graphics/GraphicCommons.py
changeset 814 5743cbdff669
child 825 0623820aa14a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/graphics/GraphicCommons.py	Fri Sep 07 16:45:55 2012 +0200
@@ -0,0 +1,3269 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
+#based on the plcopen standard. 
+#
+#Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
+#
+#See COPYING file for copyrights details.
+#
+#This library is free software; you can redistribute it and/or
+#modify it under the terms of the GNU General Public
+#License as published by the Free Software Foundation; either
+#version 2.1 of the License, or (at your option) any later version.
+#
+#This library is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+#General Public License for more details.
+#
+#You should have received a copy of the GNU General Public
+#License along with this library; if not, write to the Free Software
+#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+
+import wx
+from time import time as gettime
+from math import *
+from types import *
+import datetime
+from threading import Semaphore
+
+#-------------------------------------------------------------------------------
+#                               Common constants
+#-------------------------------------------------------------------------------
+
+"""
+Definition of constants for dimensions of graphic elements
+"""
+
+# FBD and SFC constants
+MIN_MOVE = 5                            # Minimum move before starting a element dragging
+CONNECTOR_SIZE = 8                      # Size of connectors
+BLOCK_LINE_SIZE = 20                    # Minimum size of each line in a block
+HANDLE_SIZE = 6                         # Size of the squares for handles
+ANCHOR_DISTANCE = 5                     # Distance where wire is automativally attached to a connector
+POINT_RADIUS = 2                        # Radius of the point of wire ends
+MIN_SEGMENT_SIZE = 2                    # Minimum size of the endling segments of a wire
+
+# LD constants
+LD_LINE_SIZE = 40                       # Distance between two lines in a ladder rung
+LD_ELEMENT_SIZE = (21, 15)              # Size (width, height) of a ladder element (contact or coil)
+LD_WIRE_SIZE = 30                       # Size of a wire between two contact
+LD_WIRECOIL_SIZE = 70                   # Size of a wire between a coil and a contact
+LD_POWERRAIL_WIDTH = 3                  # Width of a Powerrail
+LD_OFFSET = (10, 10)                    # Distance (x, y) between each comment and rung of the ladder
+LD_COMMENT_DEFAULTSIZE = (600, 40)      # Size (width, height) of a comment box
+
+# SFC constants
+SFC_STEP_DEFAULT_SIZE = (40, 30)        # Default size of a SFC step
+SFC_TRANSITION_SIZE = (20, 2)           # Size of a SFC transition
+SFC_DEFAULT_SEQUENCE_INTERVAL = 40      # Default size of the interval between two divergence branches
+SFC_SIMULTANEOUS_SEQUENCE_EXTRA = 20    # Size of extra lines for simultaneous divergence and convergence
+SFC_JUMP_SIZE = (12, 13)                # Size of a SFC jump to step
+SFC_WIRE_MIN_SIZE = 25                  # Size of a wire between two elements
+SFC_ACTION_MIN_SIZE = (100, 30)         # Minimum size of an action block line
+
+# Type definition constants for graphic elements
+[INPUT, OUTPUT, INOUT] = range(3)
+[CONNECTOR, CONTINUATION] = range(2)
+[LEFTRAIL, RIGHTRAIL] = range(2)
+[CONTACT_NORMAL, CONTACT_REVERSE, CONTACT_RISING, CONTACT_FALLING] = range(4)
+[COIL_NORMAL, COIL_REVERSE, COIL_SET, COIL_RESET, COIL_RISING, COIL_FALLING] = range(6)
+[SELECTION_DIVERGENCE, SELECTION_CONVERGENCE, SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE] = range(4)
+
+# Constants for defining the type of dragging that has been selected
+[HANDLE_MOVE, HANDLE_RESIZE, HANDLE_POINT, HANDLE_SEGMENT, HANDLE_CONNECTOR] = range(5)
+
+# List of value for resize handle that are valid
+VALID_HANDLES = [(1,1), (1,2), (1,3), (2,3), (3,3), (3,2), (3,1), (2,1)]
+
+# Contants for defining the direction of a connector
+[EAST, NORTH, WEST, SOUTH] = [(1,0), (0,-1), (-1,0), (0,1)]
+
+# Contants for defining which mode is selected for each view 
+[MODE_SELECTION, MODE_BLOCK, MODE_VARIABLE, MODE_CONNECTION, MODE_COMMENT, 
+ MODE_COIL, MODE_CONTACT, MODE_POWERRAIL, MODE_INITIALSTEP, MODE_STEP, 
+ MODE_TRANSITION, MODE_DIVERGENCE, MODE_JUMP, MODE_ACTION, MODE_MOTION] = range(15)
+
+# Contants for defining alignment types for graphic group 
+[ALIGN_LEFT, ALIGN_CENTER, ALIGN_RIGHT, ALIGN_TOP, ALIGN_MIDDLE, ALIGN_BOTTOM] = range(6)
+
+# Contants for defining which drawing mode is selected for app
+[FREEDRAWING_MODE, DRIVENDRAWING_MODE] = [1, 2]
+
+# Color for Highlighting
+HIGHLIGHTCOLOR = wx.CYAN
+
+# Define highlight types
+ERROR_HIGHLIGHT = (wx.Colour(255, 255, 0), wx.RED)
+SEARCH_RESULT_HIGHLIGHT = (wx.Colour(255, 165, 0), wx.WHITE)
+
+# Define highlight refresh inhibition period in second
+REFRESH_HIGHLIGHT_PERIOD = 0.1
+
+# Define tooltip wait for displaying period in second
+TOOLTIP_WAIT_PERIOD = 0.5
+
+HANDLE_CURSORS = {
+    (1, 1) : 2,
+    (3, 3) : 2,
+    (1, 3) : 3,
+    (3, 1) : 3,
+    (1, 2) : 4,
+    (3, 2) : 4,
+    (2, 1) : 5,
+    (2, 3) : 5
+}
+
+def round_scaling(x, n, constraint=0):
+    fraction = float(x) / float(n)
+    if constraint == - 1:
+        xround = int(fraction)
+    else:
+        xround = round(fraction)
+        if constraint == 1 and int(fraction) == xround:
+            xround += 1
+    return xround * n
+
+"""
+Basic vector operations for calculate wire points
+"""
+
+# Create a vector from two points and define if vector must be normal
+def vector(p1, p2, normal = True):
+    vector = (p2.x - p1.x, p2.y - p1.y)
+    if normal:
+        return normalize(vector)
+    return vector
+
+# Calculate the norm of a given vector
+def norm(v):
+    return sqrt(v[0] * v[0] + v[1] * v[1])
+
+# Normalize a given vector
+def normalize(v):
+    v_norm = norm(v)
+    # Verifie if it is not a null vector
+    if v_norm > 0:
+        return (v[0] / v_norm, v[1] / v_norm)
+    else:
+        return v
+
+# Calculate the scalar product of two vectors
+def is_null_vector(v):
+    return v == (0, 0)
+
+# Calculate the scalar product of two vectors
+def add_vectors(v1, v2):
+    return (v1[0] + v2[0], v1[1] + v2[1])
+
+# Calculate the scalar product of two vectors
+def product(v1, v2):
+    return v1[0] * v2[0] + v1[1] * v2[1]
+
+
+"""
+Function that calculates the nearest point of the grid defined by scaling for the given point
+"""
+
+def GetScaledEventPosition(event, dc, scaling):
+    pos = event.GetLogicalPosition(dc)
+    if scaling:
+        pos.x = round(float(pos.x) / float(scaling[0])) * scaling[0]
+        pos.y = round(float(pos.y) / float(scaling[1])) * scaling[1]
+    return pos
+
+
+"""
+Function that choose a direction during the wire points generation
+"""
+
+def DirectionChoice(v_base, v_target, dir_target):
+    dir_product = product(v_base, v_target)
+    if dir_product < 0:
+        return (-v_base[0], -v_base[1])
+    elif dir_product == 0 and product(v_base, dir_target) != 0:
+        return dir_target
+    return v_base
+
+SECOND = 1000000
+MINUTE = 60 * SECOND
+HOUR = 60 * MINUTE
+DAY = 24 * HOUR
+
+def generate_time(value):
+    microseconds = float(value.days * DAY + value.seconds * SECOND + value.microseconds)
+    negative = microseconds < 0
+    microseconds = abs(microseconds)
+    data = "T#"
+    not_null = False
+    if negative:
+        data += "-"
+    for val, format in [(int(microseconds) / DAY, "%dd"),
+                        ((int(microseconds) % DAY) / HOUR, "%dh"),
+                        ((int(microseconds) % HOUR) / MINUTE, "%dm"),
+                        ((int(microseconds) % MINUTE) / SECOND, "%ds")]:
+        if val > 0 or not_null:
+            data += format % val
+            not_null = True
+    data += "%gms" % (microseconds % SECOND / 1000.)
+    return data
+
+def generate_date(value):
+    base_date = datetime.datetime(1970, 1, 1)
+    date = base_date + value 
+    return date.strftime("DATE#%Y-%m-%d")
+
+def generate_datetime(value):
+    base_date = datetime.datetime(1970, 1, 1)
+    date_time = base_date + value 
+    return date_time.strftime("DT#%Y-%m-%d-%H:%M:%S.%f")
+
+def generate_timeofday(value):
+    microseconds = float(value.days * DAY + value.seconds * SECOND + value.microseconds)
+    negative = microseconds < 0
+    microseconds = abs(microseconds)
+    data = "TOD#"
+    for val, format in [(int(microseconds) / HOUR, "%2.2d:"),
+                        ((int(microseconds) % HOUR) / MINUTE, "%2.2d:"),
+                        ((int(microseconds) % MINUTE) / SECOND, "%2.2d."),
+                        (microseconds % SECOND, "%6.6d")]:
+        data += format % val
+    return data
+
+TYPE_TRANSLATOR = {"TIME": generate_time,
+                   "DATE": generate_date,
+                   "DT": generate_datetime,
+                   "TOD": generate_timeofday}
+
+def MiterPen(colour, width=1, style=wx.SOLID):
+    pen = wx.Pen(colour, width, style)
+    pen.SetJoin(wx.JOIN_MITER)
+    pen.SetCap(wx.CAP_PROJECTING)
+    return pen
+
+#-------------------------------------------------------------------------------
+#                            Debug Data Consumer Class
+#-------------------------------------------------------------------------------
+
+class DebugDataConsumer:
+    
+    def __init__(self):
+        self.LastValue = None
+        self.Value = None
+        self.DataType = None
+        self.LastForced = False
+        self.Forced = False
+        self.Inhibited = False
+    
+    def Inhibit(self, inhibit):
+        self.Inhibited = inhibit
+        if not inhibit and self.LastValue is not None:
+            self.SetForced(self.LastForced)
+            self.SetValue(self.LastValue)
+            self.LastValue = None
+    
+    def SetDataType(self, data_type):
+        self.DataType = data_type
+    
+    def NewValue(self, tick, value, forced=False):
+        value = TYPE_TRANSLATOR.get(self.DataType, lambda x:x)(value)
+        if self.Inhibited:
+            self.LastValue = value
+            self.LastForced = forced
+        else:
+            self.SetForced(forced)
+            self.SetValue(value)
+    
+    def SetValue(self, value):
+        self.Value = value
+    
+    def GetValue(self):
+        return self.Value
+    
+    def SetForced(self, forced):
+        self.Forced = forced
+    
+    def IsForced(self):
+        return self.Forced
+
+#-------------------------------------------------------------------------------
+#                               Debug Viewer Class
+#-------------------------------------------------------------------------------
+
+REFRESH_PERIOD = 0.1
+
+class DebugViewer:
+    
+    def __init__(self, producer, debug, register_tick=True):
+        self.DataProducer = None
+        self.Debug = debug
+        self.RegisterTick = register_tick
+        self.Inhibited = False
+        
+        self.DataConsumers = {}
+        
+        self.LastRefreshTime = gettime()
+        self.RefreshLock = Semaphore()
+        
+        self.RefreshTimer = wx.Timer(self, -1)
+        self.Bind(wx.EVT_TIMER, self.OnRefreshTimer, self.RefreshTimer)
+        
+        self.SetDataProducer(producer)
+        
+    def __del__(self):
+        self.DataProducer = None
+        self.DeleteDataConsumers()
+        self.RefreshTimer.Stop()
+    
+    def SetDataProducer(self, producer):
+        if self.RegisterTick and self.Debug:
+            if producer is not None:
+                producer.SubscribeDebugIECVariable("__tick__", self)
+            if self.DataProducer is not None:
+                self.DataProducer.UnsubscribeDebugIECVariable("__tick__", self)        
+        self.DataProducer = producer
+    
+    def IsDebugging(self):
+        return self.Debug
+    
+    def Inhibit(self, inhibit):
+        for consumer, iec_path in self.DataConsumers.iteritems():
+            consumer.Inhibit(inhibit)
+        self.Inhibited = inhibit
+    
+    def AddDataConsumer(self, iec_path, consumer):
+        if self.DataProducer is None:
+            return None
+        result = self.DataProducer.SubscribeDebugIECVariable(iec_path, consumer)
+        if result is not None and consumer != self:
+            self.DataConsumers[consumer] = iec_path
+            consumer.SetDataType(self.GetDataType(iec_path))
+        return result
+    
+    def RemoveDataConsumer(self, consumer):
+        iec_path = self.DataConsumers.pop(consumer, None)
+        if iec_path is not None:
+            self.DataProducer.UnsubscribeDebugIECVariable(iec_path, consumer)
+    
+    def GetDataType(self, iec_path):
+        if self.DataProducer is not None:
+            return self.DataProducer.GetDebugIECVariableType(iec_path)
+        return None
+    
+    def ForceDataValue(self, iec_path, value):
+        if self.DataProducer is not None:
+            self.DataProducer.ForceDebugIECVariable(iec_path, value)
+    
+    def ReleaseDataValue(self, iec_path):
+        if self.DataProducer is not None:
+            self.DataProducer.ReleaseDebugIECVariable(iec_path)
+    
+    def DeleteDataConsumers(self):
+        if self.DataProducer is not None:
+            for consumer, iec_path in self.DataConsumers.iteritems():
+                self.DataProducer.UnsubscribeDebugIECVariable(iec_path, consumer)
+        self.DataConsumers = {}
+    
+    def OnRefreshTimer(self, event):
+        self.RefreshNewData()
+        event.Skip()
+    
+    def NewDataAvailable(self, *args, **kwargs):
+        self.RefreshTimer.Stop()
+        if not self.Inhibited:
+            current_time = gettime()
+            if current_time - self.LastRefreshTime > REFRESH_PERIOD and self.RefreshLock.acquire(False):
+                self.LastRefreshTime = gettime()
+                self.Inhibit(True)
+                wx.CallAfter(self.RefreshViewOnNewData, *args, **kwargs)
+            
+    def RefreshViewOnNewData(self, *args, **kwargs):
+        if self:
+            self.RefreshNewData(*args, **kwargs)
+            self.RefreshTimer.Start(int(REFRESH_PERIOD * 1000), oneShot=True)
+    
+    def RefreshNewData(self, *args, **kwargs):
+        self.Inhibit(False)
+        self.RefreshLock.release()
+        
+#-------------------------------------------------------------------------------
+#                               Viewer Rubberband
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a rubberband
+"""
+
+class RubberBand:
+    
+    # Create a rubberband by indicated on which window it must be drawn
+    def __init__(self, viewer):
+        self.Viewer = viewer
+        self.drawingSurface = viewer.Editor
+        self.Reset()
+    
+    # Method that initializes the internal attributes of the rubberband
+    def Reset(self):
+        self.startPoint = None
+        self.currentBox = None
+        self.lastBox = None
+    
+    # Method that return if a box is currently edited
+    def IsShown(self):
+        return self.currentBox != None
+    
+    # Method that returns the currently edited box
+    def GetCurrentExtent(self):
+        if self.currentBox is None:
+            return self.lastBox
+        return self.currentBox
+    
+    # Method called when a new box starts to be edited
+    def OnLeftDown(self, event, dc, scaling):
+        pos = GetScaledEventPosition(event, dc, scaling)
+        # Save the point for calculate the box position and size
+        self.startPoint = pos
+        self.currentBox = wx.Rect(pos.x, pos.y, 0, 0)
+        self.drawingSurface.SetCursor(wx.StockCursor(wx.CURSOR_CROSS))
+        self.Redraw()
+    
+    # Method called when dragging with a box edited
+    def OnMotion(self, event, dc, scaling):
+        pos = GetScaledEventPosition(event, dc, scaling)
+        # Save the last position and size of the box for erasing it
+        self.lastBox = wx.Rect(self.currentBox.x, self.currentBox.y, self.currentBox.width,
+            self.currentBox.height)
+        # Calculate new position and size of the box 
+        if pos.x >= self.startPoint.x:
+            self.currentBox.x = self.startPoint.x
+            self.currentBox.width = pos.x - self.startPoint.x + 1
+        else:
+            self.currentBox.x = pos.x
+            self.currentBox.width = self.startPoint.x - pos.x + 1
+        if pos.y >= self.startPoint.y:
+            self.currentBox.y = self.startPoint.y
+            self.currentBox.height = pos.y - self.startPoint.y + 1
+        else:
+            self.currentBox.y = pos.y
+            self.currentBox.height = self.startPoint.y - pos.y + 1
+        self.Redraw()
+    
+    # Method called when dragging is stopped
+    def OnLeftUp(self, event, dc, scaling):
+        self.drawingSurface.SetCursor(wx.NullCursor)
+        self.lastBox = self.currentBox
+        self.currentBox = None
+        self.Redraw()
+
+    # Method that erase the last box and draw the new box
+    def Redraw(self, dc = None):
+        if dc is None:
+            dc = self.Viewer.GetLogicalDC()
+        scalex, scaley = dc.GetUserScale()
+        dc.SetUserScale(1, 1)
+        dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
+        dc.SetBrush(wx.TRANSPARENT_BRUSH)
+        dc.SetLogicalFunction(wx.XOR)
+        if self.lastBox:
+            # Erase last box
+            dc.DrawRectangle(self.lastBox.x * scalex, self.lastBox.y * scaley, 
+                             self.lastBox.width * scalex, self.lastBox.height * scaley)
+        if self.currentBox:
+            # Draw current box
+            dc.DrawRectangle(self.currentBox.x * scalex, self.currentBox.y * scaley, 
+                             self.currentBox.width * scalex, self.currentBox.height * scaley)
+        dc.SetUserScale(scalex, scaley)
+    
+    # Erase last box
+    def Erase(self, dc = None):
+        if dc is None:
+            dc = self.Viewer.GetLogicalDC()
+        scalex, scaley = dc.GetUserScale()
+        dc.SetUserScale(1, 1)
+        dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
+        dc.SetBrush(wx.TRANSPARENT_BRUSH)
+        dc.SetLogicalFunction(wx.XOR)
+        if self.lastBox:
+            dc.DrawRectangle(self.lastBox.x * scalex, self.lastBox.y * scaley, 
+                             self.lastBox.width * scalex, self.lastBox.height * scalex)
+        dc.SetUserScale(scalex, scaley)
+
+    # Draw current box
+    def Draw(self, dc = None):
+        if dc is None:
+            dc = self.Viewer.GetLogicalDC()
+        scalex, scaley = dc.GetUserScale()
+        dc.SetUserScale(1, 1)
+        dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
+        dc.SetBrush(wx.TRANSPARENT_BRUSH)
+        dc.SetLogicalFunction(wx.XOR)
+        if self.currentBox:
+            # Draw current box
+            dc.DrawRectangle(self.currentBox.x * scalex, self.currentBox.y * scaley, 
+                             self.currentBox.width * scalex, self.currentBox.height * scaley)
+        dc.SetUserScale(scalex, scaley)
+
+#-------------------------------------------------------------------------------
+#                               Viewer ToolTip
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a custom tool tip
+"""
+
+if wx.Platform == '__WXMSW__':
+    faces = { 'times': 'Times New Roman',
+              'mono' : 'Courier New',
+              'helv' : 'Arial',
+              'other': 'Comic Sans MS',
+              'size' : 10,
+             }
+else:
+    faces = { 'times': 'Times',
+              'mono' : 'Courier',
+              'helv' : 'Helvetica',
+              'other': 'new century schoolbook',
+              'size' : 12,
+             }
+
+TOOLTIP_MAX_CHARACTERS = 30
+TOOLTIP_MAX_LINE = 5
+
+class ToolTip(wx.PopupWindow):
+    
+    def __init__(self, parent, tip):
+        wx.PopupWindow.__init__(self, parent)
+        
+        self.CurrentPosition = wx.Point(0, 0)
+        
+        self.SetBackgroundStyle(wx.BG_STYLE_CUSTOM)
+        self.SetTip(tip)
+        
+        self.Bind(wx.EVT_PAINT, self.OnPaint)
+        
+    def SetTip(self, tip):
+        lines = []
+        for line in tip.splitlines():
+            if line != "":
+                words = line.split()
+                new_line = words[0]
+                for word in words[1:]:
+                    if len(new_line + " " + word) <= TOOLTIP_MAX_CHARACTERS:
+                        new_line += " " + word
+                    else:
+                        lines.append(new_line)
+                        new_line = word
+                lines.append(new_line)
+            else:
+                lines.append(line)
+        if len(lines) > TOOLTIP_MAX_LINE:
+            self.Tip = lines[:TOOLTIP_MAX_LINE]
+            if len(self.Tip[-1]) < TOOLTIP_MAX_CHARACTERS - 3:
+                self.Tip[-1] += "..."
+            else:
+                self.Tip[-1] = self.Tip[-1][:TOOLTIP_MAX_CHARACTERS - 3] + "..."
+        else:
+            self.Tip = lines
+        wx.CallAfter(self.RefreshTip)
+    
+    def MoveToolTip(self, pos):
+        self.CurrentPosition = pos
+        self.SetPosition(pos)
+    
+    def GetTipExtent(self):
+        max_width = 0
+        max_height = 0
+        for line in self.Tip:
+            w, h = self.GetTextExtent(line)
+            max_width = max(max_width, w)
+            max_height += h
+        return max_width, max_height
+    
+    def RefreshTip(self):
+        if self:
+            w, h = self.GetTipExtent()
+            self.SetSize(wx.Size(w + 4, h + 4))
+            self.SetPosition(self.CurrentPosition)
+            self.Refresh()
+        
+    def OnPaint(self, event):
+        dc = wx.AutoBufferedPaintDC(self)
+        dc.Clear()
+        dc.SetPen(MiterPen(wx.BLACK))
+        dc.SetBrush(wx.Brush(wx.Colour(255, 238, 170)))
+        dc.SetFont(wx.Font(faces["size"], wx.SWISS, wx.NORMAL, wx.NORMAL, faceName = faces["mono"]))
+        dc.BeginDrawing()
+        w, h = self.GetTipExtent()
+        dc.DrawRectangle(0, 0, w + 4, h + 4)
+        offset = 0
+        for line in self.Tip:
+            dc.DrawText(line, 2, offset + 2)
+            w, h = dc.GetTextExtent(line)
+            offset += h
+        dc.EndDrawing()
+        event.Skip()
+
+#-------------------------------------------------------------------------------
+#                    Helpers for highlighting text
+#-------------------------------------------------------------------------------
+
+def AddHighlight(highlights, infos):
+    RemoveHighlight(highlights, infos)
+    highlights.append(infos)
+
+def RemoveHighlight(highlights, infos):
+    if infos in highlights:
+        highlights.remove(infos)
+        return True
+    return False
+
+def ClearHighlight(highlights, highlight_type=None):
+    if highlight_type is not None:
+        return [highlight for highlight in highlights if highlight[2] != highlight_type]
+    return []
+
+def DrawHighlightedText(dc, text, highlights, x, y):
+    current_pen = dc.GetPen()
+    dc.SetPen(wx.TRANSPARENT_PEN)
+    for start, end, highlight_type in highlights:
+        dc.SetBrush(wx.Brush(highlight_type[0]))
+        offset_width, offset_height = dc.GetTextExtent(text[:start[1]])
+        part = text[start[1]:end[1] + 1]
+        part_width, part_height = dc.GetTextExtent(part)
+        dc.DrawRectangle(x + offset_width, y, part_width, part_height)
+        dc.SetTextForeground(highlight_type[1])
+        dc.DrawText(part, x + offset_width, y)
+    dc.SetPen(current_pen)
+    dc.SetTextForeground(wx.BLACK)
+    
+#-------------------------------------------------------------------------------
+#                           Graphic element base class
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a generic graphic element
+"""
+
+class Graphic_Element:
+    
+    # Create a new graphic element
+    def __init__(self, parent, id = None):
+        self.Parent = parent
+        self.Id = id
+        self.oldPos = None
+        self.StartPos = None
+        self.CurrentDrag = None
+        self.Handle = (None,None)
+        self.Dragging = False
+        self.Selected = False
+        self.Highlighted = False
+        self.Pos = wx.Point(0, 0)
+        self.Size = wx.Size(0, 0)
+        self.BoundingBox = wx.Rect(0, 0, 0, 0)
+        self.Visible = False
+        self.ToolTip = None
+        self.ToolTipPos = None
+        self.ToolTipTimer = wx.Timer(self.Parent, -1)
+        self.Parent.Bind(wx.EVT_TIMER, self.OnToolTipTimer, self.ToolTipTimer)
+    
+    def __del__(self):
+        self.ToolTipTimer.Stop()
+    
+    def GetDefinition(self):
+        return [self.Id], []
+    
+    def TestVisible(self, screen):
+        self.Visible = self.GetRedrawRect().Intersects(screen)
+    
+    def IsVisible(self):
+        return self.Visible
+    
+    def SpreadCurrent(self):
+        pass
+    
+    def GetConnectorTranslation(self, element):
+        return {}
+    
+    def FindNearestConnector(self, position, connectors):
+        distances = []
+        for connector in connectors:
+            connector_pos = connector.GetRelPosition()
+            distances.append((sqrt((self.Pos.x + connector_pos.x - position.x) ** 2 +
+                                   (self.Pos.y + connector_pos.y - position.y) ** 2),
+                              connector))
+        distances.sort()
+        if len(distances) > 0:
+            return distances[0][1]
+        return None
+        
+    def IsOfType(self, type, reference):
+        return self.Parent.IsOfType(type, reference)
+    
+    def IsEndType(self, type):
+        return self.Parent.IsEndType(type)
+        
+    def GetDragging(self):
+        return self.Dragging
+    
+    # Make a clone of this element
+    def Clone(self, parent):
+        return Graphic_Element(parent, self.Id)
+    
+    # Changes the block position
+    def SetPosition(self, x, y):
+        self.Pos.x = x
+        self.Pos.y = y
+        self.RefreshConnected()
+        self.RefreshBoundingBox()
+
+    # Returns the block position
+    def GetPosition(self):
+        return self.Pos.x, self.Pos.y
+    
+    # Changes the element size
+    def SetSize(self, width, height):
+        self.Size.SetWidth(width)
+        self.Size.SetHeight(height)
+        self.RefreshConnectors()
+        self.RefreshBoundingBox()
+
+    # Returns the element size
+    def GetSize(self):
+        return self.Size.GetWidth(), self.Size.GetHeight()
+    
+    # Returns the minimum element size
+    def GetMinSize(self):
+        return 0, 0
+    
+    # Refresh the element Bounding Box
+    def RefreshBoundingBox(self):
+        self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1])
+    
+    # Refresh the element connectors position
+    def RefreshConnectors(self):
+        pass
+    
+    # Refresh the position of wires connected to element inputs and outputs
+    def RefreshConnected(self):
+        pass
+    
+    # Change the parent
+    def SetParent(self, parent):
+        self.Parent = parent
+    
+    # Override this method for defining the method to call for deleting this element
+    def Delete(self):
+        pass
+    
+    # Returns the Id
+    def GetId(self):
+        return self.Id
+    
+    # Returns if the point given is in the bounding box
+    def HitTest(self, pt, connectors=True):
+        if connectors:
+            rect = self.BoundingBox
+        else:
+            rect = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1])
+        return rect.InsideXY(pt.x, pt.y)
+    
+    # Returns if the point given is in the bounding box
+    def IsInSelection(self, rect):
+        return rect.InsideXY(self.BoundingBox.x, self.BoundingBox.y) and rect.InsideXY(self.BoundingBox.x + self.BoundingBox.width, self.BoundingBox.y + self.BoundingBox.height)
+    
+    # Override this method for refreshing the bounding box
+    def RefreshBoundingBox(self):
+        pass
+    
+    # Returns the bounding box
+    def GetBoundingBox(self):
+        return self.BoundingBox
+    
+    # Returns the RedrawRect
+    def GetRedrawRect(self, movex = 0, movey = 0):
+        scalex, scaley = self.Parent.GetViewScale()
+        rect = wx.Rect()
+        rect.x = self.BoundingBox.x - int(HANDLE_SIZE / scalex) - 3 - abs(movex)
+        rect.y = self.BoundingBox.y - int(HANDLE_SIZE / scaley) - 3 - abs(movey)
+        rect.width = self.BoundingBox.width + 2 * (int(HANDLE_SIZE / scalex) + abs(movex) + 1) + 4
+        rect.height = self.BoundingBox.height + 2 * (int(HANDLE_SIZE / scaley) + abs(movey) + 1) + 4
+        return rect
+    
+    def Refresh(self, rect = None):
+        if self.Visible:
+            if rect is not None:
+                self.Parent.RefreshRect(self.Parent.GetScrolledRect(rect), False)
+            else:
+                self.Parent.RefreshRect(self.Parent.GetScrolledRect(self.GetRedrawRect()), False)
+    
+    # Change the variable that indicates if this element is selected
+    def SetSelected(self, selected):
+        self.Selected = selected
+        self.Refresh()
+    
+    # Change the variable that indicates if this element is highlighted
+    def SetHighlighted(self, highlighted):
+        self.Highlighted = highlighted
+        self.Refresh()
+    
+    # Test if the point is on a handle of this element
+    def TestHandle(self, event):
+        dc = self.Parent.GetLogicalDC()
+        scalex, scaley = dc.GetUserScale()
+        pos = event.GetPosition()
+        pt = wx.Point(*self.Parent.CalcUnscrolledPosition(pos.x, pos.y))
+        
+        left = (self.BoundingBox.x - 2) * scalex - HANDLE_SIZE
+        center = (self.BoundingBox.x + self.BoundingBox.width / 2) * scalex - HANDLE_SIZE / 2
+        right = (self.BoundingBox.x + self.BoundingBox.width + 2) * scalex
+        
+        top = (self.BoundingBox.y - 2) * scaley - HANDLE_SIZE
+        middle = (self.BoundingBox.y + self.BoundingBox.height / 2) * scaley - HANDLE_SIZE / 2
+        bottom = (self.BoundingBox.y + self.BoundingBox.height + 2) * scaley
+        
+        extern_rect = wx.Rect(left, top, right + HANDLE_SIZE - left, bottom + HANDLE_SIZE - top)
+        intern_rect = wx.Rect(left + HANDLE_SIZE, top + HANDLE_SIZE, right - left - HANDLE_SIZE, bottom - top - HANDLE_SIZE)
+        
+        # Verify that this element is selected
+        if self.Selected and extern_rect.InsideXY(pt.x, pt.y) and not intern_rect.InsideXY(pt.x, pt.y):
+            # Find if point is on a handle horizontally
+            if left <= pt.x < left + HANDLE_SIZE:
+                handle_x = 1
+            elif center <= pt.x < center + HANDLE_SIZE:
+                handle_x = 2
+            elif right <= pt.x < right + HANDLE_SIZE:
+                handle_x = 3
+            else:
+                handle_x = 0
+            # Find if point is on a handle vertically
+            if top <= pt.y < top + HANDLE_SIZE:
+                handle_y = 1
+            elif middle <= pt.y < middle + HANDLE_SIZE:
+                handle_y = 2
+            elif bottom <= pt.y < bottom + HANDLE_SIZE:
+                handle_y = 3
+            else:
+                handle_y = 0
+            # Verify that the result is valid
+            if (handle_x, handle_y) in VALID_HANDLES:
+                return handle_x, handle_y
+        return 0, 0
+    
+    # Method called when a LeftDown event have been generated
+    def OnLeftDown(self, event, dc, scaling):
+        pos = event.GetLogicalPosition(dc)
+        # Test if an handle have been clicked
+        handle = self.TestHandle(event)
+        # Find which type of handle have been clicked,
+        # Save a resize event and change the cursor
+        cursor = HANDLE_CURSORS.get(handle, 1)
+        wx.CallAfter(self.Parent.SetCurrentCursor, cursor)
+        if cursor > 1:
+            self.Handle = (HANDLE_RESIZE, handle)
+        else:
+            self.Handle = (HANDLE_MOVE, None)
+            self.SetSelected(False)
+        # Initializes the last position
+        self.oldPos = GetScaledEventPosition(event, dc, scaling)
+        self.StartPos = wx.Point(self.Pos.x, self.Pos.y)
+        self.CurrentDrag = wx.Point(0, 0)
+    
+    # Method called when a LeftUp event have been generated
+    def OnLeftUp(self, event, dc, scaling):
+        # If a dragging have been initiated
+        if self.Dragging and self.oldPos:
+            self.RefreshModel()
+            self.Parent.RefreshBuffer()
+        wx.CallAfter(self.Parent.SetCurrentCursor, 0)
+        self.SetSelected(True)
+        self.oldPos = None
+
+    # Method called when a RightDown event have been generated
+    def OnRightDown(self, event, dc, scaling):
+        pass
+
+    # Method called when a RightUp event have been generated
+    def OnRightUp(self, event, dc, scaling):
+        if self.Dragging and self.oldPos:
+            self.RefreshModel()
+            self.Parent.RefreshBuffer()
+        wx.CallAfter(self.Parent.SetCurrentCursor, 0)
+        self.SetSelected(True)
+        self.oldPos = None
+        if self.Parent.Debug:
+            self.Parent.PopupForceMenu()
+
+    # Method called when a LeftDClick event have been generated
+    def OnLeftDClick(self, event, dc, scaling):
+        pass
+    
+    # Method called when a Motion event have been generated
+    def OnMotion(self, event, dc, scaling):
+        # If the cursor is dragging and the element have been clicked
+        if event.Dragging() and self.oldPos:
+            # Calculate the movement of cursor
+            pos = event.GetLogicalPosition(dc)
+            movex = pos.x - self.oldPos.x
+            movey = pos.y - self.oldPos.y
+            # If movement is greater than MIN_MOVE then a dragging is initiated
+            if not self.Dragging and (abs(movex) > MIN_MOVE or abs(movey) > MIN_MOVE):
+                self.Dragging = True
+            # If a dragging have been initiated, refreshes the element state
+            if self.Dragging:
+                dragx, dragy = self.ProcessDragging(movex, movey, event, scaling)
+                if event.ControlDown() and self.Handle[0] == HANDLE_MOVE:
+                    self.oldPos.x = self.StartPos.x + self.CurrentDrag.x
+                    self.oldPos.y = self.StartPos.y + self.CurrentDrag.y
+                else:
+                    self.oldPos.x += dragx
+                    self.oldPos.y += dragy
+                return dragx, dragy
+            return movex, movey
+        # If cursor just pass over the element, changes the cursor if it is on a handle
+        else:
+            pos = event.GetLogicalPosition(dc)
+            handle = self.TestHandle(event)
+            # Find which type of handle have been clicked,
+            # Save a resize event and change the cursor
+            cursor = HANDLE_CURSORS.get(handle, 0)
+            wx.CallAfter(self.Parent.SetCurrentCursor, cursor)
+            return 0, 0
+
+    # Moves the element
+    def Move(self, dx, dy, exclude = []):
+        self.Pos.x += max(-self.BoundingBox.x, dx)
+        self.Pos.y += max(-self.BoundingBox.y, dy)
+        self.RefreshConnected(exclude)
+        self.RefreshBoundingBox()
+    
+    # Resizes the element from position and size given
+    def Resize(self, x, y, width, height):
+        self.Move(x, y)
+        self.SetSize(width, height)
+    
+    # Moves and Resizes the element for fitting scaling
+    def AdjustToScaling(self, scaling):
+        if scaling is not None:
+            movex = round_scaling(self.Pos.x, scaling[0]) - self.Pos.x
+            movey = round_scaling(self.Pos.y, scaling[1]) - self.Pos.y
+            min_width, min_height = self.GetMinSize()
+            width = max(round_scaling(min_width, scaling[0], 1),
+                        round_scaling(self.Size.width, scaling[0]))
+            height = max(round_scaling(min_height, scaling[1], 1),
+                         round_scaling(self.Size.height, scaling[1]))
+            self.Resize(movex, movey, width, height)
+            return movex, movey
+        return 0, 0
+    
+    # Refreshes the element state according to move defined and handle selected
+    def ProcessDragging(self, movex, movey, event, scaling, width_fac = 1, height_fac = 1):
+        handle_type, handle = self.Handle
+        # If it is a resize handle, calculate the values from resizing
+        if handle_type == HANDLE_RESIZE:
+            if scaling is not None:
+                scaling = (scaling[0] * width_fac, scaling[1] * height_fac)
+            x = y = start_x = start_y = 0
+            width, height = start_width, start_height = self.GetSize()
+            if handle[0] == 1:
+                movex = max(-self.BoundingBox.x, movex)
+                if scaling is not None:
+                    movex = -(round_scaling(width - movex, scaling[0]) - width)
+                x = movex
+                if event.ShiftDown():
+                    width -= 2 * movex
+                else:
+                    width -= movex
+            elif handle[0] == 3:
+                if scaling is not None:
+                    movex = round_scaling(width + movex, scaling[0]) - width
+                if event.ShiftDown():
+                    movex = min(self.BoundingBox.x, movex)
+                    x = -movex
+                    width += 2 * movex
+                else:
+                    width += movex
+            if handle[1] == 1:
+                movey = max(-self.BoundingBox.y, movey)
+                if scaling is not None:
+                    movey = -(round_scaling(height - movey, scaling[1]) - height)
+                y = movey
+                if event.ShiftDown():
+                    height -= 2 * movey
+                else:
+                    height -= movey
+            elif handle[1] == 3:
+                if scaling is not None:
+                    movey = round_scaling(height + movey, scaling[1]) - height
+                if event.ShiftDown():
+                    movey = min(self.BoundingBox.y, movey)
+                    y = -movey
+                    height += 2 * movey
+                else:
+                    height += movey
+            # Verify that new size is not lesser than minimum
+            min_width, min_height = self.GetMinSize()
+            if handle[0] != 2 and (width >= min_width or width > self.Size[0]):
+                start_x = x
+                start_width = width
+            else:
+                movex = 0
+            if handle[1] != 2 and (height >= min_height or height > self.Size[1]):
+                start_y = y
+                start_height = height
+            else:
+                movey = 0
+            if movex != 0 or movey != 0:
+                self.Resize(start_x, start_y, start_width, start_height)
+            return movex, movey
+        # If it is a move handle, Move this element
+        elif handle_type == HANDLE_MOVE:
+            movex = max(-self.BoundingBox.x, movex)
+            movey = max(-self.BoundingBox.y, movey)
+            if scaling is not None:
+                movex = round_scaling(self.Pos.x + movex, scaling[0]) - self.Pos.x
+                movey = round_scaling(self.Pos.y + movey, scaling[1]) - self.Pos.y
+            if event.ControlDown():
+                self.CurrentDrag.x = self.CurrentDrag.x + movex
+                self.CurrentDrag.y = self.CurrentDrag.y + movey
+                if abs(self.CurrentDrag.x) > abs(self.CurrentDrag.y):
+                    movex = self.StartPos.x + self.CurrentDrag.x - self.Pos.x
+                    movey = self.StartPos.y - self.Pos.y
+                else:
+                    movex = self.StartPos.x - self.Pos.x
+                    movey = self.StartPos.y + self.CurrentDrag.y - self.Pos.y   
+            self.Move(movex, movey)
+            return movex, movey
+        return 0, 0
+    
+    def OnToolTipTimer(self, event):
+        value = self.GetToolTipValue()
+        if value is not None and self.ToolTipPos is not None:
+            self.ToolTip = ToolTip(self.Parent, value)
+            self.ToolTip.MoveToolTip(self.ToolTipPos)
+            self.ToolTip.Show()
+        
+    def GetToolTipValue(self):
+        return None
+    
+    def CreateToolTip(self, pos):
+        value = self.GetToolTipValue()
+        if value is not None:
+            self.ToolTipPos = pos
+            self.ToolTipTimer.Start(int(TOOLTIP_WAIT_PERIOD * 1000), oneShot=True)
+        
+    def MoveToolTip(self, pos):
+        if self.ToolTip is not None:
+            self.ToolTip.MoveToolTip(pos)
+        elif self.ToolTipPos is not None:
+            self.ToolTipPos = pos
+            self.ToolTipTimer.Start(int(TOOLTIP_WAIT_PERIOD * 1000), oneShot=True)
+    
+    def ClearToolTip(self):
+        self.ToolTipTimer.Stop()
+        self.ToolTipPos = None
+        if self.ToolTip is not None:
+            self.ToolTip.Destroy()
+            self.ToolTip = None
+    
+    # Override this method for defining the method to call for adding an highlight to this element
+    def AddHighlight(self, infos, start, end, highlight_type):
+        pass
+    
+    # Override this method for defining the method to call for removing an highlight from this element
+    def RemoveHighlight(self, infos, start, end, highlight_type):
+        pass
+    
+    # Override this method for defining the method to call for removing all the highlights of one particular type from this element
+    def ClearHighlight(self, highlight_type=None):
+        pass
+    
+    # Override this method for defining the method to call for refreshing the model of this element
+    def RefreshModel(self, move=True):
+        pass
+    
+    # Draws the highlightment of this element if it is highlighted (can be overwritten)
+    def DrawHighlightment(self, dc):
+        scalex, scaley = dc.GetUserScale()
+        dc.SetUserScale(1, 1)
+        dc.SetPen(MiterPen(HIGHLIGHTCOLOR))
+        dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+        dc.SetLogicalFunction(wx.AND)
+        dc.DrawRectangle(int(round((self.Pos.x - 1) * scalex)) - 2, 
+                         int(round((self.Pos.y - 1) * scaley)) - 2, 
+                         int(round((self.Size.width + 3) * scalex)) + 5, 
+                         int(round((self.Size.height + 3) * scaley)) + 5)
+        dc.SetLogicalFunction(wx.COPY)
+        dc.SetUserScale(scalex, scaley)
+    
+    # Draws the handles of this element if it is selected
+    def Draw(self, dc):
+        if not getattr(dc, "printing", False):
+            if self.Highlighted:
+                self.DrawHighlightment(dc)
+            if self.Selected:
+                scalex, scaley = dc.GetUserScale()
+                dc.SetUserScale(1, 1)
+                dc.SetPen(MiterPen(wx.BLACK))
+                dc.SetBrush(wx.BLACK_BRUSH)
+                
+                left = (self.BoundingBox.x - 2) * scalex - HANDLE_SIZE
+                center = (self.BoundingBox.x + self.BoundingBox.width / 2) * scalex - HANDLE_SIZE / 2
+                right = (self.BoundingBox.x + self.BoundingBox.width + 2) * scalex
+                
+                top = (self.BoundingBox.y - 2) * scaley - HANDLE_SIZE
+                middle = (self.BoundingBox.y + self.BoundingBox.height / 2) * scaley - HANDLE_SIZE / 2
+                bottom = (self.BoundingBox.y + self.BoundingBox.height + 2) * scaley
+                
+                for x, y in [(left, top), (center, top), (right, top),
+                             (left, middle), (right, middle),
+                             (left, bottom), (center, bottom), (right, bottom)]:
+                    dc.DrawRectangle(x, y, HANDLE_SIZE, HANDLE_SIZE)
+                
+                dc.SetUserScale(scalex, scaley)
+
+
+#-------------------------------------------------------------------------------
+#                           Group of graphic elements
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a group of graphic elements
+"""
+
+class Graphic_Group(Graphic_Element):
+    
+    # Create a new group of graphic elements
+    def __init__(self, parent):
+        Graphic_Element.__init__(self, parent)
+        self.Elements = []
+        self.RefreshWireExclusion()
+        self.RefreshBoundingBox()
+    
+    # Destructor
+    def __del__(self):
+        self.Elements = []
+    
+    def GetDefinition(self):
+        blocks = [] 
+        wires = []
+        for element in self.Elements:
+            block, wire = element.GetDefinition()
+            blocks.extend(block)
+            wires.extend(wire)
+        return blocks, wires
+    
+    # Make a clone of this element
+    def Clone(self, parent, pos = None):
+        group = Graphic_Group(parent)
+        connectors = {}
+        exclude_names = {}
+        wires = []
+        if pos is not None:
+            dx, dy = pos.x - self.BoundingBox.x, pos.y - self.BoundingBox.y
+        for element in self.Elements:
+            if isinstance(element, Wire):
+                wires.append(element)
+            else:
+                if pos is not None:
+                    x, y = element.GetPosition()
+                    new_pos = wx.Point(x + dx, y + dy)
+                    newid = parent.GetNewId()
+                    if parent.IsNamedElement(element):
+                        name = parent.GenerateNewName(element, exclude_names)
+                        exclude_names[name.upper()] = True
+                        new_element = element.Clone(parent, newid, name, pos = new_pos)
+                    else:
+                        new_element = element.Clone(parent, newid, pos = new_pos)
+                    new_element.AdjustToScaling(parent.Scaling)
+                else:
+                    new_element = element.Clone(parent)
+                connectors.update(element.GetConnectorTranslation(new_element))
+                group.SelectElement(new_element)
+        for element in wires:
+            if pos is not None:
+                new_wire = element.Clone(parent, connectors, dx, dy)
+            else:
+                new_wire = element.Clone(parent, connectors)
+            if new_wire is not None:
+                if pos is not None:
+                    parent.AddWire(new_wire)
+                group.SelectElement(new_wire)
+        if pos is not None:
+            for element in group.Elements:
+                if not isinstance(element, Wire):
+                    parent.AddBlockInModel(element)
+        return group
+    
+    def CanAddBlocks(self, parent):
+        valid = True
+        for element in self.Elements:
+            if not isinstance(element, Wire):
+                valid &= parent.CanAddElement(element)
+        return valid
+    
+    def IsVisible(self):
+        for element in self.Elements:
+            if element.IsVisible():
+                return True
+        return False
+    
+    # Refresh the list of wire excluded
+    def RefreshWireExclusion(self):
+        self.WireExcluded = []
+        for element in self.Elements:
+            if isinstance(element, Wire):
+                startblock = element.StartConnected.GetParentBlock()
+                endblock = element.EndConnected.GetParentBlock()
+                if startblock in self.Elements and endblock in self.Elements:
+                    self.WireExcluded.append(element)
+    
+    # Returns the RedrawRect
+    def GetRedrawRect(self, movex = 0, movey = 0):
+        rect = None
+        for element in self.Elements:
+            if rect is None:
+                rect = element.GetRedrawRect(movex, movey)
+            else:
+                rect = rect.Union(element.GetRedrawRect(movex, movey))
+        return rect
+    
+    # Clean this group of elements
+    def Clean(self):
+        # Clean all the elements of the group
+        for element in self.Elements:
+            element.Clean()
+    
+    # Delete this group of elements
+    def Delete(self):
+        # Delete all the elements of the group
+        for element in self.Elements:
+            element.Delete()
+        self.WireExcluded = []
+    
+    # Returns if the point given is in the bounding box of one of the elements of this group
+    def HitTest(self, pt, connectors=True):
+        result = False
+        for element in self.Elements:
+            result |= element.HitTest(pt, connectors)
+        return result
+    
+    # Returns if the element given is in this group
+    def IsElementIn(self, element):
+        return element in self.Elements
+    
+    # Change the elements of the group
+    def SetElements(self, elements):
+        self.Elements = elements
+        self.RefreshWireExclusion()
+        self.RefreshBoundingBox()
+    
+    # Returns the elements of the group
+    def GetElements(self):
+        return self.Elements
+    
+    # Align the group elements
+    def AlignElements(self, horizontally, vertically):
+        minx = self.BoundingBox.x + self.BoundingBox.width
+        miny = self.BoundingBox.y + self.BoundingBox.height
+        maxx = self.BoundingBox.x
+        maxy = self.BoundingBox.y
+        for element in self.Elements:
+            if not isinstance(element, Wire):
+                posx, posy = element.GetPosition()
+                width, height = element.GetSize()
+                minx = min(minx, posx)
+                miny = min(miny, posy)
+                maxx = max(maxx, posx + width)
+                maxy = max(maxy, posy + height)
+        for element in self.Elements:
+            if not isinstance(element, Wire):
+                posx, posy = element.GetPosition()
+                width, height = element.GetSize()
+                movex = movey = 0
+                if horizontally == ALIGN_LEFT:
+                    movex = minx - posx
+                elif horizontally == ALIGN_CENTER:
+                    movex = (maxx + minx - width) / 2 - posx
+                elif horizontally == ALIGN_RIGHT:
+                    movex = maxx - width - posx
+                if vertically == ALIGN_TOP:
+                    movey = miny - posy
+                elif vertically == ALIGN_MIDDLE:
+                    movey = (maxy + miny - height) / 2 - posy
+                elif vertically == ALIGN_BOTTOM:
+                    movey = maxy - height - posy
+                if movex != 0 or movey != 0:
+                    element.Move(movex, movey)
+                    element.RefreshModel()
+        self.RefreshWireExclusion()
+        self.RefreshBoundingBox()
+    
+    # Remove or select the given element if it is or not in the group
+    def SelectElement(self, element):
+        if element in self.Elements:
+            self.Elements.remove(element)
+        else:
+            self.Elements.append(element)
+        self.RefreshWireExclusion()
+        self.RefreshBoundingBox()
+    
+    # Move this group of elements
+    def Move(self, movex, movey):
+        movex = max(-self.BoundingBox.x, movex)
+        movey = max(-self.BoundingBox.y, movey)
+        # Move all the elements of the group
+        for element in self.Elements:
+            if not isinstance(element, Wire):
+                element.Move(movex, movey, self.WireExcluded)
+            elif element in self.WireExcluded:
+                element.Move(movex, movey, True)
+        self.RefreshBoundingBox()
+    
+    # Refreshes the bounding box of this group of elements
+    def RefreshBoundingBox(self):
+        if len(self.Elements) > 0:
+            bbox = self.Elements[0].GetBoundingBox()
+            minx, miny = bbox.x, bbox.y
+            maxx = bbox.x + bbox.width
+            maxy = bbox.y + bbox.height
+            for element in self.Elements[1:]:
+                bbox = element.GetBoundingBox()
+                minx = min(minx, bbox.x)
+                miny = min(miny, bbox.y)
+                maxx = max(maxx, bbox.x + bbox.width)
+                maxy = max(maxy, bbox.y + bbox.height)
+            self.BoundingBox = wx.Rect(minx, miny, maxx - minx, maxy - miny)
+        else:
+            self.BoundingBox = wx.Rect(0, 0, 0, 0)
+        self.Pos = wx.Point(self.BoundingBox.x, self.BoundingBox.y)
+        self.Size = wx.Size(self.BoundingBox.width, self.BoundingBox.height)
+
+    # Forbids to change the group position
+    def SetPosition(x, y):
+        pass
+    
+    # Returns the position of this group
+    def GetPosition(self):
+        return self.BoundingBox.x, self.BoundingBox.y
+    
+    # Forbids to change the group size
+    def SetSize(width, height):
+        pass
+    
+    # Returns the size of this group
+    def GetSize(self):
+        return self.BoundingBox.width, self.BoundingBox.height
+
+    # Moves and Resizes the group elements for fitting scaling
+    def AdjustToScaling(self, scaling):
+        movex_max = movey_max = 0
+        for element in self.Elements:
+            movex, movey = element.AdjustToScaling(scaling)
+            movex_max = max(movex_max, abs(movex))
+            movey_max = max(movey_max, abs(movey))
+        return movex_max, movey_max
+    
+    # Refreshes the group elements to move defined and handle selected
+    def ProcessDragging(self, movex, movey, event, scaling):
+        handle_type, handle = self.Handle
+        # If it is a move handle, Move this group elements
+        if handle_type == HANDLE_MOVE:
+            movex = max(-self.BoundingBox.x, movex)
+            movey = max(-self.BoundingBox.y, movey)
+            if scaling is not None:
+                movex = round_scaling(movex, scaling[0])
+                movey = round_scaling(movey, scaling[1])
+            if event.ControlDown():
+                self.CurrentDrag.x = self.CurrentDrag.x + movex
+                self.CurrentDrag.y = self.CurrentDrag.y + movey
+                if abs(self.CurrentDrag.x) > abs(self.CurrentDrag.y):
+                    movex = self.StartPos.x + self.CurrentDrag.x - self.Pos.x
+                    movey = self.StartPos.y - self.Pos.y
+                else:
+                    movex = self.StartPos.x - self.Pos.x
+                    movey = self.StartPos.y + self.CurrentDrag.y - self.Pos.y
+            self.Move(movex, movey)
+            return movex, movey
+        return 0, 0
+    
+    # Change the variable that indicates if this element is highlighted
+    def SetHighlighted(self, highlighted):
+        for element in self.Elements:
+            element.SetHighlighted(highlighted)
+    
+    def HighlightPoint(self, pos):
+        for element in self.Elements:
+            if isinstance(element, Wire):
+                element.HighlightPoint(pos)
+    
+    # Method called when a LeftDown event have been generated
+    def OnLeftDown(self, event, dc, scaling):
+        Graphic_Element.OnLeftDown(self, event, dc, scaling)
+        for element in self.Elements:
+            element.Handle = self.Handle
+
+    # Change the variable that indicates if the elemente is selected
+    def SetSelected(self, selected):
+        for element in self.Elements:
+            element.SetSelected(selected)
+
+    # Method called when a RightUp event has been generated
+    def OnRightUp(self, event, dc, scaling):
+        # Popup the menu with special items for a group
+        self.Parent.PopupGroupMenu()
+
+    # Refreshes the model of all the elements of this group
+    def RefreshModel(self):
+        for element in self.Elements:
+            element.RefreshModel()
+
+
+#-------------------------------------------------------------------------------
+#                         Connector for all types of blocks
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a connector for any type of block
+"""
+
+class Connector:
+    
+    # Create a new connector
+    def __init__(self, parent, name, type, position, direction, negated = False, edge = "none", onlyone = False):
+        self.ParentBlock = parent
+        self.Name = name
+        self.Type = type
+        self.Pos = position
+        self.Direction = direction
+        self.Wires = []
+        if self.ParentBlock.IsOfType("BOOL", type):
+            self.Negated = negated
+            self.Edge = edge
+        else:
+            self.Negated = False
+            self.Edge = "none"
+        self.OneConnected = onlyone
+        self.Valid = True
+        self.Value = None
+        self.Forced = False
+        self.Selected = False
+        self.Highlights = []
+        self.RefreshNameSize()
+    
+    def Flush(self):
+        self.ParentBlock = None
+        for wire, handle in self.Wires:
+            wire.Flush()
+        self.Wires = []
+    
+    # Returns the RedrawRect
+    def GetRedrawRect(self, movex = 0, movey = 0):
+        parent_pos = self.ParentBlock.GetPosition()
+        x = min(parent_pos[0] + self.Pos.x, parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE)
+        y = min(parent_pos[1] + self.Pos.y, parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE)
+        if self.Direction[0] == 0:
+            width = 5
+        else:
+            width = CONNECTOR_SIZE
+        if self.Direction[1] == 0:
+            height = 5
+        else:
+            height = CONNECTOR_SIZE
+        return wx.Rect(x - abs(movex), y - abs(movey), width + 2 * abs(movex), height + 2 * abs(movey))
+    
+    # Change the connector selection
+    def SetSelected(self, selected):
+        self.Selected = selected
+    
+    # Make a clone of the connector
+    def Clone(self, parent = None):
+        if parent is None:
+            parent = self.ParentBlock
+        return Connector(parent, self.Name, self.Type, wx.Point(self.Pos[0], self.Pos[1]),
+                self.Direction, self.Negated)
+    
+    # Returns the connector parent block
+    def GetParentBlock(self):
+        return self.ParentBlock
+    
+    # Returns the connector type
+    def GetType(self, raw = False):
+        if self.ParentBlock.IsEndType(self.Type) or raw:
+            return self.Type
+        elif (self.Negated or self.Edge != "none") and self.ParentBlock.IsOfType("BOOL", self.Type):
+            return "BOOL"
+        else:
+            return self.ParentBlock.GetConnectionResultType(self, self.Type)
+    
+    # Returns the connector type
+    def GetConnectedType(self):
+        if self.ParentBlock.IsEndType(self.Type):
+            return self.Type
+        elif len(self.Wires) == 1:
+            return self.Wires[0][0].GetOtherConnectedType(self.Wires[0][1])
+        return self.Type
+    
+    # Returns the connector type
+    def GetConnectedRedrawRect(self, movex, movey):
+        rect = None
+        for wire, handle in self.Wires:
+            if rect is None:
+                rect = wire.GetRedrawRect()
+            else:
+                rect = rect.Union(wire.GetRedrawRect())
+        return rect
+    
+    # Returns if connector type is compatible with type given
+    def IsCompatible(self, type):
+        reference = self.GetType()
+        return self.ParentBlock.IsOfType(type, reference) or self.ParentBlock.IsOfType(reference, type)
+    
+    # Changes the connector name
+    def SetType(self, type):
+        self.Type = type
+        for wire, handle in self.Wires:
+            wire.SetValid(wire.IsConnectedCompatible())
+    
+    # Returns the connector name
+    def GetName(self):
+        return self.Name
+    
+    # Changes the connector name
+    def SetName(self, name):
+        self.Name = name
+        self.RefreshNameSize()
+
+    def RefreshForced(self):
+        self.Forced = False
+        for wire, handle in self.Wires:
+            self.Forced |= wire.IsForced()
+
+    def RefreshValue(self):
+        self.Value = self.ReceivingCurrent()
+    
+    def RefreshValid(self):
+        self.Valid = True
+        for wire, handle in self.Wires:
+            self.Valid &= wire.GetValid()
+    
+    def ReceivingCurrent(self):
+        current = False
+        for wire, handle in self.Wires:
+            value = wire.GetValue()
+            if current != "undefined" and isinstance(value, BooleanType):
+                current |= wire.GetValue()
+            elif value == "undefined":
+                current = "undefined"
+        return current
+    
+    def SpreadCurrent(self, spreading):
+        for wire, handle in self.Wires:
+            wire.SetValue(spreading)
+    
+    # Changes the connector name size
+    def RefreshNameSize(self):
+        if self.Name != "":
+            self.NameSize = self.ParentBlock.Parent.GetTextExtent(self.Name)
+        else:
+            self.NameSize = 0, 0
+    
+    # Returns the connector name size
+    def GetNameSize(self):
+        return self.NameSize
+    
+    # Returns the wires connected to the connector
+    def GetWires(self):
+        return self.Wires
+    
+    # Returns the parent block Id
+    def GetBlockId(self):
+        return self.ParentBlock.GetId()
+    
+    # Returns the connector relative position
+    def GetRelPosition(self):
+        return self.Pos
+    
+    # Returns the connector absolute position
+    def GetPosition(self, size = True):
+        parent_pos = self.ParentBlock.GetPosition()
+        # If the position of the end of the connector is asked
+        if size:
+            x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
+            y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
+        else:
+            x = parent_pos[0] + self.Pos.x
+            y = parent_pos[1] + self.Pos.y
+        return wx.Point(x, y)
+    
+    # Change the connector relative position
+    def SetPosition(self, pos):
+        self.Pos = pos
+    
+    # Returns the connector direction
+    def GetDirection(self):
+        return self.Direction
+    
+    # Change the connector direction
+    def SetDirection(self, direction):
+        self.Direction = direction
+    
+    # Connect a wire to this connector at the last place
+    def Connect(self, wire, refresh = True):
+        self.InsertConnect(len(self.Wires), wire, refresh)
+    
+    # Connect a wire to this connector at the place given
+    def InsertConnect(self, idx, wire, refresh = True):
+        if wire not in self.Wires:
+            self.Wires.insert(idx, wire)
+            if refresh:
+                self.ParentBlock.RefreshModel(False)
+    
+    # Returns the index of the wire given in the list of connected
+    def GetWireIndex(self, wire):
+        for i, (tmp_wire, handle) in enumerate(self.Wires):
+            if tmp_wire == wire:
+                return i
+        return None
+    
+    # Unconnect a wire or all wires connected to the connector
+    def UnConnect(self, wire = None, unconnect = True, delete = False):
+        i = 0
+        found = False
+        while i < len(self.Wires) and not found:
+            if not wire or self.Wires[i][0] == wire:
+                # If Unconnect haven't been called from a wire, disconnect the connector in the wire
+                if unconnect:
+                    if self.Wires[i][1] == 0:
+                        self.Wires[i][0].UnConnectStartPoint(delete)
+                    else:
+                        self.Wires[i][0].UnConnectEndPoint(delete)
+                # Remove wire from connected
+                if wire:
+                    self.Wires.pop(i)
+                    found = True
+            i += 1
+        # If no wire defined, unconnect all wires
+        if not wire:
+            self.Wires = []
+        self.RefreshValid()
+        self.ParentBlock.RefreshModel(False)
+    
+    # Returns if connector has one or more wire connected
+    def IsConnected(self):
+        return len(self.Wires) > 0
+    
+    # Move the wires connected
+    def MoveConnected(self, exclude = []):
+        if len(self.Wires) > 0:
+            # Calculate the new position of the end point
+            parent_pos = self.ParentBlock.GetPosition()
+            x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
+            y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
+            # Move the corresponding point on all the wires connected
+            for wire, index in self.Wires:
+                if wire not in exclude:
+                    if index == 0:
+                        wire.MoveStartPoint(wx.Point(x, y))
+                    else:
+                        wire.MoveEndPoint(wx.Point(x, y))
+    
+    # Refreshes the model of all the wires connected
+    def RefreshWires(self):
+        for wire in self.Wires:
+            wire[0].RefreshModel()
+    
+    # Refreshes the parent block model
+    def RefreshParentBlock(self):
+        self.ParentBlock.RefreshModel(False)
+    
+    # Highlight the parent block
+    def HighlightParentBlock(self, highlight):
+        self.ParentBlock.SetHighlighted(highlight)
+        self.ParentBlock.Refresh()
+    
+    # Returns all the blocks connected to this connector
+    def GetConnectedBlocks(self):
+        blocks = []
+        for wire, handle in self.Wires:
+            # Get other connector connected to each wire
+            if handle == 0:
+                connector = wire.GetEndConnected()
+            else:
+                connector = wire.GetStartConnected()
+            # Get parent block for this connector
+            if connector:
+                block = connector.GetParentBlock()
+                if block not in blocks:
+                    blocks.append(block)
+        return blocks
+    
+    # Returns the connector negated property
+    def IsNegated(self):
+        return self.Negated
+    
+    # Changes the connector negated property
+    def SetNegated(self, negated):
+        if self.ParentBlock.IsOfType("BOOL", self.Type):
+            self.Negated = negated
+            self.Edge = "none"
+    
+    # Returns the connector edge property
+    def GetEdge(self):
+        return self.Edge
+    
+    # Changes the connector edge property
+    def SetEdge(self, edge):
+        if self.ParentBlock.IsOfType("BOOL", self.Type):
+            self.Edge = edge    
+            self.Negated = False
+    
+    # Tests if the point given is near from the end point of this connector
+    def TestPoint(self, pt, direction = None, exclude = True):
+        parent_pos = self.ParentBlock.GetPosition()
+        if (not (len(self.Wires) > 0 and self.OneConnected and exclude) or self.Type == "BOOL")\
+            and direction is None or self.Direction == direction:
+            # Calculate a square around the end point of this connector
+            x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE - ANCHOR_DISTANCE
+            y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE - ANCHOR_DISTANCE
+            width = ANCHOR_DISTANCE * 2 + abs(self.Direction[0]) * CONNECTOR_SIZE
+            height = ANCHOR_DISTANCE * 2 + abs(self.Direction[1]) * CONNECTOR_SIZE
+            rect = wx.Rect(x, y, width, height)
+            return rect.InsideXY(pt.x, pt.y)
+        return False
+    
+    # Draws the highlightment of this element if it is highlighted
+    def DrawHighlightment(self, dc):
+        scalex, scaley = dc.GetUserScale()
+        dc.SetUserScale(1, 1)
+        pen = MiterPen(HIGHLIGHTCOLOR, 2 * scalex + 5)
+        pen.SetCap(wx.CAP_BUTT)
+        dc.SetPen(pen)
+        dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+        dc.SetLogicalFunction(wx.AND)
+        parent_pos = self.ParentBlock.GetPosition()
+        posx = parent_pos[0] + self.Pos.x
+        posy = parent_pos[1] + self.Pos.y
+        xstart = parent_pos[0] + self.Pos.x 
+        ystart = parent_pos[1] + self.Pos.y
+        if self.Direction[0] < 0:
+            xstart += 1
+        if self.Direction[1] < 0:
+            ystart += 1
+        xend = xstart + CONNECTOR_SIZE * self.Direction[0]
+        yend = ystart + CONNECTOR_SIZE * self.Direction[1]
+        dc.DrawLine(round((xstart + self.Direction[0]) * scalex), round((ystart + self.Direction[1]) * scaley), 
+                    round(xend * scalex), round(yend * scaley))
+        dc.SetLogicalFunction(wx.COPY)
+        dc.SetUserScale(scalex, scaley)
+    
+    # Adds an highlight to the connector
+    def AddHighlight(self, infos, start, end, highlight_type):
+        if highlight_type == ERROR_HIGHLIGHT:
+            for wire, handle in self.Wires:
+                wire.SetValid(False)
+        AddHighlight(self.Highlights, (start, end, highlight_type))
+    
+    # Removes an highlight from the connector
+    def RemoveHighlight(self, infos, start, end, highlight_type):
+        error = False
+        highlights = []
+        for highlight in self.Highlights:
+            if highlight != (start, end, highlight_type):
+                highlights.append(highlight)
+                error |= highlight == ERROR_HIGHLIGHT
+        self.Highlights = highlights
+        if not error:
+            for wire, handle in self.Wires:
+                wire.SetValid(wire.IsConnectedCompatible())
+    
+    # Removes all the highlights of one particular type from the connector
+    def ClearHighlight(self, highlight_type=None):
+        error = False
+        if highlight_type is None:
+            self.Highlights = []
+        else:
+            highlights = []
+            for highlight in self.Highlights:
+                if highlight[2] != highlight_type:
+                    highlights.append(highlight)
+                    error |= highlight == ERROR_HIGHLIGHT
+            self.Highlights = highlights
+        if not error:
+            for wire, handle in self.Wires:
+                wire.SetValid(wire.IsConnectedCompatible())
+    
+    # Draws the connector
+    def Draw(self, dc):
+        if self.Selected:
+            dc.SetPen(MiterPen(wx.BLUE, 3))
+            dc.SetBrush(wx.WHITE_BRUSH)
+        #elif len(self.Highlights) > 0:
+        #    dc.SetPen(MiterPen(self.Highlights[-1][1]))
+        #    dc.SetBrush(wx.Brush(self.Highlights[-1][0]))
+        else:
+            if not self.Valid:
+                dc.SetPen(MiterPen(wx.RED))
+            elif isinstance(self.Value, BooleanType) and self.Value:
+                if self.Forced:
+                    dc.SetPen(MiterPen(wx.CYAN))
+                else:
+                    dc.SetPen(MiterPen(wx.GREEN))
+            elif self.Value == "undefined":
+                dc.SetPen(MiterPen(wx.NamedColour("orange")))
+            elif self.Forced:
+                dc.SetPen(MiterPen(wx.BLUE))
+            else:
+                dc.SetPen(MiterPen(wx.BLACK))
+            dc.SetBrush(wx.WHITE_BRUSH)
+        parent_pos = self.ParentBlock.GetPosition()
+        
+        if getattr(dc, "printing", False):
+            name_size = dc.GetTextExtent(self.Name)
+        else:
+            name_size = self.NameSize
+        
+        if self.Negated:
+            # If connector is negated, draw a circle
+            xcenter = parent_pos[0] + self.Pos.x + (CONNECTOR_SIZE * self.Direction[0]) / 2
+            ycenter = parent_pos[1] + self.Pos.y + (CONNECTOR_SIZE * self.Direction[1]) / 2
+            dc.DrawCircle(xcenter, ycenter, CONNECTOR_SIZE / 2)
+        else:
+            xstart = parent_pos[0] + self.Pos.x 
+            ystart = parent_pos[1] + self.Pos.y
+            if self.Edge == "rising":
+                # If connector has a rising edge, draw a right arrow
+                dc.DrawLine(xstart, ystart, xstart - 4, ystart - 4)
+                dc.DrawLine(xstart, ystart, xstart - 4, ystart + 4)
+            elif self.Edge == "falling":
+                # If connector has a falling edge, draw a left arrow
+                dc.DrawLine(xstart, ystart, xstart + 4, ystart - 4)
+                dc.DrawLine(xstart, ystart, xstart + 4, ystart + 4)
+            if self.Direction[0] < 0:
+                xstart += 1
+            if self.Direction[1] < 0:
+                ystart += 1
+            if self.Selected:
+                xend = xstart + (CONNECTOR_SIZE - 2) * self.Direction[0]
+                yend = ystart + (CONNECTOR_SIZE - 2) * self.Direction[1]
+                dc.DrawLine(xstart + 2 * self.Direction[0], ystart + 2 * self.Direction[1], xend, yend)
+            else:
+                xend = xstart + CONNECTOR_SIZE * self.Direction[0]
+                yend = ystart + CONNECTOR_SIZE * self.Direction[1]
+                dc.DrawLine(xstart + self.Direction[0], ystart + self.Direction[1], xend, yend)
+        if self.Direction[0] != 0:
+            ytext = parent_pos[1] + self.Pos.y - name_size[1] / 2
+            if self.Direction[0] < 0:
+                xtext = parent_pos[0] + self.Pos.x + 5
+            else:
+                xtext = parent_pos[0] + self.Pos.x - (name_size[0] + 5)
+        if self.Direction[1] != 0:
+            xtext = parent_pos[0] + self.Pos.x - name_size[0] / 2
+            if self.Direction[1] < 0:
+                ytext = parent_pos[1] + self.Pos.y + 5
+            else:
+                ytext = parent_pos[1] + self.Pos.y - (name_size[1] + 5)
+        # Draw the text
+        dc.DrawText(self.Name, xtext, ytext)
+        if not getattr(dc, "printing", False):
+            DrawHighlightedText(dc, self.Name, self.Highlights, xtext, ytext)
+
+#-------------------------------------------------------------------------------
+#                           Common Wire Element
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a wire for connecting two blocks
+"""
+
+class Wire(Graphic_Element, DebugDataConsumer):
+    
+    # Create a new wire
+    def __init__(self, parent, start = None, end = None):
+        Graphic_Element.__init__(self, parent)
+        DebugDataConsumer.__init__(self)
+        self.StartPoint = start
+        self.EndPoint = end
+        self.StartConnected = None
+        self.EndConnected = None
+        # If the start and end points are defined, calculate the wire
+        if start and end:
+            self.ResetPoints()
+            self.GeneratePoints()
+        else:
+            self.Points = []
+            self.Segments = []
+        self.SelectedSegment = None
+        self.Valid = True
+        self.ValueSize = None
+        self.ComputedValue = None
+        self.OverStart = False
+        self.OverEnd = False
+        self.ComputingType = False
+        self.Font = parent.GetMiniFont()
+    
+    def GetDefinition(self):
+        if self.StartConnected is not None and self.EndConnected is not None:
+            startblock = self.StartConnected.GetParentBlock()
+            endblock = self.EndConnected.GetParentBlock()
+            return [], [(startblock.GetId(), endblock.GetId())]
+        return [], []
+    
+    def Flush(self):
+        self.StartConnected = None
+        self.EndConnected = None
+    
+    def GetToolTipValue(self):
+        if self.Value is not None and self.Value != "undefined" and not isinstance(self.Value, BooleanType):
+            if isinstance(self.Value, StringType) and self.Value.find("#") == -1:
+                return "\"%s\""%self.Value
+            else:
+                return str(self.Value)
+        return None
+    
+    # Returns the RedrawRect
+    def GetRedrawRect(self, movex = 0, movey = 0):
+        rect = Graphic_Element.GetRedrawRect(self, movex, movey)
+        if self.StartConnected:
+            rect = rect.Union(self.StartConnected.GetRedrawRect(movex, movey))
+        if self.EndConnected:
+            rect = rect.Union(self.EndConnected.GetRedrawRect(movex, movey))
+        if self.ValueSize is None and isinstance(self.ComputedValue, (StringType, UnicodeType)):
+            self.ValueSize = self.Parent.GetMiniTextExtent(self.ComputedValue)
+        if self.ValueSize is not None:
+            width, height = self.ValueSize
+            if self.BoundingBox[2] > width * 4 or self.BoundingBox[3] > height * 4:
+                x = self.Points[0].x + width * self.StartPoint[1][0] / 2
+                y = self.Points[0].y + height * (self.StartPoint[1][1] - 1)
+                rect = rect.Union(wx.Rect(x, y, width, height))
+                x = self.Points[-1].x + width * self.EndPoint[1][0] / 2
+                y = self.Points[-1].y + height * (self.EndPoint[1][1] - 1)
+                rect = rect.Union(wx.Rect(x, y, width, height))
+            else:
+                middle = len(self.Segments) / 2 + len(self.Segments) % 2 - 1
+                x = (self.Points[middle].x + self.Points[middle + 1].x - width) / 2
+                if self.BoundingBox[3] > height and self.Segments[middle] in [NORTH, SOUTH]:
+                    y = (self.Points[middle].y + self.Points[middle + 1].y - height) / 2
+                else:
+                    y = self.Points[middle].y - height
+                rect = rect.Union(wx.Rect(x, y, width, height))
+        return rect
+    
+    def Clone(self, parent, connectors = {}, dx = 0, dy = 0):
+        start_connector = connectors.get(self.StartConnected, None)
+        end_connector = connectors.get(self.EndConnected, None)
+        if start_connector is not None and end_connector is not None:
+            wire = Wire(parent)
+            wire.SetPoints([(point.x + dx, point.y + dy) for point in self.Points])
+            start_connector.Connect((wire, 0), False)
+            end_connector.Connect((wire, -1), False)
+            wire.ConnectStartPoint(start_connector.GetPosition(), start_connector)
+            wire.ConnectEndPoint(end_connector.GetPosition(), end_connector)
+            return wire
+        return None
+    
+    # Forbids to change the wire position
+    def SetPosition(x, y):
+        pass
+    
+    # Forbids to change the wire size
+    def SetSize(width, height):
+        pass
+    
+    # Moves and Resizes the element for fitting scaling
+    def AdjustToScaling(self, scaling):
+        if scaling is not None:
+            movex_max = movey_max = 0
+            for idx, point in enumerate(self.Points):
+                if 0 < idx < len(self.Points) - 1:
+                    movex = round_scaling(point.x, scaling[0]) - point.x
+                    movey = round_scaling(point.y, scaling[1]) - point.y
+                    if idx == 1:
+                        if self.Segments[0][0] == 0:
+                            movex = 0
+                        elif (point.x + movex - self.Points[0].x) * self.Segments[0][0] < MIN_SEGMENT_SIZE:
+                            movex = round_scaling(self.Points[0].x + MIN_SEGMENT_SIZE * self.Segments[0][0], scaling[0], self.Segments[0][0]) - point.x
+                        if self.Segments[0][1] == 0:
+                            movey = 0
+                        elif (point.y + movey - self.Points[0].y) * self.Segments[0][1] < MIN_SEGMENT_SIZE:
+                            movey = round_scaling(self.Points[0].y + MIN_SEGMENT_SIZE * self.Segments[0][1], scaling[0], self.Segments[0][1]) - point.y
+                    elif idx == len(self.Points) - 2:
+                        if self.Segments[-1][0] == 0:
+                            movex = 0
+                        elif (self.Points[-1].x - (point.x + movex)) * self.Segments[-1][0] < MIN_SEGMENT_SIZE:
+                            movex = round_scaling(self.Points[-1].x + MIN_SEGMENT_SIZE * self.Segments[0][0], scaling[0], self.Segments[0][0]) - point.x
+                        if self.Segments[-1][1] == 0:
+                            movey = 0
+                        elif (self.Points[-1].y - (point.y + movey)) * self.Segments[-1][1] < MIN_SEGMENT_SIZE:
+                            movey = round_scaling(self.Points[-1].y - MIN_SEGMENT_SIZE * self.Segments[-1][1], scaling[1], -self.Segments[-1][1]) - point.y
+                    movex_max = max(movex_max, movex)
+                    movey_max = max(movey_max, movey)
+                    point.x += movex
+                    point.y += movey
+            return movex_max, movey_max
+        return 0, 0
+    
+    # Returns connector to which start point is connected
+    def GetStartConnected(self):
+        return self.StartConnected
+    
+    # Returns connector to which start point is connected
+    def GetStartConnectedType(self):
+        if self.StartConnected and not self.ComputingType:
+            self.ComputingType = True
+            computed_type = self.StartConnected.GetType()
+            self.ComputingType = False
+            return computed_type
+        return None
+    
+    # Returns connector to which end point is connected
+    def GetEndConnected(self):
+        return self.EndConnected
+    
+    # Returns connector to which end point is connected
+    def GetEndConnectedType(self):
+        if self.EndConnected and not self.ComputingType:
+            self.ComputingType = True
+            computed_type = self.EndConnected.GetType()
+            self.ComputingType = False
+            return computed_type
+        return None
+    
+    def GetConnectionDirection(self):
+        if self.StartConnected is None and self.EndConnected is None:
+            return None
+        elif self.StartConnected is not None and self.EndConnected is None:
+            return (-self.StartPoint[1][0], -self.StartPoint[1][1])
+        elif self.StartConnected is None and self.EndConnected is not None:
+            return self.EndPoint
+        elif self.Handle is not None:
+            handle_type, handle = self.Handle
+            # A point has been handled
+            if handle_type == HANDLE_POINT:
+                if handle == 0:
+                    return self.EndPoint
+                else:
+                    return (-self.StartPoint[1][0], -self.StartPoint[1][1])
+        return None
+    
+    def GetOtherConnected(self, connector):
+        if self.StartConnected == connector:
+            return self.EndConnected
+        else:
+            return self.StartConnected
+    
+    def GetOtherConnectedType(self, handle):
+        if handle == 0:
+            return self.GetEndConnectedType()
+        else:
+            return self.GetStartConnectedType()
+    
+    def IsConnectedCompatible(self):
+        if self.StartConnected:
+            return self.StartConnected.IsCompatible(self.GetEndConnectedType())
+        elif self.EndConnected:
+            return True
+        return False
+    
+    def SetForced(self, forced):
+        if self.Forced != forced:
+            self.Forced = forced
+            if self.StartConnected:
+                self.StartConnected.RefreshForced()
+            if self.EndConnected:
+                self.EndConnected.RefreshForced()
+            if self.Visible:
+                self.Parent.ElementNeedRefresh(self)
+
+    def SetValue(self, value):
+        if self.Value != value:
+            self.Value = value
+            if value is not None and not isinstance(value, BooleanType):
+                if isinstance(value, StringType) and value.find('#') == -1:
+                    self.ComputedValue = "\"%s\""%value
+                else:
+                    self.ComputedValue = str(value)
+                if self.ToolTip is not None:
+                    self.ToolTip.SetTip(self.ComputedValue)
+                if len(self.ComputedValue) > 4:
+                    self.ComputedValue = self.ComputedValue[:4] + "..."
+            self.ValueSize = None
+            if self.StartConnected:
+                self.StartConnected.RefreshValue()
+            if self.EndConnected:
+                self.EndConnected.RefreshValue()
+            if self.Visible:
+                self.Parent.ElementNeedRefresh(self)
+            if isinstance(value, BooleanType) and self.StartConnected is not None:
+                block = self.StartConnected.GetParentBlock()
+                block.SpreadCurrent()
+    
+    # Unconnect the start and end points
+    def Clean(self):
+        if self.StartConnected:
+            self.UnConnectStartPoint()
+        if self.EndConnected:
+            self.UnConnectEndPoint()
+    
+    # Delete this wire by calling the corresponding method
+    def Delete(self):
+        self.Parent.DeleteWire(self)
+    
+    # Select a segment and not the whole wire. It's useful for Ladder Diagram
+    def SetSelectedSegment(self, segment):
+        # The last segment is indicated
+        if segment == -1:
+            segment = len(self.Segments) - 1
+        # The selected segment is reinitialised
+        if segment == None:
+            if self.StartConnected:
+                self.StartConnected.SetSelected(False)
+            if self.EndConnected:
+                self.EndConnected.SetSelected(False)
+        # The segment selected is the first
+        elif segment == 0:
+            if self.StartConnected:
+                self.StartConnected.SetSelected(True)
+            if self.EndConnected:
+                # There is only one segment
+                if len(self.Segments) == 1:
+                    self.EndConnected.SetSelected(True)
+                else:
+                    self.EndConnected.SetSelected(False)
+        # The segment selected is the last
+        elif segment == len(self.Segments) - 1:
+            if self.StartConnected:
+                self.StartConnected.SetSelected(False)
+            if self.EndConnected:
+                self.EndConnected.SetSelected(True)
+        self.SelectedSegment = segment
+        self.Refresh()
+    
+    def SetValid(self, valid):
+        self.Valid = valid
+        if self.StartConnected:
+            self.StartConnected.RefreshValid()
+        if self.EndConnected:
+            self.EndConnected.RefreshValid()
+    
+    def GetValid(self):
+        return self.Valid
+    
+    # Reinitialize the wire points
+    def ResetPoints(self):
+        if self.StartPoint and self.EndPoint:
+            self.Points = [self.StartPoint[0], self.EndPoint[0]]
+            self.Segments = [self.StartPoint[1]]
+        else:
+            self.Points = []
+            self.Segments = []
+    
+    # Refresh the wire bounding box
+    def RefreshBoundingBox(self):
+        if len(self.Points) > 0:
+            # If startpoint or endpoint is connected, save the point radius
+            start_radius = end_radius = 0
+            if not self.StartConnected:
+                start_radius = POINT_RADIUS
+            if not self.EndConnected:
+                end_radius = POINT_RADIUS
+            # Initialize minimum and maximum from the first point
+            minx, minbbxx = self.Points[0].x, self.Points[0].x - start_radius
+            maxx, maxbbxx = self.Points[0].x, self.Points[0].x + start_radius
+            miny, minbbxy = self.Points[0].y, self.Points[0].y - start_radius
+            maxy, maxbbxy = self.Points[0].y, self.Points[0].y + start_radius
+            # Actualize minimum and maximum with the other points
+            for point in self.Points[1:-1]:
+                minx, minbbxx = min(minx, point.x), min(minbbxx, point.x)
+                maxx, maxbbxx = max(maxx, point.x), max(maxbbxx, point.x)
+                miny, minbbxy = min(miny, point.y), min(minbbxy, point.y)
+                maxy, maxbbxy = max(maxy, point.y), max(maxbbxy, point.y)
+            if len(self.Points) > 1:
+                minx, minbbxx = min(minx, self.Points[-1].x), min(minbbxx, self.Points[-1].x - end_radius)
+                maxx, maxbbxx = max(maxx, self.Points[-1].x), max(maxbbxx, self.Points[-1].x + end_radius)
+                miny, minbbxy = min(miny, self.Points[-1].y), min(minbbxy, self.Points[-1].y - end_radius)
+                maxy, maxbbxy = max(maxy, self.Points[-1].y), max(maxbbxy, self.Points[-1].y + end_radius)
+            self.Pos.x, self.Pos.y = minx, miny
+            self.Size = wx.Size(maxx - minx, maxy - miny)
+            self.BoundingBox = wx.Rect(minbbxx, minbbxy, maxbbxx - minbbxx + 1, maxbbxy - minbbxy + 1)
+    
+    # Refresh the realpoints that permits to keep the proportionality in wire during resizing
+    def RefreshRealPoints(self):
+        if len(self.Points) > 0:
+            self.RealPoints = []
+            # Calculate float relative position of each point with the minimum point
+            for point in self.Points:
+                self.RealPoints.append([float(point.x - self.Pos.x), float(point.y - self.Pos.y)])
+    
+    # Returns the wire minimum size 
+    def GetMinSize(self):
+        width = 1
+        height = 1
+        dir_product = product(self.StartPoint[1], self.EndPoint[1])
+        # The directions are opposed
+        if dir_product < 0:
+            if self.StartPoint[0] != 0:
+                width = MIN_SEGMENT_SIZE * 2
+            if self.StartPoint[1] != 0:
+                height = MIN_SEGMENT_SIZE * 2
+        # The directions are the same
+        elif dir_product > 0:
+            if self.StartPoint[0] != 0:
+                width = MIN_SEGMENT_SIZE
+            if self.StartPoint[1] != 0:
+                height = MIN_SEGMENT_SIZE
+        # The directions are perpendiculars
+        else:
+            width = MIN_SEGMENT_SIZE
+            height = MIN_SEGMENT_SIZE
+        return width + 1, height + 1
+    
+    # Returns if the point given is on one of the wire segments
+    def HitTest(self, pt, connectors=True):
+        test = False
+        for i in xrange(len(self.Points) - 1):
+            rect = wx.Rect(0, 0, 0, 0)
+            if i == 0 and self.StartConnected is not None:
+                x1 = self.Points[i].x - self.Segments[0][0] * CONNECTOR_SIZE
+                y1 = self.Points[i].y - self.Segments[0][1] * CONNECTOR_SIZE
+            else:
+                x1, y1 = self.Points[i].x, self.Points[i].y    
+            if i == len(self.Points) - 2 and self.EndConnected is not None:
+                x2 = self.Points[i + 1].x + self.Segments[-1][0] * CONNECTOR_SIZE
+                y2 = self.Points[i + 1].y + self.Segments[-1][1] * CONNECTOR_SIZE
+            else:
+                x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
+            # Calculate a rectangle around the segment
+            rect = wx.Rect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
+                abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
+            test |= rect.InsideXY(pt.x, pt.y) 
+        return test
+    
+    # Returns the wire start or end point if the point given is on one of them 
+    def TestPoint(self, pt):
+        # Test the wire start point
+        rect = wx.Rect(self.Points[0].x - ANCHOR_DISTANCE, self.Points[0].y - ANCHOR_DISTANCE,
+            2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
+        if rect.InsideXY(pt.x, pt.y):
+            return 0
+        # Test the wire end point
+        if len(self.Points) > 1:
+            rect = wx.Rect(self.Points[-1].x - ANCHOR_DISTANCE, self.Points[-1].y - ANCHOR_DISTANCE,
+                2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
+            if rect.InsideXY(pt.x, pt.y):
+                return -1
+        return None
+    
+    # Returns the wire segment if the point given is on it
+    def TestSegment(self, pt, all=False):
+        for i in xrange(len(self.Segments)):
+            # If wire is not in a Ladder Diagram, first and last segments are excluded
+            if all or 0 < i < len(self.Segments) - 1:
+                x1, y1 = self.Points[i].x, self.Points[i].y
+                x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
+                # Calculate a rectangle around the segment
+                rect = wx.Rect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
+                    abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
+                if rect.InsideXY(pt.x, pt.y):
+                    return i, self.Segments[i]
+        return None
+    
+    # Define the wire points
+    def SetPoints(self, points, verify=True):
+        if len(points) > 1:
+            self.Points = [wx.Point(x, y) for x, y in points]
+            # Calculate the start and end directions
+            self.StartPoint = [None, vector(self.Points[0], self.Points[1])]
+            self.EndPoint = [None, vector(self.Points[-1], self.Points[-2])]
+            # Calculate the start and end points
+            self.StartPoint[0] = wx.Point(self.Points[0].x + CONNECTOR_SIZE * self.StartPoint[1][0], 
+                self.Points[0].y + CONNECTOR_SIZE * self.StartPoint[1][1])
+            self.EndPoint[0] = wx.Point(self.Points[-1].x + CONNECTOR_SIZE * self.EndPoint[1][0], 
+                self.Points[-1].y + CONNECTOR_SIZE * self.EndPoint[1][1])
+            self.Points[0] = self.StartPoint[0]
+            self.Points[-1] = self.EndPoint[0]
+            # Calculate the segments directions
+            self.Segments = []
+            i = 0
+            while i < len(self.Points) - 1:
+                if verify and 0 < i < len(self.Points) - 2 and \
+                   self.Points[i] == self.Points[i + 1] and \
+                   self.Segments[-1] == vector(self.Points[i + 1], self.Points[i + 2]):
+                    for j in xrange(2):
+                        self.Points.pop(i)
+                else:
+                    segment = vector(self.Points[i], self.Points[i + 1])
+                    if is_null_vector(segment) and i > 0:
+                        segment = (self.Segments[-1][1], self.Segments[-1][0])
+                    if i < len(self.Points) - 2:
+                        next = vector(self.Points[i + 1], self.Points[i + 2])
+                        if next == segment or is_null_vector(add_vectors(segment, next)):
+                            self.Points.insert(i + 1, wx.Point(self.Points[i + 1].x, self.Points[i + 1].y))
+                    self.Segments.append(segment)
+                    i += 1
+            self.RefreshBoundingBox()
+            self.RefreshRealPoints()
+    
+    # Returns the position of the point indicated
+    def GetPoint(self, index):
+        if index < len(self.Points):
+            return self.Points[index].x, self.Points[index].y
+        return None
+    
+    # Returns a list of the position of all wire points
+    def GetPoints(self, invert = False):
+        points = self.VerifyPoints()
+        points[0] = wx.Point(points[0].x - CONNECTOR_SIZE * self.StartPoint[1][0], 
+                points[0].y - CONNECTOR_SIZE * self.StartPoint[1][1])
+        points[-1] = wx.Point(points[-1].x - CONNECTOR_SIZE * self.EndPoint[1][0], 
+                points[-1].y - CONNECTOR_SIZE * self.EndPoint[1][1])
+        # An inversion of the list is asked
+        if invert:
+            points.reverse()
+        return points
+    
+    # Returns the position of the two selected segment points
+    def GetSelectedSegmentPoints(self):
+        if self.SelectedSegment != None and len(self.Points) > 1:
+            return self.Points[self.SelectedSegment:self.SelectedSegment + 2]
+        return []
+    
+    # Returns if the selected segment is the first and/or the last of the wire
+    def GetSelectedSegmentConnections(self):
+        if self.SelectedSegment != None and len(self.Points) > 1:
+            return self.SelectedSegment == 0, self.SelectedSegment == len(self.Segments) - 1
+        return (True, True)
+    
+    # Returns the connectors on which the wire is connected
+    def GetConnected(self):
+        connected = []
+        if self.StartConnected and self.StartPoint[1] == WEST:
+            connected.append(self.StartConnected)
+        if self.EndConnected and self.EndPoint[1] == WEST:
+            connected.append(self.EndConnected)
+        return connected
+    
+    # Returns the id of the block connected to the first or the last wire point
+    def GetConnectedInfos(self, index):
+        if index == 0 and self.StartConnected:
+            return self.StartConnected.GetBlockId(), self.StartConnected.GetName()
+        elif index == -1 and self.EndConnected:
+            return self.EndConnected.GetBlockId(), self.EndConnected.GetName()
+        return None
+    
+    # Update the wire points position by keeping at most possible the current positions
+    def GeneratePoints(self, realpoints = True):
+        i = 0
+        # Calculate the start enad end points with the minimum segment size in the right direction
+        end = wx.Point(self.EndPoint[0].x + self.EndPoint[1][0] * MIN_SEGMENT_SIZE,
+            self.EndPoint[0].y + self.EndPoint[1][1] * MIN_SEGMENT_SIZE)
+        start = wx.Point(self.StartPoint[0].x + self.StartPoint[1][0] * MIN_SEGMENT_SIZE, 
+            self.StartPoint[0].y + self.StartPoint[1][1] * MIN_SEGMENT_SIZE)
+        # Evaluate the point till it's the last
+        while i < len(self.Points) - 1:
+            # The next point is the last
+            if i + 1 == len(self.Points) - 1:
+                # Calculate the direction from current point to end point
+                v_end = vector(self.Points[i], end)
+                # The current point is the first
+                if i == 0:
+                    # If the end point is not in the start direction, a point is added
+                    if v_end != self.Segments[0] or v_end == self.EndPoint[1]:
+                        self.Points.insert(1, wx.Point(start.x, start.y))
+                        self.Segments.insert(1, DirectionChoice((self.Segments[0][1], 
+                            self.Segments[0][0]), v_end, self.EndPoint[1]))
+                # The current point is the second
+                elif i == 1:
+                    # The previous direction and the target direction are mainly opposed, a point is added
+                    if product(v_end, self.Segments[0]) < 0:
+                        self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
+                        self.Segments.insert(2, DirectionChoice((self.Segments[1][1], 
+                            self.Segments[1][0]), v_end, self.EndPoint[1]))
+                    # The previous direction and the end direction are the same or they are
+                    # perpendiculars and the end direction points towards current segment
+                    elif product(self.Segments[0], self.EndPoint[1]) >= 0 and product(self.Segments[1], self.EndPoint[1]) <= 0:
+                        # Current point and end point are aligned
+                        if self.Segments[0][0] != 0:
+                            self.Points[1].x = end.x
+                        if self.Segments[0][1] != 0:
+                            self.Points[1].y = end.y
+                        # If the previous direction and the end direction are the same, a point is added
+                        if product(self.Segments[0], self.EndPoint[1]) > 0:
+                            self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
+                            self.Segments.insert(2, DirectionChoice((self.Segments[1][1], 
+                                self.Segments[1][0]), v_end, self.EndPoint[1]))
+                    else:
+                        # Current point is positioned in the middle of start point
+                        # and end point on the current direction and a point is added
+                        if self.Segments[0][0] != 0:
+                            self.Points[1].x = (end.x + start.x) / 2
+                        if self.Segments[0][1] != 0:
+                            self.Points[1].y = (end.y + start.y) / 2
+                        self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
+                        self.Segments.insert(2, DirectionChoice((self.Segments[1][1], 
+                            self.Segments[1][0]), v_end, self.EndPoint[1]))
+                else:
+                    # The previous direction and the end direction are perpendiculars
+                    if product(self.Segments[i - 1], self.EndPoint[1]) == 0:
+                        # The target direction and the end direction aren't mainly the same
+                        if product(v_end, self.EndPoint[1]) <= 0:
+                            # Current point and end point are aligned
+                            if self.Segments[i - 1][0] != 0:
+                                self.Points[i].x = end.x
+                            if self.Segments[i - 1][1] != 0:
+                                self.Points[i].y = end.y
+                            # Previous direction is updated from the new point
+                            if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
+                                self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
+                        else:
+                            test = True
+                            # If the current point is the third, test if the second 
+                            # point can be aligned with the end point
+                            if i == 2:
+                                test_point = wx.Point(self.Points[1].x, self.Points[1].y)
+                                if self.Segments[1][0] != 0:
+                                    test_point.y = end.y
+                                if self.Segments[1][1] != 0:
+                                    test_point.x = end.x
+                                vector_test = vector(self.Points[0], test_point, False)
+                                test = norm(vector_test) > MIN_SEGMENT_SIZE and product(self.Segments[0], vector_test) > 0
+                            # The previous point can be aligned
+                            if test:
+                                self.Points[i].x, self.Points[i].y = end.x, end.y
+                                if self.Segments[i - 1][0] != 0:
+                                    self.Points[i - 1].y = end.y
+                                if self.Segments[i - 1][1] != 0:
+                                    self.Points[i - 1].x = end.x
+                                self.Segments[i] = (-self.EndPoint[1][0], -self.EndPoint[1][1])
+                            else:
+                                # Current point is positioned in the middle of previous point
+                                # and end point on the current direction and a point is added
+                                if self.Segments[1][0] != 0:
+                                    self.Points[2].x = (self.Points[1].x + end.x) / 2
+                                if self.Segments[1][1] != 0:
+                                    self.Points[2].y = (self.Points[1].y + end.y) / 2
+                                self.Points.insert(3, wx.Point(self.Points[2].x, self.Points[2].y))
+                                self.Segments.insert(3, DirectionChoice((self.Segments[2][1], 
+                                    self.Segments[2][0]), v_end, self.EndPoint[1]))
+                    else:
+                        # Current point is aligned with end point
+                        if self.Segments[i - 1][0] != 0:
+                            self.Points[i].x = end.x
+                        if self.Segments[i - 1][1] != 0:
+                            self.Points[i].y = end.y
+                        # Previous direction is updated from the new point
+                        if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
+                            self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
+                        # If previous direction and end direction are opposed
+                        if product(self.Segments[i - 1], self.EndPoint[1]) < 0:
+                            # Current point is positioned in the middle of previous point
+                            # and end point on the current direction
+                            if self.Segments[i - 1][0] != 0:
+                                self.Points[i].x = (end.x + self.Points[i - 1].x) / 2
+                            if self.Segments[i - 1][1] != 0:
+                                self.Points[i].y = (end.y + self.Points[i - 1].y) / 2
+                        # A point is added
+                        self.Points.insert(i + 1, wx.Point(self.Points[i].x, self.Points[i].y))
+                        self.Segments.insert(i + 1, DirectionChoice((self.Segments[i][1], 
+                                self.Segments[i][0]), v_end, self.EndPoint[1]))
+            else:
+                # Current point is the first, and second is not mainly in the first direction
+                if i == 0 and product(vector(start, self.Points[1]), self.Segments[0]) < 0:
+                    # If first and second directions aren't perpendiculars, a point is added 
+                    if product(self.Segments[0], self.Segments[1]) != 0:
+                        self.Points.insert(1, wx.Point(start.x, start.y))
+                        self.Segments.insert(1, DirectionChoice((self.Segments[0][1], 
+                            self.Segments[0][0]), vector(start, self.Points[1]), self.Segments[1]))
+                    else:
+                        self.Points[1].x, self.Points[1].y = start.x, start.y
+                else:
+                    # Next point is aligned with current point
+                    if self.Segments[i][0] != 0:
+                        self.Points[i + 1].y = self.Points[i].y
+                    if self.Segments[i][1] != 0:
+                        self.Points[i + 1].x = self.Points[i].x
+                    # Current direction is updated from the new point
+                    if product(vector(self.Points[i], self.Points[i + 1]), self.Segments[i]) < 0:
+                        self.Segments[i] = (-self.Segments[i][0], -self.Segments[i][1])
+            i += 1
+        self.RefreshBoundingBox()
+        if realpoints:
+            self.RefreshRealPoints()
+    
+    # Verify that two consecutive points haven't the same position
+    def VerifyPoints(self):
+        points = [point for point in self.Points]
+        segments = [segment for segment in self.Segments]
+        i = 1
+        while i < len(points) - 1:
+            if points[i] == points[i + 1] and segments[i - 1] == segments[i + 1]:
+                for j in xrange(2):
+                    points.pop(i)
+                    segments.pop(i)
+            else:
+                i += 1
+        # If the wire isn't in a Ladder Diagram, save the new point list
+        if self.Parent.__class__.__name__ != "LD_Viewer":
+            self.Points = [point for point in points]
+            self.Segments = [segment for segment in segments]
+            self.RefreshBoundingBox()
+            self.RefreshRealPoints()
+        return points
+    
+    # Moves all the wire points except the first and the last if they are connected
+    def Move(self, dx, dy, endpoints = False):
+        for i, point in enumerate(self.Points):
+            if endpoints or not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                point.x += dx
+                point.y += dy
+        self.StartPoint[0] = self.Points[0]
+        self.EndPoint[0] = self.Points[-1]
+        self.GeneratePoints()
+    
+    # Resize the wire from position and size given
+    def Resize(self, x, y, width, height):
+        if len(self.Points) > 1:
+            # Calculate the new position of each point for testing the new size
+            minx, miny = self.Pos.x, self.Pos.y
+            lastwidth, lastheight = self.Size.width, self.Size.height
+            for i, point in enumerate(self.RealPoints):
+                # If start or end point is connected, it's not calculate
+                if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                    if i == 0:
+                        dir = self.StartPoint[1]
+                    elif i == len(self.Points) - 1:
+                        dir = self.EndPoint[1]
+                    else:
+                        dir = (0, 0)
+                    pointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0] * width / float(max(lastwidth, 1)))),
+                            width - dir[0] * MIN_SEGMENT_SIZE))
+                    pointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1] * height / float(max(lastheight, 1)))),
+                            height - dir[1] * MIN_SEGMENT_SIZE))
+                    self.Points[i] = wx.Point(minx + x + pointx, miny + y + pointy)
+            self.StartPoint[0] = self.Points[0]
+            self.EndPoint[0] = self.Points[-1]
+            self.GeneratePoints(False)
+            # Test if the wire position or size have changed
+            if x != 0 and minx == self.Pos.x:
+                x = 0
+                width = lastwidth
+            if y != 0 and miny == self.Pos.y:
+                y = 0
+                height = lastwidth
+            if width != lastwidth and lastwidth == self.Size.width:
+                width = lastwidth
+            if height != lastheight and lastheight == self.Size.height:
+                height = lastheight
+            # Calculate the real points from the new size, it's important for
+            # keeping a proportionality in the points position with the size
+            # during a resize dragging
+            for i, point in enumerate(self.RealPoints):
+                if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                    point[0] = point[0] * width / float(max(lastwidth, 1))
+                    point[1] = point[1] * height / float(max(lastheight, 1))
+            # Calculate the correct position of the points from real points
+            for i, point in enumerate(self.RealPoints):
+                if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                    if i == 0:
+                        dir = self.StartPoint[1]
+                    elif i == len(self.Points) - 1:
+                        dir = self.EndPoint[1]
+                    else:
+                        dir = (0, 0)
+                    realpointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0])),
+                            width - dir[0] * MIN_SEGMENT_SIZE))
+                    realpointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1])),
+                            height - dir[1] * MIN_SEGMENT_SIZE))
+                    self.Points[i] = wx.Point(minx + x + realpointx, miny + y + realpointy)
+            self.StartPoint[0] = self.Points[0]
+            self.EndPoint[0] = self.Points[-1]
+            self.GeneratePoints(False)
+    
+    # Moves the wire start point and update the wire points
+    def MoveStartPoint(self, point):
+        if len(self.Points) > 1:
+            self.StartPoint[0] = point
+            self.Points[0] = point
+            self.GeneratePoints()
+    
+    # Changes the wire start direction and update the wire points
+    def SetStartPointDirection(self, dir):
+        if len(self.Points) > 1:
+            self.StartPoint[1] = dir
+            self.Segments[0] = dir
+            self.GeneratePoints()
+    
+    # Rotates the wire start direction by an angle of 90 degrees anticlockwise
+    def RotateStartPoint(self):
+        self.SetStartPointDirection((self.StartPoint[1][1], -self.StartPoint[1][0]))
+    
+    # Connects wire start point to the connector given and moves wire start point
+    # to given point
+    def ConnectStartPoint(self, point, connector):
+        if point:
+            self.MoveStartPoint(point)
+        self.StartConnected = connector
+        self.RefreshBoundingBox()
+    
+    # Unconnects wire start point
+    def UnConnectStartPoint(self, delete = False):
+        if delete:
+            self.StartConnected = None
+            self.Delete()
+        elif self.StartConnected:
+            self.StartConnected.UnConnect(self, unconnect = False)
+            self.StartConnected = None
+            self.RefreshBoundingBox()
+    
+    # Moves the wire end point and update the wire points
+    def MoveEndPoint(self, point):
+        if len(self.Points) > 1:
+            self.EndPoint[0] = point
+            self.Points[-1] = point
+            self.GeneratePoints()
+
+    # Changes the wire end direction and update the wire points
+    def SetEndPointDirection(self, dir):
+        if len(self.Points) > 1:
+            self.EndPoint[1] = dir
+            self.GeneratePoints()
+            
+    # Rotates the wire end direction by an angle of 90 degrees anticlockwise
+    def RotateEndPoint(self):
+        self.SetEndPointDirection((self.EndPoint[1][1], -self.EndPoint[1][0]))
+
+    # Connects wire end point to the connector given and moves wire end point
+    # to given point
+    def ConnectEndPoint(self, point, connector):
+        if point:
+            self.MoveEndPoint(point)
+        self.EndConnected = connector
+        self.RefreshBoundingBox()
+    
+    # Unconnects wire end point
+    def UnConnectEndPoint(self, delete = False):
+        if delete:
+            self.EndConnected = None
+            self.Delete()
+        elif self.EndConnected:
+            self.EndConnected.UnConnect(self, unconnect = False)
+            self.EndConnected = None
+            self.RefreshBoundingBox()
+    
+    # Moves the wire segment given by its index
+    def MoveSegment(self, idx, movex, movey, scaling):
+        if 0 < idx < len(self.Segments) - 1:
+            if self.Segments[idx] in (NORTH, SOUTH):
+                start_x = self.Points[idx].x
+                if scaling is not None:
+                    movex = round_scaling(self.Points[idx].x + movex, scaling[0]) - self.Points[idx].x
+                    if idx == 1 and (self.Points[1].x + movex - self.Points[0].x) * self.Segments[0][0] < MIN_SEGMENT_SIZE:
+                        movex = round_scaling(self.Points[0].x + MIN_SEGMENT_SIZE * self.Segments[0][0], scaling[0], self.Segments[0][0]) - self.Points[idx].x
+                    elif idx == len(self.Segments) - 2 and (self.Points[-1].x - (self.Points[-2].x + movex)) * self.Segments[-1][0] < MIN_SEGMENT_SIZE:
+                        movex = round_scaling(self.Points[-1].x - MIN_SEGMENT_SIZE * self.Segments[-1][0], scaling[0], -self.Segments[-1][0]) - self.Points[idx].x
+                self.Points[idx].x += movex
+                self.Points[idx + 1].x += movex
+                self.GeneratePoints()
+                if start_x != self.Points[idx].x:
+                    return self.Points[idx].x - start_x, 0
+            elif self.Segments[idx] in (EAST, WEST):
+                start_y = self.Points[idx].y
+                if scaling is not None:
+                    movey = round_scaling(self.Points[idx].y + movey, scaling[1]) - self.Points[idx].y
+                    if idx == 1 and (self.Points[1].y + movey - self.Points[0].y) * self.Segments[0][1] < MIN_SEGMENT_SIZE:
+                        movex = round_scaling(self.Points[0].y + MIN_SEGMENT_SIZE * self.Segments[0][1], scaling[0], self.Segments[0][1]) - self.Points[idx].y
+                    elif idx == len(self.Segments) - 2 and (self.Points[-1].y - (self.Points[-2].y + movey)) * self.Segments[-1][1] < MIN_SEGMENT_SIZE:
+                        movey = round_scaling(self.Points[idx].y - MIN_SEGMENT_SIZE * self.Segments[-1][1], scaling[1], -self.Segments[-1][1]) - self.Points[idx].y
+                self.Points[idx].y += movey
+                self.Points[idx + 1].y += movey
+                self.GeneratePoints()
+                if start_y != self.Points[idx].y:
+                    return 0, self.Points[idx].y - start_y
+        return 0, 0
+    
+    # Adds two points in the middle of the handled segment
+    def AddSegment(self):
+        handle_type, handle = self.Handle
+        if handle_type == HANDLE_SEGMENT:
+            segment, dir = handle
+            if len(self.Segments) > 1:
+                pointx = self.Points[segment].x
+                pointy = self.Points[segment].y
+                if dir[0] != 0:
+                    pointx = (self.Points[segment].x + self.Points[segment + 1].x) / 2
+                if dir[1] != 0:
+                    pointy = (self.Points[segment].y + self.Points[segment + 1].y) / 2
+                self.Points.insert(segment + 1, wx.Point(pointx, pointy))
+                self.Segments.insert(segment + 1, (dir[1], dir[0]))
+                self.Points.insert(segment + 2, wx.Point(pointx, pointy))
+                self.Segments.insert(segment + 2, dir)
+            else:
+                p1x = p2x = self.Points[segment].x
+                p1y = p2y = self.Points[segment].y
+                if dir[0] != 0:
+                    p1x = (2 * self.Points[segment].x + self.Points[segment + 1].x) / 3
+                    p2x = (self.Points[segment].x + 2 * self.Points[segment + 1].x) / 3
+                if dir[1] != 0:
+                    p1y = (2 * self.Points[segment].y + self.Points[segment + 1].y) / 3
+                    p2y = (self.Points[segment].y + 2 * self.Points[segment + 1].y) / 3
+                self.Points.insert(segment + 1, wx.Point(p1x, p1y))
+                self.Segments.insert(segment + 1, (dir[1], dir[0]))
+                self.Points.insert(segment + 2, wx.Point(p1x, p1y))
+                self.Segments.insert(segment + 2, dir)
+                self.Points.insert(segment + 3, wx.Point(p2x, p2y))
+                self.Segments.insert(segment + 3, (dir[1], dir[0]))
+                self.Points.insert(segment + 4, wx.Point(p2x, p2y))
+                self.Segments.insert(segment + 4, dir)
+            self.GeneratePoints()
+    
+    # Delete the handled segment by removing the two segment points
+    def DeleteSegment(self):
+        handle_type, handle = self.Handle
+        if handle_type == HANDLE_SEGMENT:
+            segment, dir = handle
+            for i in xrange(2):
+                self.Points.pop(segment)
+                self.Segments.pop(segment)
+            self.GeneratePoints()
+            self.RefreshModel()
+            
+    # Method called when a LeftDown event have been generated
+    def OnLeftDown(self, event, dc, scaling):
+        pos = GetScaledEventPosition(event, dc, scaling)
+        # Test if a point have been handled
+        #result = self.TestPoint(pos)
+        #if result != None:
+        #    self.Handle = (HANDLE_POINT, result)
+        #    wx.CallAfter(self.Parent.SetCurrentCursor, 1)
+        #else:
+        # Test if a segment have been handled
+        result = self.TestSegment(pos)
+        if result != None:
+            if result[1] in (NORTH, SOUTH):
+                wx.CallAfter(self.Parent.SetCurrentCursor, 4)
+            elif result[1] in (EAST, WEST):
+                wx.CallAfter(self.Parent.SetCurrentCursor, 5)
+            self.Handle = (HANDLE_SEGMENT, result)
+        # Execute the default method for a graphic element
+        else:
+            Graphic_Element.OnLeftDown(self, event, dc, scaling)
+        self.oldPos = pos
+    
+    # Method called when a RightUp event has been generated
+    def OnRightUp(self, event, dc, scaling):
+        pos = GetScaledEventPosition(event, dc, scaling)
+        # Test if a segment has been handled
+        result = self.TestSegment(pos, True)
+        if result != None:
+            self.Handle = (HANDLE_SEGMENT, result)
+            # Popup the menu with special items for a wire
+            self.Parent.PopupWireMenu(0 < result[0] < len(self.Segments) - 1)
+        else:
+            # Execute the default method for a graphic element
+            Graphic_Element.OnRightUp(self, event, dc, scaling)
+    
+    # Method called when a LeftDClick event has been generated
+    def OnLeftDClick(self, event, dc, scaling):
+        rect = self.GetRedrawRect()
+        if event.ControlDown():
+            direction = (self.StartPoint[1], self.EndPoint[1])
+            if direction in [(EAST, WEST), (WEST, EAST)]:
+                avgy = (self.StartPoint[0].y + self.EndPoint[0].y) / 2
+                if scaling is not None:
+                    avgy = round(float(avgy) / scaling[1]) * scaling[1]
+                if self.StartConnected is not None:
+                    movey = avgy - self.StartPoint[0].y
+                    startblock = self.StartConnected.GetParentBlock()
+                    startblock.Move(0, movey)
+                    startblock.RefreshModel()
+                    rect.Union(startblock.GetRedrawRect(0, movey))
+                else:
+                    self.MoveStartPoint(wx.Point(self.StartPoint[0].x, avgy))
+                if self.EndConnected is not None:
+                    movey = avgy - self.EndPoint[0].y
+                    endblock = self.EndConnected.GetParentBlock()
+                    endblock.Move(0, movey)
+                    endblock.RefreshModel()
+                    rect.Union(endblock.GetRedrawRect(0, movey))
+                else:
+                    self.MoveEndPoint(wx.Point(self.EndPoint[0].x, avgy))
+                self.Parent.RefreshBuffer()
+            elif direction in [(NORTH, SOUTH), (SOUTH, NORTH)]:
+                avgx = (self.StartPoint[0].x + self.EndPoint[0].x) / 2
+                if scaling is not None:
+                    avgx = round(float(avgx) / scaling[0]) * scaling[0]
+                if self.StartConnected is not None:
+                    movex = avgx - self.StartPoint[0].x
+                    startblock = self.StartConnected.GetParentBlock()
+                    startblock.Move(movex, 0)
+                    startblock.RefreshModel()
+                    rect.Union(startblock.GetRedrawRect(movex, 0))
+                else:
+                    self.MoveStartPoint(wx.Point(avgx, self.StartPoint[0].y))
+                if self.EndConnected is not None:
+                    movex = avgx - self.EndPoint[0].x
+                    endblock = self.EndConnected.GetParentBlock()
+                    endblock.Move(movex, 0)
+                    endblock.RefreshModel()
+                    rect.Union(endblock.GetRedrawRect(movex, 0))
+                else:
+                    self.MoveEndPoint(wx.Point(avgx, self.EndPoint[0].y))
+                self.Parent.RefreshBuffer()
+        else:
+            self.ResetPoints()
+            self.GeneratePoints()
+            self.RefreshModel()
+            self.Parent.RefreshBuffer()
+        rect.Union(self.GetRedrawRect())
+        self.Parent.RefreshRect(self.Parent.GetScrolledRect(rect), False)
+        
+    # Method called when a Motion event has been generated
+    def OnMotion(self, event, dc, scaling):
+        pos = GetScaledEventPosition(event, dc, scaling)
+        if not event.Dragging():
+            # Test if a segment has been handled
+            result = self.TestSegment(pos)
+            if result:
+                if result[1] in (NORTH, SOUTH):
+                    wx.CallAfter(self.Parent.SetCurrentCursor, 4)
+                elif result[1] in (EAST, WEST):
+                    wx.CallAfter(self.Parent.SetCurrentCursor, 5)
+                return 0, 0
+            else:
+                # Execute the default method for a graphic element
+                return Graphic_Element.OnMotion(self, event, dc, scaling)
+        else:
+            # Execute the default method for a graphic element
+            return Graphic_Element.OnMotion(self, event, dc, scaling)
+    
+    # Refreshes the wire state according to move defined and handle selected
+    def ProcessDragging(self, movex, movey, event, scaling):
+        handle_type, handle = self.Handle
+        # A point has been handled
+        if handle_type == HANDLE_POINT:
+            movex = max(-self.Points[handle].x + POINT_RADIUS, movex)
+            movey = max(-self.Points[handle].y + POINT_RADIUS, movey)
+            if scaling is not None:
+                movex = round_scaling(self.Points[handle].x + movex, scaling[0]) - self.Points[handle].x
+                movey = round_scaling(self.Points[handle].y + movey, scaling[1]) - self.Points[handle].y
+            # Try to connect point to a connector
+            new_pos = wx.Point(self.Points[handle].x + movex, self.Points[handle].y + movey)
+            connector = self.Parent.FindBlockConnector(new_pos, self.GetConnectionDirection())
+            if connector:
+                if handle == 0 and self.EndConnected != connector:
+                    connector.HighlightParentBlock(True)
+                    connector.Connect((self, handle))
+                    self.SetStartPointDirection(connector.GetDirection())
+                    self.ConnectStartPoint(connector.GetPosition(), connector)
+                    pos = connector.GetPosition()
+                    movex = pos.x - self.oldPos.x
+                    movey = pos.y - self.oldPos.y
+                    if not connector.IsCompatible(self.GetEndConnectedType()):
+                        self.SetValid(False)
+                    self.Dragging = False
+                elif handle != 0 and self.StartConnected != connector:
+                    connector.HighlightParentBlock(True)
+                    connector.Connect((self, handle))
+                    self.SetEndPointDirection(connector.GetDirection())
+                    self.ConnectEndPoint(connector.GetPosition(), connector)
+                    pos = connector.GetPosition()
+                    movex = pos.x - self.oldPos.x
+                    movey = pos.y - self.oldPos.y
+                    if not connector.IsCompatible(self.GetStartConnectedType()):
+                        self.SetValid(False)
+                    self.Dragging = False
+                elif handle == 0:
+                    self.MoveStartPoint(new_pos)
+                else:
+                    self.MoveEndPoint(new_pos)
+            # If there is no connector, move the point
+            elif handle == 0:
+                self.SetValid(True)
+                if self.StartConnected:
+                    self.StartConnected.HighlightParentBlock(False)
+                    self.UnConnectStartPoint()
+                self.MoveStartPoint(new_pos)
+            else:
+                self.SetValid(True)
+                if self.EndConnected:
+                    self.EndConnected.HighlightParentBlock(False)
+                    self.UnConnectEndPoint()
+                self.MoveEndPoint(new_pos)
+            return movex, movey
+        # A segment has been handled, move a segment
+        elif handle_type == HANDLE_SEGMENT:
+            return self.MoveSegment(handle[0], movex, movey, scaling)
+        # Execute the default method for a graphic element
+        else:
+            return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
+    
+    # Refreshes the wire model
+    def RefreshModel(self, move=True):
+        if self.StartConnected and self.StartPoint[1] in [WEST, NORTH]:
+            self.StartConnected.RefreshParentBlock()
+        if self.EndConnected and self.EndPoint[1] in [WEST, NORTH]:
+            self.EndConnected.RefreshParentBlock()
+    
+    # Change the variable that indicates if this element is highlighted
+    def SetHighlighted(self, highlighted):
+        self.Highlighted = highlighted
+        if not highlighted:
+            self.OverStart = False
+            self.OverEnd = False
+        self.Refresh()
+    
+    def HighlightPoint(self, pos):
+        refresh = False
+        start, end = self.OverStart, self.OverEnd
+        self.OverStart = False
+        self.OverEnd = False
+        # Test if a point has been handled
+        result = self.TestPoint(pos)
+        if result != None:
+            if result == 0 and self.StartConnected is not None:
+                self.OverStart = True
+            elif result != 0 and self.EndConnected is not None:
+                self.OverEnd = True
+        if start != self.OverStart or end != self.OverEnd:
+            self.Refresh()
+    
+    # Draws the highlightment of this element if it is highlighted
+    def DrawHighlightment(self, dc):
+        scalex, scaley = dc.GetUserScale()
+        dc.SetUserScale(1, 1)
+        dc.SetPen(MiterPen(HIGHLIGHTCOLOR, (2 * scalex + 5)))
+        dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+        dc.SetLogicalFunction(wx.AND)
+        # Draw the start and end points if they are not connected or the mouse is over them
+        if len(self.Points) > 0 and (not self.StartConnected or self.OverStart):
+            dc.DrawCircle(round(self.Points[0].x * scalex), 
+                          round(self.Points[0].y * scaley), 
+                          (POINT_RADIUS + 1) * scalex + 2)
+        if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd):
+            dc.DrawCircle(self.Points[-1].x * scalex, self.Points[-1].y * scaley, (POINT_RADIUS + 1) * scalex + 2)
+        # Draw the wire lines and the last point (it seems that DrawLines stop before the last point)
+        if len(self.Points) > 1:
+            points = [wx.Point(round((self.Points[0].x - self.Segments[0][0]) * scalex), 
+                               round((self.Points[0].y - self.Segments[0][1]) * scaley))]
+            points.extend([wx.Point(round(point.x * scalex), round(point.y * scaley)) for point in self.Points[1:-1]])
+            points.append(wx.Point(round((self.Points[-1].x + self.Segments[-1][0]) * scalex), 
+                                   round((self.Points[-1].y + self.Segments[-1][1]) * scaley)))
+        else:
+            points = []
+        dc.DrawLines(points)
+        dc.SetLogicalFunction(wx.COPY)
+        dc.SetUserScale(scalex, scaley)
+        
+        if self.StartConnected is not None:
+            self.StartConnected.DrawHighlightment(dc)
+            self.StartConnected.Draw(dc)
+        if self.EndConnected is not None:
+            self.EndConnected.DrawHighlightment(dc)
+            self.EndConnected.Draw(dc)
+    
+    # Draws the wire lines and points
+    def Draw(self, dc):
+        Graphic_Element.Draw(self, dc)
+        if not self.Valid:
+            dc.SetPen(MiterPen(wx.RED))
+            dc.SetBrush(wx.RED_BRUSH)
+        elif isinstance(self.Value, BooleanType) and self.Value:
+            if self.Forced:
+                dc.SetPen(MiterPen(wx.CYAN))
+                dc.SetBrush(wx.CYAN_BRUSH)
+            else:
+                dc.SetPen(MiterPen(wx.GREEN))
+                dc.SetBrush(wx.GREEN_BRUSH)
+        elif self.Value == "undefined":
+            dc.SetPen(MiterPen(wx.NamedColour("orange")))
+            dc.SetBrush(wx.Brush(wx.NamedColour("orange")))
+        elif self.Forced:
+            dc.SetPen(MiterPen(wx.BLUE))
+            dc.SetBrush(wx.BLUE_BRUSH)
+        else:
+            dc.SetPen(MiterPen(wx.BLACK))
+            dc.SetBrush(wx.BLACK_BRUSH)
+        # Draw the start and end points if they are not connected or the mouse is over them
+        if len(self.Points) > 0 and (not self.StartConnected or self.OverStart):
+            dc.DrawCircle(self.Points[0].x, self.Points[0].y, POINT_RADIUS)
+        if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd):
+            dc.DrawCircle(self.Points[-1].x, self.Points[-1].y, POINT_RADIUS)
+        # Draw the wire lines and the last point (it seems that DrawLines stop before the last point)
+        if len(self.Points) > 1:
+            points = [wx.Point(self.Points[0].x - self.Segments[0][0], self.Points[0].y - self.Segments[0][1])]
+            points.extend([point for point in self.Points[1:-1]])
+            points.append(wx.Point(self.Points[-1].x + self.Segments[-1][0], self.Points[-1].y + self.Segments[-1][1]))
+        else:
+            points = []
+        dc.DrawLines(points)
+        # Draw the segment selected in red
+        if not getattr(dc, "printing", False) and self.SelectedSegment is not None:
+            dc.SetPen(MiterPen(wx.BLUE, 3))
+            if self.SelectedSegment == len(self.Segments) - 1:
+                end = 0
+            else:
+                end = 1
+            dc.DrawLine(self.Points[self.SelectedSegment].x - 1, self.Points[self.SelectedSegment].y,
+                        self.Points[self.SelectedSegment + 1].x + end, self.Points[self.SelectedSegment + 1].y)
+        if self.Value is not None and not isinstance(self.Value, BooleanType) and self.Value != "undefined":
+            dc.SetFont(self.Parent.GetMiniFont())
+            dc.SetTextForeground(wx.NamedColour("purple"))
+            if self.ValueSize is None and isinstance(self.ComputedValue, (StringType, UnicodeType)):
+                self.ValueSize = self.Parent.GetMiniTextExtent(self.ComputedValue)
+            if self.ValueSize is not None:
+                width, height = self.ValueSize
+                if self.BoundingBox[2] > width * 4 or self.BoundingBox[3] > height * 4:
+                    x = self.Points[0].x + width * (self.StartPoint[1][0] - 1) / 2
+                    y = self.Points[0].y + height * (self.StartPoint[1][1] - 1)
+                    dc.DrawText(self.ComputedValue, x, y)
+                    x = self.Points[-1].x + width * (self.EndPoint[1][0] - 1) / 2
+                    y = self.Points[-1].y + height * (self.EndPoint[1][1] - 1)
+                    dc.DrawText(self.ComputedValue, x, y)
+                else:
+                    middle = len(self.Segments) / 2 + len(self.Segments) % 2 - 1
+                    x = (self.Points[middle].x + self.Points[middle + 1].x - width) / 2
+                    if self.BoundingBox[3] > height and self.Segments[middle] in [NORTH, SOUTH]:
+                        y = (self.Points[middle].y + self.Points[middle + 1].y - height) / 2
+                    else:
+                        y = self.Points[middle].y - height
+                    dc.DrawText(self.ComputedValue, x, y)
+            dc.SetFont(self.Parent.GetFont())
+            dc.SetTextForeground(wx.BLACK)
+
+
+#-------------------------------------------------------------------------------
+#                           Graphic comment element
+#-------------------------------------------------------------------------------
+
+def FilterHighlightsByRow(highlights, row, length):
+    _highlights = []
+    for start, end, highlight_type in highlights:
+        if start[0] <= row and end[0] >= row:
+            if start[0] < row:
+                start = (row, 0)
+            if end[0] > row:
+                end = (row, length)
+            _highlights.append((start, end, highlight_type))
+    return _highlights
+
+def FilterHighlightsByColumn(highlights, start_col, end_col):
+    _highlights = []
+    for start, end, highlight_type in highlights:
+        if end[1] > start_col and start[1] < end_col:
+            start = (start[0], max(start[1], start_col) - start_col)
+            end = (end[0], min(end[1], end_col) - start_col)
+            _highlights.append((start, end, highlight_type))
+    return _highlights
+
+"""
+Class that implements a comment
+"""
+
+class Comment(Graphic_Element):
+
+    # Create a new comment
+    def __init__(self, parent, content, id = None):
+        Graphic_Element.__init__(self, parent)
+        self.Id = id
+        self.Content = content
+        self.Pos = wx.Point(0, 0)
+        self.Size = wx.Size(0, 0)
+        self.Highlights = []
+    
+    # Make a clone of this comment
+    def Clone(self, parent, id = None, pos = None):
+        comment = Comment(parent, self.Content, id)
+        if pos is not None:
+            comment.SetPosition(pos.x, pos.y)
+        comment.SetSize(self.Size[0], self.Size[1])
+        return comment
+    
+    # Method for keeping compatibility with others
+    def Clean(self):
+        pass
+    
+    # Delete this comment by calling the corresponding method
+    def Delete(self):
+        self.Parent.DeleteComment(self)
+    
+    # Refresh the comment bounding box
+    def RefreshBoundingBox(self):
+        self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
+    
+    # Changes the comment size
+    def SetSize(self, width, height):
+        self.Size.SetWidth(width)
+        self.Size.SetHeight(height)
+        self.RefreshBoundingBox()
+
+    # Returns the comment size
+    def GetSize(self):
+        return self.Size.GetWidth(), self.Size.GetHeight()
+    
+    # Returns the comment minimum size
+    def GetMinSize(self):
+        dc = wx.ClientDC(self.Parent)
+        min_width = 0
+        min_height = 0
+        # The comment minimum size is the maximum size of words in the content
+        for line in self.Content.splitlines():
+            for word in line.split(" "):
+                wordwidth, wordheight = dc.GetTextExtent(word)
+                min_width = max(min_width, wordwidth)
+                min_height = max(min_height, wordheight)
+        return min_width + 20, min_height + 20
+    
+    # Changes the comment position
+    def SetPosition(self, x, y):
+        self.Pos.x = x
+        self.Pos.y = y
+        self.RefreshBoundingBox()
+
+    # Changes the comment content
+    def SetContent(self, content):
+        self.Content = content
+        min_width, min_height = self.GetMinSize()
+        self.Size[0] = max(self.Size[0], min_width)
+        self.Size[1] = max(self.Size[1], min_height)
+        self.RefreshBoundingBox()
+
+    # Returns the comment content
+    def GetContent(self):
+        return self.Content
+
+    # Returns the comment position
+    def GetPosition(self):
+        return self.Pos.x, self.Pos.y
+    
+    # Moves the comment
+    def Move(self, dx, dy, connected = True):
+        self.Pos.x += dx
+        self.Pos.y += dy
+        self.RefreshBoundingBox()
+    
+    # Resizes the comment with the position and the size given
+    def Resize(self, x, y, width, height):
+        self.Move(x, y)
+        self.SetSize(width, height)
+    
+    # Method called when a RightUp event have been generated
+    def OnRightUp(self, event, dc, scaling):
+        # Popup the default menu
+        self.Parent.PopupDefaultMenu()
+    
+    # Refreshes the wire state according to move defined and handle selected
+    def ProcessDragging(self, movex, movey, event, scaling):
+        if self.Parent.GetDrawingMode() != FREEDRAWING_MODE and self.Parent.CurrentLanguage == "LD":
+            movex = movey = 0
+        return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
+        
+    # Refreshes the comment model
+    def RefreshModel(self, move=True):
+        self.Parent.RefreshCommentModel(self)
+    
+    # Method called when a LeftDClick event have been generated
+    def OnLeftDClick(self, event, dc, scaling):
+        # Edit the comment content
+        self.Parent.EditCommentContent(self)
+    
+    # Adds an highlight to the comment
+    def AddHighlight(self, infos, start, end, highlight_type):
+        if infos[0] == "content":
+            AddHighlight(self.Highlights, (start, end, highlight_type))
+    
+    # Removes an highlight from the comment
+    def RemoveHighlight(self, infos, start, end, highlight_type):
+        RemoveHighlight(self.Highlights, (start, end, highlight_type))
+    
+    # Removes all the highlights of one particular type from the comment
+    def ClearHighlight(self, highlight_type=None):
+        self.Highlights = ClearHighlights(self.Highlights, highlight_type)
+    
+    # Draws the highlightment of this element if it is highlighted
+    def DrawHighlightment(self, dc):
+        scalex, scaley = dc.GetUserScale()
+        dc.SetUserScale(1, 1)
+        dc.SetPen(MiterPen(HIGHLIGHTCOLOR))
+        dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
+        dc.SetLogicalFunction(wx.AND)
+        
+        left = (self.Pos.x - 1) * scalex - 2
+        right = (self.Pos.x + self.Size[0] + 1) * scalex + 2
+        top = (self.Pos.y - 1) * scaley - 2
+        bottom = (self.Pos.y + self.Size[1] + 1) * scaley + 2
+        angle_top = (self.Pos.x + self.Size[0] - 9) * scalex + 2
+        angle_right = (self.Pos.y + 9) * scaley - 2
+        
+        polygon = [wx.Point(left, top), wx.Point(angle_top, top),
+                   wx.Point(right, angle_right), wx.Point(right, bottom),
+                   wx.Point(left, bottom)]
+        dc.DrawPolygon(polygon)
+        
+        dc.SetLogicalFunction(wx.COPY)
+        dc.SetUserScale(scalex, scaley)
+        
+    # Draws the comment and its content
+    def Draw(self, dc):
+        Graphic_Element.Draw(self, dc)
+        dc.SetPen(MiterPen(wx.BLACK))
+        dc.SetBrush(wx.WHITE_BRUSH)
+        # Draws the comment shape
+        polygon = [wx.Point(self.Pos.x, self.Pos.y), 
+                   wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y),
+                   wx.Point(self.Pos.x + self.Size[0], self.Pos.y + 10),
+                   wx.Point(self.Pos.x + self.Size[0], self.Pos.y + self.Size[1]),
+                   wx.Point(self.Pos.x, self.Pos.y + self.Size[1])]
+        dc.DrawPolygon(polygon)
+        lines = [wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y),
+                 wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y + 10),
+                 wx.Point(self.Pos.x + self.Size[0], self.Pos.y + 10)]
+        dc.DrawLines(lines)
+        # Draws the comment content
+        y = self.Pos.y + 10
+        for idx, line in enumerate(self.Content.splitlines()):
+            first = True
+            linetext = ""
+            words = line.split(" ")
+            if not getattr(dc, "printing", False):
+                highlights = FilterHighlightsByRow(self.Highlights, idx, len(line))
+                highlights_offset = 0
+            for i, word in enumerate(words):
+                if first:
+                    text = word
+                else:
+                    text = linetext + " " + word
+                wordwidth, wordheight = dc.GetTextExtent(text)
+                if y + wordheight > self.Pos.y + self.Size[1] - 10:
+                    break
+                if wordwidth < self.Size[0] - 20:
+                    if i < len(words) - 1:
+                        linetext = text
+                        first = False
+                    else:
+                        dc.DrawText(text, self.Pos.x + 10, y)
+                        if not getattr(dc, "printing", False):
+                            DrawHighlightedText(dc, text, FilterHighlightsByColumn(highlights, highlights_offset, highlights_offset + len(text)), self.Pos.x + 10, y)
+                            highlights_offset += len(text) + 1
+                        y += wordheight + 5
+                else:
+                    if not first:
+                        dc.DrawText(linetext, self.Pos.x + 10, y)
+                        if not getattr(dc, "printing", False):
+                            DrawHighlightedText(dc, linetext, FilterHighlightsByColumn(highlights, highlights_offset, highlights_offset + len(linetext)), self.Pos.x + 10, y)
+                            highlights_offset += len(linetext) + 1
+                    if first or i == len(words) - 1:
+                        if not first:
+                            y += wordheight + 5
+                            if y + wordheight > self.Pos.y + self.Size[1] - 10:
+                                break
+                        dc.DrawText(word, self.Pos.x + 10, y)
+                        if not getattr(dc, "printing", False):
+                            DrawHighlightedText(dc, word, FilterHighlightsByColumn(highlights, highlights_offset, highlights_offset + len(word)), self.Pos.x + 10, y)
+                            highlights_offset += len(word) + 1
+                    else:
+                        linetext = word
+                    y += wordheight + 5
+            if y + wordheight > self.Pos.y + self.Size[1] - 10:
+                break
+