESULT_HIGHLIGHT = (wx.Colour(255, 165, 0), wx.WHITE)
+
+# Define highlight refresh inhibition period in second
+REFRESH_HIGHLIGHT_PERIOD = 0.1
+
+# Define tooltip wait for displaying period in second
+TOOLTIP_WAIT_PERIOD = 0.5
+
+HANDLE_CURSORS = {
+ (1, 1) : 2,
+ (3, 3) : 2,
+ (1, 3) : 3,
+ (3, 1) : 3,
+ (1, 2) : 4,
+ (3, 2) : 4,
+ (2, 1) : 5,
+ (2, 3) : 5
+}
+
+def round_scaling(x, n, constraint=0):
+ fraction = float(x) / float(n)
+ if constraint == - 1:
+ xround = int(fraction)
+ else:
+ xround = round(fraction)
+ if constraint == 1 and int(fraction) == xround:
+ xround += 1
+ return xround * n
+
+"""
+Basic vector operations for calculate wire points
+"""
+
+# Create a vector from two points and define if vector must be normal
+def vector(p1, p2, normal = True):
+ vector = (p2.x - p1.x, p2.y - p1.y)
+ if normal:
+ return normalize(vector)
+ return vector
+
+# Calculate the norm of a given vector
+def norm(v):
+ return sqrt(v[0] * v[0] + v[1] * v[1])
+
+# Normalize a given vector
+def normalize(v):
+ v_norm = norm(v)
+ # Verifie if it is not a null vector
+ if v_norm > 0:
+ return (v[0] / v_norm, v[1] / v_norm)
+ else:
+ return v
+
+# Calculate the scalar product of two vectors
+def is_null_vector(v):
+ return v == (0, 0)
+
+# Calculate the scalar product of two vectors
+def add_vectors(v1, v2):
+ return (v1[0] + v2[0], v1[1] + v2[1])
+
+# Calculate the scalar product of two vectors
+def product(v1, v2):
+ return v1[0] * v2[0] + v1[1] * v2[1]
+
+
+"""
+Function that calculates the nearest point of the grid defined by scaling for the given point
+"""
+
+def GetScaledEventPosition(event, dc, scaling):
+ pos = event.GetLogicalPosition(dc)
+ if scaling:
+ pos.x = round(float(pos.x) / float(scaling[0])) * scaling[0]
+ pos.y = round(float(pos.y) / float(scaling[1])) * scaling[1]
+ return pos
+
+
+"""
+Function that choose a direction during the wire points generation
+"""
+
+def DirectionChoice(v_base, v_target, dir_target):
+ dir_product = product(v_base, v_target)
+ if dir_product < 0:
+ return (-v_base[0], -v_base[1])
+ elif dir_product == 0 and product(v_base, dir_target) != 0:
+ return dir_target
+ return v_base
+
+SECOND = 1000000
+MINUTE = 60 * SECOND
+HOUR = 60 * MINUTE
+DAY = 24 * HOUR
+
+def generate_time(value):
+ microseconds = float(value.days * DAY + value.seconds * SECOND + value.microseconds)
+ negative = microseconds < 0
+ microseconds = abs(microseconds)
+ data = "T#"
+ not_null = False
+ if negative:
+ data += "-"
+ for val, format in [(int(microseconds) / DAY, "%dd"),
+ ((int(microseconds) % DAY) / HOUR, "%dh"),
+ ((int(microseconds) % HOUR) / MINUTE, "%dm"),
+ ((int(microseconds) % MINUTE) / SECOND, "%ds")]:
+ if val > 0 or not_null:
+ data += format % val
+ not_null = True
+ data += "%gms" % (microseconds % SECOND / 1000.)
+ return data
+
+def generate_date(value):
+ base_date = datetime.datetime(1970, 1, 1)
+ date = base_date + value
+ return date.strftime("DATE#%Y-%m-%d")
+
+def generate_datetime(value):
+ base_date = datetime.datetime(1970, 1, 1)
+ date_time = base_date + value
+ return date_time.strftime("DT#%Y-%m-%d-%H:%M:%S.%f")
+
+def generate_timeofday(value):
+ microseconds = float(value.days * DAY + value.seconds * SECOND + value.microseconds)
+ negative = microseconds < 0
+ microseconds = abs(microseconds)
+ data = "TOD#"
+ for val, format in [(int(microseconds) / HOUR, "%2.2d:"),
+ ((int(microseconds) % HOUR) / MINUTE, "%2.2d:"),
+ ((int(microseconds) % MINUTE) / SECOND, "%2.2d."),
+ (microseconds % SECOND, "%6.6d")]:
+ data += format % val
+ return data
+
+TYPE_TRANSLATOR = {"TIME": generate_time,
+ "DATE": generate_date,
+ "DT": generate_datetime,
+ "TOD": generate_timeofday}
+
+def MiterPen(colour, width=1, style=wx.SOLID):
+ pen = wx.Pen(colour, width, style)
+ pen.SetJoin(wx.JOIN_MITER)
+ pen.SetCap(wx.CAP_PROJECTING)
+ return pen
+
+#-------------------------------------------------------------------------------
+# Debug Data Consumer Class
+#-------------------------------------------------------------------------------
+
+class DebugDataConsumer:
+
+ def __init__(self):
+ self.LastValue = None
+ self.Value = None
+ self.DataType = None
+ self.LastForced = False
+ self.Forced = False
+ self.Inhibited = False
+
+ def Inhibit(self, inhibit):
+ self.Inhibited = inhibit
+ if not inhibit and self.LastValue is not None:
+ self.SetForced(self.LastForced)
+ self.SetValue(self.LastValue)
+ self.LastValue = None
+
+ def SetDataType(self, data_type):
+ self.DataType = data_type
+
+ def NewValue(self, tick, value, forced=False):
+ value = TYPE_TRANSLATOR.get(self.DataType, lambda x:x)(value)
+ if self.Inhibited:
+ self.LastValue = value
+ self.LastForced = forced
+ else:
+ self.SetForced(forced)
+ self.SetValue(value)
+
+ def SetValue(self, value):
+ self.Value = value
+
+ def GetValue(self):
+ return self.Value
+
+ def SetForced(self, forced):
+ self.Forced = forced
+
+ def IsForced(self):
+ return self.Forced
+
+#-------------------------------------------------------------------------------
+# Debug Viewer Class
+#-------------------------------------------------------------------------------
+
+REFRESH_PERIOD = 0.1
+
+class DebugViewer:
+
+ def __init__(self, producer, debug, register_tick=True):
+ self.DataProducer = None
+ self.Debug = debug
+ self.RegisterTick = register_tick
+ self.Inhibited = False
+
+ self.DataConsumers = {}
+
+ self.LastRefreshTime = gettime()
+ self.RefreshLock = Semaphore()
+
+ self.RefreshTimer = wx.Timer(self, -1)
+ self.Bind(wx.EVT_TIMER, self.OnRefreshTimer, self.RefreshTimer)
+
+ self.SetDataProducer(producer)
+
+ def __del__(self):
+ self.DataProducer = None
+ self.DeleteDataConsumers()
+ self.RefreshTimer.Stop()
+
+ def SetDataProducer(self, producer):
+ if self.RegisterTick and self.Debug:
+ if producer is not None:
+ producer.SubscribeDebugIECVariable("__tick__", self)
+ if self.DataProducer is not None:
+ self.DataProducer.UnsubscribeDebugIECVariable("__tick__", self)
+ self.DataProducer = producer
+
+ def IsDebugging(self):
+ return self.Debug
+
+ def Inhibit(self, inhibit):
+ for consumer, iec_path in self.DataConsumers.iteritems():
+ consumer.Inhibit(inhibit)
+ self.Inhibited = inhibit
+
+ def AddDataConsumer(self, iec_path, consumer):
+ if self.DataProducer is None:
+ return None
+ result = self.DataProducer.SubscribeDebugIECVariable(iec_path, consumer)
+ if result is not None and consumer != self:
+ self.DataConsumers[consumer] = iec_path
+ consumer.SetDataType(self.GetDataType(iec_path))
+ return result
+
+ def RemoveDataConsumer(self, consumer):
+ iec_path = self.DataConsumers.pop(consumer, None)
+ if iec_path is not None:
+ self.DataProducer.UnsubscribeDebugIECVariable(iec_path, consumer)
+
+ def GetDataType(self, iec_path):
+ if self.DataProducer is not None:
+ return self.DataProducer.GetDebugIECVariableType(iec_path)
+ return None
+
+ def ForceDataValue(self, iec_path, value):
+ if self.DataProducer is not None:
+ self.DataProducer.ForceDebugIECVariable(iec_path, value)
+
+ def ReleaseDataValue(self, iec_path):
+ if self.DataProducer is not None:
+ self.DataProducer.ReleaseDebugIECVariable(iec_path)
+
+ def DeleteDataConsumers(self):
+ if self.DataProducer is not None:
+ for consumer, iec_path in self.DataConsumers.iteritems():
+ self.DataProducer.UnsubscribeDebugIECVariable(iec_path, consumer)
+ self.DataConsumers = {}
+
+ def OnRefreshTimer(self, event):
+ self.RefreshNewData()
+ event.Skip()
+
+ def NewDataAvailable(self, *args, **kwargs):
+ self.RefreshTimer.Stop()
+ if not self.Inhibited:
+ current_time = gettime()
+ if current_time - self.LastRefreshTime > REFRESH_PERIOD and self.RefreshLock.acquire(False):
+ self.LastRefreshTime = gettime()
+ self.Inhibit(True)
+ wx.CallAfter(self.RefreshViewOnNewData, *args, **kwargs)
+
+ def RefreshViewOnNewData(self, *args, **kwargs):
+ if self:
+ self.RefreshNewData(*args, **kwargs)
+ self.RefreshTimer.Start(int(REFRESH_PERIOD * 1000), oneShot=True)
+
+ def RefreshNewData(self, *args, **kwargs):
+ self.Inhibit(False)
+ self.RefreshLock.release()
+
+#-------------------------------------------------------------------------------
+# Viewer Rubberband
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a rubberband
+"""
+
+class RubberBand:
+
+ # Create a rubberband by indicated on which window it must be drawn
+ def __init__(self, viewer):
+ self.Viewer = viewer
+ self.drawingSurface = viewer.Editor
+ self.Reset()
+
+ # Method that initializes the internal attributes of the rubberband
+ def Reset(self):
+ self.startPoint = None
+ self.currentBox = None
+ self.lastBox = None
+
+ # Method that return if a box is currently edited
+ def IsShown(self):
+ return self.currentBox != None
+
+ # Method that returns the currently edited box
+ def GetCurrentExtent(self):
+ if self.currentBox is None:
+ return self.lastBox
+ return self.currentBox
+
+ # Method called when a new box starts to be edited
+ def OnLeftDown(self, event, dc, scaling):
+ pos = GetScaledEventPosition(event, dc, scaling)
+ # Save the point for calculate the box position and size
+ self.startPoint = pos
+ self.currentBox = wx.Rect(pos.x, pos.y, 0, 0)
+ self.drawingSurface.SetCursor(wx.StockCursor(wx.CURSOR_CROSS))
+ self.Redraw()
+
+ # Method called when dragging with a box edited
+ def OnMotion(self, event, dc, scaling):
+ pos = GetScaledEventPosition(event, dc, scaling)
+ # Save the last position and size of the box for erasing it
+ self.lastBox = wx.Rect(self.currentBox.x, self.currentBox.y, self.currentBox.width,
+ self.currentBox.height)
+ # Calculate new position and size of the box
+ if pos.x >= self.startPoint.x:
+ self.currentBox.x = self.startPoint.x
+ self.currentBox.width = pos.x - self.startPoint.x + 1
+ else:
+ self.currentBox.x = pos.x
+ self.currentBox.width = self.startPoint.x - pos.x + 1
+ if pos.y >= self.startPoint.y:
+ self.currentBox.y = self.startPoint.y
+ self.currentBox.height = pos.y - self.startPoint.y + 1
+ else:
+ self.currentBox.y = pos.y
+ self.currentBox.height = self.startPoint.y - pos.y + 1
+ self.Redraw()
+
+ # Method called when dragging is stopped
+ def OnLeftUp(self, event, dc, scaling):
+ self.drawingSurface.SetCursor(wx.NullCursor)
+ self.lastBox = self.currentBox
+ self.currentBox = None
+ self.Redraw()
+
+ # Method that erase the last box and draw the new box
+ def Redraw(self, dc = None):
+ if dc is None:
+ dc = self.Viewer.GetLogicalDC()
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
+ dc.SetBrush(wx.TRANSPARENT_BRUSH)
+ dc.SetLogicalFunction(wx.XOR)
+ if self.lastBox:
+ # Erase last box
+ dc.DrawRectangle(self.lastBox.x * scalex, self.lastBox.y * scaley,
+ self.lastBox.width * scalex, self.lastBox.height * scaley)
+ if self.currentBox:
+ # Draw current box
+ dc.DrawRectangle(self.currentBox.x * scalex, self.currentBox.y * scaley,
+ self.currentBox.width * scalex, self.currentBox.height * scaley)
+ dc.SetUserScale(scalex, scaley)
+
+ # Erase last box
+ def Erase(self, dc = None):
+ if dc is None:
+ dc = self.Viewer.GetLogicalDC()
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
+ dc.SetBrush(wx.TRANSPARENT_BRUSH)
+ dc.SetLogicalFunction(wx.XOR)
+ if self.lastBox:
+ dc.DrawRectangle(self.lastBox.x * scalex, self.lastBox.y * scaley,
+ self.lastBox.width * scalex, self.lastBox.height * scalex)
+ dc.SetUserScale(scalex, scaley)
+
+ # Draw current box
+ def Draw(self, dc = None):
+ if dc is None:
+ dc = self.Viewer.GetLogicalDC()
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
+ dc.SetBrush(wx.TRANSPARENT_BRUSH)
+ dc.SetLogicalFunction(wx.XOR)
+ if self.currentBox:
+ # Draw current box
+ dc.DrawRectangle(self.currentBox.x * scalex, self.currentBox.y * scaley,
+ self.currentBox.width * scalex, self.currentBox.height * scaley)
+ dc.SetUserScale(scalex, scaley)
+
+#-------------------------------------------------------------------------------
+# Viewer ToolTip
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a custom tool tip
+"""
+
+if wx.Platform == '__WXMSW__':
+ faces = { 'times': 'Times New Roman',
+ 'mono' : 'Courier New',
+ 'helv' : 'Arial',
+ 'other': 'Comic Sans MS',
+ 'size' : 10,
+ }
+else:
+ faces = { 'times': 'Times',
+ 'mono' : 'Courier',
+ 'helv' : 'Helvetica',
+ 'other': 'new century schoolbook',
+ 'size' : 12,
+ }
+
+TOOLTIP_MAX_CHARACTERS = 30
+TOOLTIP_MAX_LINE = 5
+
+class ToolTip(wx.PopupWindow):
+
+ def __init__(self, parent, tip):
+ wx.PopupWindow.__init__(self, parent)
+
+ self.CurrentPosition = wx.Point(0, 0)
+
+ self.SetBackgroundStyle(wx.BG_STYLE_CUSTOM)
+ self.SetTip(tip)
+
+ self.Bind(wx.EVT_PAINT, self.OnPaint)
+
+ def SetTip(self, tip):
+ lines = []
+ for line in tip.splitlines():
+ if line != "":
+ words = line.split()
+ new_line = words[0]
+ for word in words[1:]:
+ if len(new_line + " " + word) <= TOOLTIP_MAX_CHARACTERS:
+ new_line += " " + word
+ else:
+ lines.append(new_line)
+ new_line = word
+ lines.append(new_line)
+ else:
+ lines.append(line)
+ if len(lines) > TOOLTIP_MAX_LINE:
+ self.Tip = lines[:TOOLTIP_MAX_LINE]
+ if len(self.Tip[-1]) < TOOLTIP_MAX_CHARACTERS - 3:
+ self.Tip[-1] += "..."
+ else:
+ self.Tip[-1] = self.Tip[-1][:TOOLTIP_MAX_CHARACTERS - 3] + "..."
+ else:
+ self.Tip = lines
+ wx.CallAfter(self.RefreshTip)
+
+ def MoveToolTip(self, pos):
+ self.CurrentPosition = pos
+ self.SetPosition(pos)
+
+ def GetTipExtent(self):
+ max_width = 0
+ max_height = 0
+ for line in self.Tip:
+ w, h = self.GetTextExtent(line)
+ max_width = max(max_width, w)
+ max_height += h
+ return max_width, max_height
+
+ def RefreshTip(self):
+ if self:
+ w, h = self.GetTipExtent()
+ self.SetSize(wx.Size(w + 4, h + 4))
+ self.SetPosition(self.CurrentPosition)
+ self.Refresh()
+
+ def OnPaint(self, event):
+ dc = wx.AutoBufferedPaintDC(self)
+ dc.Clear()
+ dc.SetPen(MiterPen(wx.BLACK))
+ dc.SetBrush(wx.Brush(wx.Colour(255, 238, 170)))
+ dc.SetFont(wx.Font(faces["size"], wx.SWISS, wx.NORMAL, wx.NORMAL, faceName = faces["mono"]))
+ dc.BeginDrawing()
+ w, h = self.GetTipExtent()
+ dc.DrawRectangle(0, 0, w + 4, h + 4)
+ offset = 0
+ for line in self.Tip:
+ dc.DrawText(line, 2, offset + 2)
+ w, h = dc.GetTextExtent(line)
+ offset += h
+ dc.EndDrawing()
+ event.Skip()
+
+#-------------------------------------------------------------------------------
+# Helpers for highlighting text
+#-------------------------------------------------------------------------------
+
+def AddHighlight(highlights, infos):
+ RemoveHighlight(highlights, infos)
+ highlights.append(infos)
+
+def RemoveHighlight(highlights, infos):
+ if infos in highlights:
+ highlights.remove(infos)
+ return True
+ return False
+
+def ClearHighlight(highlights, highlight_type=None):
+ if highlight_type is not None:
+ return [highlight for highlight in highlights if highlight[2] != highlight_type]
+ return []
+
+def DrawHighlightedText(dc, text, highlights, x, y):
+ current_pen = dc.GetPen()
+ dc.SetPen(wx.TRANSPARENT_PEN)
+ for start, end, highlight_type in highlights:
+ dc.SetBrush(wx.Brush(highlight_type[0]))
+ offset_width, offset_height = dc.GetTextExtent(text[:start[1]])
+ part = text[start[1]:end[1] + 1]
+ part_width, part_height = dc.GetTextExtent(part)
+ dc.DrawRectangle(x + offset_width, y, part_width, part_height)
+ dc.SetTextForeground(highlight_type[1])
+ dc.DrawText(part, x + offset_width, y)
+ dc.SetPen(current_pen)
+ dc.SetTextForeground(wx.BLACK)
+
+#-------------------------------------------------------------------------------
+# Graphic element base class
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a generic graphic element
+"""
+
+class Graphic_Element:
+
+ # Create a new graphic element
+ def __init__(self, parent, id = None):
+ self.Parent = parent
+ self.Id = id
+ self.oldPos = None
+ self.StartPos = None
+ self.CurrentDrag = None
+ self.Handle = (None,None)
+ self.Dragging = False
+ self.Selected = False
+ self.Highlighted = False
+ self.Pos = wx.Point(0, 0)
+ self.Size = wx.Size(0, 0)
+ self.BoundingBox = wx.Rect(0, 0, 0, 0)
+ self.Visible = False
+ self.ToolTip = None
+ self.ToolTipPos = None
+ self.ToolTipTimer = wx.Timer(self.Parent, -1)
+ self.Parent.Bind(wx.EVT_TIMER, self.OnToolTipTimer, self.ToolTipTimer)
+
+ def __del__(self):
+ self.ToolTipTimer.Stop()
+
+ def GetDefinition(self):
+ return [self.Id], []
+
+ def TestVisible(self, screen):
+ self.Visible = self.GetRedrawRect().Intersects(screen)
+
+ def IsVisible(self):
+ return self.Visible
+
+ def SpreadCurrent(self):
+ pass
+
+ def GetConnectorTranslation(self, element):
+ return {}
+
+ def FindNearestConnector(self, position, connectors):
+ distances = []
+ for connector in connectors:
+ connector_pos = connector.GetRelPosition()
+ distances.append((sqrt((self.Pos.x + connector_pos.x - position.x) ** 2 +
+ (self.Pos.y + connector_pos.y - position.y) ** 2),
+ connector))
+ distances.sort()
+ if len(distances) > 0:
+ return distances[0][1]
+ return None
+
+ def IsOfType(self, type, reference):
+ return self.Parent.IsOfType(type, reference)
+
+ def IsEndType(self, type):
+ return self.Parent.IsEndType(type)
+
+ def GetDragging(self):
+ return self.Dragging
+
+ # Make a clone of this element
+ def Clone(self, parent):
+ return Graphic_Element(parent, self.Id)
+
+ # Changes the block position
+ def SetPosition(self, x, y):
+ self.Pos.x = x
+ self.Pos.y = y
+ self.RefreshConnected()
+ self.RefreshBoundingBox()
+
+ # Returns the block position
+ def GetPosition(self):
+ return self.Pos.x, self.Pos.y
+
+ # Changes the element size
+ def SetSize(self, width, height):
+ self.Size.SetWidth(width)
+ self.Size.SetHeight(height)
+ self.RefreshConnectors()
+ self.RefreshBoundingBox()
+
+ # Returns the element size
+ def GetSize(self):
+ return self.Size.GetWidth(), self.Size.GetHeight()
+
+ # Returns the minimum element size
+ def GetMinSize(self):
+ return 0, 0
+
+ # Refresh the element Bounding Box
+ def RefreshBoundingBox(self):
+ self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1])
+
+ # Refresh the element connectors position
+ def RefreshConnectors(self):
+ pass
+
+ # Refresh the position of wires connected to element inputs and outputs
+ def RefreshConnected(self):
+ pass
+
+ # Change the parent
+ def SetParent(self, parent):
+ self.Parent = parent
+
+ # Override this method for defining the method to call for deleting this element
+ def Delete(self):
+ pass
+
+ # Returns the Id
+ def GetId(self):
+ return self.Id
+
+ # Returns if the point given is in the bounding box
+ def HitTest(self, pt, connectors=True):
+ if connectors:
+ rect = self.BoundingBox
+ else:
+ rect = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1])
+ return rect.InsideXY(pt.x, pt.y)
+
+ # Returns if the point given is in the bounding box
+ def IsInSelection(self, rect):
+ return rect.InsideXY(self.BoundingBox.x, self.BoundingBox.y) and rect.InsideXY(self.BoundingBox.x + self.BoundingBox.width, self.BoundingBox.y + self.BoundingBox.height)
+
+ # Override this method for refreshing the bounding box
+ def RefreshBoundingBox(self):
+ pass
+
+ # Returns the bounding box
+ def GetBoundingBox(self):
+ return self.BoundingBox
+
+ # Returns the RedrawRect
+ def GetRedrawRect(self, movex = 0, movey = 0):
+ scalex, scaley = self.Parent.GetViewScale()
+ rect = wx.Rect()
+ rect.x = self.BoundingBox.x - int(HANDLE_SIZE / scalex) - 3 - abs(movex)
+ rect.y = self.BoundingBox.y - int(HANDLE_SIZE / scaley) - 3 - abs(movey)
+ rect.width = self.BoundingBox.width + 2 * (int(HANDLE_SIZE / scalex) + abs(movex) + 1) + 4
+ rect.height = self.BoundingBox.height + 2 * (int(HANDLE_SIZE / scaley) + abs(movey) + 1) + 4
+ return rect
+
+ def Refresh(self, rect = None):
+ if self.Visible:
+ if rect is not None:
+ self.Parent.RefreshRect(self.Parent.GetScrolledRect(rect), False)
+ else:
+ self.Parent.RefreshRect(self.Parent.GetScrolledRect(self.GetRedrawRect()), False)
+
+ # Change the variable that indicates if this element is selected
+ def SetSelected(self, selected):
+ self.Selected = selected
+ self.Refresh()
+
+ # Change the variable that indicates if this element is highlighted
+ def SetHighlighted(self, highlighted):
+ self.Highlighted = highlighted
+ self.Refresh()
+
+ # Test if the point is on a handle of this element
+ def TestHandle(self, event):
+ dc = self.Parent.GetLogicalDC()
+ scalex, scaley = dc.GetUserScale()
+ pos = event.GetPosition()
+ pt = wx.Point(*self.Parent.CalcUnscrolledPosition(pos.x, pos.y))
+
+ left = (self.BoundingBox.x - 2) * scalex - HANDLE_SIZE
+ center = (self.BoundingBox.x + self.BoundingBox.width / 2) * scalex - HANDLE_SIZE / 2
+ right = (self.BoundingBox.x + self.BoundingBox.width + 2) * scalex
+
+ top = (self.BoundingBox.y - 2) * scaley - HANDLE_SIZE
+ middle = (self.BoundingBox.y + self.BoundingBox.height / 2) * scaley - HANDLE_SIZE / 2
+ bottom = (self.BoundingBox.y + self.BoundingBox.height + 2) * scaley
+
+ extern_rect = wx.Rect(left, top, right + HANDLE_SIZE - left, bottom + HANDLE_SIZE - top)
+ intern_rect = wx.Rect(left + HANDLE_SIZE, top + HANDLE_SIZE, right - left - HANDLE_SIZE, bottom - top - HANDLE_SIZE)
+
+ # Verify that this element is selected
+ if self.Selected and extern_rect.InsideXY(pt.x, pt.y) and not intern_rect.InsideXY(pt.x, pt.y):
+ # Find if point is on a handle horizontally
+ if left <= pt.x < left + HANDLE_SIZE:
+ handle_x = 1
+ elif center <= pt.x < center + HANDLE_SIZE:
+ handle_x = 2
+ elif right <= pt.x < right + HANDLE_SIZE:
+ handle_x = 3
+ else:
+ handle_x = 0
+ # Find if point is on a handle vertically
+ if top <= pt.y < top + HANDLE_SIZE:
+ handle_y = 1
+ elif middle <= pt.y < middle + HANDLE_SIZE:
+ handle_y = 2
+ elif bottom <= pt.y < bottom + HANDLE_SIZE:
+ handle_y = 3
+ else:
+ handle_y = 0
+ # Verify that the result is valid
+ if (handle_x, handle_y) in VALID_HANDLES:
+ return handle_x, handle_y
+ return 0, 0
+
+ # Method called when a LeftDown event have been generated
+ def OnLeftDown(self, event, dc, scaling):
+ pos = event.GetLogicalPosition(dc)
+ # Test if an handle have been clicked
+ handle = self.TestHandle(event)
+ # Find which type of handle have been clicked,
+ # Save a resize event and change the cursor
+ cursor = HANDLE_CURSORS.get(handle, 1)
+ wx.CallAfter(self.Parent.SetCurrentCursor, cursor)
+ if cursor > 1:
+ self.Handle = (HANDLE_RESIZE, handle)
+ else:
+ self.Handle = (HANDLE_MOVE, None)
+ self.SetSelected(False)
+ # Initializes the last position
+ self.oldPos = GetScaledEventPosition(event, dc, scaling)
+ self.StartPos = wx.Point(self.Pos.x, self.Pos.y)
+ self.CurrentDrag = wx.Point(0, 0)
+
+ # Method called when a LeftUp event have been generated
+ def OnLeftUp(self, event, dc, scaling):
+ # If a dragging have been initiated
+ if self.Dragging and self.oldPos:
+ self.RefreshModel()
+ self.Parent.RefreshBuffer()
+ wx.CallAfter(self.Parent.SetCurrentCursor, 0)
+ self.SetSelected(True)
+ self.oldPos = None
+
+ # Method called when a RightDown event have been generated
+ def OnRightDown(self, event, dc, scaling):
+ pass
+
+ # Method called when a RightUp event have been generated
+ def OnRightUp(self, event, dc, scaling):
+ if self.Dragging and self.oldPos:
+ self.RefreshModel()
+ self.Parent.RefreshBuffer()
+ wx.CallAfter(self.Parent.SetCurrentCursor, 0)
+ self.SetSelected(True)
+ self.oldPos = None
+ if self.Parent.Debug:
+ self.Parent.PopupForceMenu()
+
+ # Method called when a LeftDClick event have been generated
+ def OnLeftDClick(self, event, dc, scaling):
+ pass
+
+ # Method called when a Motion event have been generated
+ def OnMotion(self, event, dc, scaling):
+ # If the cursor is dragging and the element have been clicked
+ if event.Dragging() and self.oldPos:
+ # Calculate the movement of cursor
+ pos = event.GetLogicalPosition(dc)
+ movex = pos.x - self.oldPos.x
+ movey = pos.y - self.oldPos.y
+ # If movement is greater than MIN_MOVE then a dragging is initiated
+ if not self.Dragging and (abs(movex) > MIN_MOVE or abs(movey) > MIN_MOVE):
+ self.Dragging = True
+ # If a dragging have been initiated, refreshes the element state
+ if self.Dragging:
+ dragx, dragy = self.ProcessDragging(movex, movey, event, scaling)
+ if event.ControlDown() and self.Handle[0] == HANDLE_MOVE:
+ self.oldPos.x = self.StartPos.x + self.CurrentDrag.x
+ self.oldPos.y = self.StartPos.y + self.CurrentDrag.y
+ else:
+ self.oldPos.x += dragx
+ self.oldPos.y += dragy
+ return dragx, dragy
+ return movex, movey
+ # If cursor just pass over the element, changes the cursor if it is on a handle
+ else:
+ pos = event.GetLogicalPosition(dc)
+ handle = self.TestHandle(event)
+ # Find which type of handle have been clicked,
+ # Save a resize event and change the cursor
+ cursor = HANDLE_CURSORS.get(handle, 0)
+ wx.CallAfter(self.Parent.SetCurrentCursor, cursor)
+ return 0, 0
+
+ # Moves the element
+ def Move(self, dx, dy, exclude = []):
+ self.Pos.x += max(-self.BoundingBox.x, dx)
+ self.Pos.y += max(-self.BoundingBox.y, dy)
+ self.RefreshConnected(exclude)
+ self.RefreshBoundingBox()
+
+ # Resizes the element from position and size given
+ def Resize(self, x, y, width, height):
+ self.Move(x, y)
+ self.SetSize(width, height)
+
+ # Moves and Resizes the element for fitting scaling
+ def AdjustToScaling(self, scaling):
+ if scaling is not None:
+ movex = round_scaling(self.Pos.x, scaling[0]) - self.Pos.x
+ movey = round_scaling(self.Pos.y, scaling[1]) - self.Pos.y
+ min_width, min_height = self.GetMinSize()
+ width = max(round_scaling(min_width, scaling[0], 1),
+ round_scaling(self.Size.width, scaling[0]))
+ height = max(round_scaling(min_height, scaling[1], 1),
+ round_scaling(self.Size.height, scaling[1]))
+ self.Resize(movex, movey, width, height)
+ return movex, movey
+ return 0, 0
+
+ # Refreshes the element state according to move defined and handle selected
+ def ProcessDragging(self, movex, movey, event, scaling, width_fac = 1, height_fac = 1):
+ handle_type, handle = self.Handle
+ # If it is a resize handle, calculate the values from resizing
+ if handle_type == HANDLE_RESIZE:
+ if scaling is not None:
+ scaling = (scaling[0] * width_fac, scaling[1] * height_fac)
+ x = y = start_x = start_y = 0
+ width, height = start_width, start_height = self.GetSize()
+ if handle[0] == 1:
+ movex = max(-self.BoundingBox.x, movex)
+ if scaling is not None:
+ movex = -(round_scaling(width - movex, scaling[0]) - width)
+ x = movex
+ if event.ShiftDown():
+ width -= 2 * movex
+ else:
+ width -= movex
+ elif handle[0] == 3:
+ if scaling is not None:
+ movex = round_scaling(width + movex, scaling[0]) - width
+ if event.ShiftDown():
+ movex = min(self.BoundingBox.x, movex)
+ x = -movex
+ width += 2 * movex
+ else:
+ width += movex
+ if handle[1] == 1:
+ movey = max(-self.BoundingBox.y, movey)
+ if scaling is not None:
+ movey = -(round_scaling(height - movey, scaling[1]) - height)
+ y = movey
+ if event.ShiftDown():
+ height -= 2 * movey
+ else:
+ height -= movey
+ elif handle[1] == 3:
+ if scaling is not None:
+ movey = round_scaling(height + movey, scaling[1]) - height
+ if event.ShiftDown():
+ movey = min(self.BoundingBox.y, movey)
+ y = -movey
+ height += 2 * movey
+ else:
+ height += movey
+ # Verify that new size is not lesser than minimum
+ min_width, min_height = self.GetMinSize()
+ if handle[0] != 2 and (width >= min_width or width > self.Size[0]):
+ start_x = x
+ start_width = width
+ else:
+ movex = 0
+ if handle[1] != 2 and (height >= min_height or height > self.Size[1]):
+ start_y = y
+ start_height = height
+ else:
+ movey = 0
+ if movex != 0 or movey != 0:
+ self.Resize(start_x, start_y, start_width, start_height)
+ return movex, movey
+ # If it is a move handle, Move this element
+ elif handle_type == HANDLE_MOVE:
+ movex = max(-self.BoundingBox.x, movex)
+ movey = max(-self.BoundingBox.y, movey)
+ if scaling is not None:
+ movex = round_scaling(self.Pos.x + movex, scaling[0]) - self.Pos.x
+ movey = round_scaling(self.Pos.y + movey, scaling[1]) - self.Pos.y
+ if event.ControlDown():
+ self.CurrentDrag.x = self.CurrentDrag.x + movex
+ self.CurrentDrag.y = self.CurrentDrag.y + movey
+ if abs(self.CurrentDrag.x) > abs(self.CurrentDrag.y):
+ movex = self.StartPos.x + self.CurrentDrag.x - self.Pos.x
+ movey = self.StartPos.y - self.Pos.y
+ else:
+ movex = self.StartPos.x - self.Pos.x
+ movey = self.StartPos.y + self.CurrentDrag.y - self.Pos.y
+ self.Move(movex, movey)
+ return movex, movey
+ return 0, 0
+
+ def OnToolTipTimer(self, event):
+ value = self.GetToolTipValue()
+ if value is not None and self.ToolTipPos is not None:
+ self.ToolTip = ToolTip(self.Parent, value)
+ self.ToolTip.MoveToolTip(self.ToolTipPos)
+ self.ToolTip.Show()
+
+ def GetToolTipValue(self):
+ return None
+
+ def CreateToolTip(self, pos):
+ value = self.GetToolTipValue()
+ if value is not None:
+ self.ToolTipPos = pos
+ self.ToolTipTimer.Start(int(TOOLTIP_WAIT_PERIOD * 1000), oneShot=True)
+
+ def MoveToolTip(self, pos):
+ if self.ToolTip is not None:
+ self.ToolTip.MoveToolTip(pos)
+ elif self.ToolTipPos is not None:
+ self.ToolTipPos = pos
+ self.ToolTipTimer.Start(int(TOOLTIP_WAIT_PERIOD * 1000), oneShot=True)
+
+ def ClearToolTip(self):
+ self.ToolTipTimer.Stop()
+ self.ToolTipPos = None
+ if self.ToolTip is not None:
+ self.ToolTip.Destroy()
+ self.ToolTip = None
+
+ # Override this method for defining the method to call for adding an highlight to this element
+ def AddHighlight(self, infos, start, end, highlight_type):
+ pass
+
+ # Override this method for defining the method to call for removing an highlight from this element
+ def RemoveHighlight(self, infos, start, end, highlight_type):
+ pass
+
+ # Override this method for defining the method to call for removing all the highlights of one particular type from this element
+ def ClearHighlight(self, highlight_type=None):
+ pass
+
+ # Override this method for defining the method to call for refreshing the model of this element
+ def RefreshModel(self, move=True):
+ pass
+
+ # Draws the highlightment of this element if it is highlighted (can be overwritten)
+ def DrawHighlightment(self, dc):
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ dc.SetPen(MiterPen(HIGHLIGHTCOLOR))
+ dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+ dc.SetLogicalFunction(wx.AND)
+ dc.DrawRectangle(int(round((self.Pos.x - 1) * scalex)) - 2,
+ int(round((self.Pos.y - 1) * scaley)) - 2,
+ int(round((self.Size.width + 3) * scalex)) + 5,
+ int(round((self.Size.height + 3) * scaley)) + 5)
+ dc.SetLogicalFunction(wx.COPY)
+ dc.SetUserScale(scalex, scaley)
+
+ # Draws the handles of this element if it is selected
+ def Draw(self, dc):
+ if not getattr(dc, "printing", False):
+ if self.Highlighted:
+ self.DrawHighlightment(dc)
+ if self.Selected:
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ dc.SetPen(MiterPen(wx.BLACK))
+ dc.SetBrush(wx.BLACK_BRUSH)
+
+ left = (self.BoundingBox.x - 2) * scalex - HANDLE_SIZE
+ center = (self.BoundingBox.x + self.BoundingBox.width / 2) * scalex - HANDLE_SIZE / 2
+ right = (self.BoundingBox.x + self.BoundingBox.width + 2) * scalex
+
+ top = (self.BoundingBox.y - 2) * scaley - HANDLE_SIZE
+ middle = (self.BoundingBox.y + self.BoundingBox.height / 2) * scaley - HANDLE_SIZE / 2
+ bottom = (self.BoundingBox.y + self.BoundingBox.height + 2) * scaley
+
+ for x, y in [(left, top), (center, top), (right, top),
+ (left, middle), (right, middle),
+ (left, bottom), (center, bottom), (right, bottom)]:
+ dc.DrawRectangle(x, y, HANDLE_SIZE, HANDLE_SIZE)
+
+ dc.SetUserScale(scalex, scaley)
+
+
+#-------------------------------------------------------------------------------
+# Group of graphic elements
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a group of graphic elements
+"""
+
+class Graphic_Group(Graphic_Element):
+
+ # Create a new group of graphic elements
+ def __init__(self, parent):
+ Graphic_Element.__init__(self, parent)
+ self.Elements = []
+ self.RefreshWireExclusion()
+ self.RefreshBoundingBox()
+
+ # Destructor
+ def __del__(self):
+ self.Elements = []
+
+ def GetDefinition(self):
+ blocks = []
+ wires = []
+ for element in self.Elements:
+ block, wire = element.GetDefinition()
+ blocks.extend(block)
+ wires.extend(wire)
+ return blocks, wires
+
+ # Make a clone of this element
+ def Clone(self, parent, pos = None):
+ group = Graphic_Group(parent)
+ connectors = {}
+ exclude_names = {}
+ wires = []
+ if pos is not None:
+ dx, dy = pos.x - self.BoundingBox.x, pos.y - self.BoundingBox.y
+ for element in self.Elements:
+ if isinstance(element, Wire):
+ wires.append(element)
+ else:
+ if pos is not None:
+ x, y = element.GetPosition()
+ new_pos = wx.Point(x + dx, y + dy)
+ newid = parent.GetNewId()
+ if parent.IsNamedElement(element):
+ name = parent.GenerateNewName(element, exclude_names)
+ exclude_names[name.upper()] = True
+ new_element = element.Clone(parent, newid, name, pos = new_pos)
+ else:
+ new_element = element.Clone(parent, newid, pos = new_pos)
+ new_element.AdjustToScaling(parent.Scaling)
+ else:
+ new_element = element.Clone(parent)
+ connectors.update(element.GetConnectorTranslation(new_element))
+ group.SelectElement(new_element)
+ for element in wires:
+ if pos is not None:
+ new_wire = element.Clone(parent, connectors, dx, dy)
+ else:
+ new_wire = element.Clone(parent, connectors)
+ if new_wire is not None:
+ if pos is not None:
+ parent.AddWire(new_wire)
+ group.SelectElement(new_wire)
+ if pos is not None:
+ for element in group.Elements:
+ if not isinstance(element, Wire):
+ parent.AddBlockInModel(element)
+ return group
+
+ def CanAddBlocks(self, parent):
+ valid = True
+ for element in self.Elements:
+ if not isinstance(element, Wire):
+ valid &= parent.CanAddElement(element)
+ return valid
+
+ def IsVisible(self):
+ for element in self.Elements:
+ if element.IsVisible():
+ return True
+ return False
+
+ # Refresh the list of wire excluded
+ def RefreshWireExclusion(self):
+ self.WireExcluded = []
+ for element in self.Elements:
+ if isinstance(element, Wire):
+ startblock = element.StartConnected.GetParentBlock()
+ endblock = element.EndConnected.GetParentBlock()
+ if startblock in self.Elements and endblock in self.Elements:
+ self.WireExcluded.append(element)
+
+ # Returns the RedrawRect
+ def GetRedrawRect(self, movex = 0, movey = 0):
+ rect = None
+ for element in self.Elements:
+ if rect is None:
+ rect = element.GetRedrawRect(movex, movey)
+ else:
+ rect = rect.Union(element.GetRedrawRect(movex, movey))
+ return rect
+
+ # Clean this group of elements
+ def Clean(self):
+ # Clean all the elements of the group
+ for element in self.Elements:
+ element.Clean()
+
+ # Delete this group of elements
+ def Delete(self):
+ # Delete all the elements of the group
+ for element in self.Elements:
+ element.Delete()
+ self.WireExcluded = []
+
+ # Returns if the point given is in the bounding box of one of the elements of this group
+ def HitTest(self, pt, connectors=True):
+ result = False
+ for element in self.Elements:
+ result |= element.HitTest(pt, connectors)
+ return result
+
+ # Returns if the element given is in this group
+ def IsElementIn(self, element):
+ return element in self.Elements
+
+ # Change the elements of the group
+ def SetElements(self, elements):
+ self.Elements = elements
+ self.RefreshWireExclusion()
+ self.RefreshBoundingBox()
+
+ # Returns the elements of the group
+ def GetElements(self):
+ return self.Elements
+
+ # Align the group elements
+ def AlignElements(self, horizontally, vertically):
+ minx = self.BoundingBox.x + self.BoundingBox.width
+ miny = self.BoundingBox.y + self.BoundingBox.height
+ maxx = self.BoundingBox.x
+ maxy = self.BoundingBox.y
+ for element in self.Elements:
+ if not isinstance(element, Wire):
+ posx, posy = element.GetPosition()
+ width, height = element.GetSize()
+ minx = min(minx, posx)
+ miny = min(miny, posy)
+ maxx = max(maxx, posx + width)
+ maxy = max(maxy, posy + height)
+ for element in self.Elements:
+ if not isinstance(element, Wire):
+ posx, posy = element.GetPosition()
+ width, height = element.GetSize()
+ movex = movey = 0
+ if horizontally == ALIGN_LEFT:
+ movex = minx - posx
+ elif horizontally == ALIGN_CENTER:
+ movex = (maxx + minx - width) / 2 - posx
+ elif horizontally == ALIGN_RIGHT:
+ movex = maxx - width - posx
+ if vertically == ALIGN_TOP:
+ movey = miny - posy
+ elif vertically == ALIGN_MIDDLE:
+ movey = (maxy + miny - height) / 2 - posy
+ elif vertically == ALIGN_BOTTOM:
+ movey = maxy - height - posy
+ if movex != 0 or movey != 0:
+ element.Move(movex, movey)
+ element.RefreshModel()
+ self.RefreshWireExclusion()
+ self.RefreshBoundingBox()
+
+ # Remove or select the given element if it is or not in the group
+ def SelectElement(self, element):
+ if element in self.Elements:
+ self.Elements.remove(element)
+ else:
+ self.Elements.append(element)
+ self.RefreshWireExclusion()
+ self.RefreshBoundingBox()
+
+ # Move this group of elements
+ def Move(self, movex, movey):
+ movex = max(-self.BoundingBox.x, movex)
+ movey = max(-self.BoundingBox.y, movey)
+ # Move all the elements of the group
+ for element in self.Elements:
+ if not isinstance(element, Wire):
+ element.Move(movex, movey, self.WireExcluded)
+ elif element in self.WireExcluded:
+ element.Move(movex, movey, True)
+ self.RefreshBoundingBox()
+
+ # Refreshes the bounding box of this group of elements
+ def RefreshBoundingBox(self):
+ if len(self.Elements) > 0:
+ bbox = self.Elements[0].GetBoundingBox()
+ minx, miny = bbox.x, bbox.y
+ maxx = bbox.x + bbox.width
+ maxy = bbox.y + bbox.height
+ for element in self.Elements[1:]:
+ bbox = element.GetBoundingBox()
+ minx = min(minx, bbox.x)
+ miny = min(miny, bbox.y)
+ maxx = max(maxx, bbox.x + bbox.width)
+ maxy = max(maxy, bbox.y + bbox.height)
+ self.BoundingBox = wx.Rect(minx, miny, maxx - minx, maxy - miny)
+ else:
+ self.BoundingBox = wx.Rect(0, 0, 0, 0)
+ self.Pos = wx.Point(self.BoundingBox.x, self.BoundingBox.y)
+ self.Size = wx.Size(self.BoundingBox.width, self.BoundingBox.height)
+
+ # Forbids to change the group position
+ def SetPosition(x, y):
+ pass
+
+ # Returns the position of this group
+ def GetPosition(self):
+ return self.BoundingBox.x, self.BoundingBox.y
+
+ # Forbids to change the group size
+ def SetSize(width, height):
+ pass
+
+ # Returns the size of this group
+ def GetSize(self):
+ return self.BoundingBox.width, self.BoundingBox.height
+
+ # Moves and Resizes the group elements for fitting scaling
+ def AdjustToScaling(self, scaling):
+ movex_max = movey_max = 0
+ for element in self.Elements:
+ movex, movey = element.AdjustToScaling(scaling)
+ movex_max = max(movex_max, abs(movex))
+ movey_max = max(movey_max, abs(movey))
+ return movex_max, movey_max
+
+ # Refreshes the group elements to move defined and handle selected
+ def ProcessDragging(self, movex, movey, event, scaling):
+ handle_type, handle = self.Handle
+ # If it is a move handle, Move this group elements
+ if handle_type == HANDLE_MOVE:
+ movex = max(-self.BoundingBox.x, movex)
+ movey = max(-self.BoundingBox.y, movey)
+ if scaling is not None:
+ movex = round_scaling(movex, scaling[0])
+ movey = round_scaling(movey, scaling[1])
+ if event.ControlDown():
+ self.CurrentDrag.x = self.CurrentDrag.x + movex
+ self.CurrentDrag.y = self.CurrentDrag.y + movey
+ if abs(self.CurrentDrag.x) > abs(self.CurrentDrag.y):
+ movex = self.StartPos.x + self.CurrentDrag.x - self.Pos.x
+ movey = self.StartPos.y - self.Pos.y
+ else:
+ movex = self.StartPos.x - self.Pos.x
+ movey = self.StartPos.y + self.CurrentDrag.y - self.Pos.y
+ self.Move(movex, movey)
+ return movex, movey
+ return 0, 0
+
+ # Change the variable that indicates if this element is highlighted
+ def SetHighlighted(self, highlighted):
+ for element in self.Elements:
+ element.SetHighlighted(highlighted)
+
+ def HighlightPoint(self, pos):
+ for element in self.Elements:
+ if isinstance(element, Wire):
+ element.HighlightPoint(pos)
+
+ # Method called when a LeftDown event have been generated
+ def OnLeftDown(self, event, dc, scaling):
+ Graphic_Element.OnLeftDown(self, event, dc, scaling)
+ for element in self.Elements:
+ element.Handle = self.Handle
+
+ # Change the variable that indicates if the elemente is selected
+ def SetSelected(self, selected):
+ for element in self.Elements:
+ element.SetSelected(selected)
+
+ # Method called when a RightUp event has been generated
+ def OnRightUp(self, event, dc, scaling):
+ # Popup the menu with special items for a group
+ self.Parent.PopupGroupMenu()
+
+ # Refreshes the model of all the elements of this group
+ def RefreshModel(self):
+ for element in self.Elements:
+ element.RefreshModel()
+
+
+#-------------------------------------------------------------------------------
+# Connector for all types of blocks
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a connector for any type of block
+"""
+
+class Connector:
+
+ # Create a new connector
+ def __init__(self, parent, name, type, position, direction, negated = False, edge = "none", onlyone = False):
+ self.ParentBlock = parent
+ self.Name = name
+ self.Type = type
+ self.Pos = position
+ self.Direction = direction
+ self.Wires = []
+ if self.ParentBlock.IsOfType("BOOL", type):
+ self.Negated = negated
+ self.Edge = edge
+ else:
+ self.Negated = False
+ self.Edge = "none"
+ self.OneConnected = onlyone
+ self.Valid = True
+ self.Value = None
+ self.Forced = False
+ self.Selected = False
+ self.Highlights = []
+ self.RefreshNameSize()
+
+ def Flush(self):
+ self.ParentBlock = None
+ for wire, handle in self.Wires:
+ wire.Flush()
+ self.Wires = []
+
+ # Returns the RedrawRect
+ def GetRedrawRect(self, movex = 0, movey = 0):
+ parent_pos = self.ParentBlock.GetPosition()
+ x = min(parent_pos[0] + self.Pos.x, parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE)
+ y = min(parent_pos[1] + self.Pos.y, parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE)
+ if self.Direction[0] == 0:
+ width = 5
+ else:
+ width = CONNECTOR_SIZE
+ if self.Direction[1] == 0:
+ height = 5
+ else:
+ height = CONNECTOR_SIZE
+ return wx.Rect(x - abs(movex), y - abs(movey), width + 2 * abs(movex), height + 2 * abs(movey))
+
+ # Change the connector selection
+ def SetSelected(self, selected):
+ self.Selected = selected
+
+ # Make a clone of the connector
+ def Clone(self, parent = None):
+ if parent is None:
+ parent = self.ParentBlock
+ return Connector(parent, self.Name, self.Type, wx.Point(self.Pos[0], self.Pos[1]),
+ self.Direction, self.Negated)
+
+ # Returns the connector parent block
+ def GetParentBlock(self):
+ return self.ParentBlock
+
+ # Returns the connector type
+ def GetType(self, raw = False):
+ if self.ParentBlock.IsEndType(self.Type) or raw:
+ return self.Type
+ elif (self.Negated or self.Edge != "none") and self.ParentBlock.IsOfType("BOOL", self.Type):
+ return "BOOL"
+ else:
+ return self.ParentBlock.GetConnectionResultType(self, self.Type)
+
+ # Returns the connector type
+ def GetConnectedType(self):
+ if self.ParentBlock.IsEndType(self.Type):
+ return self.Type
+ elif len(self.Wires) == 1:
+ return self.Wires[0][0].GetOtherConnectedType(self.Wires[0][1])
+ return self.Type
+
+ # Returns the connector type
+ def GetConnectedRedrawRect(self, movex, movey):
+ rect = None
+ for wire, handle in self.Wires:
+ if rect is None:
+ rect = wire.GetRedrawRect()
+ else:
+ rect = rect.Union(wire.GetRedrawRect())
+ return rect
+
+ # Returns if connector type is compatible with type given
+ def IsCompatible(self, type):
+ reference = self.GetType()
+ return self.ParentBlock.IsOfType(type, reference) or self.ParentBlock.IsOfType(reference, type)
+
+ # Changes the connector name
+ def SetType(self, type):
+ self.Type = type
+ for wire, handle in self.Wires:
+ wire.SetValid(wire.IsConnectedCompatible())
+
+ # Returns the connector name
+ def GetName(self):
+ return self.Name
+
+ # Changes the connector name
+ def SetName(self, name):
+ self.Name = name
+ self.RefreshNameSize()
+
+ def RefreshForced(self):
+ self.Forced = False
+ for wire, handle in self.Wires:
+ self.Forced |= wire.IsForced()
+
+ def RefreshValue(self):
+ self.Value = self.ReceivingCurrent()
+
+ def RefreshValid(self):
+ self.Valid = True
+ for wire, handle in self.Wires:
+ self.Valid &= wire.GetValid()
+
+ def ReceivingCurrent(self):
+ current = False
+ for wire, handle in self.Wires:
+ value = wire.GetValue()
+ if current != "undefined" and isinstance(value, BooleanType):
+ current |= wire.GetValue()
+ elif value == "undefined":
+ current = "undefined"
+ return current
+
+ def SpreadCurrent(self, spreading):
+ for wire, handle in self.Wires:
+ wire.SetValue(spreading)
+
+ # Changes the connector name size
+ def RefreshNameSize(self):
+ if self.Name != "":
+ self.NameSize = self.ParentBlock.Parent.GetTextExtent(self.Name)
+ else:
+ self.NameSize = 0, 0
+
+ # Returns the connector name size
+ def GetNameSize(self):
+ return self.NameSize
+
+ # Returns the wires connected to the connector
+ def GetWires(self):
+ return self.Wires
+
+ # Returns the parent block Id
+ def GetBlockId(self):
+ return self.ParentBlock.GetId()
+
+ # Returns the connector relative position
+ def GetRelPosition(self):
+ return self.Pos
+
+ # Returns the connector absolute position
+ def GetPosition(self, size = True):
+ parent_pos = self.ParentBlock.GetPosition()
+ # If the position of the end of the connector is asked
+ if size:
+ x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
+ y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
+ else:
+ x = parent_pos[0] + self.Pos.x
+ y = parent_pos[1] + self.Pos.y
+ return wx.Point(x, y)
+
+ # Change the connector relative position
+ def SetPosition(self, pos):
+ self.Pos = pos
+
+ # Returns the connector direction
+ def GetDirection(self):
+ return self.Direction
+
+ # Change the connector direction
+ def SetDirection(self, direction):
+ self.Direction = direction
+
+ # Connect a wire to this connector at the last place
+ def Connect(self, wire, refresh = True):
+ self.InsertConnect(len(self.Wires), wire, refresh)
+
+ # Connect a wire to this connector at the place given
+ def InsertConnect(self, idx, wire, refresh = True):
+ if wire not in self.Wires:
+ self.Wires.insert(idx, wire)
+ if refresh:
+ self.ParentBlock.RefreshModel(False)
+
+ # Returns the index of the wire given in the list of connected
+ def GetWireIndex(self, wire):
+ for i, (tmp_wire, handle) in enumerate(self.Wires):
+ if tmp_wire == wire:
+ return i
+ return None
+
+ # Unconnect a wire or all wires connected to the connector
+ def UnConnect(self, wire = None, unconnect = True, delete = False):
+ i = 0
+ found = False
+ while i < len(self.Wires) and not found:
+ if not wire or self.Wires[i][0] == wire:
+ # If Unconnect haven't been called from a wire, disconnect the connector in the wire
+ if unconnect:
+ if self.Wires[i][1] == 0:
+ self.Wires[i][0].UnConnectStartPoint(delete)
+ else:
+ self.Wires[i][0].UnConnectEndPoint(delete)
+ # Remove wire from connected
+ if wire:
+ self.Wires.pop(i)
+ found = True
+ i += 1
+ # If no wire defined, unconnect all wires
+ if not wire:
+ self.Wires = []
+ self.RefreshValid()
+ self.ParentBlock.RefreshModel(False)
+
+ # Returns if connector has one or more wire connected
+ def IsConnected(self):
+ return len(self.Wires) > 0
+
+ # Move the wires connected
+ def MoveConnected(self, exclude = []):
+ if len(self.Wires) > 0:
+ # Calculate the new position of the end point
+ parent_pos = self.ParentBlock.GetPosition()
+ x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
+ y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
+ # Move the corresponding point on all the wires connected
+ for wire, index in self.Wires:
+ if wire not in exclude:
+ if index == 0:
+ wire.MoveStartPoint(wx.Point(x, y))
+ else:
+ wire.MoveEndPoint(wx.Point(x, y))
+
+ # Refreshes the model of all the wires connected
+ def RefreshWires(self):
+ for wire in self.Wires:
+ wire[0].RefreshModel()
+
+ # Refreshes the parent block model
+ def RefreshParentBlock(self):
+ self.ParentBlock.RefreshModel(False)
+
+ # Highlight the parent block
+ def HighlightParentBlock(self, highlight):
+ self.ParentBlock.SetHighlighted(highlight)
+ self.ParentBlock.Refresh()
+
+ # Returns all the blocks connected to this connector
+ def GetConnectedBlocks(self):
+ blocks = []
+ for wire, handle in self.Wires:
+ # Get other connector connected to each wire
+ if handle == 0:
+ connector = wire.GetEndConnected()
+ else:
+ connector = wire.GetStartConnected()
+ # Get parent block for this connector
+ if connector:
+ block = connector.GetParentBlock()
+ if block not in blocks:
+ blocks.append(block)
+ return blocks
+
+ # Returns the connector negated property
+ def IsNegated(self):
+ return self.Negated
+
+ # Changes the connector negated property
+ def SetNegated(self, negated):
+ if self.ParentBlock.IsOfType("BOOL", self.Type):
+ self.Negated = negated
+ self.Edge = "none"
+
+ # Returns the connector edge property
+ def GetEdge(self):
+ return self.Edge
+
+ # Changes the connector edge property
+ def SetEdge(self, edge):
+ if self.ParentBlock.IsOfType("BOOL", self.Type):
+ self.Edge = edge
+ self.Negated = False
+
+ # Tests if the point given is near from the end point of this connector
+ def TestPoint(self, pt, direction = None, exclude = True):
+ parent_pos = self.ParentBlock.GetPosition()
+ if (not (len(self.Wires) > 0 and self.OneConnected and exclude) or self.Type == "BOOL")\
+ and direction is None or self.Direction == direction:
+ # Calculate a square around the end point of this connector
+ x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE - ANCHOR_DISTANCE
+ y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE - ANCHOR_DISTANCE
+ width = ANCHOR_DISTANCE * 2 + abs(self.Direction[0]) * CONNECTOR_SIZE
+ height = ANCHOR_DISTANCE * 2 + abs(self.Direction[1]) * CONNECTOR_SIZE
+ rect = wx.Rect(x, y, width, height)
+ return rect.InsideXY(pt.x, pt.y)
+ return False
+
+ # Draws the highlightment of this element if it is highlighted
+ def DrawHighlightment(self, dc):
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ pen = MiterPen(HIGHLIGHTCOLOR, 2 * scalex + 5)
+ pen.SetCap(wx.CAP_BUTT)
+ dc.SetPen(pen)
+ dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+ dc.SetLogicalFunction(wx.AND)
+ parent_pos = self.ParentBlock.GetPosition()
+ posx = parent_pos[0] + self.Pos.x
+ posy = parent_pos[1] + self.Pos.y
+ xstart = parent_pos[0] + self.Pos.x
+ ystart = parent_pos[1] + self.Pos.y
+ if self.Direction[0] < 0:
+ xstart += 1
+ if self.Direction[1] < 0:
+ ystart += 1
+ xend = xstart + CONNECTOR_SIZE * self.Direction[0]
+ yend = ystart + CONNECTOR_SIZE * self.Direction[1]
+ dc.DrawLine(round((xstart + self.Direction[0]) * scalex), round((ystart + self.Direction[1]) * scaley),
+ round(xend * scalex), round(yend * scaley))
+ dc.SetLogicalFunction(wx.COPY)
+ dc.SetUserScale(scalex, scaley)
+
+ # Adds an highlight to the connector
+ def AddHighlight(self, infos, start, end, highlight_type):
+ if highlight_type == ERROR_HIGHLIGHT:
+ for wire, handle in self.Wires:
+ wire.SetValid(False)
+ AddHighlight(self.Highlights, (start, end, highlight_type))
+
+ # Removes an highlight from the connector
+ def RemoveHighlight(self, infos, start, end, highlight_type):
+ error = False
+ highlights = []
+ for highlight in self.Highlights:
+ if highlight != (start, end, highlight_type):
+ highlights.append(highlight)
+ error |= highlight == ERROR_HIGHLIGHT
+ self.Highlights = highlights
+ if not error:
+ for wire, handle in self.Wires:
+ wire.SetValid(wire.IsConnectedCompatible())
+
+ # Removes all the highlights of one particular type from the connector
+ def ClearHighlight(self, highlight_type=None):
+ error = False
+ if highlight_type is None:
+ self.Highlights = []
+ else:
+ highlights = []
+ for highlight in self.Highlights:
+ if highlight[2] != highlight_type:
+ highlights.append(highlight)
+ error |= highlight == ERROR_HIGHLIGHT
+ self.Highlights = highlights
+ if not error:
+ for wire, handle in self.Wires:
+ wire.SetValid(wire.IsConnectedCompatible())
+
+ # Draws the connector
+ def Draw(self, dc):
+ if self.Selected:
+ dc.SetPen(MiterPen(wx.BLUE, 3))
+ dc.SetBrush(wx.WHITE_BRUSH)
+ #elif len(self.Highlights) > 0:
+ # dc.SetPen(MiterPen(self.Highlights[-1][1]))
+ # dc.SetBrush(wx.Brush(self.Highlights[-1][0]))
+ else:
+ if not self.Valid:
+ dc.SetPen(MiterPen(wx.RED))
+ elif isinstance(self.Value, BooleanType) and self.Value:
+ if self.Forced:
+ dc.SetPen(MiterPen(wx.CYAN))
+ else:
+ dc.SetPen(MiterPen(wx.GREEN))
+ elif self.Value == "undefined":
+ dc.SetPen(MiterPen(wx.NamedColour("orange")))
+ elif self.Forced:
+ dc.SetPen(MiterPen(wx.BLUE))
+ else:
+ dc.SetPen(MiterPen(wx.BLACK))
+ dc.SetBrush(wx.WHITE_BRUSH)
+ parent_pos = self.ParentBlock.GetPosition()
+
+ if getattr(dc, "printing", False):
+ name_size = dc.GetTextExtent(self.Name)
+ else:
+ name_size = self.NameSize
+
+ if self.Negated:
+ # If connector is negated, draw a circle
+ xcenter = parent_pos[0] + self.Pos.x + (CONNECTOR_SIZE * self.Direction[0]) / 2
+ ycenter = parent_pos[1] + self.Pos.y + (CONNECTOR_SIZE * self.Direction[1]) / 2
+ dc.DrawCircle(xcenter, ycenter, CONNECTOR_SIZE / 2)
+ else:
+ xstart = parent_pos[0] + self.Pos.x
+ ystart = parent_pos[1] + self.Pos.y
+ if self.Edge == "rising":
+ # If connector has a rising edge, draw a right arrow
+ dc.DrawLine(xstart, ystart, xstart - 4, ystart - 4)
+ dc.DrawLine(xstart, ystart, xstart - 4, ystart + 4)
+ elif self.Edge == "falling":
+ # If connector has a falling edge, draw a left arrow
+ dc.DrawLine(xstart, ystart, xstart + 4, ystart - 4)
+ dc.DrawLine(xstart, ystart, xstart + 4, ystart + 4)
+ if self.Direction[0] < 0:
+ xstart += 1
+ if self.Direction[1] < 0:
+ ystart += 1
+ if self.Selected:
+ xend = xstart + (CONNECTOR_SIZE - 2) * self.Direction[0]
+ yend = ystart + (CONNECTOR_SIZE - 2) * self.Direction[1]
+ dc.DrawLine(xstart + 2 * self.Direction[0], ystart + 2 * self.Direction[1], xend, yend)
+ else:
+ xend = xstart + CONNECTOR_SIZE * self.Direction[0]
+ yend = ystart + CONNECTOR_SIZE * self.Direction[1]
+ dc.DrawLine(xstart + self.Direction[0], ystart + self.Direction[1], xend, yend)
+ if self.Direction[0] != 0:
+ ytext = parent_pos[1] + self.Pos.y - name_size[1] / 2
+ if self.Direction[0] < 0:
+ xtext = parent_pos[0] + self.Pos.x + 5
+ else:
+ xtext = parent_pos[0] + self.Pos.x - (name_size[0] + 5)
+ if self.Direction[1] != 0:
+ xtext = parent_pos[0] + self.Pos.x - name_size[0] / 2
+ if self.Direction[1] < 0:
+ ytext = parent_pos[1] + self.Pos.y + 5
+ else:
+ ytext = parent_pos[1] + self.Pos.y - (name_size[1] + 5)
+ # Draw the text
+ dc.DrawText(self.Name, xtext, ytext)
+ if not getattr(dc, "printing", False):
+ DrawHighlightedText(dc, self.Name, self.Highlights, xtext, ytext)
+
+#-------------------------------------------------------------------------------
+# Common Wire Element
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a wire for connecting two blocks
+"""
+
+class Wire(Graphic_Element, DebugDataConsumer):
+
+ # Create a new wire
+ def __init__(self, parent, start = None, end = None):
+ Graphic_Element.__init__(self, parent)
+ DebugDataConsumer.__init__(self)
+ self.StartPoint = start
+ self.EndPoint = end
+ self.StartConnected = None
+ self.EndConnected = None
+ # If the start and end points are defined, calculate the wire
+ if start and end:
+ self.ResetPoints()
+ self.GeneratePoints()
+ else:
+ self.Points = []
+ self.Segments = []
+ self.SelectedSegment = None
+ self.Valid = True
+ self.ValueSize = None
+ self.ComputedValue = None
+ self.OverStart = False
+ self.OverEnd = False
+ self.ComputingType = False
+ self.Font = parent.GetMiniFont()
+
+ def GetDefinition(self):
+ if self.StartConnected is not None and self.EndConnected is not None:
+ startblock = self.StartConnected.GetParentBlock()
+ endblock = self.EndConnected.GetParentBlock()
+ return [], [(startblock.GetId(), endblock.GetId())]
+ return [], []
+
+ def Flush(self):
+ self.StartConnected = None
+ self.EndConnected = None
+
+ def GetToolTipValue(self):
+ if self.Value is not None and self.Value != "undefined" and not isinstance(self.Value, BooleanType):
+ if isinstance(self.Value, StringType) and self.Value.find("#") == -1:
+ return "\"%s\""%self.Value
+ else:
+ return str(self.Value)
+ return None
+
+ # Returns the RedrawRect
+ def GetRedrawRect(self, movex = 0, movey = 0):
+ rect = Graphic_Element.GetRedrawRect(self, movex, movey)
+ if self.StartConnected:
+ rect = rect.Union(self.StartConnected.GetRedrawRect(movex, movey))
+ if self.EndConnected:
+ rect = rect.Union(self.EndConnected.GetRedrawRect(movex, movey))
+ if self.ValueSize is None and isinstance(self.ComputedValue, (StringType, UnicodeType)):
+ self.ValueSize = self.Parent.GetMiniTextExtent(self.ComputedValue)
+ if self.ValueSize is not None:
+ width, height = self.ValueSize
+ if self.BoundingBox[2] > width * 4 or self.BoundingBox[3] > height * 4:
+ x = self.Points[0].x + width * self.StartPoint[1][0] / 2
+ y = self.Points[0].y + height * (self.StartPoint[1][1] - 1)
+ rect = rect.Union(wx.Rect(x, y, width, height))
+ x = self.Points[-1].x + width * self.EndPoint[1][0] / 2
+ y = self.Points[-1].y + height * (self.EndPoint[1][1] - 1)
+ rect = rect.Union(wx.Rect(x, y, width, height))
+ else:
+ middle = len(self.Segments) / 2 + len(self.Segments) % 2 - 1
+ x = (self.Points[middle].x + self.Points[middle + 1].x - width) / 2
+ if self.BoundingBox[3] > height and self.Segments[middle] in [NORTH, SOUTH]:
+ y = (self.Points[middle].y + self.Points[middle + 1].y - height) / 2
+ else:
+ y = self.Points[middle].y - height
+ rect = rect.Union(wx.Rect(x, y, width, height))
+ return rect
+
+ def Clone(self, parent, connectors = {}, dx = 0, dy = 0):
+ start_connector = connectors.get(self.StartConnected, None)
+ end_connector = connectors.get(self.EndConnected, None)
+ if start_connector is not None and end_connector is not None:
+ wire = Wire(parent)
+ wire.SetPoints([(point.x + dx, point.y + dy) for point in self.Points])
+ start_connector.Connect((wire, 0), False)
+ end_connector.Connect((wire, -1), False)
+ wire.ConnectStartPoint(start_connector.GetPosition(), start_connector)
+ wire.ConnectEndPoint(end_connector.GetPosition(), end_connector)
+ return wire
+ return None
+
+ # Forbids to change the wire position
+ def SetPosition(x, y):
+ pass
+
+ # Forbids to change the wire size
+ def SetSize(width, height):
+ pass
+
+ # Moves and Resizes the element for fitting scaling
+ def AdjustToScaling(self, scaling):
+ if scaling is not None:
+ movex_max = movey_max = 0
+ for idx, point in enumerate(self.Points):
+ if 0 < idx < len(self.Points) - 1:
+ movex = round_scaling(point.x, scaling[0]) - point.x
+ movey = round_scaling(point.y, scaling[1]) - point.y
+ if idx == 1:
+ if self.Segments[0][0] == 0:
+ movex = 0
+ elif (point.x + movex - self.Points[0].x) * self.Segments[0][0] < MIN_SEGMENT_SIZE:
+ movex = round_scaling(self.Points[0].x + MIN_SEGMENT_SIZE * self.Segments[0][0], scaling[0], self.Segments[0][0]) - point.x
+ if self.Segments[0][1] == 0:
+ movey = 0
+ elif (point.y + movey - self.Points[0].y) * self.Segments[0][1] < MIN_SEGMENT_SIZE:
+ movey = round_scaling(self.Points[0].y + MIN_SEGMENT_SIZE * self.Segments[0][1], scaling[0], self.Segments[0][1]) - point.y
+ elif idx == len(self.Points) - 2:
+ if self.Segments[-1][0] == 0:
+ movex = 0
+ elif (self.Points[-1].x - (point.x + movex)) * self.Segments[-1][0] < MIN_SEGMENT_SIZE:
+ movex = round_scaling(self.Points[-1].x + MIN_SEGMENT_SIZE * self.Segments[0][0], scaling[0], self.Segments[0][0]) - point.x
+ if self.Segments[-1][1] == 0:
+ movey = 0
+ elif (self.Points[-1].y - (point.y + movey)) * self.Segments[-1][1] < MIN_SEGMENT_SIZE:
+ movey = round_scaling(self.Points[-1].y - MIN_SEGMENT_SIZE * self.Segments[-1][1], scaling[1], -self.Segments[-1][1]) - point.y
+ movex_max = max(movex_max, movex)
+ movey_max = max(movey_max, movey)
+ point.x += movex
+ point.y += movey
+ return movex_max, movey_max
+ return 0, 0
+
+ # Returns connector to which start point is connected
+ def GetStartConnected(self):
+ return self.StartConnected
+
+ # Returns connector to which start point is connected
+ def GetStartConnectedType(self):
+ if self.StartConnected and not self.ComputingType:
+ self.ComputingType = True
+ computed_type = self.StartConnected.GetType()
+ self.ComputingType = False
+ return computed_type
+ return None
+
+ # Returns connector to which end point is connected
+ def GetEndConnected(self):
+ return self.EndConnected
+
+ # Returns connector to which end point is connected
+ def GetEndConnectedType(self):
+ if self.EndConnected and not self.ComputingType:
+ self.ComputingType = True
+ computed_type = self.EndConnected.GetType()
+ self.ComputingType = False
+ return computed_type
+ return None
+
+ def GetConnectionDirection(self):
+ if self.StartConnected is None and self.EndConnected is None:
+ return None
+ elif self.StartConnected is not None and self.EndConnected is None:
+ return (-self.StartPoint[1][0], -self.StartPoint[1][1])
+ elif self.StartConnected is None and self.EndConnected is not None:
+ return self.EndPoint
+ elif self.Handle is not None:
+ handle_type, handle = self.Handle
+ # A point has been handled
+ if handle_type == HANDLE_POINT:
+ if handle == 0:
+ return self.EndPoint
+ else:
+ return (-self.StartPoint[1][0], -self.StartPoint[1][1])
+ return None
+
+ def GetOtherConnected(self, connector):
+ if self.StartConnected == connector:
+ return self.EndConnected
+ else:
+ return self.StartConnected
+
+ def GetOtherConnectedType(self, handle):
+ if handle == 0:
+ return self.GetEndConnectedType()
+ else:
+ return self.GetStartConnectedType()
+
+ def IsConnectedCompatible(self):
+ if self.StartConnected:
+ return self.StartConnected.IsCompatible(self.GetEndConnectedType())
+ elif self.EndConnected:
+ return True
+ return False
+
+ def SetForced(self, forced):
+ if self.Forced != forced:
+ self.Forced = forced
+ if self.StartConnected:
+ self.StartConnected.RefreshForced()
+ if self.EndConnected:
+ self.EndConnected.RefreshForced()
+ if self.Visible:
+ self.Parent.ElementNeedRefresh(self)
+
+ def SetValue(self, value):
+ if self.Value != value:
+ self.Value = value
+ if value is not None and not isinstance(value, BooleanType):
+ if isinstance(value, StringType) and value.find('#') == -1:
+ self.ComputedValue = "\"%s\""%value
+ else:
+ self.ComputedValue = str(value)
+ if self.ToolTip is not None:
+ self.ToolTip.SetTip(self.ComputedValue)
+ if len(self.ComputedValue) > 4:
+ self.ComputedValue = self.ComputedValue[:4] + "..."
+ self.ValueSize = None
+ if self.StartConnected:
+ self.StartConnected.RefreshValue()
+ if self.EndConnected:
+ self.EndConnected.RefreshValue()
+ if self.Visible:
+ self.Parent.ElementNeedRefresh(self)
+ if isinstance(value, BooleanType) and self.StartConnected is not None:
+ block = self.StartConnected.GetParentBlock()
+ block.SpreadCurrent()
+
+ # Unconnect the start and end points
+ def Clean(self):
+ if self.StartConnected:
+ self.UnConnectStartPoint()
+ if self.EndConnected:
+ self.UnConnectEndPoint()
+
+ # Delete this wire by calling the corresponding method
+ def Delete(self):
+ self.Parent.DeleteWire(self)
+
+ # Select a segment and not the whole wire. It's useful for Ladder Diagram
+ def SetSelectedSegment(self, segment):
+ # The last segment is indicated
+ if segment == -1:
+ segment = len(self.Segments) - 1
+ # The selected segment is reinitialised
+ if segment == None:
+ if self.StartConnected:
+ self.StartConnected.SetSelected(False)
+ if self.EndConnected:
+ self.EndConnected.SetSelected(False)
+ # The segment selected is the first
+ elif segment == 0:
+ if self.StartConnected:
+ self.StartConnected.SetSelected(True)
+ if self.EndConnected:
+ # There is only one segment
+ if len(self.Segments) == 1:
+ self.EndConnected.SetSelected(True)
+ else:
+ self.EndConnected.SetSelected(False)
+ # The segment selected is the last
+ elif segment == len(self.Segments) - 1:
+ if self.StartConnected:
+ self.StartConnected.SetSelected(False)
+ if self.EndConnected:
+ self.EndConnected.SetSelected(True)
+ self.SelectedSegment = segment
+ self.Refresh()
+
+ def SetValid(self, valid):
+ self.Valid = valid
+ if self.StartConnected:
+ self.StartConnected.RefreshValid()
+ if self.EndConnected:
+ self.EndConnected.RefreshValid()
+
+ def GetValid(self):
+ return self.Valid
+
+ # Reinitialize the wire points
+ def ResetPoints(self):
+ if self.StartPoint and self.EndPoint:
+ self.Points = [self.StartPoint[0], self.EndPoint[0]]
+ self.Segments = [self.StartPoint[1]]
+ else:
+ self.Points = []
+ self.Segments = []
+
+ # Refresh the wire bounding box
+ def RefreshBoundingBox(self):
+ if len(self.Points) > 0:
+ # If startpoint or endpoint is connected, save the point radius
+ start_radius = end_radius = 0
+ if not self.StartConnected:
+ start_radius = POINT_RADIUS
+ if not self.EndConnected:
+ end_radius = POINT_RADIUS
+ # Initialize minimum and maximum from the first point
+ minx, minbbxx = self.Points[0].x, self.Points[0].x - start_radius
+ maxx, maxbbxx = self.Points[0].x, self.Points[0].x + start_radius
+ miny, minbbxy = self.Points[0].y, self.Points[0].y - start_radius
+ maxy, maxbbxy = self.Points[0].y, self.Points[0].y + start_radius
+ # Actualize minimum and maximum with the other points
+ for point in self.Points[1:-1]:
+ minx, minbbxx = min(minx, point.x), min(minbbxx, point.x)
+ maxx, maxbbxx = max(maxx, point.x), max(maxbbxx, point.x)
+ miny, minbbxy = min(miny, point.y), min(minbbxy, point.y)
+ maxy, maxbbxy = max(maxy, point.y), max(maxbbxy, point.y)
+ if len(self.Points) > 1:
+ minx, minbbxx = min(minx, self.Points[-1].x), min(minbbxx, self.Points[-1].x - end_radius)
+ maxx, maxbbxx = max(maxx, self.Points[-1].x), max(maxbbxx, self.Points[-1].x + end_radius)
+ miny, minbbxy = min(miny, self.Points[-1].y), min(minbbxy, self.Points[-1].y - end_radius)
+ maxy, maxbbxy = max(maxy, self.Points[-1].y), max(maxbbxy, self.Points[-1].y + end_radius)
+ self.Pos.x, self.Pos.y = minx, miny
+ self.Size = wx.Size(maxx - minx, maxy - miny)
+ self.BoundingBox = wx.Rect(minbbxx, minbbxy, maxbbxx - minbbxx + 1, maxbbxy - minbbxy + 1)
+
+ # Refresh the realpoints that permits to keep the proportionality in wire during resizing
+ def RefreshRealPoints(self):
+ if len(self.Points) > 0:
+ self.RealPoints = []
+ # Calculate float relative position of each point with the minimum point
+ for point in self.Points:
+ self.RealPoints.append([float(point.x - self.Pos.x), float(point.y - self.Pos.y)])
+
+ # Returns the wire minimum size
+ def GetMinSize(self):
+ width = 1
+ height = 1
+ dir_product = product(self.StartPoint[1], self.EndPoint[1])
+ # The directions are opposed
+ if dir_product < 0:
+ if self.StartPoint[0] != 0:
+ width = MIN_SEGMENT_SIZE * 2
+ if self.StartPoint[1] != 0:
+ height = MIN_SEGMENT_SIZE * 2
+ # The directions are the same
+ elif dir_product > 0:
+ if self.StartPoint[0] != 0:
+ width = MIN_SEGMENT_SIZE
+ if self.StartPoint[1] != 0:
+ height = MIN_SEGMENT_SIZE
+ # The directions are perpendiculars
+ else:
+ width = MIN_SEGMENT_SIZE
+ height = MIN_SEGMENT_SIZE
+ return width + 1, height + 1
+
+ # Returns if the point given is on one of the wire segments
+ def HitTest(self, pt, connectors=True):
+ test = False
+ for i in xrange(len(self.Points) - 1):
+ rect = wx.Rect(0, 0, 0, 0)
+ if i == 0 and self.StartConnected is not None:
+ x1 = self.Points[i].x - self.Segments[0][0] * CONNECTOR_SIZE
+ y1 = self.Points[i].y - self.Segments[0][1] * CONNECTOR_SIZE
+ else:
+ x1, y1 = self.Points[i].x, self.Points[i].y
+ if i == len(self.Points) - 2 and self.EndConnected is not None:
+ x2 = self.Points[i + 1].x + self.Segments[-1][0] * CONNECTOR_SIZE
+ y2 = self.Points[i + 1].y + self.Segments[-1][1] * CONNECTOR_SIZE
+ else:
+ x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
+ # Calculate a rectangle around the segment
+ rect = wx.Rect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
+ abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
+ test |= rect.InsideXY(pt.x, pt.y)
+ return test
+
+ # Returns the wire start or end point if the point given is on one of them
+ def TestPoint(self, pt):
+ # Test the wire start point
+ rect = wx.Rect(self.Points[0].x - ANCHOR_DISTANCE, self.Points[0].y - ANCHOR_DISTANCE,
+ 2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
+ if rect.InsideXY(pt.x, pt.y):
+ return 0
+ # Test the wire end point
+ if len(self.Points) > 1:
+ rect = wx.Rect(self.Points[-1].x - ANCHOR_DISTANCE, self.Points[-1].y - ANCHOR_DISTANCE,
+ 2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
+ if rect.InsideXY(pt.x, pt.y):
+ return -1
+ return None
+
+ # Returns the wire segment if the point given is on it
+ def TestSegment(self, pt, all=False):
+ for i in xrange(len(self.Segments)):
+ # If wire is not in a Ladder Diagram, first and last segments are excluded
+ if all or 0 < i < len(self.Segments) - 1:
+ x1, y1 = self.Points[i].x, self.Points[i].y
+ x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
+ # Calculate a rectangle around the segment
+ rect = wx.Rect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
+ abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
+ if rect.InsideXY(pt.x, pt.y):
+ return i, self.Segments[i]
+ return None
+
+ # Define the wire points
+ def SetPoints(self, points, verify=True):
+ if len(points) > 1:
+ self.Points = [wx.Point(x, y) for x, y in points]
+ # Calculate the start and end directions
+ self.StartPoint = [None, vector(self.Points[0], self.Points[1])]
+ self.EndPoint = [None, vector(self.Points[-1], self.Points[-2])]
+ # Calculate the start and end points
+ self.StartPoint[0] = wx.Point(self.Points[0].x + CONNECTOR_SIZE * self.StartPoint[1][0],
+ self.Points[0].y + CONNECTOR_SIZE * self.StartPoint[1][1])
+ self.EndPoint[0] = wx.Point(self.Points[-1].x + CONNECTOR_SIZE * self.EndPoint[1][0],
+ self.Points[-1].y + CONNECTOR_SIZE * self.EndPoint[1][1])
+ self.Points[0] = self.StartPoint[0]
+ self.Points[-1] = self.EndPoint[0]
+ # Calculate the segments directions
+ self.Segments = []
+ i = 0
+ while i < len(self.Points) - 1:
+ if verify and 0 < i < len(self.Points) - 2 and \
+ self.Points[i] == self.Points[i + 1] and \
+ self.Segments[-1] == vector(self.Points[i + 1], self.Points[i + 2]):
+ for j in xrange(2):
+ self.Points.pop(i)
+ else:
+ segment = vector(self.Points[i], self.Points[i + 1])
+ if is_null_vector(segment) and i > 0:
+ segment = (self.Segments[-1][1], self.Segments[-1][0])
+ if i < len(self.Points) - 2:
+ next = vector(self.Points[i + 1], self.Points[i + 2])
+ if next == segment or is_null_vector(add_vectors(segment, next)):
+ self.Points.insert(i + 1, wx.Point(self.Points[i + 1].x, self.Points[i + 1].y))
+ self.Segments.append(segment)
+ i += 1
+ self.RefreshBoundingBox()
+ self.RefreshRealPoints()
+
+ # Returns the position of the point indicated
+ def GetPoint(self, index):
+ if index < len(self.Points):
+ return self.Points[index].x, self.Points[index].y
+ return None
+
+ # Returns a list of the position of all wire points
+ def GetPoints(self, invert = False):
+ points = self.VerifyPoints()
+ points[0] = wx.Point(points[0].x - CONNECTOR_SIZE * self.StartPoint[1][0],
+ points[0].y - CONNECTOR_SIZE * self.StartPoint[1][1])
+ points[-1] = wx.Point(points[-1].x - CONNECTOR_SIZE * self.EndPoint[1][0],
+ points[-1].y - CONNECTOR_SIZE * self.EndPoint[1][1])
+ # An inversion of the list is asked
+ if invert:
+ points.reverse()
+ return points
+
+ # Returns the position of the two selected segment points
+ def GetSelectedSegmentPoints(self):
+ if self.SelectedSegment != None and len(self.Points) > 1:
+ return self.Points[self.SelectedSegment:self.SelectedSegment + 2]
+ return []
+
+ # Returns if the selected segment is the first and/or the last of the wire
+ def GetSelectedSegmentConnections(self):
+ if self.SelectedSegment != None and len(self.Points) > 1:
+ return self.SelectedSegment == 0, self.SelectedSegment == len(self.Segments) - 1
+ return (True, True)
+
+ # Returns the connectors on which the wire is connected
+ def GetConnected(self):
+ connected = []
+ if self.StartConnected and self.StartPoint[1] == WEST:
+ connected.append(self.StartConnected)
+ if self.EndConnected and self.EndPoint[1] == WEST:
+ connected.append(self.EndConnected)
+ return connected
+
+ # Returns the id of the block connected to the first or the last wire point
+ def GetConnectedInfos(self, index):
+ if index == 0 and self.StartConnected:
+ return self.StartConnected.GetBlockId(), self.StartConnected.GetName()
+ elif index == -1 and self.EndConnected:
+ return self.EndConnected.GetBlockId(), self.EndConnected.GetName()
+ return None
+
+ # Update the wire points position by keeping at most possible the current positions
+ def GeneratePoints(self, realpoints = True):
+ i = 0
+ # Calculate the start enad end points with the minimum segment size in the right direction
+ end = wx.Point(self.EndPoint[0].x + self.EndPoint[1][0] * MIN_SEGMENT_SIZE,
+ self.EndPoint[0].y + self.EndPoint[1][1] * MIN_SEGMENT_SIZE)
+ start = wx.Point(self.StartPoint[0].x + self.StartPoint[1][0] * MIN_SEGMENT_SIZE,
+ self.StartPoint[0].y + self.StartPoint[1][1] * MIN_SEGMENT_SIZE)
+ # Evaluate the point till it's the last
+ while i < len(self.Points) - 1:
+ # The next point is the last
+ if i + 1 == len(self.Points) - 1:
+ # Calculate the direction from current point to end point
+ v_end = vector(self.Points[i], end)
+ # The current point is the first
+ if i == 0:
+ # If the end point is not in the start direction, a point is added
+ if v_end != self.Segments[0] or v_end == self.EndPoint[1]:
+ self.Points.insert(1, wx.Point(start.x, start.y))
+ self.Segments.insert(1, DirectionChoice((self.Segments[0][1],
+ self.Segments[0][0]), v_end, self.EndPoint[1]))
+ # The current point is the second
+ elif i == 1:
+ # The previous direction and the target direction are mainly opposed, a point is added
+ if product(v_end, self.Segments[0]) < 0:
+ self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
+ self.Segments.insert(2, DirectionChoice((self.Segments[1][1],
+ self.Segments[1][0]), v_end, self.EndPoint[1]))
+ # The previous direction and the end direction are the same or they are
+ # perpendiculars and the end direction points towards current segment
+ elif product(self.Segments[0], self.EndPoint[1]) >= 0 and product(self.Segments[1], self.EndPoint[1]) <= 0:
+ # Current point and end point are aligned
+ if self.Segments[0][0] != 0:
+ self.Points[1].x = end.x
+ if self.Segments[0][1] != 0:
+ self.Points[1].y = end.y
+ # If the previous direction and the end direction are the same, a point is added
+ if product(self.Segments[0], self.EndPoint[1]) > 0:
+ self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
+ self.Segments.insert(2, DirectionChoice((self.Segments[1][1],
+ self.Segments[1][0]), v_end, self.EndPoint[1]))
+ else:
+ # Current point is positioned in the middle of start point
+ # and end point on the current direction and a point is added
+ if self.Segments[0][0] != 0:
+ self.Points[1].x = (end.x + start.x) / 2
+ if self.Segments[0][1] != 0:
+ self.Points[1].y = (end.y + start.y) / 2
+ self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
+ self.Segments.insert(2, DirectionChoice((self.Segments[1][1],
+ self.Segments[1][0]), v_end, self.EndPoint[1]))
+ else:
+ # The previous direction and the end direction are perpendiculars
+ if product(self.Segments[i - 1], self.EndPoint[1]) == 0:
+ # The target direction and the end direction aren't mainly the same
+ if product(v_end, self.EndPoint[1]) <= 0:
+ # Current point and end point are aligned
+ if self.Segments[i - 1][0] != 0:
+ self.Points[i].x = end.x
+ if self.Segments[i - 1][1] != 0:
+ self.Points[i].y = end.y
+ # Previous direction is updated from the new point
+ if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
+ self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
+ else:
+ test = True
+ # If the current point is the third, test if the second
+ # point can be aligned with the end point
+ if i == 2:
+ test_point = wx.Point(self.Points[1].x, self.Points[1].y)
+ if self.Segments[1][0] != 0:
+ test_point.y = end.y
+ if self.Segments[1][1] != 0:
+ test_point.x = end.x
+ vector_test = vector(self.Points[0], test_point, False)
+ test = norm(vector_test) > MIN_SEGMENT_SIZE and product(self.Segments[0], vector_test) > 0
+ # The previous point can be aligned
+ if test:
+ self.Points[i].x, self.Points[i].y = end.x, end.y
+ if self.Segments[i - 1][0] != 0:
+ self.Points[i - 1].y = end.y
+ if self.Segments[i - 1][1] != 0:
+ self.Points[i - 1].x = end.x
+ self.Segments[i] = (-self.EndPoint[1][0], -self.EndPoint[1][1])
+ else:
+ # Current point is positioned in the middle of previous point
+ # and end point on the current direction and a point is added
+ if self.Segments[1][0] != 0:
+ self.Points[2].x = (self.Points[1].x + end.x) / 2
+ if self.Segments[1][1] != 0:
+ self.Points[2].y = (self.Points[1].y + end.y) / 2
+ self.Points.insert(3, wx.Point(self.Points[2].x, self.Points[2].y))
+ self.Segments.insert(3, DirectionChoice((self.Segments[2][1],
+ self.Segments[2][0]), v_end, self.EndPoint[1]))
+ else:
+ # Current point is aligned with end point
+ if self.Segments[i - 1][0] != 0:
+ self.Points[i].x = end.x
+ if self.Segments[i - 1][1] != 0:
+ self.Points[i].y = end.y
+ # Previous direction is updated from the new point
+ if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
+ self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
+ # If previous direction and end direction are opposed
+ if product(self.Segments[i - 1], self.EndPoint[1]) < 0:
+ # Current point is positioned in the middle of previous point
+ # and end point on the current direction
+ if self.Segments[i - 1][0] != 0:
+ self.Points[i].x = (end.x + self.Points[i - 1].x) / 2
+ if self.Segments[i - 1][1] != 0:
+ self.Points[i].y = (end.y + self.Points[i - 1].y) / 2
+ # A point is added
+ self.Points.insert(i + 1, wx.Point(self.Points[i].x, self.Points[i].y))
+ self.Segments.insert(i + 1, DirectionChoice((self.Segments[i][1],
+ self.Segments[i][0]), v_end, self.EndPoint[1]))
+ else:
+ # Current point is the first, and second is not mainly in the first direction
+ if i == 0 and product(vector(start, self.Points[1]), self.Segments[0]) < 0:
+ # If first and second directions aren't perpendiculars, a point is added
+ if product(self.Segments[0], self.Segments[1]) != 0:
+ self.Points.insert(1, wx.Point(start.x, start.y))
+ self.Segments.insert(1, DirectionChoice((self.Segments[0][1],
+ self.Segments[0][0]), vector(start, self.Points[1]), self.Segments[1]))
+ else:
+ self.Points[1].x, self.Points[1].y = start.x, start.y
+ else:
+ # Next point is aligned with current point
+ if self.Segments[i][0] != 0:
+ self.Points[i + 1].y = self.Points[i].y
+ if self.Segments[i][1] != 0:
+ self.Points[i + 1].x = self.Points[i].x
+ # Current direction is updated from the new point
+ if product(vector(self.Points[i], self.Points[i + 1]), self.Segments[i]) < 0:
+ self.Segments[i] = (-self.Segments[i][0], -self.Segments[i][1])
+ i += 1
+ self.RefreshBoundingBox()
+ if realpoints:
+ self.RefreshRealPoints()
+
+ # Verify that two consecutive points haven't the same position
+ def VerifyPoints(self):
+ points = [point for point in self.Points]
+ segments = [segment for segment in self.Segments]
+ i = 1
+ while i < len(points) - 1:
+ if points[i] == points[i + 1] and segments[i - 1] == segments[i + 1]:
+ for j in xrange(2):
+ points.pop(i)
+ segments.pop(i)
+ else:
+ i += 1
+ # If the wire isn't in a Ladder Diagram, save the new point list
+ if self.Parent.__class__.__name__ != "LD_Viewer":
+ self.Points = [point for point in points]
+ self.Segments = [segment for segment in segments]
+ self.RefreshBoundingBox()
+ self.RefreshRealPoints()
+ return points
+
+ # Moves all the wire points except the first and the last if they are connected
+ def Move(self, dx, dy, endpoints = False):
+ for i, point in enumerate(self.Points):
+ if endpoints or not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+ point.x += dx
+ point.y += dy
+ self.StartPoint[0] = self.Points[0]
+ self.EndPoint[0] = self.Points[-1]
+ self.GeneratePoints()
+
+ # Resize the wire from position and size given
+ def Resize(self, x, y, width, height):
+ if len(self.Points) > 1:
+ # Calculate the new position of each point for testing the new size
+ minx, miny = self.Pos.x, self.Pos.y
+ lastwidth, lastheight = self.Size.width, self.Size.height
+ for i, point in enumerate(self.RealPoints):
+ # If start or end point is connected, it's not calculate
+ if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+ if i == 0:
+ dir = self.StartPoint[1]
+ elif i == len(self.Points) - 1:
+ dir = self.EndPoint[1]
+ else:
+ dir = (0, 0)
+ pointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0] * width / float(max(lastwidth, 1)))),
+ width - dir[0] * MIN_SEGMENT_SIZE))
+ pointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1] * height / float(max(lastheight, 1)))),
+ height - dir[1] * MIN_SEGMENT_SIZE))
+ self.Points[i] = wx.Point(minx + x + pointx, miny + y + pointy)
+ self.StartPoint[0] = self.Points[0]
+ self.EndPoint[0] = self.Points[-1]
+ self.GeneratePoints(False)
+ # Test if the wire position or size have changed
+ if x != 0 and minx == self.Pos.x:
+ x = 0
+ width = lastwidth
+ if y != 0 and miny == self.Pos.y:
+ y = 0
+ height = lastwidth
+ if width != lastwidth and lastwidth == self.Size.width:
+ width = lastwidth
+ if height != lastheight and lastheight == self.Size.height:
+ height = lastheight
+ # Calculate the real points from the new size, it's important for
+ # keeping a proportionality in the points position with the size
+ # during a resize dragging
+ for i, point in enumerate(self.RealPoints):
+ if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+ point[0] = point[0] * width / float(max(lastwidth, 1))
+ point[1] = point[1] * height / float(max(lastheight, 1))
+ # Calculate the correct position of the points from real points
+ for i, point in enumerate(self.RealPoints):
+ if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+ if i == 0:
+ dir = self.StartPoint[1]
+ elif i == len(self.Points) - 1:
+ dir = self.EndPoint[1]
+ else:
+ dir = (0, 0)
+ realpointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0])),
+ width - dir[0] * MIN_SEGMENT_SIZE))
+ realpointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1])),
+ height - dir[1] * MIN_SEGMENT_SIZE))
+ self.Points[i] = wx.Point(minx + x + realpointx, miny + y + realpointy)
+ self.StartPoint[0] = self.Points[0]
+ self.EndPoint[0] = self.Points[-1]
+ self.GeneratePoints(False)
+
+ # Moves the wire start point and update the wire points
+ def MoveStartPoint(self, point):
+ if len(self.Points) > 1:
+ self.StartPoint[0] = point
+ self.Points[0] = point
+ self.GeneratePoints()
+
+ # Changes the wire start direction and update the wire points
+ def SetStartPointDirection(self, dir):
+ if len(self.Points) > 1:
+ self.StartPoint[1] = dir
+ self.Segments[0] = dir
+ self.GeneratePoints()
+
+ # Rotates the wire start direction by an angle of 90 degrees anticlockwise
+ def RotateStartPoint(self):
+ self.SetStartPointDirection((self.StartPoint[1][1], -self.StartPoint[1][0]))
+
+ # Connects wire start point to the connector given and moves wire start point
+ # to given point
+ def ConnectStartPoint(self, point, connector):
+ if point:
+ self.MoveStartPoint(point)
+ self.StartConnected = connector
+ self.RefreshBoundingBox()
+
+ # Unconnects wire start point
+ def UnConnectStartPoint(self, delete = False):
+ if delete:
+ self.StartConnected = None
+ self.Delete()
+ elif self.StartConnected:
+ self.StartConnected.UnConnect(self, unconnect = False)
+ self.StartConnected = None
+ self.RefreshBoundingBox()
+
+ # Moves the wire end point and update the wire points
+ def MoveEndPoint(self, point):
+ if len(self.Points) > 1:
+ self.EndPoint[0] = point
+ self.Points[-1] = point
+ self.GeneratePoints()
+
+ # Changes the wire end direction and update the wire points
+ def SetEndPointDirection(self, dir):
+ if len(self.Points) > 1:
+ self.EndPoint[1] = dir
+ self.GeneratePoints()
+
+ # Rotates the wire end direction by an angle of 90 degrees anticlockwise
+ def RotateEndPoint(self):
+ self.SetEndPointDirection((self.EndPoint[1][1], -self.EndPoint[1][0]))
+
+ # Connects wire end point to the connector given and moves wire end point
+ # to given point
+ def ConnectEndPoint(self, point, connector):
+ if point:
+ self.MoveEndPoint(point)
+ self.EndConnected = connector
+ self.RefreshBoundingBox()
+
+ # Unconnects wire end point
+ def UnConnectEndPoint(self, delete = False):
+ if delete:
+ self.EndConnected = None
+ self.Delete()
+ elif self.EndConnected:
+ self.EndConnected.UnConnect(self, unconnect = False)
+ self.EndConnected = None
+ self.RefreshBoundingBox()
+
+ # Moves the wire segment given by its index
+ def MoveSegment(self, idx, movex, movey, scaling):
+ if 0 < idx < len(self.Segments) - 1:
+ if self.Segments[idx] in (NORTH, SOUTH):
+ start_x = self.Points[idx].x
+ if scaling is not None:
+ movex = round_scaling(self.Points[idx].x + movex, scaling[0]) - self.Points[idx].x
+ if idx == 1 and (self.Points[1].x + movex - self.Points[0].x) * self.Segments[0][0] < MIN_SEGMENT_SIZE:
+ movex = round_scaling(self.Points[0].x + MIN_SEGMENT_SIZE * self.Segments[0][0], scaling[0], self.Segments[0][0]) - self.Points[idx].x
+ elif idx == len(self.Segments) - 2 and (self.Points[-1].x - (self.Points[-2].x + movex)) * self.Segments[-1][0] < MIN_SEGMENT_SIZE:
+ movex = round_scaling(self.Points[-1].x - MIN_SEGMENT_SIZE * self.Segments[-1][0], scaling[0], -self.Segments[-1][0]) - self.Points[idx].x
+ self.Points[idx].x += movex
+ self.Points[idx + 1].x += movex
+ self.GeneratePoints()
+ if start_x != self.Points[idx].x:
+ return self.Points[idx].x - start_x, 0
+ elif self.Segments[idx] in (EAST, WEST):
+ start_y = self.Points[idx].y
+ if scaling is not None:
+ movey = round_scaling(self.Points[idx].y + movey, scaling[1]) - self.Points[idx].y
+ if idx == 1 and (self.Points[1].y + movey - self.Points[0].y) * self.Segments[0][1] < MIN_SEGMENT_SIZE:
+ movex = round_scaling(self.Points[0].y + MIN_SEGMENT_SIZE * self.Segments[0][1], scaling[0], self.Segments[0][1]) - self.Points[idx].y
+ elif idx == len(self.Segments) - 2 and (self.Points[-1].y - (self.Points[-2].y + movey)) * self.Segments[-1][1] < MIN_SEGMENT_SIZE:
+ movey = round_scaling(self.Points[idx].y - MIN_SEGMENT_SIZE * self.Segments[-1][1], scaling[1], -self.Segments[-1][1]) - self.Points[idx].y
+ self.Points[idx].y += movey
+ self.Points[idx + 1].y += movey
+ self.GeneratePoints()
+ if start_y != self.Points[idx].y:
+ return 0, self.Points[idx].y - start_y
+ return 0, 0
+
+ # Adds two points in the middle of the handled segment
+ def AddSegment(self):
+ handle_type, handle = self.Handle
+ if handle_type == HANDLE_SEGMENT:
+ segment, dir = handle
+ if len(self.Segments) > 1:
+ pointx = self.Points[segment].x
+ pointy = self.Points[segment].y
+ if dir[0] != 0:
+ pointx = (self.Points[segment].x + self.Points[segment + 1].x) / 2
+ if dir[1] != 0:
+ pointy = (self.Points[segment].y + self.Points[segment + 1].y) / 2
+ self.Points.insert(segment + 1, wx.Point(pointx, pointy))
+ self.Segments.insert(segment + 1, (dir[1], dir[0]))
+ self.Points.insert(segment + 2, wx.Point(pointx, pointy))
+ self.Segments.insert(segment + 2, dir)
+ else:
+ p1x = p2x = self.Points[segment].x
+ p1y = p2y = self.Points[segment].y
+ if dir[0] != 0:
+ p1x = (2 * self.Points[segment].x + self.Points[segment + 1].x) / 3
+ p2x = (self.Points[segment].x + 2 * self.Points[segment + 1].x) / 3
+ if dir[1] != 0:
+ p1y = (2 * self.Points[segment].y + self.Points[segment + 1].y) / 3
+ p2y = (self.Points[segment].y + 2 * self.Points[segment + 1].y) / 3
+ self.Points.insert(segment + 1, wx.Point(p1x, p1y))
+ self.Segments.insert(segment + 1, (dir[1], dir[0]))
+ self.Points.insert(segment + 2, wx.Point(p1x, p1y))
+ self.Segments.insert(segment + 2, dir)
+ self.Points.insert(segment + 3, wx.Point(p2x, p2y))
+ self.Segments.insert(segment + 3, (dir[1], dir[0]))
+ self.Points.insert(segment + 4, wx.Point(p2x, p2y))
+ self.Segments.insert(segment + 4, dir)
+ self.GeneratePoints()
+
+ # Delete the handled segment by removing the two segment points
+ def DeleteSegment(self):
+ handle_type, handle = self.Handle
+ if handle_type == HANDLE_SEGMENT:
+ segment, dir = handle
+ for i in xrange(2):
+ self.Points.pop(segment)
+ self.Segments.pop(segment)
+ self.GeneratePoints()
+ self.RefreshModel()
+
+ # Method called when a LeftDown event have been generated
+ def OnLeftDown(self, event, dc, scaling):
+ pos = GetScaledEventPosition(event, dc, scaling)
+ # Test if a point have been handled
+ #result = self.TestPoint(pos)
+ #if result != None:
+ # self.Handle = (HANDLE_POINT, result)
+ # wx.CallAfter(self.Parent.SetCurrentCursor, 1)
+ #else:
+ # Test if a segment have been handled
+ result = self.TestSegment(pos)
+ if result != None:
+ if result[1] in (NORTH, SOUTH):
+ wx.CallAfter(self.Parent.SetCurrentCursor, 4)
+ elif result[1] in (EAST, WEST):
+ wx.CallAfter(self.Parent.SetCurrentCursor, 5)
+ self.Handle = (HANDLE_SEGMENT, result)
+ # Execute the default method for a graphic element
+ else:
+ Graphic_Element.OnLeftDown(self, event, dc, scaling)
+ self.oldPos = pos
+
+ # Method called when a RightUp event has been generated
+ def OnRightUp(self, event, dc, scaling):
+ pos = GetScaledEventPosition(event, dc, scaling)
+ # Test if a segment has been handled
+ result = self.TestSegment(pos, True)
+ if result != None:
+ self.Handle = (HANDLE_SEGMENT, result)
+ # Popup the menu with special items for a wire
+ self.Parent.PopupWireMenu(0 < result[0] < len(self.Segments) - 1)
+ else:
+ # Execute the default method for a graphic element
+ Graphic_Element.OnRightUp(self, event, dc, scaling)
+
+ # Method called when a LeftDClick event has been generated
+ def OnLeftDClick(self, event, dc, scaling):
+ rect = self.GetRedrawRect()
+ if event.ControlDown():
+ direction = (self.StartPoint[1], self.EndPoint[1])
+ if direction in [(EAST, WEST), (WEST, EAST)]:
+ avgy = (self.StartPoint[0].y + self.EndPoint[0].y) / 2
+ if scaling is not None:
+ avgy = round(float(avgy) / scaling[1]) * scaling[1]
+ if self.StartConnected is not None:
+ movey = avgy - self.StartPoint[0].y
+ startblock = self.StartConnected.GetParentBlock()
+ startblock.Move(0, movey)
+ startblock.RefreshModel()
+ rect.Union(startblock.GetRedrawRect(0, movey))
+ else:
+ self.MoveStartPoint(wx.Point(self.StartPoint[0].x, avgy))
+ if self.EndConnected is not None:
+ movey = avgy - self.EndPoint[0].y
+ endblock = self.EndConnected.GetParentBlock()
+ endblock.Move(0, movey)
+ endblock.RefreshModel()
+ rect.Union(endblock.GetRedrawRect(0, movey))
+ else:
+ self.MoveEndPoint(wx.Point(self.EndPoint[0].x, avgy))
+ self.Parent.RefreshBuffer()
+ elif direction in [(NORTH, SOUTH), (SOUTH, NORTH)]:
+ avgx = (self.StartPoint[0].x + self.EndPoint[0].x) / 2
+ if scaling is not None:
+ avgx = round(float(avgx) / scaling[0]) * scaling[0]
+ if self.StartConnected is not None:
+ movex = avgx - self.StartPoint[0].x
+ startblock = self.StartConnected.GetParentBlock()
+ startblock.Move(movex, 0)
+ startblock.RefreshModel()
+ rect.Union(startblock.GetRedrawRect(movex, 0))
+ else:
+ self.MoveStartPoint(wx.Point(avgx, self.StartPoint[0].y))
+ if self.EndConnected is not None:
+ movex = avgx - self.EndPoint[0].x
+ endblock = self.EndConnected.GetParentBlock()
+ endblock.Move(movex, 0)
+ endblock.RefreshModel()
+ rect.Union(endblock.GetRedrawRect(movex, 0))
+ else:
+ self.MoveEndPoint(wx.Point(avgx, self.EndPoint[0].y))
+ self.Parent.RefreshBuffer()
+ else:
+ self.ResetPoints()
+ self.GeneratePoints()
+ self.RefreshModel()
+ self.Parent.RefreshBuffer()
+ rect.Union(self.GetRedrawRect())
+ self.Parent.RefreshRect(self.Parent.GetScrolledRect(rect), False)
+
+ # Method called when a Motion event has been generated
+ def OnMotion(self, event, dc, scaling):
+ pos = GetScaledEventPosition(event, dc, scaling)
+ if not event.Dragging():
+ # Test if a segment has been handled
+ result = self.TestSegment(pos)
+ if result:
+ if result[1] in (NORTH, SOUTH):
+ wx.CallAfter(self.Parent.SetCurrentCursor, 4)
+ elif result[1] in (EAST, WEST):
+ wx.CallAfter(self.Parent.SetCurrentCursor, 5)
+ return 0, 0
+ else:
+ # Execute the default method for a graphic element
+ return Graphic_Element.OnMotion(self, event, dc, scaling)
+ else:
+ # Execute the default method for a graphic element
+ return Graphic_Element.OnMotion(self, event, dc, scaling)
+
+ # Refreshes the wire state according to move defined and handle selected
+ def ProcessDragging(self, movex, movey, event, scaling):
+ handle_type, handle = self.Handle
+ # A point has been handled
+ if handle_type == HANDLE_POINT:
+ movex = max(-self.Points[handle].x + POINT_RADIUS, movex)
+ movey = max(-self.Points[handle].y + POINT_RADIUS, movey)
+ if scaling is not None:
+ movex = round_scaling(self.Points[handle].x + movex, scaling[0]) - self.Points[handle].x
+ movey = round_scaling(self.Points[handle].y + movey, scaling[1]) - self.Points[handle].y
+ # Try to connect point to a connector
+ new_pos = wx.Point(self.Points[handle].x + movex, self.Points[handle].y + movey)
+ connector = self.Parent.FindBlockConnector(new_pos, self.GetConnectionDirection())
+ if connector:
+ if handle == 0 and self.EndConnected != connector:
+ connector.HighlightParentBlock(True)
+ connector.Connect((self, handle))
+ self.SetStartPointDirection(connector.GetDirection())
+ self.ConnectStartPoint(connector.GetPosition(), connector)
+ pos = connector.GetPosition()
+ movex = pos.x - self.oldPos.x
+ movey = pos.y - self.oldPos.y
+ if not connector.IsCompatible(self.GetEndConnectedType()):
+ self.SetValid(False)
+ self.Dragging = False
+ elif handle != 0 and self.StartConnected != connector:
+ connector.HighlightParentBlock(True)
+ connector.Connect((self, handle))
+ self.SetEndPointDirection(connector.GetDirection())
+ self.ConnectEndPoint(connector.GetPosition(), connector)
+ pos = connector.GetPosition()
+ movex = pos.x - self.oldPos.x
+ movey = pos.y - self.oldPos.y
+ if not connector.IsCompatible(self.GetStartConnectedType()):
+ self.SetValid(False)
+ self.Dragging = False
+ elif handle == 0:
+ self.MoveStartPoint(new_pos)
+ else:
+ self.MoveEndPoint(new_pos)
+ # If there is no connector, move the point
+ elif handle == 0:
+ self.SetValid(True)
+ if self.StartConnected:
+ self.StartConnected.HighlightParentBlock(False)
+ self.UnConnectStartPoint()
+ self.MoveStartPoint(new_pos)
+ else:
+ self.SetValid(True)
+ if self.EndConnected:
+ self.EndConnected.HighlightParentBlock(False)
+ self.UnConnectEndPoint()
+ self.MoveEndPoint(new_pos)
+ return movex, movey
+ # A segment has been handled, move a segment
+ elif handle_type == HANDLE_SEGMENT:
+ return self.MoveSegment(handle[0], movex, movey, scaling)
+ # Execute the default method for a graphic element
+ else:
+ return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
+
+ # Refreshes the wire model
+ def RefreshModel(self, move=True):
+ if self.StartConnected and self.StartPoint[1] in [WEST, NORTH]:
+ self.StartConnected.RefreshParentBlock()
+ if self.EndConnected and self.EndPoint[1] in [WEST, NORTH]:
+ self.EndConnected.RefreshParentBlock()
+
+ # Change the variable that indicates if this element is highlighted
+ def SetHighlighted(self, highlighted):
+ self.Highlighted = highlighted
+ if not highlighted:
+ self.OverStart = False
+ self.OverEnd = False
+ self.Refresh()
+
+ def HighlightPoint(self, pos):
+ refresh = False
+ start, end = self.OverStart, self.OverEnd
+ self.OverStart = False
+ self.OverEnd = False
+ # Test if a point has been handled
+ result = self.TestPoint(pos)
+ if result != None:
+ if result == 0 and self.StartConnected is not None:
+ self.OverStart = True
+ elif result != 0 and self.EndConnected is not None:
+ self.OverEnd = True
+ if start != self.OverStart or end != self.OverEnd:
+ self.Refresh()
+
+ # Draws the highlightment of this element if it is highlighted
+ def DrawHighlightment(self, dc):
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ dc.SetPen(MiterPen(HIGHLIGHTCOLOR, (2 * scalex + 5)))
+ dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+ dc.SetLogicalFunction(wx.AND)
+ # Draw the start and end points if they are not connected or the mouse is over them
+ if len(self.Points) > 0 and (not self.StartConnected or self.OverStart):
+ dc.DrawCircle(round(self.Points[0].x * scalex),
+ round(self.Points[0].y * scaley),
+ (POINT_RADIUS + 1) * scalex + 2)
+ if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd):
+ dc.DrawCircle(self.Points[-1].x * scalex, self.Points[-1].y * scaley, (POINT_RADIUS + 1) * scalex + 2)
+ # Draw the wire lines and the last point (it seems that DrawLines stop before the last point)
+ if len(self.Points) > 1:
+ points = [wx.Point(round((self.Points[0].x - self.Segments[0][0]) * scalex),
+ round((self.Points[0].y - self.Segments[0][1]) * scaley))]
+ points.extend([wx.Point(round(point.x * scalex), round(point.y * scaley)) for point in self.Points[1:-1]])
+ points.append(wx.Point(round((self.Points[-1].x + self.Segments[-1][0]) * scalex),
+ round((self.Points[-1].y + self.Segments[-1][1]) * scaley)))
+ else:
+ points = []
+ dc.DrawLines(points)
+ dc.SetLogicalFunction(wx.COPY)
+ dc.SetUserScale(scalex, scaley)
+
+ if self.StartConnected is not None:
+ self.StartConnected.DrawHighlightment(dc)
+ self.StartConnected.Draw(dc)
+ if self.EndConnected is not None:
+ self.EndConnected.DrawHighlightment(dc)
+ self.EndConnected.Draw(dc)
+
+ # Draws the wire lines and points
+ def Draw(self, dc):
+ Graphic_Element.Draw(self, dc)
+ if not self.Valid:
+ dc.SetPen(MiterPen(wx.RED))
+ dc.SetBrush(wx.RED_BRUSH)
+ elif isinstance(self.Value, BooleanType) and self.Value:
+ if self.Forced:
+ dc.SetPen(MiterPen(wx.CYAN))
+ dc.SetBrush(wx.CYAN_BRUSH)
+ else:
+ dc.SetPen(MiterPen(wx.GREEN))
+ dc.SetBrush(wx.GREEN_BRUSH)
+ elif self.Value == "undefined":
+ dc.SetPen(MiterPen(wx.NamedColour("orange")))
+ dc.SetBrush(wx.Brush(wx.NamedColour("orange")))
+ elif self.Forced:
+ dc.SetPen(MiterPen(wx.BLUE))
+ dc.SetBrush(wx.BLUE_BRUSH)
+ else:
+ dc.SetPen(MiterPen(wx.BLACK))
+ dc.SetBrush(wx.BLACK_BRUSH)
+ # Draw the start and end points if they are not connected or the mouse is over them
+ if len(self.Points) > 0 and (not self.StartConnected or self.OverStart):
+ dc.DrawCircle(self.Points[0].x, self.Points[0].y, POINT_RADIUS)
+ if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd):
+ dc.DrawCircle(self.Points[-1].x, self.Points[-1].y, POINT_RADIUS)
+ # Draw the wire lines and the last point (it seems that DrawLines stop before the last point)
+ if len(self.Points) > 1:
+ points = [wx.Point(self.Points[0].x - self.Segments[0][0], self.Points[0].y - self.Segments[0][1])]
+ points.extend([point for point in self.Points[1:-1]])
+ points.append(wx.Point(self.Points[-1].x + self.Segments[-1][0], self.Points[-1].y + self.Segments[-1][1]))
+ else:
+ points = []
+ dc.DrawLines(points)
+ # Draw the segment selected in red
+ if not getattr(dc, "printing", False) and self.SelectedSegment is not None:
+ dc.SetPen(MiterPen(wx.BLUE, 3))
+ if self.SelectedSegment == len(self.Segments) - 1:
+ end = 0
+ else:
+ end = 1
+ dc.DrawLine(self.Points[self.SelectedSegment].x - 1, self.Points[self.SelectedSegment].y,
+ self.Points[self.SelectedSegment + 1].x + end, self.Points[self.SelectedSegment + 1].y)
+ if self.Value is not None and not isinstance(self.Value, BooleanType) and self.Value != "undefined":
+ dc.SetFont(self.Parent.GetMiniFont())
+ dc.SetTextForeground(wx.NamedColour("purple"))
+ if self.ValueSize is None and isinstance(self.ComputedValue, (StringType, UnicodeType)):
+ self.ValueSize = self.Parent.GetMiniTextExtent(self.ComputedValue)
+ if self.ValueSize is not None:
+ width, height = self.ValueSize
+ if self.BoundingBox[2] > width * 4 or self.BoundingBox[3] > height * 4:
+ x = self.Points[0].x + width * (self.StartPoint[1][0] - 1) / 2
+ y = self.Points[0].y + height * (self.StartPoint[1][1] - 1)
+ dc.DrawText(self.ComputedValue, x, y)
+ x = self.Points[-1].x + width * (self.EndPoint[1][0] - 1) / 2
+ y = self.Points[-1].y + height * (self.EndPoint[1][1] - 1)
+ dc.DrawText(self.ComputedValue, x, y)
+ else:
+ middle = len(self.Segments) / 2 + len(self.Segments) % 2 - 1
+ x = (self.Points[middle].x + self.Points[middle + 1].x - width) / 2
+ if self.BoundingBox[3] > height and self.Segments[middle] in [NORTH, SOUTH]:
+ y = (self.Points[middle].y + self.Points[middle + 1].y - height) / 2
+ else:
+ y = self.Points[middle].y - height
+ dc.DrawText(self.ComputedValue, x, y)
+ dc.SetFont(self.Parent.GetFont())
+ dc.SetTextForeground(wx.BLACK)
+
+
+#-------------------------------------------------------------------------------
+# Graphic comment element
+#-------------------------------------------------------------------------------
+
+def FilterHighlightsByRow(highlights, row, length):
+ _highlights = []
+ for start, end, highlight_type in highlights:
+ if start[0] <= row and end[0] >= row:
+ if start[0] < row:
+ start = (row, 0)
+ if end[0] > row:
+ end = (row, length)
+ _highlights.append((start, end, highlight_type))
+ return _highlights
+
+def FilterHighlightsByColumn(highlights, start_col, end_col):
+ _highlights = []
+ for start, end, highlight_type in highlights:
+ if end[1] > start_col and start[1] < end_col:
+ start = (start[0], max(start[1], start_col) - start_col)
+ end = (end[0], min(end[1], end_col) - start_col)
+ _highlights.append((start, end, highlight_type))
+ return _highlights
+
+"""
+Class that implements a comment
+"""
+
+class Comment(Graphic_Element):
+
+ # Create a new comment
+ def __init__(self, parent, content, id = None):
+ Graphic_Element.__init__(self, parent)
+ self.Id = id
+ self.Content = content
+ self.Pos = wx.Point(0, 0)
+ self.Size = wx.Size(0, 0)
+ self.Highlights = []
+
+ # Make a clone of this comment
+ def Clone(self, parent, id = None, pos = None):
+ comment = Comment(parent, self.Content, id)
+ if pos is not None:
+ comment.SetPosition(pos.x, pos.y)
+ comment.SetSize(self.Size[0], self.Size[1])
+ return comment
+
+ # Method for keeping compatibility with others
+ def Clean(self):
+ pass
+
+ # Delete this comment by calling the corresponding method
+ def Delete(self):
+ self.Parent.DeleteComment(self)
+
+ # Refresh the comment bounding box
+ def RefreshBoundingBox(self):
+ self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
+
+ # Changes the comment size
+ def SetSize(self, width, height):
+ self.Size.SetWidth(width)
+ self.Size.SetHeight(height)
+ self.RefreshBoundingBox()
+
+ # Returns the comment size
+ def GetSize(self):
+ return self.Size.GetWidth(), self.Size.GetHeight()
+
+ # Returns the comment minimum size
+ def GetMinSize(self):
+ dc = wx.ClientDC(self.Parent)
+ min_width = 0
+ min_height = 0
+ # The comment minimum size is the maximum size of words in the content
+ for line in self.Content.splitlines():
+ for word in line.split(" "):
+ wordwidth, wordheight = dc.GetTextExtent(word)
+ min_width = max(min_width, wordwidth)
+ min_height = max(min_height, wordheight)
+ return min_width + 20, min_height + 20
+
+ # Changes the comment position
+ def SetPosition(self, x, y):
+ self.Pos.x = x
+ self.Pos.y = y
+ self.RefreshBoundingBox()
+
+ # Changes the comment content
+ def SetContent(self, content):
+ self.Content = content
+ min_width, min_height = self.GetMinSize()
+ self.Size[0] = max(self.Size[0], min_width)
+ self.Size[1] = max(self.Size[1], min_height)
+ self.RefreshBoundingBox()
+
+ # Returns the comment content
+ def GetContent(self):
+ return self.Content
+
+ # Returns the comment position
+ def GetPosition(self):
+ return self.Pos.x, self.Pos.y
+
+ # Moves the comment
+ def Move(self, dx, dy, connected = True):
+ self.Pos.x += dx
+ self.Pos.y += dy
+ self.RefreshBoundingBox()
+
+ # Resizes the comment with the position and the size given
+ def Resize(self, x, y, width, height):
+ self.Move(x, y)
+ self.SetSize(width, height)
+
+ # Method called when a RightUp event have been generated
+ def OnRightUp(self, event, dc, scaling):
+ # Popup the default menu
+ self.Parent.PopupDefaultMenu()
+
+ # Refreshes the wire state according to move defined and handle selected
+ def ProcessDragging(self, movex, movey, event, scaling):
+ if self.Parent.GetDrawingMode() != FREEDRAWING_MODE and self.Parent.CurrentLanguage == "LD":
+ movex = movey = 0
+ return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
+
+ # Refreshes the comment model
+ def RefreshModel(self, move=True):
+ self.Parent.RefreshCommentModel(self)
+
+ # Method called when a LeftDClick event have been generated
+ def OnLeftDClick(self, event, dc, scaling):
+ # Edit the comment content
+ self.Parent.EditCommentContent(self)
+
+ # Adds an highlight to the comment
+ def AddHighlight(self, infos, start, end, highlight_type):
+ if infos[0] == "content":
+ AddHighlight(self.Highlights, (start, end, highlight_type))
+
+ # Removes an highlight from the comment
+ def RemoveHighlight(self, infos, start, end, highlight_type):
+ RemoveHighlight(self.Highlights, (start, end, highlight_type))
+
+ # Removes all the highlights of one particular type from the comment
+ def ClearHighlight(self, highlight_type=None):
+ self.Highlights = ClearHighlights(self.Highlights, highlight_type)
+
+ # Draws the highlightment of this element if it is highlighted
+ def DrawHighlightment(self, dc):
+ scalex, scaley = dc.GetUserScale()
+ dc.SetUserScale(1, 1)
+ dc.SetPen(MiterPen(HIGHLIGHTCOLOR))
+ dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+ dc.SetLogicalFunction(wx.AND)
+
+ left = (self.Pos.x - 1) * scalex - 2
+ right = (self.Pos.x + self.Size[0] + 1) * scalex + 2
+ top = (self.Pos.y - 1) * scaley - 2
+ bottom = (self.Pos.y + self.Size[1] + 1) * scaley + 2
+ angle_top = (self.Pos.x + self.Size[0] - 9) * scalex + 2
+ angle_right = (self.Pos.y + 9) * scaley - 2
+
+ polygon = [wx.Point(left, top), wx.Point(angle_top, top),
+ wx.Point(right, angle_right), wx.Point(right, bottom),
+ wx.Point(left, bottom)]
+ dc.DrawPolygon(polygon)
+
+ dc.SetLogicalFunction(wx.COPY)
+ dc.SetUserScale(scalex, scaley)
+
+ # Draws the comment and its content
+ def Draw(self, dc):
+ Graphic_Element.Draw(self, dc)
+ dc.SetPen(MiterPen(wx.BLACK))
+ dc.SetBrush(wx.WHITE_BRUSH)
+ # Draws the comment shape
+ polygon = [wx.Point(self.Pos.x, self.Pos.y),
+ wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y),
+ wx.Point(self.Pos.x + self.Size[0], self.Pos.y + 10),
+ wx.Point(self.Pos.x + self.Size[0], self.Pos.y + self.Size[1]),
+ wx.Point(self.Pos.x, self.Pos.y + self.Size[1])]
+ dc.DrawPolygon(polygon)
+ lines = [wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y),
+ wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y + 10),
+ wx.Point(self.Pos.x + self.Size[0], self.Pos.y + 10)]
+ dc.DrawLines(lines)
+ # Draws the comment content
+ y = self.Pos.y + 10
+ for idx, line in enumerate(self.Content.splitlines()):
+ first = True
+ linetext = ""
+ words = line.split(" ")
+ if not getattr(dc, "printing", False):
+ highlights = FilterHighlightsByRow(self.Highlights, idx, len(line))
+ highlights_offset = 0
+ for i, word in enumerate(words):
+ if first:
+ text = word
+ else:
+ text = linetext + " " + word
+ wordwidth, wordheight = dc.GetTextExtent(text)
+ if y + wordheight > self.Pos.y + self.Size[1] - 10:
+ break
+ if wordwidth < self.Size[0] - 20:
+ if i < len(words) - 1:
+ linetext = text
+ first = False
+ else:
+ dc.DrawText(text, self.Pos.x + 10, y)
+ if not getattr(dc, "printing", False):
+ DrawHighlightedText(dc, text, FilterHighlightsByColumn(highlights, highlights_offset, highlights_offset + len(text)), self.Pos.x + 10, y)
+ highlights_offset += len(text) + 1
+ y += wordheight + 5
+ else:
+ if not first:
+ dc.DrawText(linetext, self.Pos.x + 10, y)
+ if not getattr(dc, "printing", False):
+ DrawHighlightedText(dc, linetext, FilterHighlightsByColumn(highlights, highlights_offset, highlights_offset + len(linetext)), self.Pos.x + 10, y)
+ highlights_offset += len(linetext) + 1
+ if first or i == len(words) - 1:
+ if not first:
+ y += wordheight + 5
+ if y + wordheight > self.Pos.y + self.Size[1] - 10:
+ break
+ dc.DrawText(word, self.Pos.x + 10, y)
+ if not getattr(dc, "printing", False):
+ DrawHighlightedText(dc, word, FilterHighlightsByColumn(highlights, highlights_offset, highlights_offset + len(word)), self.Pos.x + 10, y)
+ highlights_offset += len(word) + 1
+ else:
+ linetext = word
+ y += wordheight + 5
+ if y + wordheight > self.Pos.y + self.Size[1] - 10:
+ break
+