|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2009 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper) |
|
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes) |
|
32 */ |
|
33 |
|
34 #include "e1000.h" |
|
35 |
|
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 |
|
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 |
|
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 |
|
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F |
|
40 |
|
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 |
|
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 |
|
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 |
|
44 |
|
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 |
|
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 |
|
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 |
|
48 |
|
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C |
|
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 |
|
51 |
|
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ |
|
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 |
|
54 |
|
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 |
|
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 |
|
57 |
|
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */ |
|
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ |
|
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 |
|
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ |
|
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ |
|
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ |
|
64 |
|
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */ |
|
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 |
|
67 /* 1=Reverse Auto-Negotiation */ |
|
68 |
|
69 /* MAC Specific Control Register (Page 2, Register 21) */ |
|
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ |
|
71 #define GG82563_MSCR_TX_CLK_MASK 0x0007 |
|
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 |
|
73 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 |
|
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 |
|
75 |
|
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ |
|
77 |
|
78 /* DSP Distance Register (Page 5, Register 26) */ |
|
79 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M |
|
80 1 = 50-80M |
|
81 2 = 80-110M |
|
82 3 = 110-140M |
|
83 4 = >140M */ |
|
84 |
|
85 /* Kumeran Mode Control Register (Page 193, Register 16) */ |
|
86 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 |
|
87 |
|
88 /* Max number of times Kumeran read/write should be validated */ |
|
89 #define GG82563_MAX_KMRN_RETRY 0x5 |
|
90 |
|
91 /* Power Management Control Register (Page 193, Register 20) */ |
|
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 |
|
93 /* 1=Enable SERDES Electrical Idle */ |
|
94 |
|
95 /* In-Band Control Register (Page 194, Register 18) */ |
|
96 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ |
|
97 |
|
98 /* |
|
99 * A table for the GG82563 cable length where the range is defined |
|
100 * with a lower bound at "index" and the upper bound at |
|
101 * "index + 5". |
|
102 */ |
|
103 static const u16 e1000_gg82563_cable_length_table[] = |
|
104 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; |
|
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \ |
|
106 ARRAY_SIZE(e1000_gg82563_cable_length_table) |
|
107 |
|
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); |
|
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
|
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
|
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); |
|
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); |
|
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); |
|
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); |
|
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); |
|
116 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
117 u16 *data); |
|
118 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
119 u16 data); |
|
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); |
|
121 |
|
122 /** |
|
123 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. |
|
124 * @hw: pointer to the HW structure |
|
125 **/ |
|
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) |
|
127 { |
|
128 struct e1000_phy_info *phy = &hw->phy; |
|
129 s32 ret_val; |
|
130 |
|
131 if (hw->phy.media_type != e1000_media_type_copper) { |
|
132 phy->type = e1000_phy_none; |
|
133 return 0; |
|
134 } else { |
|
135 phy->ops.power_up = e1000_power_up_phy_copper; |
|
136 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; |
|
137 } |
|
138 |
|
139 phy->addr = 1; |
|
140 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
141 phy->reset_delay_us = 100; |
|
142 phy->type = e1000_phy_gg82563; |
|
143 |
|
144 /* This can only be done after all function pointers are setup. */ |
|
145 ret_val = e1000e_get_phy_id(hw); |
|
146 |
|
147 /* Verify phy id */ |
|
148 if (phy->id != GG82563_E_PHY_ID) |
|
149 return -E1000_ERR_PHY; |
|
150 |
|
151 return ret_val; |
|
152 } |
|
153 |
|
154 /** |
|
155 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. |
|
156 * @hw: pointer to the HW structure |
|
157 **/ |
|
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) |
|
159 { |
|
160 struct e1000_nvm_info *nvm = &hw->nvm; |
|
161 u32 eecd = er32(EECD); |
|
162 u16 size; |
|
163 |
|
164 nvm->opcode_bits = 8; |
|
165 nvm->delay_usec = 1; |
|
166 switch (nvm->override) { |
|
167 case e1000_nvm_override_spi_large: |
|
168 nvm->page_size = 32; |
|
169 nvm->address_bits = 16; |
|
170 break; |
|
171 case e1000_nvm_override_spi_small: |
|
172 nvm->page_size = 8; |
|
173 nvm->address_bits = 8; |
|
174 break; |
|
175 default: |
|
176 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
|
177 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
|
178 break; |
|
179 } |
|
180 |
|
181 nvm->type = e1000_nvm_eeprom_spi; |
|
182 |
|
183 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
|
184 E1000_EECD_SIZE_EX_SHIFT); |
|
185 |
|
186 /* |
|
187 * Added to a constant, "size" becomes the left-shift value |
|
188 * for setting word_size. |
|
189 */ |
|
190 size += NVM_WORD_SIZE_BASE_SHIFT; |
|
191 |
|
192 /* EEPROM access above 16k is unsupported */ |
|
193 if (size > 14) |
|
194 size = 14; |
|
195 nvm->word_size = 1 << size; |
|
196 |
|
197 return 0; |
|
198 } |
|
199 |
|
200 /** |
|
201 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. |
|
202 * @hw: pointer to the HW structure |
|
203 **/ |
|
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) |
|
205 { |
|
206 struct e1000_hw *hw = &adapter->hw; |
|
207 struct e1000_mac_info *mac = &hw->mac; |
|
208 struct e1000_mac_operations *func = &mac->ops; |
|
209 |
|
210 /* Set media type */ |
|
211 switch (adapter->pdev->device) { |
|
212 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
|
213 hw->phy.media_type = e1000_media_type_internal_serdes; |
|
214 break; |
|
215 default: |
|
216 hw->phy.media_type = e1000_media_type_copper; |
|
217 break; |
|
218 } |
|
219 |
|
220 /* Set mta register count */ |
|
221 mac->mta_reg_count = 128; |
|
222 /* Set rar entry count */ |
|
223 mac->rar_entry_count = E1000_RAR_ENTRIES; |
|
224 /* FWSM register */ |
|
225 mac->has_fwsm = true; |
|
226 /* ARC supported; valid only if manageability features are enabled. */ |
|
227 mac->arc_subsystem_valid = |
|
228 (er32(FWSM) & E1000_FWSM_MODE_MASK) |
|
229 ? true : false; |
|
230 /* Adaptive IFS not supported */ |
|
231 mac->adaptive_ifs = false; |
|
232 |
|
233 /* check for link */ |
|
234 switch (hw->phy.media_type) { |
|
235 case e1000_media_type_copper: |
|
236 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; |
|
237 func->check_for_link = e1000e_check_for_copper_link; |
|
238 break; |
|
239 case e1000_media_type_fiber: |
|
240 func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
|
241 func->check_for_link = e1000e_check_for_fiber_link; |
|
242 break; |
|
243 case e1000_media_type_internal_serdes: |
|
244 func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
|
245 func->check_for_link = e1000e_check_for_serdes_link; |
|
246 break; |
|
247 default: |
|
248 return -E1000_ERR_CONFIG; |
|
249 break; |
|
250 } |
|
251 |
|
252 /* set lan id for port to determine which phy lock to use */ |
|
253 hw->mac.ops.set_lan_id(hw); |
|
254 |
|
255 return 0; |
|
256 } |
|
257 |
|
258 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter) |
|
259 { |
|
260 struct e1000_hw *hw = &adapter->hw; |
|
261 s32 rc; |
|
262 |
|
263 rc = e1000_init_mac_params_80003es2lan(adapter); |
|
264 if (rc) |
|
265 return rc; |
|
266 |
|
267 rc = e1000_init_nvm_params_80003es2lan(hw); |
|
268 if (rc) |
|
269 return rc; |
|
270 |
|
271 rc = e1000_init_phy_params_80003es2lan(hw); |
|
272 if (rc) |
|
273 return rc; |
|
274 |
|
275 return 0; |
|
276 } |
|
277 |
|
278 /** |
|
279 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY |
|
280 * @hw: pointer to the HW structure |
|
281 * |
|
282 * A wrapper to acquire access rights to the correct PHY. |
|
283 **/ |
|
284 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) |
|
285 { |
|
286 u16 mask; |
|
287 |
|
288 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
|
289 return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
|
290 } |
|
291 |
|
292 /** |
|
293 * e1000_release_phy_80003es2lan - Release rights to access PHY |
|
294 * @hw: pointer to the HW structure |
|
295 * |
|
296 * A wrapper to release access rights to the correct PHY. |
|
297 **/ |
|
298 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) |
|
299 { |
|
300 u16 mask; |
|
301 |
|
302 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
|
303 e1000_release_swfw_sync_80003es2lan(hw, mask); |
|
304 } |
|
305 |
|
306 /** |
|
307 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register |
|
308 * @hw: pointer to the HW structure |
|
309 * |
|
310 * Acquire the semaphore to access the Kumeran interface. |
|
311 * |
|
312 **/ |
|
313 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) |
|
314 { |
|
315 u16 mask; |
|
316 |
|
317 mask = E1000_SWFW_CSR_SM; |
|
318 |
|
319 return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
|
320 } |
|
321 |
|
322 /** |
|
323 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register |
|
324 * @hw: pointer to the HW structure |
|
325 * |
|
326 * Release the semaphore used to access the Kumeran interface |
|
327 **/ |
|
328 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) |
|
329 { |
|
330 u16 mask; |
|
331 |
|
332 mask = E1000_SWFW_CSR_SM; |
|
333 |
|
334 e1000_release_swfw_sync_80003es2lan(hw, mask); |
|
335 } |
|
336 |
|
337 /** |
|
338 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM |
|
339 * @hw: pointer to the HW structure |
|
340 * |
|
341 * Acquire the semaphore to access the EEPROM. |
|
342 **/ |
|
343 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) |
|
344 { |
|
345 s32 ret_val; |
|
346 |
|
347 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
348 if (ret_val) |
|
349 return ret_val; |
|
350 |
|
351 ret_val = e1000e_acquire_nvm(hw); |
|
352 |
|
353 if (ret_val) |
|
354 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
355 |
|
356 return ret_val; |
|
357 } |
|
358 |
|
359 /** |
|
360 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM |
|
361 * @hw: pointer to the HW structure |
|
362 * |
|
363 * Release the semaphore used to access the EEPROM. |
|
364 **/ |
|
365 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) |
|
366 { |
|
367 e1000e_release_nvm(hw); |
|
368 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
369 } |
|
370 |
|
371 /** |
|
372 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore |
|
373 * @hw: pointer to the HW structure |
|
374 * @mask: specifies which semaphore to acquire |
|
375 * |
|
376 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
|
377 * will also specify which port we're acquiring the lock for. |
|
378 **/ |
|
379 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
|
380 { |
|
381 u32 swfw_sync; |
|
382 u32 swmask = mask; |
|
383 u32 fwmask = mask << 16; |
|
384 s32 i = 0; |
|
385 s32 timeout = 50; |
|
386 |
|
387 while (i < timeout) { |
|
388 if (e1000e_get_hw_semaphore(hw)) |
|
389 return -E1000_ERR_SWFW_SYNC; |
|
390 |
|
391 swfw_sync = er32(SW_FW_SYNC); |
|
392 if (!(swfw_sync & (fwmask | swmask))) |
|
393 break; |
|
394 |
|
395 /* |
|
396 * Firmware currently using resource (fwmask) |
|
397 * or other software thread using resource (swmask) |
|
398 */ |
|
399 e1000e_put_hw_semaphore(hw); |
|
400 mdelay(5); |
|
401 i++; |
|
402 } |
|
403 |
|
404 if (i == timeout) { |
|
405 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
|
406 return -E1000_ERR_SWFW_SYNC; |
|
407 } |
|
408 |
|
409 swfw_sync |= swmask; |
|
410 ew32(SW_FW_SYNC, swfw_sync); |
|
411 |
|
412 e1000e_put_hw_semaphore(hw); |
|
413 |
|
414 return 0; |
|
415 } |
|
416 |
|
417 /** |
|
418 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore |
|
419 * @hw: pointer to the HW structure |
|
420 * @mask: specifies which semaphore to acquire |
|
421 * |
|
422 * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
|
423 * will also specify which port we're releasing the lock for. |
|
424 **/ |
|
425 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
|
426 { |
|
427 u32 swfw_sync; |
|
428 |
|
429 while (e1000e_get_hw_semaphore(hw) != 0); |
|
430 /* Empty */ |
|
431 |
|
432 swfw_sync = er32(SW_FW_SYNC); |
|
433 swfw_sync &= ~mask; |
|
434 ew32(SW_FW_SYNC, swfw_sync); |
|
435 |
|
436 e1000e_put_hw_semaphore(hw); |
|
437 } |
|
438 |
|
439 /** |
|
440 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register |
|
441 * @hw: pointer to the HW structure |
|
442 * @offset: offset of the register to read |
|
443 * @data: pointer to the data returned from the operation |
|
444 * |
|
445 * Read the GG82563 PHY register. |
|
446 **/ |
|
447 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
|
448 u32 offset, u16 *data) |
|
449 { |
|
450 s32 ret_val; |
|
451 u32 page_select; |
|
452 u16 temp; |
|
453 |
|
454 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
455 if (ret_val) |
|
456 return ret_val; |
|
457 |
|
458 /* Select Configuration Page */ |
|
459 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
460 page_select = GG82563_PHY_PAGE_SELECT; |
|
461 } else { |
|
462 /* |
|
463 * Use Alternative Page Select register to access |
|
464 * registers 30 and 31 |
|
465 */ |
|
466 page_select = GG82563_PHY_PAGE_SELECT_ALT; |
|
467 } |
|
468 |
|
469 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
|
470 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
|
471 if (ret_val) { |
|
472 e1000_release_phy_80003es2lan(hw); |
|
473 return ret_val; |
|
474 } |
|
475 |
|
476 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) { |
|
477 /* |
|
478 * The "ready" bit in the MDIC register may be incorrectly set |
|
479 * before the device has completed the "Page Select" MDI |
|
480 * transaction. So we wait 200us after each MDI command... |
|
481 */ |
|
482 udelay(200); |
|
483 |
|
484 /* ...and verify the command was successful. */ |
|
485 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
|
486 |
|
487 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
|
488 ret_val = -E1000_ERR_PHY; |
|
489 e1000_release_phy_80003es2lan(hw); |
|
490 return ret_val; |
|
491 } |
|
492 |
|
493 udelay(200); |
|
494 |
|
495 ret_val = e1000e_read_phy_reg_mdic(hw, |
|
496 MAX_PHY_REG_ADDRESS & offset, |
|
497 data); |
|
498 |
|
499 udelay(200); |
|
500 } else { |
|
501 ret_val = e1000e_read_phy_reg_mdic(hw, |
|
502 MAX_PHY_REG_ADDRESS & offset, |
|
503 data); |
|
504 } |
|
505 |
|
506 e1000_release_phy_80003es2lan(hw); |
|
507 |
|
508 return ret_val; |
|
509 } |
|
510 |
|
511 /** |
|
512 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register |
|
513 * @hw: pointer to the HW structure |
|
514 * @offset: offset of the register to read |
|
515 * @data: value to write to the register |
|
516 * |
|
517 * Write to the GG82563 PHY register. |
|
518 **/ |
|
519 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
|
520 u32 offset, u16 data) |
|
521 { |
|
522 s32 ret_val; |
|
523 u32 page_select; |
|
524 u16 temp; |
|
525 |
|
526 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
527 if (ret_val) |
|
528 return ret_val; |
|
529 |
|
530 /* Select Configuration Page */ |
|
531 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
532 page_select = GG82563_PHY_PAGE_SELECT; |
|
533 } else { |
|
534 /* |
|
535 * Use Alternative Page Select register to access |
|
536 * registers 30 and 31 |
|
537 */ |
|
538 page_select = GG82563_PHY_PAGE_SELECT_ALT; |
|
539 } |
|
540 |
|
541 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
|
542 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
|
543 if (ret_val) { |
|
544 e1000_release_phy_80003es2lan(hw); |
|
545 return ret_val; |
|
546 } |
|
547 |
|
548 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) { |
|
549 /* |
|
550 * The "ready" bit in the MDIC register may be incorrectly set |
|
551 * before the device has completed the "Page Select" MDI |
|
552 * transaction. So we wait 200us after each MDI command... |
|
553 */ |
|
554 udelay(200); |
|
555 |
|
556 /* ...and verify the command was successful. */ |
|
557 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
|
558 |
|
559 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
|
560 e1000_release_phy_80003es2lan(hw); |
|
561 return -E1000_ERR_PHY; |
|
562 } |
|
563 |
|
564 udelay(200); |
|
565 |
|
566 ret_val = e1000e_write_phy_reg_mdic(hw, |
|
567 MAX_PHY_REG_ADDRESS & offset, |
|
568 data); |
|
569 |
|
570 udelay(200); |
|
571 } else { |
|
572 ret_val = e1000e_write_phy_reg_mdic(hw, |
|
573 MAX_PHY_REG_ADDRESS & offset, |
|
574 data); |
|
575 } |
|
576 |
|
577 e1000_release_phy_80003es2lan(hw); |
|
578 |
|
579 return ret_val; |
|
580 } |
|
581 |
|
582 /** |
|
583 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM |
|
584 * @hw: pointer to the HW structure |
|
585 * @offset: offset of the register to read |
|
586 * @words: number of words to write |
|
587 * @data: buffer of data to write to the NVM |
|
588 * |
|
589 * Write "words" of data to the ESB2 NVM. |
|
590 **/ |
|
591 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, |
|
592 u16 words, u16 *data) |
|
593 { |
|
594 return e1000e_write_nvm_spi(hw, offset, words, data); |
|
595 } |
|
596 |
|
597 /** |
|
598 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete |
|
599 * @hw: pointer to the HW structure |
|
600 * |
|
601 * Wait a specific amount of time for manageability processes to complete. |
|
602 * This is a function pointer entry point called by the phy module. |
|
603 **/ |
|
604 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) |
|
605 { |
|
606 s32 timeout = PHY_CFG_TIMEOUT; |
|
607 u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
|
608 |
|
609 if (hw->bus.func == 1) |
|
610 mask = E1000_NVM_CFG_DONE_PORT_1; |
|
611 |
|
612 while (timeout) { |
|
613 if (er32(EEMNGCTL) & mask) |
|
614 break; |
|
615 msleep(1); |
|
616 timeout--; |
|
617 } |
|
618 if (!timeout) { |
|
619 e_dbg("MNG configuration cycle has not completed.\n"); |
|
620 return -E1000_ERR_RESET; |
|
621 } |
|
622 |
|
623 return 0; |
|
624 } |
|
625 |
|
626 /** |
|
627 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex |
|
628 * @hw: pointer to the HW structure |
|
629 * |
|
630 * Force the speed and duplex settings onto the PHY. This is a |
|
631 * function pointer entry point called by the phy module. |
|
632 **/ |
|
633 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) |
|
634 { |
|
635 s32 ret_val; |
|
636 u16 phy_data; |
|
637 bool link; |
|
638 |
|
639 /* |
|
640 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
|
641 * forced whenever speed and duplex are forced. |
|
642 */ |
|
643 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
644 if (ret_val) |
|
645 return ret_val; |
|
646 |
|
647 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; |
|
648 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
|
649 if (ret_val) |
|
650 return ret_val; |
|
651 |
|
652 e_dbg("GG82563 PSCR: %X\n", phy_data); |
|
653 |
|
654 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
|
655 if (ret_val) |
|
656 return ret_val; |
|
657 |
|
658 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
|
659 |
|
660 /* Reset the phy to commit changes. */ |
|
661 phy_data |= MII_CR_RESET; |
|
662 |
|
663 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
|
664 if (ret_val) |
|
665 return ret_val; |
|
666 |
|
667 udelay(1); |
|
668 |
|
669 if (hw->phy.autoneg_wait_to_complete) { |
|
670 e_dbg("Waiting for forced speed/duplex link " |
|
671 "on GG82563 phy.\n"); |
|
672 |
|
673 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
|
674 100000, &link); |
|
675 if (ret_val) |
|
676 return ret_val; |
|
677 |
|
678 if (!link) { |
|
679 /* |
|
680 * We didn't get link. |
|
681 * Reset the DSP and cross our fingers. |
|
682 */ |
|
683 ret_val = e1000e_phy_reset_dsp(hw); |
|
684 if (ret_val) |
|
685 return ret_val; |
|
686 } |
|
687 |
|
688 /* Try once more */ |
|
689 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
|
690 100000, &link); |
|
691 if (ret_val) |
|
692 return ret_val; |
|
693 } |
|
694 |
|
695 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
|
696 if (ret_val) |
|
697 return ret_val; |
|
698 |
|
699 /* |
|
700 * Resetting the phy means we need to verify the TX_CLK corresponds |
|
701 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. |
|
702 */ |
|
703 phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
|
704 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) |
|
705 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; |
|
706 else |
|
707 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; |
|
708 |
|
709 /* |
|
710 * In addition, we must re-enable CRS on Tx for both half and full |
|
711 * duplex. |
|
712 */ |
|
713 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
714 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
|
715 |
|
716 return ret_val; |
|
717 } |
|
718 |
|
719 /** |
|
720 * e1000_get_cable_length_80003es2lan - Set approximate cable length |
|
721 * @hw: pointer to the HW structure |
|
722 * |
|
723 * Find the approximate cable length as measured by the GG82563 PHY. |
|
724 * This is a function pointer entry point called by the phy module. |
|
725 **/ |
|
726 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) |
|
727 { |
|
728 struct e1000_phy_info *phy = &hw->phy; |
|
729 s32 ret_val = 0; |
|
730 u16 phy_data, index; |
|
731 |
|
732 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); |
|
733 if (ret_val) |
|
734 goto out; |
|
735 |
|
736 index = phy_data & GG82563_DSPD_CABLE_LENGTH; |
|
737 |
|
738 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) { |
|
739 ret_val = -E1000_ERR_PHY; |
|
740 goto out; |
|
741 } |
|
742 |
|
743 phy->min_cable_length = e1000_gg82563_cable_length_table[index]; |
|
744 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; |
|
745 |
|
746 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
|
747 |
|
748 out: |
|
749 return ret_val; |
|
750 } |
|
751 |
|
752 /** |
|
753 * e1000_get_link_up_info_80003es2lan - Report speed and duplex |
|
754 * @hw: pointer to the HW structure |
|
755 * @speed: pointer to speed buffer |
|
756 * @duplex: pointer to duplex buffer |
|
757 * |
|
758 * Retrieve the current speed and duplex configuration. |
|
759 **/ |
|
760 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, |
|
761 u16 *duplex) |
|
762 { |
|
763 s32 ret_val; |
|
764 |
|
765 if (hw->phy.media_type == e1000_media_type_copper) { |
|
766 ret_val = e1000e_get_speed_and_duplex_copper(hw, |
|
767 speed, |
|
768 duplex); |
|
769 hw->phy.ops.cfg_on_link_up(hw); |
|
770 } else { |
|
771 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, |
|
772 speed, |
|
773 duplex); |
|
774 } |
|
775 |
|
776 return ret_val; |
|
777 } |
|
778 |
|
779 /** |
|
780 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller |
|
781 * @hw: pointer to the HW structure |
|
782 * |
|
783 * Perform a global reset to the ESB2 controller. |
|
784 **/ |
|
785 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) |
|
786 { |
|
787 u32 ctrl, icr; |
|
788 s32 ret_val; |
|
789 |
|
790 /* |
|
791 * Prevent the PCI-E bus from sticking if there is no TLP connection |
|
792 * on the last TLP read/write transaction when MAC is reset. |
|
793 */ |
|
794 ret_val = e1000e_disable_pcie_master(hw); |
|
795 if (ret_val) |
|
796 e_dbg("PCI-E Master disable polling has failed.\n"); |
|
797 |
|
798 e_dbg("Masking off all interrupts\n"); |
|
799 ew32(IMC, 0xffffffff); |
|
800 |
|
801 ew32(RCTL, 0); |
|
802 ew32(TCTL, E1000_TCTL_PSP); |
|
803 e1e_flush(); |
|
804 |
|
805 msleep(10); |
|
806 |
|
807 ctrl = er32(CTRL); |
|
808 |
|
809 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
810 e_dbg("Issuing a global reset to MAC\n"); |
|
811 ew32(CTRL, ctrl | E1000_CTRL_RST); |
|
812 e1000_release_phy_80003es2lan(hw); |
|
813 |
|
814 ret_val = e1000e_get_auto_rd_done(hw); |
|
815 if (ret_val) |
|
816 /* We don't want to continue accessing MAC registers. */ |
|
817 return ret_val; |
|
818 |
|
819 /* Clear any pending interrupt events. */ |
|
820 ew32(IMC, 0xffffffff); |
|
821 icr = er32(ICR); |
|
822 |
|
823 ret_val = e1000_check_alt_mac_addr_generic(hw); |
|
824 |
|
825 return ret_val; |
|
826 } |
|
827 |
|
828 /** |
|
829 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller |
|
830 * @hw: pointer to the HW structure |
|
831 * |
|
832 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. |
|
833 **/ |
|
834 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) |
|
835 { |
|
836 struct e1000_mac_info *mac = &hw->mac; |
|
837 u32 reg_data; |
|
838 s32 ret_val; |
|
839 u16 i; |
|
840 |
|
841 e1000_initialize_hw_bits_80003es2lan(hw); |
|
842 |
|
843 /* Initialize identification LED */ |
|
844 ret_val = e1000e_id_led_init(hw); |
|
845 if (ret_val) |
|
846 e_dbg("Error initializing identification LED\n"); |
|
847 /* This is not fatal and we should not stop init due to this */ |
|
848 |
|
849 /* Disabling VLAN filtering */ |
|
850 e_dbg("Initializing the IEEE VLAN\n"); |
|
851 mac->ops.clear_vfta(hw); |
|
852 |
|
853 /* Setup the receive address. */ |
|
854 e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
|
855 |
|
856 /* Zero out the Multicast HASH table */ |
|
857 e_dbg("Zeroing the MTA\n"); |
|
858 for (i = 0; i < mac->mta_reg_count; i++) |
|
859 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
860 |
|
861 /* Setup link and flow control */ |
|
862 ret_val = e1000e_setup_link(hw); |
|
863 |
|
864 /* Set the transmit descriptor write-back policy */ |
|
865 reg_data = er32(TXDCTL(0)); |
|
866 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
867 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
|
868 ew32(TXDCTL(0), reg_data); |
|
869 |
|
870 /* ...for both queues. */ |
|
871 reg_data = er32(TXDCTL(1)); |
|
872 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
873 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
|
874 ew32(TXDCTL(1), reg_data); |
|
875 |
|
876 /* Enable retransmit on late collisions */ |
|
877 reg_data = er32(TCTL); |
|
878 reg_data |= E1000_TCTL_RTLC; |
|
879 ew32(TCTL, reg_data); |
|
880 |
|
881 /* Configure Gigabit Carry Extend Padding */ |
|
882 reg_data = er32(TCTL_EXT); |
|
883 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
|
884 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; |
|
885 ew32(TCTL_EXT, reg_data); |
|
886 |
|
887 /* Configure Transmit Inter-Packet Gap */ |
|
888 reg_data = er32(TIPG); |
|
889 reg_data &= ~E1000_TIPG_IPGT_MASK; |
|
890 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
|
891 ew32(TIPG, reg_data); |
|
892 |
|
893 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); |
|
894 reg_data &= ~0x00100000; |
|
895 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); |
|
896 |
|
897 /* default to true to enable the MDIC W/A */ |
|
898 hw->dev_spec.e80003es2lan.mdic_wa_enable = true; |
|
899 |
|
900 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
901 E1000_KMRNCTRLSTA_OFFSET >> |
|
902 E1000_KMRNCTRLSTA_OFFSET_SHIFT, |
|
903 &i); |
|
904 if (!ret_val) { |
|
905 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == |
|
906 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) |
|
907 hw->dev_spec.e80003es2lan.mdic_wa_enable = false; |
|
908 } |
|
909 |
|
910 /* |
|
911 * Clear all of the statistics registers (clear on read). It is |
|
912 * important that we do this after we have tried to establish link |
|
913 * because the symbol error count will increment wildly if there |
|
914 * is no link. |
|
915 */ |
|
916 e1000_clear_hw_cntrs_80003es2lan(hw); |
|
917 |
|
918 return ret_val; |
|
919 } |
|
920 |
|
921 /** |
|
922 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 |
|
923 * @hw: pointer to the HW structure |
|
924 * |
|
925 * Initializes required hardware-dependent bits needed for normal operation. |
|
926 **/ |
|
927 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) |
|
928 { |
|
929 u32 reg; |
|
930 |
|
931 /* Transmit Descriptor Control 0 */ |
|
932 reg = er32(TXDCTL(0)); |
|
933 reg |= (1 << 22); |
|
934 ew32(TXDCTL(0), reg); |
|
935 |
|
936 /* Transmit Descriptor Control 1 */ |
|
937 reg = er32(TXDCTL(1)); |
|
938 reg |= (1 << 22); |
|
939 ew32(TXDCTL(1), reg); |
|
940 |
|
941 /* Transmit Arbitration Control 0 */ |
|
942 reg = er32(TARC(0)); |
|
943 reg &= ~(0xF << 27); /* 30:27 */ |
|
944 if (hw->phy.media_type != e1000_media_type_copper) |
|
945 reg &= ~(1 << 20); |
|
946 ew32(TARC(0), reg); |
|
947 |
|
948 /* Transmit Arbitration Control 1 */ |
|
949 reg = er32(TARC(1)); |
|
950 if (er32(TCTL) & E1000_TCTL_MULR) |
|
951 reg &= ~(1 << 28); |
|
952 else |
|
953 reg |= (1 << 28); |
|
954 ew32(TARC(1), reg); |
|
955 } |
|
956 |
|
957 /** |
|
958 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link |
|
959 * @hw: pointer to the HW structure |
|
960 * |
|
961 * Setup some GG82563 PHY registers for obtaining link |
|
962 **/ |
|
963 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) |
|
964 { |
|
965 struct e1000_phy_info *phy = &hw->phy; |
|
966 s32 ret_val; |
|
967 u32 ctrl_ext; |
|
968 u16 data; |
|
969 |
|
970 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); |
|
971 if (ret_val) |
|
972 return ret_val; |
|
973 |
|
974 data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
975 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ |
|
976 data |= GG82563_MSCR_TX_CLK_1000MBPS_25; |
|
977 |
|
978 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data); |
|
979 if (ret_val) |
|
980 return ret_val; |
|
981 |
|
982 /* |
|
983 * Options: |
|
984 * MDI/MDI-X = 0 (default) |
|
985 * 0 - Auto for all speeds |
|
986 * 1 - MDI mode |
|
987 * 2 - MDI-X mode |
|
988 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
|
989 */ |
|
990 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); |
|
991 if (ret_val) |
|
992 return ret_val; |
|
993 |
|
994 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
|
995 |
|
996 switch (phy->mdix) { |
|
997 case 1: |
|
998 data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
|
999 break; |
|
1000 case 2: |
|
1001 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
|
1002 break; |
|
1003 case 0: |
|
1004 default: |
|
1005 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
|
1006 break; |
|
1007 } |
|
1008 |
|
1009 /* |
|
1010 * Options: |
|
1011 * disable_polarity_correction = 0 (default) |
|
1012 * Automatic Correction for Reversed Cable Polarity |
|
1013 * 0 - Disabled |
|
1014 * 1 - Enabled |
|
1015 */ |
|
1016 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
1017 if (phy->disable_polarity_correction) |
|
1018 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
1019 |
|
1020 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); |
|
1021 if (ret_val) |
|
1022 return ret_val; |
|
1023 |
|
1024 /* SW Reset the PHY so all changes take effect */ |
|
1025 ret_val = e1000e_commit_phy(hw); |
|
1026 if (ret_val) { |
|
1027 e_dbg("Error Resetting the PHY\n"); |
|
1028 return ret_val; |
|
1029 } |
|
1030 |
|
1031 /* Bypass Rx and Tx FIFO's */ |
|
1032 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1033 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, |
|
1034 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | |
|
1035 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); |
|
1036 if (ret_val) |
|
1037 return ret_val; |
|
1038 |
|
1039 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
1040 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
|
1041 &data); |
|
1042 if (ret_val) |
|
1043 return ret_val; |
|
1044 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; |
|
1045 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1046 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
|
1047 data); |
|
1048 if (ret_val) |
|
1049 return ret_val; |
|
1050 |
|
1051 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); |
|
1052 if (ret_val) |
|
1053 return ret_val; |
|
1054 |
|
1055 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
|
1056 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); |
|
1057 if (ret_val) |
|
1058 return ret_val; |
|
1059 |
|
1060 ctrl_ext = er32(CTRL_EXT); |
|
1061 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
|
1062 ew32(CTRL_EXT, ctrl_ext); |
|
1063 |
|
1064 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); |
|
1065 if (ret_val) |
|
1066 return ret_val; |
|
1067 |
|
1068 /* |
|
1069 * Do not init these registers when the HW is in IAMT mode, since the |
|
1070 * firmware will have already initialized them. We only initialize |
|
1071 * them if the HW is not in IAMT mode. |
|
1072 */ |
|
1073 if (!e1000e_check_mng_mode(hw)) { |
|
1074 /* Enable Electrical Idle on the PHY */ |
|
1075 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
|
1076 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); |
|
1077 if (ret_val) |
|
1078 return ret_val; |
|
1079 |
|
1080 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); |
|
1081 if (ret_val) |
|
1082 return ret_val; |
|
1083 |
|
1084 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1085 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); |
|
1086 if (ret_val) |
|
1087 return ret_val; |
|
1088 } |
|
1089 |
|
1090 /* |
|
1091 * Workaround: Disable padding in Kumeran interface in the MAC |
|
1092 * and in the PHY to avoid CRC errors. |
|
1093 */ |
|
1094 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); |
|
1095 if (ret_val) |
|
1096 return ret_val; |
|
1097 |
|
1098 data |= GG82563_ICR_DIS_PADDING; |
|
1099 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); |
|
1100 if (ret_val) |
|
1101 return ret_val; |
|
1102 |
|
1103 return 0; |
|
1104 } |
|
1105 |
|
1106 /** |
|
1107 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 |
|
1108 * @hw: pointer to the HW structure |
|
1109 * |
|
1110 * Essentially a wrapper for setting up all things "copper" related. |
|
1111 * This is a function pointer entry point called by the mac module. |
|
1112 **/ |
|
1113 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) |
|
1114 { |
|
1115 u32 ctrl; |
|
1116 s32 ret_val; |
|
1117 u16 reg_data; |
|
1118 |
|
1119 ctrl = er32(CTRL); |
|
1120 ctrl |= E1000_CTRL_SLU; |
|
1121 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1122 ew32(CTRL, ctrl); |
|
1123 |
|
1124 /* |
|
1125 * Set the mac to wait the maximum time between each |
|
1126 * iteration and increase the max iterations when |
|
1127 * polling the phy; this fixes erroneous timeouts at 10Mbps. |
|
1128 */ |
|
1129 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), |
|
1130 0xFFFF); |
|
1131 if (ret_val) |
|
1132 return ret_val; |
|
1133 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
|
1134 ®_data); |
|
1135 if (ret_val) |
|
1136 return ret_val; |
|
1137 reg_data |= 0x3F; |
|
1138 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
|
1139 reg_data); |
|
1140 if (ret_val) |
|
1141 return ret_val; |
|
1142 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
1143 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
|
1144 ®_data); |
|
1145 if (ret_val) |
|
1146 return ret_val; |
|
1147 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; |
|
1148 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1149 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
|
1150 reg_data); |
|
1151 if (ret_val) |
|
1152 return ret_val; |
|
1153 |
|
1154 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); |
|
1155 if (ret_val) |
|
1156 return ret_val; |
|
1157 |
|
1158 ret_val = e1000e_setup_copper_link(hw); |
|
1159 |
|
1160 return 0; |
|
1161 } |
|
1162 |
|
1163 /** |
|
1164 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up |
|
1165 * @hw: pointer to the HW structure |
|
1166 * @duplex: current duplex setting |
|
1167 * |
|
1168 * Configure the KMRN interface by applying last minute quirks for |
|
1169 * 10/100 operation. |
|
1170 **/ |
|
1171 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) |
|
1172 { |
|
1173 s32 ret_val = 0; |
|
1174 u16 speed; |
|
1175 u16 duplex; |
|
1176 |
|
1177 if (hw->phy.media_type == e1000_media_type_copper) { |
|
1178 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed, |
|
1179 &duplex); |
|
1180 if (ret_val) |
|
1181 return ret_val; |
|
1182 |
|
1183 if (speed == SPEED_1000) |
|
1184 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); |
|
1185 else |
|
1186 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); |
|
1187 } |
|
1188 |
|
1189 return ret_val; |
|
1190 } |
|
1191 |
|
1192 /** |
|
1193 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation |
|
1194 * @hw: pointer to the HW structure |
|
1195 * @duplex: current duplex setting |
|
1196 * |
|
1197 * Configure the KMRN interface by applying last minute quirks for |
|
1198 * 10/100 operation. |
|
1199 **/ |
|
1200 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) |
|
1201 { |
|
1202 s32 ret_val; |
|
1203 u32 tipg; |
|
1204 u32 i = 0; |
|
1205 u16 reg_data, reg_data2; |
|
1206 |
|
1207 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; |
|
1208 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1209 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
|
1210 reg_data); |
|
1211 if (ret_val) |
|
1212 return ret_val; |
|
1213 |
|
1214 /* Configure Transmit Inter-Packet Gap */ |
|
1215 tipg = er32(TIPG); |
|
1216 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
1217 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; |
|
1218 ew32(TIPG, tipg); |
|
1219 |
|
1220 do { |
|
1221 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
1222 if (ret_val) |
|
1223 return ret_val; |
|
1224 |
|
1225 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
|
1226 if (ret_val) |
|
1227 return ret_val; |
|
1228 i++; |
|
1229 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
|
1230 |
|
1231 if (duplex == HALF_DUPLEX) |
|
1232 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1233 else |
|
1234 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1235 |
|
1236 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
1237 |
|
1238 return 0; |
|
1239 } |
|
1240 |
|
1241 /** |
|
1242 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation |
|
1243 * @hw: pointer to the HW structure |
|
1244 * |
|
1245 * Configure the KMRN interface by applying last minute quirks for |
|
1246 * gigabit operation. |
|
1247 **/ |
|
1248 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) |
|
1249 { |
|
1250 s32 ret_val; |
|
1251 u16 reg_data, reg_data2; |
|
1252 u32 tipg; |
|
1253 u32 i = 0; |
|
1254 |
|
1255 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; |
|
1256 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1257 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
|
1258 reg_data); |
|
1259 if (ret_val) |
|
1260 return ret_val; |
|
1261 |
|
1262 /* Configure Transmit Inter-Packet Gap */ |
|
1263 tipg = er32(TIPG); |
|
1264 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
1265 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
|
1266 ew32(TIPG, tipg); |
|
1267 |
|
1268 do { |
|
1269 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
1270 if (ret_val) |
|
1271 return ret_val; |
|
1272 |
|
1273 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
|
1274 if (ret_val) |
|
1275 return ret_val; |
|
1276 i++; |
|
1277 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
|
1278 |
|
1279 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1280 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
1281 |
|
1282 return ret_val; |
|
1283 } |
|
1284 |
|
1285 /** |
|
1286 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register |
|
1287 * @hw: pointer to the HW structure |
|
1288 * @offset: register offset to be read |
|
1289 * @data: pointer to the read data |
|
1290 * |
|
1291 * Acquire semaphore, then read the PHY register at offset |
|
1292 * using the kumeran interface. The information retrieved is stored in data. |
|
1293 * Release the semaphore before exiting. |
|
1294 **/ |
|
1295 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
1296 u16 *data) |
|
1297 { |
|
1298 u32 kmrnctrlsta; |
|
1299 s32 ret_val = 0; |
|
1300 |
|
1301 ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
|
1302 if (ret_val) |
|
1303 return ret_val; |
|
1304 |
|
1305 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
|
1306 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; |
|
1307 ew32(KMRNCTRLSTA, kmrnctrlsta); |
|
1308 |
|
1309 udelay(2); |
|
1310 |
|
1311 kmrnctrlsta = er32(KMRNCTRLSTA); |
|
1312 *data = (u16)kmrnctrlsta; |
|
1313 |
|
1314 e1000_release_mac_csr_80003es2lan(hw); |
|
1315 |
|
1316 return ret_val; |
|
1317 } |
|
1318 |
|
1319 /** |
|
1320 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register |
|
1321 * @hw: pointer to the HW structure |
|
1322 * @offset: register offset to write to |
|
1323 * @data: data to write at register offset |
|
1324 * |
|
1325 * Acquire semaphore, then write the data to PHY register |
|
1326 * at the offset using the kumeran interface. Release semaphore |
|
1327 * before exiting. |
|
1328 **/ |
|
1329 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
1330 u16 data) |
|
1331 { |
|
1332 u32 kmrnctrlsta; |
|
1333 s32 ret_val = 0; |
|
1334 |
|
1335 ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
|
1336 if (ret_val) |
|
1337 return ret_val; |
|
1338 |
|
1339 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
|
1340 E1000_KMRNCTRLSTA_OFFSET) | data; |
|
1341 ew32(KMRNCTRLSTA, kmrnctrlsta); |
|
1342 |
|
1343 udelay(2); |
|
1344 |
|
1345 e1000_release_mac_csr_80003es2lan(hw); |
|
1346 |
|
1347 return ret_val; |
|
1348 } |
|
1349 |
|
1350 /** |
|
1351 * e1000_read_mac_addr_80003es2lan - Read device MAC address |
|
1352 * @hw: pointer to the HW structure |
|
1353 **/ |
|
1354 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) |
|
1355 { |
|
1356 s32 ret_val = 0; |
|
1357 |
|
1358 /* |
|
1359 * If there's an alternate MAC address place it in RAR0 |
|
1360 * so that it will override the Si installed default perm |
|
1361 * address. |
|
1362 */ |
|
1363 ret_val = e1000_check_alt_mac_addr_generic(hw); |
|
1364 if (ret_val) |
|
1365 goto out; |
|
1366 |
|
1367 ret_val = e1000_read_mac_addr_generic(hw); |
|
1368 |
|
1369 out: |
|
1370 return ret_val; |
|
1371 } |
|
1372 |
|
1373 /** |
|
1374 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down |
|
1375 * @hw: pointer to the HW structure |
|
1376 * |
|
1377 * In the case of a PHY power down to save power, or to turn off link during a |
|
1378 * driver unload, or wake on lan is not enabled, remove the link. |
|
1379 **/ |
|
1380 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) |
|
1381 { |
|
1382 /* If the management interface is not enabled, then power down */ |
|
1383 if (!(hw->mac.ops.check_mng_mode(hw) || |
|
1384 hw->phy.ops.check_reset_block(hw))) |
|
1385 e1000_power_down_phy_copper(hw); |
|
1386 } |
|
1387 |
|
1388 /** |
|
1389 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters |
|
1390 * @hw: pointer to the HW structure |
|
1391 * |
|
1392 * Clears the hardware counters by reading the counter registers. |
|
1393 **/ |
|
1394 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) |
|
1395 { |
|
1396 e1000e_clear_hw_cntrs_base(hw); |
|
1397 |
|
1398 er32(PRC64); |
|
1399 er32(PRC127); |
|
1400 er32(PRC255); |
|
1401 er32(PRC511); |
|
1402 er32(PRC1023); |
|
1403 er32(PRC1522); |
|
1404 er32(PTC64); |
|
1405 er32(PTC127); |
|
1406 er32(PTC255); |
|
1407 er32(PTC511); |
|
1408 er32(PTC1023); |
|
1409 er32(PTC1522); |
|
1410 |
|
1411 er32(ALGNERRC); |
|
1412 er32(RXERRC); |
|
1413 er32(TNCRS); |
|
1414 er32(CEXTERR); |
|
1415 er32(TSCTC); |
|
1416 er32(TSCTFC); |
|
1417 |
|
1418 er32(MGTPRC); |
|
1419 er32(MGTPDC); |
|
1420 er32(MGTPTC); |
|
1421 |
|
1422 er32(IAC); |
|
1423 er32(ICRXOC); |
|
1424 |
|
1425 er32(ICRXPTC); |
|
1426 er32(ICRXATC); |
|
1427 er32(ICTXPTC); |
|
1428 er32(ICTXATC); |
|
1429 er32(ICTXQEC); |
|
1430 er32(ICTXQMTC); |
|
1431 er32(ICRXDMTC); |
|
1432 } |
|
1433 |
|
1434 static struct e1000_mac_operations es2_mac_ops = { |
|
1435 .read_mac_addr = e1000_read_mac_addr_80003es2lan, |
|
1436 .id_led_init = e1000e_id_led_init, |
|
1437 .check_mng_mode = e1000e_check_mng_mode_generic, |
|
1438 /* check_for_link dependent on media type */ |
|
1439 .cleanup_led = e1000e_cleanup_led_generic, |
|
1440 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, |
|
1441 .get_bus_info = e1000e_get_bus_info_pcie, |
|
1442 .set_lan_id = e1000_set_lan_id_multi_port_pcie, |
|
1443 .get_link_up_info = e1000_get_link_up_info_80003es2lan, |
|
1444 .led_on = e1000e_led_on_generic, |
|
1445 .led_off = e1000e_led_off_generic, |
|
1446 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
1447 .write_vfta = e1000_write_vfta_generic, |
|
1448 .clear_vfta = e1000_clear_vfta_generic, |
|
1449 .reset_hw = e1000_reset_hw_80003es2lan, |
|
1450 .init_hw = e1000_init_hw_80003es2lan, |
|
1451 .setup_link = e1000e_setup_link, |
|
1452 /* setup_physical_interface dependent on media type */ |
|
1453 .setup_led = e1000e_setup_led_generic, |
|
1454 }; |
|
1455 |
|
1456 static struct e1000_phy_operations es2_phy_ops = { |
|
1457 .acquire = e1000_acquire_phy_80003es2lan, |
|
1458 .check_polarity = e1000_check_polarity_m88, |
|
1459 .check_reset_block = e1000e_check_reset_block_generic, |
|
1460 .commit = e1000e_phy_sw_reset, |
|
1461 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, |
|
1462 .get_cfg_done = e1000_get_cfg_done_80003es2lan, |
|
1463 .get_cable_length = e1000_get_cable_length_80003es2lan, |
|
1464 .get_info = e1000e_get_phy_info_m88, |
|
1465 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan, |
|
1466 .release = e1000_release_phy_80003es2lan, |
|
1467 .reset = e1000e_phy_hw_reset_generic, |
|
1468 .set_d0_lplu_state = NULL, |
|
1469 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1470 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan, |
|
1471 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan, |
|
1472 }; |
|
1473 |
|
1474 static struct e1000_nvm_operations es2_nvm_ops = { |
|
1475 .acquire = e1000_acquire_nvm_80003es2lan, |
|
1476 .read = e1000e_read_nvm_eerd, |
|
1477 .release = e1000_release_nvm_80003es2lan, |
|
1478 .update = e1000e_update_nvm_checksum_generic, |
|
1479 .valid_led_default = e1000e_valid_led_default, |
|
1480 .validate = e1000e_validate_nvm_checksum_generic, |
|
1481 .write = e1000_write_nvm_80003es2lan, |
|
1482 }; |
|
1483 |
|
1484 struct e1000_info e1000_es2_info = { |
|
1485 .mac = e1000_80003es2lan, |
|
1486 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1487 | FLAG_HAS_JUMBO_FRAMES |
|
1488 | FLAG_HAS_WOL |
|
1489 | FLAG_APME_IN_CTRL3 |
|
1490 | FLAG_RX_CSUM_ENABLED |
|
1491 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1492 | FLAG_RX_NEEDS_RESTART /* errata */ |
|
1493 | FLAG_TARC_SET_BIT_ZERO /* errata */ |
|
1494 | FLAG_APME_CHECK_PORT_B |
|
1495 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
|
1496 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, |
|
1497 .pba = 38, |
|
1498 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1499 .get_variants = e1000_get_variants_80003es2lan, |
|
1500 .mac_ops = &es2_mac_ops, |
|
1501 .phy_ops = &es2_phy_ops, |
|
1502 .nvm_ops = &es2_nvm_ops, |
|
1503 }; |
|
1504 |