|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include "e1000.h" |
|
30 #include <net/ip6_checksum.h> |
|
31 |
|
32 char e1000_driver_name[] = "e1000"; |
|
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
|
34 #define DRV_VERSION "7.3.21-k6-NAPI" |
|
35 const char e1000_driver_version[] = DRV_VERSION; |
|
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
|
37 |
|
38 /* e1000_pci_tbl - PCI Device ID Table |
|
39 * |
|
40 * Last entry must be all 0s |
|
41 * |
|
42 * Macro expands to... |
|
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
|
44 */ |
|
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { |
|
46 INTEL_E1000_ETHERNET_DEVICE(0x1000), |
|
47 INTEL_E1000_ETHERNET_DEVICE(0x1001), |
|
48 INTEL_E1000_ETHERNET_DEVICE(0x1004), |
|
49 INTEL_E1000_ETHERNET_DEVICE(0x1008), |
|
50 INTEL_E1000_ETHERNET_DEVICE(0x1009), |
|
51 INTEL_E1000_ETHERNET_DEVICE(0x100C), |
|
52 INTEL_E1000_ETHERNET_DEVICE(0x100D), |
|
53 INTEL_E1000_ETHERNET_DEVICE(0x100E), |
|
54 INTEL_E1000_ETHERNET_DEVICE(0x100F), |
|
55 INTEL_E1000_ETHERNET_DEVICE(0x1010), |
|
56 INTEL_E1000_ETHERNET_DEVICE(0x1011), |
|
57 INTEL_E1000_ETHERNET_DEVICE(0x1012), |
|
58 INTEL_E1000_ETHERNET_DEVICE(0x1013), |
|
59 INTEL_E1000_ETHERNET_DEVICE(0x1014), |
|
60 INTEL_E1000_ETHERNET_DEVICE(0x1015), |
|
61 INTEL_E1000_ETHERNET_DEVICE(0x1016), |
|
62 INTEL_E1000_ETHERNET_DEVICE(0x1017), |
|
63 INTEL_E1000_ETHERNET_DEVICE(0x1018), |
|
64 INTEL_E1000_ETHERNET_DEVICE(0x1019), |
|
65 INTEL_E1000_ETHERNET_DEVICE(0x101A), |
|
66 INTEL_E1000_ETHERNET_DEVICE(0x101D), |
|
67 INTEL_E1000_ETHERNET_DEVICE(0x101E), |
|
68 INTEL_E1000_ETHERNET_DEVICE(0x1026), |
|
69 INTEL_E1000_ETHERNET_DEVICE(0x1027), |
|
70 INTEL_E1000_ETHERNET_DEVICE(0x1028), |
|
71 INTEL_E1000_ETHERNET_DEVICE(0x1075), |
|
72 INTEL_E1000_ETHERNET_DEVICE(0x1076), |
|
73 INTEL_E1000_ETHERNET_DEVICE(0x1077), |
|
74 INTEL_E1000_ETHERNET_DEVICE(0x1078), |
|
75 INTEL_E1000_ETHERNET_DEVICE(0x1079), |
|
76 INTEL_E1000_ETHERNET_DEVICE(0x107A), |
|
77 INTEL_E1000_ETHERNET_DEVICE(0x107B), |
|
78 INTEL_E1000_ETHERNET_DEVICE(0x107C), |
|
79 INTEL_E1000_ETHERNET_DEVICE(0x108A), |
|
80 INTEL_E1000_ETHERNET_DEVICE(0x1099), |
|
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
|
82 /* required last entry */ |
|
83 {0,} |
|
84 }; |
|
85 |
|
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
87 |
|
88 int e1000_up(struct e1000_adapter *adapter); |
|
89 void e1000_down(struct e1000_adapter *adapter); |
|
90 void e1000_reinit_locked(struct e1000_adapter *adapter); |
|
91 void e1000_reset(struct e1000_adapter *adapter); |
|
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); |
|
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
|
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
|
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
|
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
|
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
98 struct e1000_tx_ring *txdr); |
|
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
100 struct e1000_rx_ring *rxdr); |
|
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
102 struct e1000_tx_ring *tx_ring); |
|
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
104 struct e1000_rx_ring *rx_ring); |
|
105 void e1000_update_stats(struct e1000_adapter *adapter); |
|
106 |
|
107 static int e1000_init_module(void); |
|
108 static void e1000_exit_module(void); |
|
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
|
110 static void __devexit e1000_remove(struct pci_dev *pdev); |
|
111 static int e1000_alloc_queues(struct e1000_adapter *adapter); |
|
112 static int e1000_sw_init(struct e1000_adapter *adapter); |
|
113 static int e1000_open(struct net_device *netdev); |
|
114 static int e1000_close(struct net_device *netdev); |
|
115 static void e1000_configure_tx(struct e1000_adapter *adapter); |
|
116 static void e1000_configure_rx(struct e1000_adapter *adapter); |
|
117 static void e1000_setup_rctl(struct e1000_adapter *adapter); |
|
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
|
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
|
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
121 struct e1000_tx_ring *tx_ring); |
|
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
123 struct e1000_rx_ring *rx_ring); |
|
124 static void e1000_set_rx_mode(struct net_device *netdev); |
|
125 static void e1000_update_phy_info(unsigned long data); |
|
126 static void e1000_watchdog(unsigned long data); |
|
127 static void e1000_82547_tx_fifo_stall(unsigned long data); |
|
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
129 struct net_device *netdev); |
|
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
|
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
|
132 static int e1000_set_mac(struct net_device *netdev, void *p); |
|
133 static irqreturn_t e1000_intr(int irq, void *data); |
|
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
135 struct e1000_tx_ring *tx_ring); |
|
136 static int e1000_clean(struct napi_struct *napi, int budget); |
|
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
138 struct e1000_rx_ring *rx_ring, |
|
139 int *work_done, int work_to_do); |
|
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
141 struct e1000_rx_ring *rx_ring, |
|
142 int *work_done, int work_to_do); |
|
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
144 struct e1000_rx_ring *rx_ring, |
|
145 int cleaned_count); |
|
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
147 struct e1000_rx_ring *rx_ring, |
|
148 int cleaned_count); |
|
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
|
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
151 int cmd); |
|
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
|
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
|
154 static void e1000_tx_timeout(struct net_device *dev); |
|
155 static void e1000_reset_task(struct work_struct *work); |
|
156 static void e1000_smartspeed(struct e1000_adapter *adapter); |
|
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
158 struct sk_buff *skb); |
|
159 |
|
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); |
|
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); |
|
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); |
|
163 static void e1000_restore_vlan(struct e1000_adapter *adapter); |
|
164 |
|
165 #ifdef CONFIG_PM |
|
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
|
167 static int e1000_resume(struct pci_dev *pdev); |
|
168 #endif |
|
169 static void e1000_shutdown(struct pci_dev *pdev); |
|
170 |
|
171 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
172 /* for netdump / net console */ |
|
173 static void e1000_netpoll (struct net_device *netdev); |
|
174 #endif |
|
175 |
|
176 #define COPYBREAK_DEFAULT 256 |
|
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
|
178 module_param(copybreak, uint, 0644); |
|
179 MODULE_PARM_DESC(copybreak, |
|
180 "Maximum size of packet that is copied to a new buffer on receive"); |
|
181 |
|
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
183 pci_channel_state_t state); |
|
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
|
185 static void e1000_io_resume(struct pci_dev *pdev); |
|
186 |
|
187 static struct pci_error_handlers e1000_err_handler = { |
|
188 .error_detected = e1000_io_error_detected, |
|
189 .slot_reset = e1000_io_slot_reset, |
|
190 .resume = e1000_io_resume, |
|
191 }; |
|
192 |
|
193 static struct pci_driver e1000_driver = { |
|
194 .name = e1000_driver_name, |
|
195 .id_table = e1000_pci_tbl, |
|
196 .probe = e1000_probe, |
|
197 .remove = __devexit_p(e1000_remove), |
|
198 #ifdef CONFIG_PM |
|
199 /* Power Managment Hooks */ |
|
200 .suspend = e1000_suspend, |
|
201 .resume = e1000_resume, |
|
202 #endif |
|
203 .shutdown = e1000_shutdown, |
|
204 .err_handler = &e1000_err_handler |
|
205 }; |
|
206 |
|
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
|
209 MODULE_LICENSE("GPL"); |
|
210 MODULE_VERSION(DRV_VERSION); |
|
211 |
|
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
|
213 module_param(debug, int, 0); |
|
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
215 |
|
216 /** |
|
217 * e1000_get_hw_dev - return device |
|
218 * used by hardware layer to print debugging information |
|
219 * |
|
220 **/ |
|
221 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) |
|
222 { |
|
223 struct e1000_adapter *adapter = hw->back; |
|
224 return adapter->netdev; |
|
225 } |
|
226 |
|
227 /** |
|
228 * e1000_init_module - Driver Registration Routine |
|
229 * |
|
230 * e1000_init_module is the first routine called when the driver is |
|
231 * loaded. All it does is register with the PCI subsystem. |
|
232 **/ |
|
233 |
|
234 static int __init e1000_init_module(void) |
|
235 { |
|
236 int ret; |
|
237 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); |
|
238 |
|
239 pr_info("%s\n", e1000_copyright); |
|
240 |
|
241 ret = pci_register_driver(&e1000_driver); |
|
242 if (copybreak != COPYBREAK_DEFAULT) { |
|
243 if (copybreak == 0) |
|
244 pr_info("copybreak disabled\n"); |
|
245 else |
|
246 pr_info("copybreak enabled for " |
|
247 "packets <= %u bytes\n", copybreak); |
|
248 } |
|
249 return ret; |
|
250 } |
|
251 |
|
252 module_init(e1000_init_module); |
|
253 |
|
254 /** |
|
255 * e1000_exit_module - Driver Exit Cleanup Routine |
|
256 * |
|
257 * e1000_exit_module is called just before the driver is removed |
|
258 * from memory. |
|
259 **/ |
|
260 |
|
261 static void __exit e1000_exit_module(void) |
|
262 { |
|
263 pci_unregister_driver(&e1000_driver); |
|
264 } |
|
265 |
|
266 module_exit(e1000_exit_module); |
|
267 |
|
268 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
269 { |
|
270 struct net_device *netdev = adapter->netdev; |
|
271 irq_handler_t handler = e1000_intr; |
|
272 int irq_flags = IRQF_SHARED; |
|
273 int err; |
|
274 |
|
275 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
|
276 netdev); |
|
277 if (err) { |
|
278 e_err("Unable to allocate interrupt Error: %d\n", err); |
|
279 } |
|
280 |
|
281 return err; |
|
282 } |
|
283 |
|
284 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
285 { |
|
286 struct net_device *netdev = adapter->netdev; |
|
287 |
|
288 free_irq(adapter->pdev->irq, netdev); |
|
289 } |
|
290 |
|
291 /** |
|
292 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
293 * @adapter: board private structure |
|
294 **/ |
|
295 |
|
296 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
297 { |
|
298 struct e1000_hw *hw = &adapter->hw; |
|
299 |
|
300 ew32(IMC, ~0); |
|
301 E1000_WRITE_FLUSH(); |
|
302 synchronize_irq(adapter->pdev->irq); |
|
303 } |
|
304 |
|
305 /** |
|
306 * e1000_irq_enable - Enable default interrupt generation settings |
|
307 * @adapter: board private structure |
|
308 **/ |
|
309 |
|
310 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
311 { |
|
312 struct e1000_hw *hw = &adapter->hw; |
|
313 |
|
314 ew32(IMS, IMS_ENABLE_MASK); |
|
315 E1000_WRITE_FLUSH(); |
|
316 } |
|
317 |
|
318 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
319 { |
|
320 struct e1000_hw *hw = &adapter->hw; |
|
321 struct net_device *netdev = adapter->netdev; |
|
322 u16 vid = hw->mng_cookie.vlan_id; |
|
323 u16 old_vid = adapter->mng_vlan_id; |
|
324 if (adapter->vlgrp) { |
|
325 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
326 if (hw->mng_cookie.status & |
|
327 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
|
328 e1000_vlan_rx_add_vid(netdev, vid); |
|
329 adapter->mng_vlan_id = vid; |
|
330 } else |
|
331 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
332 |
|
333 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
334 (vid != old_vid) && |
|
335 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
336 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
337 } else |
|
338 adapter->mng_vlan_id = vid; |
|
339 } |
|
340 } |
|
341 |
|
342 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
343 { |
|
344 struct e1000_hw *hw = &adapter->hw; |
|
345 |
|
346 if (adapter->en_mng_pt) { |
|
347 u32 manc = er32(MANC); |
|
348 |
|
349 /* disable hardware interception of ARP */ |
|
350 manc &= ~(E1000_MANC_ARP_EN); |
|
351 |
|
352 ew32(MANC, manc); |
|
353 } |
|
354 } |
|
355 |
|
356 static void e1000_release_manageability(struct e1000_adapter *adapter) |
|
357 { |
|
358 struct e1000_hw *hw = &adapter->hw; |
|
359 |
|
360 if (adapter->en_mng_pt) { |
|
361 u32 manc = er32(MANC); |
|
362 |
|
363 /* re-enable hardware interception of ARP */ |
|
364 manc |= E1000_MANC_ARP_EN; |
|
365 |
|
366 ew32(MANC, manc); |
|
367 } |
|
368 } |
|
369 |
|
370 /** |
|
371 * e1000_configure - configure the hardware for RX and TX |
|
372 * @adapter = private board structure |
|
373 **/ |
|
374 static void e1000_configure(struct e1000_adapter *adapter) |
|
375 { |
|
376 struct net_device *netdev = adapter->netdev; |
|
377 int i; |
|
378 |
|
379 e1000_set_rx_mode(netdev); |
|
380 |
|
381 e1000_restore_vlan(adapter); |
|
382 e1000_init_manageability(adapter); |
|
383 |
|
384 e1000_configure_tx(adapter); |
|
385 e1000_setup_rctl(adapter); |
|
386 e1000_configure_rx(adapter); |
|
387 /* call E1000_DESC_UNUSED which always leaves |
|
388 * at least 1 descriptor unused to make sure |
|
389 * next_to_use != next_to_clean */ |
|
390 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
391 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
|
392 adapter->alloc_rx_buf(adapter, ring, |
|
393 E1000_DESC_UNUSED(ring)); |
|
394 } |
|
395 } |
|
396 |
|
397 int e1000_up(struct e1000_adapter *adapter) |
|
398 { |
|
399 struct e1000_hw *hw = &adapter->hw; |
|
400 |
|
401 /* hardware has been reset, we need to reload some things */ |
|
402 e1000_configure(adapter); |
|
403 |
|
404 clear_bit(__E1000_DOWN, &adapter->flags); |
|
405 |
|
406 napi_enable(&adapter->napi); |
|
407 |
|
408 e1000_irq_enable(adapter); |
|
409 |
|
410 netif_wake_queue(adapter->netdev); |
|
411 |
|
412 /* fire a link change interrupt to start the watchdog */ |
|
413 ew32(ICS, E1000_ICS_LSC); |
|
414 return 0; |
|
415 } |
|
416 |
|
417 /** |
|
418 * e1000_power_up_phy - restore link in case the phy was powered down |
|
419 * @adapter: address of board private structure |
|
420 * |
|
421 * The phy may be powered down to save power and turn off link when the |
|
422 * driver is unloaded and wake on lan is not enabled (among others) |
|
423 * *** this routine MUST be followed by a call to e1000_reset *** |
|
424 * |
|
425 **/ |
|
426 |
|
427 void e1000_power_up_phy(struct e1000_adapter *adapter) |
|
428 { |
|
429 struct e1000_hw *hw = &adapter->hw; |
|
430 u16 mii_reg = 0; |
|
431 |
|
432 /* Just clear the power down bit to wake the phy back up */ |
|
433 if (hw->media_type == e1000_media_type_copper) { |
|
434 /* according to the manual, the phy will retain its |
|
435 * settings across a power-down/up cycle */ |
|
436 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
437 mii_reg &= ~MII_CR_POWER_DOWN; |
|
438 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
439 } |
|
440 } |
|
441 |
|
442 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
443 { |
|
444 struct e1000_hw *hw = &adapter->hw; |
|
445 |
|
446 /* Power down the PHY so no link is implied when interface is down * |
|
447 * The PHY cannot be powered down if any of the following is true * |
|
448 * (a) WoL is enabled |
|
449 * (b) AMT is active |
|
450 * (c) SoL/IDER session is active */ |
|
451 if (!adapter->wol && hw->mac_type >= e1000_82540 && |
|
452 hw->media_type == e1000_media_type_copper) { |
|
453 u16 mii_reg = 0; |
|
454 |
|
455 switch (hw->mac_type) { |
|
456 case e1000_82540: |
|
457 case e1000_82545: |
|
458 case e1000_82545_rev_3: |
|
459 case e1000_82546: |
|
460 case e1000_82546_rev_3: |
|
461 case e1000_82541: |
|
462 case e1000_82541_rev_2: |
|
463 case e1000_82547: |
|
464 case e1000_82547_rev_2: |
|
465 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
466 goto out; |
|
467 break; |
|
468 default: |
|
469 goto out; |
|
470 } |
|
471 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
472 mii_reg |= MII_CR_POWER_DOWN; |
|
473 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
474 mdelay(1); |
|
475 } |
|
476 out: |
|
477 return; |
|
478 } |
|
479 |
|
480 void e1000_down(struct e1000_adapter *adapter) |
|
481 { |
|
482 struct e1000_hw *hw = &adapter->hw; |
|
483 struct net_device *netdev = adapter->netdev; |
|
484 u32 rctl, tctl; |
|
485 |
|
486 /* signal that we're down so the interrupt handler does not |
|
487 * reschedule our watchdog timer */ |
|
488 set_bit(__E1000_DOWN, &adapter->flags); |
|
489 |
|
490 /* disable receives in the hardware */ |
|
491 rctl = er32(RCTL); |
|
492 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
493 /* flush and sleep below */ |
|
494 |
|
495 netif_tx_disable(netdev); |
|
496 |
|
497 /* disable transmits in the hardware */ |
|
498 tctl = er32(TCTL); |
|
499 tctl &= ~E1000_TCTL_EN; |
|
500 ew32(TCTL, tctl); |
|
501 /* flush both disables and wait for them to finish */ |
|
502 E1000_WRITE_FLUSH(); |
|
503 msleep(10); |
|
504 |
|
505 napi_disable(&adapter->napi); |
|
506 |
|
507 e1000_irq_disable(adapter); |
|
508 |
|
509 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
510 del_timer_sync(&adapter->watchdog_timer); |
|
511 del_timer_sync(&adapter->phy_info_timer); |
|
512 |
|
513 adapter->link_speed = 0; |
|
514 adapter->link_duplex = 0; |
|
515 netif_carrier_off(netdev); |
|
516 |
|
517 e1000_reset(adapter); |
|
518 e1000_clean_all_tx_rings(adapter); |
|
519 e1000_clean_all_rx_rings(adapter); |
|
520 } |
|
521 |
|
522 void e1000_reinit_locked(struct e1000_adapter *adapter) |
|
523 { |
|
524 WARN_ON(in_interrupt()); |
|
525 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
526 msleep(1); |
|
527 e1000_down(adapter); |
|
528 e1000_up(adapter); |
|
529 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
530 } |
|
531 |
|
532 void e1000_reset(struct e1000_adapter *adapter) |
|
533 { |
|
534 struct e1000_hw *hw = &adapter->hw; |
|
535 u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
|
536 bool legacy_pba_adjust = false; |
|
537 u16 hwm; |
|
538 |
|
539 /* Repartition Pba for greater than 9k mtu |
|
540 * To take effect CTRL.RST is required. |
|
541 */ |
|
542 |
|
543 switch (hw->mac_type) { |
|
544 case e1000_82542_rev2_0: |
|
545 case e1000_82542_rev2_1: |
|
546 case e1000_82543: |
|
547 case e1000_82544: |
|
548 case e1000_82540: |
|
549 case e1000_82541: |
|
550 case e1000_82541_rev_2: |
|
551 legacy_pba_adjust = true; |
|
552 pba = E1000_PBA_48K; |
|
553 break; |
|
554 case e1000_82545: |
|
555 case e1000_82545_rev_3: |
|
556 case e1000_82546: |
|
557 case e1000_82546_rev_3: |
|
558 pba = E1000_PBA_48K; |
|
559 break; |
|
560 case e1000_82547: |
|
561 case e1000_82547_rev_2: |
|
562 legacy_pba_adjust = true; |
|
563 pba = E1000_PBA_30K; |
|
564 break; |
|
565 case e1000_undefined: |
|
566 case e1000_num_macs: |
|
567 break; |
|
568 } |
|
569 |
|
570 if (legacy_pba_adjust) { |
|
571 if (hw->max_frame_size > E1000_RXBUFFER_8192) |
|
572 pba -= 8; /* allocate more FIFO for Tx */ |
|
573 |
|
574 if (hw->mac_type == e1000_82547) { |
|
575 adapter->tx_fifo_head = 0; |
|
576 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
|
577 adapter->tx_fifo_size = |
|
578 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
|
579 atomic_set(&adapter->tx_fifo_stall, 0); |
|
580 } |
|
581 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
582 /* adjust PBA for jumbo frames */ |
|
583 ew32(PBA, pba); |
|
584 |
|
585 /* To maintain wire speed transmits, the Tx FIFO should be |
|
586 * large enough to accommodate two full transmit packets, |
|
587 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
588 * the Rx FIFO should be large enough to accommodate at least |
|
589 * one full receive packet and is similarly rounded up and |
|
590 * expressed in KB. */ |
|
591 pba = er32(PBA); |
|
592 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
593 tx_space = pba >> 16; |
|
594 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
595 pba &= 0xffff; |
|
596 /* |
|
597 * the tx fifo also stores 16 bytes of information about the tx |
|
598 * but don't include ethernet FCS because hardware appends it |
|
599 */ |
|
600 min_tx_space = (hw->max_frame_size + |
|
601 sizeof(struct e1000_tx_desc) - |
|
602 ETH_FCS_LEN) * 2; |
|
603 min_tx_space = ALIGN(min_tx_space, 1024); |
|
604 min_tx_space >>= 10; |
|
605 /* software strips receive CRC, so leave room for it */ |
|
606 min_rx_space = hw->max_frame_size; |
|
607 min_rx_space = ALIGN(min_rx_space, 1024); |
|
608 min_rx_space >>= 10; |
|
609 |
|
610 /* If current Tx allocation is less than the min Tx FIFO size, |
|
611 * and the min Tx FIFO size is less than the current Rx FIFO |
|
612 * allocation, take space away from current Rx allocation */ |
|
613 if (tx_space < min_tx_space && |
|
614 ((min_tx_space - tx_space) < pba)) { |
|
615 pba = pba - (min_tx_space - tx_space); |
|
616 |
|
617 /* PCI/PCIx hardware has PBA alignment constraints */ |
|
618 switch (hw->mac_type) { |
|
619 case e1000_82545 ... e1000_82546_rev_3: |
|
620 pba &= ~(E1000_PBA_8K - 1); |
|
621 break; |
|
622 default: |
|
623 break; |
|
624 } |
|
625 |
|
626 /* if short on rx space, rx wins and must trump tx |
|
627 * adjustment or use Early Receive if available */ |
|
628 if (pba < min_rx_space) |
|
629 pba = min_rx_space; |
|
630 } |
|
631 } |
|
632 |
|
633 ew32(PBA, pba); |
|
634 |
|
635 /* |
|
636 * flow control settings: |
|
637 * The high water mark must be low enough to fit one full frame |
|
638 * (or the size used for early receive) above it in the Rx FIFO. |
|
639 * Set it to the lower of: |
|
640 * - 90% of the Rx FIFO size, and |
|
641 * - the full Rx FIFO size minus the early receive size (for parts |
|
642 * with ERT support assuming ERT set to E1000_ERT_2048), or |
|
643 * - the full Rx FIFO size minus one full frame |
|
644 */ |
|
645 hwm = min(((pba << 10) * 9 / 10), |
|
646 ((pba << 10) - hw->max_frame_size)); |
|
647 |
|
648 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ |
|
649 hw->fc_low_water = hw->fc_high_water - 8; |
|
650 hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
|
651 hw->fc_send_xon = 1; |
|
652 hw->fc = hw->original_fc; |
|
653 |
|
654 /* Allow time for pending master requests to run */ |
|
655 e1000_reset_hw(hw); |
|
656 if (hw->mac_type >= e1000_82544) |
|
657 ew32(WUC, 0); |
|
658 |
|
659 if (e1000_init_hw(hw)) |
|
660 e_err("Hardware Error\n"); |
|
661 e1000_update_mng_vlan(adapter); |
|
662 |
|
663 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
|
664 if (hw->mac_type >= e1000_82544 && |
|
665 hw->autoneg == 1 && |
|
666 hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
667 u32 ctrl = er32(CTRL); |
|
668 /* clear phy power management bit if we are in gig only mode, |
|
669 * which if enabled will attempt negotiation to 100Mb, which |
|
670 * can cause a loss of link at power off or driver unload */ |
|
671 ctrl &= ~E1000_CTRL_SWDPIN3; |
|
672 ew32(CTRL, ctrl); |
|
673 } |
|
674 |
|
675 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
676 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
|
677 |
|
678 e1000_reset_adaptive(hw); |
|
679 e1000_phy_get_info(hw, &adapter->phy_info); |
|
680 |
|
681 e1000_release_manageability(adapter); |
|
682 } |
|
683 |
|
684 /** |
|
685 * Dump the eeprom for users having checksum issues |
|
686 **/ |
|
687 static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
|
688 { |
|
689 struct net_device *netdev = adapter->netdev; |
|
690 struct ethtool_eeprom eeprom; |
|
691 const struct ethtool_ops *ops = netdev->ethtool_ops; |
|
692 u8 *data; |
|
693 int i; |
|
694 u16 csum_old, csum_new = 0; |
|
695 |
|
696 eeprom.len = ops->get_eeprom_len(netdev); |
|
697 eeprom.offset = 0; |
|
698 |
|
699 data = kmalloc(eeprom.len, GFP_KERNEL); |
|
700 if (!data) { |
|
701 pr_err("Unable to allocate memory to dump EEPROM data\n"); |
|
702 return; |
|
703 } |
|
704 |
|
705 ops->get_eeprom(netdev, &eeprom, data); |
|
706 |
|
707 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
|
708 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
|
709 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
|
710 csum_new += data[i] + (data[i + 1] << 8); |
|
711 csum_new = EEPROM_SUM - csum_new; |
|
712 |
|
713 pr_err("/*********************/\n"); |
|
714 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); |
|
715 pr_err("Calculated : 0x%04x\n", csum_new); |
|
716 |
|
717 pr_err("Offset Values\n"); |
|
718 pr_err("======== ======\n"); |
|
719 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
|
720 |
|
721 pr_err("Include this output when contacting your support provider.\n"); |
|
722 pr_err("This is not a software error! Something bad happened to\n"); |
|
723 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); |
|
724 pr_err("result in further problems, possibly loss of data,\n"); |
|
725 pr_err("corruption or system hangs!\n"); |
|
726 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); |
|
727 pr_err("which is invalid and requires you to set the proper MAC\n"); |
|
728 pr_err("address manually before continuing to enable this network\n"); |
|
729 pr_err("device. Please inspect the EEPROM dump and report the\n"); |
|
730 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); |
|
731 pr_err("/*********************/\n"); |
|
732 |
|
733 kfree(data); |
|
734 } |
|
735 |
|
736 /** |
|
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
|
738 * @pdev: PCI device information struct |
|
739 * |
|
740 * Return true if an adapter needs ioport resources |
|
741 **/ |
|
742 static int e1000_is_need_ioport(struct pci_dev *pdev) |
|
743 { |
|
744 switch (pdev->device) { |
|
745 case E1000_DEV_ID_82540EM: |
|
746 case E1000_DEV_ID_82540EM_LOM: |
|
747 case E1000_DEV_ID_82540EP: |
|
748 case E1000_DEV_ID_82540EP_LOM: |
|
749 case E1000_DEV_ID_82540EP_LP: |
|
750 case E1000_DEV_ID_82541EI: |
|
751 case E1000_DEV_ID_82541EI_MOBILE: |
|
752 case E1000_DEV_ID_82541ER: |
|
753 case E1000_DEV_ID_82541ER_LOM: |
|
754 case E1000_DEV_ID_82541GI: |
|
755 case E1000_DEV_ID_82541GI_LF: |
|
756 case E1000_DEV_ID_82541GI_MOBILE: |
|
757 case E1000_DEV_ID_82544EI_COPPER: |
|
758 case E1000_DEV_ID_82544EI_FIBER: |
|
759 case E1000_DEV_ID_82544GC_COPPER: |
|
760 case E1000_DEV_ID_82544GC_LOM: |
|
761 case E1000_DEV_ID_82545EM_COPPER: |
|
762 case E1000_DEV_ID_82545EM_FIBER: |
|
763 case E1000_DEV_ID_82546EB_COPPER: |
|
764 case E1000_DEV_ID_82546EB_FIBER: |
|
765 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
766 return true; |
|
767 default: |
|
768 return false; |
|
769 } |
|
770 } |
|
771 |
|
772 static const struct net_device_ops e1000_netdev_ops = { |
|
773 .ndo_open = e1000_open, |
|
774 .ndo_stop = e1000_close, |
|
775 .ndo_start_xmit = e1000_xmit_frame, |
|
776 .ndo_get_stats = e1000_get_stats, |
|
777 .ndo_set_rx_mode = e1000_set_rx_mode, |
|
778 .ndo_set_mac_address = e1000_set_mac, |
|
779 .ndo_tx_timeout = e1000_tx_timeout, |
|
780 .ndo_change_mtu = e1000_change_mtu, |
|
781 .ndo_do_ioctl = e1000_ioctl, |
|
782 .ndo_validate_addr = eth_validate_addr, |
|
783 |
|
784 .ndo_vlan_rx_register = e1000_vlan_rx_register, |
|
785 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
786 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
787 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
788 .ndo_poll_controller = e1000_netpoll, |
|
789 #endif |
|
790 }; |
|
791 |
|
792 /** |
|
793 * e1000_probe - Device Initialization Routine |
|
794 * @pdev: PCI device information struct |
|
795 * @ent: entry in e1000_pci_tbl |
|
796 * |
|
797 * Returns 0 on success, negative on failure |
|
798 * |
|
799 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
800 * The OS initialization, configuring of the adapter private structure, |
|
801 * and a hardware reset occur. |
|
802 **/ |
|
803 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
804 const struct pci_device_id *ent) |
|
805 { |
|
806 struct net_device *netdev; |
|
807 struct e1000_adapter *adapter; |
|
808 struct e1000_hw *hw; |
|
809 |
|
810 static int cards_found = 0; |
|
811 static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
|
812 int i, err, pci_using_dac; |
|
813 u16 eeprom_data = 0; |
|
814 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
815 int bars, need_ioport; |
|
816 |
|
817 /* do not allocate ioport bars when not needed */ |
|
818 need_ioport = e1000_is_need_ioport(pdev); |
|
819 if (need_ioport) { |
|
820 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
|
821 err = pci_enable_device(pdev); |
|
822 } else { |
|
823 bars = pci_select_bars(pdev, IORESOURCE_MEM); |
|
824 err = pci_enable_device_mem(pdev); |
|
825 } |
|
826 if (err) |
|
827 return err; |
|
828 |
|
829 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) && |
|
830 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) { |
|
831 pci_using_dac = 1; |
|
832 } else { |
|
833 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
|
834 if (err) { |
|
835 err = dma_set_coherent_mask(&pdev->dev, |
|
836 DMA_BIT_MASK(32)); |
|
837 if (err) { |
|
838 pr_err("No usable DMA config, aborting\n"); |
|
839 goto err_dma; |
|
840 } |
|
841 } |
|
842 pci_using_dac = 0; |
|
843 } |
|
844 |
|
845 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
|
846 if (err) |
|
847 goto err_pci_reg; |
|
848 |
|
849 pci_set_master(pdev); |
|
850 err = pci_save_state(pdev); |
|
851 if (err) |
|
852 goto err_alloc_etherdev; |
|
853 |
|
854 err = -ENOMEM; |
|
855 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
856 if (!netdev) |
|
857 goto err_alloc_etherdev; |
|
858 |
|
859 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
860 |
|
861 pci_set_drvdata(pdev, netdev); |
|
862 adapter = netdev_priv(netdev); |
|
863 adapter->netdev = netdev; |
|
864 adapter->pdev = pdev; |
|
865 adapter->msg_enable = (1 << debug) - 1; |
|
866 adapter->bars = bars; |
|
867 adapter->need_ioport = need_ioport; |
|
868 |
|
869 hw = &adapter->hw; |
|
870 hw->back = adapter; |
|
871 |
|
872 err = -EIO; |
|
873 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); |
|
874 if (!hw->hw_addr) |
|
875 goto err_ioremap; |
|
876 |
|
877 if (adapter->need_ioport) { |
|
878 for (i = BAR_1; i <= BAR_5; i++) { |
|
879 if (pci_resource_len(pdev, i) == 0) |
|
880 continue; |
|
881 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
|
882 hw->io_base = pci_resource_start(pdev, i); |
|
883 break; |
|
884 } |
|
885 } |
|
886 } |
|
887 |
|
888 netdev->netdev_ops = &e1000_netdev_ops; |
|
889 e1000_set_ethtool_ops(netdev); |
|
890 netdev->watchdog_timeo = 5 * HZ; |
|
891 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
892 |
|
893 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
894 |
|
895 adapter->bd_number = cards_found; |
|
896 |
|
897 /* setup the private structure */ |
|
898 |
|
899 err = e1000_sw_init(adapter); |
|
900 if (err) |
|
901 goto err_sw_init; |
|
902 |
|
903 err = -EIO; |
|
904 |
|
905 if (hw->mac_type >= e1000_82543) { |
|
906 netdev->features = NETIF_F_SG | |
|
907 NETIF_F_HW_CSUM | |
|
908 NETIF_F_HW_VLAN_TX | |
|
909 NETIF_F_HW_VLAN_RX | |
|
910 NETIF_F_HW_VLAN_FILTER; |
|
911 } |
|
912 |
|
913 if ((hw->mac_type >= e1000_82544) && |
|
914 (hw->mac_type != e1000_82547)) |
|
915 netdev->features |= NETIF_F_TSO; |
|
916 |
|
917 if (pci_using_dac) |
|
918 netdev->features |= NETIF_F_HIGHDMA; |
|
919 |
|
920 netdev->vlan_features |= NETIF_F_TSO; |
|
921 netdev->vlan_features |= NETIF_F_HW_CSUM; |
|
922 netdev->vlan_features |= NETIF_F_SG; |
|
923 |
|
924 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
|
925 |
|
926 /* initialize eeprom parameters */ |
|
927 if (e1000_init_eeprom_params(hw)) { |
|
928 e_err("EEPROM initialization failed\n"); |
|
929 goto err_eeprom; |
|
930 } |
|
931 |
|
932 /* before reading the EEPROM, reset the controller to |
|
933 * put the device in a known good starting state */ |
|
934 |
|
935 e1000_reset_hw(hw); |
|
936 |
|
937 /* make sure the EEPROM is good */ |
|
938 if (e1000_validate_eeprom_checksum(hw) < 0) { |
|
939 e_err("The EEPROM Checksum Is Not Valid\n"); |
|
940 e1000_dump_eeprom(adapter); |
|
941 /* |
|
942 * set MAC address to all zeroes to invalidate and temporary |
|
943 * disable this device for the user. This blocks regular |
|
944 * traffic while still permitting ethtool ioctls from reaching |
|
945 * the hardware as well as allowing the user to run the |
|
946 * interface after manually setting a hw addr using |
|
947 * `ip set address` |
|
948 */ |
|
949 memset(hw->mac_addr, 0, netdev->addr_len); |
|
950 } else { |
|
951 /* copy the MAC address out of the EEPROM */ |
|
952 if (e1000_read_mac_addr(hw)) |
|
953 e_err("EEPROM Read Error\n"); |
|
954 } |
|
955 /* don't block initalization here due to bad MAC address */ |
|
956 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
|
957 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); |
|
958 |
|
959 if (!is_valid_ether_addr(netdev->perm_addr)) |
|
960 e_err("Invalid MAC Address\n"); |
|
961 |
|
962 e1000_get_bus_info(hw); |
|
963 |
|
964 init_timer(&adapter->tx_fifo_stall_timer); |
|
965 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; |
|
966 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; |
|
967 |
|
968 init_timer(&adapter->watchdog_timer); |
|
969 adapter->watchdog_timer.function = &e1000_watchdog; |
|
970 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
971 |
|
972 init_timer(&adapter->phy_info_timer); |
|
973 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
974 adapter->phy_info_timer.data = (unsigned long)adapter; |
|
975 |
|
976 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
977 |
|
978 e1000_check_options(adapter); |
|
979 |
|
980 /* Initial Wake on LAN setting |
|
981 * If APM wake is enabled in the EEPROM, |
|
982 * enable the ACPI Magic Packet filter |
|
983 */ |
|
984 |
|
985 switch (hw->mac_type) { |
|
986 case e1000_82542_rev2_0: |
|
987 case e1000_82542_rev2_1: |
|
988 case e1000_82543: |
|
989 break; |
|
990 case e1000_82544: |
|
991 e1000_read_eeprom(hw, |
|
992 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
|
993 eeprom_apme_mask = E1000_EEPROM_82544_APM; |
|
994 break; |
|
995 case e1000_82546: |
|
996 case e1000_82546_rev_3: |
|
997 if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
|
998 e1000_read_eeprom(hw, |
|
999 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
1000 break; |
|
1001 } |
|
1002 /* Fall Through */ |
|
1003 default: |
|
1004 e1000_read_eeprom(hw, |
|
1005 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
1006 break; |
|
1007 } |
|
1008 if (eeprom_data & eeprom_apme_mask) |
|
1009 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
1010 |
|
1011 /* now that we have the eeprom settings, apply the special cases |
|
1012 * where the eeprom may be wrong or the board simply won't support |
|
1013 * wake on lan on a particular port */ |
|
1014 switch (pdev->device) { |
|
1015 case E1000_DEV_ID_82546GB_PCIE: |
|
1016 adapter->eeprom_wol = 0; |
|
1017 break; |
|
1018 case E1000_DEV_ID_82546EB_FIBER: |
|
1019 case E1000_DEV_ID_82546GB_FIBER: |
|
1020 /* Wake events only supported on port A for dual fiber |
|
1021 * regardless of eeprom setting */ |
|
1022 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
1023 adapter->eeprom_wol = 0; |
|
1024 break; |
|
1025 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1026 /* if quad port adapter, disable WoL on all but port A */ |
|
1027 if (global_quad_port_a != 0) |
|
1028 adapter->eeprom_wol = 0; |
|
1029 else |
|
1030 adapter->quad_port_a = 1; |
|
1031 /* Reset for multiple quad port adapters */ |
|
1032 if (++global_quad_port_a == 4) |
|
1033 global_quad_port_a = 0; |
|
1034 break; |
|
1035 } |
|
1036 |
|
1037 /* initialize the wol settings based on the eeprom settings */ |
|
1038 adapter->wol = adapter->eeprom_wol; |
|
1039 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1040 |
|
1041 /* reset the hardware with the new settings */ |
|
1042 e1000_reset(adapter); |
|
1043 |
|
1044 strcpy(netdev->name, "eth%d"); |
|
1045 err = register_netdev(netdev); |
|
1046 if (err) |
|
1047 goto err_register; |
|
1048 |
|
1049 /* print bus type/speed/width info */ |
|
1050 e_info("(PCI%s:%dMHz:%d-bit) %pM\n", |
|
1051 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), |
|
1052 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : |
|
1053 (hw->bus_speed == e1000_bus_speed_120) ? 120 : |
|
1054 (hw->bus_speed == e1000_bus_speed_100) ? 100 : |
|
1055 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), |
|
1056 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), |
|
1057 netdev->dev_addr); |
|
1058 |
|
1059 /* carrier off reporting is important to ethtool even BEFORE open */ |
|
1060 netif_carrier_off(netdev); |
|
1061 |
|
1062 e_info("Intel(R) PRO/1000 Network Connection\n"); |
|
1063 |
|
1064 cards_found++; |
|
1065 return 0; |
|
1066 |
|
1067 err_register: |
|
1068 err_eeprom: |
|
1069 e1000_phy_hw_reset(hw); |
|
1070 |
|
1071 if (hw->flash_address) |
|
1072 iounmap(hw->flash_address); |
|
1073 kfree(adapter->tx_ring); |
|
1074 kfree(adapter->rx_ring); |
|
1075 err_sw_init: |
|
1076 iounmap(hw->hw_addr); |
|
1077 err_ioremap: |
|
1078 free_netdev(netdev); |
|
1079 err_alloc_etherdev: |
|
1080 pci_release_selected_regions(pdev, bars); |
|
1081 err_pci_reg: |
|
1082 err_dma: |
|
1083 pci_disable_device(pdev); |
|
1084 return err; |
|
1085 } |
|
1086 |
|
1087 /** |
|
1088 * e1000_remove - Device Removal Routine |
|
1089 * @pdev: PCI device information struct |
|
1090 * |
|
1091 * e1000_remove is called by the PCI subsystem to alert the driver |
|
1092 * that it should release a PCI device. The could be caused by a |
|
1093 * Hot-Plug event, or because the driver is going to be removed from |
|
1094 * memory. |
|
1095 **/ |
|
1096 |
|
1097 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
1098 { |
|
1099 struct net_device *netdev = pci_get_drvdata(pdev); |
|
1100 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1101 struct e1000_hw *hw = &adapter->hw; |
|
1102 |
|
1103 set_bit(__E1000_DOWN, &adapter->flags); |
|
1104 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
1105 del_timer_sync(&adapter->watchdog_timer); |
|
1106 del_timer_sync(&adapter->phy_info_timer); |
|
1107 |
|
1108 cancel_work_sync(&adapter->reset_task); |
|
1109 |
|
1110 e1000_release_manageability(adapter); |
|
1111 |
|
1112 unregister_netdev(netdev); |
|
1113 |
|
1114 e1000_phy_hw_reset(hw); |
|
1115 |
|
1116 kfree(adapter->tx_ring); |
|
1117 kfree(adapter->rx_ring); |
|
1118 |
|
1119 iounmap(hw->hw_addr); |
|
1120 if (hw->flash_address) |
|
1121 iounmap(hw->flash_address); |
|
1122 pci_release_selected_regions(pdev, adapter->bars); |
|
1123 |
|
1124 free_netdev(netdev); |
|
1125 |
|
1126 pci_disable_device(pdev); |
|
1127 } |
|
1128 |
|
1129 /** |
|
1130 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
1131 * @adapter: board private structure to initialize |
|
1132 * |
|
1133 * e1000_sw_init initializes the Adapter private data structure. |
|
1134 * Fields are initialized based on PCI device information and |
|
1135 * OS network device settings (MTU size). |
|
1136 **/ |
|
1137 |
|
1138 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
1139 { |
|
1140 struct e1000_hw *hw = &adapter->hw; |
|
1141 struct net_device *netdev = adapter->netdev; |
|
1142 struct pci_dev *pdev = adapter->pdev; |
|
1143 |
|
1144 /* PCI config space info */ |
|
1145 |
|
1146 hw->vendor_id = pdev->vendor; |
|
1147 hw->device_id = pdev->device; |
|
1148 hw->subsystem_vendor_id = pdev->subsystem_vendor; |
|
1149 hw->subsystem_id = pdev->subsystem_device; |
|
1150 hw->revision_id = pdev->revision; |
|
1151 |
|
1152 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
|
1153 |
|
1154 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
1155 hw->max_frame_size = netdev->mtu + |
|
1156 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
1157 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
|
1158 |
|
1159 /* identify the MAC */ |
|
1160 |
|
1161 if (e1000_set_mac_type(hw)) { |
|
1162 e_err("Unknown MAC Type\n"); |
|
1163 return -EIO; |
|
1164 } |
|
1165 |
|
1166 switch (hw->mac_type) { |
|
1167 default: |
|
1168 break; |
|
1169 case e1000_82541: |
|
1170 case e1000_82547: |
|
1171 case e1000_82541_rev_2: |
|
1172 case e1000_82547_rev_2: |
|
1173 hw->phy_init_script = 1; |
|
1174 break; |
|
1175 } |
|
1176 |
|
1177 e1000_set_media_type(hw); |
|
1178 |
|
1179 hw->wait_autoneg_complete = false; |
|
1180 hw->tbi_compatibility_en = true; |
|
1181 hw->adaptive_ifs = true; |
|
1182 |
|
1183 /* Copper options */ |
|
1184 |
|
1185 if (hw->media_type == e1000_media_type_copper) { |
|
1186 hw->mdix = AUTO_ALL_MODES; |
|
1187 hw->disable_polarity_correction = false; |
|
1188 hw->master_slave = E1000_MASTER_SLAVE; |
|
1189 } |
|
1190 |
|
1191 adapter->num_tx_queues = 1; |
|
1192 adapter->num_rx_queues = 1; |
|
1193 |
|
1194 if (e1000_alloc_queues(adapter)) { |
|
1195 e_err("Unable to allocate memory for queues\n"); |
|
1196 return -ENOMEM; |
|
1197 } |
|
1198 |
|
1199 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
1200 e1000_irq_disable(adapter); |
|
1201 |
|
1202 spin_lock_init(&adapter->stats_lock); |
|
1203 |
|
1204 set_bit(__E1000_DOWN, &adapter->flags); |
|
1205 |
|
1206 return 0; |
|
1207 } |
|
1208 |
|
1209 /** |
|
1210 * e1000_alloc_queues - Allocate memory for all rings |
|
1211 * @adapter: board private structure to initialize |
|
1212 * |
|
1213 * We allocate one ring per queue at run-time since we don't know the |
|
1214 * number of queues at compile-time. |
|
1215 **/ |
|
1216 |
|
1217 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1218 { |
|
1219 adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
|
1220 sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
1221 if (!adapter->tx_ring) |
|
1222 return -ENOMEM; |
|
1223 |
|
1224 adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
|
1225 sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
1226 if (!adapter->rx_ring) { |
|
1227 kfree(adapter->tx_ring); |
|
1228 return -ENOMEM; |
|
1229 } |
|
1230 |
|
1231 return E1000_SUCCESS; |
|
1232 } |
|
1233 |
|
1234 /** |
|
1235 * e1000_open - Called when a network interface is made active |
|
1236 * @netdev: network interface device structure |
|
1237 * |
|
1238 * Returns 0 on success, negative value on failure |
|
1239 * |
|
1240 * The open entry point is called when a network interface is made |
|
1241 * active by the system (IFF_UP). At this point all resources needed |
|
1242 * for transmit and receive operations are allocated, the interrupt |
|
1243 * handler is registered with the OS, the watchdog timer is started, |
|
1244 * and the stack is notified that the interface is ready. |
|
1245 **/ |
|
1246 |
|
1247 static int e1000_open(struct net_device *netdev) |
|
1248 { |
|
1249 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1250 struct e1000_hw *hw = &adapter->hw; |
|
1251 int err; |
|
1252 |
|
1253 /* disallow open during test */ |
|
1254 if (test_bit(__E1000_TESTING, &adapter->flags)) |
|
1255 return -EBUSY; |
|
1256 |
|
1257 netif_carrier_off(netdev); |
|
1258 |
|
1259 /* allocate transmit descriptors */ |
|
1260 err = e1000_setup_all_tx_resources(adapter); |
|
1261 if (err) |
|
1262 goto err_setup_tx; |
|
1263 |
|
1264 /* allocate receive descriptors */ |
|
1265 err = e1000_setup_all_rx_resources(adapter); |
|
1266 if (err) |
|
1267 goto err_setup_rx; |
|
1268 |
|
1269 e1000_power_up_phy(adapter); |
|
1270 |
|
1271 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
1272 if ((hw->mng_cookie.status & |
|
1273 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
|
1274 e1000_update_mng_vlan(adapter); |
|
1275 } |
|
1276 |
|
1277 /* before we allocate an interrupt, we must be ready to handle it. |
|
1278 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
1279 * as soon as we call pci_request_irq, so we have to setup our |
|
1280 * clean_rx handler before we do so. */ |
|
1281 e1000_configure(adapter); |
|
1282 |
|
1283 err = e1000_request_irq(adapter); |
|
1284 if (err) |
|
1285 goto err_req_irq; |
|
1286 |
|
1287 /* From here on the code is the same as e1000_up() */ |
|
1288 clear_bit(__E1000_DOWN, &adapter->flags); |
|
1289 |
|
1290 napi_enable(&adapter->napi); |
|
1291 |
|
1292 e1000_irq_enable(adapter); |
|
1293 |
|
1294 netif_start_queue(netdev); |
|
1295 |
|
1296 /* fire a link status change interrupt to start the watchdog */ |
|
1297 ew32(ICS, E1000_ICS_LSC); |
|
1298 |
|
1299 return E1000_SUCCESS; |
|
1300 |
|
1301 err_req_irq: |
|
1302 e1000_power_down_phy(adapter); |
|
1303 e1000_free_all_rx_resources(adapter); |
|
1304 err_setup_rx: |
|
1305 e1000_free_all_tx_resources(adapter); |
|
1306 err_setup_tx: |
|
1307 e1000_reset(adapter); |
|
1308 |
|
1309 return err; |
|
1310 } |
|
1311 |
|
1312 /** |
|
1313 * e1000_close - Disables a network interface |
|
1314 * @netdev: network interface device structure |
|
1315 * |
|
1316 * Returns 0, this is not allowed to fail |
|
1317 * |
|
1318 * The close entry point is called when an interface is de-activated |
|
1319 * by the OS. The hardware is still under the drivers control, but |
|
1320 * needs to be disabled. A global MAC reset is issued to stop the |
|
1321 * hardware, and all transmit and receive resources are freed. |
|
1322 **/ |
|
1323 |
|
1324 static int e1000_close(struct net_device *netdev) |
|
1325 { |
|
1326 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1327 struct e1000_hw *hw = &adapter->hw; |
|
1328 |
|
1329 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
1330 e1000_down(adapter); |
|
1331 e1000_power_down_phy(adapter); |
|
1332 e1000_free_irq(adapter); |
|
1333 |
|
1334 e1000_free_all_tx_resources(adapter); |
|
1335 e1000_free_all_rx_resources(adapter); |
|
1336 |
|
1337 /* kill manageability vlan ID if supported, but not if a vlan with |
|
1338 * the same ID is registered on the host OS (let 8021q kill it) */ |
|
1339 if ((hw->mng_cookie.status & |
|
1340 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
1341 !(adapter->vlgrp && |
|
1342 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { |
|
1343 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
1344 } |
|
1345 |
|
1346 return 0; |
|
1347 } |
|
1348 |
|
1349 /** |
|
1350 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
|
1351 * @adapter: address of board private structure |
|
1352 * @start: address of beginning of memory |
|
1353 * @len: length of memory |
|
1354 **/ |
|
1355 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
|
1356 unsigned long len) |
|
1357 { |
|
1358 struct e1000_hw *hw = &adapter->hw; |
|
1359 unsigned long begin = (unsigned long)start; |
|
1360 unsigned long end = begin + len; |
|
1361 |
|
1362 /* First rev 82545 and 82546 need to not allow any memory |
|
1363 * write location to cross 64k boundary due to errata 23 */ |
|
1364 if (hw->mac_type == e1000_82545 || |
|
1365 hw->mac_type == e1000_82546) { |
|
1366 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
|
1367 } |
|
1368 |
|
1369 return true; |
|
1370 } |
|
1371 |
|
1372 /** |
|
1373 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1374 * @adapter: board private structure |
|
1375 * @txdr: tx descriptor ring (for a specific queue) to setup |
|
1376 * |
|
1377 * Return 0 on success, negative on failure |
|
1378 **/ |
|
1379 |
|
1380 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
1381 struct e1000_tx_ring *txdr) |
|
1382 { |
|
1383 struct pci_dev *pdev = adapter->pdev; |
|
1384 int size; |
|
1385 |
|
1386 size = sizeof(struct e1000_buffer) * txdr->count; |
|
1387 txdr->buffer_info = vmalloc(size); |
|
1388 if (!txdr->buffer_info) { |
|
1389 e_err("Unable to allocate memory for the Tx descriptor ring\n"); |
|
1390 return -ENOMEM; |
|
1391 } |
|
1392 memset(txdr->buffer_info, 0, size); |
|
1393 |
|
1394 /* round up to nearest 4K */ |
|
1395 |
|
1396 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1397 txdr->size = ALIGN(txdr->size, 4096); |
|
1398 |
|
1399 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, |
|
1400 GFP_KERNEL); |
|
1401 if (!txdr->desc) { |
|
1402 setup_tx_desc_die: |
|
1403 vfree(txdr->buffer_info); |
|
1404 e_err("Unable to allocate memory for the Tx descriptor ring\n"); |
|
1405 return -ENOMEM; |
|
1406 } |
|
1407 |
|
1408 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1409 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1410 void *olddesc = txdr->desc; |
|
1411 dma_addr_t olddma = txdr->dma; |
|
1412 e_err("txdr align check failed: %u bytes at %p\n", |
|
1413 txdr->size, txdr->desc); |
|
1414 /* Try again, without freeing the previous */ |
|
1415 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, |
|
1416 &txdr->dma, GFP_KERNEL); |
|
1417 /* Failed allocation, critical failure */ |
|
1418 if (!txdr->desc) { |
|
1419 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1420 olddma); |
|
1421 goto setup_tx_desc_die; |
|
1422 } |
|
1423 |
|
1424 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1425 /* give up */ |
|
1426 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, |
|
1427 txdr->dma); |
|
1428 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1429 olddma); |
|
1430 e_err("Unable to allocate aligned memory " |
|
1431 "for the transmit descriptor ring\n"); |
|
1432 vfree(txdr->buffer_info); |
|
1433 return -ENOMEM; |
|
1434 } else { |
|
1435 /* Free old allocation, new allocation was successful */ |
|
1436 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1437 olddma); |
|
1438 } |
|
1439 } |
|
1440 memset(txdr->desc, 0, txdr->size); |
|
1441 |
|
1442 txdr->next_to_use = 0; |
|
1443 txdr->next_to_clean = 0; |
|
1444 |
|
1445 return 0; |
|
1446 } |
|
1447 |
|
1448 /** |
|
1449 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
|
1450 * (Descriptors) for all queues |
|
1451 * @adapter: board private structure |
|
1452 * |
|
1453 * Return 0 on success, negative on failure |
|
1454 **/ |
|
1455 |
|
1456 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
|
1457 { |
|
1458 int i, err = 0; |
|
1459 |
|
1460 for (i = 0; i < adapter->num_tx_queues; i++) { |
|
1461 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1462 if (err) { |
|
1463 e_err("Allocation for Tx Queue %u failed\n", i); |
|
1464 for (i-- ; i >= 0; i--) |
|
1465 e1000_free_tx_resources(adapter, |
|
1466 &adapter->tx_ring[i]); |
|
1467 break; |
|
1468 } |
|
1469 } |
|
1470 |
|
1471 return err; |
|
1472 } |
|
1473 |
|
1474 /** |
|
1475 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
1476 * @adapter: board private structure |
|
1477 * |
|
1478 * Configure the Tx unit of the MAC after a reset. |
|
1479 **/ |
|
1480 |
|
1481 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
1482 { |
|
1483 u64 tdba; |
|
1484 struct e1000_hw *hw = &adapter->hw; |
|
1485 u32 tdlen, tctl, tipg; |
|
1486 u32 ipgr1, ipgr2; |
|
1487 |
|
1488 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
1489 |
|
1490 switch (adapter->num_tx_queues) { |
|
1491 case 1: |
|
1492 default: |
|
1493 tdba = adapter->tx_ring[0].dma; |
|
1494 tdlen = adapter->tx_ring[0].count * |
|
1495 sizeof(struct e1000_tx_desc); |
|
1496 ew32(TDLEN, tdlen); |
|
1497 ew32(TDBAH, (tdba >> 32)); |
|
1498 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
|
1499 ew32(TDT, 0); |
|
1500 ew32(TDH, 0); |
|
1501 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); |
|
1502 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); |
|
1503 break; |
|
1504 } |
|
1505 |
|
1506 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
1507 if ((hw->media_type == e1000_media_type_fiber || |
|
1508 hw->media_type == e1000_media_type_internal_serdes)) |
|
1509 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
|
1510 else |
|
1511 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
|
1512 |
|
1513 switch (hw->mac_type) { |
|
1514 case e1000_82542_rev2_0: |
|
1515 case e1000_82542_rev2_1: |
|
1516 tipg = DEFAULT_82542_TIPG_IPGT; |
|
1517 ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
|
1518 ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
|
1519 break; |
|
1520 default: |
|
1521 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1522 ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
|
1523 break; |
|
1524 } |
|
1525 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
1526 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
1527 ew32(TIPG, tipg); |
|
1528 |
|
1529 /* Set the Tx Interrupt Delay register */ |
|
1530 |
|
1531 ew32(TIDV, adapter->tx_int_delay); |
|
1532 if (hw->mac_type >= e1000_82540) |
|
1533 ew32(TADV, adapter->tx_abs_int_delay); |
|
1534 |
|
1535 /* Program the Transmit Control Register */ |
|
1536 |
|
1537 tctl = er32(TCTL); |
|
1538 tctl &= ~E1000_TCTL_CT; |
|
1539 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
1540 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
1541 |
|
1542 e1000_config_collision_dist(hw); |
|
1543 |
|
1544 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
1545 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
1546 |
|
1547 /* only set IDE if we are delaying interrupts using the timers */ |
|
1548 if (adapter->tx_int_delay) |
|
1549 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
1550 |
|
1551 if (hw->mac_type < e1000_82543) |
|
1552 adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
|
1553 else |
|
1554 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
1555 |
|
1556 /* Cache if we're 82544 running in PCI-X because we'll |
|
1557 * need this to apply a workaround later in the send path. */ |
|
1558 if (hw->mac_type == e1000_82544 && |
|
1559 hw->bus_type == e1000_bus_type_pcix) |
|
1560 adapter->pcix_82544 = 1; |
|
1561 |
|
1562 ew32(TCTL, tctl); |
|
1563 |
|
1564 } |
|
1565 |
|
1566 /** |
|
1567 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1568 * @adapter: board private structure |
|
1569 * @rxdr: rx descriptor ring (for a specific queue) to setup |
|
1570 * |
|
1571 * Returns 0 on success, negative on failure |
|
1572 **/ |
|
1573 |
|
1574 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
1575 struct e1000_rx_ring *rxdr) |
|
1576 { |
|
1577 struct pci_dev *pdev = adapter->pdev; |
|
1578 int size, desc_len; |
|
1579 |
|
1580 size = sizeof(struct e1000_buffer) * rxdr->count; |
|
1581 rxdr->buffer_info = vmalloc(size); |
|
1582 if (!rxdr->buffer_info) { |
|
1583 e_err("Unable to allocate memory for the Rx descriptor ring\n"); |
|
1584 return -ENOMEM; |
|
1585 } |
|
1586 memset(rxdr->buffer_info, 0, size); |
|
1587 |
|
1588 desc_len = sizeof(struct e1000_rx_desc); |
|
1589 |
|
1590 /* Round up to nearest 4K */ |
|
1591 |
|
1592 rxdr->size = rxdr->count * desc_len; |
|
1593 rxdr->size = ALIGN(rxdr->size, 4096); |
|
1594 |
|
1595 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, |
|
1596 GFP_KERNEL); |
|
1597 |
|
1598 if (!rxdr->desc) { |
|
1599 e_err("Unable to allocate memory for the Rx descriptor ring\n"); |
|
1600 setup_rx_desc_die: |
|
1601 vfree(rxdr->buffer_info); |
|
1602 return -ENOMEM; |
|
1603 } |
|
1604 |
|
1605 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1606 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1607 void *olddesc = rxdr->desc; |
|
1608 dma_addr_t olddma = rxdr->dma; |
|
1609 e_err("rxdr align check failed: %u bytes at %p\n", |
|
1610 rxdr->size, rxdr->desc); |
|
1611 /* Try again, without freeing the previous */ |
|
1612 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, |
|
1613 &rxdr->dma, GFP_KERNEL); |
|
1614 /* Failed allocation, critical failure */ |
|
1615 if (!rxdr->desc) { |
|
1616 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1617 olddma); |
|
1618 e_err("Unable to allocate memory for the Rx descriptor " |
|
1619 "ring\n"); |
|
1620 goto setup_rx_desc_die; |
|
1621 } |
|
1622 |
|
1623 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1624 /* give up */ |
|
1625 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, |
|
1626 rxdr->dma); |
|
1627 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1628 olddma); |
|
1629 e_err("Unable to allocate aligned memory for the Rx " |
|
1630 "descriptor ring\n"); |
|
1631 goto setup_rx_desc_die; |
|
1632 } else { |
|
1633 /* Free old allocation, new allocation was successful */ |
|
1634 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1635 olddma); |
|
1636 } |
|
1637 } |
|
1638 memset(rxdr->desc, 0, rxdr->size); |
|
1639 |
|
1640 rxdr->next_to_clean = 0; |
|
1641 rxdr->next_to_use = 0; |
|
1642 rxdr->rx_skb_top = NULL; |
|
1643 |
|
1644 return 0; |
|
1645 } |
|
1646 |
|
1647 /** |
|
1648 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
|
1649 * (Descriptors) for all queues |
|
1650 * @adapter: board private structure |
|
1651 * |
|
1652 * Return 0 on success, negative on failure |
|
1653 **/ |
|
1654 |
|
1655 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
|
1656 { |
|
1657 int i, err = 0; |
|
1658 |
|
1659 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1660 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1661 if (err) { |
|
1662 e_err("Allocation for Rx Queue %u failed\n", i); |
|
1663 for (i-- ; i >= 0; i--) |
|
1664 e1000_free_rx_resources(adapter, |
|
1665 &adapter->rx_ring[i]); |
|
1666 break; |
|
1667 } |
|
1668 } |
|
1669 |
|
1670 return err; |
|
1671 } |
|
1672 |
|
1673 /** |
|
1674 * e1000_setup_rctl - configure the receive control registers |
|
1675 * @adapter: Board private structure |
|
1676 **/ |
|
1677 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
1678 { |
|
1679 struct e1000_hw *hw = &adapter->hw; |
|
1680 u32 rctl; |
|
1681 |
|
1682 rctl = er32(RCTL); |
|
1683 |
|
1684 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
1685 |
|
1686 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
1687 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1688 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1689 |
|
1690 if (hw->tbi_compatibility_on == 1) |
|
1691 rctl |= E1000_RCTL_SBP; |
|
1692 else |
|
1693 rctl &= ~E1000_RCTL_SBP; |
|
1694 |
|
1695 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
1696 rctl &= ~E1000_RCTL_LPE; |
|
1697 else |
|
1698 rctl |= E1000_RCTL_LPE; |
|
1699 |
|
1700 /* Setup buffer sizes */ |
|
1701 rctl &= ~E1000_RCTL_SZ_4096; |
|
1702 rctl |= E1000_RCTL_BSEX; |
|
1703 switch (adapter->rx_buffer_len) { |
|
1704 case E1000_RXBUFFER_2048: |
|
1705 default: |
|
1706 rctl |= E1000_RCTL_SZ_2048; |
|
1707 rctl &= ~E1000_RCTL_BSEX; |
|
1708 break; |
|
1709 case E1000_RXBUFFER_4096: |
|
1710 rctl |= E1000_RCTL_SZ_4096; |
|
1711 break; |
|
1712 case E1000_RXBUFFER_8192: |
|
1713 rctl |= E1000_RCTL_SZ_8192; |
|
1714 break; |
|
1715 case E1000_RXBUFFER_16384: |
|
1716 rctl |= E1000_RCTL_SZ_16384; |
|
1717 break; |
|
1718 } |
|
1719 |
|
1720 ew32(RCTL, rctl); |
|
1721 } |
|
1722 |
|
1723 /** |
|
1724 * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
|
1725 * @adapter: board private structure |
|
1726 * |
|
1727 * Configure the Rx unit of the MAC after a reset. |
|
1728 **/ |
|
1729 |
|
1730 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
1731 { |
|
1732 u64 rdba; |
|
1733 struct e1000_hw *hw = &adapter->hw; |
|
1734 u32 rdlen, rctl, rxcsum; |
|
1735 |
|
1736 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
1737 rdlen = adapter->rx_ring[0].count * |
|
1738 sizeof(struct e1000_rx_desc); |
|
1739 adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
|
1740 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
|
1741 } else { |
|
1742 rdlen = adapter->rx_ring[0].count * |
|
1743 sizeof(struct e1000_rx_desc); |
|
1744 adapter->clean_rx = e1000_clean_rx_irq; |
|
1745 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
1746 } |
|
1747 |
|
1748 /* disable receives while setting up the descriptors */ |
|
1749 rctl = er32(RCTL); |
|
1750 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1751 |
|
1752 /* set the Receive Delay Timer Register */ |
|
1753 ew32(RDTR, adapter->rx_int_delay); |
|
1754 |
|
1755 if (hw->mac_type >= e1000_82540) { |
|
1756 ew32(RADV, adapter->rx_abs_int_delay); |
|
1757 if (adapter->itr_setting != 0) |
|
1758 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
1759 } |
|
1760 |
|
1761 /* Setup the HW Rx Head and Tail Descriptor Pointers and |
|
1762 * the Base and Length of the Rx Descriptor Ring */ |
|
1763 switch (adapter->num_rx_queues) { |
|
1764 case 1: |
|
1765 default: |
|
1766 rdba = adapter->rx_ring[0].dma; |
|
1767 ew32(RDLEN, rdlen); |
|
1768 ew32(RDBAH, (rdba >> 32)); |
|
1769 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
|
1770 ew32(RDT, 0); |
|
1771 ew32(RDH, 0); |
|
1772 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); |
|
1773 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); |
|
1774 break; |
|
1775 } |
|
1776 |
|
1777 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
|
1778 if (hw->mac_type >= e1000_82543) { |
|
1779 rxcsum = er32(RXCSUM); |
|
1780 if (adapter->rx_csum) |
|
1781 rxcsum |= E1000_RXCSUM_TUOFL; |
|
1782 else |
|
1783 /* don't need to clear IPPCSE as it defaults to 0 */ |
|
1784 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
1785 ew32(RXCSUM, rxcsum); |
|
1786 } |
|
1787 |
|
1788 /* Enable Receives */ |
|
1789 ew32(RCTL, rctl); |
|
1790 } |
|
1791 |
|
1792 /** |
|
1793 * e1000_free_tx_resources - Free Tx Resources per Queue |
|
1794 * @adapter: board private structure |
|
1795 * @tx_ring: Tx descriptor ring for a specific queue |
|
1796 * |
|
1797 * Free all transmit software resources |
|
1798 **/ |
|
1799 |
|
1800 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
1801 struct e1000_tx_ring *tx_ring) |
|
1802 { |
|
1803 struct pci_dev *pdev = adapter->pdev; |
|
1804 |
|
1805 e1000_clean_tx_ring(adapter, tx_ring); |
|
1806 |
|
1807 vfree(tx_ring->buffer_info); |
|
1808 tx_ring->buffer_info = NULL; |
|
1809 |
|
1810 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
|
1811 tx_ring->dma); |
|
1812 |
|
1813 tx_ring->desc = NULL; |
|
1814 } |
|
1815 |
|
1816 /** |
|
1817 * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
|
1818 * @adapter: board private structure |
|
1819 * |
|
1820 * Free all transmit software resources |
|
1821 **/ |
|
1822 |
|
1823 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
|
1824 { |
|
1825 int i; |
|
1826 |
|
1827 for (i = 0; i < adapter->num_tx_queues; i++) |
|
1828 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1829 } |
|
1830 |
|
1831 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
|
1832 struct e1000_buffer *buffer_info) |
|
1833 { |
|
1834 if (buffer_info->dma) { |
|
1835 if (buffer_info->mapped_as_page) |
|
1836 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
|
1837 buffer_info->length, DMA_TO_DEVICE); |
|
1838 else |
|
1839 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
|
1840 buffer_info->length, |
|
1841 DMA_TO_DEVICE); |
|
1842 buffer_info->dma = 0; |
|
1843 } |
|
1844 if (buffer_info->skb) { |
|
1845 dev_kfree_skb_any(buffer_info->skb); |
|
1846 buffer_info->skb = NULL; |
|
1847 } |
|
1848 buffer_info->time_stamp = 0; |
|
1849 /* buffer_info must be completely set up in the transmit path */ |
|
1850 } |
|
1851 |
|
1852 /** |
|
1853 * e1000_clean_tx_ring - Free Tx Buffers |
|
1854 * @adapter: board private structure |
|
1855 * @tx_ring: ring to be cleaned |
|
1856 **/ |
|
1857 |
|
1858 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
1859 struct e1000_tx_ring *tx_ring) |
|
1860 { |
|
1861 struct e1000_hw *hw = &adapter->hw; |
|
1862 struct e1000_buffer *buffer_info; |
|
1863 unsigned long size; |
|
1864 unsigned int i; |
|
1865 |
|
1866 /* Free all the Tx ring sk_buffs */ |
|
1867 |
|
1868 for (i = 0; i < tx_ring->count; i++) { |
|
1869 buffer_info = &tx_ring->buffer_info[i]; |
|
1870 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
1871 } |
|
1872 |
|
1873 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
1874 memset(tx_ring->buffer_info, 0, size); |
|
1875 |
|
1876 /* Zero out the descriptor ring */ |
|
1877 |
|
1878 memset(tx_ring->desc, 0, tx_ring->size); |
|
1879 |
|
1880 tx_ring->next_to_use = 0; |
|
1881 tx_ring->next_to_clean = 0; |
|
1882 tx_ring->last_tx_tso = 0; |
|
1883 |
|
1884 writel(0, hw->hw_addr + tx_ring->tdh); |
|
1885 writel(0, hw->hw_addr + tx_ring->tdt); |
|
1886 } |
|
1887 |
|
1888 /** |
|
1889 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
|
1890 * @adapter: board private structure |
|
1891 **/ |
|
1892 |
|
1893 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
|
1894 { |
|
1895 int i; |
|
1896 |
|
1897 for (i = 0; i < adapter->num_tx_queues; i++) |
|
1898 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
|
1899 } |
|
1900 |
|
1901 /** |
|
1902 * e1000_free_rx_resources - Free Rx Resources |
|
1903 * @adapter: board private structure |
|
1904 * @rx_ring: ring to clean the resources from |
|
1905 * |
|
1906 * Free all receive software resources |
|
1907 **/ |
|
1908 |
|
1909 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
1910 struct e1000_rx_ring *rx_ring) |
|
1911 { |
|
1912 struct pci_dev *pdev = adapter->pdev; |
|
1913 |
|
1914 e1000_clean_rx_ring(adapter, rx_ring); |
|
1915 |
|
1916 vfree(rx_ring->buffer_info); |
|
1917 rx_ring->buffer_info = NULL; |
|
1918 |
|
1919 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
|
1920 rx_ring->dma); |
|
1921 |
|
1922 rx_ring->desc = NULL; |
|
1923 } |
|
1924 |
|
1925 /** |
|
1926 * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
|
1927 * @adapter: board private structure |
|
1928 * |
|
1929 * Free all receive software resources |
|
1930 **/ |
|
1931 |
|
1932 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
|
1933 { |
|
1934 int i; |
|
1935 |
|
1936 for (i = 0; i < adapter->num_rx_queues; i++) |
|
1937 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1938 } |
|
1939 |
|
1940 /** |
|
1941 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
1942 * @adapter: board private structure |
|
1943 * @rx_ring: ring to free buffers from |
|
1944 **/ |
|
1945 |
|
1946 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
1947 struct e1000_rx_ring *rx_ring) |
|
1948 { |
|
1949 struct e1000_hw *hw = &adapter->hw; |
|
1950 struct e1000_buffer *buffer_info; |
|
1951 struct pci_dev *pdev = adapter->pdev; |
|
1952 unsigned long size; |
|
1953 unsigned int i; |
|
1954 |
|
1955 /* Free all the Rx ring sk_buffs */ |
|
1956 for (i = 0; i < rx_ring->count; i++) { |
|
1957 buffer_info = &rx_ring->buffer_info[i]; |
|
1958 if (buffer_info->dma && |
|
1959 adapter->clean_rx == e1000_clean_rx_irq) { |
|
1960 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
1961 buffer_info->length, |
|
1962 DMA_FROM_DEVICE); |
|
1963 } else if (buffer_info->dma && |
|
1964 adapter->clean_rx == e1000_clean_jumbo_rx_irq) { |
|
1965 dma_unmap_page(&pdev->dev, buffer_info->dma, |
|
1966 buffer_info->length, |
|
1967 DMA_FROM_DEVICE); |
|
1968 } |
|
1969 |
|
1970 buffer_info->dma = 0; |
|
1971 if (buffer_info->page) { |
|
1972 put_page(buffer_info->page); |
|
1973 buffer_info->page = NULL; |
|
1974 } |
|
1975 if (buffer_info->skb) { |
|
1976 dev_kfree_skb(buffer_info->skb); |
|
1977 buffer_info->skb = NULL; |
|
1978 } |
|
1979 } |
|
1980 |
|
1981 /* there also may be some cached data from a chained receive */ |
|
1982 if (rx_ring->rx_skb_top) { |
|
1983 dev_kfree_skb(rx_ring->rx_skb_top); |
|
1984 rx_ring->rx_skb_top = NULL; |
|
1985 } |
|
1986 |
|
1987 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
1988 memset(rx_ring->buffer_info, 0, size); |
|
1989 |
|
1990 /* Zero out the descriptor ring */ |
|
1991 memset(rx_ring->desc, 0, rx_ring->size); |
|
1992 |
|
1993 rx_ring->next_to_clean = 0; |
|
1994 rx_ring->next_to_use = 0; |
|
1995 |
|
1996 writel(0, hw->hw_addr + rx_ring->rdh); |
|
1997 writel(0, hw->hw_addr + rx_ring->rdt); |
|
1998 } |
|
1999 |
|
2000 /** |
|
2001 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
|
2002 * @adapter: board private structure |
|
2003 **/ |
|
2004 |
|
2005 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
|
2006 { |
|
2007 int i; |
|
2008 |
|
2009 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2010 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
|
2011 } |
|
2012 |
|
2013 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
|
2014 * and memory write and invalidate disabled for certain operations |
|
2015 */ |
|
2016 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
|
2017 { |
|
2018 struct e1000_hw *hw = &adapter->hw; |
|
2019 struct net_device *netdev = adapter->netdev; |
|
2020 u32 rctl; |
|
2021 |
|
2022 e1000_pci_clear_mwi(hw); |
|
2023 |
|
2024 rctl = er32(RCTL); |
|
2025 rctl |= E1000_RCTL_RST; |
|
2026 ew32(RCTL, rctl); |
|
2027 E1000_WRITE_FLUSH(); |
|
2028 mdelay(5); |
|
2029 |
|
2030 if (netif_running(netdev)) |
|
2031 e1000_clean_all_rx_rings(adapter); |
|
2032 } |
|
2033 |
|
2034 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
|
2035 { |
|
2036 struct e1000_hw *hw = &adapter->hw; |
|
2037 struct net_device *netdev = adapter->netdev; |
|
2038 u32 rctl; |
|
2039 |
|
2040 rctl = er32(RCTL); |
|
2041 rctl &= ~E1000_RCTL_RST; |
|
2042 ew32(RCTL, rctl); |
|
2043 E1000_WRITE_FLUSH(); |
|
2044 mdelay(5); |
|
2045 |
|
2046 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
2047 e1000_pci_set_mwi(hw); |
|
2048 |
|
2049 if (netif_running(netdev)) { |
|
2050 /* No need to loop, because 82542 supports only 1 queue */ |
|
2051 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
|
2052 e1000_configure_rx(adapter); |
|
2053 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
|
2054 } |
|
2055 } |
|
2056 |
|
2057 /** |
|
2058 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
2059 * @netdev: network interface device structure |
|
2060 * @p: pointer to an address structure |
|
2061 * |
|
2062 * Returns 0 on success, negative on failure |
|
2063 **/ |
|
2064 |
|
2065 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
2066 { |
|
2067 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2068 struct e1000_hw *hw = &adapter->hw; |
|
2069 struct sockaddr *addr = p; |
|
2070 |
|
2071 if (!is_valid_ether_addr(addr->sa_data)) |
|
2072 return -EADDRNOTAVAIL; |
|
2073 |
|
2074 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2075 |
|
2076 if (hw->mac_type == e1000_82542_rev2_0) |
|
2077 e1000_enter_82542_rst(adapter); |
|
2078 |
|
2079 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2080 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
|
2081 |
|
2082 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2083 |
|
2084 if (hw->mac_type == e1000_82542_rev2_0) |
|
2085 e1000_leave_82542_rst(adapter); |
|
2086 |
|
2087 return 0; |
|
2088 } |
|
2089 |
|
2090 /** |
|
2091 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
|
2092 * @netdev: network interface device structure |
|
2093 * |
|
2094 * The set_rx_mode entry point is called whenever the unicast or multicast |
|
2095 * address lists or the network interface flags are updated. This routine is |
|
2096 * responsible for configuring the hardware for proper unicast, multicast, |
|
2097 * promiscuous mode, and all-multi behavior. |
|
2098 **/ |
|
2099 |
|
2100 static void e1000_set_rx_mode(struct net_device *netdev) |
|
2101 { |
|
2102 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2103 struct e1000_hw *hw = &adapter->hw; |
|
2104 struct netdev_hw_addr *ha; |
|
2105 bool use_uc = false; |
|
2106 u32 rctl; |
|
2107 u32 hash_value; |
|
2108 int i, rar_entries = E1000_RAR_ENTRIES; |
|
2109 int mta_reg_count = E1000_NUM_MTA_REGISTERS; |
|
2110 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); |
|
2111 |
|
2112 if (!mcarray) { |
|
2113 e_err("memory allocation failed\n"); |
|
2114 return; |
|
2115 } |
|
2116 |
|
2117 /* Check for Promiscuous and All Multicast modes */ |
|
2118 |
|
2119 rctl = er32(RCTL); |
|
2120 |
|
2121 if (netdev->flags & IFF_PROMISC) { |
|
2122 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2123 rctl &= ~E1000_RCTL_VFE; |
|
2124 } else { |
|
2125 if (netdev->flags & IFF_ALLMULTI) |
|
2126 rctl |= E1000_RCTL_MPE; |
|
2127 else |
|
2128 rctl &= ~E1000_RCTL_MPE; |
|
2129 /* Enable VLAN filter if there is a VLAN */ |
|
2130 if (adapter->vlgrp) |
|
2131 rctl |= E1000_RCTL_VFE; |
|
2132 } |
|
2133 |
|
2134 if (netdev_uc_count(netdev) > rar_entries - 1) { |
|
2135 rctl |= E1000_RCTL_UPE; |
|
2136 } else if (!(netdev->flags & IFF_PROMISC)) { |
|
2137 rctl &= ~E1000_RCTL_UPE; |
|
2138 use_uc = true; |
|
2139 } |
|
2140 |
|
2141 ew32(RCTL, rctl); |
|
2142 |
|
2143 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2144 |
|
2145 if (hw->mac_type == e1000_82542_rev2_0) |
|
2146 e1000_enter_82542_rst(adapter); |
|
2147 |
|
2148 /* load the first 14 addresses into the exact filters 1-14. Unicast |
|
2149 * addresses take precedence to avoid disabling unicast filtering |
|
2150 * when possible. |
|
2151 * |
|
2152 * RAR 0 is used for the station MAC adddress |
|
2153 * if there are not 14 addresses, go ahead and clear the filters |
|
2154 */ |
|
2155 i = 1; |
|
2156 if (use_uc) |
|
2157 netdev_for_each_uc_addr(ha, netdev) { |
|
2158 if (i == rar_entries) |
|
2159 break; |
|
2160 e1000_rar_set(hw, ha->addr, i++); |
|
2161 } |
|
2162 |
|
2163 netdev_for_each_mc_addr(ha, netdev) { |
|
2164 if (i == rar_entries) { |
|
2165 /* load any remaining addresses into the hash table */ |
|
2166 u32 hash_reg, hash_bit, mta; |
|
2167 hash_value = e1000_hash_mc_addr(hw, ha->addr); |
|
2168 hash_reg = (hash_value >> 5) & 0x7F; |
|
2169 hash_bit = hash_value & 0x1F; |
|
2170 mta = (1 << hash_bit); |
|
2171 mcarray[hash_reg] |= mta; |
|
2172 } else { |
|
2173 e1000_rar_set(hw, ha->addr, i++); |
|
2174 } |
|
2175 } |
|
2176 |
|
2177 for (; i < rar_entries; i++) { |
|
2178 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
|
2179 E1000_WRITE_FLUSH(); |
|
2180 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
|
2181 E1000_WRITE_FLUSH(); |
|
2182 } |
|
2183 |
|
2184 /* write the hash table completely, write from bottom to avoid |
|
2185 * both stupid write combining chipsets, and flushing each write */ |
|
2186 for (i = mta_reg_count - 1; i >= 0 ; i--) { |
|
2187 /* |
|
2188 * If we are on an 82544 has an errata where writing odd |
|
2189 * offsets overwrites the previous even offset, but writing |
|
2190 * backwards over the range solves the issue by always |
|
2191 * writing the odd offset first |
|
2192 */ |
|
2193 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); |
|
2194 } |
|
2195 E1000_WRITE_FLUSH(); |
|
2196 |
|
2197 if (hw->mac_type == e1000_82542_rev2_0) |
|
2198 e1000_leave_82542_rst(adapter); |
|
2199 |
|
2200 kfree(mcarray); |
|
2201 } |
|
2202 |
|
2203 /* Need to wait a few seconds after link up to get diagnostic information from |
|
2204 * the phy */ |
|
2205 |
|
2206 static void e1000_update_phy_info(unsigned long data) |
|
2207 { |
|
2208 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2209 struct e1000_hw *hw = &adapter->hw; |
|
2210 e1000_phy_get_info(hw, &adapter->phy_info); |
|
2211 } |
|
2212 |
|
2213 /** |
|
2214 * e1000_82547_tx_fifo_stall - Timer Call-back |
|
2215 * @data: pointer to adapter cast into an unsigned long |
|
2216 **/ |
|
2217 |
|
2218 static void e1000_82547_tx_fifo_stall(unsigned long data) |
|
2219 { |
|
2220 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2221 struct e1000_hw *hw = &adapter->hw; |
|
2222 struct net_device *netdev = adapter->netdev; |
|
2223 u32 tctl; |
|
2224 |
|
2225 if (atomic_read(&adapter->tx_fifo_stall)) { |
|
2226 if ((er32(TDT) == er32(TDH)) && |
|
2227 (er32(TDFT) == er32(TDFH)) && |
|
2228 (er32(TDFTS) == er32(TDFHS))) { |
|
2229 tctl = er32(TCTL); |
|
2230 ew32(TCTL, tctl & ~E1000_TCTL_EN); |
|
2231 ew32(TDFT, adapter->tx_head_addr); |
|
2232 ew32(TDFH, adapter->tx_head_addr); |
|
2233 ew32(TDFTS, adapter->tx_head_addr); |
|
2234 ew32(TDFHS, adapter->tx_head_addr); |
|
2235 ew32(TCTL, tctl); |
|
2236 E1000_WRITE_FLUSH(); |
|
2237 |
|
2238 adapter->tx_fifo_head = 0; |
|
2239 atomic_set(&adapter->tx_fifo_stall, 0); |
|
2240 netif_wake_queue(netdev); |
|
2241 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { |
|
2242 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
2243 } |
|
2244 } |
|
2245 } |
|
2246 |
|
2247 bool e1000_has_link(struct e1000_adapter *adapter) |
|
2248 { |
|
2249 struct e1000_hw *hw = &adapter->hw; |
|
2250 bool link_active = false; |
|
2251 |
|
2252 /* get_link_status is set on LSC (link status) interrupt or |
|
2253 * rx sequence error interrupt. get_link_status will stay |
|
2254 * false until the e1000_check_for_link establishes link |
|
2255 * for copper adapters ONLY |
|
2256 */ |
|
2257 switch (hw->media_type) { |
|
2258 case e1000_media_type_copper: |
|
2259 if (hw->get_link_status) { |
|
2260 e1000_check_for_link(hw); |
|
2261 link_active = !hw->get_link_status; |
|
2262 } else { |
|
2263 link_active = true; |
|
2264 } |
|
2265 break; |
|
2266 case e1000_media_type_fiber: |
|
2267 e1000_check_for_link(hw); |
|
2268 link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
|
2269 break; |
|
2270 case e1000_media_type_internal_serdes: |
|
2271 e1000_check_for_link(hw); |
|
2272 link_active = hw->serdes_has_link; |
|
2273 break; |
|
2274 default: |
|
2275 break; |
|
2276 } |
|
2277 |
|
2278 return link_active; |
|
2279 } |
|
2280 |
|
2281 /** |
|
2282 * e1000_watchdog - Timer Call-back |
|
2283 * @data: pointer to adapter cast into an unsigned long |
|
2284 **/ |
|
2285 static void e1000_watchdog(unsigned long data) |
|
2286 { |
|
2287 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2288 struct e1000_hw *hw = &adapter->hw; |
|
2289 struct net_device *netdev = adapter->netdev; |
|
2290 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
2291 u32 link, tctl; |
|
2292 |
|
2293 link = e1000_has_link(adapter); |
|
2294 if ((netif_carrier_ok(netdev)) && link) |
|
2295 goto link_up; |
|
2296 |
|
2297 if (link) { |
|
2298 if (!netif_carrier_ok(netdev)) { |
|
2299 u32 ctrl; |
|
2300 bool txb2b = true; |
|
2301 /* update snapshot of PHY registers on LSC */ |
|
2302 e1000_get_speed_and_duplex(hw, |
|
2303 &adapter->link_speed, |
|
2304 &adapter->link_duplex); |
|
2305 |
|
2306 ctrl = er32(CTRL); |
|
2307 pr_info("%s NIC Link is Up %d Mbps %s, " |
|
2308 "Flow Control: %s\n", |
|
2309 netdev->name, |
|
2310 adapter->link_speed, |
|
2311 adapter->link_duplex == FULL_DUPLEX ? |
|
2312 "Full Duplex" : "Half Duplex", |
|
2313 ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
|
2314 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
|
2315 E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
|
2316 E1000_CTRL_TFCE) ? "TX" : "None"))); |
|
2317 |
|
2318 /* adjust timeout factor according to speed/duplex */ |
|
2319 adapter->tx_timeout_factor = 1; |
|
2320 switch (adapter->link_speed) { |
|
2321 case SPEED_10: |
|
2322 txb2b = false; |
|
2323 adapter->tx_timeout_factor = 16; |
|
2324 break; |
|
2325 case SPEED_100: |
|
2326 txb2b = false; |
|
2327 /* maybe add some timeout factor ? */ |
|
2328 break; |
|
2329 } |
|
2330 |
|
2331 /* enable transmits in the hardware */ |
|
2332 tctl = er32(TCTL); |
|
2333 tctl |= E1000_TCTL_EN; |
|
2334 ew32(TCTL, tctl); |
|
2335 |
|
2336 netif_carrier_on(netdev); |
|
2337 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2338 mod_timer(&adapter->phy_info_timer, |
|
2339 round_jiffies(jiffies + 2 * HZ)); |
|
2340 adapter->smartspeed = 0; |
|
2341 } |
|
2342 } else { |
|
2343 if (netif_carrier_ok(netdev)) { |
|
2344 adapter->link_speed = 0; |
|
2345 adapter->link_duplex = 0; |
|
2346 pr_info("%s NIC Link is Down\n", |
|
2347 netdev->name); |
|
2348 netif_carrier_off(netdev); |
|
2349 |
|
2350 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2351 mod_timer(&adapter->phy_info_timer, |
|
2352 round_jiffies(jiffies + 2 * HZ)); |
|
2353 } |
|
2354 |
|
2355 e1000_smartspeed(adapter); |
|
2356 } |
|
2357 |
|
2358 link_up: |
|
2359 e1000_update_stats(adapter); |
|
2360 |
|
2361 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
2362 adapter->tpt_old = adapter->stats.tpt; |
|
2363 hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
2364 adapter->colc_old = adapter->stats.colc; |
|
2365 |
|
2366 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
|
2367 adapter->gorcl_old = adapter->stats.gorcl; |
|
2368 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
|
2369 adapter->gotcl_old = adapter->stats.gotcl; |
|
2370 |
|
2371 e1000_update_adaptive(hw); |
|
2372 |
|
2373 if (!netif_carrier_ok(netdev)) { |
|
2374 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
|
2375 /* We've lost link, so the controller stops DMA, |
|
2376 * but we've got queued Tx work that's never going |
|
2377 * to get done, so reset controller to flush Tx. |
|
2378 * (Do the reset outside of interrupt context). */ |
|
2379 adapter->tx_timeout_count++; |
|
2380 schedule_work(&adapter->reset_task); |
|
2381 /* return immediately since reset is imminent */ |
|
2382 return; |
|
2383 } |
|
2384 } |
|
2385 |
|
2386 /* Simple mode for Interrupt Throttle Rate (ITR) */ |
|
2387 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { |
|
2388 /* |
|
2389 * Symmetric Tx/Rx gets a reduced ITR=2000; |
|
2390 * Total asymmetrical Tx or Rx gets ITR=8000; |
|
2391 * everyone else is between 2000-8000. |
|
2392 */ |
|
2393 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; |
|
2394 u32 dif = (adapter->gotcl > adapter->gorcl ? |
|
2395 adapter->gotcl - adapter->gorcl : |
|
2396 adapter->gorcl - adapter->gotcl) / 10000; |
|
2397 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
|
2398 |
|
2399 ew32(ITR, 1000000000 / (itr * 256)); |
|
2400 } |
|
2401 |
|
2402 /* Cause software interrupt to ensure rx ring is cleaned */ |
|
2403 ew32(ICS, E1000_ICS_RXDMT0); |
|
2404 |
|
2405 /* Force detection of hung controller every watchdog period */ |
|
2406 adapter->detect_tx_hung = true; |
|
2407 |
|
2408 /* Reset the timer */ |
|
2409 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2410 mod_timer(&adapter->watchdog_timer, |
|
2411 round_jiffies(jiffies + 2 * HZ)); |
|
2412 } |
|
2413 |
|
2414 enum latency_range { |
|
2415 lowest_latency = 0, |
|
2416 low_latency = 1, |
|
2417 bulk_latency = 2, |
|
2418 latency_invalid = 255 |
|
2419 }; |
|
2420 |
|
2421 /** |
|
2422 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2423 * @adapter: pointer to adapter |
|
2424 * @itr_setting: current adapter->itr |
|
2425 * @packets: the number of packets during this measurement interval |
|
2426 * @bytes: the number of bytes during this measurement interval |
|
2427 * |
|
2428 * Stores a new ITR value based on packets and byte |
|
2429 * counts during the last interrupt. The advantage of per interrupt |
|
2430 * computation is faster updates and more accurate ITR for the current |
|
2431 * traffic pattern. Constants in this function were computed |
|
2432 * based on theoretical maximum wire speed and thresholds were set based |
|
2433 * on testing data as well as attempting to minimize response time |
|
2434 * while increasing bulk throughput. |
|
2435 * this functionality is controlled by the InterruptThrottleRate module |
|
2436 * parameter (see e1000_param.c) |
|
2437 **/ |
|
2438 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2439 u16 itr_setting, int packets, int bytes) |
|
2440 { |
|
2441 unsigned int retval = itr_setting; |
|
2442 struct e1000_hw *hw = &adapter->hw; |
|
2443 |
|
2444 if (unlikely(hw->mac_type < e1000_82540)) |
|
2445 goto update_itr_done; |
|
2446 |
|
2447 if (packets == 0) |
|
2448 goto update_itr_done; |
|
2449 |
|
2450 switch (itr_setting) { |
|
2451 case lowest_latency: |
|
2452 /* jumbo frames get bulk treatment*/ |
|
2453 if (bytes/packets > 8000) |
|
2454 retval = bulk_latency; |
|
2455 else if ((packets < 5) && (bytes > 512)) |
|
2456 retval = low_latency; |
|
2457 break; |
|
2458 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2459 if (bytes > 10000) { |
|
2460 /* jumbo frames need bulk latency setting */ |
|
2461 if (bytes/packets > 8000) |
|
2462 retval = bulk_latency; |
|
2463 else if ((packets < 10) || ((bytes/packets) > 1200)) |
|
2464 retval = bulk_latency; |
|
2465 else if ((packets > 35)) |
|
2466 retval = lowest_latency; |
|
2467 } else if (bytes/packets > 2000) |
|
2468 retval = bulk_latency; |
|
2469 else if (packets <= 2 && bytes < 512) |
|
2470 retval = lowest_latency; |
|
2471 break; |
|
2472 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2473 if (bytes > 25000) { |
|
2474 if (packets > 35) |
|
2475 retval = low_latency; |
|
2476 } else if (bytes < 6000) { |
|
2477 retval = low_latency; |
|
2478 } |
|
2479 break; |
|
2480 } |
|
2481 |
|
2482 update_itr_done: |
|
2483 return retval; |
|
2484 } |
|
2485 |
|
2486 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2487 { |
|
2488 struct e1000_hw *hw = &adapter->hw; |
|
2489 u16 current_itr; |
|
2490 u32 new_itr = adapter->itr; |
|
2491 |
|
2492 if (unlikely(hw->mac_type < e1000_82540)) |
|
2493 return; |
|
2494 |
|
2495 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2496 if (unlikely(adapter->link_speed != SPEED_1000)) { |
|
2497 current_itr = 0; |
|
2498 new_itr = 4000; |
|
2499 goto set_itr_now; |
|
2500 } |
|
2501 |
|
2502 adapter->tx_itr = e1000_update_itr(adapter, |
|
2503 adapter->tx_itr, |
|
2504 adapter->total_tx_packets, |
|
2505 adapter->total_tx_bytes); |
|
2506 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2507 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2508 adapter->tx_itr = low_latency; |
|
2509 |
|
2510 adapter->rx_itr = e1000_update_itr(adapter, |
|
2511 adapter->rx_itr, |
|
2512 adapter->total_rx_packets, |
|
2513 adapter->total_rx_bytes); |
|
2514 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2515 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2516 adapter->rx_itr = low_latency; |
|
2517 |
|
2518 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2519 |
|
2520 switch (current_itr) { |
|
2521 /* counts and packets in update_itr are dependent on these numbers */ |
|
2522 case lowest_latency: |
|
2523 new_itr = 70000; |
|
2524 break; |
|
2525 case low_latency: |
|
2526 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2527 break; |
|
2528 case bulk_latency: |
|
2529 new_itr = 4000; |
|
2530 break; |
|
2531 default: |
|
2532 break; |
|
2533 } |
|
2534 |
|
2535 set_itr_now: |
|
2536 if (new_itr != adapter->itr) { |
|
2537 /* this attempts to bias the interrupt rate towards Bulk |
|
2538 * by adding intermediate steps when interrupt rate is |
|
2539 * increasing */ |
|
2540 new_itr = new_itr > adapter->itr ? |
|
2541 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2542 new_itr; |
|
2543 adapter->itr = new_itr; |
|
2544 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2545 } |
|
2546 } |
|
2547 |
|
2548 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
2549 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
2550 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
2551 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
2552 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
2553 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
2554 |
|
2555 static int e1000_tso(struct e1000_adapter *adapter, |
|
2556 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2557 { |
|
2558 struct e1000_context_desc *context_desc; |
|
2559 struct e1000_buffer *buffer_info; |
|
2560 unsigned int i; |
|
2561 u32 cmd_length = 0; |
|
2562 u16 ipcse = 0, tucse, mss; |
|
2563 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
2564 int err; |
|
2565 |
|
2566 if (skb_is_gso(skb)) { |
|
2567 if (skb_header_cloned(skb)) { |
|
2568 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
2569 if (err) |
|
2570 return err; |
|
2571 } |
|
2572 |
|
2573 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
2574 mss = skb_shinfo(skb)->gso_size; |
|
2575 if (skb->protocol == htons(ETH_P_IP)) { |
|
2576 struct iphdr *iph = ip_hdr(skb); |
|
2577 iph->tot_len = 0; |
|
2578 iph->check = 0; |
|
2579 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
2580 iph->daddr, 0, |
|
2581 IPPROTO_TCP, |
|
2582 0); |
|
2583 cmd_length = E1000_TXD_CMD_IP; |
|
2584 ipcse = skb_transport_offset(skb) - 1; |
|
2585 } else if (skb->protocol == htons(ETH_P_IPV6)) { |
|
2586 ipv6_hdr(skb)->payload_len = 0; |
|
2587 tcp_hdr(skb)->check = |
|
2588 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
2589 &ipv6_hdr(skb)->daddr, |
|
2590 0, IPPROTO_TCP, 0); |
|
2591 ipcse = 0; |
|
2592 } |
|
2593 ipcss = skb_network_offset(skb); |
|
2594 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
2595 tucss = skb_transport_offset(skb); |
|
2596 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
2597 tucse = 0; |
|
2598 |
|
2599 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
2600 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
2601 |
|
2602 i = tx_ring->next_to_use; |
|
2603 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2604 buffer_info = &tx_ring->buffer_info[i]; |
|
2605 |
|
2606 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
2607 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
2608 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
2609 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
2610 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
2611 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
2612 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
2613 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
2614 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
2615 |
|
2616 buffer_info->time_stamp = jiffies; |
|
2617 buffer_info->next_to_watch = i; |
|
2618 |
|
2619 if (++i == tx_ring->count) i = 0; |
|
2620 tx_ring->next_to_use = i; |
|
2621 |
|
2622 return true; |
|
2623 } |
|
2624 return false; |
|
2625 } |
|
2626 |
|
2627 static bool e1000_tx_csum(struct e1000_adapter *adapter, |
|
2628 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2629 { |
|
2630 struct e1000_context_desc *context_desc; |
|
2631 struct e1000_buffer *buffer_info; |
|
2632 unsigned int i; |
|
2633 u8 css; |
|
2634 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
2635 |
|
2636 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
2637 return false; |
|
2638 |
|
2639 switch (skb->protocol) { |
|
2640 case cpu_to_be16(ETH_P_IP): |
|
2641 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
2642 cmd_len |= E1000_TXD_CMD_TCP; |
|
2643 break; |
|
2644 case cpu_to_be16(ETH_P_IPV6): |
|
2645 /* XXX not handling all IPV6 headers */ |
|
2646 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
2647 cmd_len |= E1000_TXD_CMD_TCP; |
|
2648 break; |
|
2649 default: |
|
2650 if (unlikely(net_ratelimit())) |
|
2651 e_warn("checksum_partial proto=%x!\n", skb->protocol); |
|
2652 break; |
|
2653 } |
|
2654 |
|
2655 css = skb_transport_offset(skb); |
|
2656 |
|
2657 i = tx_ring->next_to_use; |
|
2658 buffer_info = &tx_ring->buffer_info[i]; |
|
2659 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2660 |
|
2661 context_desc->lower_setup.ip_config = 0; |
|
2662 context_desc->upper_setup.tcp_fields.tucss = css; |
|
2663 context_desc->upper_setup.tcp_fields.tucso = |
|
2664 css + skb->csum_offset; |
|
2665 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
2666 context_desc->tcp_seg_setup.data = 0; |
|
2667 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
2668 |
|
2669 buffer_info->time_stamp = jiffies; |
|
2670 buffer_info->next_to_watch = i; |
|
2671 |
|
2672 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2673 tx_ring->next_to_use = i; |
|
2674 |
|
2675 return true; |
|
2676 } |
|
2677 |
|
2678 #define E1000_MAX_TXD_PWR 12 |
|
2679 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
|
2680 |
|
2681 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
2682 struct e1000_tx_ring *tx_ring, |
|
2683 struct sk_buff *skb, unsigned int first, |
|
2684 unsigned int max_per_txd, unsigned int nr_frags, |
|
2685 unsigned int mss) |
|
2686 { |
|
2687 struct e1000_hw *hw = &adapter->hw; |
|
2688 struct pci_dev *pdev = adapter->pdev; |
|
2689 struct e1000_buffer *buffer_info; |
|
2690 unsigned int len = skb_headlen(skb); |
|
2691 unsigned int offset = 0, size, count = 0, i; |
|
2692 unsigned int f; |
|
2693 |
|
2694 i = tx_ring->next_to_use; |
|
2695 |
|
2696 while (len) { |
|
2697 buffer_info = &tx_ring->buffer_info[i]; |
|
2698 size = min(len, max_per_txd); |
|
2699 /* Workaround for Controller erratum -- |
|
2700 * descriptor for non-tso packet in a linear SKB that follows a |
|
2701 * tso gets written back prematurely before the data is fully |
|
2702 * DMA'd to the controller */ |
|
2703 if (!skb->data_len && tx_ring->last_tx_tso && |
|
2704 !skb_is_gso(skb)) { |
|
2705 tx_ring->last_tx_tso = 0; |
|
2706 size -= 4; |
|
2707 } |
|
2708 |
|
2709 /* Workaround for premature desc write-backs |
|
2710 * in TSO mode. Append 4-byte sentinel desc */ |
|
2711 if (unlikely(mss && !nr_frags && size == len && size > 8)) |
|
2712 size -= 4; |
|
2713 /* work-around for errata 10 and it applies |
|
2714 * to all controllers in PCI-X mode |
|
2715 * The fix is to make sure that the first descriptor of a |
|
2716 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
|
2717 */ |
|
2718 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
2719 (size > 2015) && count == 0)) |
|
2720 size = 2015; |
|
2721 |
|
2722 /* Workaround for potential 82544 hang in PCI-X. Avoid |
|
2723 * terminating buffers within evenly-aligned dwords. */ |
|
2724 if (unlikely(adapter->pcix_82544 && |
|
2725 !((unsigned long)(skb->data + offset + size - 1) & 4) && |
|
2726 size > 4)) |
|
2727 size -= 4; |
|
2728 |
|
2729 buffer_info->length = size; |
|
2730 /* set time_stamp *before* dma to help avoid a possible race */ |
|
2731 buffer_info->time_stamp = jiffies; |
|
2732 buffer_info->mapped_as_page = false; |
|
2733 buffer_info->dma = dma_map_single(&pdev->dev, |
|
2734 skb->data + offset, |
|
2735 size, DMA_TO_DEVICE); |
|
2736 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
2737 goto dma_error; |
|
2738 buffer_info->next_to_watch = i; |
|
2739 |
|
2740 len -= size; |
|
2741 offset += size; |
|
2742 count++; |
|
2743 if (len) { |
|
2744 i++; |
|
2745 if (unlikely(i == tx_ring->count)) |
|
2746 i = 0; |
|
2747 } |
|
2748 } |
|
2749 |
|
2750 for (f = 0; f < nr_frags; f++) { |
|
2751 struct skb_frag_struct *frag; |
|
2752 |
|
2753 frag = &skb_shinfo(skb)->frags[f]; |
|
2754 len = frag->size; |
|
2755 offset = frag->page_offset; |
|
2756 |
|
2757 while (len) { |
|
2758 i++; |
|
2759 if (unlikely(i == tx_ring->count)) |
|
2760 i = 0; |
|
2761 |
|
2762 buffer_info = &tx_ring->buffer_info[i]; |
|
2763 size = min(len, max_per_txd); |
|
2764 /* Workaround for premature desc write-backs |
|
2765 * in TSO mode. Append 4-byte sentinel desc */ |
|
2766 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) |
|
2767 size -= 4; |
|
2768 /* Workaround for potential 82544 hang in PCI-X. |
|
2769 * Avoid terminating buffers within evenly-aligned |
|
2770 * dwords. */ |
|
2771 if (unlikely(adapter->pcix_82544 && |
|
2772 !((unsigned long)(page_to_phys(frag->page) + offset |
|
2773 + size - 1) & 4) && |
|
2774 size > 4)) |
|
2775 size -= 4; |
|
2776 |
|
2777 buffer_info->length = size; |
|
2778 buffer_info->time_stamp = jiffies; |
|
2779 buffer_info->mapped_as_page = true; |
|
2780 buffer_info->dma = dma_map_page(&pdev->dev, frag->page, |
|
2781 offset, size, |
|
2782 DMA_TO_DEVICE); |
|
2783 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
2784 goto dma_error; |
|
2785 buffer_info->next_to_watch = i; |
|
2786 |
|
2787 len -= size; |
|
2788 offset += size; |
|
2789 count++; |
|
2790 } |
|
2791 } |
|
2792 |
|
2793 tx_ring->buffer_info[i].skb = skb; |
|
2794 tx_ring->buffer_info[first].next_to_watch = i; |
|
2795 |
|
2796 return count; |
|
2797 |
|
2798 dma_error: |
|
2799 dev_err(&pdev->dev, "TX DMA map failed\n"); |
|
2800 buffer_info->dma = 0; |
|
2801 if (count) |
|
2802 count--; |
|
2803 |
|
2804 while (count--) { |
|
2805 if (i==0) |
|
2806 i += tx_ring->count; |
|
2807 i--; |
|
2808 buffer_info = &tx_ring->buffer_info[i]; |
|
2809 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
2810 } |
|
2811 |
|
2812 return 0; |
|
2813 } |
|
2814 |
|
2815 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
2816 struct e1000_tx_ring *tx_ring, int tx_flags, |
|
2817 int count) |
|
2818 { |
|
2819 struct e1000_hw *hw = &adapter->hw; |
|
2820 struct e1000_tx_desc *tx_desc = NULL; |
|
2821 struct e1000_buffer *buffer_info; |
|
2822 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
2823 unsigned int i; |
|
2824 |
|
2825 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
|
2826 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
2827 E1000_TXD_CMD_TSE; |
|
2828 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
2829 |
|
2830 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
|
2831 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
2832 } |
|
2833 |
|
2834 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
|
2835 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
2836 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
2837 } |
|
2838 |
|
2839 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
|
2840 txd_lower |= E1000_TXD_CMD_VLE; |
|
2841 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
2842 } |
|
2843 |
|
2844 i = tx_ring->next_to_use; |
|
2845 |
|
2846 while (count--) { |
|
2847 buffer_info = &tx_ring->buffer_info[i]; |
|
2848 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
2849 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
2850 tx_desc->lower.data = |
|
2851 cpu_to_le32(txd_lower | buffer_info->length); |
|
2852 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
2853 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2854 } |
|
2855 |
|
2856 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
2857 |
|
2858 /* Force memory writes to complete before letting h/w |
|
2859 * know there are new descriptors to fetch. (Only |
|
2860 * applicable for weak-ordered memory model archs, |
|
2861 * such as IA-64). */ |
|
2862 wmb(); |
|
2863 |
|
2864 tx_ring->next_to_use = i; |
|
2865 writel(i, hw->hw_addr + tx_ring->tdt); |
|
2866 /* we need this if more than one processor can write to our tail |
|
2867 * at a time, it syncronizes IO on IA64/Altix systems */ |
|
2868 mmiowb(); |
|
2869 } |
|
2870 |
|
2871 /** |
|
2872 * 82547 workaround to avoid controller hang in half-duplex environment. |
|
2873 * The workaround is to avoid queuing a large packet that would span |
|
2874 * the internal Tx FIFO ring boundary by notifying the stack to resend |
|
2875 * the packet at a later time. This gives the Tx FIFO an opportunity to |
|
2876 * flush all packets. When that occurs, we reset the Tx FIFO pointers |
|
2877 * to the beginning of the Tx FIFO. |
|
2878 **/ |
|
2879 |
|
2880 #define E1000_FIFO_HDR 0x10 |
|
2881 #define E1000_82547_PAD_LEN 0x3E0 |
|
2882 |
|
2883 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
2884 struct sk_buff *skb) |
|
2885 { |
|
2886 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
|
2887 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
|
2888 |
|
2889 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
|
2890 |
|
2891 if (adapter->link_duplex != HALF_DUPLEX) |
|
2892 goto no_fifo_stall_required; |
|
2893 |
|
2894 if (atomic_read(&adapter->tx_fifo_stall)) |
|
2895 return 1; |
|
2896 |
|
2897 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
|
2898 atomic_set(&adapter->tx_fifo_stall, 1); |
|
2899 return 1; |
|
2900 } |
|
2901 |
|
2902 no_fifo_stall_required: |
|
2903 adapter->tx_fifo_head += skb_fifo_len; |
|
2904 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
|
2905 adapter->tx_fifo_head -= adapter->tx_fifo_size; |
|
2906 return 0; |
|
2907 } |
|
2908 |
|
2909 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
2910 { |
|
2911 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2912 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
2913 |
|
2914 netif_stop_queue(netdev); |
|
2915 /* Herbert's original patch had: |
|
2916 * smp_mb__after_netif_stop_queue(); |
|
2917 * but since that doesn't exist yet, just open code it. */ |
|
2918 smp_mb(); |
|
2919 |
|
2920 /* We need to check again in a case another CPU has just |
|
2921 * made room available. */ |
|
2922 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
|
2923 return -EBUSY; |
|
2924 |
|
2925 /* A reprieve! */ |
|
2926 netif_start_queue(netdev); |
|
2927 ++adapter->restart_queue; |
|
2928 return 0; |
|
2929 } |
|
2930 |
|
2931 static int e1000_maybe_stop_tx(struct net_device *netdev, |
|
2932 struct e1000_tx_ring *tx_ring, int size) |
|
2933 { |
|
2934 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
|
2935 return 0; |
|
2936 return __e1000_maybe_stop_tx(netdev, size); |
|
2937 } |
|
2938 |
|
2939 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
2940 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
2941 struct net_device *netdev) |
|
2942 { |
|
2943 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2944 struct e1000_hw *hw = &adapter->hw; |
|
2945 struct e1000_tx_ring *tx_ring; |
|
2946 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
|
2947 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
2948 unsigned int tx_flags = 0; |
|
2949 unsigned int len = skb_headlen(skb); |
|
2950 unsigned int nr_frags; |
|
2951 unsigned int mss; |
|
2952 int count = 0; |
|
2953 int tso; |
|
2954 unsigned int f; |
|
2955 |
|
2956 /* This goes back to the question of how to logically map a tx queue |
|
2957 * to a flow. Right now, performance is impacted slightly negatively |
|
2958 * if using multiple tx queues. If the stack breaks away from a |
|
2959 * single qdisc implementation, we can look at this again. */ |
|
2960 tx_ring = adapter->tx_ring; |
|
2961 |
|
2962 if (unlikely(skb->len <= 0)) { |
|
2963 dev_kfree_skb_any(skb); |
|
2964 return NETDEV_TX_OK; |
|
2965 } |
|
2966 |
|
2967 mss = skb_shinfo(skb)->gso_size; |
|
2968 /* The controller does a simple calculation to |
|
2969 * make sure there is enough room in the FIFO before |
|
2970 * initiating the DMA for each buffer. The calc is: |
|
2971 * 4 = ceil(buffer len/mss). To make sure we don't |
|
2972 * overrun the FIFO, adjust the max buffer len if mss |
|
2973 * drops. */ |
|
2974 if (mss) { |
|
2975 u8 hdr_len; |
|
2976 max_per_txd = min(mss << 2, max_per_txd); |
|
2977 max_txd_pwr = fls(max_per_txd) - 1; |
|
2978 |
|
2979 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
2980 if (skb->data_len && hdr_len == len) { |
|
2981 switch (hw->mac_type) { |
|
2982 unsigned int pull_size; |
|
2983 case e1000_82544: |
|
2984 /* Make sure we have room to chop off 4 bytes, |
|
2985 * and that the end alignment will work out to |
|
2986 * this hardware's requirements |
|
2987 * NOTE: this is a TSO only workaround |
|
2988 * if end byte alignment not correct move us |
|
2989 * into the next dword */ |
|
2990 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) |
|
2991 break; |
|
2992 /* fall through */ |
|
2993 pull_size = min((unsigned int)4, skb->data_len); |
|
2994 if (!__pskb_pull_tail(skb, pull_size)) { |
|
2995 e_err("__pskb_pull_tail failed.\n"); |
|
2996 dev_kfree_skb_any(skb); |
|
2997 return NETDEV_TX_OK; |
|
2998 } |
|
2999 len = skb_headlen(skb); |
|
3000 break; |
|
3001 default: |
|
3002 /* do nothing */ |
|
3003 break; |
|
3004 } |
|
3005 } |
|
3006 } |
|
3007 |
|
3008 /* reserve a descriptor for the offload context */ |
|
3009 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
3010 count++; |
|
3011 count++; |
|
3012 |
|
3013 /* Controller Erratum workaround */ |
|
3014 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
|
3015 count++; |
|
3016 |
|
3017 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
3018 |
|
3019 if (adapter->pcix_82544) |
|
3020 count++; |
|
3021 |
|
3022 /* work-around for errata 10 and it applies to all controllers |
|
3023 * in PCI-X mode, so add one more descriptor to the count |
|
3024 */ |
|
3025 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3026 (len > 2015))) |
|
3027 count++; |
|
3028 |
|
3029 nr_frags = skb_shinfo(skb)->nr_frags; |
|
3030 for (f = 0; f < nr_frags; f++) |
|
3031 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
3032 max_txd_pwr); |
|
3033 if (adapter->pcix_82544) |
|
3034 count += nr_frags; |
|
3035 |
|
3036 /* need: count + 2 desc gap to keep tail from touching |
|
3037 * head, otherwise try next time */ |
|
3038 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) |
|
3039 return NETDEV_TX_BUSY; |
|
3040 |
|
3041 if (unlikely(hw->mac_type == e1000_82547)) { |
|
3042 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { |
|
3043 netif_stop_queue(netdev); |
|
3044 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3045 mod_timer(&adapter->tx_fifo_stall_timer, |
|
3046 jiffies + 1); |
|
3047 return NETDEV_TX_BUSY; |
|
3048 } |
|
3049 } |
|
3050 |
|
3051 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { |
|
3052 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
3053 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
3054 } |
|
3055 |
|
3056 first = tx_ring->next_to_use; |
|
3057 |
|
3058 tso = e1000_tso(adapter, tx_ring, skb); |
|
3059 if (tso < 0) { |
|
3060 dev_kfree_skb_any(skb); |
|
3061 return NETDEV_TX_OK; |
|
3062 } |
|
3063 |
|
3064 if (likely(tso)) { |
|
3065 if (likely(hw->mac_type != e1000_82544)) |
|
3066 tx_ring->last_tx_tso = 1; |
|
3067 tx_flags |= E1000_TX_FLAGS_TSO; |
|
3068 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
|
3069 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
3070 |
|
3071 if (likely(skb->protocol == htons(ETH_P_IP))) |
|
3072 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
3073 |
|
3074 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, |
|
3075 nr_frags, mss); |
|
3076 |
|
3077 if (count) { |
|
3078 e1000_tx_queue(adapter, tx_ring, tx_flags, count); |
|
3079 /* Make sure there is space in the ring for the next send. */ |
|
3080 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
|
3081 |
|
3082 } else { |
|
3083 dev_kfree_skb_any(skb); |
|
3084 tx_ring->buffer_info[first].time_stamp = 0; |
|
3085 tx_ring->next_to_use = first; |
|
3086 } |
|
3087 |
|
3088 return NETDEV_TX_OK; |
|
3089 } |
|
3090 |
|
3091 /** |
|
3092 * e1000_tx_timeout - Respond to a Tx Hang |
|
3093 * @netdev: network interface device structure |
|
3094 **/ |
|
3095 |
|
3096 static void e1000_tx_timeout(struct net_device *netdev) |
|
3097 { |
|
3098 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3099 |
|
3100 /* Do the reset outside of interrupt context */ |
|
3101 adapter->tx_timeout_count++; |
|
3102 schedule_work(&adapter->reset_task); |
|
3103 } |
|
3104 |
|
3105 static void e1000_reset_task(struct work_struct *work) |
|
3106 { |
|
3107 struct e1000_adapter *adapter = |
|
3108 container_of(work, struct e1000_adapter, reset_task); |
|
3109 |
|
3110 e1000_reinit_locked(adapter); |
|
3111 } |
|
3112 |
|
3113 /** |
|
3114 * e1000_get_stats - Get System Network Statistics |
|
3115 * @netdev: network interface device structure |
|
3116 * |
|
3117 * Returns the address of the device statistics structure. |
|
3118 * The statistics are actually updated from the timer callback. |
|
3119 **/ |
|
3120 |
|
3121 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
3122 { |
|
3123 /* only return the current stats */ |
|
3124 return &netdev->stats; |
|
3125 } |
|
3126 |
|
3127 /** |
|
3128 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
3129 * @netdev: network interface device structure |
|
3130 * @new_mtu: new value for maximum frame size |
|
3131 * |
|
3132 * Returns 0 on success, negative on failure |
|
3133 **/ |
|
3134 |
|
3135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
3136 { |
|
3137 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3138 struct e1000_hw *hw = &adapter->hw; |
|
3139 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
3140 |
|
3141 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
|
3142 (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
|
3143 e_err("Invalid MTU setting\n"); |
|
3144 return -EINVAL; |
|
3145 } |
|
3146 |
|
3147 /* Adapter-specific max frame size limits. */ |
|
3148 switch (hw->mac_type) { |
|
3149 case e1000_undefined ... e1000_82542_rev2_1: |
|
3150 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { |
|
3151 e_err("Jumbo Frames not supported.\n"); |
|
3152 return -EINVAL; |
|
3153 } |
|
3154 break; |
|
3155 default: |
|
3156 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
|
3157 break; |
|
3158 } |
|
3159 |
|
3160 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
3161 msleep(1); |
|
3162 /* e1000_down has a dependency on max_frame_size */ |
|
3163 hw->max_frame_size = max_frame; |
|
3164 if (netif_running(netdev)) |
|
3165 e1000_down(adapter); |
|
3166 |
|
3167 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
3168 * means we reserve 2 more, this pushes us to allocate from the next |
|
3169 * larger slab size. |
|
3170 * i.e. RXBUFFER_2048 --> size-4096 slab |
|
3171 * however with the new *_jumbo_rx* routines, jumbo receives will use |
|
3172 * fragmented skbs */ |
|
3173 |
|
3174 if (max_frame <= E1000_RXBUFFER_2048) |
|
3175 adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
|
3176 else |
|
3177 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) |
|
3178 adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
|
3179 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) |
|
3180 adapter->rx_buffer_len = PAGE_SIZE; |
|
3181 #endif |
|
3182 |
|
3183 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
3184 if (!hw->tbi_compatibility_on && |
|
3185 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || |
|
3186 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
|
3187 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
3188 |
|
3189 pr_info("%s changing MTU from %d to %d\n", |
|
3190 netdev->name, netdev->mtu, new_mtu); |
|
3191 netdev->mtu = new_mtu; |
|
3192 |
|
3193 if (netif_running(netdev)) |
|
3194 e1000_up(adapter); |
|
3195 else |
|
3196 e1000_reset(adapter); |
|
3197 |
|
3198 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
3199 |
|
3200 return 0; |
|
3201 } |
|
3202 |
|
3203 /** |
|
3204 * e1000_update_stats - Update the board statistics counters |
|
3205 * @adapter: board private structure |
|
3206 **/ |
|
3207 |
|
3208 void e1000_update_stats(struct e1000_adapter *adapter) |
|
3209 { |
|
3210 struct net_device *netdev = adapter->netdev; |
|
3211 struct e1000_hw *hw = &adapter->hw; |
|
3212 struct pci_dev *pdev = adapter->pdev; |
|
3213 unsigned long flags; |
|
3214 u16 phy_tmp; |
|
3215 |
|
3216 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
|
3217 |
|
3218 /* |
|
3219 * Prevent stats update while adapter is being reset, or if the pci |
|
3220 * connection is down. |
|
3221 */ |
|
3222 if (adapter->link_speed == 0) |
|
3223 return; |
|
3224 if (pci_channel_offline(pdev)) |
|
3225 return; |
|
3226 |
|
3227 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3228 |
|
3229 /* these counters are modified from e1000_tbi_adjust_stats, |
|
3230 * called from the interrupt context, so they must only |
|
3231 * be written while holding adapter->stats_lock |
|
3232 */ |
|
3233 |
|
3234 adapter->stats.crcerrs += er32(CRCERRS); |
|
3235 adapter->stats.gprc += er32(GPRC); |
|
3236 adapter->stats.gorcl += er32(GORCL); |
|
3237 adapter->stats.gorch += er32(GORCH); |
|
3238 adapter->stats.bprc += er32(BPRC); |
|
3239 adapter->stats.mprc += er32(MPRC); |
|
3240 adapter->stats.roc += er32(ROC); |
|
3241 |
|
3242 adapter->stats.prc64 += er32(PRC64); |
|
3243 adapter->stats.prc127 += er32(PRC127); |
|
3244 adapter->stats.prc255 += er32(PRC255); |
|
3245 adapter->stats.prc511 += er32(PRC511); |
|
3246 adapter->stats.prc1023 += er32(PRC1023); |
|
3247 adapter->stats.prc1522 += er32(PRC1522); |
|
3248 |
|
3249 adapter->stats.symerrs += er32(SYMERRS); |
|
3250 adapter->stats.mpc += er32(MPC); |
|
3251 adapter->stats.scc += er32(SCC); |
|
3252 adapter->stats.ecol += er32(ECOL); |
|
3253 adapter->stats.mcc += er32(MCC); |
|
3254 adapter->stats.latecol += er32(LATECOL); |
|
3255 adapter->stats.dc += er32(DC); |
|
3256 adapter->stats.sec += er32(SEC); |
|
3257 adapter->stats.rlec += er32(RLEC); |
|
3258 adapter->stats.xonrxc += er32(XONRXC); |
|
3259 adapter->stats.xontxc += er32(XONTXC); |
|
3260 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3261 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3262 adapter->stats.fcruc += er32(FCRUC); |
|
3263 adapter->stats.gptc += er32(GPTC); |
|
3264 adapter->stats.gotcl += er32(GOTCL); |
|
3265 adapter->stats.gotch += er32(GOTCH); |
|
3266 adapter->stats.rnbc += er32(RNBC); |
|
3267 adapter->stats.ruc += er32(RUC); |
|
3268 adapter->stats.rfc += er32(RFC); |
|
3269 adapter->stats.rjc += er32(RJC); |
|
3270 adapter->stats.torl += er32(TORL); |
|
3271 adapter->stats.torh += er32(TORH); |
|
3272 adapter->stats.totl += er32(TOTL); |
|
3273 adapter->stats.toth += er32(TOTH); |
|
3274 adapter->stats.tpr += er32(TPR); |
|
3275 |
|
3276 adapter->stats.ptc64 += er32(PTC64); |
|
3277 adapter->stats.ptc127 += er32(PTC127); |
|
3278 adapter->stats.ptc255 += er32(PTC255); |
|
3279 adapter->stats.ptc511 += er32(PTC511); |
|
3280 adapter->stats.ptc1023 += er32(PTC1023); |
|
3281 adapter->stats.ptc1522 += er32(PTC1522); |
|
3282 |
|
3283 adapter->stats.mptc += er32(MPTC); |
|
3284 adapter->stats.bptc += er32(BPTC); |
|
3285 |
|
3286 /* used for adaptive IFS */ |
|
3287 |
|
3288 hw->tx_packet_delta = er32(TPT); |
|
3289 adapter->stats.tpt += hw->tx_packet_delta; |
|
3290 hw->collision_delta = er32(COLC); |
|
3291 adapter->stats.colc += hw->collision_delta; |
|
3292 |
|
3293 if (hw->mac_type >= e1000_82543) { |
|
3294 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3295 adapter->stats.rxerrc += er32(RXERRC); |
|
3296 adapter->stats.tncrs += er32(TNCRS); |
|
3297 adapter->stats.cexterr += er32(CEXTERR); |
|
3298 adapter->stats.tsctc += er32(TSCTC); |
|
3299 adapter->stats.tsctfc += er32(TSCTFC); |
|
3300 } |
|
3301 |
|
3302 /* Fill out the OS statistics structure */ |
|
3303 netdev->stats.multicast = adapter->stats.mprc; |
|
3304 netdev->stats.collisions = adapter->stats.colc; |
|
3305 |
|
3306 /* Rx Errors */ |
|
3307 |
|
3308 /* RLEC on some newer hardware can be incorrect so build |
|
3309 * our own version based on RUC and ROC */ |
|
3310 netdev->stats.rx_errors = adapter->stats.rxerrc + |
|
3311 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3312 adapter->stats.ruc + adapter->stats.roc + |
|
3313 adapter->stats.cexterr; |
|
3314 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
|
3315 netdev->stats.rx_length_errors = adapter->stats.rlerrc; |
|
3316 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3317 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3318 netdev->stats.rx_missed_errors = adapter->stats.mpc; |
|
3319 |
|
3320 /* Tx Errors */ |
|
3321 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
|
3322 netdev->stats.tx_errors = adapter->stats.txerrc; |
|
3323 netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
|
3324 netdev->stats.tx_window_errors = adapter->stats.latecol; |
|
3325 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3326 if (hw->bad_tx_carr_stats_fd && |
|
3327 adapter->link_duplex == FULL_DUPLEX) { |
|
3328 netdev->stats.tx_carrier_errors = 0; |
|
3329 adapter->stats.tncrs = 0; |
|
3330 } |
|
3331 |
|
3332 /* Tx Dropped needs to be maintained elsewhere */ |
|
3333 |
|
3334 /* Phy Stats */ |
|
3335 if (hw->media_type == e1000_media_type_copper) { |
|
3336 if ((adapter->link_speed == SPEED_1000) && |
|
3337 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
|
3338 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
|
3339 adapter->phy_stats.idle_errors += phy_tmp; |
|
3340 } |
|
3341 |
|
3342 if ((hw->mac_type <= e1000_82546) && |
|
3343 (hw->phy_type == e1000_phy_m88) && |
|
3344 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
|
3345 adapter->phy_stats.receive_errors += phy_tmp; |
|
3346 } |
|
3347 |
|
3348 /* Management Stats */ |
|
3349 if (hw->has_smbus) { |
|
3350 adapter->stats.mgptc += er32(MGTPTC); |
|
3351 adapter->stats.mgprc += er32(MGTPRC); |
|
3352 adapter->stats.mgpdc += er32(MGTPDC); |
|
3353 } |
|
3354 |
|
3355 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
3356 } |
|
3357 |
|
3358 /** |
|
3359 * e1000_intr - Interrupt Handler |
|
3360 * @irq: interrupt number |
|
3361 * @data: pointer to a network interface device structure |
|
3362 **/ |
|
3363 |
|
3364 static irqreturn_t e1000_intr(int irq, void *data) |
|
3365 { |
|
3366 struct net_device *netdev = data; |
|
3367 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3368 struct e1000_hw *hw = &adapter->hw; |
|
3369 u32 icr = er32(ICR); |
|
3370 |
|
3371 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags))) |
|
3372 return IRQ_NONE; /* Not our interrupt */ |
|
3373 |
|
3374 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
|
3375 hw->get_link_status = 1; |
|
3376 /* guard against interrupt when we're going down */ |
|
3377 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3378 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3379 } |
|
3380 |
|
3381 /* disable interrupts, without the synchronize_irq bit */ |
|
3382 ew32(IMC, ~0); |
|
3383 E1000_WRITE_FLUSH(); |
|
3384 |
|
3385 if (likely(napi_schedule_prep(&adapter->napi))) { |
|
3386 adapter->total_tx_bytes = 0; |
|
3387 adapter->total_tx_packets = 0; |
|
3388 adapter->total_rx_bytes = 0; |
|
3389 adapter->total_rx_packets = 0; |
|
3390 __napi_schedule(&adapter->napi); |
|
3391 } else { |
|
3392 /* this really should not happen! if it does it is basically a |
|
3393 * bug, but not a hard error, so enable ints and continue */ |
|
3394 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3395 e1000_irq_enable(adapter); |
|
3396 } |
|
3397 |
|
3398 return IRQ_HANDLED; |
|
3399 } |
|
3400 |
|
3401 /** |
|
3402 * e1000_clean - NAPI Rx polling callback |
|
3403 * @adapter: board private structure |
|
3404 **/ |
|
3405 static int e1000_clean(struct napi_struct *napi, int budget) |
|
3406 { |
|
3407 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
3408 int tx_clean_complete = 0, work_done = 0; |
|
3409 |
|
3410 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); |
|
3411 |
|
3412 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); |
|
3413 |
|
3414 if (!tx_clean_complete) |
|
3415 work_done = budget; |
|
3416 |
|
3417 /* If budget not fully consumed, exit the polling mode */ |
|
3418 if (work_done < budget) { |
|
3419 if (likely(adapter->itr_setting & 3)) |
|
3420 e1000_set_itr(adapter); |
|
3421 napi_complete(napi); |
|
3422 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3423 e1000_irq_enable(adapter); |
|
3424 } |
|
3425 |
|
3426 return work_done; |
|
3427 } |
|
3428 |
|
3429 /** |
|
3430 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
3431 * @adapter: board private structure |
|
3432 **/ |
|
3433 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
3434 struct e1000_tx_ring *tx_ring) |
|
3435 { |
|
3436 struct e1000_hw *hw = &adapter->hw; |
|
3437 struct net_device *netdev = adapter->netdev; |
|
3438 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
3439 struct e1000_buffer *buffer_info; |
|
3440 unsigned int i, eop; |
|
3441 unsigned int count = 0; |
|
3442 unsigned int total_tx_bytes=0, total_tx_packets=0; |
|
3443 |
|
3444 i = tx_ring->next_to_clean; |
|
3445 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3446 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3447 |
|
3448 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
|
3449 (count < tx_ring->count)) { |
|
3450 bool cleaned = false; |
|
3451 rmb(); /* read buffer_info after eop_desc */ |
|
3452 for ( ; !cleaned; count++) { |
|
3453 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3454 buffer_info = &tx_ring->buffer_info[i]; |
|
3455 cleaned = (i == eop); |
|
3456 |
|
3457 if (cleaned) { |
|
3458 struct sk_buff *skb = buffer_info->skb; |
|
3459 unsigned int segs, bytecount; |
|
3460 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
3461 /* multiply data chunks by size of headers */ |
|
3462 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
3463 skb->len; |
|
3464 total_tx_packets += segs; |
|
3465 total_tx_bytes += bytecount; |
|
3466 } |
|
3467 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
3468 tx_desc->upper.data = 0; |
|
3469 |
|
3470 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3471 } |
|
3472 |
|
3473 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3474 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3475 } |
|
3476 |
|
3477 tx_ring->next_to_clean = i; |
|
3478 |
|
3479 #define TX_WAKE_THRESHOLD 32 |
|
3480 if (unlikely(count && netif_carrier_ok(netdev) && |
|
3481 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
|
3482 /* Make sure that anybody stopping the queue after this |
|
3483 * sees the new next_to_clean. |
|
3484 */ |
|
3485 smp_mb(); |
|
3486 |
|
3487 if (netif_queue_stopped(netdev) && |
|
3488 !(test_bit(__E1000_DOWN, &adapter->flags))) { |
|
3489 netif_wake_queue(netdev); |
|
3490 ++adapter->restart_queue; |
|
3491 } |
|
3492 } |
|
3493 |
|
3494 if (adapter->detect_tx_hung) { |
|
3495 /* Detect a transmit hang in hardware, this serializes the |
|
3496 * check with the clearing of time_stamp and movement of i */ |
|
3497 adapter->detect_tx_hung = false; |
|
3498 if (tx_ring->buffer_info[eop].time_stamp && |
|
3499 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
|
3500 (adapter->tx_timeout_factor * HZ)) && |
|
3501 !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
3502 |
|
3503 /* detected Tx unit hang */ |
|
3504 e_err("Detected Tx Unit Hang\n" |
|
3505 " Tx Queue <%lu>\n" |
|
3506 " TDH <%x>\n" |
|
3507 " TDT <%x>\n" |
|
3508 " next_to_use <%x>\n" |
|
3509 " next_to_clean <%x>\n" |
|
3510 "buffer_info[next_to_clean]\n" |
|
3511 " time_stamp <%lx>\n" |
|
3512 " next_to_watch <%x>\n" |
|
3513 " jiffies <%lx>\n" |
|
3514 " next_to_watch.status <%x>\n", |
|
3515 (unsigned long)((tx_ring - adapter->tx_ring) / |
|
3516 sizeof(struct e1000_tx_ring)), |
|
3517 readl(hw->hw_addr + tx_ring->tdh), |
|
3518 readl(hw->hw_addr + tx_ring->tdt), |
|
3519 tx_ring->next_to_use, |
|
3520 tx_ring->next_to_clean, |
|
3521 tx_ring->buffer_info[eop].time_stamp, |
|
3522 eop, |
|
3523 jiffies, |
|
3524 eop_desc->upper.fields.status); |
|
3525 netif_stop_queue(netdev); |
|
3526 } |
|
3527 } |
|
3528 adapter->total_tx_bytes += total_tx_bytes; |
|
3529 adapter->total_tx_packets += total_tx_packets; |
|
3530 netdev->stats.tx_bytes += total_tx_bytes; |
|
3531 netdev->stats.tx_packets += total_tx_packets; |
|
3532 return (count < tx_ring->count); |
|
3533 } |
|
3534 |
|
3535 /** |
|
3536 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
3537 * @adapter: board private structure |
|
3538 * @status_err: receive descriptor status and error fields |
|
3539 * @csum: receive descriptor csum field |
|
3540 * @sk_buff: socket buffer with received data |
|
3541 **/ |
|
3542 |
|
3543 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
3544 u32 csum, struct sk_buff *skb) |
|
3545 { |
|
3546 struct e1000_hw *hw = &adapter->hw; |
|
3547 u16 status = (u16)status_err; |
|
3548 u8 errors = (u8)(status_err >> 24); |
|
3549 skb->ip_summed = CHECKSUM_NONE; |
|
3550 |
|
3551 /* 82543 or newer only */ |
|
3552 if (unlikely(hw->mac_type < e1000_82543)) return; |
|
3553 /* Ignore Checksum bit is set */ |
|
3554 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
|
3555 /* TCP/UDP checksum error bit is set */ |
|
3556 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
|
3557 /* let the stack verify checksum errors */ |
|
3558 adapter->hw_csum_err++; |
|
3559 return; |
|
3560 } |
|
3561 /* TCP/UDP Checksum has not been calculated */ |
|
3562 if (!(status & E1000_RXD_STAT_TCPCS)) |
|
3563 return; |
|
3564 |
|
3565 /* It must be a TCP or UDP packet with a valid checksum */ |
|
3566 if (likely(status & E1000_RXD_STAT_TCPCS)) { |
|
3567 /* TCP checksum is good */ |
|
3568 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
3569 } |
|
3570 adapter->hw_csum_good++; |
|
3571 } |
|
3572 |
|
3573 /** |
|
3574 * e1000_consume_page - helper function |
|
3575 **/ |
|
3576 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
|
3577 u16 length) |
|
3578 { |
|
3579 bi->page = NULL; |
|
3580 skb->len += length; |
|
3581 skb->data_len += length; |
|
3582 skb->truesize += length; |
|
3583 } |
|
3584 |
|
3585 /** |
|
3586 * e1000_receive_skb - helper function to handle rx indications |
|
3587 * @adapter: board private structure |
|
3588 * @status: descriptor status field as written by hardware |
|
3589 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
|
3590 * @skb: pointer to sk_buff to be indicated to stack |
|
3591 */ |
|
3592 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, |
|
3593 __le16 vlan, struct sk_buff *skb) |
|
3594 { |
|
3595 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) { |
|
3596 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
3597 le16_to_cpu(vlan) & |
|
3598 E1000_RXD_SPC_VLAN_MASK); |
|
3599 } else { |
|
3600 netif_receive_skb(skb); |
|
3601 } |
|
3602 } |
|
3603 |
|
3604 /** |
|
3605 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
|
3606 * @adapter: board private structure |
|
3607 * @rx_ring: ring to clean |
|
3608 * @work_done: amount of napi work completed this call |
|
3609 * @work_to_do: max amount of work allowed for this call to do |
|
3610 * |
|
3611 * the return value indicates whether actual cleaning was done, there |
|
3612 * is no guarantee that everything was cleaned |
|
3613 */ |
|
3614 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
3615 struct e1000_rx_ring *rx_ring, |
|
3616 int *work_done, int work_to_do) |
|
3617 { |
|
3618 struct e1000_hw *hw = &adapter->hw; |
|
3619 struct net_device *netdev = adapter->netdev; |
|
3620 struct pci_dev *pdev = adapter->pdev; |
|
3621 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
3622 struct e1000_buffer *buffer_info, *next_buffer; |
|
3623 unsigned long irq_flags; |
|
3624 u32 length; |
|
3625 unsigned int i; |
|
3626 int cleaned_count = 0; |
|
3627 bool cleaned = false; |
|
3628 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
3629 |
|
3630 i = rx_ring->next_to_clean; |
|
3631 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
3632 buffer_info = &rx_ring->buffer_info[i]; |
|
3633 |
|
3634 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
3635 struct sk_buff *skb; |
|
3636 u8 status; |
|
3637 |
|
3638 if (*work_done >= work_to_do) |
|
3639 break; |
|
3640 (*work_done)++; |
|
3641 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
3642 |
|
3643 status = rx_desc->status; |
|
3644 skb = buffer_info->skb; |
|
3645 buffer_info->skb = NULL; |
|
3646 |
|
3647 if (++i == rx_ring->count) i = 0; |
|
3648 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
3649 prefetch(next_rxd); |
|
3650 |
|
3651 next_buffer = &rx_ring->buffer_info[i]; |
|
3652 |
|
3653 cleaned = true; |
|
3654 cleaned_count++; |
|
3655 dma_unmap_page(&pdev->dev, buffer_info->dma, |
|
3656 buffer_info->length, DMA_FROM_DEVICE); |
|
3657 buffer_info->dma = 0; |
|
3658 |
|
3659 length = le16_to_cpu(rx_desc->length); |
|
3660 |
|
3661 /* errors is only valid for DD + EOP descriptors */ |
|
3662 if (unlikely((status & E1000_RXD_STAT_EOP) && |
|
3663 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
|
3664 u8 last_byte = *(skb->data + length - 1); |
|
3665 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
3666 last_byte)) { |
|
3667 spin_lock_irqsave(&adapter->stats_lock, |
|
3668 irq_flags); |
|
3669 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
3670 length, skb->data); |
|
3671 spin_unlock_irqrestore(&adapter->stats_lock, |
|
3672 irq_flags); |
|
3673 length--; |
|
3674 } else { |
|
3675 /* recycle both page and skb */ |
|
3676 buffer_info->skb = skb; |
|
3677 /* an error means any chain goes out the window |
|
3678 * too */ |
|
3679 if (rx_ring->rx_skb_top) |
|
3680 dev_kfree_skb(rx_ring->rx_skb_top); |
|
3681 rx_ring->rx_skb_top = NULL; |
|
3682 goto next_desc; |
|
3683 } |
|
3684 } |
|
3685 |
|
3686 #define rxtop rx_ring->rx_skb_top |
|
3687 if (!(status & E1000_RXD_STAT_EOP)) { |
|
3688 /* this descriptor is only the beginning (or middle) */ |
|
3689 if (!rxtop) { |
|
3690 /* this is the beginning of a chain */ |
|
3691 rxtop = skb; |
|
3692 skb_fill_page_desc(rxtop, 0, buffer_info->page, |
|
3693 0, length); |
|
3694 } else { |
|
3695 /* this is the middle of a chain */ |
|
3696 skb_fill_page_desc(rxtop, |
|
3697 skb_shinfo(rxtop)->nr_frags, |
|
3698 buffer_info->page, 0, length); |
|
3699 /* re-use the skb, only consumed the page */ |
|
3700 buffer_info->skb = skb; |
|
3701 } |
|
3702 e1000_consume_page(buffer_info, rxtop, length); |
|
3703 goto next_desc; |
|
3704 } else { |
|
3705 if (rxtop) { |
|
3706 /* end of the chain */ |
|
3707 skb_fill_page_desc(rxtop, |
|
3708 skb_shinfo(rxtop)->nr_frags, |
|
3709 buffer_info->page, 0, length); |
|
3710 /* re-use the current skb, we only consumed the |
|
3711 * page */ |
|
3712 buffer_info->skb = skb; |
|
3713 skb = rxtop; |
|
3714 rxtop = NULL; |
|
3715 e1000_consume_page(buffer_info, skb, length); |
|
3716 } else { |
|
3717 /* no chain, got EOP, this buf is the packet |
|
3718 * copybreak to save the put_page/alloc_page */ |
|
3719 if (length <= copybreak && |
|
3720 skb_tailroom(skb) >= length) { |
|
3721 u8 *vaddr; |
|
3722 vaddr = kmap_atomic(buffer_info->page, |
|
3723 KM_SKB_DATA_SOFTIRQ); |
|
3724 memcpy(skb_tail_pointer(skb), vaddr, length); |
|
3725 kunmap_atomic(vaddr, |
|
3726 KM_SKB_DATA_SOFTIRQ); |
|
3727 /* re-use the page, so don't erase |
|
3728 * buffer_info->page */ |
|
3729 skb_put(skb, length); |
|
3730 } else { |
|
3731 skb_fill_page_desc(skb, 0, |
|
3732 buffer_info->page, 0, |
|
3733 length); |
|
3734 e1000_consume_page(buffer_info, skb, |
|
3735 length); |
|
3736 } |
|
3737 } |
|
3738 } |
|
3739 |
|
3740 /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
|
3741 e1000_rx_checksum(adapter, |
|
3742 (u32)(status) | |
|
3743 ((u32)(rx_desc->errors) << 24), |
|
3744 le16_to_cpu(rx_desc->csum), skb); |
|
3745 |
|
3746 pskb_trim(skb, skb->len - 4); |
|
3747 |
|
3748 /* probably a little skewed due to removing CRC */ |
|
3749 total_rx_bytes += skb->len; |
|
3750 total_rx_packets++; |
|
3751 |
|
3752 /* eth type trans needs skb->data to point to something */ |
|
3753 if (!pskb_may_pull(skb, ETH_HLEN)) { |
|
3754 e_err("pskb_may_pull failed.\n"); |
|
3755 dev_kfree_skb(skb); |
|
3756 goto next_desc; |
|
3757 } |
|
3758 |
|
3759 skb->protocol = eth_type_trans(skb, netdev); |
|
3760 |
|
3761 e1000_receive_skb(adapter, status, rx_desc->special, skb); |
|
3762 |
|
3763 next_desc: |
|
3764 rx_desc->status = 0; |
|
3765 |
|
3766 /* return some buffers to hardware, one at a time is too slow */ |
|
3767 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
3768 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
3769 cleaned_count = 0; |
|
3770 } |
|
3771 |
|
3772 /* use prefetched values */ |
|
3773 rx_desc = next_rxd; |
|
3774 buffer_info = next_buffer; |
|
3775 } |
|
3776 rx_ring->next_to_clean = i; |
|
3777 |
|
3778 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
3779 if (cleaned_count) |
|
3780 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
3781 |
|
3782 adapter->total_rx_packets += total_rx_packets; |
|
3783 adapter->total_rx_bytes += total_rx_bytes; |
|
3784 netdev->stats.rx_bytes += total_rx_bytes; |
|
3785 netdev->stats.rx_packets += total_rx_packets; |
|
3786 return cleaned; |
|
3787 } |
|
3788 |
|
3789 /* |
|
3790 * this should improve performance for small packets with large amounts |
|
3791 * of reassembly being done in the stack |
|
3792 */ |
|
3793 static void e1000_check_copybreak(struct net_device *netdev, |
|
3794 struct e1000_buffer *buffer_info, |
|
3795 u32 length, struct sk_buff **skb) |
|
3796 { |
|
3797 struct sk_buff *new_skb; |
|
3798 |
|
3799 if (length > copybreak) |
|
3800 return; |
|
3801 |
|
3802 new_skb = netdev_alloc_skb_ip_align(netdev, length); |
|
3803 if (!new_skb) |
|
3804 return; |
|
3805 |
|
3806 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, |
|
3807 (*skb)->data - NET_IP_ALIGN, |
|
3808 length + NET_IP_ALIGN); |
|
3809 /* save the skb in buffer_info as good */ |
|
3810 buffer_info->skb = *skb; |
|
3811 *skb = new_skb; |
|
3812 } |
|
3813 |
|
3814 /** |
|
3815 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
3816 * @adapter: board private structure |
|
3817 * @rx_ring: ring to clean |
|
3818 * @work_done: amount of napi work completed this call |
|
3819 * @work_to_do: max amount of work allowed for this call to do |
|
3820 */ |
|
3821 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
3822 struct e1000_rx_ring *rx_ring, |
|
3823 int *work_done, int work_to_do) |
|
3824 { |
|
3825 struct e1000_hw *hw = &adapter->hw; |
|
3826 struct net_device *netdev = adapter->netdev; |
|
3827 struct pci_dev *pdev = adapter->pdev; |
|
3828 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
3829 struct e1000_buffer *buffer_info, *next_buffer; |
|
3830 unsigned long flags; |
|
3831 u32 length; |
|
3832 unsigned int i; |
|
3833 int cleaned_count = 0; |
|
3834 bool cleaned = false; |
|
3835 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
3836 |
|
3837 i = rx_ring->next_to_clean; |
|
3838 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
3839 buffer_info = &rx_ring->buffer_info[i]; |
|
3840 |
|
3841 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
3842 struct sk_buff *skb; |
|
3843 u8 status; |
|
3844 |
|
3845 if (*work_done >= work_to_do) |
|
3846 break; |
|
3847 (*work_done)++; |
|
3848 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
3849 |
|
3850 status = rx_desc->status; |
|
3851 skb = buffer_info->skb; |
|
3852 buffer_info->skb = NULL; |
|
3853 |
|
3854 prefetch(skb->data - NET_IP_ALIGN); |
|
3855 |
|
3856 if (++i == rx_ring->count) i = 0; |
|
3857 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
3858 prefetch(next_rxd); |
|
3859 |
|
3860 next_buffer = &rx_ring->buffer_info[i]; |
|
3861 |
|
3862 cleaned = true; |
|
3863 cleaned_count++; |
|
3864 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
3865 buffer_info->length, DMA_FROM_DEVICE); |
|
3866 buffer_info->dma = 0; |
|
3867 |
|
3868 length = le16_to_cpu(rx_desc->length); |
|
3869 /* !EOP means multiple descriptors were used to store a single |
|
3870 * packet, if thats the case we need to toss it. In fact, we |
|
3871 * to toss every packet with the EOP bit clear and the next |
|
3872 * frame that _does_ have the EOP bit set, as it is by |
|
3873 * definition only a frame fragment |
|
3874 */ |
|
3875 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
3876 adapter->discarding = true; |
|
3877 |
|
3878 if (adapter->discarding) { |
|
3879 /* All receives must fit into a single buffer */ |
|
3880 e_info("Receive packet consumed multiple buffers\n"); |
|
3881 /* recycle */ |
|
3882 buffer_info->skb = skb; |
|
3883 if (status & E1000_RXD_STAT_EOP) |
|
3884 adapter->discarding = false; |
|
3885 goto next_desc; |
|
3886 } |
|
3887 |
|
3888 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
3889 u8 last_byte = *(skb->data + length - 1); |
|
3890 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
3891 last_byte)) { |
|
3892 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3893 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
3894 length, skb->data); |
|
3895 spin_unlock_irqrestore(&adapter->stats_lock, |
|
3896 flags); |
|
3897 length--; |
|
3898 } else { |
|
3899 /* recycle */ |
|
3900 buffer_info->skb = skb; |
|
3901 goto next_desc; |
|
3902 } |
|
3903 } |
|
3904 |
|
3905 /* adjust length to remove Ethernet CRC, this must be |
|
3906 * done after the TBI_ACCEPT workaround above */ |
|
3907 length -= 4; |
|
3908 |
|
3909 /* probably a little skewed due to removing CRC */ |
|
3910 total_rx_bytes += length; |
|
3911 total_rx_packets++; |
|
3912 |
|
3913 e1000_check_copybreak(netdev, buffer_info, length, &skb); |
|
3914 |
|
3915 skb_put(skb, length); |
|
3916 |
|
3917 /* Receive Checksum Offload */ |
|
3918 e1000_rx_checksum(adapter, |
|
3919 (u32)(status) | |
|
3920 ((u32)(rx_desc->errors) << 24), |
|
3921 le16_to_cpu(rx_desc->csum), skb); |
|
3922 |
|
3923 skb->protocol = eth_type_trans(skb, netdev); |
|
3924 |
|
3925 e1000_receive_skb(adapter, status, rx_desc->special, skb); |
|
3926 |
|
3927 next_desc: |
|
3928 rx_desc->status = 0; |
|
3929 |
|
3930 /* return some buffers to hardware, one at a time is too slow */ |
|
3931 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
3932 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
3933 cleaned_count = 0; |
|
3934 } |
|
3935 |
|
3936 /* use prefetched values */ |
|
3937 rx_desc = next_rxd; |
|
3938 buffer_info = next_buffer; |
|
3939 } |
|
3940 rx_ring->next_to_clean = i; |
|
3941 |
|
3942 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
3943 if (cleaned_count) |
|
3944 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
3945 |
|
3946 adapter->total_rx_packets += total_rx_packets; |
|
3947 adapter->total_rx_bytes += total_rx_bytes; |
|
3948 netdev->stats.rx_bytes += total_rx_bytes; |
|
3949 netdev->stats.rx_packets += total_rx_packets; |
|
3950 return cleaned; |
|
3951 } |
|
3952 |
|
3953 /** |
|
3954 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
|
3955 * @adapter: address of board private structure |
|
3956 * @rx_ring: pointer to receive ring structure |
|
3957 * @cleaned_count: number of buffers to allocate this pass |
|
3958 **/ |
|
3959 |
|
3960 static void |
|
3961 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
3962 struct e1000_rx_ring *rx_ring, int cleaned_count) |
|
3963 { |
|
3964 struct net_device *netdev = adapter->netdev; |
|
3965 struct pci_dev *pdev = adapter->pdev; |
|
3966 struct e1000_rx_desc *rx_desc; |
|
3967 struct e1000_buffer *buffer_info; |
|
3968 struct sk_buff *skb; |
|
3969 unsigned int i; |
|
3970 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; |
|
3971 |
|
3972 i = rx_ring->next_to_use; |
|
3973 buffer_info = &rx_ring->buffer_info[i]; |
|
3974 |
|
3975 while (cleaned_count--) { |
|
3976 skb = buffer_info->skb; |
|
3977 if (skb) { |
|
3978 skb_trim(skb, 0); |
|
3979 goto check_page; |
|
3980 } |
|
3981 |
|
3982 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
3983 if (unlikely(!skb)) { |
|
3984 /* Better luck next round */ |
|
3985 adapter->alloc_rx_buff_failed++; |
|
3986 break; |
|
3987 } |
|
3988 |
|
3989 /* Fix for errata 23, can't cross 64kB boundary */ |
|
3990 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
3991 struct sk_buff *oldskb = skb; |
|
3992 e_err("skb align check failed: %u bytes at %p\n", |
|
3993 bufsz, skb->data); |
|
3994 /* Try again, without freeing the previous */ |
|
3995 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
3996 /* Failed allocation, critical failure */ |
|
3997 if (!skb) { |
|
3998 dev_kfree_skb(oldskb); |
|
3999 adapter->alloc_rx_buff_failed++; |
|
4000 break; |
|
4001 } |
|
4002 |
|
4003 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4004 /* give up */ |
|
4005 dev_kfree_skb(skb); |
|
4006 dev_kfree_skb(oldskb); |
|
4007 break; /* while (cleaned_count--) */ |
|
4008 } |
|
4009 |
|
4010 /* Use new allocation */ |
|
4011 dev_kfree_skb(oldskb); |
|
4012 } |
|
4013 buffer_info->skb = skb; |
|
4014 buffer_info->length = adapter->rx_buffer_len; |
|
4015 check_page: |
|
4016 /* allocate a new page if necessary */ |
|
4017 if (!buffer_info->page) { |
|
4018 buffer_info->page = alloc_page(GFP_ATOMIC); |
|
4019 if (unlikely(!buffer_info->page)) { |
|
4020 adapter->alloc_rx_buff_failed++; |
|
4021 break; |
|
4022 } |
|
4023 } |
|
4024 |
|
4025 if (!buffer_info->dma) { |
|
4026 buffer_info->dma = dma_map_page(&pdev->dev, |
|
4027 buffer_info->page, 0, |
|
4028 buffer_info->length, |
|
4029 DMA_FROM_DEVICE); |
|
4030 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
4031 put_page(buffer_info->page); |
|
4032 dev_kfree_skb(skb); |
|
4033 buffer_info->page = NULL; |
|
4034 buffer_info->skb = NULL; |
|
4035 buffer_info->dma = 0; |
|
4036 adapter->alloc_rx_buff_failed++; |
|
4037 break; /* while !buffer_info->skb */ |
|
4038 } |
|
4039 } |
|
4040 |
|
4041 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4042 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4043 |
|
4044 if (unlikely(++i == rx_ring->count)) |
|
4045 i = 0; |
|
4046 buffer_info = &rx_ring->buffer_info[i]; |
|
4047 } |
|
4048 |
|
4049 if (likely(rx_ring->next_to_use != i)) { |
|
4050 rx_ring->next_to_use = i; |
|
4051 if (unlikely(i-- == 0)) |
|
4052 i = (rx_ring->count - 1); |
|
4053 |
|
4054 /* Force memory writes to complete before letting h/w |
|
4055 * know there are new descriptors to fetch. (Only |
|
4056 * applicable for weak-ordered memory model archs, |
|
4057 * such as IA-64). */ |
|
4058 wmb(); |
|
4059 writel(i, adapter->hw.hw_addr + rx_ring->rdt); |
|
4060 } |
|
4061 } |
|
4062 |
|
4063 /** |
|
4064 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
4065 * @adapter: address of board private structure |
|
4066 **/ |
|
4067 |
|
4068 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
4069 struct e1000_rx_ring *rx_ring, |
|
4070 int cleaned_count) |
|
4071 { |
|
4072 struct e1000_hw *hw = &adapter->hw; |
|
4073 struct net_device *netdev = adapter->netdev; |
|
4074 struct pci_dev *pdev = adapter->pdev; |
|
4075 struct e1000_rx_desc *rx_desc; |
|
4076 struct e1000_buffer *buffer_info; |
|
4077 struct sk_buff *skb; |
|
4078 unsigned int i; |
|
4079 unsigned int bufsz = adapter->rx_buffer_len; |
|
4080 |
|
4081 i = rx_ring->next_to_use; |
|
4082 buffer_info = &rx_ring->buffer_info[i]; |
|
4083 |
|
4084 while (cleaned_count--) { |
|
4085 skb = buffer_info->skb; |
|
4086 if (skb) { |
|
4087 skb_trim(skb, 0); |
|
4088 goto map_skb; |
|
4089 } |
|
4090 |
|
4091 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4092 if (unlikely(!skb)) { |
|
4093 /* Better luck next round */ |
|
4094 adapter->alloc_rx_buff_failed++; |
|
4095 break; |
|
4096 } |
|
4097 |
|
4098 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4099 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4100 struct sk_buff *oldskb = skb; |
|
4101 e_err("skb align check failed: %u bytes at %p\n", |
|
4102 bufsz, skb->data); |
|
4103 /* Try again, without freeing the previous */ |
|
4104 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4105 /* Failed allocation, critical failure */ |
|
4106 if (!skb) { |
|
4107 dev_kfree_skb(oldskb); |
|
4108 adapter->alloc_rx_buff_failed++; |
|
4109 break; |
|
4110 } |
|
4111 |
|
4112 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4113 /* give up */ |
|
4114 dev_kfree_skb(skb); |
|
4115 dev_kfree_skb(oldskb); |
|
4116 adapter->alloc_rx_buff_failed++; |
|
4117 break; /* while !buffer_info->skb */ |
|
4118 } |
|
4119 |
|
4120 /* Use new allocation */ |
|
4121 dev_kfree_skb(oldskb); |
|
4122 } |
|
4123 buffer_info->skb = skb; |
|
4124 buffer_info->length = adapter->rx_buffer_len; |
|
4125 map_skb: |
|
4126 buffer_info->dma = dma_map_single(&pdev->dev, |
|
4127 skb->data, |
|
4128 buffer_info->length, |
|
4129 DMA_FROM_DEVICE); |
|
4130 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
4131 dev_kfree_skb(skb); |
|
4132 buffer_info->skb = NULL; |
|
4133 buffer_info->dma = 0; |
|
4134 adapter->alloc_rx_buff_failed++; |
|
4135 break; /* while !buffer_info->skb */ |
|
4136 } |
|
4137 |
|
4138 /* |
|
4139 * XXX if it was allocated cleanly it will never map to a |
|
4140 * boundary crossing |
|
4141 */ |
|
4142 |
|
4143 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4144 if (!e1000_check_64k_bound(adapter, |
|
4145 (void *)(unsigned long)buffer_info->dma, |
|
4146 adapter->rx_buffer_len)) { |
|
4147 e_err("dma align check failed: %u bytes at %p\n", |
|
4148 adapter->rx_buffer_len, |
|
4149 (void *)(unsigned long)buffer_info->dma); |
|
4150 dev_kfree_skb(skb); |
|
4151 buffer_info->skb = NULL; |
|
4152 |
|
4153 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
4154 adapter->rx_buffer_len, |
|
4155 DMA_FROM_DEVICE); |
|
4156 buffer_info->dma = 0; |
|
4157 |
|
4158 adapter->alloc_rx_buff_failed++; |
|
4159 break; /* while !buffer_info->skb */ |
|
4160 } |
|
4161 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4162 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4163 |
|
4164 if (unlikely(++i == rx_ring->count)) |
|
4165 i = 0; |
|
4166 buffer_info = &rx_ring->buffer_info[i]; |
|
4167 } |
|
4168 |
|
4169 if (likely(rx_ring->next_to_use != i)) { |
|
4170 rx_ring->next_to_use = i; |
|
4171 if (unlikely(i-- == 0)) |
|
4172 i = (rx_ring->count - 1); |
|
4173 |
|
4174 /* Force memory writes to complete before letting h/w |
|
4175 * know there are new descriptors to fetch. (Only |
|
4176 * applicable for weak-ordered memory model archs, |
|
4177 * such as IA-64). */ |
|
4178 wmb(); |
|
4179 writel(i, hw->hw_addr + rx_ring->rdt); |
|
4180 } |
|
4181 } |
|
4182 |
|
4183 /** |
|
4184 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
|
4185 * @adapter: |
|
4186 **/ |
|
4187 |
|
4188 static void e1000_smartspeed(struct e1000_adapter *adapter) |
|
4189 { |
|
4190 struct e1000_hw *hw = &adapter->hw; |
|
4191 u16 phy_status; |
|
4192 u16 phy_ctrl; |
|
4193 |
|
4194 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
|
4195 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
|
4196 return; |
|
4197 |
|
4198 if (adapter->smartspeed == 0) { |
|
4199 /* If Master/Slave config fault is asserted twice, |
|
4200 * we assume back-to-back */ |
|
4201 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4202 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4203 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4204 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4205 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4206 if (phy_ctrl & CR_1000T_MS_ENABLE) { |
|
4207 phy_ctrl &= ~CR_1000T_MS_ENABLE; |
|
4208 e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
4209 phy_ctrl); |
|
4210 adapter->smartspeed++; |
|
4211 if (!e1000_phy_setup_autoneg(hw) && |
|
4212 !e1000_read_phy_reg(hw, PHY_CTRL, |
|
4213 &phy_ctrl)) { |
|
4214 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4215 MII_CR_RESTART_AUTO_NEG); |
|
4216 e1000_write_phy_reg(hw, PHY_CTRL, |
|
4217 phy_ctrl); |
|
4218 } |
|
4219 } |
|
4220 return; |
|
4221 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
|
4222 /* If still no link, perhaps using 2/3 pair cable */ |
|
4223 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4224 phy_ctrl |= CR_1000T_MS_ENABLE; |
|
4225 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
|
4226 if (!e1000_phy_setup_autoneg(hw) && |
|
4227 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
|
4228 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4229 MII_CR_RESTART_AUTO_NEG); |
|
4230 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
|
4231 } |
|
4232 } |
|
4233 /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
|
4234 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
|
4235 adapter->smartspeed = 0; |
|
4236 } |
|
4237 |
|
4238 /** |
|
4239 * e1000_ioctl - |
|
4240 * @netdev: |
|
4241 * @ifreq: |
|
4242 * @cmd: |
|
4243 **/ |
|
4244 |
|
4245 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4246 { |
|
4247 switch (cmd) { |
|
4248 case SIOCGMIIPHY: |
|
4249 case SIOCGMIIREG: |
|
4250 case SIOCSMIIREG: |
|
4251 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4252 default: |
|
4253 return -EOPNOTSUPP; |
|
4254 } |
|
4255 } |
|
4256 |
|
4257 /** |
|
4258 * e1000_mii_ioctl - |
|
4259 * @netdev: |
|
4260 * @ifreq: |
|
4261 * @cmd: |
|
4262 **/ |
|
4263 |
|
4264 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4265 int cmd) |
|
4266 { |
|
4267 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4268 struct e1000_hw *hw = &adapter->hw; |
|
4269 struct mii_ioctl_data *data = if_mii(ifr); |
|
4270 int retval; |
|
4271 u16 mii_reg; |
|
4272 u16 spddplx; |
|
4273 unsigned long flags; |
|
4274 |
|
4275 if (hw->media_type != e1000_media_type_copper) |
|
4276 return -EOPNOTSUPP; |
|
4277 |
|
4278 switch (cmd) { |
|
4279 case SIOCGMIIPHY: |
|
4280 data->phy_id = hw->phy_addr; |
|
4281 break; |
|
4282 case SIOCGMIIREG: |
|
4283 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4284 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
|
4285 &data->val_out)) { |
|
4286 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4287 return -EIO; |
|
4288 } |
|
4289 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4290 break; |
|
4291 case SIOCSMIIREG: |
|
4292 if (data->reg_num & ~(0x1F)) |
|
4293 return -EFAULT; |
|
4294 mii_reg = data->val_in; |
|
4295 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4296 if (e1000_write_phy_reg(hw, data->reg_num, |
|
4297 mii_reg)) { |
|
4298 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4299 return -EIO; |
|
4300 } |
|
4301 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4302 if (hw->media_type == e1000_media_type_copper) { |
|
4303 switch (data->reg_num) { |
|
4304 case PHY_CTRL: |
|
4305 if (mii_reg & MII_CR_POWER_DOWN) |
|
4306 break; |
|
4307 if (mii_reg & MII_CR_AUTO_NEG_EN) { |
|
4308 hw->autoneg = 1; |
|
4309 hw->autoneg_advertised = 0x2F; |
|
4310 } else { |
|
4311 if (mii_reg & 0x40) |
|
4312 spddplx = SPEED_1000; |
|
4313 else if (mii_reg & 0x2000) |
|
4314 spddplx = SPEED_100; |
|
4315 else |
|
4316 spddplx = SPEED_10; |
|
4317 spddplx += (mii_reg & 0x100) |
|
4318 ? DUPLEX_FULL : |
|
4319 DUPLEX_HALF; |
|
4320 retval = e1000_set_spd_dplx(adapter, |
|
4321 spddplx); |
|
4322 if (retval) |
|
4323 return retval; |
|
4324 } |
|
4325 if (netif_running(adapter->netdev)) |
|
4326 e1000_reinit_locked(adapter); |
|
4327 else |
|
4328 e1000_reset(adapter); |
|
4329 break; |
|
4330 case M88E1000_PHY_SPEC_CTRL: |
|
4331 case M88E1000_EXT_PHY_SPEC_CTRL: |
|
4332 if (e1000_phy_reset(hw)) |
|
4333 return -EIO; |
|
4334 break; |
|
4335 } |
|
4336 } else { |
|
4337 switch (data->reg_num) { |
|
4338 case PHY_CTRL: |
|
4339 if (mii_reg & MII_CR_POWER_DOWN) |
|
4340 break; |
|
4341 if (netif_running(adapter->netdev)) |
|
4342 e1000_reinit_locked(adapter); |
|
4343 else |
|
4344 e1000_reset(adapter); |
|
4345 break; |
|
4346 } |
|
4347 } |
|
4348 break; |
|
4349 default: |
|
4350 return -EOPNOTSUPP; |
|
4351 } |
|
4352 return E1000_SUCCESS; |
|
4353 } |
|
4354 |
|
4355 void e1000_pci_set_mwi(struct e1000_hw *hw) |
|
4356 { |
|
4357 struct e1000_adapter *adapter = hw->back; |
|
4358 int ret_val = pci_set_mwi(adapter->pdev); |
|
4359 |
|
4360 if (ret_val) |
|
4361 e_err("Error in setting MWI\n"); |
|
4362 } |
|
4363 |
|
4364 void e1000_pci_clear_mwi(struct e1000_hw *hw) |
|
4365 { |
|
4366 struct e1000_adapter *adapter = hw->back; |
|
4367 |
|
4368 pci_clear_mwi(adapter->pdev); |
|
4369 } |
|
4370 |
|
4371 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
|
4372 { |
|
4373 struct e1000_adapter *adapter = hw->back; |
|
4374 return pcix_get_mmrbc(adapter->pdev); |
|
4375 } |
|
4376 |
|
4377 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
|
4378 { |
|
4379 struct e1000_adapter *adapter = hw->back; |
|
4380 pcix_set_mmrbc(adapter->pdev, mmrbc); |
|
4381 } |
|
4382 |
|
4383 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
|
4384 { |
|
4385 outl(value, port); |
|
4386 } |
|
4387 |
|
4388 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
4389 struct vlan_group *grp) |
|
4390 { |
|
4391 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4392 struct e1000_hw *hw = &adapter->hw; |
|
4393 u32 ctrl, rctl; |
|
4394 |
|
4395 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4396 e1000_irq_disable(adapter); |
|
4397 adapter->vlgrp = grp; |
|
4398 |
|
4399 if (grp) { |
|
4400 /* enable VLAN tag insert/strip */ |
|
4401 ctrl = er32(CTRL); |
|
4402 ctrl |= E1000_CTRL_VME; |
|
4403 ew32(CTRL, ctrl); |
|
4404 |
|
4405 /* enable VLAN receive filtering */ |
|
4406 rctl = er32(RCTL); |
|
4407 rctl &= ~E1000_RCTL_CFIEN; |
|
4408 if (!(netdev->flags & IFF_PROMISC)) |
|
4409 rctl |= E1000_RCTL_VFE; |
|
4410 ew32(RCTL, rctl); |
|
4411 e1000_update_mng_vlan(adapter); |
|
4412 } else { |
|
4413 /* disable VLAN tag insert/strip */ |
|
4414 ctrl = er32(CTRL); |
|
4415 ctrl &= ~E1000_CTRL_VME; |
|
4416 ew32(CTRL, ctrl); |
|
4417 |
|
4418 /* disable VLAN receive filtering */ |
|
4419 rctl = er32(RCTL); |
|
4420 rctl &= ~E1000_RCTL_VFE; |
|
4421 ew32(RCTL, rctl); |
|
4422 |
|
4423 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { |
|
4424 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
4425 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
4426 } |
|
4427 } |
|
4428 |
|
4429 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4430 e1000_irq_enable(adapter); |
|
4431 } |
|
4432 |
|
4433 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
4434 { |
|
4435 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4436 struct e1000_hw *hw = &adapter->hw; |
|
4437 u32 vfta, index; |
|
4438 |
|
4439 if ((hw->mng_cookie.status & |
|
4440 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4441 (vid == adapter->mng_vlan_id)) |
|
4442 return; |
|
4443 /* add VID to filter table */ |
|
4444 index = (vid >> 5) & 0x7F; |
|
4445 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4446 vfta |= (1 << (vid & 0x1F)); |
|
4447 e1000_write_vfta(hw, index, vfta); |
|
4448 } |
|
4449 |
|
4450 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
4451 { |
|
4452 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4453 struct e1000_hw *hw = &adapter->hw; |
|
4454 u32 vfta, index; |
|
4455 |
|
4456 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4457 e1000_irq_disable(adapter); |
|
4458 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
4459 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4460 e1000_irq_enable(adapter); |
|
4461 |
|
4462 /* remove VID from filter table */ |
|
4463 index = (vid >> 5) & 0x7F; |
|
4464 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4465 vfta &= ~(1 << (vid & 0x1F)); |
|
4466 e1000_write_vfta(hw, index, vfta); |
|
4467 } |
|
4468 |
|
4469 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
4470 { |
|
4471 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
4472 |
|
4473 if (adapter->vlgrp) { |
|
4474 u16 vid; |
|
4475 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
4476 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
4477 continue; |
|
4478 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
4479 } |
|
4480 } |
|
4481 } |
|
4482 |
|
4483 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
|
4484 { |
|
4485 struct e1000_hw *hw = &adapter->hw; |
|
4486 |
|
4487 hw->autoneg = 0; |
|
4488 |
|
4489 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
4490 if ((hw->media_type == e1000_media_type_fiber) && |
|
4491 spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
|
4492 e_err("Unsupported Speed/Duplex configuration\n"); |
|
4493 return -EINVAL; |
|
4494 } |
|
4495 |
|
4496 switch (spddplx) { |
|
4497 case SPEED_10 + DUPLEX_HALF: |
|
4498 hw->forced_speed_duplex = e1000_10_half; |
|
4499 break; |
|
4500 case SPEED_10 + DUPLEX_FULL: |
|
4501 hw->forced_speed_duplex = e1000_10_full; |
|
4502 break; |
|
4503 case SPEED_100 + DUPLEX_HALF: |
|
4504 hw->forced_speed_duplex = e1000_100_half; |
|
4505 break; |
|
4506 case SPEED_100 + DUPLEX_FULL: |
|
4507 hw->forced_speed_duplex = e1000_100_full; |
|
4508 break; |
|
4509 case SPEED_1000 + DUPLEX_FULL: |
|
4510 hw->autoneg = 1; |
|
4511 hw->autoneg_advertised = ADVERTISE_1000_FULL; |
|
4512 break; |
|
4513 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
4514 default: |
|
4515 e_err("Unsupported Speed/Duplex configuration\n"); |
|
4516 return -EINVAL; |
|
4517 } |
|
4518 return 0; |
|
4519 } |
|
4520 |
|
4521 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
4522 { |
|
4523 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4524 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4525 struct e1000_hw *hw = &adapter->hw; |
|
4526 u32 ctrl, ctrl_ext, rctl, status; |
|
4527 u32 wufc = adapter->wol; |
|
4528 #ifdef CONFIG_PM |
|
4529 int retval = 0; |
|
4530 #endif |
|
4531 |
|
4532 netif_device_detach(netdev); |
|
4533 |
|
4534 if (netif_running(netdev)) { |
|
4535 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
4536 e1000_down(adapter); |
|
4537 } |
|
4538 |
|
4539 #ifdef CONFIG_PM |
|
4540 retval = pci_save_state(pdev); |
|
4541 if (retval) |
|
4542 return retval; |
|
4543 #endif |
|
4544 |
|
4545 status = er32(STATUS); |
|
4546 if (status & E1000_STATUS_LU) |
|
4547 wufc &= ~E1000_WUFC_LNKC; |
|
4548 |
|
4549 if (wufc) { |
|
4550 e1000_setup_rctl(adapter); |
|
4551 e1000_set_rx_mode(netdev); |
|
4552 |
|
4553 /* turn on all-multi mode if wake on multicast is enabled */ |
|
4554 if (wufc & E1000_WUFC_MC) { |
|
4555 rctl = er32(RCTL); |
|
4556 rctl |= E1000_RCTL_MPE; |
|
4557 ew32(RCTL, rctl); |
|
4558 } |
|
4559 |
|
4560 if (hw->mac_type >= e1000_82540) { |
|
4561 ctrl = er32(CTRL); |
|
4562 /* advertise wake from D3Cold */ |
|
4563 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
4564 /* phy power management enable */ |
|
4565 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
4566 ctrl |= E1000_CTRL_ADVD3WUC | |
|
4567 E1000_CTRL_EN_PHY_PWR_MGMT; |
|
4568 ew32(CTRL, ctrl); |
|
4569 } |
|
4570 |
|
4571 if (hw->media_type == e1000_media_type_fiber || |
|
4572 hw->media_type == e1000_media_type_internal_serdes) { |
|
4573 /* keep the laser running in D3 */ |
|
4574 ctrl_ext = er32(CTRL_EXT); |
|
4575 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
4576 ew32(CTRL_EXT, ctrl_ext); |
|
4577 } |
|
4578 |
|
4579 ew32(WUC, E1000_WUC_PME_EN); |
|
4580 ew32(WUFC, wufc); |
|
4581 } else { |
|
4582 ew32(WUC, 0); |
|
4583 ew32(WUFC, 0); |
|
4584 } |
|
4585 |
|
4586 e1000_release_manageability(adapter); |
|
4587 |
|
4588 *enable_wake = !!wufc; |
|
4589 |
|
4590 /* make sure adapter isn't asleep if manageability is enabled */ |
|
4591 if (adapter->en_mng_pt) |
|
4592 *enable_wake = true; |
|
4593 |
|
4594 if (netif_running(netdev)) |
|
4595 e1000_free_irq(adapter); |
|
4596 |
|
4597 pci_disable_device(pdev); |
|
4598 |
|
4599 return 0; |
|
4600 } |
|
4601 |
|
4602 #ifdef CONFIG_PM |
|
4603 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
4604 { |
|
4605 int retval; |
|
4606 bool wake; |
|
4607 |
|
4608 retval = __e1000_shutdown(pdev, &wake); |
|
4609 if (retval) |
|
4610 return retval; |
|
4611 |
|
4612 if (wake) { |
|
4613 pci_prepare_to_sleep(pdev); |
|
4614 } else { |
|
4615 pci_wake_from_d3(pdev, false); |
|
4616 pci_set_power_state(pdev, PCI_D3hot); |
|
4617 } |
|
4618 |
|
4619 return 0; |
|
4620 } |
|
4621 |
|
4622 static int e1000_resume(struct pci_dev *pdev) |
|
4623 { |
|
4624 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4625 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4626 struct e1000_hw *hw = &adapter->hw; |
|
4627 u32 err; |
|
4628 |
|
4629 pci_set_power_state(pdev, PCI_D0); |
|
4630 pci_restore_state(pdev); |
|
4631 pci_save_state(pdev); |
|
4632 |
|
4633 if (adapter->need_ioport) |
|
4634 err = pci_enable_device(pdev); |
|
4635 else |
|
4636 err = pci_enable_device_mem(pdev); |
|
4637 if (err) { |
|
4638 pr_err("Cannot enable PCI device from suspend\n"); |
|
4639 return err; |
|
4640 } |
|
4641 pci_set_master(pdev); |
|
4642 |
|
4643 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4644 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4645 |
|
4646 if (netif_running(netdev)) { |
|
4647 err = e1000_request_irq(adapter); |
|
4648 if (err) |
|
4649 return err; |
|
4650 } |
|
4651 |
|
4652 e1000_power_up_phy(adapter); |
|
4653 e1000_reset(adapter); |
|
4654 ew32(WUS, ~0); |
|
4655 |
|
4656 e1000_init_manageability(adapter); |
|
4657 |
|
4658 if (netif_running(netdev)) |
|
4659 e1000_up(adapter); |
|
4660 |
|
4661 netif_device_attach(netdev); |
|
4662 |
|
4663 return 0; |
|
4664 } |
|
4665 #endif |
|
4666 |
|
4667 static void e1000_shutdown(struct pci_dev *pdev) |
|
4668 { |
|
4669 bool wake; |
|
4670 |
|
4671 __e1000_shutdown(pdev, &wake); |
|
4672 |
|
4673 if (system_state == SYSTEM_POWER_OFF) { |
|
4674 pci_wake_from_d3(pdev, wake); |
|
4675 pci_set_power_state(pdev, PCI_D3hot); |
|
4676 } |
|
4677 } |
|
4678 |
|
4679 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
4680 /* |
|
4681 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
4682 * without having to re-enable interrupts. It's not called while |
|
4683 * the interrupt routine is executing. |
|
4684 */ |
|
4685 static void e1000_netpoll(struct net_device *netdev) |
|
4686 { |
|
4687 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4688 |
|
4689 disable_irq(adapter->pdev->irq); |
|
4690 e1000_intr(adapter->pdev->irq, netdev); |
|
4691 enable_irq(adapter->pdev->irq); |
|
4692 } |
|
4693 #endif |
|
4694 |
|
4695 /** |
|
4696 * e1000_io_error_detected - called when PCI error is detected |
|
4697 * @pdev: Pointer to PCI device |
|
4698 * @state: The current pci connection state |
|
4699 * |
|
4700 * This function is called after a PCI bus error affecting |
|
4701 * this device has been detected. |
|
4702 */ |
|
4703 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
4704 pci_channel_state_t state) |
|
4705 { |
|
4706 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4707 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4708 |
|
4709 netif_device_detach(netdev); |
|
4710 |
|
4711 if (state == pci_channel_io_perm_failure) |
|
4712 return PCI_ERS_RESULT_DISCONNECT; |
|
4713 |
|
4714 if (netif_running(netdev)) |
|
4715 e1000_down(adapter); |
|
4716 pci_disable_device(pdev); |
|
4717 |
|
4718 /* Request a slot slot reset. */ |
|
4719 return PCI_ERS_RESULT_NEED_RESET; |
|
4720 } |
|
4721 |
|
4722 /** |
|
4723 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
4724 * @pdev: Pointer to PCI device |
|
4725 * |
|
4726 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
4727 * resembles the first-half of the e1000_resume routine. |
|
4728 */ |
|
4729 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
4730 { |
|
4731 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4732 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4733 struct e1000_hw *hw = &adapter->hw; |
|
4734 int err; |
|
4735 |
|
4736 if (adapter->need_ioport) |
|
4737 err = pci_enable_device(pdev); |
|
4738 else |
|
4739 err = pci_enable_device_mem(pdev); |
|
4740 if (err) { |
|
4741 pr_err("Cannot re-enable PCI device after reset.\n"); |
|
4742 return PCI_ERS_RESULT_DISCONNECT; |
|
4743 } |
|
4744 pci_set_master(pdev); |
|
4745 |
|
4746 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4747 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4748 |
|
4749 e1000_reset(adapter); |
|
4750 ew32(WUS, ~0); |
|
4751 |
|
4752 return PCI_ERS_RESULT_RECOVERED; |
|
4753 } |
|
4754 |
|
4755 /** |
|
4756 * e1000_io_resume - called when traffic can start flowing again. |
|
4757 * @pdev: Pointer to PCI device |
|
4758 * |
|
4759 * This callback is called when the error recovery driver tells us that |
|
4760 * its OK to resume normal operation. Implementation resembles the |
|
4761 * second-half of the e1000_resume routine. |
|
4762 */ |
|
4763 static void e1000_io_resume(struct pci_dev *pdev) |
|
4764 { |
|
4765 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4766 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4767 |
|
4768 e1000_init_manageability(adapter); |
|
4769 |
|
4770 if (netif_running(netdev)) { |
|
4771 if (e1000_up(adapter)) { |
|
4772 pr_info("can't bring device back up after reset\n"); |
|
4773 return; |
|
4774 } |
|
4775 } |
|
4776 |
|
4777 netif_device_attach(netdev); |
|
4778 } |
|
4779 |
|
4780 /* e1000_main.c */ |