|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2009 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * 82571EB Gigabit Ethernet Controller |
|
31 * 82571EB Gigabit Ethernet Controller (Copper) |
|
32 * 82571EB Gigabit Ethernet Controller (Fiber) |
|
33 * 82571EB Dual Port Gigabit Mezzanine Adapter |
|
34 * 82571EB Quad Port Gigabit Mezzanine Adapter |
|
35 * 82571PT Gigabit PT Quad Port Server ExpressModule |
|
36 * 82572EI Gigabit Ethernet Controller (Copper) |
|
37 * 82572EI Gigabit Ethernet Controller (Fiber) |
|
38 * 82572EI Gigabit Ethernet Controller |
|
39 * 82573V Gigabit Ethernet Controller (Copper) |
|
40 * 82573E Gigabit Ethernet Controller (Copper) |
|
41 * 82573L Gigabit Ethernet Controller |
|
42 * 82574L Gigabit Network Connection |
|
43 * 82583V Gigabit Network Connection |
|
44 */ |
|
45 |
|
46 #include "e1000-2.6.35-ethercat.h" |
|
47 |
|
48 #define ID_LED_RESERVED_F746 0xF746 |
|
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ |
|
50 (ID_LED_OFF1_ON2 << 8) | \ |
|
51 (ID_LED_DEF1_DEF2 << 4) | \ |
|
52 (ID_LED_DEF1_DEF2)) |
|
53 |
|
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 |
|
55 |
|
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ |
|
57 |
|
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); |
|
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); |
|
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); |
|
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); |
|
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
|
63 u16 words, u16 *data); |
|
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); |
|
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); |
|
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw); |
|
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); |
|
68 static void e1000_clear_vfta_82571(struct e1000_hw *hw); |
|
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); |
|
70 static s32 e1000_led_on_82574(struct e1000_hw *hw); |
|
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); |
|
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); |
|
73 |
|
74 /** |
|
75 * e1000_init_phy_params_82571 - Init PHY func ptrs. |
|
76 * @hw: pointer to the HW structure |
|
77 **/ |
|
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) |
|
79 { |
|
80 struct e1000_phy_info *phy = &hw->phy; |
|
81 s32 ret_val; |
|
82 |
|
83 if (hw->phy.media_type != e1000_media_type_copper) { |
|
84 phy->type = e1000_phy_none; |
|
85 return 0; |
|
86 } |
|
87 |
|
88 phy->addr = 1; |
|
89 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
90 phy->reset_delay_us = 100; |
|
91 |
|
92 phy->ops.power_up = e1000_power_up_phy_copper; |
|
93 phy->ops.power_down = e1000_power_down_phy_copper_82571; |
|
94 |
|
95 switch (hw->mac.type) { |
|
96 case e1000_82571: |
|
97 case e1000_82572: |
|
98 phy->type = e1000_phy_igp_2; |
|
99 break; |
|
100 case e1000_82573: |
|
101 phy->type = e1000_phy_m88; |
|
102 break; |
|
103 case e1000_82574: |
|
104 case e1000_82583: |
|
105 phy->type = e1000_phy_bm; |
|
106 break; |
|
107 default: |
|
108 return -E1000_ERR_PHY; |
|
109 break; |
|
110 } |
|
111 |
|
112 /* This can only be done after all function pointers are setup. */ |
|
113 ret_val = e1000_get_phy_id_82571(hw); |
|
114 |
|
115 /* Verify phy id */ |
|
116 switch (hw->mac.type) { |
|
117 case e1000_82571: |
|
118 case e1000_82572: |
|
119 if (phy->id != IGP01E1000_I_PHY_ID) |
|
120 return -E1000_ERR_PHY; |
|
121 break; |
|
122 case e1000_82573: |
|
123 if (phy->id != M88E1111_I_PHY_ID) |
|
124 return -E1000_ERR_PHY; |
|
125 break; |
|
126 case e1000_82574: |
|
127 case e1000_82583: |
|
128 if (phy->id != BME1000_E_PHY_ID_R2) |
|
129 return -E1000_ERR_PHY; |
|
130 break; |
|
131 default: |
|
132 return -E1000_ERR_PHY; |
|
133 break; |
|
134 } |
|
135 |
|
136 return 0; |
|
137 } |
|
138 |
|
139 /** |
|
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs. |
|
141 * @hw: pointer to the HW structure |
|
142 **/ |
|
143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) |
|
144 { |
|
145 struct e1000_nvm_info *nvm = &hw->nvm; |
|
146 u32 eecd = er32(EECD); |
|
147 u16 size; |
|
148 |
|
149 nvm->opcode_bits = 8; |
|
150 nvm->delay_usec = 1; |
|
151 switch (nvm->override) { |
|
152 case e1000_nvm_override_spi_large: |
|
153 nvm->page_size = 32; |
|
154 nvm->address_bits = 16; |
|
155 break; |
|
156 case e1000_nvm_override_spi_small: |
|
157 nvm->page_size = 8; |
|
158 nvm->address_bits = 8; |
|
159 break; |
|
160 default: |
|
161 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
|
162 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
|
163 break; |
|
164 } |
|
165 |
|
166 switch (hw->mac.type) { |
|
167 case e1000_82573: |
|
168 case e1000_82574: |
|
169 case e1000_82583: |
|
170 if (((eecd >> 15) & 0x3) == 0x3) { |
|
171 nvm->type = e1000_nvm_flash_hw; |
|
172 nvm->word_size = 2048; |
|
173 /* |
|
174 * Autonomous Flash update bit must be cleared due |
|
175 * to Flash update issue. |
|
176 */ |
|
177 eecd &= ~E1000_EECD_AUPDEN; |
|
178 ew32(EECD, eecd); |
|
179 break; |
|
180 } |
|
181 /* Fall Through */ |
|
182 default: |
|
183 nvm->type = e1000_nvm_eeprom_spi; |
|
184 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
|
185 E1000_EECD_SIZE_EX_SHIFT); |
|
186 /* |
|
187 * Added to a constant, "size" becomes the left-shift value |
|
188 * for setting word_size. |
|
189 */ |
|
190 size += NVM_WORD_SIZE_BASE_SHIFT; |
|
191 |
|
192 /* EEPROM access above 16k is unsupported */ |
|
193 if (size > 14) |
|
194 size = 14; |
|
195 nvm->word_size = 1 << size; |
|
196 break; |
|
197 } |
|
198 |
|
199 return 0; |
|
200 } |
|
201 |
|
202 /** |
|
203 * e1000_init_mac_params_82571 - Init MAC func ptrs. |
|
204 * @hw: pointer to the HW structure |
|
205 **/ |
|
206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) |
|
207 { |
|
208 struct e1000_hw *hw = &adapter->hw; |
|
209 struct e1000_mac_info *mac = &hw->mac; |
|
210 struct e1000_mac_operations *func = &mac->ops; |
|
211 u32 swsm = 0; |
|
212 u32 swsm2 = 0; |
|
213 bool force_clear_smbi = false; |
|
214 |
|
215 /* Set media type */ |
|
216 switch (adapter->pdev->device) { |
|
217 case E1000_DEV_ID_82571EB_FIBER: |
|
218 case E1000_DEV_ID_82572EI_FIBER: |
|
219 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
220 hw->phy.media_type = e1000_media_type_fiber; |
|
221 break; |
|
222 case E1000_DEV_ID_82571EB_SERDES: |
|
223 case E1000_DEV_ID_82572EI_SERDES: |
|
224 case E1000_DEV_ID_82571EB_SERDES_DUAL: |
|
225 case E1000_DEV_ID_82571EB_SERDES_QUAD: |
|
226 hw->phy.media_type = e1000_media_type_internal_serdes; |
|
227 break; |
|
228 default: |
|
229 hw->phy.media_type = e1000_media_type_copper; |
|
230 break; |
|
231 } |
|
232 |
|
233 /* Set mta register count */ |
|
234 mac->mta_reg_count = 128; |
|
235 /* Set rar entry count */ |
|
236 mac->rar_entry_count = E1000_RAR_ENTRIES; |
|
237 /* Adaptive IFS supported */ |
|
238 mac->adaptive_ifs = true; |
|
239 |
|
240 /* check for link */ |
|
241 switch (hw->phy.media_type) { |
|
242 case e1000_media_type_copper: |
|
243 func->setup_physical_interface = e1000_setup_copper_link_82571; |
|
244 func->check_for_link = e1000e_check_for_copper_link; |
|
245 func->get_link_up_info = e1000e_get_speed_and_duplex_copper; |
|
246 break; |
|
247 case e1000_media_type_fiber: |
|
248 func->setup_physical_interface = |
|
249 e1000_setup_fiber_serdes_link_82571; |
|
250 func->check_for_link = e1000e_check_for_fiber_link; |
|
251 func->get_link_up_info = |
|
252 e1000e_get_speed_and_duplex_fiber_serdes; |
|
253 break; |
|
254 case e1000_media_type_internal_serdes: |
|
255 func->setup_physical_interface = |
|
256 e1000_setup_fiber_serdes_link_82571; |
|
257 func->check_for_link = e1000_check_for_serdes_link_82571; |
|
258 func->get_link_up_info = |
|
259 e1000e_get_speed_and_duplex_fiber_serdes; |
|
260 break; |
|
261 default: |
|
262 return -E1000_ERR_CONFIG; |
|
263 break; |
|
264 } |
|
265 |
|
266 switch (hw->mac.type) { |
|
267 case e1000_82573: |
|
268 func->set_lan_id = e1000_set_lan_id_single_port; |
|
269 func->check_mng_mode = e1000e_check_mng_mode_generic; |
|
270 func->led_on = e1000e_led_on_generic; |
|
271 |
|
272 /* FWSM register */ |
|
273 mac->has_fwsm = true; |
|
274 /* |
|
275 * ARC supported; valid only if manageability features are |
|
276 * enabled. |
|
277 */ |
|
278 mac->arc_subsystem_valid = |
|
279 (er32(FWSM) & E1000_FWSM_MODE_MASK) |
|
280 ? true : false; |
|
281 break; |
|
282 case e1000_82574: |
|
283 case e1000_82583: |
|
284 func->set_lan_id = e1000_set_lan_id_single_port; |
|
285 func->check_mng_mode = e1000_check_mng_mode_82574; |
|
286 func->led_on = e1000_led_on_82574; |
|
287 break; |
|
288 default: |
|
289 func->check_mng_mode = e1000e_check_mng_mode_generic; |
|
290 func->led_on = e1000e_led_on_generic; |
|
291 |
|
292 /* FWSM register */ |
|
293 mac->has_fwsm = true; |
|
294 break; |
|
295 } |
|
296 |
|
297 /* |
|
298 * Ensure that the inter-port SWSM.SMBI lock bit is clear before |
|
299 * first NVM or PHY acess. This should be done for single-port |
|
300 * devices, and for one port only on dual-port devices so that |
|
301 * for those devices we can still use the SMBI lock to synchronize |
|
302 * inter-port accesses to the PHY & NVM. |
|
303 */ |
|
304 switch (hw->mac.type) { |
|
305 case e1000_82571: |
|
306 case e1000_82572: |
|
307 swsm2 = er32(SWSM2); |
|
308 |
|
309 if (!(swsm2 & E1000_SWSM2_LOCK)) { |
|
310 /* Only do this for the first interface on this card */ |
|
311 ew32(SWSM2, |
|
312 swsm2 | E1000_SWSM2_LOCK); |
|
313 force_clear_smbi = true; |
|
314 } else |
|
315 force_clear_smbi = false; |
|
316 break; |
|
317 default: |
|
318 force_clear_smbi = true; |
|
319 break; |
|
320 } |
|
321 |
|
322 if (force_clear_smbi) { |
|
323 /* Make sure SWSM.SMBI is clear */ |
|
324 swsm = er32(SWSM); |
|
325 if (swsm & E1000_SWSM_SMBI) { |
|
326 /* This bit should not be set on a first interface, and |
|
327 * indicates that the bootagent or EFI code has |
|
328 * improperly left this bit enabled |
|
329 */ |
|
330 e_dbg("Please update your 82571 Bootagent\n"); |
|
331 } |
|
332 ew32(SWSM, swsm & ~E1000_SWSM_SMBI); |
|
333 } |
|
334 |
|
335 /* |
|
336 * Initialize device specific counter of SMBI acquisition |
|
337 * timeouts. |
|
338 */ |
|
339 hw->dev_spec.e82571.smb_counter = 0; |
|
340 |
|
341 return 0; |
|
342 } |
|
343 |
|
344 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) |
|
345 { |
|
346 struct e1000_hw *hw = &adapter->hw; |
|
347 static int global_quad_port_a; /* global port a indication */ |
|
348 struct pci_dev *pdev = adapter->pdev; |
|
349 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; |
|
350 s32 rc; |
|
351 |
|
352 rc = e1000_init_mac_params_82571(adapter); |
|
353 if (rc) |
|
354 return rc; |
|
355 |
|
356 rc = e1000_init_nvm_params_82571(hw); |
|
357 if (rc) |
|
358 return rc; |
|
359 |
|
360 rc = e1000_init_phy_params_82571(hw); |
|
361 if (rc) |
|
362 return rc; |
|
363 |
|
364 /* tag quad port adapters first, it's used below */ |
|
365 switch (pdev->device) { |
|
366 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
367 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
368 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: |
|
369 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
370 adapter->flags |= FLAG_IS_QUAD_PORT; |
|
371 /* mark the first port */ |
|
372 if (global_quad_port_a == 0) |
|
373 adapter->flags |= FLAG_IS_QUAD_PORT_A; |
|
374 /* Reset for multiple quad port adapters */ |
|
375 global_quad_port_a++; |
|
376 if (global_quad_port_a == 4) |
|
377 global_quad_port_a = 0; |
|
378 break; |
|
379 default: |
|
380 break; |
|
381 } |
|
382 |
|
383 switch (adapter->hw.mac.type) { |
|
384 case e1000_82571: |
|
385 /* these dual ports don't have WoL on port B at all */ |
|
386 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || |
|
387 (pdev->device == E1000_DEV_ID_82571EB_SERDES) || |
|
388 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && |
|
389 (is_port_b)) |
|
390 adapter->flags &= ~FLAG_HAS_WOL; |
|
391 /* quad ports only support WoL on port A */ |
|
392 if (adapter->flags & FLAG_IS_QUAD_PORT && |
|
393 (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) |
|
394 adapter->flags &= ~FLAG_HAS_WOL; |
|
395 /* Does not support WoL on any port */ |
|
396 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) |
|
397 adapter->flags &= ~FLAG_HAS_WOL; |
|
398 break; |
|
399 case e1000_82573: |
|
400 case e1000_82574: |
|
401 case e1000_82583: |
|
402 /* Disable ASPM L0s due to hardware errata */ |
|
403 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S); |
|
404 |
|
405 if (pdev->device == E1000_DEV_ID_82573L) { |
|
406 adapter->flags |= FLAG_HAS_JUMBO_FRAMES; |
|
407 adapter->max_hw_frame_size = DEFAULT_JUMBO; |
|
408 } |
|
409 break; |
|
410 default: |
|
411 break; |
|
412 } |
|
413 |
|
414 return 0; |
|
415 } |
|
416 |
|
417 /** |
|
418 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision |
|
419 * @hw: pointer to the HW structure |
|
420 * |
|
421 * Reads the PHY registers and stores the PHY ID and possibly the PHY |
|
422 * revision in the hardware structure. |
|
423 **/ |
|
424 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) |
|
425 { |
|
426 struct e1000_phy_info *phy = &hw->phy; |
|
427 s32 ret_val; |
|
428 u16 phy_id = 0; |
|
429 |
|
430 switch (hw->mac.type) { |
|
431 case e1000_82571: |
|
432 case e1000_82572: |
|
433 /* |
|
434 * The 82571 firmware may still be configuring the PHY. |
|
435 * In this case, we cannot access the PHY until the |
|
436 * configuration is done. So we explicitly set the |
|
437 * PHY ID. |
|
438 */ |
|
439 phy->id = IGP01E1000_I_PHY_ID; |
|
440 break; |
|
441 case e1000_82573: |
|
442 return e1000e_get_phy_id(hw); |
|
443 break; |
|
444 case e1000_82574: |
|
445 case e1000_82583: |
|
446 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); |
|
447 if (ret_val) |
|
448 return ret_val; |
|
449 |
|
450 phy->id = (u32)(phy_id << 16); |
|
451 udelay(20); |
|
452 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); |
|
453 if (ret_val) |
|
454 return ret_val; |
|
455 |
|
456 phy->id |= (u32)(phy_id); |
|
457 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); |
|
458 break; |
|
459 default: |
|
460 return -E1000_ERR_PHY; |
|
461 break; |
|
462 } |
|
463 |
|
464 return 0; |
|
465 } |
|
466 |
|
467 /** |
|
468 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore |
|
469 * @hw: pointer to the HW structure |
|
470 * |
|
471 * Acquire the HW semaphore to access the PHY or NVM |
|
472 **/ |
|
473 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) |
|
474 { |
|
475 u32 swsm; |
|
476 s32 sw_timeout = hw->nvm.word_size + 1; |
|
477 s32 fw_timeout = hw->nvm.word_size + 1; |
|
478 s32 i = 0; |
|
479 |
|
480 /* |
|
481 * If we have timedout 3 times on trying to acquire |
|
482 * the inter-port SMBI semaphore, there is old code |
|
483 * operating on the other port, and it is not |
|
484 * releasing SMBI. Modify the number of times that |
|
485 * we try for the semaphore to interwork with this |
|
486 * older code. |
|
487 */ |
|
488 if (hw->dev_spec.e82571.smb_counter > 2) |
|
489 sw_timeout = 1; |
|
490 |
|
491 /* Get the SW semaphore */ |
|
492 while (i < sw_timeout) { |
|
493 swsm = er32(SWSM); |
|
494 if (!(swsm & E1000_SWSM_SMBI)) |
|
495 break; |
|
496 |
|
497 udelay(50); |
|
498 i++; |
|
499 } |
|
500 |
|
501 if (i == sw_timeout) { |
|
502 e_dbg("Driver can't access device - SMBI bit is set.\n"); |
|
503 hw->dev_spec.e82571.smb_counter++; |
|
504 } |
|
505 /* Get the FW semaphore. */ |
|
506 for (i = 0; i < fw_timeout; i++) { |
|
507 swsm = er32(SWSM); |
|
508 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); |
|
509 |
|
510 /* Semaphore acquired if bit latched */ |
|
511 if (er32(SWSM) & E1000_SWSM_SWESMBI) |
|
512 break; |
|
513 |
|
514 udelay(50); |
|
515 } |
|
516 |
|
517 if (i == fw_timeout) { |
|
518 /* Release semaphores */ |
|
519 e1000_put_hw_semaphore_82571(hw); |
|
520 e_dbg("Driver can't access the NVM\n"); |
|
521 return -E1000_ERR_NVM; |
|
522 } |
|
523 |
|
524 return 0; |
|
525 } |
|
526 |
|
527 /** |
|
528 * e1000_put_hw_semaphore_82571 - Release hardware semaphore |
|
529 * @hw: pointer to the HW structure |
|
530 * |
|
531 * Release hardware semaphore used to access the PHY or NVM |
|
532 **/ |
|
533 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) |
|
534 { |
|
535 u32 swsm; |
|
536 |
|
537 swsm = er32(SWSM); |
|
538 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
|
539 ew32(SWSM, swsm); |
|
540 } |
|
541 |
|
542 /** |
|
543 * e1000_acquire_nvm_82571 - Request for access to the EEPROM |
|
544 * @hw: pointer to the HW structure |
|
545 * |
|
546 * To gain access to the EEPROM, first we must obtain a hardware semaphore. |
|
547 * Then for non-82573 hardware, set the EEPROM access request bit and wait |
|
548 * for EEPROM access grant bit. If the access grant bit is not set, release |
|
549 * hardware semaphore. |
|
550 **/ |
|
551 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) |
|
552 { |
|
553 s32 ret_val; |
|
554 |
|
555 ret_val = e1000_get_hw_semaphore_82571(hw); |
|
556 if (ret_val) |
|
557 return ret_val; |
|
558 |
|
559 switch (hw->mac.type) { |
|
560 case e1000_82573: |
|
561 case e1000_82574: |
|
562 case e1000_82583: |
|
563 break; |
|
564 default: |
|
565 ret_val = e1000e_acquire_nvm(hw); |
|
566 break; |
|
567 } |
|
568 |
|
569 if (ret_val) |
|
570 e1000_put_hw_semaphore_82571(hw); |
|
571 |
|
572 return ret_val; |
|
573 } |
|
574 |
|
575 /** |
|
576 * e1000_release_nvm_82571 - Release exclusive access to EEPROM |
|
577 * @hw: pointer to the HW structure |
|
578 * |
|
579 * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
|
580 **/ |
|
581 static void e1000_release_nvm_82571(struct e1000_hw *hw) |
|
582 { |
|
583 e1000e_release_nvm(hw); |
|
584 e1000_put_hw_semaphore_82571(hw); |
|
585 } |
|
586 |
|
587 /** |
|
588 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface |
|
589 * @hw: pointer to the HW structure |
|
590 * @offset: offset within the EEPROM to be written to |
|
591 * @words: number of words to write |
|
592 * @data: 16 bit word(s) to be written to the EEPROM |
|
593 * |
|
594 * For non-82573 silicon, write data to EEPROM at offset using SPI interface. |
|
595 * |
|
596 * If e1000e_update_nvm_checksum is not called after this function, the |
|
597 * EEPROM will most likely contain an invalid checksum. |
|
598 **/ |
|
599 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, |
|
600 u16 *data) |
|
601 { |
|
602 s32 ret_val; |
|
603 |
|
604 switch (hw->mac.type) { |
|
605 case e1000_82573: |
|
606 case e1000_82574: |
|
607 case e1000_82583: |
|
608 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); |
|
609 break; |
|
610 case e1000_82571: |
|
611 case e1000_82572: |
|
612 ret_val = e1000e_write_nvm_spi(hw, offset, words, data); |
|
613 break; |
|
614 default: |
|
615 ret_val = -E1000_ERR_NVM; |
|
616 break; |
|
617 } |
|
618 |
|
619 return ret_val; |
|
620 } |
|
621 |
|
622 /** |
|
623 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum |
|
624 * @hw: pointer to the HW structure |
|
625 * |
|
626 * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
|
627 * up to the checksum. Then calculates the EEPROM checksum and writes the |
|
628 * value to the EEPROM. |
|
629 **/ |
|
630 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) |
|
631 { |
|
632 u32 eecd; |
|
633 s32 ret_val; |
|
634 u16 i; |
|
635 |
|
636 ret_val = e1000e_update_nvm_checksum_generic(hw); |
|
637 if (ret_val) |
|
638 return ret_val; |
|
639 |
|
640 /* |
|
641 * If our nvm is an EEPROM, then we're done |
|
642 * otherwise, commit the checksum to the flash NVM. |
|
643 */ |
|
644 if (hw->nvm.type != e1000_nvm_flash_hw) |
|
645 return ret_val; |
|
646 |
|
647 /* Check for pending operations. */ |
|
648 for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
|
649 msleep(1); |
|
650 if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
|
651 break; |
|
652 } |
|
653 |
|
654 if (i == E1000_FLASH_UPDATES) |
|
655 return -E1000_ERR_NVM; |
|
656 |
|
657 /* Reset the firmware if using STM opcode. */ |
|
658 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { |
|
659 /* |
|
660 * The enabling of and the actual reset must be done |
|
661 * in two write cycles. |
|
662 */ |
|
663 ew32(HICR, E1000_HICR_FW_RESET_ENABLE); |
|
664 e1e_flush(); |
|
665 ew32(HICR, E1000_HICR_FW_RESET); |
|
666 } |
|
667 |
|
668 /* Commit the write to flash */ |
|
669 eecd = er32(EECD) | E1000_EECD_FLUPD; |
|
670 ew32(EECD, eecd); |
|
671 |
|
672 for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
|
673 msleep(1); |
|
674 if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
|
675 break; |
|
676 } |
|
677 |
|
678 if (i == E1000_FLASH_UPDATES) |
|
679 return -E1000_ERR_NVM; |
|
680 |
|
681 return 0; |
|
682 } |
|
683 |
|
684 /** |
|
685 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum |
|
686 * @hw: pointer to the HW structure |
|
687 * |
|
688 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
|
689 * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
|
690 **/ |
|
691 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) |
|
692 { |
|
693 if (hw->nvm.type == e1000_nvm_flash_hw) |
|
694 e1000_fix_nvm_checksum_82571(hw); |
|
695 |
|
696 return e1000e_validate_nvm_checksum_generic(hw); |
|
697 } |
|
698 |
|
699 /** |
|
700 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon |
|
701 * @hw: pointer to the HW structure |
|
702 * @offset: offset within the EEPROM to be written to |
|
703 * @words: number of words to write |
|
704 * @data: 16 bit word(s) to be written to the EEPROM |
|
705 * |
|
706 * After checking for invalid values, poll the EEPROM to ensure the previous |
|
707 * command has completed before trying to write the next word. After write |
|
708 * poll for completion. |
|
709 * |
|
710 * If e1000e_update_nvm_checksum is not called after this function, the |
|
711 * EEPROM will most likely contain an invalid checksum. |
|
712 **/ |
|
713 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
|
714 u16 words, u16 *data) |
|
715 { |
|
716 struct e1000_nvm_info *nvm = &hw->nvm; |
|
717 u32 i, eewr = 0; |
|
718 s32 ret_val = 0; |
|
719 |
|
720 /* |
|
721 * A check for invalid values: offset too large, too many words, |
|
722 * and not enough words. |
|
723 */ |
|
724 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
|
725 (words == 0)) { |
|
726 e_dbg("nvm parameter(s) out of bounds\n"); |
|
727 return -E1000_ERR_NVM; |
|
728 } |
|
729 |
|
730 for (i = 0; i < words; i++) { |
|
731 eewr = (data[i] << E1000_NVM_RW_REG_DATA) | |
|
732 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | |
|
733 E1000_NVM_RW_REG_START; |
|
734 |
|
735 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
|
736 if (ret_val) |
|
737 break; |
|
738 |
|
739 ew32(EEWR, eewr); |
|
740 |
|
741 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
|
742 if (ret_val) |
|
743 break; |
|
744 } |
|
745 |
|
746 return ret_val; |
|
747 } |
|
748 |
|
749 /** |
|
750 * e1000_get_cfg_done_82571 - Poll for configuration done |
|
751 * @hw: pointer to the HW structure |
|
752 * |
|
753 * Reads the management control register for the config done bit to be set. |
|
754 **/ |
|
755 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) |
|
756 { |
|
757 s32 timeout = PHY_CFG_TIMEOUT; |
|
758 |
|
759 while (timeout) { |
|
760 if (er32(EEMNGCTL) & |
|
761 E1000_NVM_CFG_DONE_PORT_0) |
|
762 break; |
|
763 msleep(1); |
|
764 timeout--; |
|
765 } |
|
766 if (!timeout) { |
|
767 e_dbg("MNG configuration cycle has not completed.\n"); |
|
768 return -E1000_ERR_RESET; |
|
769 } |
|
770 |
|
771 return 0; |
|
772 } |
|
773 |
|
774 /** |
|
775 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state |
|
776 * @hw: pointer to the HW structure |
|
777 * @active: true to enable LPLU, false to disable |
|
778 * |
|
779 * Sets the LPLU D0 state according to the active flag. When activating LPLU |
|
780 * this function also disables smart speed and vice versa. LPLU will not be |
|
781 * activated unless the device autonegotiation advertisement meets standards |
|
782 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function |
|
783 * pointer entry point only called by PHY setup routines. |
|
784 **/ |
|
785 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) |
|
786 { |
|
787 struct e1000_phy_info *phy = &hw->phy; |
|
788 s32 ret_val; |
|
789 u16 data; |
|
790 |
|
791 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
|
792 if (ret_val) |
|
793 return ret_val; |
|
794 |
|
795 if (active) { |
|
796 data |= IGP02E1000_PM_D0_LPLU; |
|
797 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
|
798 if (ret_val) |
|
799 return ret_val; |
|
800 |
|
801 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
802 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
803 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
804 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
805 if (ret_val) |
|
806 return ret_val; |
|
807 } else { |
|
808 data &= ~IGP02E1000_PM_D0_LPLU; |
|
809 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
|
810 /* |
|
811 * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
812 * during Dx states where the power conservation is most |
|
813 * important. During driver activity we should enable |
|
814 * SmartSpeed, so performance is maintained. |
|
815 */ |
|
816 if (phy->smart_speed == e1000_smart_speed_on) { |
|
817 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
818 &data); |
|
819 if (ret_val) |
|
820 return ret_val; |
|
821 |
|
822 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
823 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
824 data); |
|
825 if (ret_val) |
|
826 return ret_val; |
|
827 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
828 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
829 &data); |
|
830 if (ret_val) |
|
831 return ret_val; |
|
832 |
|
833 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
834 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
835 data); |
|
836 if (ret_val) |
|
837 return ret_val; |
|
838 } |
|
839 } |
|
840 |
|
841 return 0; |
|
842 } |
|
843 |
|
844 /** |
|
845 * e1000_reset_hw_82571 - Reset hardware |
|
846 * @hw: pointer to the HW structure |
|
847 * |
|
848 * This resets the hardware into a known state. |
|
849 **/ |
|
850 static s32 e1000_reset_hw_82571(struct e1000_hw *hw) |
|
851 { |
|
852 u32 ctrl, extcnf_ctrl, ctrl_ext, icr; |
|
853 s32 ret_val; |
|
854 u16 i = 0; |
|
855 |
|
856 /* |
|
857 * Prevent the PCI-E bus from sticking if there is no TLP connection |
|
858 * on the last TLP read/write transaction when MAC is reset. |
|
859 */ |
|
860 ret_val = e1000e_disable_pcie_master(hw); |
|
861 if (ret_val) |
|
862 e_dbg("PCI-E Master disable polling has failed.\n"); |
|
863 |
|
864 e_dbg("Masking off all interrupts\n"); |
|
865 ew32(IMC, 0xffffffff); |
|
866 |
|
867 ew32(RCTL, 0); |
|
868 ew32(TCTL, E1000_TCTL_PSP); |
|
869 e1e_flush(); |
|
870 |
|
871 msleep(10); |
|
872 |
|
873 /* |
|
874 * Must acquire the MDIO ownership before MAC reset. |
|
875 * Ownership defaults to firmware after a reset. |
|
876 */ |
|
877 switch (hw->mac.type) { |
|
878 case e1000_82573: |
|
879 case e1000_82574: |
|
880 case e1000_82583: |
|
881 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
882 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
883 |
|
884 do { |
|
885 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
886 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
887 |
|
888 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
|
889 break; |
|
890 |
|
891 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
892 |
|
893 msleep(2); |
|
894 i++; |
|
895 } while (i < MDIO_OWNERSHIP_TIMEOUT); |
|
896 break; |
|
897 default: |
|
898 break; |
|
899 } |
|
900 |
|
901 ctrl = er32(CTRL); |
|
902 |
|
903 e_dbg("Issuing a global reset to MAC\n"); |
|
904 ew32(CTRL, ctrl | E1000_CTRL_RST); |
|
905 |
|
906 if (hw->nvm.type == e1000_nvm_flash_hw) { |
|
907 udelay(10); |
|
908 ctrl_ext = er32(CTRL_EXT); |
|
909 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
910 ew32(CTRL_EXT, ctrl_ext); |
|
911 e1e_flush(); |
|
912 } |
|
913 |
|
914 ret_val = e1000e_get_auto_rd_done(hw); |
|
915 if (ret_val) |
|
916 /* We don't want to continue accessing MAC registers. */ |
|
917 return ret_val; |
|
918 |
|
919 /* |
|
920 * Phy configuration from NVM just starts after EECD_AUTO_RD is set. |
|
921 * Need to wait for Phy configuration completion before accessing |
|
922 * NVM and Phy. |
|
923 */ |
|
924 |
|
925 switch (hw->mac.type) { |
|
926 case e1000_82573: |
|
927 case e1000_82574: |
|
928 case e1000_82583: |
|
929 msleep(25); |
|
930 break; |
|
931 default: |
|
932 break; |
|
933 } |
|
934 |
|
935 /* Clear any pending interrupt events. */ |
|
936 ew32(IMC, 0xffffffff); |
|
937 icr = er32(ICR); |
|
938 |
|
939 if (hw->mac.type == e1000_82571) { |
|
940 /* Install any alternate MAC address into RAR0 */ |
|
941 ret_val = e1000_check_alt_mac_addr_generic(hw); |
|
942 if (ret_val) |
|
943 return ret_val; |
|
944 |
|
945 e1000e_set_laa_state_82571(hw, true); |
|
946 } |
|
947 |
|
948 /* Reinitialize the 82571 serdes link state machine */ |
|
949 if (hw->phy.media_type == e1000_media_type_internal_serdes) |
|
950 hw->mac.serdes_link_state = e1000_serdes_link_down; |
|
951 |
|
952 return 0; |
|
953 } |
|
954 |
|
955 /** |
|
956 * e1000_init_hw_82571 - Initialize hardware |
|
957 * @hw: pointer to the HW structure |
|
958 * |
|
959 * This inits the hardware readying it for operation. |
|
960 **/ |
|
961 static s32 e1000_init_hw_82571(struct e1000_hw *hw) |
|
962 { |
|
963 struct e1000_mac_info *mac = &hw->mac; |
|
964 u32 reg_data; |
|
965 s32 ret_val; |
|
966 u16 i, rar_count = mac->rar_entry_count; |
|
967 |
|
968 e1000_initialize_hw_bits_82571(hw); |
|
969 |
|
970 /* Initialize identification LED */ |
|
971 ret_val = e1000e_id_led_init(hw); |
|
972 if (ret_val) |
|
973 e_dbg("Error initializing identification LED\n"); |
|
974 /* This is not fatal and we should not stop init due to this */ |
|
975 |
|
976 /* Disabling VLAN filtering */ |
|
977 e_dbg("Initializing the IEEE VLAN\n"); |
|
978 mac->ops.clear_vfta(hw); |
|
979 |
|
980 /* Setup the receive address. */ |
|
981 /* |
|
982 * If, however, a locally administered address was assigned to the |
|
983 * 82571, we must reserve a RAR for it to work around an issue where |
|
984 * resetting one port will reload the MAC on the other port. |
|
985 */ |
|
986 if (e1000e_get_laa_state_82571(hw)) |
|
987 rar_count--; |
|
988 e1000e_init_rx_addrs(hw, rar_count); |
|
989 |
|
990 /* Zero out the Multicast HASH table */ |
|
991 e_dbg("Zeroing the MTA\n"); |
|
992 for (i = 0; i < mac->mta_reg_count; i++) |
|
993 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
994 |
|
995 /* Setup link and flow control */ |
|
996 ret_val = e1000_setup_link_82571(hw); |
|
997 |
|
998 /* Set the transmit descriptor write-back policy */ |
|
999 reg_data = er32(TXDCTL(0)); |
|
1000 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
1001 E1000_TXDCTL_FULL_TX_DESC_WB | |
|
1002 E1000_TXDCTL_COUNT_DESC; |
|
1003 ew32(TXDCTL(0), reg_data); |
|
1004 |
|
1005 /* ...for both queues. */ |
|
1006 switch (mac->type) { |
|
1007 case e1000_82573: |
|
1008 e1000e_enable_tx_pkt_filtering(hw); |
|
1009 /* fall through */ |
|
1010 case e1000_82574: |
|
1011 case e1000_82583: |
|
1012 reg_data = er32(GCR); |
|
1013 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
|
1014 ew32(GCR, reg_data); |
|
1015 break; |
|
1016 default: |
|
1017 reg_data = er32(TXDCTL(1)); |
|
1018 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
1019 E1000_TXDCTL_FULL_TX_DESC_WB | |
|
1020 E1000_TXDCTL_COUNT_DESC; |
|
1021 ew32(TXDCTL(1), reg_data); |
|
1022 break; |
|
1023 } |
|
1024 |
|
1025 /* |
|
1026 * Clear all of the statistics registers (clear on read). It is |
|
1027 * important that we do this after we have tried to establish link |
|
1028 * because the symbol error count will increment wildly if there |
|
1029 * is no link. |
|
1030 */ |
|
1031 e1000_clear_hw_cntrs_82571(hw); |
|
1032 |
|
1033 return ret_val; |
|
1034 } |
|
1035 |
|
1036 /** |
|
1037 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits |
|
1038 * @hw: pointer to the HW structure |
|
1039 * |
|
1040 * Initializes required hardware-dependent bits needed for normal operation. |
|
1041 **/ |
|
1042 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) |
|
1043 { |
|
1044 u32 reg; |
|
1045 |
|
1046 /* Transmit Descriptor Control 0 */ |
|
1047 reg = er32(TXDCTL(0)); |
|
1048 reg |= (1 << 22); |
|
1049 ew32(TXDCTL(0), reg); |
|
1050 |
|
1051 /* Transmit Descriptor Control 1 */ |
|
1052 reg = er32(TXDCTL(1)); |
|
1053 reg |= (1 << 22); |
|
1054 ew32(TXDCTL(1), reg); |
|
1055 |
|
1056 /* Transmit Arbitration Control 0 */ |
|
1057 reg = er32(TARC(0)); |
|
1058 reg &= ~(0xF << 27); /* 30:27 */ |
|
1059 switch (hw->mac.type) { |
|
1060 case e1000_82571: |
|
1061 case e1000_82572: |
|
1062 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); |
|
1063 break; |
|
1064 default: |
|
1065 break; |
|
1066 } |
|
1067 ew32(TARC(0), reg); |
|
1068 |
|
1069 /* Transmit Arbitration Control 1 */ |
|
1070 reg = er32(TARC(1)); |
|
1071 switch (hw->mac.type) { |
|
1072 case e1000_82571: |
|
1073 case e1000_82572: |
|
1074 reg &= ~((1 << 29) | (1 << 30)); |
|
1075 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); |
|
1076 if (er32(TCTL) & E1000_TCTL_MULR) |
|
1077 reg &= ~(1 << 28); |
|
1078 else |
|
1079 reg |= (1 << 28); |
|
1080 ew32(TARC(1), reg); |
|
1081 break; |
|
1082 default: |
|
1083 break; |
|
1084 } |
|
1085 |
|
1086 /* Device Control */ |
|
1087 switch (hw->mac.type) { |
|
1088 case e1000_82573: |
|
1089 case e1000_82574: |
|
1090 case e1000_82583: |
|
1091 reg = er32(CTRL); |
|
1092 reg &= ~(1 << 29); |
|
1093 ew32(CTRL, reg); |
|
1094 break; |
|
1095 default: |
|
1096 break; |
|
1097 } |
|
1098 |
|
1099 /* Extended Device Control */ |
|
1100 switch (hw->mac.type) { |
|
1101 case e1000_82573: |
|
1102 case e1000_82574: |
|
1103 case e1000_82583: |
|
1104 reg = er32(CTRL_EXT); |
|
1105 reg &= ~(1 << 23); |
|
1106 reg |= (1 << 22); |
|
1107 ew32(CTRL_EXT, reg); |
|
1108 break; |
|
1109 default: |
|
1110 break; |
|
1111 } |
|
1112 |
|
1113 if (hw->mac.type == e1000_82571) { |
|
1114 reg = er32(PBA_ECC); |
|
1115 reg |= E1000_PBA_ECC_CORR_EN; |
|
1116 ew32(PBA_ECC, reg); |
|
1117 } |
|
1118 /* |
|
1119 * Workaround for hardware errata. |
|
1120 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 |
|
1121 */ |
|
1122 |
|
1123 if ((hw->mac.type == e1000_82571) || |
|
1124 (hw->mac.type == e1000_82572)) { |
|
1125 reg = er32(CTRL_EXT); |
|
1126 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; |
|
1127 ew32(CTRL_EXT, reg); |
|
1128 } |
|
1129 |
|
1130 |
|
1131 /* PCI-Ex Control Registers */ |
|
1132 switch (hw->mac.type) { |
|
1133 case e1000_82574: |
|
1134 case e1000_82583: |
|
1135 reg = er32(GCR); |
|
1136 reg |= (1 << 22); |
|
1137 ew32(GCR, reg); |
|
1138 |
|
1139 /* |
|
1140 * Workaround for hardware errata. |
|
1141 * apply workaround for hardware errata documented in errata |
|
1142 * docs Fixes issue where some error prone or unreliable PCIe |
|
1143 * completions are occurring, particularly with ASPM enabled. |
|
1144 * Without fix, issue can cause tx timeouts. |
|
1145 */ |
|
1146 reg = er32(GCR2); |
|
1147 reg |= 1; |
|
1148 ew32(GCR2, reg); |
|
1149 break; |
|
1150 default: |
|
1151 break; |
|
1152 } |
|
1153 } |
|
1154 |
|
1155 /** |
|
1156 * e1000_clear_vfta_82571 - Clear VLAN filter table |
|
1157 * @hw: pointer to the HW structure |
|
1158 * |
|
1159 * Clears the register array which contains the VLAN filter table by |
|
1160 * setting all the values to 0. |
|
1161 **/ |
|
1162 static void e1000_clear_vfta_82571(struct e1000_hw *hw) |
|
1163 { |
|
1164 u32 offset; |
|
1165 u32 vfta_value = 0; |
|
1166 u32 vfta_offset = 0; |
|
1167 u32 vfta_bit_in_reg = 0; |
|
1168 |
|
1169 switch (hw->mac.type) { |
|
1170 case e1000_82573: |
|
1171 case e1000_82574: |
|
1172 case e1000_82583: |
|
1173 if (hw->mng_cookie.vlan_id != 0) { |
|
1174 /* |
|
1175 * The VFTA is a 4096b bit-field, each identifying |
|
1176 * a single VLAN ID. The following operations |
|
1177 * determine which 32b entry (i.e. offset) into the |
|
1178 * array we want to set the VLAN ID (i.e. bit) of |
|
1179 * the manageability unit. |
|
1180 */ |
|
1181 vfta_offset = (hw->mng_cookie.vlan_id >> |
|
1182 E1000_VFTA_ENTRY_SHIFT) & |
|
1183 E1000_VFTA_ENTRY_MASK; |
|
1184 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & |
|
1185 E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
|
1186 } |
|
1187 break; |
|
1188 default: |
|
1189 break; |
|
1190 } |
|
1191 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
|
1192 /* |
|
1193 * If the offset we want to clear is the same offset of the |
|
1194 * manageability VLAN ID, then clear all bits except that of |
|
1195 * the manageability unit. |
|
1196 */ |
|
1197 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
|
1198 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); |
|
1199 e1e_flush(); |
|
1200 } |
|
1201 } |
|
1202 |
|
1203 /** |
|
1204 * e1000_check_mng_mode_82574 - Check manageability is enabled |
|
1205 * @hw: pointer to the HW structure |
|
1206 * |
|
1207 * Reads the NVM Initialization Control Word 2 and returns true |
|
1208 * (>0) if any manageability is enabled, else false (0). |
|
1209 **/ |
|
1210 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) |
|
1211 { |
|
1212 u16 data; |
|
1213 |
|
1214 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); |
|
1215 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; |
|
1216 } |
|
1217 |
|
1218 /** |
|
1219 * e1000_led_on_82574 - Turn LED on |
|
1220 * @hw: pointer to the HW structure |
|
1221 * |
|
1222 * Turn LED on. |
|
1223 **/ |
|
1224 static s32 e1000_led_on_82574(struct e1000_hw *hw) |
|
1225 { |
|
1226 u32 ctrl; |
|
1227 u32 i; |
|
1228 |
|
1229 ctrl = hw->mac.ledctl_mode2; |
|
1230 if (!(E1000_STATUS_LU & er32(STATUS))) { |
|
1231 /* |
|
1232 * If no link, then turn LED on by setting the invert bit |
|
1233 * for each LED that's "on" (0x0E) in ledctl_mode2. |
|
1234 */ |
|
1235 for (i = 0; i < 4; i++) |
|
1236 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == |
|
1237 E1000_LEDCTL_MODE_LED_ON) |
|
1238 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); |
|
1239 } |
|
1240 ew32(LEDCTL, ctrl); |
|
1241 |
|
1242 return 0; |
|
1243 } |
|
1244 |
|
1245 /** |
|
1246 * e1000_setup_link_82571 - Setup flow control and link settings |
|
1247 * @hw: pointer to the HW structure |
|
1248 * |
|
1249 * Determines which flow control settings to use, then configures flow |
|
1250 * control. Calls the appropriate media-specific link configuration |
|
1251 * function. Assuming the adapter has a valid link partner, a valid link |
|
1252 * should be established. Assumes the hardware has previously been reset |
|
1253 * and the transmitter and receiver are not enabled. |
|
1254 **/ |
|
1255 static s32 e1000_setup_link_82571(struct e1000_hw *hw) |
|
1256 { |
|
1257 /* |
|
1258 * 82573 does not have a word in the NVM to determine |
|
1259 * the default flow control setting, so we explicitly |
|
1260 * set it to full. |
|
1261 */ |
|
1262 switch (hw->mac.type) { |
|
1263 case e1000_82573: |
|
1264 case e1000_82574: |
|
1265 case e1000_82583: |
|
1266 if (hw->fc.requested_mode == e1000_fc_default) |
|
1267 hw->fc.requested_mode = e1000_fc_full; |
|
1268 break; |
|
1269 default: |
|
1270 break; |
|
1271 } |
|
1272 |
|
1273 return e1000e_setup_link(hw); |
|
1274 } |
|
1275 |
|
1276 /** |
|
1277 * e1000_setup_copper_link_82571 - Configure copper link settings |
|
1278 * @hw: pointer to the HW structure |
|
1279 * |
|
1280 * Configures the link for auto-neg or forced speed and duplex. Then we check |
|
1281 * for link, once link is established calls to configure collision distance |
|
1282 * and flow control are called. |
|
1283 **/ |
|
1284 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) |
|
1285 { |
|
1286 u32 ctrl; |
|
1287 s32 ret_val; |
|
1288 |
|
1289 ctrl = er32(CTRL); |
|
1290 ctrl |= E1000_CTRL_SLU; |
|
1291 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1292 ew32(CTRL, ctrl); |
|
1293 |
|
1294 switch (hw->phy.type) { |
|
1295 case e1000_phy_m88: |
|
1296 case e1000_phy_bm: |
|
1297 ret_val = e1000e_copper_link_setup_m88(hw); |
|
1298 break; |
|
1299 case e1000_phy_igp_2: |
|
1300 ret_val = e1000e_copper_link_setup_igp(hw); |
|
1301 break; |
|
1302 default: |
|
1303 return -E1000_ERR_PHY; |
|
1304 break; |
|
1305 } |
|
1306 |
|
1307 if (ret_val) |
|
1308 return ret_val; |
|
1309 |
|
1310 ret_val = e1000e_setup_copper_link(hw); |
|
1311 |
|
1312 return ret_val; |
|
1313 } |
|
1314 |
|
1315 /** |
|
1316 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes |
|
1317 * @hw: pointer to the HW structure |
|
1318 * |
|
1319 * Configures collision distance and flow control for fiber and serdes links. |
|
1320 * Upon successful setup, poll for link. |
|
1321 **/ |
|
1322 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) |
|
1323 { |
|
1324 switch (hw->mac.type) { |
|
1325 case e1000_82571: |
|
1326 case e1000_82572: |
|
1327 /* |
|
1328 * If SerDes loopback mode is entered, there is no form |
|
1329 * of reset to take the adapter out of that mode. So we |
|
1330 * have to explicitly take the adapter out of loopback |
|
1331 * mode. This prevents drivers from twiddling their thumbs |
|
1332 * if another tool failed to take it out of loopback mode. |
|
1333 */ |
|
1334 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
|
1335 break; |
|
1336 default: |
|
1337 break; |
|
1338 } |
|
1339 |
|
1340 return e1000e_setup_fiber_serdes_link(hw); |
|
1341 } |
|
1342 |
|
1343 /** |
|
1344 * e1000_check_for_serdes_link_82571 - Check for link (Serdes) |
|
1345 * @hw: pointer to the HW structure |
|
1346 * |
|
1347 * Reports the link state as up or down. |
|
1348 * |
|
1349 * If autonegotiation is supported by the link partner, the link state is |
|
1350 * determined by the result of autonegotiation. This is the most likely case. |
|
1351 * If autonegotiation is not supported by the link partner, and the link |
|
1352 * has a valid signal, force the link up. |
|
1353 * |
|
1354 * The link state is represented internally here by 4 states: |
|
1355 * |
|
1356 * 1) down |
|
1357 * 2) autoneg_progress |
|
1358 * 3) autoneg_complete (the link successfully autonegotiated) |
|
1359 * 4) forced_up (the link has been forced up, it did not autonegotiate) |
|
1360 * |
|
1361 **/ |
|
1362 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) |
|
1363 { |
|
1364 struct e1000_mac_info *mac = &hw->mac; |
|
1365 u32 rxcw; |
|
1366 u32 ctrl; |
|
1367 u32 status; |
|
1368 s32 ret_val = 0; |
|
1369 |
|
1370 ctrl = er32(CTRL); |
|
1371 status = er32(STATUS); |
|
1372 rxcw = er32(RXCW); |
|
1373 |
|
1374 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { |
|
1375 |
|
1376 /* Receiver is synchronized with no invalid bits. */ |
|
1377 switch (mac->serdes_link_state) { |
|
1378 case e1000_serdes_link_autoneg_complete: |
|
1379 if (!(status & E1000_STATUS_LU)) { |
|
1380 /* |
|
1381 * We have lost link, retry autoneg before |
|
1382 * reporting link failure |
|
1383 */ |
|
1384 mac->serdes_link_state = |
|
1385 e1000_serdes_link_autoneg_progress; |
|
1386 mac->serdes_has_link = false; |
|
1387 e_dbg("AN_UP -> AN_PROG\n"); |
|
1388 } |
|
1389 break; |
|
1390 |
|
1391 case e1000_serdes_link_forced_up: |
|
1392 /* |
|
1393 * If we are receiving /C/ ordered sets, re-enable |
|
1394 * auto-negotiation in the TXCW register and disable |
|
1395 * forced link in the Device Control register in an |
|
1396 * attempt to auto-negotiate with our link partner. |
|
1397 */ |
|
1398 if (rxcw & E1000_RXCW_C) { |
|
1399 /* Enable autoneg, and unforce link up */ |
|
1400 ew32(TXCW, mac->txcw); |
|
1401 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
1402 mac->serdes_link_state = |
|
1403 e1000_serdes_link_autoneg_progress; |
|
1404 mac->serdes_has_link = false; |
|
1405 e_dbg("FORCED_UP -> AN_PROG\n"); |
|
1406 } |
|
1407 break; |
|
1408 |
|
1409 case e1000_serdes_link_autoneg_progress: |
|
1410 if (rxcw & E1000_RXCW_C) { |
|
1411 /* |
|
1412 * We received /C/ ordered sets, meaning the |
|
1413 * link partner has autonegotiated, and we can |
|
1414 * trust the Link Up (LU) status bit. |
|
1415 */ |
|
1416 if (status & E1000_STATUS_LU) { |
|
1417 mac->serdes_link_state = |
|
1418 e1000_serdes_link_autoneg_complete; |
|
1419 e_dbg("AN_PROG -> AN_UP\n"); |
|
1420 mac->serdes_has_link = true; |
|
1421 } else { |
|
1422 /* Autoneg completed, but failed. */ |
|
1423 mac->serdes_link_state = |
|
1424 e1000_serdes_link_down; |
|
1425 e_dbg("AN_PROG -> DOWN\n"); |
|
1426 } |
|
1427 } else { |
|
1428 /* |
|
1429 * The link partner did not autoneg. |
|
1430 * Force link up and full duplex, and change |
|
1431 * state to forced. |
|
1432 */ |
|
1433 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
|
1434 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
1435 ew32(CTRL, ctrl); |
|
1436 |
|
1437 /* Configure Flow Control after link up. */ |
|
1438 ret_val = e1000e_config_fc_after_link_up(hw); |
|
1439 if (ret_val) { |
|
1440 e_dbg("Error config flow control\n"); |
|
1441 break; |
|
1442 } |
|
1443 mac->serdes_link_state = |
|
1444 e1000_serdes_link_forced_up; |
|
1445 mac->serdes_has_link = true; |
|
1446 e_dbg("AN_PROG -> FORCED_UP\n"); |
|
1447 } |
|
1448 break; |
|
1449 |
|
1450 case e1000_serdes_link_down: |
|
1451 default: |
|
1452 /* |
|
1453 * The link was down but the receiver has now gained |
|
1454 * valid sync, so lets see if we can bring the link |
|
1455 * up. |
|
1456 */ |
|
1457 ew32(TXCW, mac->txcw); |
|
1458 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
1459 mac->serdes_link_state = |
|
1460 e1000_serdes_link_autoneg_progress; |
|
1461 e_dbg("DOWN -> AN_PROG\n"); |
|
1462 break; |
|
1463 } |
|
1464 } else { |
|
1465 if (!(rxcw & E1000_RXCW_SYNCH)) { |
|
1466 mac->serdes_has_link = false; |
|
1467 mac->serdes_link_state = e1000_serdes_link_down; |
|
1468 e_dbg("ANYSTATE -> DOWN\n"); |
|
1469 } else { |
|
1470 /* |
|
1471 * We have sync, and can tolerate one invalid (IV) |
|
1472 * codeword before declaring link down, so reread |
|
1473 * to look again. |
|
1474 */ |
|
1475 udelay(10); |
|
1476 rxcw = er32(RXCW); |
|
1477 if (rxcw & E1000_RXCW_IV) { |
|
1478 mac->serdes_link_state = e1000_serdes_link_down; |
|
1479 mac->serdes_has_link = false; |
|
1480 e_dbg("ANYSTATE -> DOWN\n"); |
|
1481 } |
|
1482 } |
|
1483 } |
|
1484 |
|
1485 return ret_val; |
|
1486 } |
|
1487 |
|
1488 /** |
|
1489 * e1000_valid_led_default_82571 - Verify a valid default LED config |
|
1490 * @hw: pointer to the HW structure |
|
1491 * @data: pointer to the NVM (EEPROM) |
|
1492 * |
|
1493 * Read the EEPROM for the current default LED configuration. If the |
|
1494 * LED configuration is not valid, set to a valid LED configuration. |
|
1495 **/ |
|
1496 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) |
|
1497 { |
|
1498 s32 ret_val; |
|
1499 |
|
1500 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
|
1501 if (ret_val) { |
|
1502 e_dbg("NVM Read Error\n"); |
|
1503 return ret_val; |
|
1504 } |
|
1505 |
|
1506 switch (hw->mac.type) { |
|
1507 case e1000_82573: |
|
1508 case e1000_82574: |
|
1509 case e1000_82583: |
|
1510 if (*data == ID_LED_RESERVED_F746) |
|
1511 *data = ID_LED_DEFAULT_82573; |
|
1512 break; |
|
1513 default: |
|
1514 if (*data == ID_LED_RESERVED_0000 || |
|
1515 *data == ID_LED_RESERVED_FFFF) |
|
1516 *data = ID_LED_DEFAULT; |
|
1517 break; |
|
1518 } |
|
1519 |
|
1520 return 0; |
|
1521 } |
|
1522 |
|
1523 /** |
|
1524 * e1000e_get_laa_state_82571 - Get locally administered address state |
|
1525 * @hw: pointer to the HW structure |
|
1526 * |
|
1527 * Retrieve and return the current locally administered address state. |
|
1528 **/ |
|
1529 bool e1000e_get_laa_state_82571(struct e1000_hw *hw) |
|
1530 { |
|
1531 if (hw->mac.type != e1000_82571) |
|
1532 return false; |
|
1533 |
|
1534 return hw->dev_spec.e82571.laa_is_present; |
|
1535 } |
|
1536 |
|
1537 /** |
|
1538 * e1000e_set_laa_state_82571 - Set locally administered address state |
|
1539 * @hw: pointer to the HW structure |
|
1540 * @state: enable/disable locally administered address |
|
1541 * |
|
1542 * Enable/Disable the current locally administered address state. |
|
1543 **/ |
|
1544 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) |
|
1545 { |
|
1546 if (hw->mac.type != e1000_82571) |
|
1547 return; |
|
1548 |
|
1549 hw->dev_spec.e82571.laa_is_present = state; |
|
1550 |
|
1551 /* If workaround is activated... */ |
|
1552 if (state) |
|
1553 /* |
|
1554 * Hold a copy of the LAA in RAR[14] This is done so that |
|
1555 * between the time RAR[0] gets clobbered and the time it |
|
1556 * gets fixed, the actual LAA is in one of the RARs and no |
|
1557 * incoming packets directed to this port are dropped. |
|
1558 * Eventually the LAA will be in RAR[0] and RAR[14]. |
|
1559 */ |
|
1560 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); |
|
1561 } |
|
1562 |
|
1563 /** |
|
1564 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum |
|
1565 * @hw: pointer to the HW structure |
|
1566 * |
|
1567 * Verifies that the EEPROM has completed the update. After updating the |
|
1568 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If |
|
1569 * the checksum fix is not implemented, we need to set the bit and update |
|
1570 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, |
|
1571 * we need to return bad checksum. |
|
1572 **/ |
|
1573 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) |
|
1574 { |
|
1575 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1576 s32 ret_val; |
|
1577 u16 data; |
|
1578 |
|
1579 if (nvm->type != e1000_nvm_flash_hw) |
|
1580 return 0; |
|
1581 |
|
1582 /* |
|
1583 * Check bit 4 of word 10h. If it is 0, firmware is done updating |
|
1584 * 10h-12h. Checksum may need to be fixed. |
|
1585 */ |
|
1586 ret_val = e1000_read_nvm(hw, 0x10, 1, &data); |
|
1587 if (ret_val) |
|
1588 return ret_val; |
|
1589 |
|
1590 if (!(data & 0x10)) { |
|
1591 /* |
|
1592 * Read 0x23 and check bit 15. This bit is a 1 |
|
1593 * when the checksum has already been fixed. If |
|
1594 * the checksum is still wrong and this bit is a |
|
1595 * 1, we need to return bad checksum. Otherwise, |
|
1596 * we need to set this bit to a 1 and update the |
|
1597 * checksum. |
|
1598 */ |
|
1599 ret_val = e1000_read_nvm(hw, 0x23, 1, &data); |
|
1600 if (ret_val) |
|
1601 return ret_val; |
|
1602 |
|
1603 if (!(data & 0x8000)) { |
|
1604 data |= 0x8000; |
|
1605 ret_val = e1000_write_nvm(hw, 0x23, 1, &data); |
|
1606 if (ret_val) |
|
1607 return ret_val; |
|
1608 ret_val = e1000e_update_nvm_checksum(hw); |
|
1609 } |
|
1610 } |
|
1611 |
|
1612 return 0; |
|
1613 } |
|
1614 |
|
1615 /** |
|
1616 * e1000_read_mac_addr_82571 - Read device MAC address |
|
1617 * @hw: pointer to the HW structure |
|
1618 **/ |
|
1619 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) |
|
1620 { |
|
1621 s32 ret_val = 0; |
|
1622 |
|
1623 if (hw->mac.type == e1000_82571) { |
|
1624 /* |
|
1625 * If there's an alternate MAC address place it in RAR0 |
|
1626 * so that it will override the Si installed default perm |
|
1627 * address. |
|
1628 */ |
|
1629 ret_val = e1000_check_alt_mac_addr_generic(hw); |
|
1630 if (ret_val) |
|
1631 goto out; |
|
1632 } |
|
1633 |
|
1634 ret_val = e1000_read_mac_addr_generic(hw); |
|
1635 |
|
1636 out: |
|
1637 return ret_val; |
|
1638 } |
|
1639 |
|
1640 /** |
|
1641 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down |
|
1642 * @hw: pointer to the HW structure |
|
1643 * |
|
1644 * In the case of a PHY power down to save power, or to turn off link during a |
|
1645 * driver unload, or wake on lan is not enabled, remove the link. |
|
1646 **/ |
|
1647 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) |
|
1648 { |
|
1649 struct e1000_phy_info *phy = &hw->phy; |
|
1650 struct e1000_mac_info *mac = &hw->mac; |
|
1651 |
|
1652 if (!(phy->ops.check_reset_block)) |
|
1653 return; |
|
1654 |
|
1655 /* If the management interface is not enabled, then power down */ |
|
1656 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) |
|
1657 e1000_power_down_phy_copper(hw); |
|
1658 } |
|
1659 |
|
1660 /** |
|
1661 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters |
|
1662 * @hw: pointer to the HW structure |
|
1663 * |
|
1664 * Clears the hardware counters by reading the counter registers. |
|
1665 **/ |
|
1666 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) |
|
1667 { |
|
1668 e1000e_clear_hw_cntrs_base(hw); |
|
1669 |
|
1670 er32(PRC64); |
|
1671 er32(PRC127); |
|
1672 er32(PRC255); |
|
1673 er32(PRC511); |
|
1674 er32(PRC1023); |
|
1675 er32(PRC1522); |
|
1676 er32(PTC64); |
|
1677 er32(PTC127); |
|
1678 er32(PTC255); |
|
1679 er32(PTC511); |
|
1680 er32(PTC1023); |
|
1681 er32(PTC1522); |
|
1682 |
|
1683 er32(ALGNERRC); |
|
1684 er32(RXERRC); |
|
1685 er32(TNCRS); |
|
1686 er32(CEXTERR); |
|
1687 er32(TSCTC); |
|
1688 er32(TSCTFC); |
|
1689 |
|
1690 er32(MGTPRC); |
|
1691 er32(MGTPDC); |
|
1692 er32(MGTPTC); |
|
1693 |
|
1694 er32(IAC); |
|
1695 er32(ICRXOC); |
|
1696 |
|
1697 er32(ICRXPTC); |
|
1698 er32(ICRXATC); |
|
1699 er32(ICTXPTC); |
|
1700 er32(ICTXATC); |
|
1701 er32(ICTXQEC); |
|
1702 er32(ICTXQMTC); |
|
1703 er32(ICRXDMTC); |
|
1704 } |
|
1705 |
|
1706 static struct e1000_mac_operations e82571_mac_ops = { |
|
1707 /* .check_mng_mode: mac type dependent */ |
|
1708 /* .check_for_link: media type dependent */ |
|
1709 .id_led_init = e1000e_id_led_init, |
|
1710 .cleanup_led = e1000e_cleanup_led_generic, |
|
1711 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, |
|
1712 .get_bus_info = e1000e_get_bus_info_pcie, |
|
1713 .set_lan_id = e1000_set_lan_id_multi_port_pcie, |
|
1714 /* .get_link_up_info: media type dependent */ |
|
1715 /* .led_on: mac type dependent */ |
|
1716 .led_off = e1000e_led_off_generic, |
|
1717 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
1718 .write_vfta = e1000_write_vfta_generic, |
|
1719 .clear_vfta = e1000_clear_vfta_82571, |
|
1720 .reset_hw = e1000_reset_hw_82571, |
|
1721 .init_hw = e1000_init_hw_82571, |
|
1722 .setup_link = e1000_setup_link_82571, |
|
1723 /* .setup_physical_interface: media type dependent */ |
|
1724 .setup_led = e1000e_setup_led_generic, |
|
1725 .read_mac_addr = e1000_read_mac_addr_82571, |
|
1726 }; |
|
1727 |
|
1728 static struct e1000_phy_operations e82_phy_ops_igp = { |
|
1729 .acquire = e1000_get_hw_semaphore_82571, |
|
1730 .check_polarity = e1000_check_polarity_igp, |
|
1731 .check_reset_block = e1000e_check_reset_block_generic, |
|
1732 .commit = NULL, |
|
1733 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, |
|
1734 .get_cfg_done = e1000_get_cfg_done_82571, |
|
1735 .get_cable_length = e1000e_get_cable_length_igp_2, |
|
1736 .get_info = e1000e_get_phy_info_igp, |
|
1737 .read_reg = e1000e_read_phy_reg_igp, |
|
1738 .release = e1000_put_hw_semaphore_82571, |
|
1739 .reset = e1000e_phy_hw_reset_generic, |
|
1740 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1741 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1742 .write_reg = e1000e_write_phy_reg_igp, |
|
1743 .cfg_on_link_up = NULL, |
|
1744 }; |
|
1745 |
|
1746 static struct e1000_phy_operations e82_phy_ops_m88 = { |
|
1747 .acquire = e1000_get_hw_semaphore_82571, |
|
1748 .check_polarity = e1000_check_polarity_m88, |
|
1749 .check_reset_block = e1000e_check_reset_block_generic, |
|
1750 .commit = e1000e_phy_sw_reset, |
|
1751 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
|
1752 .get_cfg_done = e1000e_get_cfg_done, |
|
1753 .get_cable_length = e1000e_get_cable_length_m88, |
|
1754 .get_info = e1000e_get_phy_info_m88, |
|
1755 .read_reg = e1000e_read_phy_reg_m88, |
|
1756 .release = e1000_put_hw_semaphore_82571, |
|
1757 .reset = e1000e_phy_hw_reset_generic, |
|
1758 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1759 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1760 .write_reg = e1000e_write_phy_reg_m88, |
|
1761 .cfg_on_link_up = NULL, |
|
1762 }; |
|
1763 |
|
1764 static struct e1000_phy_operations e82_phy_ops_bm = { |
|
1765 .acquire = e1000_get_hw_semaphore_82571, |
|
1766 .check_polarity = e1000_check_polarity_m88, |
|
1767 .check_reset_block = e1000e_check_reset_block_generic, |
|
1768 .commit = e1000e_phy_sw_reset, |
|
1769 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
|
1770 .get_cfg_done = e1000e_get_cfg_done, |
|
1771 .get_cable_length = e1000e_get_cable_length_m88, |
|
1772 .get_info = e1000e_get_phy_info_m88, |
|
1773 .read_reg = e1000e_read_phy_reg_bm2, |
|
1774 .release = e1000_put_hw_semaphore_82571, |
|
1775 .reset = e1000e_phy_hw_reset_generic, |
|
1776 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1777 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1778 .write_reg = e1000e_write_phy_reg_bm2, |
|
1779 .cfg_on_link_up = NULL, |
|
1780 }; |
|
1781 |
|
1782 static struct e1000_nvm_operations e82571_nvm_ops = { |
|
1783 .acquire = e1000_acquire_nvm_82571, |
|
1784 .read = e1000e_read_nvm_eerd, |
|
1785 .release = e1000_release_nvm_82571, |
|
1786 .update = e1000_update_nvm_checksum_82571, |
|
1787 .valid_led_default = e1000_valid_led_default_82571, |
|
1788 .validate = e1000_validate_nvm_checksum_82571, |
|
1789 .write = e1000_write_nvm_82571, |
|
1790 }; |
|
1791 |
|
1792 struct e1000_info e1000_82571_info = { |
|
1793 .mac = e1000_82571, |
|
1794 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1795 | FLAG_HAS_JUMBO_FRAMES |
|
1796 | FLAG_HAS_WOL |
|
1797 | FLAG_APME_IN_CTRL3 |
|
1798 | FLAG_RX_CSUM_ENABLED |
|
1799 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1800 | FLAG_HAS_SMART_POWER_DOWN |
|
1801 | FLAG_RESET_OVERWRITES_LAA /* errata */ |
|
1802 | FLAG_TARC_SPEED_MODE_BIT /* errata */ |
|
1803 | FLAG_APME_CHECK_PORT_B, |
|
1804 .flags2 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */ |
|
1805 .pba = 38, |
|
1806 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1807 .get_variants = e1000_get_variants_82571, |
|
1808 .mac_ops = &e82571_mac_ops, |
|
1809 .phy_ops = &e82_phy_ops_igp, |
|
1810 .nvm_ops = &e82571_nvm_ops, |
|
1811 }; |
|
1812 |
|
1813 struct e1000_info e1000_82572_info = { |
|
1814 .mac = e1000_82572, |
|
1815 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1816 | FLAG_HAS_JUMBO_FRAMES |
|
1817 | FLAG_HAS_WOL |
|
1818 | FLAG_APME_IN_CTRL3 |
|
1819 | FLAG_RX_CSUM_ENABLED |
|
1820 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1821 | FLAG_TARC_SPEED_MODE_BIT, /* errata */ |
|
1822 .flags2 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */ |
|
1823 .pba = 38, |
|
1824 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1825 .get_variants = e1000_get_variants_82571, |
|
1826 .mac_ops = &e82571_mac_ops, |
|
1827 .phy_ops = &e82_phy_ops_igp, |
|
1828 .nvm_ops = &e82571_nvm_ops, |
|
1829 }; |
|
1830 |
|
1831 struct e1000_info e1000_82573_info = { |
|
1832 .mac = e1000_82573, |
|
1833 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1834 | FLAG_HAS_WOL |
|
1835 | FLAG_APME_IN_CTRL3 |
|
1836 | FLAG_RX_CSUM_ENABLED |
|
1837 | FLAG_HAS_SMART_POWER_DOWN |
|
1838 | FLAG_HAS_AMT |
|
1839 | FLAG_HAS_SWSM_ON_LOAD, |
|
1840 .flags2 = FLAG2_DISABLE_ASPM_L1, |
|
1841 .pba = 20, |
|
1842 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
1843 .get_variants = e1000_get_variants_82571, |
|
1844 .mac_ops = &e82571_mac_ops, |
|
1845 .phy_ops = &e82_phy_ops_m88, |
|
1846 .nvm_ops = &e82571_nvm_ops, |
|
1847 }; |
|
1848 |
|
1849 struct e1000_info e1000_82574_info = { |
|
1850 .mac = e1000_82574, |
|
1851 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1852 | FLAG_HAS_MSIX |
|
1853 | FLAG_HAS_JUMBO_FRAMES |
|
1854 | FLAG_HAS_WOL |
|
1855 | FLAG_APME_IN_CTRL3 |
|
1856 | FLAG_RX_CSUM_ENABLED |
|
1857 | FLAG_HAS_SMART_POWER_DOWN |
|
1858 | FLAG_HAS_AMT |
|
1859 | FLAG_HAS_CTRLEXT_ON_LOAD, |
|
1860 .pba = 36, |
|
1861 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1862 .get_variants = e1000_get_variants_82571, |
|
1863 .mac_ops = &e82571_mac_ops, |
|
1864 .phy_ops = &e82_phy_ops_bm, |
|
1865 .nvm_ops = &e82571_nvm_ops, |
|
1866 }; |
|
1867 |
|
1868 struct e1000_info e1000_82583_info = { |
|
1869 .mac = e1000_82583, |
|
1870 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1871 | FLAG_HAS_WOL |
|
1872 | FLAG_APME_IN_CTRL3 |
|
1873 | FLAG_RX_CSUM_ENABLED |
|
1874 | FLAG_HAS_SMART_POWER_DOWN |
|
1875 | FLAG_HAS_AMT |
|
1876 | FLAG_HAS_CTRLEXT_ON_LOAD, |
|
1877 .pba = 36, |
|
1878 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
1879 .get_variants = e1000_get_variants_82571, |
|
1880 .mac_ops = &e82571_mac_ops, |
|
1881 .phy_ops = &e82_phy_ops_bm, |
|
1882 .nvm_ops = &e82571_nvm_ops, |
|
1883 }; |
|
1884 |