devices/e1000e/lib-2.6.35-orig.c
branchstable-1.5
changeset 2378 ca345abf0565
parent 2290 0a6fc3f5f418
equal deleted inserted replaced
2377:aa0f6f939cb3 2378:ca345abf0565
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 
       
    31 enum e1000_mng_mode {
       
    32 	e1000_mng_mode_none = 0,
       
    33 	e1000_mng_mode_asf,
       
    34 	e1000_mng_mode_pt,
       
    35 	e1000_mng_mode_ipmi,
       
    36 	e1000_mng_mode_host_if_only
       
    37 };
       
    38 
       
    39 #define E1000_FACTPS_MNGCG		0x20000000
       
    40 
       
    41 /* Intel(R) Active Management Technology signature */
       
    42 #define E1000_IAMT_SIGNATURE		0x544D4149
       
    43 
       
    44 /**
       
    45  *  e1000e_get_bus_info_pcie - Get PCIe bus information
       
    46  *  @hw: pointer to the HW structure
       
    47  *
       
    48  *  Determines and stores the system bus information for a particular
       
    49  *  network interface.  The following bus information is determined and stored:
       
    50  *  bus speed, bus width, type (PCIe), and PCIe function.
       
    51  **/
       
    52 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
       
    53 {
       
    54 	struct e1000_mac_info *mac = &hw->mac;
       
    55 	struct e1000_bus_info *bus = &hw->bus;
       
    56 	struct e1000_adapter *adapter = hw->adapter;
       
    57 	u16 pcie_link_status, cap_offset;
       
    58 
       
    59 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
    60 	if (!cap_offset) {
       
    61 		bus->width = e1000_bus_width_unknown;
       
    62 	} else {
       
    63 		pci_read_config_word(adapter->pdev,
       
    64 				     cap_offset + PCIE_LINK_STATUS,
       
    65 				     &pcie_link_status);
       
    66 		bus->width = (enum e1000_bus_width)((pcie_link_status &
       
    67 						     PCIE_LINK_WIDTH_MASK) >>
       
    68 						    PCIE_LINK_WIDTH_SHIFT);
       
    69 	}
       
    70 
       
    71 	mac->ops.set_lan_id(hw);
       
    72 
       
    73 	return 0;
       
    74 }
       
    75 
       
    76 /**
       
    77  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
       
    78  *
       
    79  *  @hw: pointer to the HW structure
       
    80  *
       
    81  *  Determines the LAN function id by reading memory-mapped registers
       
    82  *  and swaps the port value if requested.
       
    83  **/
       
    84 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
       
    85 {
       
    86 	struct e1000_bus_info *bus = &hw->bus;
       
    87 	u32 reg;
       
    88 
       
    89 	/*
       
    90 	 * The status register reports the correct function number
       
    91 	 * for the device regardless of function swap state.
       
    92 	 */
       
    93 	reg = er32(STATUS);
       
    94 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
       
    95 }
       
    96 
       
    97 /**
       
    98  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
       
    99  *  @hw: pointer to the HW structure
       
   100  *
       
   101  *  Sets the LAN function id to zero for a single port device.
       
   102  **/
       
   103 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
       
   104 {
       
   105 	struct e1000_bus_info *bus = &hw->bus;
       
   106 
       
   107 	bus->func = 0;
       
   108 }
       
   109 
       
   110 /**
       
   111  *  e1000_clear_vfta_generic - Clear VLAN filter table
       
   112  *  @hw: pointer to the HW structure
       
   113  *
       
   114  *  Clears the register array which contains the VLAN filter table by
       
   115  *  setting all the values to 0.
       
   116  **/
       
   117 void e1000_clear_vfta_generic(struct e1000_hw *hw)
       
   118 {
       
   119 	u32 offset;
       
   120 
       
   121 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
   122 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
       
   123 		e1e_flush();
       
   124 	}
       
   125 }
       
   126 
       
   127 /**
       
   128  *  e1000_write_vfta_generic - Write value to VLAN filter table
       
   129  *  @hw: pointer to the HW structure
       
   130  *  @offset: register offset in VLAN filter table
       
   131  *  @value: register value written to VLAN filter table
       
   132  *
       
   133  *  Writes value at the given offset in the register array which stores
       
   134  *  the VLAN filter table.
       
   135  **/
       
   136 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
       
   137 {
       
   138 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
       
   139 	e1e_flush();
       
   140 }
       
   141 
       
   142 /**
       
   143  *  e1000e_init_rx_addrs - Initialize receive address's
       
   144  *  @hw: pointer to the HW structure
       
   145  *  @rar_count: receive address registers
       
   146  *
       
   147  *  Setups the receive address registers by setting the base receive address
       
   148  *  register to the devices MAC address and clearing all the other receive
       
   149  *  address registers to 0.
       
   150  **/
       
   151 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
       
   152 {
       
   153 	u32 i;
       
   154 	u8 mac_addr[ETH_ALEN] = {0};
       
   155 
       
   156 	/* Setup the receive address */
       
   157 	e_dbg("Programming MAC Address into RAR[0]\n");
       
   158 
       
   159 	e1000e_rar_set(hw, hw->mac.addr, 0);
       
   160 
       
   161 	/* Zero out the other (rar_entry_count - 1) receive addresses */
       
   162 	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
       
   163 	for (i = 1; i < rar_count; i++)
       
   164 		e1000e_rar_set(hw, mac_addr, i);
       
   165 }
       
   166 
       
   167 /**
       
   168  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
       
   169  *  @hw: pointer to the HW structure
       
   170  *
       
   171  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
       
   172  *  can be setup by pre-boot software and must be treated like a permanent
       
   173  *  address and must override the actual permanent MAC address. If an
       
   174  *  alternate MAC address is found it is programmed into RAR0, replacing
       
   175  *  the permanent address that was installed into RAR0 by the Si on reset.
       
   176  *  This function will return SUCCESS unless it encounters an error while
       
   177  *  reading the EEPROM.
       
   178  **/
       
   179 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
       
   180 {
       
   181 	u32 i;
       
   182 	s32 ret_val = 0;
       
   183 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
       
   184 	u8 alt_mac_addr[ETH_ALEN];
       
   185 
       
   186 	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
       
   187 	if (ret_val)
       
   188 		goto out;
       
   189 
       
   190 	/* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
       
   191 	if (!((nvm_data & NVM_COMPAT_LOM) ||
       
   192 	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
       
   193 	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)))
       
   194 		goto out;
       
   195 
       
   196 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
       
   197 	                         &nvm_alt_mac_addr_offset);
       
   198 	if (ret_val) {
       
   199 		e_dbg("NVM Read Error\n");
       
   200 		goto out;
       
   201 	}
       
   202 
       
   203 	if (nvm_alt_mac_addr_offset == 0xFFFF) {
       
   204 		/* There is no Alternate MAC Address */
       
   205 		goto out;
       
   206 	}
       
   207 
       
   208 	if (hw->bus.func == E1000_FUNC_1)
       
   209 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
       
   210 	for (i = 0; i < ETH_ALEN; i += 2) {
       
   211 		offset = nvm_alt_mac_addr_offset + (i >> 1);
       
   212 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
       
   213 		if (ret_val) {
       
   214 			e_dbg("NVM Read Error\n");
       
   215 			goto out;
       
   216 		}
       
   217 
       
   218 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
       
   219 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
       
   220 	}
       
   221 
       
   222 	/* if multicast bit is set, the alternate address will not be used */
       
   223 	if (alt_mac_addr[0] & 0x01) {
       
   224 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
       
   225 		goto out;
       
   226 	}
       
   227 
       
   228 	/*
       
   229 	 * We have a valid alternate MAC address, and we want to treat it the
       
   230 	 * same as the normal permanent MAC address stored by the HW into the
       
   231 	 * RAR. Do this by mapping this address into RAR0.
       
   232 	 */
       
   233 	e1000e_rar_set(hw, alt_mac_addr, 0);
       
   234 
       
   235 out:
       
   236 	return ret_val;
       
   237 }
       
   238 
       
   239 /**
       
   240  *  e1000e_rar_set - Set receive address register
       
   241  *  @hw: pointer to the HW structure
       
   242  *  @addr: pointer to the receive address
       
   243  *  @index: receive address array register
       
   244  *
       
   245  *  Sets the receive address array register at index to the address passed
       
   246  *  in by addr.
       
   247  **/
       
   248 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
       
   249 {
       
   250 	u32 rar_low, rar_high;
       
   251 
       
   252 	/*
       
   253 	 * HW expects these in little endian so we reverse the byte order
       
   254 	 * from network order (big endian) to little endian
       
   255 	 */
       
   256 	rar_low = ((u32) addr[0] |
       
   257 		   ((u32) addr[1] << 8) |
       
   258 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
   259 
       
   260 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
   261 
       
   262 	/* If MAC address zero, no need to set the AV bit */
       
   263 	if (rar_low || rar_high)
       
   264 		rar_high |= E1000_RAH_AV;
       
   265 
       
   266 	/*
       
   267 	 * Some bridges will combine consecutive 32-bit writes into
       
   268 	 * a single burst write, which will malfunction on some parts.
       
   269 	 * The flushes avoid this.
       
   270 	 */
       
   271 	ew32(RAL(index), rar_low);
       
   272 	e1e_flush();
       
   273 	ew32(RAH(index), rar_high);
       
   274 	e1e_flush();
       
   275 }
       
   276 
       
   277 /**
       
   278  *  e1000_hash_mc_addr - Generate a multicast hash value
       
   279  *  @hw: pointer to the HW structure
       
   280  *  @mc_addr: pointer to a multicast address
       
   281  *
       
   282  *  Generates a multicast address hash value which is used to determine
       
   283  *  the multicast filter table array address and new table value.  See
       
   284  *  e1000_mta_set_generic()
       
   285  **/
       
   286 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
   287 {
       
   288 	u32 hash_value, hash_mask;
       
   289 	u8 bit_shift = 0;
       
   290 
       
   291 	/* Register count multiplied by bits per register */
       
   292 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
       
   293 
       
   294 	/*
       
   295 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
       
   296 	 * where 0xFF would still fall within the hash mask.
       
   297 	 */
       
   298 	while (hash_mask >> bit_shift != 0xFF)
       
   299 		bit_shift++;
       
   300 
       
   301 	/*
       
   302 	 * The portion of the address that is used for the hash table
       
   303 	 * is determined by the mc_filter_type setting.
       
   304 	 * The algorithm is such that there is a total of 8 bits of shifting.
       
   305 	 * The bit_shift for a mc_filter_type of 0 represents the number of
       
   306 	 * left-shifts where the MSB of mc_addr[5] would still fall within
       
   307 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
       
   308 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
       
   309 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
       
   310 	 * cases are a variation of this algorithm...essentially raising the
       
   311 	 * number of bits to shift mc_addr[5] left, while still keeping the
       
   312 	 * 8-bit shifting total.
       
   313 	 *
       
   314 	 * For example, given the following Destination MAC Address and an
       
   315 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
       
   316 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
       
   317 	 * values resulting from each mc_filter_type...
       
   318 	 * [0] [1] [2] [3] [4] [5]
       
   319 	 * 01  AA  00  12  34  56
       
   320 	 * LSB		 MSB
       
   321 	 *
       
   322 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
       
   323 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
       
   324 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
       
   325 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
       
   326 	 */
       
   327 	switch (hw->mac.mc_filter_type) {
       
   328 	default:
       
   329 	case 0:
       
   330 		break;
       
   331 	case 1:
       
   332 		bit_shift += 1;
       
   333 		break;
       
   334 	case 2:
       
   335 		bit_shift += 2;
       
   336 		break;
       
   337 	case 3:
       
   338 		bit_shift += 4;
       
   339 		break;
       
   340 	}
       
   341 
       
   342 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
       
   343 				  (((u16) mc_addr[5]) << bit_shift)));
       
   344 
       
   345 	return hash_value;
       
   346 }
       
   347 
       
   348 /**
       
   349  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
       
   350  *  @hw: pointer to the HW structure
       
   351  *  @mc_addr_list: array of multicast addresses to program
       
   352  *  @mc_addr_count: number of multicast addresses to program
       
   353  *
       
   354  *  Updates entire Multicast Table Array.
       
   355  *  The caller must have a packed mc_addr_list of multicast addresses.
       
   356  **/
       
   357 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
       
   358 					u8 *mc_addr_list, u32 mc_addr_count)
       
   359 {
       
   360 	u32 hash_value, hash_bit, hash_reg;
       
   361 	int i;
       
   362 
       
   363 	/* clear mta_shadow */
       
   364 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
       
   365 
       
   366 	/* update mta_shadow from mc_addr_list */
       
   367 	for (i = 0; (u32) i < mc_addr_count; i++) {
       
   368 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
       
   369 
       
   370 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   371 		hash_bit = hash_value & 0x1F;
       
   372 
       
   373 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
       
   374 		mc_addr_list += (ETH_ALEN);
       
   375 	}
       
   376 
       
   377 	/* replace the entire MTA table */
       
   378 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
       
   379 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
       
   380 	e1e_flush();
       
   381 }
       
   382 
       
   383 /**
       
   384  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
       
   385  *  @hw: pointer to the HW structure
       
   386  *
       
   387  *  Clears the base hardware counters by reading the counter registers.
       
   388  **/
       
   389 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
       
   390 {
       
   391 	er32(CRCERRS);
       
   392 	er32(SYMERRS);
       
   393 	er32(MPC);
       
   394 	er32(SCC);
       
   395 	er32(ECOL);
       
   396 	er32(MCC);
       
   397 	er32(LATECOL);
       
   398 	er32(COLC);
       
   399 	er32(DC);
       
   400 	er32(SEC);
       
   401 	er32(RLEC);
       
   402 	er32(XONRXC);
       
   403 	er32(XONTXC);
       
   404 	er32(XOFFRXC);
       
   405 	er32(XOFFTXC);
       
   406 	er32(FCRUC);
       
   407 	er32(GPRC);
       
   408 	er32(BPRC);
       
   409 	er32(MPRC);
       
   410 	er32(GPTC);
       
   411 	er32(GORCL);
       
   412 	er32(GORCH);
       
   413 	er32(GOTCL);
       
   414 	er32(GOTCH);
       
   415 	er32(RNBC);
       
   416 	er32(RUC);
       
   417 	er32(RFC);
       
   418 	er32(ROC);
       
   419 	er32(RJC);
       
   420 	er32(TORL);
       
   421 	er32(TORH);
       
   422 	er32(TOTL);
       
   423 	er32(TOTH);
       
   424 	er32(TPR);
       
   425 	er32(TPT);
       
   426 	er32(MPTC);
       
   427 	er32(BPTC);
       
   428 }
       
   429 
       
   430 /**
       
   431  *  e1000e_check_for_copper_link - Check for link (Copper)
       
   432  *  @hw: pointer to the HW structure
       
   433  *
       
   434  *  Checks to see of the link status of the hardware has changed.  If a
       
   435  *  change in link status has been detected, then we read the PHY registers
       
   436  *  to get the current speed/duplex if link exists.
       
   437  **/
       
   438 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
       
   439 {
       
   440 	struct e1000_mac_info *mac = &hw->mac;
       
   441 	s32 ret_val;
       
   442 	bool link;
       
   443 
       
   444 	/*
       
   445 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   446 	 * has completed and/or if our link status has changed.  The
       
   447 	 * get_link_status flag is set upon receiving a Link Status
       
   448 	 * Change or Rx Sequence Error interrupt.
       
   449 	 */
       
   450 	if (!mac->get_link_status)
       
   451 		return 0;
       
   452 
       
   453 	/*
       
   454 	 * First we want to see if the MII Status Register reports
       
   455 	 * link.  If so, then we want to get the current speed/duplex
       
   456 	 * of the PHY.
       
   457 	 */
       
   458 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   459 	if (ret_val)
       
   460 		return ret_val;
       
   461 
       
   462 	if (!link)
       
   463 		return ret_val; /* No link detected */
       
   464 
       
   465 	mac->get_link_status = false;
       
   466 
       
   467 	/*
       
   468 	 * Check if there was DownShift, must be checked
       
   469 	 * immediately after link-up
       
   470 	 */
       
   471 	e1000e_check_downshift(hw);
       
   472 
       
   473 	/*
       
   474 	 * If we are forcing speed/duplex, then we simply return since
       
   475 	 * we have already determined whether we have link or not.
       
   476 	 */
       
   477 	if (!mac->autoneg) {
       
   478 		ret_val = -E1000_ERR_CONFIG;
       
   479 		return ret_val;
       
   480 	}
       
   481 
       
   482 	/*
       
   483 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   484 	 * of MAC speed/duplex configuration.  So we only need to
       
   485 	 * configure Collision Distance in the MAC.
       
   486 	 */
       
   487 	e1000e_config_collision_dist(hw);
       
   488 
       
   489 	/*
       
   490 	 * Configure Flow Control now that Auto-Neg has completed.
       
   491 	 * First, we need to restore the desired flow control
       
   492 	 * settings because we may have had to re-autoneg with a
       
   493 	 * different link partner.
       
   494 	 */
       
   495 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   496 	if (ret_val) {
       
   497 		e_dbg("Error configuring flow control\n");
       
   498 	}
       
   499 
       
   500 	return ret_val;
       
   501 }
       
   502 
       
   503 /**
       
   504  *  e1000e_check_for_fiber_link - Check for link (Fiber)
       
   505  *  @hw: pointer to the HW structure
       
   506  *
       
   507  *  Checks for link up on the hardware.  If link is not up and we have
       
   508  *  a signal, then we need to force link up.
       
   509  **/
       
   510 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
       
   511 {
       
   512 	struct e1000_mac_info *mac = &hw->mac;
       
   513 	u32 rxcw;
       
   514 	u32 ctrl;
       
   515 	u32 status;
       
   516 	s32 ret_val;
       
   517 
       
   518 	ctrl = er32(CTRL);
       
   519 	status = er32(STATUS);
       
   520 	rxcw = er32(RXCW);
       
   521 
       
   522 	/*
       
   523 	 * If we don't have link (auto-negotiation failed or link partner
       
   524 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
       
   525 	 * and our link partner is not trying to auto-negotiate with us (we
       
   526 	 * are receiving idles or data), we need to force link up. We also
       
   527 	 * need to give auto-negotiation time to complete, in case the cable
       
   528 	 * was just plugged in. The autoneg_failed flag does this.
       
   529 	 */
       
   530 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   531 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
       
   532 	    (!(rxcw & E1000_RXCW_C))) {
       
   533 		if (mac->autoneg_failed == 0) {
       
   534 			mac->autoneg_failed = 1;
       
   535 			return 0;
       
   536 		}
       
   537 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
       
   538 
       
   539 		/* Disable auto-negotiation in the TXCW register */
       
   540 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   541 
       
   542 		/* Force link-up and also force full-duplex. */
       
   543 		ctrl = er32(CTRL);
       
   544 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   545 		ew32(CTRL, ctrl);
       
   546 
       
   547 		/* Configure Flow Control after forcing link up. */
       
   548 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   549 		if (ret_val) {
       
   550 			e_dbg("Error configuring flow control\n");
       
   551 			return ret_val;
       
   552 		}
       
   553 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   554 		/*
       
   555 		 * If we are forcing link and we are receiving /C/ ordered
       
   556 		 * sets, re-enable auto-negotiation in the TXCW register
       
   557 		 * and disable forced link in the Device Control register
       
   558 		 * in an attempt to auto-negotiate with our link partner.
       
   559 		 */
       
   560 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   561 		ew32(TXCW, mac->txcw);
       
   562 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   563 
       
   564 		mac->serdes_has_link = true;
       
   565 	}
       
   566 
       
   567 	return 0;
       
   568 }
       
   569 
       
   570 /**
       
   571  *  e1000e_check_for_serdes_link - Check for link (Serdes)
       
   572  *  @hw: pointer to the HW structure
       
   573  *
       
   574  *  Checks for link up on the hardware.  If link is not up and we have
       
   575  *  a signal, then we need to force link up.
       
   576  **/
       
   577 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
       
   578 {
       
   579 	struct e1000_mac_info *mac = &hw->mac;
       
   580 	u32 rxcw;
       
   581 	u32 ctrl;
       
   582 	u32 status;
       
   583 	s32 ret_val;
       
   584 
       
   585 	ctrl = er32(CTRL);
       
   586 	status = er32(STATUS);
       
   587 	rxcw = er32(RXCW);
       
   588 
       
   589 	/*
       
   590 	 * If we don't have link (auto-negotiation failed or link partner
       
   591 	 * cannot auto-negotiate), and our link partner is not trying to
       
   592 	 * auto-negotiate with us (we are receiving idles or data),
       
   593 	 * we need to force link up. We also need to give auto-negotiation
       
   594 	 * time to complete.
       
   595 	 */
       
   596 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   597 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
       
   598 		if (mac->autoneg_failed == 0) {
       
   599 			mac->autoneg_failed = 1;
       
   600 			return 0;
       
   601 		}
       
   602 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
       
   603 
       
   604 		/* Disable auto-negotiation in the TXCW register */
       
   605 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   606 
       
   607 		/* Force link-up and also force full-duplex. */
       
   608 		ctrl = er32(CTRL);
       
   609 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   610 		ew32(CTRL, ctrl);
       
   611 
       
   612 		/* Configure Flow Control after forcing link up. */
       
   613 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   614 		if (ret_val) {
       
   615 			e_dbg("Error configuring flow control\n");
       
   616 			return ret_val;
       
   617 		}
       
   618 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   619 		/*
       
   620 		 * If we are forcing link and we are receiving /C/ ordered
       
   621 		 * sets, re-enable auto-negotiation in the TXCW register
       
   622 		 * and disable forced link in the Device Control register
       
   623 		 * in an attempt to auto-negotiate with our link partner.
       
   624 		 */
       
   625 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   626 		ew32(TXCW, mac->txcw);
       
   627 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   628 
       
   629 		mac->serdes_has_link = true;
       
   630 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
       
   631 		/*
       
   632 		 * If we force link for non-auto-negotiation switch, check
       
   633 		 * link status based on MAC synchronization for internal
       
   634 		 * serdes media type.
       
   635 		 */
       
   636 		/* SYNCH bit and IV bit are sticky. */
       
   637 		udelay(10);
       
   638 		rxcw = er32(RXCW);
       
   639 		if (rxcw & E1000_RXCW_SYNCH) {
       
   640 			if (!(rxcw & E1000_RXCW_IV)) {
       
   641 				mac->serdes_has_link = true;
       
   642 				e_dbg("SERDES: Link up - forced.\n");
       
   643 			}
       
   644 		} else {
       
   645 			mac->serdes_has_link = false;
       
   646 			e_dbg("SERDES: Link down - force failed.\n");
       
   647 		}
       
   648 	}
       
   649 
       
   650 	if (E1000_TXCW_ANE & er32(TXCW)) {
       
   651 		status = er32(STATUS);
       
   652 		if (status & E1000_STATUS_LU) {
       
   653 			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
       
   654 			udelay(10);
       
   655 			rxcw = er32(RXCW);
       
   656 			if (rxcw & E1000_RXCW_SYNCH) {
       
   657 				if (!(rxcw & E1000_RXCW_IV)) {
       
   658 					mac->serdes_has_link = true;
       
   659 					e_dbg("SERDES: Link up - autoneg "
       
   660 					   "completed successfully.\n");
       
   661 				} else {
       
   662 					mac->serdes_has_link = false;
       
   663 					e_dbg("SERDES: Link down - invalid"
       
   664 					   "codewords detected in autoneg.\n");
       
   665 				}
       
   666 			} else {
       
   667 				mac->serdes_has_link = false;
       
   668 				e_dbg("SERDES: Link down - no sync.\n");
       
   669 			}
       
   670 		} else {
       
   671 			mac->serdes_has_link = false;
       
   672 			e_dbg("SERDES: Link down - autoneg failed\n");
       
   673 		}
       
   674 	}
       
   675 
       
   676 	return 0;
       
   677 }
       
   678 
       
   679 /**
       
   680  *  e1000_set_default_fc_generic - Set flow control default values
       
   681  *  @hw: pointer to the HW structure
       
   682  *
       
   683  *  Read the EEPROM for the default values for flow control and store the
       
   684  *  values.
       
   685  **/
       
   686 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
       
   687 {
       
   688 	s32 ret_val;
       
   689 	u16 nvm_data;
       
   690 
       
   691 	/*
       
   692 	 * Read and store word 0x0F of the EEPROM. This word contains bits
       
   693 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   694 	 * a bit that determines whether the HW defaults to enabling or
       
   695 	 * disabling auto-negotiation, and the direction of the
       
   696 	 * SW defined pins. If there is no SW over-ride of the flow
       
   697 	 * control setting, then the variable hw->fc will
       
   698 	 * be initialized based on a value in the EEPROM.
       
   699 	 */
       
   700 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
       
   701 
       
   702 	if (ret_val) {
       
   703 		e_dbg("NVM Read Error\n");
       
   704 		return ret_val;
       
   705 	}
       
   706 
       
   707 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
       
   708 		hw->fc.requested_mode = e1000_fc_none;
       
   709 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
       
   710 		 NVM_WORD0F_ASM_DIR)
       
   711 		hw->fc.requested_mode = e1000_fc_tx_pause;
       
   712 	else
       
   713 		hw->fc.requested_mode = e1000_fc_full;
       
   714 
       
   715 	return 0;
       
   716 }
       
   717 
       
   718 /**
       
   719  *  e1000e_setup_link - Setup flow control and link settings
       
   720  *  @hw: pointer to the HW structure
       
   721  *
       
   722  *  Determines which flow control settings to use, then configures flow
       
   723  *  control.  Calls the appropriate media-specific link configuration
       
   724  *  function.  Assuming the adapter has a valid link partner, a valid link
       
   725  *  should be established.  Assumes the hardware has previously been reset
       
   726  *  and the transmitter and receiver are not enabled.
       
   727  **/
       
   728 s32 e1000e_setup_link(struct e1000_hw *hw)
       
   729 {
       
   730 	struct e1000_mac_info *mac = &hw->mac;
       
   731 	s32 ret_val;
       
   732 
       
   733 	/*
       
   734 	 * In the case of the phy reset being blocked, we already have a link.
       
   735 	 * We do not need to set it up again.
       
   736 	 */
       
   737 	if (e1000_check_reset_block(hw))
       
   738 		return 0;
       
   739 
       
   740 	/*
       
   741 	 * If requested flow control is set to default, set flow control
       
   742 	 * based on the EEPROM flow control settings.
       
   743 	 */
       
   744 	if (hw->fc.requested_mode == e1000_fc_default) {
       
   745 		ret_val = e1000_set_default_fc_generic(hw);
       
   746 		if (ret_val)
       
   747 			return ret_val;
       
   748 	}
       
   749 
       
   750 	/*
       
   751 	 * Save off the requested flow control mode for use later.  Depending
       
   752 	 * on the link partner's capabilities, we may or may not use this mode.
       
   753 	 */
       
   754 	hw->fc.current_mode = hw->fc.requested_mode;
       
   755 
       
   756 	e_dbg("After fix-ups FlowControl is now = %x\n",
       
   757 		hw->fc.current_mode);
       
   758 
       
   759 	/* Call the necessary media_type subroutine to configure the link. */
       
   760 	ret_val = mac->ops.setup_physical_interface(hw);
       
   761 	if (ret_val)
       
   762 		return ret_val;
       
   763 
       
   764 	/*
       
   765 	 * Initialize the flow control address, type, and PAUSE timer
       
   766 	 * registers to their default values.  This is done even if flow
       
   767 	 * control is disabled, because it does not hurt anything to
       
   768 	 * initialize these registers.
       
   769 	 */
       
   770 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
       
   771 	ew32(FCT, FLOW_CONTROL_TYPE);
       
   772 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   773 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   774 
       
   775 	ew32(FCTTV, hw->fc.pause_time);
       
   776 
       
   777 	return e1000e_set_fc_watermarks(hw);
       
   778 }
       
   779 
       
   780 /**
       
   781  *  e1000_commit_fc_settings_generic - Configure flow control
       
   782  *  @hw: pointer to the HW structure
       
   783  *
       
   784  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
       
   785  *  base on the flow control settings in e1000_mac_info.
       
   786  **/
       
   787 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
       
   788 {
       
   789 	struct e1000_mac_info *mac = &hw->mac;
       
   790 	u32 txcw;
       
   791 
       
   792 	/*
       
   793 	 * Check for a software override of the flow control settings, and
       
   794 	 * setup the device accordingly.  If auto-negotiation is enabled, then
       
   795 	 * software will have to set the "PAUSE" bits to the correct value in
       
   796 	 * the Transmit Config Word Register (TXCW) and re-start auto-
       
   797 	 * negotiation.  However, if auto-negotiation is disabled, then
       
   798 	 * software will have to manually configure the two flow control enable
       
   799 	 * bits in the CTRL register.
       
   800 	 *
       
   801 	 * The possible values of the "fc" parameter are:
       
   802 	 *      0:  Flow control is completely disabled
       
   803 	 *      1:  Rx flow control is enabled (we can receive pause frames,
       
   804 	 *	  but not send pause frames).
       
   805 	 *      2:  Tx flow control is enabled (we can send pause frames but we
       
   806 	 *	  do not support receiving pause frames).
       
   807 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
   808 	 */
       
   809 	switch (hw->fc.current_mode) {
       
   810 	case e1000_fc_none:
       
   811 		/* Flow control completely disabled by a software over-ride. */
       
   812 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
   813 		break;
       
   814 	case e1000_fc_rx_pause:
       
   815 		/*
       
   816 		 * Rx Flow control is enabled and Tx Flow control is disabled
       
   817 		 * by a software over-ride. Since there really isn't a way to
       
   818 		 * advertise that we are capable of Rx Pause ONLY, we will
       
   819 		 * advertise that we support both symmetric and asymmetric Rx
       
   820 		 * PAUSE.  Later, we will disable the adapter's ability to send
       
   821 		 * PAUSE frames.
       
   822 		 */
       
   823 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   824 		break;
       
   825 	case e1000_fc_tx_pause:
       
   826 		/*
       
   827 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
       
   828 		 * by a software over-ride.
       
   829 		 */
       
   830 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
   831 		break;
       
   832 	case e1000_fc_full:
       
   833 		/*
       
   834 		 * Flow control (both Rx and Tx) is enabled by a software
       
   835 		 * over-ride.
       
   836 		 */
       
   837 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   838 		break;
       
   839 	default:
       
   840 		e_dbg("Flow control param set incorrectly\n");
       
   841 		return -E1000_ERR_CONFIG;
       
   842 		break;
       
   843 	}
       
   844 
       
   845 	ew32(TXCW, txcw);
       
   846 	mac->txcw = txcw;
       
   847 
       
   848 	return 0;
       
   849 }
       
   850 
       
   851 /**
       
   852  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
       
   853  *  @hw: pointer to the HW structure
       
   854  *
       
   855  *  Polls for link up by reading the status register, if link fails to come
       
   856  *  up with auto-negotiation, then the link is forced if a signal is detected.
       
   857  **/
       
   858 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
       
   859 {
       
   860 	struct e1000_mac_info *mac = &hw->mac;
       
   861 	u32 i, status;
       
   862 	s32 ret_val;
       
   863 
       
   864 	/*
       
   865 	 * If we have a signal (the cable is plugged in, or assumed true for
       
   866 	 * serdes media) then poll for a "Link-Up" indication in the Device
       
   867 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
       
   868 	 * seconds (Auto-negotiation should complete in less than 500
       
   869 	 * milliseconds even if the other end is doing it in SW).
       
   870 	 */
       
   871 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
       
   872 		msleep(10);
       
   873 		status = er32(STATUS);
       
   874 		if (status & E1000_STATUS_LU)
       
   875 			break;
       
   876 	}
       
   877 	if (i == FIBER_LINK_UP_LIMIT) {
       
   878 		e_dbg("Never got a valid link from auto-neg!!!\n");
       
   879 		mac->autoneg_failed = 1;
       
   880 		/*
       
   881 		 * AutoNeg failed to achieve a link, so we'll call
       
   882 		 * mac->check_for_link. This routine will force the
       
   883 		 * link up if we detect a signal. This will allow us to
       
   884 		 * communicate with non-autonegotiating link partners.
       
   885 		 */
       
   886 		ret_val = mac->ops.check_for_link(hw);
       
   887 		if (ret_val) {
       
   888 			e_dbg("Error while checking for link\n");
       
   889 			return ret_val;
       
   890 		}
       
   891 		mac->autoneg_failed = 0;
       
   892 	} else {
       
   893 		mac->autoneg_failed = 0;
       
   894 		e_dbg("Valid Link Found\n");
       
   895 	}
       
   896 
       
   897 	return 0;
       
   898 }
       
   899 
       
   900 /**
       
   901  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
       
   902  *  @hw: pointer to the HW structure
       
   903  *
       
   904  *  Configures collision distance and flow control for fiber and serdes
       
   905  *  links.  Upon successful setup, poll for link.
       
   906  **/
       
   907 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
       
   908 {
       
   909 	u32 ctrl;
       
   910 	s32 ret_val;
       
   911 
       
   912 	ctrl = er32(CTRL);
       
   913 
       
   914 	/* Take the link out of reset */
       
   915 	ctrl &= ~E1000_CTRL_LRST;
       
   916 
       
   917 	e1000e_config_collision_dist(hw);
       
   918 
       
   919 	ret_val = e1000_commit_fc_settings_generic(hw);
       
   920 	if (ret_val)
       
   921 		return ret_val;
       
   922 
       
   923 	/*
       
   924 	 * Since auto-negotiation is enabled, take the link out of reset (the
       
   925 	 * link will be in reset, because we previously reset the chip). This
       
   926 	 * will restart auto-negotiation.  If auto-negotiation is successful
       
   927 	 * then the link-up status bit will be set and the flow control enable
       
   928 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
       
   929 	 */
       
   930 	e_dbg("Auto-negotiation enabled\n");
       
   931 
       
   932 	ew32(CTRL, ctrl);
       
   933 	e1e_flush();
       
   934 	msleep(1);
       
   935 
       
   936 	/*
       
   937 	 * For these adapters, the SW definable pin 1 is set when the optics
       
   938 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
       
   939 	 * indication.
       
   940 	 */
       
   941 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
       
   942 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
       
   943 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
       
   944 	} else {
       
   945 		e_dbg("No signal detected\n");
       
   946 	}
       
   947 
       
   948 	return 0;
       
   949 }
       
   950 
       
   951 /**
       
   952  *  e1000e_config_collision_dist - Configure collision distance
       
   953  *  @hw: pointer to the HW structure
       
   954  *
       
   955  *  Configures the collision distance to the default value and is used
       
   956  *  during link setup. Currently no func pointer exists and all
       
   957  *  implementations are handled in the generic version of this function.
       
   958  **/
       
   959 void e1000e_config_collision_dist(struct e1000_hw *hw)
       
   960 {
       
   961 	u32 tctl;
       
   962 
       
   963 	tctl = er32(TCTL);
       
   964 
       
   965 	tctl &= ~E1000_TCTL_COLD;
       
   966 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
       
   967 
       
   968 	ew32(TCTL, tctl);
       
   969 	e1e_flush();
       
   970 }
       
   971 
       
   972 /**
       
   973  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
       
   974  *  @hw: pointer to the HW structure
       
   975  *
       
   976  *  Sets the flow control high/low threshold (watermark) registers.  If
       
   977  *  flow control XON frame transmission is enabled, then set XON frame
       
   978  *  transmission as well.
       
   979  **/
       
   980 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
       
   981 {
       
   982 	u32 fcrtl = 0, fcrth = 0;
       
   983 
       
   984 	/*
       
   985 	 * Set the flow control receive threshold registers.  Normally,
       
   986 	 * these registers will be set to a default threshold that may be
       
   987 	 * adjusted later by the driver's runtime code.  However, if the
       
   988 	 * ability to transmit pause frames is not enabled, then these
       
   989 	 * registers will be set to 0.
       
   990 	 */
       
   991 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
       
   992 		/*
       
   993 		 * We need to set up the Receive Threshold high and low water
       
   994 		 * marks as well as (optionally) enabling the transmission of
       
   995 		 * XON frames.
       
   996 		 */
       
   997 		fcrtl = hw->fc.low_water;
       
   998 		fcrtl |= E1000_FCRTL_XONE;
       
   999 		fcrth = hw->fc.high_water;
       
  1000 	}
       
  1001 	ew32(FCRTL, fcrtl);
       
  1002 	ew32(FCRTH, fcrth);
       
  1003 
       
  1004 	return 0;
       
  1005 }
       
  1006 
       
  1007 /**
       
  1008  *  e1000e_force_mac_fc - Force the MAC's flow control settings
       
  1009  *  @hw: pointer to the HW structure
       
  1010  *
       
  1011  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
       
  1012  *  device control register to reflect the adapter settings.  TFCE and RFCE
       
  1013  *  need to be explicitly set by software when a copper PHY is used because
       
  1014  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
       
  1015  *  also configure these bits when link is forced on a fiber connection.
       
  1016  **/
       
  1017 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
       
  1018 {
       
  1019 	u32 ctrl;
       
  1020 
       
  1021 	ctrl = er32(CTRL);
       
  1022 
       
  1023 	/*
       
  1024 	 * Because we didn't get link via the internal auto-negotiation
       
  1025 	 * mechanism (we either forced link or we got link via PHY
       
  1026 	 * auto-neg), we have to manually enable/disable transmit an
       
  1027 	 * receive flow control.
       
  1028 	 *
       
  1029 	 * The "Case" statement below enables/disable flow control
       
  1030 	 * according to the "hw->fc.current_mode" parameter.
       
  1031 	 *
       
  1032 	 * The possible values of the "fc" parameter are:
       
  1033 	 *      0:  Flow control is completely disabled
       
  1034 	 *      1:  Rx flow control is enabled (we can receive pause
       
  1035 	 *	  frames but not send pause frames).
       
  1036 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1037 	 *	  frames but we do not receive pause frames).
       
  1038 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
       
  1039 	 *  other:  No other values should be possible at this point.
       
  1040 	 */
       
  1041 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
       
  1042 
       
  1043 	switch (hw->fc.current_mode) {
       
  1044 	case e1000_fc_none:
       
  1045 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
  1046 		break;
       
  1047 	case e1000_fc_rx_pause:
       
  1048 		ctrl &= (~E1000_CTRL_TFCE);
       
  1049 		ctrl |= E1000_CTRL_RFCE;
       
  1050 		break;
       
  1051 	case e1000_fc_tx_pause:
       
  1052 		ctrl &= (~E1000_CTRL_RFCE);
       
  1053 		ctrl |= E1000_CTRL_TFCE;
       
  1054 		break;
       
  1055 	case e1000_fc_full:
       
  1056 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
  1057 		break;
       
  1058 	default:
       
  1059 		e_dbg("Flow control param set incorrectly\n");
       
  1060 		return -E1000_ERR_CONFIG;
       
  1061 	}
       
  1062 
       
  1063 	ew32(CTRL, ctrl);
       
  1064 
       
  1065 	return 0;
       
  1066 }
       
  1067 
       
  1068 /**
       
  1069  *  e1000e_config_fc_after_link_up - Configures flow control after link
       
  1070  *  @hw: pointer to the HW structure
       
  1071  *
       
  1072  *  Checks the status of auto-negotiation after link up to ensure that the
       
  1073  *  speed and duplex were not forced.  If the link needed to be forced, then
       
  1074  *  flow control needs to be forced also.  If auto-negotiation is enabled
       
  1075  *  and did not fail, then we configure flow control based on our link
       
  1076  *  partner.
       
  1077  **/
       
  1078 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
       
  1079 {
       
  1080 	struct e1000_mac_info *mac = &hw->mac;
       
  1081 	s32 ret_val = 0;
       
  1082 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
       
  1083 	u16 speed, duplex;
       
  1084 
       
  1085 	/*
       
  1086 	 * Check for the case where we have fiber media and auto-neg failed
       
  1087 	 * so we had to force link.  In this case, we need to force the
       
  1088 	 * configuration of the MAC to match the "fc" parameter.
       
  1089 	 */
       
  1090 	if (mac->autoneg_failed) {
       
  1091 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1092 		    hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1093 			ret_val = e1000e_force_mac_fc(hw);
       
  1094 	} else {
       
  1095 		if (hw->phy.media_type == e1000_media_type_copper)
       
  1096 			ret_val = e1000e_force_mac_fc(hw);
       
  1097 	}
       
  1098 
       
  1099 	if (ret_val) {
       
  1100 		e_dbg("Error forcing flow control settings\n");
       
  1101 		return ret_val;
       
  1102 	}
       
  1103 
       
  1104 	/*
       
  1105 	 * Check for the case where we have copper media and auto-neg is
       
  1106 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1107 	 * has completed, and if so, how the PHY and link partner has
       
  1108 	 * flow control configured.
       
  1109 	 */
       
  1110 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
       
  1111 		/*
       
  1112 		 * Read the MII Status Register and check to see if AutoNeg
       
  1113 		 * has completed.  We read this twice because this reg has
       
  1114 		 * some "sticky" (latched) bits.
       
  1115 		 */
       
  1116 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1117 		if (ret_val)
       
  1118 			return ret_val;
       
  1119 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1120 		if (ret_val)
       
  1121 			return ret_val;
       
  1122 
       
  1123 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
       
  1124 			e_dbg("Copper PHY and Auto Neg "
       
  1125 				 "has not completed.\n");
       
  1126 			return ret_val;
       
  1127 		}
       
  1128 
       
  1129 		/*
       
  1130 		 * The AutoNeg process has completed, so we now need to
       
  1131 		 * read both the Auto Negotiation Advertisement
       
  1132 		 * Register (Address 4) and the Auto_Negotiation Base
       
  1133 		 * Page Ability Register (Address 5) to determine how
       
  1134 		 * flow control was negotiated.
       
  1135 		 */
       
  1136 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
       
  1137 		if (ret_val)
       
  1138 			return ret_val;
       
  1139 		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
       
  1140 		if (ret_val)
       
  1141 			return ret_val;
       
  1142 
       
  1143 		/*
       
  1144 		 * Two bits in the Auto Negotiation Advertisement Register
       
  1145 		 * (Address 4) and two bits in the Auto Negotiation Base
       
  1146 		 * Page Ability Register (Address 5) determine flow control
       
  1147 		 * for both the PHY and the link partner.  The following
       
  1148 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1149 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1150 		 * control is determined based upon these settings.
       
  1151 		 * NOTE:  DC = Don't Care
       
  1152 		 *
       
  1153 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1154 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1155 		 *-------|---------|-------|---------|--------------------
       
  1156 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1157 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1158 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1159 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1160 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1161 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1162 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1163 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1164 		 *
       
  1165 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1166 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1167 		 * ASM_DIR bits are irrelevant per the spec.
       
  1168 		 *
       
  1169 		 * For Symmetric Flow Control:
       
  1170 		 *
       
  1171 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1172 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1173 		 *-------|---------|-------|---------|--------------------
       
  1174 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
       
  1175 		 *
       
  1176 		 */
       
  1177 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1178 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
  1179 			/*
       
  1180 			 * Now we need to check if the user selected Rx ONLY
       
  1181 			 * of pause frames.  In this case, we had to advertise
       
  1182 			 * FULL flow control because we could not advertise Rx
       
  1183 			 * ONLY. Hence, we must now check to see if we need to
       
  1184 			 * turn OFF  the TRANSMISSION of PAUSE frames.
       
  1185 			 */
       
  1186 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1187 				hw->fc.current_mode = e1000_fc_full;
       
  1188 				e_dbg("Flow Control = FULL.\r\n");
       
  1189 			} else {
       
  1190 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1191 				e_dbg("Flow Control = "
       
  1192 					 "RX PAUSE frames only.\r\n");
       
  1193 			}
       
  1194 		}
       
  1195 		/*
       
  1196 		 * For receiving PAUSE frames ONLY.
       
  1197 		 *
       
  1198 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1199 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1200 		 *-------|---------|-------|---------|--------------------
       
  1201 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1202 		 */
       
  1203 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1204 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1205 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1206 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1207 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1208 			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
       
  1209 		}
       
  1210 		/*
       
  1211 		 * For transmitting PAUSE frames ONLY.
       
  1212 		 *
       
  1213 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1214 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1215 		 *-------|---------|-------|---------|--------------------
       
  1216 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1217 		 */
       
  1218 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1219 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1220 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1221 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1222 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1223 			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
       
  1224 		} else {
       
  1225 			/*
       
  1226 			 * Per the IEEE spec, at this point flow control
       
  1227 			 * should be disabled.
       
  1228 			 */
       
  1229 			hw->fc.current_mode = e1000_fc_none;
       
  1230 			e_dbg("Flow Control = NONE.\r\n");
       
  1231 		}
       
  1232 
       
  1233 		/*
       
  1234 		 * Now we need to do one last check...  If we auto-
       
  1235 		 * negotiated to HALF DUPLEX, flow control should not be
       
  1236 		 * enabled per IEEE 802.3 spec.
       
  1237 		 */
       
  1238 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
       
  1239 		if (ret_val) {
       
  1240 			e_dbg("Error getting link speed and duplex\n");
       
  1241 			return ret_val;
       
  1242 		}
       
  1243 
       
  1244 		if (duplex == HALF_DUPLEX)
       
  1245 			hw->fc.current_mode = e1000_fc_none;
       
  1246 
       
  1247 		/*
       
  1248 		 * Now we call a subroutine to actually force the MAC
       
  1249 		 * controller to use the correct flow control settings.
       
  1250 		 */
       
  1251 		ret_val = e1000e_force_mac_fc(hw);
       
  1252 		if (ret_val) {
       
  1253 			e_dbg("Error forcing flow control settings\n");
       
  1254 			return ret_val;
       
  1255 		}
       
  1256 	}
       
  1257 
       
  1258 	return 0;
       
  1259 }
       
  1260 
       
  1261 /**
       
  1262  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
       
  1263  *  @hw: pointer to the HW structure
       
  1264  *  @speed: stores the current speed
       
  1265  *  @duplex: stores the current duplex
       
  1266  *
       
  1267  *  Read the status register for the current speed/duplex and store the current
       
  1268  *  speed and duplex for copper connections.
       
  1269  **/
       
  1270 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1271 {
       
  1272 	u32 status;
       
  1273 
       
  1274 	status = er32(STATUS);
       
  1275 	if (status & E1000_STATUS_SPEED_1000)
       
  1276 		*speed = SPEED_1000;
       
  1277 	else if (status & E1000_STATUS_SPEED_100)
       
  1278 		*speed = SPEED_100;
       
  1279 	else
       
  1280 		*speed = SPEED_10;
       
  1281 
       
  1282 	if (status & E1000_STATUS_FD)
       
  1283 		*duplex = FULL_DUPLEX;
       
  1284 	else
       
  1285 		*duplex = HALF_DUPLEX;
       
  1286 
       
  1287 	e_dbg("%u Mbps, %s Duplex\n",
       
  1288 	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
       
  1289 	      *duplex == FULL_DUPLEX ? "Full" : "Half");
       
  1290 
       
  1291 	return 0;
       
  1292 }
       
  1293 
       
  1294 /**
       
  1295  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
       
  1296  *  @hw: pointer to the HW structure
       
  1297  *  @speed: stores the current speed
       
  1298  *  @duplex: stores the current duplex
       
  1299  *
       
  1300  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
       
  1301  *  for fiber/serdes links.
       
  1302  **/
       
  1303 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1304 {
       
  1305 	*speed = SPEED_1000;
       
  1306 	*duplex = FULL_DUPLEX;
       
  1307 
       
  1308 	return 0;
       
  1309 }
       
  1310 
       
  1311 /**
       
  1312  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
       
  1313  *  @hw: pointer to the HW structure
       
  1314  *
       
  1315  *  Acquire the HW semaphore to access the PHY or NVM
       
  1316  **/
       
  1317 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
       
  1318 {
       
  1319 	u32 swsm;
       
  1320 	s32 timeout = hw->nvm.word_size + 1;
       
  1321 	s32 i = 0;
       
  1322 
       
  1323 	/* Get the SW semaphore */
       
  1324 	while (i < timeout) {
       
  1325 		swsm = er32(SWSM);
       
  1326 		if (!(swsm & E1000_SWSM_SMBI))
       
  1327 			break;
       
  1328 
       
  1329 		udelay(50);
       
  1330 		i++;
       
  1331 	}
       
  1332 
       
  1333 	if (i == timeout) {
       
  1334 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
  1335 		return -E1000_ERR_NVM;
       
  1336 	}
       
  1337 
       
  1338 	/* Get the FW semaphore. */
       
  1339 	for (i = 0; i < timeout; i++) {
       
  1340 		swsm = er32(SWSM);
       
  1341 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
  1342 
       
  1343 		/* Semaphore acquired if bit latched */
       
  1344 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
  1345 			break;
       
  1346 
       
  1347 		udelay(50);
       
  1348 	}
       
  1349 
       
  1350 	if (i == timeout) {
       
  1351 		/* Release semaphores */
       
  1352 		e1000e_put_hw_semaphore(hw);
       
  1353 		e_dbg("Driver can't access the NVM\n");
       
  1354 		return -E1000_ERR_NVM;
       
  1355 	}
       
  1356 
       
  1357 	return 0;
       
  1358 }
       
  1359 
       
  1360 /**
       
  1361  *  e1000e_put_hw_semaphore - Release hardware semaphore
       
  1362  *  @hw: pointer to the HW structure
       
  1363  *
       
  1364  *  Release hardware semaphore used to access the PHY or NVM
       
  1365  **/
       
  1366 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
       
  1367 {
       
  1368 	u32 swsm;
       
  1369 
       
  1370 	swsm = er32(SWSM);
       
  1371 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  1372 	ew32(SWSM, swsm);
       
  1373 }
       
  1374 
       
  1375 /**
       
  1376  *  e1000e_get_auto_rd_done - Check for auto read completion
       
  1377  *  @hw: pointer to the HW structure
       
  1378  *
       
  1379  *  Check EEPROM for Auto Read done bit.
       
  1380  **/
       
  1381 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
       
  1382 {
       
  1383 	s32 i = 0;
       
  1384 
       
  1385 	while (i < AUTO_READ_DONE_TIMEOUT) {
       
  1386 		if (er32(EECD) & E1000_EECD_AUTO_RD)
       
  1387 			break;
       
  1388 		msleep(1);
       
  1389 		i++;
       
  1390 	}
       
  1391 
       
  1392 	if (i == AUTO_READ_DONE_TIMEOUT) {
       
  1393 		e_dbg("Auto read by HW from NVM has not completed.\n");
       
  1394 		return -E1000_ERR_RESET;
       
  1395 	}
       
  1396 
       
  1397 	return 0;
       
  1398 }
       
  1399 
       
  1400 /**
       
  1401  *  e1000e_valid_led_default - Verify a valid default LED config
       
  1402  *  @hw: pointer to the HW structure
       
  1403  *  @data: pointer to the NVM (EEPROM)
       
  1404  *
       
  1405  *  Read the EEPROM for the current default LED configuration.  If the
       
  1406  *  LED configuration is not valid, set to a valid LED configuration.
       
  1407  **/
       
  1408 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
       
  1409 {
       
  1410 	s32 ret_val;
       
  1411 
       
  1412 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1413 	if (ret_val) {
       
  1414 		e_dbg("NVM Read Error\n");
       
  1415 		return ret_val;
       
  1416 	}
       
  1417 
       
  1418 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
       
  1419 		*data = ID_LED_DEFAULT;
       
  1420 
       
  1421 	return 0;
       
  1422 }
       
  1423 
       
  1424 /**
       
  1425  *  e1000e_id_led_init -
       
  1426  *  @hw: pointer to the HW structure
       
  1427  *
       
  1428  **/
       
  1429 s32 e1000e_id_led_init(struct e1000_hw *hw)
       
  1430 {
       
  1431 	struct e1000_mac_info *mac = &hw->mac;
       
  1432 	s32 ret_val;
       
  1433 	const u32 ledctl_mask = 0x000000FF;
       
  1434 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  1435 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  1436 	u16 data, i, temp;
       
  1437 	const u16 led_mask = 0x0F;
       
  1438 
       
  1439 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  1440 	if (ret_val)
       
  1441 		return ret_val;
       
  1442 
       
  1443 	mac->ledctl_default = er32(LEDCTL);
       
  1444 	mac->ledctl_mode1 = mac->ledctl_default;
       
  1445 	mac->ledctl_mode2 = mac->ledctl_default;
       
  1446 
       
  1447 	for (i = 0; i < 4; i++) {
       
  1448 		temp = (data >> (i << 2)) & led_mask;
       
  1449 		switch (temp) {
       
  1450 		case ID_LED_ON1_DEF2:
       
  1451 		case ID_LED_ON1_ON2:
       
  1452 		case ID_LED_ON1_OFF2:
       
  1453 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1454 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
       
  1455 			break;
       
  1456 		case ID_LED_OFF1_DEF2:
       
  1457 		case ID_LED_OFF1_ON2:
       
  1458 		case ID_LED_OFF1_OFF2:
       
  1459 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1460 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
       
  1461 			break;
       
  1462 		default:
       
  1463 			/* Do nothing */
       
  1464 			break;
       
  1465 		}
       
  1466 		switch (temp) {
       
  1467 		case ID_LED_DEF1_ON2:
       
  1468 		case ID_LED_ON1_ON2:
       
  1469 		case ID_LED_OFF1_ON2:
       
  1470 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1471 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
       
  1472 			break;
       
  1473 		case ID_LED_DEF1_OFF2:
       
  1474 		case ID_LED_ON1_OFF2:
       
  1475 		case ID_LED_OFF1_OFF2:
       
  1476 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1477 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
       
  1478 			break;
       
  1479 		default:
       
  1480 			/* Do nothing */
       
  1481 			break;
       
  1482 		}
       
  1483 	}
       
  1484 
       
  1485 	return 0;
       
  1486 }
       
  1487 
       
  1488 /**
       
  1489  *  e1000e_setup_led_generic - Configures SW controllable LED
       
  1490  *  @hw: pointer to the HW structure
       
  1491  *
       
  1492  *  This prepares the SW controllable LED for use and saves the current state
       
  1493  *  of the LED so it can be later restored.
       
  1494  **/
       
  1495 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
       
  1496 {
       
  1497 	u32 ledctl;
       
  1498 
       
  1499 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
       
  1500 		return -E1000_ERR_CONFIG;
       
  1501 	}
       
  1502 
       
  1503 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1504 		ledctl = er32(LEDCTL);
       
  1505 		hw->mac.ledctl_default = ledctl;
       
  1506 		/* Turn off LED0 */
       
  1507 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
       
  1508 		            E1000_LEDCTL_LED0_BLINK |
       
  1509 		            E1000_LEDCTL_LED0_MODE_MASK);
       
  1510 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  1511 		           E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1512 		ew32(LEDCTL, ledctl);
       
  1513 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1514 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1515 	}
       
  1516 
       
  1517 	return 0;
       
  1518 }
       
  1519 
       
  1520 /**
       
  1521  *  e1000e_cleanup_led_generic - Set LED config to default operation
       
  1522  *  @hw: pointer to the HW structure
       
  1523  *
       
  1524  *  Remove the current LED configuration and set the LED configuration
       
  1525  *  to the default value, saved from the EEPROM.
       
  1526  **/
       
  1527 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
       
  1528 {
       
  1529 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  1530 	return 0;
       
  1531 }
       
  1532 
       
  1533 /**
       
  1534  *  e1000e_blink_led - Blink LED
       
  1535  *  @hw: pointer to the HW structure
       
  1536  *
       
  1537  *  Blink the LEDs which are set to be on.
       
  1538  **/
       
  1539 s32 e1000e_blink_led(struct e1000_hw *hw)
       
  1540 {
       
  1541 	u32 ledctl_blink = 0;
       
  1542 	u32 i;
       
  1543 
       
  1544 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1545 		/* always blink LED0 for PCI-E fiber */
       
  1546 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  1547 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1548 	} else {
       
  1549 		/*
       
  1550 		 * set the blink bit for each LED that's "on" (0x0E)
       
  1551 		 * in ledctl_mode2
       
  1552 		 */
       
  1553 		ledctl_blink = hw->mac.ledctl_mode2;
       
  1554 		for (i = 0; i < 4; i++)
       
  1555 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1556 			    E1000_LEDCTL_MODE_LED_ON)
       
  1557 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
       
  1558 						 (i * 8));
       
  1559 	}
       
  1560 
       
  1561 	ew32(LEDCTL, ledctl_blink);
       
  1562 
       
  1563 	return 0;
       
  1564 }
       
  1565 
       
  1566 /**
       
  1567  *  e1000e_led_on_generic - Turn LED on
       
  1568  *  @hw: pointer to the HW structure
       
  1569  *
       
  1570  *  Turn LED on.
       
  1571  **/
       
  1572 s32 e1000e_led_on_generic(struct e1000_hw *hw)
       
  1573 {
       
  1574 	u32 ctrl;
       
  1575 
       
  1576 	switch (hw->phy.media_type) {
       
  1577 	case e1000_media_type_fiber:
       
  1578 		ctrl = er32(CTRL);
       
  1579 		ctrl &= ~E1000_CTRL_SWDPIN0;
       
  1580 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1581 		ew32(CTRL, ctrl);
       
  1582 		break;
       
  1583 	case e1000_media_type_copper:
       
  1584 		ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  1585 		break;
       
  1586 	default:
       
  1587 		break;
       
  1588 	}
       
  1589 
       
  1590 	return 0;
       
  1591 }
       
  1592 
       
  1593 /**
       
  1594  *  e1000e_led_off_generic - Turn LED off
       
  1595  *  @hw: pointer to the HW structure
       
  1596  *
       
  1597  *  Turn LED off.
       
  1598  **/
       
  1599 s32 e1000e_led_off_generic(struct e1000_hw *hw)
       
  1600 {
       
  1601 	u32 ctrl;
       
  1602 
       
  1603 	switch (hw->phy.media_type) {
       
  1604 	case e1000_media_type_fiber:
       
  1605 		ctrl = er32(CTRL);
       
  1606 		ctrl |= E1000_CTRL_SWDPIN0;
       
  1607 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1608 		ew32(CTRL, ctrl);
       
  1609 		break;
       
  1610 	case e1000_media_type_copper:
       
  1611 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1612 		break;
       
  1613 	default:
       
  1614 		break;
       
  1615 	}
       
  1616 
       
  1617 	return 0;
       
  1618 }
       
  1619 
       
  1620 /**
       
  1621  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
       
  1622  *  @hw: pointer to the HW structure
       
  1623  *  @no_snoop: bitmap of snoop events
       
  1624  *
       
  1625  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
       
  1626  **/
       
  1627 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
       
  1628 {
       
  1629 	u32 gcr;
       
  1630 
       
  1631 	if (no_snoop) {
       
  1632 		gcr = er32(GCR);
       
  1633 		gcr &= ~(PCIE_NO_SNOOP_ALL);
       
  1634 		gcr |= no_snoop;
       
  1635 		ew32(GCR, gcr);
       
  1636 	}
       
  1637 }
       
  1638 
       
  1639 /**
       
  1640  *  e1000e_disable_pcie_master - Disables PCI-express master access
       
  1641  *  @hw: pointer to the HW structure
       
  1642  *
       
  1643  *  Returns 0 if successful, else returns -10
       
  1644  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
       
  1645  *  the master requests to be disabled.
       
  1646  *
       
  1647  *  Disables PCI-Express master access and verifies there are no pending
       
  1648  *  requests.
       
  1649  **/
       
  1650 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
       
  1651 {
       
  1652 	u32 ctrl;
       
  1653 	s32 timeout = MASTER_DISABLE_TIMEOUT;
       
  1654 
       
  1655 	ctrl = er32(CTRL);
       
  1656 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  1657 	ew32(CTRL, ctrl);
       
  1658 
       
  1659 	while (timeout) {
       
  1660 		if (!(er32(STATUS) &
       
  1661 		      E1000_STATUS_GIO_MASTER_ENABLE))
       
  1662 			break;
       
  1663 		udelay(100);
       
  1664 		timeout--;
       
  1665 	}
       
  1666 
       
  1667 	if (!timeout) {
       
  1668 		e_dbg("Master requests are pending.\n");
       
  1669 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  1670 	}
       
  1671 
       
  1672 	return 0;
       
  1673 }
       
  1674 
       
  1675 /**
       
  1676  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
       
  1677  *  @hw: pointer to the HW structure
       
  1678  *
       
  1679  *  Reset the Adaptive Interframe Spacing throttle to default values.
       
  1680  **/
       
  1681 void e1000e_reset_adaptive(struct e1000_hw *hw)
       
  1682 {
       
  1683 	struct e1000_mac_info *mac = &hw->mac;
       
  1684 
       
  1685 	if (!mac->adaptive_ifs) {
       
  1686 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1687 		goto out;
       
  1688 	}
       
  1689 
       
  1690 	mac->current_ifs_val = 0;
       
  1691 	mac->ifs_min_val = IFS_MIN;
       
  1692 	mac->ifs_max_val = IFS_MAX;
       
  1693 	mac->ifs_step_size = IFS_STEP;
       
  1694 	mac->ifs_ratio = IFS_RATIO;
       
  1695 
       
  1696 	mac->in_ifs_mode = false;
       
  1697 	ew32(AIT, 0);
       
  1698 out:
       
  1699 	return;
       
  1700 }
       
  1701 
       
  1702 /**
       
  1703  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
       
  1704  *  @hw: pointer to the HW structure
       
  1705  *
       
  1706  *  Update the Adaptive Interframe Spacing Throttle value based on the
       
  1707  *  time between transmitted packets and time between collisions.
       
  1708  **/
       
  1709 void e1000e_update_adaptive(struct e1000_hw *hw)
       
  1710 {
       
  1711 	struct e1000_mac_info *mac = &hw->mac;
       
  1712 
       
  1713 	if (!mac->adaptive_ifs) {
       
  1714 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1715 		goto out;
       
  1716 	}
       
  1717 
       
  1718 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
       
  1719 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
       
  1720 			mac->in_ifs_mode = true;
       
  1721 			if (mac->current_ifs_val < mac->ifs_max_val) {
       
  1722 				if (!mac->current_ifs_val)
       
  1723 					mac->current_ifs_val = mac->ifs_min_val;
       
  1724 				else
       
  1725 					mac->current_ifs_val +=
       
  1726 						mac->ifs_step_size;
       
  1727 				ew32(AIT, mac->current_ifs_val);
       
  1728 			}
       
  1729 		}
       
  1730 	} else {
       
  1731 		if (mac->in_ifs_mode &&
       
  1732 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  1733 			mac->current_ifs_val = 0;
       
  1734 			mac->in_ifs_mode = false;
       
  1735 			ew32(AIT, 0);
       
  1736 		}
       
  1737 	}
       
  1738 out:
       
  1739 	return;
       
  1740 }
       
  1741 
       
  1742 /**
       
  1743  *  e1000_raise_eec_clk - Raise EEPROM clock
       
  1744  *  @hw: pointer to the HW structure
       
  1745  *  @eecd: pointer to the EEPROM
       
  1746  *
       
  1747  *  Enable/Raise the EEPROM clock bit.
       
  1748  **/
       
  1749 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1750 {
       
  1751 	*eecd = *eecd | E1000_EECD_SK;
       
  1752 	ew32(EECD, *eecd);
       
  1753 	e1e_flush();
       
  1754 	udelay(hw->nvm.delay_usec);
       
  1755 }
       
  1756 
       
  1757 /**
       
  1758  *  e1000_lower_eec_clk - Lower EEPROM clock
       
  1759  *  @hw: pointer to the HW structure
       
  1760  *  @eecd: pointer to the EEPROM
       
  1761  *
       
  1762  *  Clear/Lower the EEPROM clock bit.
       
  1763  **/
       
  1764 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1765 {
       
  1766 	*eecd = *eecd & ~E1000_EECD_SK;
       
  1767 	ew32(EECD, *eecd);
       
  1768 	e1e_flush();
       
  1769 	udelay(hw->nvm.delay_usec);
       
  1770 }
       
  1771 
       
  1772 /**
       
  1773  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
       
  1774  *  @hw: pointer to the HW structure
       
  1775  *  @data: data to send to the EEPROM
       
  1776  *  @count: number of bits to shift out
       
  1777  *
       
  1778  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
       
  1779  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
       
  1780  *  In order to do this, "data" must be broken down into bits.
       
  1781  **/
       
  1782 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
       
  1783 {
       
  1784 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1785 	u32 eecd = er32(EECD);
       
  1786 	u32 mask;
       
  1787 
       
  1788 	mask = 0x01 << (count - 1);
       
  1789 	if (nvm->type == e1000_nvm_eeprom_spi)
       
  1790 		eecd |= E1000_EECD_DO;
       
  1791 
       
  1792 	do {
       
  1793 		eecd &= ~E1000_EECD_DI;
       
  1794 
       
  1795 		if (data & mask)
       
  1796 			eecd |= E1000_EECD_DI;
       
  1797 
       
  1798 		ew32(EECD, eecd);
       
  1799 		e1e_flush();
       
  1800 
       
  1801 		udelay(nvm->delay_usec);
       
  1802 
       
  1803 		e1000_raise_eec_clk(hw, &eecd);
       
  1804 		e1000_lower_eec_clk(hw, &eecd);
       
  1805 
       
  1806 		mask >>= 1;
       
  1807 	} while (mask);
       
  1808 
       
  1809 	eecd &= ~E1000_EECD_DI;
       
  1810 	ew32(EECD, eecd);
       
  1811 }
       
  1812 
       
  1813 /**
       
  1814  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
       
  1815  *  @hw: pointer to the HW structure
       
  1816  *  @count: number of bits to shift in
       
  1817  *
       
  1818  *  In order to read a register from the EEPROM, we need to shift 'count' bits
       
  1819  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
       
  1820  *  the EEPROM (setting the SK bit), and then reading the value of the data out
       
  1821  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
       
  1822  *  always be clear.
       
  1823  **/
       
  1824 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
       
  1825 {
       
  1826 	u32 eecd;
       
  1827 	u32 i;
       
  1828 	u16 data;
       
  1829 
       
  1830 	eecd = er32(EECD);
       
  1831 
       
  1832 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
       
  1833 	data = 0;
       
  1834 
       
  1835 	for (i = 0; i < count; i++) {
       
  1836 		data <<= 1;
       
  1837 		e1000_raise_eec_clk(hw, &eecd);
       
  1838 
       
  1839 		eecd = er32(EECD);
       
  1840 
       
  1841 		eecd &= ~E1000_EECD_DI;
       
  1842 		if (eecd & E1000_EECD_DO)
       
  1843 			data |= 1;
       
  1844 
       
  1845 		e1000_lower_eec_clk(hw, &eecd);
       
  1846 	}
       
  1847 
       
  1848 	return data;
       
  1849 }
       
  1850 
       
  1851 /**
       
  1852  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
       
  1853  *  @hw: pointer to the HW structure
       
  1854  *  @ee_reg: EEPROM flag for polling
       
  1855  *
       
  1856  *  Polls the EEPROM status bit for either read or write completion based
       
  1857  *  upon the value of 'ee_reg'.
       
  1858  **/
       
  1859 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
       
  1860 {
       
  1861 	u32 attempts = 100000;
       
  1862 	u32 i, reg = 0;
       
  1863 
       
  1864 	for (i = 0; i < attempts; i++) {
       
  1865 		if (ee_reg == E1000_NVM_POLL_READ)
       
  1866 			reg = er32(EERD);
       
  1867 		else
       
  1868 			reg = er32(EEWR);
       
  1869 
       
  1870 		if (reg & E1000_NVM_RW_REG_DONE)
       
  1871 			return 0;
       
  1872 
       
  1873 		udelay(5);
       
  1874 	}
       
  1875 
       
  1876 	return -E1000_ERR_NVM;
       
  1877 }
       
  1878 
       
  1879 /**
       
  1880  *  e1000e_acquire_nvm - Generic request for access to EEPROM
       
  1881  *  @hw: pointer to the HW structure
       
  1882  *
       
  1883  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
       
  1884  *  Return successful if access grant bit set, else clear the request for
       
  1885  *  EEPROM access and return -E1000_ERR_NVM (-1).
       
  1886  **/
       
  1887 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
       
  1888 {
       
  1889 	u32 eecd = er32(EECD);
       
  1890 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
       
  1891 
       
  1892 	ew32(EECD, eecd | E1000_EECD_REQ);
       
  1893 	eecd = er32(EECD);
       
  1894 
       
  1895 	while (timeout) {
       
  1896 		if (eecd & E1000_EECD_GNT)
       
  1897 			break;
       
  1898 		udelay(5);
       
  1899 		eecd = er32(EECD);
       
  1900 		timeout--;
       
  1901 	}
       
  1902 
       
  1903 	if (!timeout) {
       
  1904 		eecd &= ~E1000_EECD_REQ;
       
  1905 		ew32(EECD, eecd);
       
  1906 		e_dbg("Could not acquire NVM grant\n");
       
  1907 		return -E1000_ERR_NVM;
       
  1908 	}
       
  1909 
       
  1910 	return 0;
       
  1911 }
       
  1912 
       
  1913 /**
       
  1914  *  e1000_standby_nvm - Return EEPROM to standby state
       
  1915  *  @hw: pointer to the HW structure
       
  1916  *
       
  1917  *  Return the EEPROM to a standby state.
       
  1918  **/
       
  1919 static void e1000_standby_nvm(struct e1000_hw *hw)
       
  1920 {
       
  1921 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1922 	u32 eecd = er32(EECD);
       
  1923 
       
  1924 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1925 		/* Toggle CS to flush commands */
       
  1926 		eecd |= E1000_EECD_CS;
       
  1927 		ew32(EECD, eecd);
       
  1928 		e1e_flush();
       
  1929 		udelay(nvm->delay_usec);
       
  1930 		eecd &= ~E1000_EECD_CS;
       
  1931 		ew32(EECD, eecd);
       
  1932 		e1e_flush();
       
  1933 		udelay(nvm->delay_usec);
       
  1934 	}
       
  1935 }
       
  1936 
       
  1937 /**
       
  1938  *  e1000_stop_nvm - Terminate EEPROM command
       
  1939  *  @hw: pointer to the HW structure
       
  1940  *
       
  1941  *  Terminates the current command by inverting the EEPROM's chip select pin.
       
  1942  **/
       
  1943 static void e1000_stop_nvm(struct e1000_hw *hw)
       
  1944 {
       
  1945 	u32 eecd;
       
  1946 
       
  1947 	eecd = er32(EECD);
       
  1948 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
  1949 		/* Pull CS high */
       
  1950 		eecd |= E1000_EECD_CS;
       
  1951 		e1000_lower_eec_clk(hw, &eecd);
       
  1952 	}
       
  1953 }
       
  1954 
       
  1955 /**
       
  1956  *  e1000e_release_nvm - Release exclusive access to EEPROM
       
  1957  *  @hw: pointer to the HW structure
       
  1958  *
       
  1959  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
  1960  **/
       
  1961 void e1000e_release_nvm(struct e1000_hw *hw)
       
  1962 {
       
  1963 	u32 eecd;
       
  1964 
       
  1965 	e1000_stop_nvm(hw);
       
  1966 
       
  1967 	eecd = er32(EECD);
       
  1968 	eecd &= ~E1000_EECD_REQ;
       
  1969 	ew32(EECD, eecd);
       
  1970 }
       
  1971 
       
  1972 /**
       
  1973  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
       
  1974  *  @hw: pointer to the HW structure
       
  1975  *
       
  1976  *  Setups the EEPROM for reading and writing.
       
  1977  **/
       
  1978 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
       
  1979 {
       
  1980 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1981 	u32 eecd = er32(EECD);
       
  1982 	u16 timeout = 0;
       
  1983 	u8 spi_stat_reg;
       
  1984 
       
  1985 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1986 		/* Clear SK and CS */
       
  1987 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  1988 		ew32(EECD, eecd);
       
  1989 		udelay(1);
       
  1990 		timeout = NVM_MAX_RETRY_SPI;
       
  1991 
       
  1992 		/*
       
  1993 		 * Read "Status Register" repeatedly until the LSB is cleared.
       
  1994 		 * The EEPROM will signal that the command has been completed
       
  1995 		 * by clearing bit 0 of the internal status register.  If it's
       
  1996 		 * not cleared within 'timeout', then error out.
       
  1997 		 */
       
  1998 		while (timeout) {
       
  1999 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
       
  2000 						 hw->nvm.opcode_bits);
       
  2001 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
       
  2002 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
       
  2003 				break;
       
  2004 
       
  2005 			udelay(5);
       
  2006 			e1000_standby_nvm(hw);
       
  2007 			timeout--;
       
  2008 		}
       
  2009 
       
  2010 		if (!timeout) {
       
  2011 			e_dbg("SPI NVM Status error\n");
       
  2012 			return -E1000_ERR_NVM;
       
  2013 		}
       
  2014 	}
       
  2015 
       
  2016 	return 0;
       
  2017 }
       
  2018 
       
  2019 /**
       
  2020  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
       
  2021  *  @hw: pointer to the HW structure
       
  2022  *  @offset: offset of word in the EEPROM to read
       
  2023  *  @words: number of words to read
       
  2024  *  @data: word read from the EEPROM
       
  2025  *
       
  2026  *  Reads a 16 bit word from the EEPROM using the EERD register.
       
  2027  **/
       
  2028 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  2029 {
       
  2030 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2031 	u32 i, eerd = 0;
       
  2032 	s32 ret_val = 0;
       
  2033 
       
  2034 	/*
       
  2035 	 * A check for invalid values:  offset too large, too many words,
       
  2036 	 * too many words for the offset, and not enough words.
       
  2037 	 */
       
  2038 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  2039 	    (words == 0)) {
       
  2040 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2041 		return -E1000_ERR_NVM;
       
  2042 	}
       
  2043 
       
  2044 	for (i = 0; i < words; i++) {
       
  2045 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
       
  2046 		       E1000_NVM_RW_REG_START;
       
  2047 
       
  2048 		ew32(EERD, eerd);
       
  2049 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
       
  2050 		if (ret_val)
       
  2051 			break;
       
  2052 
       
  2053 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
       
  2054 	}
       
  2055 
       
  2056 	return ret_val;
       
  2057 }
       
  2058 
       
  2059 /**
       
  2060  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
       
  2061  *  @hw: pointer to the HW structure
       
  2062  *  @offset: offset within the EEPROM to be written to
       
  2063  *  @words: number of words to write
       
  2064  *  @data: 16 bit word(s) to be written to the EEPROM
       
  2065  *
       
  2066  *  Writes data to EEPROM at offset using SPI interface.
       
  2067  *
       
  2068  *  If e1000e_update_nvm_checksum is not called after this function , the
       
  2069  *  EEPROM will most likely contain an invalid checksum.
       
  2070  **/
       
  2071 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  2072 {
       
  2073 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2074 	s32 ret_val;
       
  2075 	u16 widx = 0;
       
  2076 
       
  2077 	/*
       
  2078 	 * A check for invalid values:  offset too large, too many words,
       
  2079 	 * and not enough words.
       
  2080 	 */
       
  2081 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  2082 	    (words == 0)) {
       
  2083 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2084 		return -E1000_ERR_NVM;
       
  2085 	}
       
  2086 
       
  2087 	ret_val = nvm->ops.acquire(hw);
       
  2088 	if (ret_val)
       
  2089 		return ret_val;
       
  2090 
       
  2091 	msleep(10);
       
  2092 
       
  2093 	while (widx < words) {
       
  2094 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
       
  2095 
       
  2096 		ret_val = e1000_ready_nvm_eeprom(hw);
       
  2097 		if (ret_val) {
       
  2098 			nvm->ops.release(hw);
       
  2099 			return ret_val;
       
  2100 		}
       
  2101 
       
  2102 		e1000_standby_nvm(hw);
       
  2103 
       
  2104 		/* Send the WRITE ENABLE command (8 bit opcode) */
       
  2105 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
       
  2106 					 nvm->opcode_bits);
       
  2107 
       
  2108 		e1000_standby_nvm(hw);
       
  2109 
       
  2110 		/*
       
  2111 		 * Some SPI eeproms use the 8th address bit embedded in the
       
  2112 		 * opcode
       
  2113 		 */
       
  2114 		if ((nvm->address_bits == 8) && (offset >= 128))
       
  2115 			write_opcode |= NVM_A8_OPCODE_SPI;
       
  2116 
       
  2117 		/* Send the Write command (8-bit opcode + addr) */
       
  2118 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
       
  2119 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
       
  2120 					 nvm->address_bits);
       
  2121 
       
  2122 		/* Loop to allow for up to whole page write of eeprom */
       
  2123 		while (widx < words) {
       
  2124 			u16 word_out = data[widx];
       
  2125 			word_out = (word_out >> 8) | (word_out << 8);
       
  2126 			e1000_shift_out_eec_bits(hw, word_out, 16);
       
  2127 			widx++;
       
  2128 
       
  2129 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
       
  2130 				e1000_standby_nvm(hw);
       
  2131 				break;
       
  2132 			}
       
  2133 		}
       
  2134 	}
       
  2135 
       
  2136 	msleep(10);
       
  2137 	nvm->ops.release(hw);
       
  2138 	return 0;
       
  2139 }
       
  2140 
       
  2141 /**
       
  2142  *  e1000_read_mac_addr_generic - Read device MAC address
       
  2143  *  @hw: pointer to the HW structure
       
  2144  *
       
  2145  *  Reads the device MAC address from the EEPROM and stores the value.
       
  2146  *  Since devices with two ports use the same EEPROM, we increment the
       
  2147  *  last bit in the MAC address for the second port.
       
  2148  **/
       
  2149 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
       
  2150 {
       
  2151 	u32 rar_high;
       
  2152 	u32 rar_low;
       
  2153 	u16 i;
       
  2154 
       
  2155 	rar_high = er32(RAH(0));
       
  2156 	rar_low = er32(RAL(0));
       
  2157 
       
  2158 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
       
  2159 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
       
  2160 
       
  2161 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
       
  2162 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
       
  2163 
       
  2164 	for (i = 0; i < ETH_ALEN; i++)
       
  2165 		hw->mac.addr[i] = hw->mac.perm_addr[i];
       
  2166 
       
  2167 	return 0;
       
  2168 }
       
  2169 
       
  2170 /**
       
  2171  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
       
  2172  *  @hw: pointer to the HW structure
       
  2173  *
       
  2174  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2175  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
  2176  **/
       
  2177 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
       
  2178 {
       
  2179 	s32 ret_val;
       
  2180 	u16 checksum = 0;
       
  2181 	u16 i, nvm_data;
       
  2182 
       
  2183 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
  2184 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2185 		if (ret_val) {
       
  2186 			e_dbg("NVM Read Error\n");
       
  2187 			return ret_val;
       
  2188 		}
       
  2189 		checksum += nvm_data;
       
  2190 	}
       
  2191 
       
  2192 	if (checksum != (u16) NVM_SUM) {
       
  2193 		e_dbg("NVM Checksum Invalid\n");
       
  2194 		return -E1000_ERR_NVM;
       
  2195 	}
       
  2196 
       
  2197 	return 0;
       
  2198 }
       
  2199 
       
  2200 /**
       
  2201  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
       
  2202  *  @hw: pointer to the HW structure
       
  2203  *
       
  2204  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2205  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
  2206  *  value to the EEPROM.
       
  2207  **/
       
  2208 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
       
  2209 {
       
  2210 	s32 ret_val;
       
  2211 	u16 checksum = 0;
       
  2212 	u16 i, nvm_data;
       
  2213 
       
  2214 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
       
  2215 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2216 		if (ret_val) {
       
  2217 			e_dbg("NVM Read Error while updating checksum.\n");
       
  2218 			return ret_val;
       
  2219 		}
       
  2220 		checksum += nvm_data;
       
  2221 	}
       
  2222 	checksum = (u16) NVM_SUM - checksum;
       
  2223 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
       
  2224 	if (ret_val)
       
  2225 		e_dbg("NVM Write Error while updating checksum.\n");
       
  2226 
       
  2227 	return ret_val;
       
  2228 }
       
  2229 
       
  2230 /**
       
  2231  *  e1000e_reload_nvm - Reloads EEPROM
       
  2232  *  @hw: pointer to the HW structure
       
  2233  *
       
  2234  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
       
  2235  *  extended control register.
       
  2236  **/
       
  2237 void e1000e_reload_nvm(struct e1000_hw *hw)
       
  2238 {
       
  2239 	u32 ctrl_ext;
       
  2240 
       
  2241 	udelay(10);
       
  2242 	ctrl_ext = er32(CTRL_EXT);
       
  2243 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
  2244 	ew32(CTRL_EXT, ctrl_ext);
       
  2245 	e1e_flush();
       
  2246 }
       
  2247 
       
  2248 /**
       
  2249  *  e1000_calculate_checksum - Calculate checksum for buffer
       
  2250  *  @buffer: pointer to EEPROM
       
  2251  *  @length: size of EEPROM to calculate a checksum for
       
  2252  *
       
  2253  *  Calculates the checksum for some buffer on a specified length.  The
       
  2254  *  checksum calculated is returned.
       
  2255  **/
       
  2256 static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
       
  2257 {
       
  2258 	u32 i;
       
  2259 	u8  sum = 0;
       
  2260 
       
  2261 	if (!buffer)
       
  2262 		return 0;
       
  2263 
       
  2264 	for (i = 0; i < length; i++)
       
  2265 		sum += buffer[i];
       
  2266 
       
  2267 	return (u8) (0 - sum);
       
  2268 }
       
  2269 
       
  2270 /**
       
  2271  *  e1000_mng_enable_host_if - Checks host interface is enabled
       
  2272  *  @hw: pointer to the HW structure
       
  2273  *
       
  2274  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
       
  2275  *
       
  2276  *  This function checks whether the HOST IF is enabled for command operation
       
  2277  *  and also checks whether the previous command is completed.  It busy waits
       
  2278  *  in case of previous command is not completed.
       
  2279  **/
       
  2280 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
       
  2281 {
       
  2282 	u32 hicr;
       
  2283 	u8 i;
       
  2284 
       
  2285 	if (!(hw->mac.arc_subsystem_valid)) {
       
  2286 		e_dbg("ARC subsystem not valid.\n");
       
  2287 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2288 	}
       
  2289 
       
  2290 	/* Check that the host interface is enabled. */
       
  2291 	hicr = er32(HICR);
       
  2292 	if ((hicr & E1000_HICR_EN) == 0) {
       
  2293 		e_dbg("E1000_HOST_EN bit disabled.\n");
       
  2294 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2295 	}
       
  2296 	/* check the previous command is completed */
       
  2297 	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
       
  2298 		hicr = er32(HICR);
       
  2299 		if (!(hicr & E1000_HICR_C))
       
  2300 			break;
       
  2301 		mdelay(1);
       
  2302 	}
       
  2303 
       
  2304 	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
       
  2305 		e_dbg("Previous command timeout failed .\n");
       
  2306 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2307 	}
       
  2308 
       
  2309 	return 0;
       
  2310 }
       
  2311 
       
  2312 /**
       
  2313  *  e1000e_check_mng_mode_generic - check management mode
       
  2314  *  @hw: pointer to the HW structure
       
  2315  *
       
  2316  *  Reads the firmware semaphore register and returns true (>0) if
       
  2317  *  manageability is enabled, else false (0).
       
  2318  **/
       
  2319 bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
       
  2320 {
       
  2321 	u32 fwsm = er32(FWSM);
       
  2322 
       
  2323 	return (fwsm & E1000_FWSM_MODE_MASK) ==
       
  2324 		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
       
  2325 }
       
  2326 
       
  2327 /**
       
  2328  *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
       
  2329  *  @hw: pointer to the HW structure
       
  2330  *
       
  2331  *  Enables packet filtering on transmit packets if manageability is enabled
       
  2332  *  and host interface is enabled.
       
  2333  **/
       
  2334 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
       
  2335 {
       
  2336 	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
       
  2337 	u32 *buffer = (u32 *)&hw->mng_cookie;
       
  2338 	u32 offset;
       
  2339 	s32 ret_val, hdr_csum, csum;
       
  2340 	u8 i, len;
       
  2341 
       
  2342 	hw->mac.tx_pkt_filtering = true;
       
  2343 
       
  2344 	/* No manageability, no filtering */
       
  2345 	if (!e1000e_check_mng_mode(hw)) {
       
  2346 		hw->mac.tx_pkt_filtering = false;
       
  2347 		goto out;
       
  2348 	}
       
  2349 
       
  2350 	/*
       
  2351 	 * If we can't read from the host interface for whatever
       
  2352 	 * reason, disable filtering.
       
  2353 	 */
       
  2354 	ret_val = e1000_mng_enable_host_if(hw);
       
  2355 	if (ret_val) {
       
  2356 		hw->mac.tx_pkt_filtering = false;
       
  2357 		goto out;
       
  2358 	}
       
  2359 
       
  2360 	/* Read in the header.  Length and offset are in dwords. */
       
  2361 	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
       
  2362 	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
       
  2363 	for (i = 0; i < len; i++)
       
  2364 		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
       
  2365 	hdr_csum = hdr->checksum;
       
  2366 	hdr->checksum = 0;
       
  2367 	csum = e1000_calculate_checksum((u8 *)hdr,
       
  2368 					E1000_MNG_DHCP_COOKIE_LENGTH);
       
  2369 	/*
       
  2370 	 * If either the checksums or signature don't match, then
       
  2371 	 * the cookie area isn't considered valid, in which case we
       
  2372 	 * take the safe route of assuming Tx filtering is enabled.
       
  2373 	 */
       
  2374 	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
       
  2375 		hw->mac.tx_pkt_filtering = true;
       
  2376 		goto out;
       
  2377 	}
       
  2378 
       
  2379 	/* Cookie area is valid, make the final check for filtering. */
       
  2380 	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
       
  2381 		hw->mac.tx_pkt_filtering = false;
       
  2382 		goto out;
       
  2383 	}
       
  2384 
       
  2385 out:
       
  2386 	return hw->mac.tx_pkt_filtering;
       
  2387 }
       
  2388 
       
  2389 /**
       
  2390  *  e1000_mng_write_cmd_header - Writes manageability command header
       
  2391  *  @hw: pointer to the HW structure
       
  2392  *  @hdr: pointer to the host interface command header
       
  2393  *
       
  2394  *  Writes the command header after does the checksum calculation.
       
  2395  **/
       
  2396 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
       
  2397 				  struct e1000_host_mng_command_header *hdr)
       
  2398 {
       
  2399 	u16 i, length = sizeof(struct e1000_host_mng_command_header);
       
  2400 
       
  2401 	/* Write the whole command header structure with new checksum. */
       
  2402 
       
  2403 	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
       
  2404 
       
  2405 	length >>= 2;
       
  2406 	/* Write the relevant command block into the ram area. */
       
  2407 	for (i = 0; i < length; i++) {
       
  2408 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
       
  2409 					    *((u32 *) hdr + i));
       
  2410 		e1e_flush();
       
  2411 	}
       
  2412 
       
  2413 	return 0;
       
  2414 }
       
  2415 
       
  2416 /**
       
  2417  *  e1000_mng_host_if_write - Write to the manageability host interface
       
  2418  *  @hw: pointer to the HW structure
       
  2419  *  @buffer: pointer to the host interface buffer
       
  2420  *  @length: size of the buffer
       
  2421  *  @offset: location in the buffer to write to
       
  2422  *  @sum: sum of the data (not checksum)
       
  2423  *
       
  2424  *  This function writes the buffer content at the offset given on the host if.
       
  2425  *  It also does alignment considerations to do the writes in most efficient
       
  2426  *  way.  Also fills up the sum of the buffer in *buffer parameter.
       
  2427  **/
       
  2428 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
       
  2429 				   u16 length, u16 offset, u8 *sum)
       
  2430 {
       
  2431 	u8 *tmp;
       
  2432 	u8 *bufptr = buffer;
       
  2433 	u32 data = 0;
       
  2434 	u16 remaining, i, j, prev_bytes;
       
  2435 
       
  2436 	/* sum = only sum of the data and it is not checksum */
       
  2437 
       
  2438 	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
       
  2439 		return -E1000_ERR_PARAM;
       
  2440 
       
  2441 	tmp = (u8 *)&data;
       
  2442 	prev_bytes = offset & 0x3;
       
  2443 	offset >>= 2;
       
  2444 
       
  2445 	if (prev_bytes) {
       
  2446 		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
       
  2447 		for (j = prev_bytes; j < sizeof(u32); j++) {
       
  2448 			*(tmp + j) = *bufptr++;
       
  2449 			*sum += *(tmp + j);
       
  2450 		}
       
  2451 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
       
  2452 		length -= j - prev_bytes;
       
  2453 		offset++;
       
  2454 	}
       
  2455 
       
  2456 	remaining = length & 0x3;
       
  2457 	length -= remaining;
       
  2458 
       
  2459 	/* Calculate length in DWORDs */
       
  2460 	length >>= 2;
       
  2461 
       
  2462 	/*
       
  2463 	 * The device driver writes the relevant command block into the
       
  2464 	 * ram area.
       
  2465 	 */
       
  2466 	for (i = 0; i < length; i++) {
       
  2467 		for (j = 0; j < sizeof(u32); j++) {
       
  2468 			*(tmp + j) = *bufptr++;
       
  2469 			*sum += *(tmp + j);
       
  2470 		}
       
  2471 
       
  2472 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2473 	}
       
  2474 	if (remaining) {
       
  2475 		for (j = 0; j < sizeof(u32); j++) {
       
  2476 			if (j < remaining)
       
  2477 				*(tmp + j) = *bufptr++;
       
  2478 			else
       
  2479 				*(tmp + j) = 0;
       
  2480 
       
  2481 			*sum += *(tmp + j);
       
  2482 		}
       
  2483 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2484 	}
       
  2485 
       
  2486 	return 0;
       
  2487 }
       
  2488 
       
  2489 /**
       
  2490  *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
       
  2491  *  @hw: pointer to the HW structure
       
  2492  *  @buffer: pointer to the host interface
       
  2493  *  @length: size of the buffer
       
  2494  *
       
  2495  *  Writes the DHCP information to the host interface.
       
  2496  **/
       
  2497 s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
       
  2498 {
       
  2499 	struct e1000_host_mng_command_header hdr;
       
  2500 	s32 ret_val;
       
  2501 	u32 hicr;
       
  2502 
       
  2503 	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
       
  2504 	hdr.command_length = length;
       
  2505 	hdr.reserved1 = 0;
       
  2506 	hdr.reserved2 = 0;
       
  2507 	hdr.checksum = 0;
       
  2508 
       
  2509 	/* Enable the host interface */
       
  2510 	ret_val = e1000_mng_enable_host_if(hw);
       
  2511 	if (ret_val)
       
  2512 		return ret_val;
       
  2513 
       
  2514 	/* Populate the host interface with the contents of "buffer". */
       
  2515 	ret_val = e1000_mng_host_if_write(hw, buffer, length,
       
  2516 					  sizeof(hdr), &(hdr.checksum));
       
  2517 	if (ret_val)
       
  2518 		return ret_val;
       
  2519 
       
  2520 	/* Write the manageability command header */
       
  2521 	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
       
  2522 	if (ret_val)
       
  2523 		return ret_val;
       
  2524 
       
  2525 	/* Tell the ARC a new command is pending. */
       
  2526 	hicr = er32(HICR);
       
  2527 	ew32(HICR, hicr | E1000_HICR_C);
       
  2528 
       
  2529 	return 0;
       
  2530 }
       
  2531 
       
  2532 /**
       
  2533  *  e1000e_enable_mng_pass_thru - Check if management passthrough is needed
       
  2534  *  @hw: pointer to the HW structure
       
  2535  *
       
  2536  *  Verifies the hardware needs to leave interface enabled so that frames can
       
  2537  *  be directed to and from the management interface.
       
  2538  **/
       
  2539 bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
       
  2540 {
       
  2541 	u32 manc;
       
  2542 	u32 fwsm, factps;
       
  2543 	bool ret_val = false;
       
  2544 
       
  2545 	manc = er32(MANC);
       
  2546 
       
  2547 	if (!(manc & E1000_MANC_RCV_TCO_EN))
       
  2548 		goto out;
       
  2549 
       
  2550 	if (hw->mac.has_fwsm) {
       
  2551 		fwsm = er32(FWSM);
       
  2552 		factps = er32(FACTPS);
       
  2553 
       
  2554 		if (!(factps & E1000_FACTPS_MNGCG) &&
       
  2555 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  2556 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
       
  2557 			ret_val = true;
       
  2558 			goto out;
       
  2559 		}
       
  2560 	} else if ((hw->mac.type == e1000_82574) ||
       
  2561 		   (hw->mac.type == e1000_82583)) {
       
  2562 		u16 data;
       
  2563 
       
  2564 		factps = er32(FACTPS);
       
  2565 		e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
       
  2566 
       
  2567 		if (!(factps & E1000_FACTPS_MNGCG) &&
       
  2568 		    ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
       
  2569 		     (e1000_mng_mode_pt << 13))) {
       
  2570 			ret_val = true;
       
  2571 			goto out;
       
  2572 		}
       
  2573 	} else if ((manc & E1000_MANC_SMBUS_EN) &&
       
  2574 		    !(manc & E1000_MANC_ASF_EN)) {
       
  2575 			ret_val = true;
       
  2576 			goto out;
       
  2577 	}
       
  2578 
       
  2579 out:
       
  2580 	return ret_val;
       
  2581 }
       
  2582 
       
  2583 s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
       
  2584 {
       
  2585 	s32 ret_val;
       
  2586 	u16 nvm_data;
       
  2587 
       
  2588 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
       
  2589 	if (ret_val) {
       
  2590 		e_dbg("NVM Read Error\n");
       
  2591 		return ret_val;
       
  2592 	}
       
  2593 	*pba_num = (u32)(nvm_data << 16);
       
  2594 
       
  2595 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
       
  2596 	if (ret_val) {
       
  2597 		e_dbg("NVM Read Error\n");
       
  2598 		return ret_val;
       
  2599 	}
       
  2600 	*pba_num |= nvm_data;
       
  2601 
       
  2602 	return 0;
       
  2603 }