|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include "e1000.h" |
|
30 #include <net/ip6_checksum.h> |
|
31 |
|
32 char e1000_driver_name[] = "e1000"; |
|
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
|
34 #define DRV_VERSION "7.3.21-k3-NAPI" |
|
35 const char e1000_driver_version[] = DRV_VERSION; |
|
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
|
37 |
|
38 /* e1000_pci_tbl - PCI Device ID Table |
|
39 * |
|
40 * Last entry must be all 0s |
|
41 * |
|
42 * Macro expands to... |
|
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
|
44 */ |
|
45 static struct pci_device_id e1000_pci_tbl[] = { |
|
46 INTEL_E1000_ETHERNET_DEVICE(0x1000), |
|
47 INTEL_E1000_ETHERNET_DEVICE(0x1001), |
|
48 INTEL_E1000_ETHERNET_DEVICE(0x1004), |
|
49 INTEL_E1000_ETHERNET_DEVICE(0x1008), |
|
50 INTEL_E1000_ETHERNET_DEVICE(0x1009), |
|
51 INTEL_E1000_ETHERNET_DEVICE(0x100C), |
|
52 INTEL_E1000_ETHERNET_DEVICE(0x100D), |
|
53 INTEL_E1000_ETHERNET_DEVICE(0x100E), |
|
54 INTEL_E1000_ETHERNET_DEVICE(0x100F), |
|
55 INTEL_E1000_ETHERNET_DEVICE(0x1010), |
|
56 INTEL_E1000_ETHERNET_DEVICE(0x1011), |
|
57 INTEL_E1000_ETHERNET_DEVICE(0x1012), |
|
58 INTEL_E1000_ETHERNET_DEVICE(0x1013), |
|
59 INTEL_E1000_ETHERNET_DEVICE(0x1014), |
|
60 INTEL_E1000_ETHERNET_DEVICE(0x1015), |
|
61 INTEL_E1000_ETHERNET_DEVICE(0x1016), |
|
62 INTEL_E1000_ETHERNET_DEVICE(0x1017), |
|
63 INTEL_E1000_ETHERNET_DEVICE(0x1018), |
|
64 INTEL_E1000_ETHERNET_DEVICE(0x1019), |
|
65 INTEL_E1000_ETHERNET_DEVICE(0x101A), |
|
66 INTEL_E1000_ETHERNET_DEVICE(0x101D), |
|
67 INTEL_E1000_ETHERNET_DEVICE(0x101E), |
|
68 INTEL_E1000_ETHERNET_DEVICE(0x1026), |
|
69 INTEL_E1000_ETHERNET_DEVICE(0x1027), |
|
70 INTEL_E1000_ETHERNET_DEVICE(0x1028), |
|
71 INTEL_E1000_ETHERNET_DEVICE(0x1075), |
|
72 INTEL_E1000_ETHERNET_DEVICE(0x1076), |
|
73 INTEL_E1000_ETHERNET_DEVICE(0x1077), |
|
74 INTEL_E1000_ETHERNET_DEVICE(0x1078), |
|
75 INTEL_E1000_ETHERNET_DEVICE(0x1079), |
|
76 INTEL_E1000_ETHERNET_DEVICE(0x107A), |
|
77 INTEL_E1000_ETHERNET_DEVICE(0x107B), |
|
78 INTEL_E1000_ETHERNET_DEVICE(0x107C), |
|
79 INTEL_E1000_ETHERNET_DEVICE(0x108A), |
|
80 INTEL_E1000_ETHERNET_DEVICE(0x1099), |
|
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
|
82 /* required last entry */ |
|
83 {0,} |
|
84 }; |
|
85 |
|
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
87 |
|
88 int e1000_up(struct e1000_adapter *adapter); |
|
89 void e1000_down(struct e1000_adapter *adapter); |
|
90 void e1000_reinit_locked(struct e1000_adapter *adapter); |
|
91 void e1000_reset(struct e1000_adapter *adapter); |
|
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); |
|
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
|
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
|
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
|
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
|
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
98 struct e1000_tx_ring *txdr); |
|
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
100 struct e1000_rx_ring *rxdr); |
|
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
102 struct e1000_tx_ring *tx_ring); |
|
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
104 struct e1000_rx_ring *rx_ring); |
|
105 void e1000_update_stats(struct e1000_adapter *adapter); |
|
106 |
|
107 static int e1000_init_module(void); |
|
108 static void e1000_exit_module(void); |
|
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
|
110 static void __devexit e1000_remove(struct pci_dev *pdev); |
|
111 static int e1000_alloc_queues(struct e1000_adapter *adapter); |
|
112 static int e1000_sw_init(struct e1000_adapter *adapter); |
|
113 static int e1000_open(struct net_device *netdev); |
|
114 static int e1000_close(struct net_device *netdev); |
|
115 static void e1000_configure_tx(struct e1000_adapter *adapter); |
|
116 static void e1000_configure_rx(struct e1000_adapter *adapter); |
|
117 static void e1000_setup_rctl(struct e1000_adapter *adapter); |
|
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
|
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
|
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
121 struct e1000_tx_ring *tx_ring); |
|
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
123 struct e1000_rx_ring *rx_ring); |
|
124 static void e1000_set_rx_mode(struct net_device *netdev); |
|
125 static void e1000_update_phy_info(unsigned long data); |
|
126 static void e1000_watchdog(unsigned long data); |
|
127 static void e1000_82547_tx_fifo_stall(unsigned long data); |
|
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
|
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
|
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
|
131 static int e1000_set_mac(struct net_device *netdev, void *p); |
|
132 static irqreturn_t e1000_intr(int irq, void *data); |
|
133 static irqreturn_t e1000_intr_msi(int irq, void *data); |
|
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
135 struct e1000_tx_ring *tx_ring); |
|
136 static int e1000_clean(struct napi_struct *napi, int budget); |
|
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
138 struct e1000_rx_ring *rx_ring, |
|
139 int *work_done, int work_to_do); |
|
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
141 struct e1000_rx_ring *rx_ring, |
|
142 int cleaned_count); |
|
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
|
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
145 int cmd); |
|
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
|
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
|
148 static void e1000_tx_timeout(struct net_device *dev); |
|
149 static void e1000_reset_task(struct work_struct *work); |
|
150 static void e1000_smartspeed(struct e1000_adapter *adapter); |
|
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
152 struct sk_buff *skb); |
|
153 |
|
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); |
|
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); |
|
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); |
|
157 static void e1000_restore_vlan(struct e1000_adapter *adapter); |
|
158 |
|
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
|
160 #ifdef CONFIG_PM |
|
161 static int e1000_resume(struct pci_dev *pdev); |
|
162 #endif |
|
163 static void e1000_shutdown(struct pci_dev *pdev); |
|
164 |
|
165 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
166 /* for netdump / net console */ |
|
167 static void e1000_netpoll (struct net_device *netdev); |
|
168 #endif |
|
169 |
|
170 #define COPYBREAK_DEFAULT 256 |
|
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
|
172 module_param(copybreak, uint, 0644); |
|
173 MODULE_PARM_DESC(copybreak, |
|
174 "Maximum size of packet that is copied to a new buffer on receive"); |
|
175 |
|
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
177 pci_channel_state_t state); |
|
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
|
179 static void e1000_io_resume(struct pci_dev *pdev); |
|
180 |
|
181 static struct pci_error_handlers e1000_err_handler = { |
|
182 .error_detected = e1000_io_error_detected, |
|
183 .slot_reset = e1000_io_slot_reset, |
|
184 .resume = e1000_io_resume, |
|
185 }; |
|
186 |
|
187 static struct pci_driver e1000_driver = { |
|
188 .name = e1000_driver_name, |
|
189 .id_table = e1000_pci_tbl, |
|
190 .probe = e1000_probe, |
|
191 .remove = __devexit_p(e1000_remove), |
|
192 #ifdef CONFIG_PM |
|
193 /* Power Managment Hooks */ |
|
194 .suspend = e1000_suspend, |
|
195 .resume = e1000_resume, |
|
196 #endif |
|
197 .shutdown = e1000_shutdown, |
|
198 .err_handler = &e1000_err_handler |
|
199 }; |
|
200 |
|
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
|
203 MODULE_LICENSE("GPL"); |
|
204 MODULE_VERSION(DRV_VERSION); |
|
205 |
|
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
|
207 module_param(debug, int, 0); |
|
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
209 |
|
210 /** |
|
211 * e1000_init_module - Driver Registration Routine |
|
212 * |
|
213 * e1000_init_module is the first routine called when the driver is |
|
214 * loaded. All it does is register with the PCI subsystem. |
|
215 **/ |
|
216 |
|
217 static int __init e1000_init_module(void) |
|
218 { |
|
219 int ret; |
|
220 printk(KERN_INFO "%s - version %s\n", |
|
221 e1000_driver_string, e1000_driver_version); |
|
222 |
|
223 printk(KERN_INFO "%s\n", e1000_copyright); |
|
224 |
|
225 ret = pci_register_driver(&e1000_driver); |
|
226 if (copybreak != COPYBREAK_DEFAULT) { |
|
227 if (copybreak == 0) |
|
228 printk(KERN_INFO "e1000: copybreak disabled\n"); |
|
229 else |
|
230 printk(KERN_INFO "e1000: copybreak enabled for " |
|
231 "packets <= %u bytes\n", copybreak); |
|
232 } |
|
233 return ret; |
|
234 } |
|
235 |
|
236 module_init(e1000_init_module); |
|
237 |
|
238 /** |
|
239 * e1000_exit_module - Driver Exit Cleanup Routine |
|
240 * |
|
241 * e1000_exit_module is called just before the driver is removed |
|
242 * from memory. |
|
243 **/ |
|
244 |
|
245 static void __exit e1000_exit_module(void) |
|
246 { |
|
247 pci_unregister_driver(&e1000_driver); |
|
248 } |
|
249 |
|
250 module_exit(e1000_exit_module); |
|
251 |
|
252 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
253 { |
|
254 struct e1000_hw *hw = &adapter->hw; |
|
255 struct net_device *netdev = adapter->netdev; |
|
256 irq_handler_t handler = e1000_intr; |
|
257 int irq_flags = IRQF_SHARED; |
|
258 int err; |
|
259 |
|
260 if (hw->mac_type >= e1000_82571) { |
|
261 adapter->have_msi = !pci_enable_msi(adapter->pdev); |
|
262 if (adapter->have_msi) { |
|
263 handler = e1000_intr_msi; |
|
264 irq_flags = 0; |
|
265 } |
|
266 } |
|
267 |
|
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
|
269 netdev); |
|
270 if (err) { |
|
271 if (adapter->have_msi) |
|
272 pci_disable_msi(adapter->pdev); |
|
273 DPRINTK(PROBE, ERR, |
|
274 "Unable to allocate interrupt Error: %d\n", err); |
|
275 } |
|
276 |
|
277 return err; |
|
278 } |
|
279 |
|
280 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
281 { |
|
282 struct net_device *netdev = adapter->netdev; |
|
283 |
|
284 free_irq(adapter->pdev->irq, netdev); |
|
285 |
|
286 if (adapter->have_msi) |
|
287 pci_disable_msi(adapter->pdev); |
|
288 } |
|
289 |
|
290 /** |
|
291 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
292 * @adapter: board private structure |
|
293 **/ |
|
294 |
|
295 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
296 { |
|
297 struct e1000_hw *hw = &adapter->hw; |
|
298 |
|
299 ew32(IMC, ~0); |
|
300 E1000_WRITE_FLUSH(); |
|
301 synchronize_irq(adapter->pdev->irq); |
|
302 } |
|
303 |
|
304 /** |
|
305 * e1000_irq_enable - Enable default interrupt generation settings |
|
306 * @adapter: board private structure |
|
307 **/ |
|
308 |
|
309 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
310 { |
|
311 struct e1000_hw *hw = &adapter->hw; |
|
312 |
|
313 ew32(IMS, IMS_ENABLE_MASK); |
|
314 E1000_WRITE_FLUSH(); |
|
315 } |
|
316 |
|
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
318 { |
|
319 struct e1000_hw *hw = &adapter->hw; |
|
320 struct net_device *netdev = adapter->netdev; |
|
321 u16 vid = hw->mng_cookie.vlan_id; |
|
322 u16 old_vid = adapter->mng_vlan_id; |
|
323 if (adapter->vlgrp) { |
|
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
325 if (hw->mng_cookie.status & |
|
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
|
327 e1000_vlan_rx_add_vid(netdev, vid); |
|
328 adapter->mng_vlan_id = vid; |
|
329 } else |
|
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
331 |
|
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
333 (vid != old_vid) && |
|
334 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
335 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
336 } else |
|
337 adapter->mng_vlan_id = vid; |
|
338 } |
|
339 } |
|
340 |
|
341 /** |
|
342 * e1000_release_hw_control - release control of the h/w to f/w |
|
343 * @adapter: address of board private structure |
|
344 * |
|
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
346 * For ASF and Pass Through versions of f/w this means that the |
|
347 * driver is no longer loaded. For AMT version (only with 82573) i |
|
348 * of the f/w this means that the network i/f is closed. |
|
349 * |
|
350 **/ |
|
351 |
|
352 static void e1000_release_hw_control(struct e1000_adapter *adapter) |
|
353 { |
|
354 u32 ctrl_ext; |
|
355 u32 swsm; |
|
356 struct e1000_hw *hw = &adapter->hw; |
|
357 |
|
358 /* Let firmware taken over control of h/w */ |
|
359 switch (hw->mac_type) { |
|
360 case e1000_82573: |
|
361 swsm = er32(SWSM); |
|
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
|
363 break; |
|
364 case e1000_82571: |
|
365 case e1000_82572: |
|
366 case e1000_80003es2lan: |
|
367 case e1000_ich8lan: |
|
368 ctrl_ext = er32(CTRL_EXT); |
|
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
|
370 break; |
|
371 default: |
|
372 break; |
|
373 } |
|
374 } |
|
375 |
|
376 /** |
|
377 * e1000_get_hw_control - get control of the h/w from f/w |
|
378 * @adapter: address of board private structure |
|
379 * |
|
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
381 * For ASF and Pass Through versions of f/w this means that |
|
382 * the driver is loaded. For AMT version (only with 82573) |
|
383 * of the f/w this means that the network i/f is open. |
|
384 * |
|
385 **/ |
|
386 |
|
387 static void e1000_get_hw_control(struct e1000_adapter *adapter) |
|
388 { |
|
389 u32 ctrl_ext; |
|
390 u32 swsm; |
|
391 struct e1000_hw *hw = &adapter->hw; |
|
392 |
|
393 /* Let firmware know the driver has taken over */ |
|
394 switch (hw->mac_type) { |
|
395 case e1000_82573: |
|
396 swsm = er32(SWSM); |
|
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
|
398 break; |
|
399 case e1000_82571: |
|
400 case e1000_82572: |
|
401 case e1000_80003es2lan: |
|
402 case e1000_ich8lan: |
|
403 ctrl_ext = er32(CTRL_EXT); |
|
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
|
405 break; |
|
406 default: |
|
407 break; |
|
408 } |
|
409 } |
|
410 |
|
411 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
412 { |
|
413 struct e1000_hw *hw = &adapter->hw; |
|
414 |
|
415 if (adapter->en_mng_pt) { |
|
416 u32 manc = er32(MANC); |
|
417 |
|
418 /* disable hardware interception of ARP */ |
|
419 manc &= ~(E1000_MANC_ARP_EN); |
|
420 |
|
421 /* enable receiving management packets to the host */ |
|
422 /* this will probably generate destination unreachable messages |
|
423 * from the host OS, but the packets will be handled on SMBUS */ |
|
424 if (hw->has_manc2h) { |
|
425 u32 manc2h = er32(MANC2H); |
|
426 |
|
427 manc |= E1000_MANC_EN_MNG2HOST; |
|
428 #define E1000_MNG2HOST_PORT_623 (1 << 5) |
|
429 #define E1000_MNG2HOST_PORT_664 (1 << 6) |
|
430 manc2h |= E1000_MNG2HOST_PORT_623; |
|
431 manc2h |= E1000_MNG2HOST_PORT_664; |
|
432 ew32(MANC2H, manc2h); |
|
433 } |
|
434 |
|
435 ew32(MANC, manc); |
|
436 } |
|
437 } |
|
438 |
|
439 static void e1000_release_manageability(struct e1000_adapter *adapter) |
|
440 { |
|
441 struct e1000_hw *hw = &adapter->hw; |
|
442 |
|
443 if (adapter->en_mng_pt) { |
|
444 u32 manc = er32(MANC); |
|
445 |
|
446 /* re-enable hardware interception of ARP */ |
|
447 manc |= E1000_MANC_ARP_EN; |
|
448 |
|
449 if (hw->has_manc2h) |
|
450 manc &= ~E1000_MANC_EN_MNG2HOST; |
|
451 |
|
452 /* don't explicitly have to mess with MANC2H since |
|
453 * MANC has an enable disable that gates MANC2H */ |
|
454 |
|
455 ew32(MANC, manc); |
|
456 } |
|
457 } |
|
458 |
|
459 /** |
|
460 * e1000_configure - configure the hardware for RX and TX |
|
461 * @adapter = private board structure |
|
462 **/ |
|
463 static void e1000_configure(struct e1000_adapter *adapter) |
|
464 { |
|
465 struct net_device *netdev = adapter->netdev; |
|
466 int i; |
|
467 |
|
468 e1000_set_rx_mode(netdev); |
|
469 |
|
470 e1000_restore_vlan(adapter); |
|
471 e1000_init_manageability(adapter); |
|
472 |
|
473 e1000_configure_tx(adapter); |
|
474 e1000_setup_rctl(adapter); |
|
475 e1000_configure_rx(adapter); |
|
476 /* call E1000_DESC_UNUSED which always leaves |
|
477 * at least 1 descriptor unused to make sure |
|
478 * next_to_use != next_to_clean */ |
|
479 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
|
481 adapter->alloc_rx_buf(adapter, ring, |
|
482 E1000_DESC_UNUSED(ring)); |
|
483 } |
|
484 |
|
485 adapter->tx_queue_len = netdev->tx_queue_len; |
|
486 } |
|
487 |
|
488 int e1000_up(struct e1000_adapter *adapter) |
|
489 { |
|
490 struct e1000_hw *hw = &adapter->hw; |
|
491 |
|
492 /* hardware has been reset, we need to reload some things */ |
|
493 e1000_configure(adapter); |
|
494 |
|
495 clear_bit(__E1000_DOWN, &adapter->flags); |
|
496 |
|
497 napi_enable(&adapter->napi); |
|
498 |
|
499 e1000_irq_enable(adapter); |
|
500 |
|
501 /* fire a link change interrupt to start the watchdog */ |
|
502 ew32(ICS, E1000_ICS_LSC); |
|
503 return 0; |
|
504 } |
|
505 |
|
506 /** |
|
507 * e1000_power_up_phy - restore link in case the phy was powered down |
|
508 * @adapter: address of board private structure |
|
509 * |
|
510 * The phy may be powered down to save power and turn off link when the |
|
511 * driver is unloaded and wake on lan is not enabled (among others) |
|
512 * *** this routine MUST be followed by a call to e1000_reset *** |
|
513 * |
|
514 **/ |
|
515 |
|
516 void e1000_power_up_phy(struct e1000_adapter *adapter) |
|
517 { |
|
518 struct e1000_hw *hw = &adapter->hw; |
|
519 u16 mii_reg = 0; |
|
520 |
|
521 /* Just clear the power down bit to wake the phy back up */ |
|
522 if (hw->media_type == e1000_media_type_copper) { |
|
523 /* according to the manual, the phy will retain its |
|
524 * settings across a power-down/up cycle */ |
|
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
526 mii_reg &= ~MII_CR_POWER_DOWN; |
|
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
528 } |
|
529 } |
|
530 |
|
531 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
532 { |
|
533 struct e1000_hw *hw = &adapter->hw; |
|
534 |
|
535 /* Power down the PHY so no link is implied when interface is down * |
|
536 * The PHY cannot be powered down if any of the following is true * |
|
537 * (a) WoL is enabled |
|
538 * (b) AMT is active |
|
539 * (c) SoL/IDER session is active */ |
|
540 if (!adapter->wol && hw->mac_type >= e1000_82540 && |
|
541 hw->media_type == e1000_media_type_copper) { |
|
542 u16 mii_reg = 0; |
|
543 |
|
544 switch (hw->mac_type) { |
|
545 case e1000_82540: |
|
546 case e1000_82545: |
|
547 case e1000_82545_rev_3: |
|
548 case e1000_82546: |
|
549 case e1000_82546_rev_3: |
|
550 case e1000_82541: |
|
551 case e1000_82541_rev_2: |
|
552 case e1000_82547: |
|
553 case e1000_82547_rev_2: |
|
554 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
555 goto out; |
|
556 break; |
|
557 case e1000_82571: |
|
558 case e1000_82572: |
|
559 case e1000_82573: |
|
560 case e1000_80003es2lan: |
|
561 case e1000_ich8lan: |
|
562 if (e1000_check_mng_mode(hw) || |
|
563 e1000_check_phy_reset_block(hw)) |
|
564 goto out; |
|
565 break; |
|
566 default: |
|
567 goto out; |
|
568 } |
|
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
570 mii_reg |= MII_CR_POWER_DOWN; |
|
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
572 mdelay(1); |
|
573 } |
|
574 out: |
|
575 return; |
|
576 } |
|
577 |
|
578 void e1000_down(struct e1000_adapter *adapter) |
|
579 { |
|
580 struct net_device *netdev = adapter->netdev; |
|
581 |
|
582 /* signal that we're down so the interrupt handler does not |
|
583 * reschedule our watchdog timer */ |
|
584 set_bit(__E1000_DOWN, &adapter->flags); |
|
585 |
|
586 napi_disable(&adapter->napi); |
|
587 |
|
588 e1000_irq_disable(adapter); |
|
589 |
|
590 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
591 del_timer_sync(&adapter->watchdog_timer); |
|
592 del_timer_sync(&adapter->phy_info_timer); |
|
593 |
|
594 netdev->tx_queue_len = adapter->tx_queue_len; |
|
595 adapter->link_speed = 0; |
|
596 adapter->link_duplex = 0; |
|
597 netif_carrier_off(netdev); |
|
598 netif_stop_queue(netdev); |
|
599 |
|
600 e1000_reset(adapter); |
|
601 e1000_clean_all_tx_rings(adapter); |
|
602 e1000_clean_all_rx_rings(adapter); |
|
603 } |
|
604 |
|
605 void e1000_reinit_locked(struct e1000_adapter *adapter) |
|
606 { |
|
607 WARN_ON(in_interrupt()); |
|
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
609 msleep(1); |
|
610 e1000_down(adapter); |
|
611 e1000_up(adapter); |
|
612 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
613 } |
|
614 |
|
615 void e1000_reset(struct e1000_adapter *adapter) |
|
616 { |
|
617 struct e1000_hw *hw = &adapter->hw; |
|
618 u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
|
619 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF; |
|
620 bool legacy_pba_adjust = false; |
|
621 |
|
622 /* Repartition Pba for greater than 9k mtu |
|
623 * To take effect CTRL.RST is required. |
|
624 */ |
|
625 |
|
626 switch (hw->mac_type) { |
|
627 case e1000_82542_rev2_0: |
|
628 case e1000_82542_rev2_1: |
|
629 case e1000_82543: |
|
630 case e1000_82544: |
|
631 case e1000_82540: |
|
632 case e1000_82541: |
|
633 case e1000_82541_rev_2: |
|
634 legacy_pba_adjust = true; |
|
635 pba = E1000_PBA_48K; |
|
636 break; |
|
637 case e1000_82545: |
|
638 case e1000_82545_rev_3: |
|
639 case e1000_82546: |
|
640 case e1000_82546_rev_3: |
|
641 pba = E1000_PBA_48K; |
|
642 break; |
|
643 case e1000_82547: |
|
644 case e1000_82547_rev_2: |
|
645 legacy_pba_adjust = true; |
|
646 pba = E1000_PBA_30K; |
|
647 break; |
|
648 case e1000_82571: |
|
649 case e1000_82572: |
|
650 case e1000_80003es2lan: |
|
651 pba = E1000_PBA_38K; |
|
652 break; |
|
653 case e1000_82573: |
|
654 pba = E1000_PBA_20K; |
|
655 break; |
|
656 case e1000_ich8lan: |
|
657 pba = E1000_PBA_8K; |
|
658 case e1000_undefined: |
|
659 case e1000_num_macs: |
|
660 break; |
|
661 } |
|
662 |
|
663 if (legacy_pba_adjust) { |
|
664 if (adapter->netdev->mtu > E1000_RXBUFFER_8192) |
|
665 pba -= 8; /* allocate more FIFO for Tx */ |
|
666 |
|
667 if (hw->mac_type == e1000_82547) { |
|
668 adapter->tx_fifo_head = 0; |
|
669 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
|
670 adapter->tx_fifo_size = |
|
671 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
|
672 atomic_set(&adapter->tx_fifo_stall, 0); |
|
673 } |
|
674 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
675 /* adjust PBA for jumbo frames */ |
|
676 ew32(PBA, pba); |
|
677 |
|
678 /* To maintain wire speed transmits, the Tx FIFO should be |
|
679 * large enough to accomodate two full transmit packets, |
|
680 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
681 * the Rx FIFO should be large enough to accomodate at least |
|
682 * one full receive packet and is similarly rounded up and |
|
683 * expressed in KB. */ |
|
684 pba = er32(PBA); |
|
685 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
686 tx_space = pba >> 16; |
|
687 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
688 pba &= 0xffff; |
|
689 /* don't include ethernet FCS because hardware appends/strips */ |
|
690 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE + |
|
691 VLAN_TAG_SIZE; |
|
692 min_tx_space = min_rx_space; |
|
693 min_tx_space *= 2; |
|
694 min_tx_space = ALIGN(min_tx_space, 1024); |
|
695 min_tx_space >>= 10; |
|
696 min_rx_space = ALIGN(min_rx_space, 1024); |
|
697 min_rx_space >>= 10; |
|
698 |
|
699 /* If current Tx allocation is less than the min Tx FIFO size, |
|
700 * and the min Tx FIFO size is less than the current Rx FIFO |
|
701 * allocation, take space away from current Rx allocation */ |
|
702 if (tx_space < min_tx_space && |
|
703 ((min_tx_space - tx_space) < pba)) { |
|
704 pba = pba - (min_tx_space - tx_space); |
|
705 |
|
706 /* PCI/PCIx hardware has PBA alignment constraints */ |
|
707 switch (hw->mac_type) { |
|
708 case e1000_82545 ... e1000_82546_rev_3: |
|
709 pba &= ~(E1000_PBA_8K - 1); |
|
710 break; |
|
711 default: |
|
712 break; |
|
713 } |
|
714 |
|
715 /* if short on rx space, rx wins and must trump tx |
|
716 * adjustment or use Early Receive if available */ |
|
717 if (pba < min_rx_space) { |
|
718 switch (hw->mac_type) { |
|
719 case e1000_82573: |
|
720 /* ERT enabled in e1000_configure_rx */ |
|
721 break; |
|
722 default: |
|
723 pba = min_rx_space; |
|
724 break; |
|
725 } |
|
726 } |
|
727 } |
|
728 } |
|
729 |
|
730 ew32(PBA, pba); |
|
731 |
|
732 /* flow control settings */ |
|
733 /* Set the FC high water mark to 90% of the FIFO size. |
|
734 * Required to clear last 3 LSB */ |
|
735 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; |
|
736 /* We can't use 90% on small FIFOs because the remainder |
|
737 * would be less than 1 full frame. In this case, we size |
|
738 * it to allow at least a full frame above the high water |
|
739 * mark. */ |
|
740 if (pba < E1000_PBA_16K) |
|
741 fc_high_water_mark = (pba * 1024) - 1600; |
|
742 |
|
743 hw->fc_high_water = fc_high_water_mark; |
|
744 hw->fc_low_water = fc_high_water_mark - 8; |
|
745 if (hw->mac_type == e1000_80003es2lan) |
|
746 hw->fc_pause_time = 0xFFFF; |
|
747 else |
|
748 hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
|
749 hw->fc_send_xon = 1; |
|
750 hw->fc = hw->original_fc; |
|
751 |
|
752 /* Allow time for pending master requests to run */ |
|
753 e1000_reset_hw(hw); |
|
754 if (hw->mac_type >= e1000_82544) |
|
755 ew32(WUC, 0); |
|
756 |
|
757 if (e1000_init_hw(hw)) |
|
758 DPRINTK(PROBE, ERR, "Hardware Error\n"); |
|
759 e1000_update_mng_vlan(adapter); |
|
760 |
|
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
|
762 if (hw->mac_type >= e1000_82544 && |
|
763 hw->mac_type <= e1000_82547_rev_2 && |
|
764 hw->autoneg == 1 && |
|
765 hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
766 u32 ctrl = er32(CTRL); |
|
767 /* clear phy power management bit if we are in gig only mode, |
|
768 * which if enabled will attempt negotiation to 100Mb, which |
|
769 * can cause a loss of link at power off or driver unload */ |
|
770 ctrl &= ~E1000_CTRL_SWDPIN3; |
|
771 ew32(CTRL, ctrl); |
|
772 } |
|
773 |
|
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
775 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
|
776 |
|
777 e1000_reset_adaptive(hw); |
|
778 e1000_phy_get_info(hw, &adapter->phy_info); |
|
779 |
|
780 if (!adapter->smart_power_down && |
|
781 (hw->mac_type == e1000_82571 || |
|
782 hw->mac_type == e1000_82572)) { |
|
783 u16 phy_data = 0; |
|
784 /* speed up time to link by disabling smart power down, ignore |
|
785 * the return value of this function because there is nothing |
|
786 * different we would do if it failed */ |
|
787 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
788 &phy_data); |
|
789 phy_data &= ~IGP02E1000_PM_SPD; |
|
790 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
791 phy_data); |
|
792 } |
|
793 |
|
794 e1000_release_manageability(adapter); |
|
795 } |
|
796 |
|
797 /** |
|
798 * Dump the eeprom for users having checksum issues |
|
799 **/ |
|
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
|
801 { |
|
802 struct net_device *netdev = adapter->netdev; |
|
803 struct ethtool_eeprom eeprom; |
|
804 const struct ethtool_ops *ops = netdev->ethtool_ops; |
|
805 u8 *data; |
|
806 int i; |
|
807 u16 csum_old, csum_new = 0; |
|
808 |
|
809 eeprom.len = ops->get_eeprom_len(netdev); |
|
810 eeprom.offset = 0; |
|
811 |
|
812 data = kmalloc(eeprom.len, GFP_KERNEL); |
|
813 if (!data) { |
|
814 printk(KERN_ERR "Unable to allocate memory to dump EEPROM" |
|
815 " data\n"); |
|
816 return; |
|
817 } |
|
818 |
|
819 ops->get_eeprom(netdev, &eeprom, data); |
|
820 |
|
821 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
|
822 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
|
823 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
|
824 csum_new += data[i] + (data[i + 1] << 8); |
|
825 csum_new = EEPROM_SUM - csum_new; |
|
826 |
|
827 printk(KERN_ERR "/*********************/\n"); |
|
828 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old); |
|
829 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new); |
|
830 |
|
831 printk(KERN_ERR "Offset Values\n"); |
|
832 printk(KERN_ERR "======== ======\n"); |
|
833 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
|
834 |
|
835 printk(KERN_ERR "Include this output when contacting your support " |
|
836 "provider.\n"); |
|
837 printk(KERN_ERR "This is not a software error! Something bad " |
|
838 "happened to your hardware or\n"); |
|
839 printk(KERN_ERR "EEPROM image. Ignoring this " |
|
840 "problem could result in further problems,\n"); |
|
841 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n"); |
|
842 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, " |
|
843 "which is invalid\n"); |
|
844 printk(KERN_ERR "and requires you to set the proper MAC " |
|
845 "address manually before continuing\n"); |
|
846 printk(KERN_ERR "to enable this network device.\n"); |
|
847 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue " |
|
848 "to your hardware vendor\n"); |
|
849 printk(KERN_ERR "or Intel Customer Support.\n"); |
|
850 printk(KERN_ERR "/*********************/\n"); |
|
851 |
|
852 kfree(data); |
|
853 } |
|
854 |
|
855 /** |
|
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
|
857 * @pdev: PCI device information struct |
|
858 * |
|
859 * Return true if an adapter needs ioport resources |
|
860 **/ |
|
861 static int e1000_is_need_ioport(struct pci_dev *pdev) |
|
862 { |
|
863 switch (pdev->device) { |
|
864 case E1000_DEV_ID_82540EM: |
|
865 case E1000_DEV_ID_82540EM_LOM: |
|
866 case E1000_DEV_ID_82540EP: |
|
867 case E1000_DEV_ID_82540EP_LOM: |
|
868 case E1000_DEV_ID_82540EP_LP: |
|
869 case E1000_DEV_ID_82541EI: |
|
870 case E1000_DEV_ID_82541EI_MOBILE: |
|
871 case E1000_DEV_ID_82541ER: |
|
872 case E1000_DEV_ID_82541ER_LOM: |
|
873 case E1000_DEV_ID_82541GI: |
|
874 case E1000_DEV_ID_82541GI_LF: |
|
875 case E1000_DEV_ID_82541GI_MOBILE: |
|
876 case E1000_DEV_ID_82544EI_COPPER: |
|
877 case E1000_DEV_ID_82544EI_FIBER: |
|
878 case E1000_DEV_ID_82544GC_COPPER: |
|
879 case E1000_DEV_ID_82544GC_LOM: |
|
880 case E1000_DEV_ID_82545EM_COPPER: |
|
881 case E1000_DEV_ID_82545EM_FIBER: |
|
882 case E1000_DEV_ID_82546EB_COPPER: |
|
883 case E1000_DEV_ID_82546EB_FIBER: |
|
884 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
885 return true; |
|
886 default: |
|
887 return false; |
|
888 } |
|
889 } |
|
890 |
|
891 static const struct net_device_ops e1000_netdev_ops = { |
|
892 .ndo_open = e1000_open, |
|
893 .ndo_stop = e1000_close, |
|
894 .ndo_start_xmit = e1000_xmit_frame, |
|
895 .ndo_get_stats = e1000_get_stats, |
|
896 .ndo_set_rx_mode = e1000_set_rx_mode, |
|
897 .ndo_set_mac_address = e1000_set_mac, |
|
898 .ndo_tx_timeout = e1000_tx_timeout, |
|
899 .ndo_change_mtu = e1000_change_mtu, |
|
900 .ndo_do_ioctl = e1000_ioctl, |
|
901 .ndo_validate_addr = eth_validate_addr, |
|
902 |
|
903 .ndo_vlan_rx_register = e1000_vlan_rx_register, |
|
904 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
905 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
906 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
907 .ndo_poll_controller = e1000_netpoll, |
|
908 #endif |
|
909 }; |
|
910 |
|
911 /** |
|
912 * e1000_probe - Device Initialization Routine |
|
913 * @pdev: PCI device information struct |
|
914 * @ent: entry in e1000_pci_tbl |
|
915 * |
|
916 * Returns 0 on success, negative on failure |
|
917 * |
|
918 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
919 * The OS initialization, configuring of the adapter private structure, |
|
920 * and a hardware reset occur. |
|
921 **/ |
|
922 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
923 const struct pci_device_id *ent) |
|
924 { |
|
925 struct net_device *netdev; |
|
926 struct e1000_adapter *adapter; |
|
927 struct e1000_hw *hw; |
|
928 |
|
929 static int cards_found = 0; |
|
930 static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
|
931 int i, err, pci_using_dac; |
|
932 u16 eeprom_data = 0; |
|
933 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
934 int bars, need_ioport; |
|
935 |
|
936 /* do not allocate ioport bars when not needed */ |
|
937 need_ioport = e1000_is_need_ioport(pdev); |
|
938 if (need_ioport) { |
|
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
|
940 err = pci_enable_device(pdev); |
|
941 } else { |
|
942 bars = pci_select_bars(pdev, IORESOURCE_MEM); |
|
943 err = pci_enable_device_mem(pdev); |
|
944 } |
|
945 if (err) |
|
946 return err; |
|
947 |
|
948 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) && |
|
949 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) { |
|
950 pci_using_dac = 1; |
|
951 } else { |
|
952 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
|
953 if (err) { |
|
954 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
|
955 if (err) { |
|
956 E1000_ERR("No usable DMA configuration, " |
|
957 "aborting\n"); |
|
958 goto err_dma; |
|
959 } |
|
960 } |
|
961 pci_using_dac = 0; |
|
962 } |
|
963 |
|
964 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
|
965 if (err) |
|
966 goto err_pci_reg; |
|
967 |
|
968 pci_set_master(pdev); |
|
969 |
|
970 err = -ENOMEM; |
|
971 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
972 if (!netdev) |
|
973 goto err_alloc_etherdev; |
|
974 |
|
975 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
976 |
|
977 pci_set_drvdata(pdev, netdev); |
|
978 adapter = netdev_priv(netdev); |
|
979 adapter->netdev = netdev; |
|
980 adapter->pdev = pdev; |
|
981 adapter->msg_enable = (1 << debug) - 1; |
|
982 adapter->bars = bars; |
|
983 adapter->need_ioport = need_ioport; |
|
984 |
|
985 hw = &adapter->hw; |
|
986 hw->back = adapter; |
|
987 |
|
988 err = -EIO; |
|
989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); |
|
990 if (!hw->hw_addr) |
|
991 goto err_ioremap; |
|
992 |
|
993 if (adapter->need_ioport) { |
|
994 for (i = BAR_1; i <= BAR_5; i++) { |
|
995 if (pci_resource_len(pdev, i) == 0) |
|
996 continue; |
|
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
|
998 hw->io_base = pci_resource_start(pdev, i); |
|
999 break; |
|
1000 } |
|
1001 } |
|
1002 } |
|
1003 |
|
1004 netdev->netdev_ops = &e1000_netdev_ops; |
|
1005 e1000_set_ethtool_ops(netdev); |
|
1006 netdev->watchdog_timeo = 5 * HZ; |
|
1007 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
1008 |
|
1009 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
1010 |
|
1011 adapter->bd_number = cards_found; |
|
1012 |
|
1013 /* setup the private structure */ |
|
1014 |
|
1015 err = e1000_sw_init(adapter); |
|
1016 if (err) |
|
1017 goto err_sw_init; |
|
1018 |
|
1019 err = -EIO; |
|
1020 /* Flash BAR mapping must happen after e1000_sw_init |
|
1021 * because it depends on mac_type */ |
|
1022 if ((hw->mac_type == e1000_ich8lan) && |
|
1023 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
|
1024 hw->flash_address = pci_ioremap_bar(pdev, 1); |
|
1025 if (!hw->flash_address) |
|
1026 goto err_flashmap; |
|
1027 } |
|
1028 |
|
1029 if (e1000_check_phy_reset_block(hw)) |
|
1030 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); |
|
1031 |
|
1032 if (hw->mac_type >= e1000_82543) { |
|
1033 netdev->features = NETIF_F_SG | |
|
1034 NETIF_F_HW_CSUM | |
|
1035 NETIF_F_HW_VLAN_TX | |
|
1036 NETIF_F_HW_VLAN_RX | |
|
1037 NETIF_F_HW_VLAN_FILTER; |
|
1038 if (hw->mac_type == e1000_ich8lan) |
|
1039 netdev->features &= ~NETIF_F_HW_VLAN_FILTER; |
|
1040 } |
|
1041 |
|
1042 if ((hw->mac_type >= e1000_82544) && |
|
1043 (hw->mac_type != e1000_82547)) |
|
1044 netdev->features |= NETIF_F_TSO; |
|
1045 |
|
1046 if (hw->mac_type > e1000_82547_rev_2) |
|
1047 netdev->features |= NETIF_F_TSO6; |
|
1048 if (pci_using_dac) |
|
1049 netdev->features |= NETIF_F_HIGHDMA; |
|
1050 |
|
1051 netdev->features |= NETIF_F_LLTX; |
|
1052 |
|
1053 netdev->vlan_features |= NETIF_F_TSO; |
|
1054 netdev->vlan_features |= NETIF_F_TSO6; |
|
1055 netdev->vlan_features |= NETIF_F_HW_CSUM; |
|
1056 netdev->vlan_features |= NETIF_F_SG; |
|
1057 |
|
1058 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
|
1059 |
|
1060 /* initialize eeprom parameters */ |
|
1061 if (e1000_init_eeprom_params(hw)) { |
|
1062 E1000_ERR("EEPROM initialization failed\n"); |
|
1063 goto err_eeprom; |
|
1064 } |
|
1065 |
|
1066 /* before reading the EEPROM, reset the controller to |
|
1067 * put the device in a known good starting state */ |
|
1068 |
|
1069 e1000_reset_hw(hw); |
|
1070 |
|
1071 /* make sure the EEPROM is good */ |
|
1072 if (e1000_validate_eeprom_checksum(hw) < 0) { |
|
1073 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); |
|
1074 e1000_dump_eeprom(adapter); |
|
1075 /* |
|
1076 * set MAC address to all zeroes to invalidate and temporary |
|
1077 * disable this device for the user. This blocks regular |
|
1078 * traffic while still permitting ethtool ioctls from reaching |
|
1079 * the hardware as well as allowing the user to run the |
|
1080 * interface after manually setting a hw addr using |
|
1081 * `ip set address` |
|
1082 */ |
|
1083 memset(hw->mac_addr, 0, netdev->addr_len); |
|
1084 } else { |
|
1085 /* copy the MAC address out of the EEPROM */ |
|
1086 if (e1000_read_mac_addr(hw)) |
|
1087 DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); |
|
1088 } |
|
1089 /* don't block initalization here due to bad MAC address */ |
|
1090 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
|
1091 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); |
|
1092 |
|
1093 if (!is_valid_ether_addr(netdev->perm_addr)) |
|
1094 DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); |
|
1095 |
|
1096 e1000_get_bus_info(hw); |
|
1097 |
|
1098 init_timer(&adapter->tx_fifo_stall_timer); |
|
1099 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; |
|
1100 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; |
|
1101 |
|
1102 init_timer(&adapter->watchdog_timer); |
|
1103 adapter->watchdog_timer.function = &e1000_watchdog; |
|
1104 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
1105 |
|
1106 init_timer(&adapter->phy_info_timer); |
|
1107 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
1108 adapter->phy_info_timer.data = (unsigned long)adapter; |
|
1109 |
|
1110 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
1111 |
|
1112 e1000_check_options(adapter); |
|
1113 |
|
1114 /* Initial Wake on LAN setting |
|
1115 * If APM wake is enabled in the EEPROM, |
|
1116 * enable the ACPI Magic Packet filter |
|
1117 */ |
|
1118 |
|
1119 switch (hw->mac_type) { |
|
1120 case e1000_82542_rev2_0: |
|
1121 case e1000_82542_rev2_1: |
|
1122 case e1000_82543: |
|
1123 break; |
|
1124 case e1000_82544: |
|
1125 e1000_read_eeprom(hw, |
|
1126 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
|
1127 eeprom_apme_mask = E1000_EEPROM_82544_APM; |
|
1128 break; |
|
1129 case e1000_ich8lan: |
|
1130 e1000_read_eeprom(hw, |
|
1131 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); |
|
1132 eeprom_apme_mask = E1000_EEPROM_ICH8_APME; |
|
1133 break; |
|
1134 case e1000_82546: |
|
1135 case e1000_82546_rev_3: |
|
1136 case e1000_82571: |
|
1137 case e1000_80003es2lan: |
|
1138 if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
|
1139 e1000_read_eeprom(hw, |
|
1140 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
1141 break; |
|
1142 } |
|
1143 /* Fall Through */ |
|
1144 default: |
|
1145 e1000_read_eeprom(hw, |
|
1146 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
1147 break; |
|
1148 } |
|
1149 if (eeprom_data & eeprom_apme_mask) |
|
1150 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
1151 |
|
1152 /* now that we have the eeprom settings, apply the special cases |
|
1153 * where the eeprom may be wrong or the board simply won't support |
|
1154 * wake on lan on a particular port */ |
|
1155 switch (pdev->device) { |
|
1156 case E1000_DEV_ID_82546GB_PCIE: |
|
1157 adapter->eeprom_wol = 0; |
|
1158 break; |
|
1159 case E1000_DEV_ID_82546EB_FIBER: |
|
1160 case E1000_DEV_ID_82546GB_FIBER: |
|
1161 case E1000_DEV_ID_82571EB_FIBER: |
|
1162 /* Wake events only supported on port A for dual fiber |
|
1163 * regardless of eeprom setting */ |
|
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
1165 adapter->eeprom_wol = 0; |
|
1166 break; |
|
1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1168 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
1169 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
1170 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
|
1171 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
1172 /* if quad port adapter, disable WoL on all but port A */ |
|
1173 if (global_quad_port_a != 0) |
|
1174 adapter->eeprom_wol = 0; |
|
1175 else |
|
1176 adapter->quad_port_a = 1; |
|
1177 /* Reset for multiple quad port adapters */ |
|
1178 if (++global_quad_port_a == 4) |
|
1179 global_quad_port_a = 0; |
|
1180 break; |
|
1181 } |
|
1182 |
|
1183 /* initialize the wol settings based on the eeprom settings */ |
|
1184 adapter->wol = adapter->eeprom_wol; |
|
1185 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1186 |
|
1187 /* print bus type/speed/width info */ |
|
1188 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", |
|
1189 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : |
|
1190 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), |
|
1191 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : |
|
1192 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : |
|
1193 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : |
|
1194 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : |
|
1195 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), |
|
1196 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : |
|
1197 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : |
|
1198 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : |
|
1199 "32-bit")); |
|
1200 |
|
1201 printk("%pM\n", netdev->dev_addr); |
|
1202 |
|
1203 if (hw->bus_type == e1000_bus_type_pci_express) { |
|
1204 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no " |
|
1205 "longer be supported by this driver in the future.\n", |
|
1206 pdev->vendor, pdev->device); |
|
1207 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" " |
|
1208 "driver instead.\n"); |
|
1209 } |
|
1210 |
|
1211 /* reset the hardware with the new settings */ |
|
1212 e1000_reset(adapter); |
|
1213 |
|
1214 /* If the controller is 82573 and f/w is AMT, do not set |
|
1215 * DRV_LOAD until the interface is up. For all other cases, |
|
1216 * let the f/w know that the h/w is now under the control |
|
1217 * of the driver. */ |
|
1218 if (hw->mac_type != e1000_82573 || |
|
1219 !e1000_check_mng_mode(hw)) |
|
1220 e1000_get_hw_control(adapter); |
|
1221 |
|
1222 /* tell the stack to leave us alone until e1000_open() is called */ |
|
1223 netif_carrier_off(netdev); |
|
1224 netif_stop_queue(netdev); |
|
1225 |
|
1226 strcpy(netdev->name, "eth%d"); |
|
1227 err = register_netdev(netdev); |
|
1228 if (err) |
|
1229 goto err_register; |
|
1230 |
|
1231 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); |
|
1232 |
|
1233 cards_found++; |
|
1234 return 0; |
|
1235 |
|
1236 err_register: |
|
1237 e1000_release_hw_control(adapter); |
|
1238 err_eeprom: |
|
1239 if (!e1000_check_phy_reset_block(hw)) |
|
1240 e1000_phy_hw_reset(hw); |
|
1241 |
|
1242 if (hw->flash_address) |
|
1243 iounmap(hw->flash_address); |
|
1244 err_flashmap: |
|
1245 kfree(adapter->tx_ring); |
|
1246 kfree(adapter->rx_ring); |
|
1247 err_sw_init: |
|
1248 iounmap(hw->hw_addr); |
|
1249 err_ioremap: |
|
1250 free_netdev(netdev); |
|
1251 err_alloc_etherdev: |
|
1252 pci_release_selected_regions(pdev, bars); |
|
1253 err_pci_reg: |
|
1254 err_dma: |
|
1255 pci_disable_device(pdev); |
|
1256 return err; |
|
1257 } |
|
1258 |
|
1259 /** |
|
1260 * e1000_remove - Device Removal Routine |
|
1261 * @pdev: PCI device information struct |
|
1262 * |
|
1263 * e1000_remove is called by the PCI subsystem to alert the driver |
|
1264 * that it should release a PCI device. The could be caused by a |
|
1265 * Hot-Plug event, or because the driver is going to be removed from |
|
1266 * memory. |
|
1267 **/ |
|
1268 |
|
1269 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
1270 { |
|
1271 struct net_device *netdev = pci_get_drvdata(pdev); |
|
1272 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1273 struct e1000_hw *hw = &adapter->hw; |
|
1274 |
|
1275 cancel_work_sync(&adapter->reset_task); |
|
1276 |
|
1277 e1000_release_manageability(adapter); |
|
1278 |
|
1279 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
1280 * would have already happened in close and is redundant. */ |
|
1281 e1000_release_hw_control(adapter); |
|
1282 |
|
1283 unregister_netdev(netdev); |
|
1284 |
|
1285 if (!e1000_check_phy_reset_block(hw)) |
|
1286 e1000_phy_hw_reset(hw); |
|
1287 |
|
1288 kfree(adapter->tx_ring); |
|
1289 kfree(adapter->rx_ring); |
|
1290 |
|
1291 iounmap(hw->hw_addr); |
|
1292 if (hw->flash_address) |
|
1293 iounmap(hw->flash_address); |
|
1294 pci_release_selected_regions(pdev, adapter->bars); |
|
1295 |
|
1296 free_netdev(netdev); |
|
1297 |
|
1298 pci_disable_device(pdev); |
|
1299 } |
|
1300 |
|
1301 /** |
|
1302 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
1303 * @adapter: board private structure to initialize |
|
1304 * |
|
1305 * e1000_sw_init initializes the Adapter private data structure. |
|
1306 * Fields are initialized based on PCI device information and |
|
1307 * OS network device settings (MTU size). |
|
1308 **/ |
|
1309 |
|
1310 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
1311 { |
|
1312 struct e1000_hw *hw = &adapter->hw; |
|
1313 struct net_device *netdev = adapter->netdev; |
|
1314 struct pci_dev *pdev = adapter->pdev; |
|
1315 |
|
1316 /* PCI config space info */ |
|
1317 |
|
1318 hw->vendor_id = pdev->vendor; |
|
1319 hw->device_id = pdev->device; |
|
1320 hw->subsystem_vendor_id = pdev->subsystem_vendor; |
|
1321 hw->subsystem_id = pdev->subsystem_device; |
|
1322 hw->revision_id = pdev->revision; |
|
1323 |
|
1324 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
|
1325 |
|
1326 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
1327 hw->max_frame_size = netdev->mtu + |
|
1328 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
1329 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
|
1330 |
|
1331 /* identify the MAC */ |
|
1332 |
|
1333 if (e1000_set_mac_type(hw)) { |
|
1334 DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); |
|
1335 return -EIO; |
|
1336 } |
|
1337 |
|
1338 switch (hw->mac_type) { |
|
1339 default: |
|
1340 break; |
|
1341 case e1000_82541: |
|
1342 case e1000_82547: |
|
1343 case e1000_82541_rev_2: |
|
1344 case e1000_82547_rev_2: |
|
1345 hw->phy_init_script = 1; |
|
1346 break; |
|
1347 } |
|
1348 |
|
1349 e1000_set_media_type(hw); |
|
1350 |
|
1351 hw->wait_autoneg_complete = false; |
|
1352 hw->tbi_compatibility_en = true; |
|
1353 hw->adaptive_ifs = true; |
|
1354 |
|
1355 /* Copper options */ |
|
1356 |
|
1357 if (hw->media_type == e1000_media_type_copper) { |
|
1358 hw->mdix = AUTO_ALL_MODES; |
|
1359 hw->disable_polarity_correction = false; |
|
1360 hw->master_slave = E1000_MASTER_SLAVE; |
|
1361 } |
|
1362 |
|
1363 adapter->num_tx_queues = 1; |
|
1364 adapter->num_rx_queues = 1; |
|
1365 |
|
1366 if (e1000_alloc_queues(adapter)) { |
|
1367 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); |
|
1368 return -ENOMEM; |
|
1369 } |
|
1370 |
|
1371 spin_lock_init(&adapter->tx_queue_lock); |
|
1372 |
|
1373 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
1374 e1000_irq_disable(adapter); |
|
1375 |
|
1376 spin_lock_init(&adapter->stats_lock); |
|
1377 |
|
1378 set_bit(__E1000_DOWN, &adapter->flags); |
|
1379 |
|
1380 return 0; |
|
1381 } |
|
1382 |
|
1383 /** |
|
1384 * e1000_alloc_queues - Allocate memory for all rings |
|
1385 * @adapter: board private structure to initialize |
|
1386 * |
|
1387 * We allocate one ring per queue at run-time since we don't know the |
|
1388 * number of queues at compile-time. |
|
1389 **/ |
|
1390 |
|
1391 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1392 { |
|
1393 adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
|
1394 sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
1395 if (!adapter->tx_ring) |
|
1396 return -ENOMEM; |
|
1397 |
|
1398 adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
|
1399 sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
1400 if (!adapter->rx_ring) { |
|
1401 kfree(adapter->tx_ring); |
|
1402 return -ENOMEM; |
|
1403 } |
|
1404 |
|
1405 return E1000_SUCCESS; |
|
1406 } |
|
1407 |
|
1408 /** |
|
1409 * e1000_open - Called when a network interface is made active |
|
1410 * @netdev: network interface device structure |
|
1411 * |
|
1412 * Returns 0 on success, negative value on failure |
|
1413 * |
|
1414 * The open entry point is called when a network interface is made |
|
1415 * active by the system (IFF_UP). At this point all resources needed |
|
1416 * for transmit and receive operations are allocated, the interrupt |
|
1417 * handler is registered with the OS, the watchdog timer is started, |
|
1418 * and the stack is notified that the interface is ready. |
|
1419 **/ |
|
1420 |
|
1421 static int e1000_open(struct net_device *netdev) |
|
1422 { |
|
1423 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1424 struct e1000_hw *hw = &adapter->hw; |
|
1425 int err; |
|
1426 |
|
1427 /* disallow open during test */ |
|
1428 if (test_bit(__E1000_TESTING, &adapter->flags)) |
|
1429 return -EBUSY; |
|
1430 |
|
1431 /* allocate transmit descriptors */ |
|
1432 err = e1000_setup_all_tx_resources(adapter); |
|
1433 if (err) |
|
1434 goto err_setup_tx; |
|
1435 |
|
1436 /* allocate receive descriptors */ |
|
1437 err = e1000_setup_all_rx_resources(adapter); |
|
1438 if (err) |
|
1439 goto err_setup_rx; |
|
1440 |
|
1441 e1000_power_up_phy(adapter); |
|
1442 |
|
1443 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
1444 if ((hw->mng_cookie.status & |
|
1445 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
|
1446 e1000_update_mng_vlan(adapter); |
|
1447 } |
|
1448 |
|
1449 /* If AMT is enabled, let the firmware know that the network |
|
1450 * interface is now open */ |
|
1451 if (hw->mac_type == e1000_82573 && |
|
1452 e1000_check_mng_mode(hw)) |
|
1453 e1000_get_hw_control(adapter); |
|
1454 |
|
1455 /* before we allocate an interrupt, we must be ready to handle it. |
|
1456 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
1457 * as soon as we call pci_request_irq, so we have to setup our |
|
1458 * clean_rx handler before we do so. */ |
|
1459 e1000_configure(adapter); |
|
1460 |
|
1461 err = e1000_request_irq(adapter); |
|
1462 if (err) |
|
1463 goto err_req_irq; |
|
1464 |
|
1465 /* From here on the code is the same as e1000_up() */ |
|
1466 clear_bit(__E1000_DOWN, &adapter->flags); |
|
1467 |
|
1468 napi_enable(&adapter->napi); |
|
1469 |
|
1470 e1000_irq_enable(adapter); |
|
1471 |
|
1472 netif_start_queue(netdev); |
|
1473 |
|
1474 /* fire a link status change interrupt to start the watchdog */ |
|
1475 ew32(ICS, E1000_ICS_LSC); |
|
1476 |
|
1477 return E1000_SUCCESS; |
|
1478 |
|
1479 err_req_irq: |
|
1480 e1000_release_hw_control(adapter); |
|
1481 e1000_power_down_phy(adapter); |
|
1482 e1000_free_all_rx_resources(adapter); |
|
1483 err_setup_rx: |
|
1484 e1000_free_all_tx_resources(adapter); |
|
1485 err_setup_tx: |
|
1486 e1000_reset(adapter); |
|
1487 |
|
1488 return err; |
|
1489 } |
|
1490 |
|
1491 /** |
|
1492 * e1000_close - Disables a network interface |
|
1493 * @netdev: network interface device structure |
|
1494 * |
|
1495 * Returns 0, this is not allowed to fail |
|
1496 * |
|
1497 * The close entry point is called when an interface is de-activated |
|
1498 * by the OS. The hardware is still under the drivers control, but |
|
1499 * needs to be disabled. A global MAC reset is issued to stop the |
|
1500 * hardware, and all transmit and receive resources are freed. |
|
1501 **/ |
|
1502 |
|
1503 static int e1000_close(struct net_device *netdev) |
|
1504 { |
|
1505 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1506 struct e1000_hw *hw = &adapter->hw; |
|
1507 |
|
1508 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
1509 e1000_down(adapter); |
|
1510 e1000_power_down_phy(adapter); |
|
1511 e1000_free_irq(adapter); |
|
1512 |
|
1513 e1000_free_all_tx_resources(adapter); |
|
1514 e1000_free_all_rx_resources(adapter); |
|
1515 |
|
1516 /* kill manageability vlan ID if supported, but not if a vlan with |
|
1517 * the same ID is registered on the host OS (let 8021q kill it) */ |
|
1518 if ((hw->mng_cookie.status & |
|
1519 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
1520 !(adapter->vlgrp && |
|
1521 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { |
|
1522 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
1523 } |
|
1524 |
|
1525 /* If AMT is enabled, let the firmware know that the network |
|
1526 * interface is now closed */ |
|
1527 if (hw->mac_type == e1000_82573 && |
|
1528 e1000_check_mng_mode(hw)) |
|
1529 e1000_release_hw_control(adapter); |
|
1530 |
|
1531 return 0; |
|
1532 } |
|
1533 |
|
1534 /** |
|
1535 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
|
1536 * @adapter: address of board private structure |
|
1537 * @start: address of beginning of memory |
|
1538 * @len: length of memory |
|
1539 **/ |
|
1540 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
|
1541 unsigned long len) |
|
1542 { |
|
1543 struct e1000_hw *hw = &adapter->hw; |
|
1544 unsigned long begin = (unsigned long)start; |
|
1545 unsigned long end = begin + len; |
|
1546 |
|
1547 /* First rev 82545 and 82546 need to not allow any memory |
|
1548 * write location to cross 64k boundary due to errata 23 */ |
|
1549 if (hw->mac_type == e1000_82545 || |
|
1550 hw->mac_type == e1000_82546) { |
|
1551 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
|
1552 } |
|
1553 |
|
1554 return true; |
|
1555 } |
|
1556 |
|
1557 /** |
|
1558 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1559 * @adapter: board private structure |
|
1560 * @txdr: tx descriptor ring (for a specific queue) to setup |
|
1561 * |
|
1562 * Return 0 on success, negative on failure |
|
1563 **/ |
|
1564 |
|
1565 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
1566 struct e1000_tx_ring *txdr) |
|
1567 { |
|
1568 struct pci_dev *pdev = adapter->pdev; |
|
1569 int size; |
|
1570 |
|
1571 size = sizeof(struct e1000_buffer) * txdr->count; |
|
1572 txdr->buffer_info = vmalloc(size); |
|
1573 if (!txdr->buffer_info) { |
|
1574 DPRINTK(PROBE, ERR, |
|
1575 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1576 return -ENOMEM; |
|
1577 } |
|
1578 memset(txdr->buffer_info, 0, size); |
|
1579 |
|
1580 /* round up to nearest 4K */ |
|
1581 |
|
1582 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1583 txdr->size = ALIGN(txdr->size, 4096); |
|
1584 |
|
1585 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1586 if (!txdr->desc) { |
|
1587 setup_tx_desc_die: |
|
1588 vfree(txdr->buffer_info); |
|
1589 DPRINTK(PROBE, ERR, |
|
1590 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1591 return -ENOMEM; |
|
1592 } |
|
1593 |
|
1594 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1595 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1596 void *olddesc = txdr->desc; |
|
1597 dma_addr_t olddma = txdr->dma; |
|
1598 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " |
|
1599 "at %p\n", txdr->size, txdr->desc); |
|
1600 /* Try again, without freeing the previous */ |
|
1601 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1602 /* Failed allocation, critical failure */ |
|
1603 if (!txdr->desc) { |
|
1604 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1605 goto setup_tx_desc_die; |
|
1606 } |
|
1607 |
|
1608 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1609 /* give up */ |
|
1610 pci_free_consistent(pdev, txdr->size, txdr->desc, |
|
1611 txdr->dma); |
|
1612 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1613 DPRINTK(PROBE, ERR, |
|
1614 "Unable to allocate aligned memory " |
|
1615 "for the transmit descriptor ring\n"); |
|
1616 vfree(txdr->buffer_info); |
|
1617 return -ENOMEM; |
|
1618 } else { |
|
1619 /* Free old allocation, new allocation was successful */ |
|
1620 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1621 } |
|
1622 } |
|
1623 memset(txdr->desc, 0, txdr->size); |
|
1624 |
|
1625 txdr->next_to_use = 0; |
|
1626 txdr->next_to_clean = 0; |
|
1627 spin_lock_init(&txdr->tx_lock); |
|
1628 |
|
1629 return 0; |
|
1630 } |
|
1631 |
|
1632 /** |
|
1633 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
|
1634 * (Descriptors) for all queues |
|
1635 * @adapter: board private structure |
|
1636 * |
|
1637 * Return 0 on success, negative on failure |
|
1638 **/ |
|
1639 |
|
1640 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
|
1641 { |
|
1642 int i, err = 0; |
|
1643 |
|
1644 for (i = 0; i < adapter->num_tx_queues; i++) { |
|
1645 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1646 if (err) { |
|
1647 DPRINTK(PROBE, ERR, |
|
1648 "Allocation for Tx Queue %u failed\n", i); |
|
1649 for (i-- ; i >= 0; i--) |
|
1650 e1000_free_tx_resources(adapter, |
|
1651 &adapter->tx_ring[i]); |
|
1652 break; |
|
1653 } |
|
1654 } |
|
1655 |
|
1656 return err; |
|
1657 } |
|
1658 |
|
1659 /** |
|
1660 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
1661 * @adapter: board private structure |
|
1662 * |
|
1663 * Configure the Tx unit of the MAC after a reset. |
|
1664 **/ |
|
1665 |
|
1666 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
1667 { |
|
1668 u64 tdba; |
|
1669 struct e1000_hw *hw = &adapter->hw; |
|
1670 u32 tdlen, tctl, tipg, tarc; |
|
1671 u32 ipgr1, ipgr2; |
|
1672 |
|
1673 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
1674 |
|
1675 switch (adapter->num_tx_queues) { |
|
1676 case 1: |
|
1677 default: |
|
1678 tdba = adapter->tx_ring[0].dma; |
|
1679 tdlen = adapter->tx_ring[0].count * |
|
1680 sizeof(struct e1000_tx_desc); |
|
1681 ew32(TDLEN, tdlen); |
|
1682 ew32(TDBAH, (tdba >> 32)); |
|
1683 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
|
1684 ew32(TDT, 0); |
|
1685 ew32(TDH, 0); |
|
1686 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); |
|
1687 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); |
|
1688 break; |
|
1689 } |
|
1690 |
|
1691 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
1692 if (hw->mac_type <= e1000_82547_rev_2 && |
|
1693 (hw->media_type == e1000_media_type_fiber || |
|
1694 hw->media_type == e1000_media_type_internal_serdes)) |
|
1695 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
|
1696 else |
|
1697 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
|
1698 |
|
1699 switch (hw->mac_type) { |
|
1700 case e1000_82542_rev2_0: |
|
1701 case e1000_82542_rev2_1: |
|
1702 tipg = DEFAULT_82542_TIPG_IPGT; |
|
1703 ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
|
1704 ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
|
1705 break; |
|
1706 case e1000_80003es2lan: |
|
1707 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1708 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; |
|
1709 break; |
|
1710 default: |
|
1711 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1712 ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
|
1713 break; |
|
1714 } |
|
1715 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
1716 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
1717 ew32(TIPG, tipg); |
|
1718 |
|
1719 /* Set the Tx Interrupt Delay register */ |
|
1720 |
|
1721 ew32(TIDV, adapter->tx_int_delay); |
|
1722 if (hw->mac_type >= e1000_82540) |
|
1723 ew32(TADV, adapter->tx_abs_int_delay); |
|
1724 |
|
1725 /* Program the Transmit Control Register */ |
|
1726 |
|
1727 tctl = er32(TCTL); |
|
1728 tctl &= ~E1000_TCTL_CT; |
|
1729 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
1730 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
1731 |
|
1732 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { |
|
1733 tarc = er32(TARC0); |
|
1734 /* set the speed mode bit, we'll clear it if we're not at |
|
1735 * gigabit link later */ |
|
1736 tarc |= (1 << 21); |
|
1737 ew32(TARC0, tarc); |
|
1738 } else if (hw->mac_type == e1000_80003es2lan) { |
|
1739 tarc = er32(TARC0); |
|
1740 tarc |= 1; |
|
1741 ew32(TARC0, tarc); |
|
1742 tarc = er32(TARC1); |
|
1743 tarc |= 1; |
|
1744 ew32(TARC1, tarc); |
|
1745 } |
|
1746 |
|
1747 e1000_config_collision_dist(hw); |
|
1748 |
|
1749 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
1750 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
1751 |
|
1752 /* only set IDE if we are delaying interrupts using the timers */ |
|
1753 if (adapter->tx_int_delay) |
|
1754 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
1755 |
|
1756 if (hw->mac_type < e1000_82543) |
|
1757 adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
|
1758 else |
|
1759 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
1760 |
|
1761 /* Cache if we're 82544 running in PCI-X because we'll |
|
1762 * need this to apply a workaround later in the send path. */ |
|
1763 if (hw->mac_type == e1000_82544 && |
|
1764 hw->bus_type == e1000_bus_type_pcix) |
|
1765 adapter->pcix_82544 = 1; |
|
1766 |
|
1767 ew32(TCTL, tctl); |
|
1768 |
|
1769 } |
|
1770 |
|
1771 /** |
|
1772 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1773 * @adapter: board private structure |
|
1774 * @rxdr: rx descriptor ring (for a specific queue) to setup |
|
1775 * |
|
1776 * Returns 0 on success, negative on failure |
|
1777 **/ |
|
1778 |
|
1779 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
1780 struct e1000_rx_ring *rxdr) |
|
1781 { |
|
1782 struct e1000_hw *hw = &adapter->hw; |
|
1783 struct pci_dev *pdev = adapter->pdev; |
|
1784 int size, desc_len; |
|
1785 |
|
1786 size = sizeof(struct e1000_buffer) * rxdr->count; |
|
1787 rxdr->buffer_info = vmalloc(size); |
|
1788 if (!rxdr->buffer_info) { |
|
1789 DPRINTK(PROBE, ERR, |
|
1790 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1791 return -ENOMEM; |
|
1792 } |
|
1793 memset(rxdr->buffer_info, 0, size); |
|
1794 |
|
1795 if (hw->mac_type <= e1000_82547_rev_2) |
|
1796 desc_len = sizeof(struct e1000_rx_desc); |
|
1797 else |
|
1798 desc_len = sizeof(union e1000_rx_desc_packet_split); |
|
1799 |
|
1800 /* Round up to nearest 4K */ |
|
1801 |
|
1802 rxdr->size = rxdr->count * desc_len; |
|
1803 rxdr->size = ALIGN(rxdr->size, 4096); |
|
1804 |
|
1805 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1806 |
|
1807 if (!rxdr->desc) { |
|
1808 DPRINTK(PROBE, ERR, |
|
1809 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1810 setup_rx_desc_die: |
|
1811 vfree(rxdr->buffer_info); |
|
1812 return -ENOMEM; |
|
1813 } |
|
1814 |
|
1815 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1816 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1817 void *olddesc = rxdr->desc; |
|
1818 dma_addr_t olddma = rxdr->dma; |
|
1819 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " |
|
1820 "at %p\n", rxdr->size, rxdr->desc); |
|
1821 /* Try again, without freeing the previous */ |
|
1822 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1823 /* Failed allocation, critical failure */ |
|
1824 if (!rxdr->desc) { |
|
1825 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1826 DPRINTK(PROBE, ERR, |
|
1827 "Unable to allocate memory " |
|
1828 "for the receive descriptor ring\n"); |
|
1829 goto setup_rx_desc_die; |
|
1830 } |
|
1831 |
|
1832 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1833 /* give up */ |
|
1834 pci_free_consistent(pdev, rxdr->size, rxdr->desc, |
|
1835 rxdr->dma); |
|
1836 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1837 DPRINTK(PROBE, ERR, |
|
1838 "Unable to allocate aligned memory " |
|
1839 "for the receive descriptor ring\n"); |
|
1840 goto setup_rx_desc_die; |
|
1841 } else { |
|
1842 /* Free old allocation, new allocation was successful */ |
|
1843 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1844 } |
|
1845 } |
|
1846 memset(rxdr->desc, 0, rxdr->size); |
|
1847 |
|
1848 rxdr->next_to_clean = 0; |
|
1849 rxdr->next_to_use = 0; |
|
1850 |
|
1851 return 0; |
|
1852 } |
|
1853 |
|
1854 /** |
|
1855 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
|
1856 * (Descriptors) for all queues |
|
1857 * @adapter: board private structure |
|
1858 * |
|
1859 * Return 0 on success, negative on failure |
|
1860 **/ |
|
1861 |
|
1862 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
|
1863 { |
|
1864 int i, err = 0; |
|
1865 |
|
1866 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1867 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1868 if (err) { |
|
1869 DPRINTK(PROBE, ERR, |
|
1870 "Allocation for Rx Queue %u failed\n", i); |
|
1871 for (i-- ; i >= 0; i--) |
|
1872 e1000_free_rx_resources(adapter, |
|
1873 &adapter->rx_ring[i]); |
|
1874 break; |
|
1875 } |
|
1876 } |
|
1877 |
|
1878 return err; |
|
1879 } |
|
1880 |
|
1881 /** |
|
1882 * e1000_setup_rctl - configure the receive control registers |
|
1883 * @adapter: Board private structure |
|
1884 **/ |
|
1885 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
|
1886 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
|
1887 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
1888 { |
|
1889 struct e1000_hw *hw = &adapter->hw; |
|
1890 u32 rctl; |
|
1891 |
|
1892 rctl = er32(RCTL); |
|
1893 |
|
1894 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
1895 |
|
1896 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
1897 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1898 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1899 |
|
1900 if (hw->tbi_compatibility_on == 1) |
|
1901 rctl |= E1000_RCTL_SBP; |
|
1902 else |
|
1903 rctl &= ~E1000_RCTL_SBP; |
|
1904 |
|
1905 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
1906 rctl &= ~E1000_RCTL_LPE; |
|
1907 else |
|
1908 rctl |= E1000_RCTL_LPE; |
|
1909 |
|
1910 /* Setup buffer sizes */ |
|
1911 rctl &= ~E1000_RCTL_SZ_4096; |
|
1912 rctl |= E1000_RCTL_BSEX; |
|
1913 switch (adapter->rx_buffer_len) { |
|
1914 case E1000_RXBUFFER_256: |
|
1915 rctl |= E1000_RCTL_SZ_256; |
|
1916 rctl &= ~E1000_RCTL_BSEX; |
|
1917 break; |
|
1918 case E1000_RXBUFFER_512: |
|
1919 rctl |= E1000_RCTL_SZ_512; |
|
1920 rctl &= ~E1000_RCTL_BSEX; |
|
1921 break; |
|
1922 case E1000_RXBUFFER_1024: |
|
1923 rctl |= E1000_RCTL_SZ_1024; |
|
1924 rctl &= ~E1000_RCTL_BSEX; |
|
1925 break; |
|
1926 case E1000_RXBUFFER_2048: |
|
1927 default: |
|
1928 rctl |= E1000_RCTL_SZ_2048; |
|
1929 rctl &= ~E1000_RCTL_BSEX; |
|
1930 break; |
|
1931 case E1000_RXBUFFER_4096: |
|
1932 rctl |= E1000_RCTL_SZ_4096; |
|
1933 break; |
|
1934 case E1000_RXBUFFER_8192: |
|
1935 rctl |= E1000_RCTL_SZ_8192; |
|
1936 break; |
|
1937 case E1000_RXBUFFER_16384: |
|
1938 rctl |= E1000_RCTL_SZ_16384; |
|
1939 break; |
|
1940 } |
|
1941 |
|
1942 ew32(RCTL, rctl); |
|
1943 } |
|
1944 |
|
1945 /** |
|
1946 * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
|
1947 * @adapter: board private structure |
|
1948 * |
|
1949 * Configure the Rx unit of the MAC after a reset. |
|
1950 **/ |
|
1951 |
|
1952 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
1953 { |
|
1954 u64 rdba; |
|
1955 struct e1000_hw *hw = &adapter->hw; |
|
1956 u32 rdlen, rctl, rxcsum, ctrl_ext; |
|
1957 |
|
1958 rdlen = adapter->rx_ring[0].count * |
|
1959 sizeof(struct e1000_rx_desc); |
|
1960 adapter->clean_rx = e1000_clean_rx_irq; |
|
1961 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
1962 |
|
1963 /* disable receives while setting up the descriptors */ |
|
1964 rctl = er32(RCTL); |
|
1965 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1966 |
|
1967 /* set the Receive Delay Timer Register */ |
|
1968 ew32(RDTR, adapter->rx_int_delay); |
|
1969 |
|
1970 if (hw->mac_type >= e1000_82540) { |
|
1971 ew32(RADV, adapter->rx_abs_int_delay); |
|
1972 if (adapter->itr_setting != 0) |
|
1973 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
1974 } |
|
1975 |
|
1976 if (hw->mac_type >= e1000_82571) { |
|
1977 ctrl_ext = er32(CTRL_EXT); |
|
1978 /* Reset delay timers after every interrupt */ |
|
1979 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
|
1980 /* Auto-Mask interrupts upon ICR access */ |
|
1981 ctrl_ext |= E1000_CTRL_EXT_IAME; |
|
1982 ew32(IAM, 0xffffffff); |
|
1983 ew32(CTRL_EXT, ctrl_ext); |
|
1984 E1000_WRITE_FLUSH(); |
|
1985 } |
|
1986 |
|
1987 /* Setup the HW Rx Head and Tail Descriptor Pointers and |
|
1988 * the Base and Length of the Rx Descriptor Ring */ |
|
1989 switch (adapter->num_rx_queues) { |
|
1990 case 1: |
|
1991 default: |
|
1992 rdba = adapter->rx_ring[0].dma; |
|
1993 ew32(RDLEN, rdlen); |
|
1994 ew32(RDBAH, (rdba >> 32)); |
|
1995 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
|
1996 ew32(RDT, 0); |
|
1997 ew32(RDH, 0); |
|
1998 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); |
|
1999 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); |
|
2000 break; |
|
2001 } |
|
2002 |
|
2003 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
|
2004 if (hw->mac_type >= e1000_82543) { |
|
2005 rxcsum = er32(RXCSUM); |
|
2006 if (adapter->rx_csum) |
|
2007 rxcsum |= E1000_RXCSUM_TUOFL; |
|
2008 else |
|
2009 /* don't need to clear IPPCSE as it defaults to 0 */ |
|
2010 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
2011 ew32(RXCSUM, rxcsum); |
|
2012 } |
|
2013 |
|
2014 /* Enable Receives */ |
|
2015 ew32(RCTL, rctl); |
|
2016 } |
|
2017 |
|
2018 /** |
|
2019 * e1000_free_tx_resources - Free Tx Resources per Queue |
|
2020 * @adapter: board private structure |
|
2021 * @tx_ring: Tx descriptor ring for a specific queue |
|
2022 * |
|
2023 * Free all transmit software resources |
|
2024 **/ |
|
2025 |
|
2026 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
2027 struct e1000_tx_ring *tx_ring) |
|
2028 { |
|
2029 struct pci_dev *pdev = adapter->pdev; |
|
2030 |
|
2031 e1000_clean_tx_ring(adapter, tx_ring); |
|
2032 |
|
2033 vfree(tx_ring->buffer_info); |
|
2034 tx_ring->buffer_info = NULL; |
|
2035 |
|
2036 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); |
|
2037 |
|
2038 tx_ring->desc = NULL; |
|
2039 } |
|
2040 |
|
2041 /** |
|
2042 * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
|
2043 * @adapter: board private structure |
|
2044 * |
|
2045 * Free all transmit software resources |
|
2046 **/ |
|
2047 |
|
2048 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
|
2049 { |
|
2050 int i; |
|
2051 |
|
2052 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2053 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
|
2054 } |
|
2055 |
|
2056 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
|
2057 struct e1000_buffer *buffer_info) |
|
2058 { |
|
2059 if (buffer_info->dma) { |
|
2060 pci_unmap_page(adapter->pdev, |
|
2061 buffer_info->dma, |
|
2062 buffer_info->length, |
|
2063 PCI_DMA_TODEVICE); |
|
2064 buffer_info->dma = 0; |
|
2065 } |
|
2066 if (buffer_info->skb) { |
|
2067 dev_kfree_skb_any(buffer_info->skb); |
|
2068 buffer_info->skb = NULL; |
|
2069 } |
|
2070 /* buffer_info must be completely set up in the transmit path */ |
|
2071 } |
|
2072 |
|
2073 /** |
|
2074 * e1000_clean_tx_ring - Free Tx Buffers |
|
2075 * @adapter: board private structure |
|
2076 * @tx_ring: ring to be cleaned |
|
2077 **/ |
|
2078 |
|
2079 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
2080 struct e1000_tx_ring *tx_ring) |
|
2081 { |
|
2082 struct e1000_hw *hw = &adapter->hw; |
|
2083 struct e1000_buffer *buffer_info; |
|
2084 unsigned long size; |
|
2085 unsigned int i; |
|
2086 |
|
2087 /* Free all the Tx ring sk_buffs */ |
|
2088 |
|
2089 for (i = 0; i < tx_ring->count; i++) { |
|
2090 buffer_info = &tx_ring->buffer_info[i]; |
|
2091 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
2092 } |
|
2093 |
|
2094 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
2095 memset(tx_ring->buffer_info, 0, size); |
|
2096 |
|
2097 /* Zero out the descriptor ring */ |
|
2098 |
|
2099 memset(tx_ring->desc, 0, tx_ring->size); |
|
2100 |
|
2101 tx_ring->next_to_use = 0; |
|
2102 tx_ring->next_to_clean = 0; |
|
2103 tx_ring->last_tx_tso = 0; |
|
2104 |
|
2105 writel(0, hw->hw_addr + tx_ring->tdh); |
|
2106 writel(0, hw->hw_addr + tx_ring->tdt); |
|
2107 } |
|
2108 |
|
2109 /** |
|
2110 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
|
2111 * @adapter: board private structure |
|
2112 **/ |
|
2113 |
|
2114 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
|
2115 { |
|
2116 int i; |
|
2117 |
|
2118 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2119 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
|
2120 } |
|
2121 |
|
2122 /** |
|
2123 * e1000_free_rx_resources - Free Rx Resources |
|
2124 * @adapter: board private structure |
|
2125 * @rx_ring: ring to clean the resources from |
|
2126 * |
|
2127 * Free all receive software resources |
|
2128 **/ |
|
2129 |
|
2130 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
2131 struct e1000_rx_ring *rx_ring) |
|
2132 { |
|
2133 struct pci_dev *pdev = adapter->pdev; |
|
2134 |
|
2135 e1000_clean_rx_ring(adapter, rx_ring); |
|
2136 |
|
2137 vfree(rx_ring->buffer_info); |
|
2138 rx_ring->buffer_info = NULL; |
|
2139 |
|
2140 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
|
2141 |
|
2142 rx_ring->desc = NULL; |
|
2143 } |
|
2144 |
|
2145 /** |
|
2146 * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
|
2147 * @adapter: board private structure |
|
2148 * |
|
2149 * Free all receive software resources |
|
2150 **/ |
|
2151 |
|
2152 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
|
2153 { |
|
2154 int i; |
|
2155 |
|
2156 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2157 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
|
2158 } |
|
2159 |
|
2160 /** |
|
2161 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
2162 * @adapter: board private structure |
|
2163 * @rx_ring: ring to free buffers from |
|
2164 **/ |
|
2165 |
|
2166 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
2167 struct e1000_rx_ring *rx_ring) |
|
2168 { |
|
2169 struct e1000_hw *hw = &adapter->hw; |
|
2170 struct e1000_buffer *buffer_info; |
|
2171 struct pci_dev *pdev = adapter->pdev; |
|
2172 unsigned long size; |
|
2173 unsigned int i; |
|
2174 |
|
2175 /* Free all the Rx ring sk_buffs */ |
|
2176 for (i = 0; i < rx_ring->count; i++) { |
|
2177 buffer_info = &rx_ring->buffer_info[i]; |
|
2178 if (buffer_info->skb) { |
|
2179 pci_unmap_single(pdev, |
|
2180 buffer_info->dma, |
|
2181 buffer_info->length, |
|
2182 PCI_DMA_FROMDEVICE); |
|
2183 |
|
2184 dev_kfree_skb(buffer_info->skb); |
|
2185 buffer_info->skb = NULL; |
|
2186 } |
|
2187 } |
|
2188 |
|
2189 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
2190 memset(rx_ring->buffer_info, 0, size); |
|
2191 |
|
2192 /* Zero out the descriptor ring */ |
|
2193 |
|
2194 memset(rx_ring->desc, 0, rx_ring->size); |
|
2195 |
|
2196 rx_ring->next_to_clean = 0; |
|
2197 rx_ring->next_to_use = 0; |
|
2198 |
|
2199 writel(0, hw->hw_addr + rx_ring->rdh); |
|
2200 writel(0, hw->hw_addr + rx_ring->rdt); |
|
2201 } |
|
2202 |
|
2203 /** |
|
2204 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
|
2205 * @adapter: board private structure |
|
2206 **/ |
|
2207 |
|
2208 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
|
2209 { |
|
2210 int i; |
|
2211 |
|
2212 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2213 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
|
2214 } |
|
2215 |
|
2216 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
|
2217 * and memory write and invalidate disabled for certain operations |
|
2218 */ |
|
2219 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
|
2220 { |
|
2221 struct e1000_hw *hw = &adapter->hw; |
|
2222 struct net_device *netdev = adapter->netdev; |
|
2223 u32 rctl; |
|
2224 |
|
2225 e1000_pci_clear_mwi(hw); |
|
2226 |
|
2227 rctl = er32(RCTL); |
|
2228 rctl |= E1000_RCTL_RST; |
|
2229 ew32(RCTL, rctl); |
|
2230 E1000_WRITE_FLUSH(); |
|
2231 mdelay(5); |
|
2232 |
|
2233 if (netif_running(netdev)) |
|
2234 e1000_clean_all_rx_rings(adapter); |
|
2235 } |
|
2236 |
|
2237 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
|
2238 { |
|
2239 struct e1000_hw *hw = &adapter->hw; |
|
2240 struct net_device *netdev = adapter->netdev; |
|
2241 u32 rctl; |
|
2242 |
|
2243 rctl = er32(RCTL); |
|
2244 rctl &= ~E1000_RCTL_RST; |
|
2245 ew32(RCTL, rctl); |
|
2246 E1000_WRITE_FLUSH(); |
|
2247 mdelay(5); |
|
2248 |
|
2249 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
2250 e1000_pci_set_mwi(hw); |
|
2251 |
|
2252 if (netif_running(netdev)) { |
|
2253 /* No need to loop, because 82542 supports only 1 queue */ |
|
2254 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
|
2255 e1000_configure_rx(adapter); |
|
2256 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
|
2257 } |
|
2258 } |
|
2259 |
|
2260 /** |
|
2261 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
2262 * @netdev: network interface device structure |
|
2263 * @p: pointer to an address structure |
|
2264 * |
|
2265 * Returns 0 on success, negative on failure |
|
2266 **/ |
|
2267 |
|
2268 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
2269 { |
|
2270 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2271 struct e1000_hw *hw = &adapter->hw; |
|
2272 struct sockaddr *addr = p; |
|
2273 |
|
2274 if (!is_valid_ether_addr(addr->sa_data)) |
|
2275 return -EADDRNOTAVAIL; |
|
2276 |
|
2277 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2278 |
|
2279 if (hw->mac_type == e1000_82542_rev2_0) |
|
2280 e1000_enter_82542_rst(adapter); |
|
2281 |
|
2282 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2283 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
|
2284 |
|
2285 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2286 |
|
2287 /* With 82571 controllers, LAA may be overwritten (with the default) |
|
2288 * due to controller reset from the other port. */ |
|
2289 if (hw->mac_type == e1000_82571) { |
|
2290 /* activate the work around */ |
|
2291 hw->laa_is_present = 1; |
|
2292 |
|
2293 /* Hold a copy of the LAA in RAR[14] This is done so that |
|
2294 * between the time RAR[0] gets clobbered and the time it |
|
2295 * gets fixed (in e1000_watchdog), the actual LAA is in one |
|
2296 * of the RARs and no incoming packets directed to this port |
|
2297 * are dropped. Eventaully the LAA will be in RAR[0] and |
|
2298 * RAR[14] */ |
|
2299 e1000_rar_set(hw, hw->mac_addr, |
|
2300 E1000_RAR_ENTRIES - 1); |
|
2301 } |
|
2302 |
|
2303 if (hw->mac_type == e1000_82542_rev2_0) |
|
2304 e1000_leave_82542_rst(adapter); |
|
2305 |
|
2306 return 0; |
|
2307 } |
|
2308 |
|
2309 /** |
|
2310 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
|
2311 * @netdev: network interface device structure |
|
2312 * |
|
2313 * The set_rx_mode entry point is called whenever the unicast or multicast |
|
2314 * address lists or the network interface flags are updated. This routine is |
|
2315 * responsible for configuring the hardware for proper unicast, multicast, |
|
2316 * promiscuous mode, and all-multi behavior. |
|
2317 **/ |
|
2318 |
|
2319 static void e1000_set_rx_mode(struct net_device *netdev) |
|
2320 { |
|
2321 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2322 struct e1000_hw *hw = &adapter->hw; |
|
2323 struct dev_addr_list *uc_ptr; |
|
2324 struct dev_addr_list *mc_ptr; |
|
2325 u32 rctl; |
|
2326 u32 hash_value; |
|
2327 int i, rar_entries = E1000_RAR_ENTRIES; |
|
2328 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? |
|
2329 E1000_NUM_MTA_REGISTERS_ICH8LAN : |
|
2330 E1000_NUM_MTA_REGISTERS; |
|
2331 |
|
2332 if (hw->mac_type == e1000_ich8lan) |
|
2333 rar_entries = E1000_RAR_ENTRIES_ICH8LAN; |
|
2334 |
|
2335 /* reserve RAR[14] for LAA over-write work-around */ |
|
2336 if (hw->mac_type == e1000_82571) |
|
2337 rar_entries--; |
|
2338 |
|
2339 /* Check for Promiscuous and All Multicast modes */ |
|
2340 |
|
2341 rctl = er32(RCTL); |
|
2342 |
|
2343 if (netdev->flags & IFF_PROMISC) { |
|
2344 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2345 rctl &= ~E1000_RCTL_VFE; |
|
2346 } else { |
|
2347 if (netdev->flags & IFF_ALLMULTI) { |
|
2348 rctl |= E1000_RCTL_MPE; |
|
2349 } else { |
|
2350 rctl &= ~E1000_RCTL_MPE; |
|
2351 } |
|
2352 if (adapter->hw.mac_type != e1000_ich8lan) |
|
2353 rctl |= E1000_RCTL_VFE; |
|
2354 } |
|
2355 |
|
2356 uc_ptr = NULL; |
|
2357 if (netdev->uc_count > rar_entries - 1) { |
|
2358 rctl |= E1000_RCTL_UPE; |
|
2359 } else if (!(netdev->flags & IFF_PROMISC)) { |
|
2360 rctl &= ~E1000_RCTL_UPE; |
|
2361 uc_ptr = netdev->uc_list; |
|
2362 } |
|
2363 |
|
2364 ew32(RCTL, rctl); |
|
2365 |
|
2366 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2367 |
|
2368 if (hw->mac_type == e1000_82542_rev2_0) |
|
2369 e1000_enter_82542_rst(adapter); |
|
2370 |
|
2371 /* load the first 14 addresses into the exact filters 1-14. Unicast |
|
2372 * addresses take precedence to avoid disabling unicast filtering |
|
2373 * when possible. |
|
2374 * |
|
2375 * RAR 0 is used for the station MAC adddress |
|
2376 * if there are not 14 addresses, go ahead and clear the filters |
|
2377 * -- with 82571 controllers only 0-13 entries are filled here |
|
2378 */ |
|
2379 mc_ptr = netdev->mc_list; |
|
2380 |
|
2381 for (i = 1; i < rar_entries; i++) { |
|
2382 if (uc_ptr) { |
|
2383 e1000_rar_set(hw, uc_ptr->da_addr, i); |
|
2384 uc_ptr = uc_ptr->next; |
|
2385 } else if (mc_ptr) { |
|
2386 e1000_rar_set(hw, mc_ptr->da_addr, i); |
|
2387 mc_ptr = mc_ptr->next; |
|
2388 } else { |
|
2389 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
|
2390 E1000_WRITE_FLUSH(); |
|
2391 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
|
2392 E1000_WRITE_FLUSH(); |
|
2393 } |
|
2394 } |
|
2395 WARN_ON(uc_ptr != NULL); |
|
2396 |
|
2397 /* clear the old settings from the multicast hash table */ |
|
2398 |
|
2399 for (i = 0; i < mta_reg_count; i++) { |
|
2400 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
|
2401 E1000_WRITE_FLUSH(); |
|
2402 } |
|
2403 |
|
2404 /* load any remaining addresses into the hash table */ |
|
2405 |
|
2406 for (; mc_ptr; mc_ptr = mc_ptr->next) { |
|
2407 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr); |
|
2408 e1000_mta_set(hw, hash_value); |
|
2409 } |
|
2410 |
|
2411 if (hw->mac_type == e1000_82542_rev2_0) |
|
2412 e1000_leave_82542_rst(adapter); |
|
2413 } |
|
2414 |
|
2415 /* Need to wait a few seconds after link up to get diagnostic information from |
|
2416 * the phy */ |
|
2417 |
|
2418 static void e1000_update_phy_info(unsigned long data) |
|
2419 { |
|
2420 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2421 struct e1000_hw *hw = &adapter->hw; |
|
2422 e1000_phy_get_info(hw, &adapter->phy_info); |
|
2423 } |
|
2424 |
|
2425 /** |
|
2426 * e1000_82547_tx_fifo_stall - Timer Call-back |
|
2427 * @data: pointer to adapter cast into an unsigned long |
|
2428 **/ |
|
2429 |
|
2430 static void e1000_82547_tx_fifo_stall(unsigned long data) |
|
2431 { |
|
2432 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2433 struct e1000_hw *hw = &adapter->hw; |
|
2434 struct net_device *netdev = adapter->netdev; |
|
2435 u32 tctl; |
|
2436 |
|
2437 if (atomic_read(&adapter->tx_fifo_stall)) { |
|
2438 if ((er32(TDT) == er32(TDH)) && |
|
2439 (er32(TDFT) == er32(TDFH)) && |
|
2440 (er32(TDFTS) == er32(TDFHS))) { |
|
2441 tctl = er32(TCTL); |
|
2442 ew32(TCTL, tctl & ~E1000_TCTL_EN); |
|
2443 ew32(TDFT, adapter->tx_head_addr); |
|
2444 ew32(TDFH, adapter->tx_head_addr); |
|
2445 ew32(TDFTS, adapter->tx_head_addr); |
|
2446 ew32(TDFHS, adapter->tx_head_addr); |
|
2447 ew32(TCTL, tctl); |
|
2448 E1000_WRITE_FLUSH(); |
|
2449 |
|
2450 adapter->tx_fifo_head = 0; |
|
2451 atomic_set(&adapter->tx_fifo_stall, 0); |
|
2452 netif_wake_queue(netdev); |
|
2453 } else { |
|
2454 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
2455 } |
|
2456 } |
|
2457 } |
|
2458 |
|
2459 /** |
|
2460 * e1000_watchdog - Timer Call-back |
|
2461 * @data: pointer to adapter cast into an unsigned long |
|
2462 **/ |
|
2463 static void e1000_watchdog(unsigned long data) |
|
2464 { |
|
2465 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2466 struct e1000_hw *hw = &adapter->hw; |
|
2467 struct net_device *netdev = adapter->netdev; |
|
2468 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
2469 u32 link, tctl; |
|
2470 s32 ret_val; |
|
2471 |
|
2472 ret_val = e1000_check_for_link(hw); |
|
2473 if ((ret_val == E1000_ERR_PHY) && |
|
2474 (hw->phy_type == e1000_phy_igp_3) && |
|
2475 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
|
2476 /* See e1000_kumeran_lock_loss_workaround() */ |
|
2477 DPRINTK(LINK, INFO, |
|
2478 "Gigabit has been disabled, downgrading speed\n"); |
|
2479 } |
|
2480 |
|
2481 if (hw->mac_type == e1000_82573) { |
|
2482 e1000_enable_tx_pkt_filtering(hw); |
|
2483 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id) |
|
2484 e1000_update_mng_vlan(adapter); |
|
2485 } |
|
2486 |
|
2487 if ((hw->media_type == e1000_media_type_internal_serdes) && |
|
2488 !(er32(TXCW) & E1000_TXCW_ANE)) |
|
2489 link = !hw->serdes_link_down; |
|
2490 else |
|
2491 link = er32(STATUS) & E1000_STATUS_LU; |
|
2492 |
|
2493 if (link) { |
|
2494 if (!netif_carrier_ok(netdev)) { |
|
2495 u32 ctrl; |
|
2496 bool txb2b = true; |
|
2497 e1000_get_speed_and_duplex(hw, |
|
2498 &adapter->link_speed, |
|
2499 &adapter->link_duplex); |
|
2500 |
|
2501 ctrl = er32(CTRL); |
|
2502 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, " |
|
2503 "Flow Control: %s\n", |
|
2504 netdev->name, |
|
2505 adapter->link_speed, |
|
2506 adapter->link_duplex == FULL_DUPLEX ? |
|
2507 "Full Duplex" : "Half Duplex", |
|
2508 ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
|
2509 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
|
2510 E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
|
2511 E1000_CTRL_TFCE) ? "TX" : "None" ))); |
|
2512 |
|
2513 /* tweak tx_queue_len according to speed/duplex |
|
2514 * and adjust the timeout factor */ |
|
2515 netdev->tx_queue_len = adapter->tx_queue_len; |
|
2516 adapter->tx_timeout_factor = 1; |
|
2517 switch (adapter->link_speed) { |
|
2518 case SPEED_10: |
|
2519 txb2b = false; |
|
2520 netdev->tx_queue_len = 10; |
|
2521 adapter->tx_timeout_factor = 8; |
|
2522 break; |
|
2523 case SPEED_100: |
|
2524 txb2b = false; |
|
2525 netdev->tx_queue_len = 100; |
|
2526 /* maybe add some timeout factor ? */ |
|
2527 break; |
|
2528 } |
|
2529 |
|
2530 if ((hw->mac_type == e1000_82571 || |
|
2531 hw->mac_type == e1000_82572) && |
|
2532 !txb2b) { |
|
2533 u32 tarc0; |
|
2534 tarc0 = er32(TARC0); |
|
2535 tarc0 &= ~(1 << 21); |
|
2536 ew32(TARC0, tarc0); |
|
2537 } |
|
2538 |
|
2539 /* disable TSO for pcie and 10/100 speeds, to avoid |
|
2540 * some hardware issues */ |
|
2541 if (!adapter->tso_force && |
|
2542 hw->bus_type == e1000_bus_type_pci_express){ |
|
2543 switch (adapter->link_speed) { |
|
2544 case SPEED_10: |
|
2545 case SPEED_100: |
|
2546 DPRINTK(PROBE,INFO, |
|
2547 "10/100 speed: disabling TSO\n"); |
|
2548 netdev->features &= ~NETIF_F_TSO; |
|
2549 netdev->features &= ~NETIF_F_TSO6; |
|
2550 break; |
|
2551 case SPEED_1000: |
|
2552 netdev->features |= NETIF_F_TSO; |
|
2553 netdev->features |= NETIF_F_TSO6; |
|
2554 break; |
|
2555 default: |
|
2556 /* oops */ |
|
2557 break; |
|
2558 } |
|
2559 } |
|
2560 |
|
2561 /* enable transmits in the hardware, need to do this |
|
2562 * after setting TARC0 */ |
|
2563 tctl = er32(TCTL); |
|
2564 tctl |= E1000_TCTL_EN; |
|
2565 ew32(TCTL, tctl); |
|
2566 |
|
2567 netif_carrier_on(netdev); |
|
2568 netif_wake_queue(netdev); |
|
2569 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2570 adapter->smartspeed = 0; |
|
2571 } else { |
|
2572 /* make sure the receive unit is started */ |
|
2573 if (hw->rx_needs_kicking) { |
|
2574 u32 rctl = er32(RCTL); |
|
2575 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
2576 } |
|
2577 } |
|
2578 } else { |
|
2579 if (netif_carrier_ok(netdev)) { |
|
2580 adapter->link_speed = 0; |
|
2581 adapter->link_duplex = 0; |
|
2582 printk(KERN_INFO "e1000: %s NIC Link is Down\n", |
|
2583 netdev->name); |
|
2584 netif_carrier_off(netdev); |
|
2585 netif_stop_queue(netdev); |
|
2586 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2587 |
|
2588 /* 80003ES2LAN workaround-- |
|
2589 * For packet buffer work-around on link down event; |
|
2590 * disable receives in the ISR and |
|
2591 * reset device here in the watchdog |
|
2592 */ |
|
2593 if (hw->mac_type == e1000_80003es2lan) |
|
2594 /* reset device */ |
|
2595 schedule_work(&adapter->reset_task); |
|
2596 } |
|
2597 |
|
2598 e1000_smartspeed(adapter); |
|
2599 } |
|
2600 |
|
2601 e1000_update_stats(adapter); |
|
2602 |
|
2603 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
2604 adapter->tpt_old = adapter->stats.tpt; |
|
2605 hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
2606 adapter->colc_old = adapter->stats.colc; |
|
2607 |
|
2608 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
|
2609 adapter->gorcl_old = adapter->stats.gorcl; |
|
2610 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
|
2611 adapter->gotcl_old = adapter->stats.gotcl; |
|
2612 |
|
2613 e1000_update_adaptive(hw); |
|
2614 |
|
2615 if (!netif_carrier_ok(netdev)) { |
|
2616 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
|
2617 /* We've lost link, so the controller stops DMA, |
|
2618 * but we've got queued Tx work that's never going |
|
2619 * to get done, so reset controller to flush Tx. |
|
2620 * (Do the reset outside of interrupt context). */ |
|
2621 adapter->tx_timeout_count++; |
|
2622 schedule_work(&adapter->reset_task); |
|
2623 } |
|
2624 } |
|
2625 |
|
2626 /* Cause software interrupt to ensure rx ring is cleaned */ |
|
2627 ew32(ICS, E1000_ICS_RXDMT0); |
|
2628 |
|
2629 /* Force detection of hung controller every watchdog period */ |
|
2630 adapter->detect_tx_hung = true; |
|
2631 |
|
2632 /* With 82571 controllers, LAA may be overwritten due to controller |
|
2633 * reset from the other port. Set the appropriate LAA in RAR[0] */ |
|
2634 if (hw->mac_type == e1000_82571 && hw->laa_is_present) |
|
2635 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2636 |
|
2637 /* Reset the timer */ |
|
2638 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2639 } |
|
2640 |
|
2641 enum latency_range { |
|
2642 lowest_latency = 0, |
|
2643 low_latency = 1, |
|
2644 bulk_latency = 2, |
|
2645 latency_invalid = 255 |
|
2646 }; |
|
2647 |
|
2648 /** |
|
2649 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2650 * Stores a new ITR value based on packets and byte |
|
2651 * counts during the last interrupt. The advantage of per interrupt |
|
2652 * computation is faster updates and more accurate ITR for the current |
|
2653 * traffic pattern. Constants in this function were computed |
|
2654 * based on theoretical maximum wire speed and thresholds were set based |
|
2655 * on testing data as well as attempting to minimize response time |
|
2656 * while increasing bulk throughput. |
|
2657 * this functionality is controlled by the InterruptThrottleRate module |
|
2658 * parameter (see e1000_param.c) |
|
2659 * @adapter: pointer to adapter |
|
2660 * @itr_setting: current adapter->itr |
|
2661 * @packets: the number of packets during this measurement interval |
|
2662 * @bytes: the number of bytes during this measurement interval |
|
2663 **/ |
|
2664 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2665 u16 itr_setting, int packets, int bytes) |
|
2666 { |
|
2667 unsigned int retval = itr_setting; |
|
2668 struct e1000_hw *hw = &adapter->hw; |
|
2669 |
|
2670 if (unlikely(hw->mac_type < e1000_82540)) |
|
2671 goto update_itr_done; |
|
2672 |
|
2673 if (packets == 0) |
|
2674 goto update_itr_done; |
|
2675 |
|
2676 switch (itr_setting) { |
|
2677 case lowest_latency: |
|
2678 /* jumbo frames get bulk treatment*/ |
|
2679 if (bytes/packets > 8000) |
|
2680 retval = bulk_latency; |
|
2681 else if ((packets < 5) && (bytes > 512)) |
|
2682 retval = low_latency; |
|
2683 break; |
|
2684 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2685 if (bytes > 10000) { |
|
2686 /* jumbo frames need bulk latency setting */ |
|
2687 if (bytes/packets > 8000) |
|
2688 retval = bulk_latency; |
|
2689 else if ((packets < 10) || ((bytes/packets) > 1200)) |
|
2690 retval = bulk_latency; |
|
2691 else if ((packets > 35)) |
|
2692 retval = lowest_latency; |
|
2693 } else if (bytes/packets > 2000) |
|
2694 retval = bulk_latency; |
|
2695 else if (packets <= 2 && bytes < 512) |
|
2696 retval = lowest_latency; |
|
2697 break; |
|
2698 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2699 if (bytes > 25000) { |
|
2700 if (packets > 35) |
|
2701 retval = low_latency; |
|
2702 } else if (bytes < 6000) { |
|
2703 retval = low_latency; |
|
2704 } |
|
2705 break; |
|
2706 } |
|
2707 |
|
2708 update_itr_done: |
|
2709 return retval; |
|
2710 } |
|
2711 |
|
2712 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2713 { |
|
2714 struct e1000_hw *hw = &adapter->hw; |
|
2715 u16 current_itr; |
|
2716 u32 new_itr = adapter->itr; |
|
2717 |
|
2718 if (unlikely(hw->mac_type < e1000_82540)) |
|
2719 return; |
|
2720 |
|
2721 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2722 if (unlikely(adapter->link_speed != SPEED_1000)) { |
|
2723 current_itr = 0; |
|
2724 new_itr = 4000; |
|
2725 goto set_itr_now; |
|
2726 } |
|
2727 |
|
2728 adapter->tx_itr = e1000_update_itr(adapter, |
|
2729 adapter->tx_itr, |
|
2730 adapter->total_tx_packets, |
|
2731 adapter->total_tx_bytes); |
|
2732 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2733 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2734 adapter->tx_itr = low_latency; |
|
2735 |
|
2736 adapter->rx_itr = e1000_update_itr(adapter, |
|
2737 adapter->rx_itr, |
|
2738 adapter->total_rx_packets, |
|
2739 adapter->total_rx_bytes); |
|
2740 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2741 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2742 adapter->rx_itr = low_latency; |
|
2743 |
|
2744 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2745 |
|
2746 switch (current_itr) { |
|
2747 /* counts and packets in update_itr are dependent on these numbers */ |
|
2748 case lowest_latency: |
|
2749 new_itr = 70000; |
|
2750 break; |
|
2751 case low_latency: |
|
2752 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2753 break; |
|
2754 case bulk_latency: |
|
2755 new_itr = 4000; |
|
2756 break; |
|
2757 default: |
|
2758 break; |
|
2759 } |
|
2760 |
|
2761 set_itr_now: |
|
2762 if (new_itr != adapter->itr) { |
|
2763 /* this attempts to bias the interrupt rate towards Bulk |
|
2764 * by adding intermediate steps when interrupt rate is |
|
2765 * increasing */ |
|
2766 new_itr = new_itr > adapter->itr ? |
|
2767 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2768 new_itr; |
|
2769 adapter->itr = new_itr; |
|
2770 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2771 } |
|
2772 |
|
2773 return; |
|
2774 } |
|
2775 |
|
2776 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
2777 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
2778 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
2779 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
2780 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
2781 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
2782 |
|
2783 static int e1000_tso(struct e1000_adapter *adapter, |
|
2784 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2785 { |
|
2786 struct e1000_context_desc *context_desc; |
|
2787 struct e1000_buffer *buffer_info; |
|
2788 unsigned int i; |
|
2789 u32 cmd_length = 0; |
|
2790 u16 ipcse = 0, tucse, mss; |
|
2791 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
2792 int err; |
|
2793 |
|
2794 if (skb_is_gso(skb)) { |
|
2795 if (skb_header_cloned(skb)) { |
|
2796 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
2797 if (err) |
|
2798 return err; |
|
2799 } |
|
2800 |
|
2801 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
2802 mss = skb_shinfo(skb)->gso_size; |
|
2803 if (skb->protocol == htons(ETH_P_IP)) { |
|
2804 struct iphdr *iph = ip_hdr(skb); |
|
2805 iph->tot_len = 0; |
|
2806 iph->check = 0; |
|
2807 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
2808 iph->daddr, 0, |
|
2809 IPPROTO_TCP, |
|
2810 0); |
|
2811 cmd_length = E1000_TXD_CMD_IP; |
|
2812 ipcse = skb_transport_offset(skb) - 1; |
|
2813 } else if (skb->protocol == htons(ETH_P_IPV6)) { |
|
2814 ipv6_hdr(skb)->payload_len = 0; |
|
2815 tcp_hdr(skb)->check = |
|
2816 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
2817 &ipv6_hdr(skb)->daddr, |
|
2818 0, IPPROTO_TCP, 0); |
|
2819 ipcse = 0; |
|
2820 } |
|
2821 ipcss = skb_network_offset(skb); |
|
2822 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
2823 tucss = skb_transport_offset(skb); |
|
2824 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
2825 tucse = 0; |
|
2826 |
|
2827 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
2828 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
2829 |
|
2830 i = tx_ring->next_to_use; |
|
2831 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2832 buffer_info = &tx_ring->buffer_info[i]; |
|
2833 |
|
2834 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
2835 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
2836 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
2837 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
2838 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
2839 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
2840 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
2841 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
2842 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
2843 |
|
2844 buffer_info->time_stamp = jiffies; |
|
2845 buffer_info->next_to_watch = i; |
|
2846 |
|
2847 if (++i == tx_ring->count) i = 0; |
|
2848 tx_ring->next_to_use = i; |
|
2849 |
|
2850 return true; |
|
2851 } |
|
2852 return false; |
|
2853 } |
|
2854 |
|
2855 static bool e1000_tx_csum(struct e1000_adapter *adapter, |
|
2856 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2857 { |
|
2858 struct e1000_context_desc *context_desc; |
|
2859 struct e1000_buffer *buffer_info; |
|
2860 unsigned int i; |
|
2861 u8 css; |
|
2862 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
2863 |
|
2864 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
2865 return false; |
|
2866 |
|
2867 switch (skb->protocol) { |
|
2868 case __constant_htons(ETH_P_IP): |
|
2869 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
2870 cmd_len |= E1000_TXD_CMD_TCP; |
|
2871 break; |
|
2872 case __constant_htons(ETH_P_IPV6): |
|
2873 /* XXX not handling all IPV6 headers */ |
|
2874 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
2875 cmd_len |= E1000_TXD_CMD_TCP; |
|
2876 break; |
|
2877 default: |
|
2878 if (unlikely(net_ratelimit())) |
|
2879 DPRINTK(DRV, WARNING, |
|
2880 "checksum_partial proto=%x!\n", skb->protocol); |
|
2881 break; |
|
2882 } |
|
2883 |
|
2884 css = skb_transport_offset(skb); |
|
2885 |
|
2886 i = tx_ring->next_to_use; |
|
2887 buffer_info = &tx_ring->buffer_info[i]; |
|
2888 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2889 |
|
2890 context_desc->lower_setup.ip_config = 0; |
|
2891 context_desc->upper_setup.tcp_fields.tucss = css; |
|
2892 context_desc->upper_setup.tcp_fields.tucso = |
|
2893 css + skb->csum_offset; |
|
2894 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
2895 context_desc->tcp_seg_setup.data = 0; |
|
2896 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
2897 |
|
2898 buffer_info->time_stamp = jiffies; |
|
2899 buffer_info->next_to_watch = i; |
|
2900 |
|
2901 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2902 tx_ring->next_to_use = i; |
|
2903 |
|
2904 return true; |
|
2905 } |
|
2906 |
|
2907 #define E1000_MAX_TXD_PWR 12 |
|
2908 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
|
2909 |
|
2910 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
2911 struct e1000_tx_ring *tx_ring, |
|
2912 struct sk_buff *skb, unsigned int first, |
|
2913 unsigned int max_per_txd, unsigned int nr_frags, |
|
2914 unsigned int mss) |
|
2915 { |
|
2916 struct e1000_hw *hw = &adapter->hw; |
|
2917 struct e1000_buffer *buffer_info; |
|
2918 unsigned int len = skb->len; |
|
2919 unsigned int offset = 0, size, count = 0, i; |
|
2920 unsigned int f; |
|
2921 len -= skb->data_len; |
|
2922 |
|
2923 i = tx_ring->next_to_use; |
|
2924 |
|
2925 while (len) { |
|
2926 buffer_info = &tx_ring->buffer_info[i]; |
|
2927 size = min(len, max_per_txd); |
|
2928 /* Workaround for Controller erratum -- |
|
2929 * descriptor for non-tso packet in a linear SKB that follows a |
|
2930 * tso gets written back prematurely before the data is fully |
|
2931 * DMA'd to the controller */ |
|
2932 if (!skb->data_len && tx_ring->last_tx_tso && |
|
2933 !skb_is_gso(skb)) { |
|
2934 tx_ring->last_tx_tso = 0; |
|
2935 size -= 4; |
|
2936 } |
|
2937 |
|
2938 /* Workaround for premature desc write-backs |
|
2939 * in TSO mode. Append 4-byte sentinel desc */ |
|
2940 if (unlikely(mss && !nr_frags && size == len && size > 8)) |
|
2941 size -= 4; |
|
2942 /* work-around for errata 10 and it applies |
|
2943 * to all controllers in PCI-X mode |
|
2944 * The fix is to make sure that the first descriptor of a |
|
2945 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
|
2946 */ |
|
2947 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
2948 (size > 2015) && count == 0)) |
|
2949 size = 2015; |
|
2950 |
|
2951 /* Workaround for potential 82544 hang in PCI-X. Avoid |
|
2952 * terminating buffers within evenly-aligned dwords. */ |
|
2953 if (unlikely(adapter->pcix_82544 && |
|
2954 !((unsigned long)(skb->data + offset + size - 1) & 4) && |
|
2955 size > 4)) |
|
2956 size -= 4; |
|
2957 |
|
2958 buffer_info->length = size; |
|
2959 buffer_info->dma = |
|
2960 pci_map_single(adapter->pdev, |
|
2961 skb->data + offset, |
|
2962 size, |
|
2963 PCI_DMA_TODEVICE); |
|
2964 buffer_info->time_stamp = jiffies; |
|
2965 buffer_info->next_to_watch = i; |
|
2966 |
|
2967 len -= size; |
|
2968 offset += size; |
|
2969 count++; |
|
2970 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2971 } |
|
2972 |
|
2973 for (f = 0; f < nr_frags; f++) { |
|
2974 struct skb_frag_struct *frag; |
|
2975 |
|
2976 frag = &skb_shinfo(skb)->frags[f]; |
|
2977 len = frag->size; |
|
2978 offset = frag->page_offset; |
|
2979 |
|
2980 while (len) { |
|
2981 buffer_info = &tx_ring->buffer_info[i]; |
|
2982 size = min(len, max_per_txd); |
|
2983 /* Workaround for premature desc write-backs |
|
2984 * in TSO mode. Append 4-byte sentinel desc */ |
|
2985 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) |
|
2986 size -= 4; |
|
2987 /* Workaround for potential 82544 hang in PCI-X. |
|
2988 * Avoid terminating buffers within evenly-aligned |
|
2989 * dwords. */ |
|
2990 if (unlikely(adapter->pcix_82544 && |
|
2991 !((unsigned long)(frag->page+offset+size-1) & 4) && |
|
2992 size > 4)) |
|
2993 size -= 4; |
|
2994 |
|
2995 buffer_info->length = size; |
|
2996 buffer_info->dma = |
|
2997 pci_map_page(adapter->pdev, |
|
2998 frag->page, |
|
2999 offset, |
|
3000 size, |
|
3001 PCI_DMA_TODEVICE); |
|
3002 buffer_info->time_stamp = jiffies; |
|
3003 buffer_info->next_to_watch = i; |
|
3004 |
|
3005 len -= size; |
|
3006 offset += size; |
|
3007 count++; |
|
3008 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3009 } |
|
3010 } |
|
3011 |
|
3012 i = (i == 0) ? tx_ring->count - 1 : i - 1; |
|
3013 tx_ring->buffer_info[i].skb = skb; |
|
3014 tx_ring->buffer_info[first].next_to_watch = i; |
|
3015 |
|
3016 return count; |
|
3017 } |
|
3018 |
|
3019 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
3020 struct e1000_tx_ring *tx_ring, int tx_flags, |
|
3021 int count) |
|
3022 { |
|
3023 struct e1000_hw *hw = &adapter->hw; |
|
3024 struct e1000_tx_desc *tx_desc = NULL; |
|
3025 struct e1000_buffer *buffer_info; |
|
3026 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
3027 unsigned int i; |
|
3028 |
|
3029 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
|
3030 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
3031 E1000_TXD_CMD_TSE; |
|
3032 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3033 |
|
3034 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
|
3035 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
3036 } |
|
3037 |
|
3038 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
|
3039 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
3040 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3041 } |
|
3042 |
|
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
|
3044 txd_lower |= E1000_TXD_CMD_VLE; |
|
3045 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
3046 } |
|
3047 |
|
3048 i = tx_ring->next_to_use; |
|
3049 |
|
3050 while (count--) { |
|
3051 buffer_info = &tx_ring->buffer_info[i]; |
|
3052 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3053 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
3054 tx_desc->lower.data = |
|
3055 cpu_to_le32(txd_lower | buffer_info->length); |
|
3056 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
3057 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3058 } |
|
3059 |
|
3060 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
3061 |
|
3062 /* Force memory writes to complete before letting h/w |
|
3063 * know there are new descriptors to fetch. (Only |
|
3064 * applicable for weak-ordered memory model archs, |
|
3065 * such as IA-64). */ |
|
3066 wmb(); |
|
3067 |
|
3068 tx_ring->next_to_use = i; |
|
3069 writel(i, hw->hw_addr + tx_ring->tdt); |
|
3070 /* we need this if more than one processor can write to our tail |
|
3071 * at a time, it syncronizes IO on IA64/Altix systems */ |
|
3072 mmiowb(); |
|
3073 } |
|
3074 |
|
3075 /** |
|
3076 * 82547 workaround to avoid controller hang in half-duplex environment. |
|
3077 * The workaround is to avoid queuing a large packet that would span |
|
3078 * the internal Tx FIFO ring boundary by notifying the stack to resend |
|
3079 * the packet at a later time. This gives the Tx FIFO an opportunity to |
|
3080 * flush all packets. When that occurs, we reset the Tx FIFO pointers |
|
3081 * to the beginning of the Tx FIFO. |
|
3082 **/ |
|
3083 |
|
3084 #define E1000_FIFO_HDR 0x10 |
|
3085 #define E1000_82547_PAD_LEN 0x3E0 |
|
3086 |
|
3087 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
3088 struct sk_buff *skb) |
|
3089 { |
|
3090 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
|
3091 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
|
3092 |
|
3093 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
|
3094 |
|
3095 if (adapter->link_duplex != HALF_DUPLEX) |
|
3096 goto no_fifo_stall_required; |
|
3097 |
|
3098 if (atomic_read(&adapter->tx_fifo_stall)) |
|
3099 return 1; |
|
3100 |
|
3101 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
|
3102 atomic_set(&adapter->tx_fifo_stall, 1); |
|
3103 return 1; |
|
3104 } |
|
3105 |
|
3106 no_fifo_stall_required: |
|
3107 adapter->tx_fifo_head += skb_fifo_len; |
|
3108 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
|
3109 adapter->tx_fifo_head -= adapter->tx_fifo_size; |
|
3110 return 0; |
|
3111 } |
|
3112 |
|
3113 #define MINIMUM_DHCP_PACKET_SIZE 282 |
|
3114 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
|
3115 struct sk_buff *skb) |
|
3116 { |
|
3117 struct e1000_hw *hw = &adapter->hw; |
|
3118 u16 length, offset; |
|
3119 if (vlan_tx_tag_present(skb)) { |
|
3120 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) && |
|
3121 ( hw->mng_cookie.status & |
|
3122 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) |
|
3123 return 0; |
|
3124 } |
|
3125 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { |
|
3126 struct ethhdr *eth = (struct ethhdr *)skb->data; |
|
3127 if ((htons(ETH_P_IP) == eth->h_proto)) { |
|
3128 const struct iphdr *ip = |
|
3129 (struct iphdr *)((u8 *)skb->data+14); |
|
3130 if (IPPROTO_UDP == ip->protocol) { |
|
3131 struct udphdr *udp = |
|
3132 (struct udphdr *)((u8 *)ip + |
|
3133 (ip->ihl << 2)); |
|
3134 if (ntohs(udp->dest) == 67) { |
|
3135 offset = (u8 *)udp + 8 - skb->data; |
|
3136 length = skb->len - offset; |
|
3137 |
|
3138 return e1000_mng_write_dhcp_info(hw, |
|
3139 (u8 *)udp + 8, |
|
3140 length); |
|
3141 } |
|
3142 } |
|
3143 } |
|
3144 } |
|
3145 return 0; |
|
3146 } |
|
3147 |
|
3148 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
3149 { |
|
3150 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3151 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
3152 |
|
3153 netif_stop_queue(netdev); |
|
3154 /* Herbert's original patch had: |
|
3155 * smp_mb__after_netif_stop_queue(); |
|
3156 * but since that doesn't exist yet, just open code it. */ |
|
3157 smp_mb(); |
|
3158 |
|
3159 /* We need to check again in a case another CPU has just |
|
3160 * made room available. */ |
|
3161 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
|
3162 return -EBUSY; |
|
3163 |
|
3164 /* A reprieve! */ |
|
3165 netif_start_queue(netdev); |
|
3166 ++adapter->restart_queue; |
|
3167 return 0; |
|
3168 } |
|
3169 |
|
3170 static int e1000_maybe_stop_tx(struct net_device *netdev, |
|
3171 struct e1000_tx_ring *tx_ring, int size) |
|
3172 { |
|
3173 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
|
3174 return 0; |
|
3175 return __e1000_maybe_stop_tx(netdev, size); |
|
3176 } |
|
3177 |
|
3178 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
3179 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
|
3180 { |
|
3181 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3182 struct e1000_hw *hw = &adapter->hw; |
|
3183 struct e1000_tx_ring *tx_ring; |
|
3184 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
|
3185 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
3186 unsigned int tx_flags = 0; |
|
3187 unsigned int len = skb->len - skb->data_len; |
|
3188 unsigned long flags; |
|
3189 unsigned int nr_frags; |
|
3190 unsigned int mss; |
|
3191 int count = 0; |
|
3192 int tso; |
|
3193 unsigned int f; |
|
3194 |
|
3195 /* This goes back to the question of how to logically map a tx queue |
|
3196 * to a flow. Right now, performance is impacted slightly negatively |
|
3197 * if using multiple tx queues. If the stack breaks away from a |
|
3198 * single qdisc implementation, we can look at this again. */ |
|
3199 tx_ring = adapter->tx_ring; |
|
3200 |
|
3201 if (unlikely(skb->len <= 0)) { |
|
3202 dev_kfree_skb_any(skb); |
|
3203 return NETDEV_TX_OK; |
|
3204 } |
|
3205 |
|
3206 /* 82571 and newer doesn't need the workaround that limited descriptor |
|
3207 * length to 4kB */ |
|
3208 if (hw->mac_type >= e1000_82571) |
|
3209 max_per_txd = 8192; |
|
3210 |
|
3211 mss = skb_shinfo(skb)->gso_size; |
|
3212 /* The controller does a simple calculation to |
|
3213 * make sure there is enough room in the FIFO before |
|
3214 * initiating the DMA for each buffer. The calc is: |
|
3215 * 4 = ceil(buffer len/mss). To make sure we don't |
|
3216 * overrun the FIFO, adjust the max buffer len if mss |
|
3217 * drops. */ |
|
3218 if (mss) { |
|
3219 u8 hdr_len; |
|
3220 max_per_txd = min(mss << 2, max_per_txd); |
|
3221 max_txd_pwr = fls(max_per_txd) - 1; |
|
3222 |
|
3223 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data |
|
3224 * points to just header, pull a few bytes of payload from |
|
3225 * frags into skb->data */ |
|
3226 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3227 if (skb->data_len && hdr_len == len) { |
|
3228 switch (hw->mac_type) { |
|
3229 unsigned int pull_size; |
|
3230 case e1000_82544: |
|
3231 /* Make sure we have room to chop off 4 bytes, |
|
3232 * and that the end alignment will work out to |
|
3233 * this hardware's requirements |
|
3234 * NOTE: this is a TSO only workaround |
|
3235 * if end byte alignment not correct move us |
|
3236 * into the next dword */ |
|
3237 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) |
|
3238 break; |
|
3239 /* fall through */ |
|
3240 case e1000_82571: |
|
3241 case e1000_82572: |
|
3242 case e1000_82573: |
|
3243 case e1000_ich8lan: |
|
3244 pull_size = min((unsigned int)4, skb->data_len); |
|
3245 if (!__pskb_pull_tail(skb, pull_size)) { |
|
3246 DPRINTK(DRV, ERR, |
|
3247 "__pskb_pull_tail failed.\n"); |
|
3248 dev_kfree_skb_any(skb); |
|
3249 return NETDEV_TX_OK; |
|
3250 } |
|
3251 len = skb->len - skb->data_len; |
|
3252 break; |
|
3253 default: |
|
3254 /* do nothing */ |
|
3255 break; |
|
3256 } |
|
3257 } |
|
3258 } |
|
3259 |
|
3260 /* reserve a descriptor for the offload context */ |
|
3261 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
3262 count++; |
|
3263 count++; |
|
3264 |
|
3265 /* Controller Erratum workaround */ |
|
3266 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
|
3267 count++; |
|
3268 |
|
3269 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
3270 |
|
3271 if (adapter->pcix_82544) |
|
3272 count++; |
|
3273 |
|
3274 /* work-around for errata 10 and it applies to all controllers |
|
3275 * in PCI-X mode, so add one more descriptor to the count |
|
3276 */ |
|
3277 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3278 (len > 2015))) |
|
3279 count++; |
|
3280 |
|
3281 nr_frags = skb_shinfo(skb)->nr_frags; |
|
3282 for (f = 0; f < nr_frags; f++) |
|
3283 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
3284 max_txd_pwr); |
|
3285 if (adapter->pcix_82544) |
|
3286 count += nr_frags; |
|
3287 |
|
3288 |
|
3289 if (hw->tx_pkt_filtering && |
|
3290 (hw->mac_type == e1000_82573)) |
|
3291 e1000_transfer_dhcp_info(adapter, skb); |
|
3292 |
|
3293 if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags)) |
|
3294 /* Collision - tell upper layer to requeue */ |
|
3295 return NETDEV_TX_LOCKED; |
|
3296 |
|
3297 /* need: count + 2 desc gap to keep tail from touching |
|
3298 * head, otherwise try next time */ |
|
3299 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) { |
|
3300 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3301 return NETDEV_TX_BUSY; |
|
3302 } |
|
3303 |
|
3304 if (unlikely(hw->mac_type == e1000_82547)) { |
|
3305 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { |
|
3306 netif_stop_queue(netdev); |
|
3307 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
3308 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3309 return NETDEV_TX_BUSY; |
|
3310 } |
|
3311 } |
|
3312 |
|
3313 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { |
|
3314 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
3315 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
3316 } |
|
3317 |
|
3318 first = tx_ring->next_to_use; |
|
3319 |
|
3320 tso = e1000_tso(adapter, tx_ring, skb); |
|
3321 if (tso < 0) { |
|
3322 dev_kfree_skb_any(skb); |
|
3323 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3324 return NETDEV_TX_OK; |
|
3325 } |
|
3326 |
|
3327 if (likely(tso)) { |
|
3328 tx_ring->last_tx_tso = 1; |
|
3329 tx_flags |= E1000_TX_FLAGS_TSO; |
|
3330 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
|
3331 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
3332 |
|
3333 /* Old method was to assume IPv4 packet by default if TSO was enabled. |
|
3334 * 82571 hardware supports TSO capabilities for IPv6 as well... |
|
3335 * no longer assume, we must. */ |
|
3336 if (likely(skb->protocol == htons(ETH_P_IP))) |
|
3337 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
3338 |
|
3339 e1000_tx_queue(adapter, tx_ring, tx_flags, |
|
3340 e1000_tx_map(adapter, tx_ring, skb, first, |
|
3341 max_per_txd, nr_frags, mss)); |
|
3342 |
|
3343 netdev->trans_start = jiffies; |
|
3344 |
|
3345 /* Make sure there is space in the ring for the next send. */ |
|
3346 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
|
3347 |
|
3348 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3349 return NETDEV_TX_OK; |
|
3350 } |
|
3351 |
|
3352 /** |
|
3353 * e1000_tx_timeout - Respond to a Tx Hang |
|
3354 * @netdev: network interface device structure |
|
3355 **/ |
|
3356 |
|
3357 static void e1000_tx_timeout(struct net_device *netdev) |
|
3358 { |
|
3359 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3360 |
|
3361 /* Do the reset outside of interrupt context */ |
|
3362 adapter->tx_timeout_count++; |
|
3363 schedule_work(&adapter->reset_task); |
|
3364 } |
|
3365 |
|
3366 static void e1000_reset_task(struct work_struct *work) |
|
3367 { |
|
3368 struct e1000_adapter *adapter = |
|
3369 container_of(work, struct e1000_adapter, reset_task); |
|
3370 |
|
3371 e1000_reinit_locked(adapter); |
|
3372 } |
|
3373 |
|
3374 /** |
|
3375 * e1000_get_stats - Get System Network Statistics |
|
3376 * @netdev: network interface device structure |
|
3377 * |
|
3378 * Returns the address of the device statistics structure. |
|
3379 * The statistics are actually updated from the timer callback. |
|
3380 **/ |
|
3381 |
|
3382 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
3383 { |
|
3384 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3385 |
|
3386 /* only return the current stats */ |
|
3387 return &adapter->net_stats; |
|
3388 } |
|
3389 |
|
3390 /** |
|
3391 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
3392 * @netdev: network interface device structure |
|
3393 * @new_mtu: new value for maximum frame size |
|
3394 * |
|
3395 * Returns 0 on success, negative on failure |
|
3396 **/ |
|
3397 |
|
3398 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
3399 { |
|
3400 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3401 struct e1000_hw *hw = &adapter->hw; |
|
3402 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
3403 u16 eeprom_data = 0; |
|
3404 |
|
3405 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
|
3406 (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
|
3407 DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); |
|
3408 return -EINVAL; |
|
3409 } |
|
3410 |
|
3411 /* Adapter-specific max frame size limits. */ |
|
3412 switch (hw->mac_type) { |
|
3413 case e1000_undefined ... e1000_82542_rev2_1: |
|
3414 case e1000_ich8lan: |
|
3415 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3416 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); |
|
3417 return -EINVAL; |
|
3418 } |
|
3419 break; |
|
3420 case e1000_82573: |
|
3421 /* Jumbo Frames not supported if: |
|
3422 * - this is not an 82573L device |
|
3423 * - ASPM is enabled in any way (0x1A bits 3:2) */ |
|
3424 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1, |
|
3425 &eeprom_data); |
|
3426 if ((hw->device_id != E1000_DEV_ID_82573L) || |
|
3427 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { |
|
3428 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3429 DPRINTK(PROBE, ERR, |
|
3430 "Jumbo Frames not supported.\n"); |
|
3431 return -EINVAL; |
|
3432 } |
|
3433 break; |
|
3434 } |
|
3435 /* ERT will be enabled later to enable wire speed receives */ |
|
3436 |
|
3437 /* fall through to get support */ |
|
3438 case e1000_82571: |
|
3439 case e1000_82572: |
|
3440 case e1000_80003es2lan: |
|
3441 #define MAX_STD_JUMBO_FRAME_SIZE 9234 |
|
3442 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
|
3443 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); |
|
3444 return -EINVAL; |
|
3445 } |
|
3446 break; |
|
3447 default: |
|
3448 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
|
3449 break; |
|
3450 } |
|
3451 |
|
3452 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
3453 * means we reserve 2 more, this pushes us to allocate from the next |
|
3454 * larger slab size |
|
3455 * i.e. RXBUFFER_2048 --> size-4096 slab */ |
|
3456 |
|
3457 if (max_frame <= E1000_RXBUFFER_256) |
|
3458 adapter->rx_buffer_len = E1000_RXBUFFER_256; |
|
3459 else if (max_frame <= E1000_RXBUFFER_512) |
|
3460 adapter->rx_buffer_len = E1000_RXBUFFER_512; |
|
3461 else if (max_frame <= E1000_RXBUFFER_1024) |
|
3462 adapter->rx_buffer_len = E1000_RXBUFFER_1024; |
|
3463 else if (max_frame <= E1000_RXBUFFER_2048) |
|
3464 adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
|
3465 else if (max_frame <= E1000_RXBUFFER_4096) |
|
3466 adapter->rx_buffer_len = E1000_RXBUFFER_4096; |
|
3467 else if (max_frame <= E1000_RXBUFFER_8192) |
|
3468 adapter->rx_buffer_len = E1000_RXBUFFER_8192; |
|
3469 else if (max_frame <= E1000_RXBUFFER_16384) |
|
3470 adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
|
3471 |
|
3472 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
3473 if (!hw->tbi_compatibility_on && |
|
3474 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || |
|
3475 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
|
3476 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
3477 |
|
3478 netdev->mtu = new_mtu; |
|
3479 hw->max_frame_size = max_frame; |
|
3480 |
|
3481 if (netif_running(netdev)) |
|
3482 e1000_reinit_locked(adapter); |
|
3483 |
|
3484 return 0; |
|
3485 } |
|
3486 |
|
3487 /** |
|
3488 * e1000_update_stats - Update the board statistics counters |
|
3489 * @adapter: board private structure |
|
3490 **/ |
|
3491 |
|
3492 void e1000_update_stats(struct e1000_adapter *adapter) |
|
3493 { |
|
3494 struct e1000_hw *hw = &adapter->hw; |
|
3495 struct pci_dev *pdev = adapter->pdev; |
|
3496 unsigned long flags; |
|
3497 u16 phy_tmp; |
|
3498 |
|
3499 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
|
3500 |
|
3501 /* |
|
3502 * Prevent stats update while adapter is being reset, or if the pci |
|
3503 * connection is down. |
|
3504 */ |
|
3505 if (adapter->link_speed == 0) |
|
3506 return; |
|
3507 if (pci_channel_offline(pdev)) |
|
3508 return; |
|
3509 |
|
3510 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3511 |
|
3512 /* these counters are modified from e1000_tbi_adjust_stats, |
|
3513 * called from the interrupt context, so they must only |
|
3514 * be written while holding adapter->stats_lock |
|
3515 */ |
|
3516 |
|
3517 adapter->stats.crcerrs += er32(CRCERRS); |
|
3518 adapter->stats.gprc += er32(GPRC); |
|
3519 adapter->stats.gorcl += er32(GORCL); |
|
3520 adapter->stats.gorch += er32(GORCH); |
|
3521 adapter->stats.bprc += er32(BPRC); |
|
3522 adapter->stats.mprc += er32(MPRC); |
|
3523 adapter->stats.roc += er32(ROC); |
|
3524 |
|
3525 if (hw->mac_type != e1000_ich8lan) { |
|
3526 adapter->stats.prc64 += er32(PRC64); |
|
3527 adapter->stats.prc127 += er32(PRC127); |
|
3528 adapter->stats.prc255 += er32(PRC255); |
|
3529 adapter->stats.prc511 += er32(PRC511); |
|
3530 adapter->stats.prc1023 += er32(PRC1023); |
|
3531 adapter->stats.prc1522 += er32(PRC1522); |
|
3532 } |
|
3533 |
|
3534 adapter->stats.symerrs += er32(SYMERRS); |
|
3535 adapter->stats.mpc += er32(MPC); |
|
3536 adapter->stats.scc += er32(SCC); |
|
3537 adapter->stats.ecol += er32(ECOL); |
|
3538 adapter->stats.mcc += er32(MCC); |
|
3539 adapter->stats.latecol += er32(LATECOL); |
|
3540 adapter->stats.dc += er32(DC); |
|
3541 adapter->stats.sec += er32(SEC); |
|
3542 adapter->stats.rlec += er32(RLEC); |
|
3543 adapter->stats.xonrxc += er32(XONRXC); |
|
3544 adapter->stats.xontxc += er32(XONTXC); |
|
3545 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3546 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3547 adapter->stats.fcruc += er32(FCRUC); |
|
3548 adapter->stats.gptc += er32(GPTC); |
|
3549 adapter->stats.gotcl += er32(GOTCL); |
|
3550 adapter->stats.gotch += er32(GOTCH); |
|
3551 adapter->stats.rnbc += er32(RNBC); |
|
3552 adapter->stats.ruc += er32(RUC); |
|
3553 adapter->stats.rfc += er32(RFC); |
|
3554 adapter->stats.rjc += er32(RJC); |
|
3555 adapter->stats.torl += er32(TORL); |
|
3556 adapter->stats.torh += er32(TORH); |
|
3557 adapter->stats.totl += er32(TOTL); |
|
3558 adapter->stats.toth += er32(TOTH); |
|
3559 adapter->stats.tpr += er32(TPR); |
|
3560 |
|
3561 if (hw->mac_type != e1000_ich8lan) { |
|
3562 adapter->stats.ptc64 += er32(PTC64); |
|
3563 adapter->stats.ptc127 += er32(PTC127); |
|
3564 adapter->stats.ptc255 += er32(PTC255); |
|
3565 adapter->stats.ptc511 += er32(PTC511); |
|
3566 adapter->stats.ptc1023 += er32(PTC1023); |
|
3567 adapter->stats.ptc1522 += er32(PTC1522); |
|
3568 } |
|
3569 |
|
3570 adapter->stats.mptc += er32(MPTC); |
|
3571 adapter->stats.bptc += er32(BPTC); |
|
3572 |
|
3573 /* used for adaptive IFS */ |
|
3574 |
|
3575 hw->tx_packet_delta = er32(TPT); |
|
3576 adapter->stats.tpt += hw->tx_packet_delta; |
|
3577 hw->collision_delta = er32(COLC); |
|
3578 adapter->stats.colc += hw->collision_delta; |
|
3579 |
|
3580 if (hw->mac_type >= e1000_82543) { |
|
3581 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3582 adapter->stats.rxerrc += er32(RXERRC); |
|
3583 adapter->stats.tncrs += er32(TNCRS); |
|
3584 adapter->stats.cexterr += er32(CEXTERR); |
|
3585 adapter->stats.tsctc += er32(TSCTC); |
|
3586 adapter->stats.tsctfc += er32(TSCTFC); |
|
3587 } |
|
3588 if (hw->mac_type > e1000_82547_rev_2) { |
|
3589 adapter->stats.iac += er32(IAC); |
|
3590 adapter->stats.icrxoc += er32(ICRXOC); |
|
3591 |
|
3592 if (hw->mac_type != e1000_ich8lan) { |
|
3593 adapter->stats.icrxptc += er32(ICRXPTC); |
|
3594 adapter->stats.icrxatc += er32(ICRXATC); |
|
3595 adapter->stats.ictxptc += er32(ICTXPTC); |
|
3596 adapter->stats.ictxatc += er32(ICTXATC); |
|
3597 adapter->stats.ictxqec += er32(ICTXQEC); |
|
3598 adapter->stats.ictxqmtc += er32(ICTXQMTC); |
|
3599 adapter->stats.icrxdmtc += er32(ICRXDMTC); |
|
3600 } |
|
3601 } |
|
3602 |
|
3603 /* Fill out the OS statistics structure */ |
|
3604 adapter->net_stats.multicast = adapter->stats.mprc; |
|
3605 adapter->net_stats.collisions = adapter->stats.colc; |
|
3606 |
|
3607 /* Rx Errors */ |
|
3608 |
|
3609 /* RLEC on some newer hardware can be incorrect so build |
|
3610 * our own version based on RUC and ROC */ |
|
3611 adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
|
3612 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3613 adapter->stats.ruc + adapter->stats.roc + |
|
3614 adapter->stats.cexterr; |
|
3615 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
|
3616 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc; |
|
3617 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3618 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3619 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
|
3620 |
|
3621 /* Tx Errors */ |
|
3622 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
|
3623 adapter->net_stats.tx_errors = adapter->stats.txerrc; |
|
3624 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
|
3625 adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
|
3626 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3627 if (hw->bad_tx_carr_stats_fd && |
|
3628 adapter->link_duplex == FULL_DUPLEX) { |
|
3629 adapter->net_stats.tx_carrier_errors = 0; |
|
3630 adapter->stats.tncrs = 0; |
|
3631 } |
|
3632 |
|
3633 /* Tx Dropped needs to be maintained elsewhere */ |
|
3634 |
|
3635 /* Phy Stats */ |
|
3636 if (hw->media_type == e1000_media_type_copper) { |
|
3637 if ((adapter->link_speed == SPEED_1000) && |
|
3638 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
|
3639 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
|
3640 adapter->phy_stats.idle_errors += phy_tmp; |
|
3641 } |
|
3642 |
|
3643 if ((hw->mac_type <= e1000_82546) && |
|
3644 (hw->phy_type == e1000_phy_m88) && |
|
3645 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
|
3646 adapter->phy_stats.receive_errors += phy_tmp; |
|
3647 } |
|
3648 |
|
3649 /* Management Stats */ |
|
3650 if (hw->has_smbus) { |
|
3651 adapter->stats.mgptc += er32(MGTPTC); |
|
3652 adapter->stats.mgprc += er32(MGTPRC); |
|
3653 adapter->stats.mgpdc += er32(MGTPDC); |
|
3654 } |
|
3655 |
|
3656 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
3657 } |
|
3658 |
|
3659 /** |
|
3660 * e1000_intr_msi - Interrupt Handler |
|
3661 * @irq: interrupt number |
|
3662 * @data: pointer to a network interface device structure |
|
3663 **/ |
|
3664 |
|
3665 static irqreturn_t e1000_intr_msi(int irq, void *data) |
|
3666 { |
|
3667 struct net_device *netdev = data; |
|
3668 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3669 struct e1000_hw *hw = &adapter->hw; |
|
3670 u32 icr = er32(ICR); |
|
3671 |
|
3672 /* in NAPI mode read ICR disables interrupts using IAM */ |
|
3673 |
|
3674 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
|
3675 hw->get_link_status = 1; |
|
3676 /* 80003ES2LAN workaround-- For packet buffer work-around on |
|
3677 * link down event; disable receives here in the ISR and reset |
|
3678 * adapter in watchdog */ |
|
3679 if (netif_carrier_ok(netdev) && |
|
3680 (hw->mac_type == e1000_80003es2lan)) { |
|
3681 /* disable receives */ |
|
3682 u32 rctl = er32(RCTL); |
|
3683 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3684 } |
|
3685 /* guard against interrupt when we're going down */ |
|
3686 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3687 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3688 } |
|
3689 |
|
3690 if (likely(netif_rx_schedule_prep(&adapter->napi))) { |
|
3691 adapter->total_tx_bytes = 0; |
|
3692 adapter->total_tx_packets = 0; |
|
3693 adapter->total_rx_bytes = 0; |
|
3694 adapter->total_rx_packets = 0; |
|
3695 __netif_rx_schedule(&adapter->napi); |
|
3696 } else |
|
3697 e1000_irq_enable(adapter); |
|
3698 |
|
3699 return IRQ_HANDLED; |
|
3700 } |
|
3701 |
|
3702 /** |
|
3703 * e1000_intr - Interrupt Handler |
|
3704 * @irq: interrupt number |
|
3705 * @data: pointer to a network interface device structure |
|
3706 **/ |
|
3707 |
|
3708 static irqreturn_t e1000_intr(int irq, void *data) |
|
3709 { |
|
3710 struct net_device *netdev = data; |
|
3711 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3712 struct e1000_hw *hw = &adapter->hw; |
|
3713 u32 rctl, icr = er32(ICR); |
|
3714 |
|
3715 if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags))) |
|
3716 return IRQ_NONE; /* Not our interrupt */ |
|
3717 |
|
3718 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
|
3719 * not set, then the adapter didn't send an interrupt */ |
|
3720 if (unlikely(hw->mac_type >= e1000_82571 && |
|
3721 !(icr & E1000_ICR_INT_ASSERTED))) |
|
3722 return IRQ_NONE; |
|
3723 |
|
3724 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No |
|
3725 * need for the IMC write */ |
|
3726 |
|
3727 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
|
3728 hw->get_link_status = 1; |
|
3729 /* 80003ES2LAN workaround-- |
|
3730 * For packet buffer work-around on link down event; |
|
3731 * disable receives here in the ISR and |
|
3732 * reset adapter in watchdog |
|
3733 */ |
|
3734 if (netif_carrier_ok(netdev) && |
|
3735 (hw->mac_type == e1000_80003es2lan)) { |
|
3736 /* disable receives */ |
|
3737 rctl = er32(RCTL); |
|
3738 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3739 } |
|
3740 /* guard against interrupt when we're going down */ |
|
3741 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3742 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3743 } |
|
3744 |
|
3745 if (unlikely(hw->mac_type < e1000_82571)) { |
|
3746 /* disable interrupts, without the synchronize_irq bit */ |
|
3747 ew32(IMC, ~0); |
|
3748 E1000_WRITE_FLUSH(); |
|
3749 } |
|
3750 if (likely(netif_rx_schedule_prep(&adapter->napi))) { |
|
3751 adapter->total_tx_bytes = 0; |
|
3752 adapter->total_tx_packets = 0; |
|
3753 adapter->total_rx_bytes = 0; |
|
3754 adapter->total_rx_packets = 0; |
|
3755 __netif_rx_schedule(&adapter->napi); |
|
3756 } else |
|
3757 /* this really should not happen! if it does it is basically a |
|
3758 * bug, but not a hard error, so enable ints and continue */ |
|
3759 e1000_irq_enable(adapter); |
|
3760 |
|
3761 return IRQ_HANDLED; |
|
3762 } |
|
3763 |
|
3764 /** |
|
3765 * e1000_clean - NAPI Rx polling callback |
|
3766 * @adapter: board private structure |
|
3767 **/ |
|
3768 static int e1000_clean(struct napi_struct *napi, int budget) |
|
3769 { |
|
3770 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
3771 struct net_device *poll_dev = adapter->netdev; |
|
3772 int tx_cleaned = 0, work_done = 0; |
|
3773 |
|
3774 adapter = netdev_priv(poll_dev); |
|
3775 |
|
3776 /* e1000_clean is called per-cpu. This lock protects |
|
3777 * tx_ring[0] from being cleaned by multiple cpus |
|
3778 * simultaneously. A failure obtaining the lock means |
|
3779 * tx_ring[0] is currently being cleaned anyway. */ |
|
3780 if (spin_trylock(&adapter->tx_queue_lock)) { |
|
3781 tx_cleaned = e1000_clean_tx_irq(adapter, |
|
3782 &adapter->tx_ring[0]); |
|
3783 spin_unlock(&adapter->tx_queue_lock); |
|
3784 } |
|
3785 |
|
3786 adapter->clean_rx(adapter, &adapter->rx_ring[0], |
|
3787 &work_done, budget); |
|
3788 |
|
3789 if (tx_cleaned) |
|
3790 work_done = budget; |
|
3791 |
|
3792 /* If budget not fully consumed, exit the polling mode */ |
|
3793 if (work_done < budget) { |
|
3794 if (likely(adapter->itr_setting & 3)) |
|
3795 e1000_set_itr(adapter); |
|
3796 netif_rx_complete(napi); |
|
3797 e1000_irq_enable(adapter); |
|
3798 } |
|
3799 |
|
3800 return work_done; |
|
3801 } |
|
3802 |
|
3803 /** |
|
3804 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
3805 * @adapter: board private structure |
|
3806 **/ |
|
3807 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
3808 struct e1000_tx_ring *tx_ring) |
|
3809 { |
|
3810 struct e1000_hw *hw = &adapter->hw; |
|
3811 struct net_device *netdev = adapter->netdev; |
|
3812 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
3813 struct e1000_buffer *buffer_info; |
|
3814 unsigned int i, eop; |
|
3815 unsigned int count = 0; |
|
3816 bool cleaned = false; |
|
3817 unsigned int total_tx_bytes=0, total_tx_packets=0; |
|
3818 |
|
3819 i = tx_ring->next_to_clean; |
|
3820 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3821 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3822 |
|
3823 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { |
|
3824 for (cleaned = false; !cleaned; ) { |
|
3825 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3826 buffer_info = &tx_ring->buffer_info[i]; |
|
3827 cleaned = (i == eop); |
|
3828 |
|
3829 if (cleaned) { |
|
3830 struct sk_buff *skb = buffer_info->skb; |
|
3831 unsigned int segs, bytecount; |
|
3832 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
3833 /* multiply data chunks by size of headers */ |
|
3834 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
3835 skb->len; |
|
3836 total_tx_packets += segs; |
|
3837 total_tx_bytes += bytecount; |
|
3838 } |
|
3839 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
3840 tx_desc->upper.data = 0; |
|
3841 |
|
3842 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3843 } |
|
3844 |
|
3845 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3846 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3847 #define E1000_TX_WEIGHT 64 |
|
3848 /* weight of a sort for tx, to avoid endless transmit cleanup */ |
|
3849 if (count++ == E1000_TX_WEIGHT) |
|
3850 break; |
|
3851 } |
|
3852 |
|
3853 tx_ring->next_to_clean = i; |
|
3854 |
|
3855 #define TX_WAKE_THRESHOLD 32 |
|
3856 if (unlikely(cleaned && netif_carrier_ok(netdev) && |
|
3857 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
|
3858 /* Make sure that anybody stopping the queue after this |
|
3859 * sees the new next_to_clean. |
|
3860 */ |
|
3861 smp_mb(); |
|
3862 if (netif_queue_stopped(netdev)) { |
|
3863 netif_wake_queue(netdev); |
|
3864 ++adapter->restart_queue; |
|
3865 } |
|
3866 } |
|
3867 |
|
3868 if (adapter->detect_tx_hung) { |
|
3869 /* Detect a transmit hang in hardware, this serializes the |
|
3870 * check with the clearing of time_stamp and movement of i */ |
|
3871 adapter->detect_tx_hung = false; |
|
3872 if (tx_ring->buffer_info[eop].dma && |
|
3873 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
|
3874 (adapter->tx_timeout_factor * HZ)) |
|
3875 && !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
3876 |
|
3877 /* detected Tx unit hang */ |
|
3878 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" |
|
3879 " Tx Queue <%lu>\n" |
|
3880 " TDH <%x>\n" |
|
3881 " TDT <%x>\n" |
|
3882 " next_to_use <%x>\n" |
|
3883 " next_to_clean <%x>\n" |
|
3884 "buffer_info[next_to_clean]\n" |
|
3885 " time_stamp <%lx>\n" |
|
3886 " next_to_watch <%x>\n" |
|
3887 " jiffies <%lx>\n" |
|
3888 " next_to_watch.status <%x>\n", |
|
3889 (unsigned long)((tx_ring - adapter->tx_ring) / |
|
3890 sizeof(struct e1000_tx_ring)), |
|
3891 readl(hw->hw_addr + tx_ring->tdh), |
|
3892 readl(hw->hw_addr + tx_ring->tdt), |
|
3893 tx_ring->next_to_use, |
|
3894 tx_ring->next_to_clean, |
|
3895 tx_ring->buffer_info[eop].time_stamp, |
|
3896 eop, |
|
3897 jiffies, |
|
3898 eop_desc->upper.fields.status); |
|
3899 netif_stop_queue(netdev); |
|
3900 } |
|
3901 } |
|
3902 adapter->total_tx_bytes += total_tx_bytes; |
|
3903 adapter->total_tx_packets += total_tx_packets; |
|
3904 adapter->net_stats.tx_bytes += total_tx_bytes; |
|
3905 adapter->net_stats.tx_packets += total_tx_packets; |
|
3906 return cleaned; |
|
3907 } |
|
3908 |
|
3909 /** |
|
3910 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
3911 * @adapter: board private structure |
|
3912 * @status_err: receive descriptor status and error fields |
|
3913 * @csum: receive descriptor csum field |
|
3914 * @sk_buff: socket buffer with received data |
|
3915 **/ |
|
3916 |
|
3917 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
3918 u32 csum, struct sk_buff *skb) |
|
3919 { |
|
3920 struct e1000_hw *hw = &adapter->hw; |
|
3921 u16 status = (u16)status_err; |
|
3922 u8 errors = (u8)(status_err >> 24); |
|
3923 skb->ip_summed = CHECKSUM_NONE; |
|
3924 |
|
3925 /* 82543 or newer only */ |
|
3926 if (unlikely(hw->mac_type < e1000_82543)) return; |
|
3927 /* Ignore Checksum bit is set */ |
|
3928 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
|
3929 /* TCP/UDP checksum error bit is set */ |
|
3930 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
|
3931 /* let the stack verify checksum errors */ |
|
3932 adapter->hw_csum_err++; |
|
3933 return; |
|
3934 } |
|
3935 /* TCP/UDP Checksum has not been calculated */ |
|
3936 if (hw->mac_type <= e1000_82547_rev_2) { |
|
3937 if (!(status & E1000_RXD_STAT_TCPCS)) |
|
3938 return; |
|
3939 } else { |
|
3940 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
|
3941 return; |
|
3942 } |
|
3943 /* It must be a TCP or UDP packet with a valid checksum */ |
|
3944 if (likely(status & E1000_RXD_STAT_TCPCS)) { |
|
3945 /* TCP checksum is good */ |
|
3946 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
3947 } else if (hw->mac_type > e1000_82547_rev_2) { |
|
3948 /* IP fragment with UDP payload */ |
|
3949 /* Hardware complements the payload checksum, so we undo it |
|
3950 * and then put the value in host order for further stack use. |
|
3951 */ |
|
3952 __sum16 sum = (__force __sum16)htons(csum); |
|
3953 skb->csum = csum_unfold(~sum); |
|
3954 skb->ip_summed = CHECKSUM_COMPLETE; |
|
3955 } |
|
3956 adapter->hw_csum_good++; |
|
3957 } |
|
3958 |
|
3959 /** |
|
3960 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
3961 * @adapter: board private structure |
|
3962 **/ |
|
3963 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
3964 struct e1000_rx_ring *rx_ring, |
|
3965 int *work_done, int work_to_do) |
|
3966 { |
|
3967 struct e1000_hw *hw = &adapter->hw; |
|
3968 struct net_device *netdev = adapter->netdev; |
|
3969 struct pci_dev *pdev = adapter->pdev; |
|
3970 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
3971 struct e1000_buffer *buffer_info, *next_buffer; |
|
3972 unsigned long flags; |
|
3973 u32 length; |
|
3974 u8 last_byte; |
|
3975 unsigned int i; |
|
3976 int cleaned_count = 0; |
|
3977 bool cleaned = false; |
|
3978 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
3979 |
|
3980 i = rx_ring->next_to_clean; |
|
3981 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
3982 buffer_info = &rx_ring->buffer_info[i]; |
|
3983 |
|
3984 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
3985 struct sk_buff *skb; |
|
3986 u8 status; |
|
3987 |
|
3988 if (*work_done >= work_to_do) |
|
3989 break; |
|
3990 (*work_done)++; |
|
3991 |
|
3992 status = rx_desc->status; |
|
3993 skb = buffer_info->skb; |
|
3994 buffer_info->skb = NULL; |
|
3995 |
|
3996 prefetch(skb->data - NET_IP_ALIGN); |
|
3997 |
|
3998 if (++i == rx_ring->count) i = 0; |
|
3999 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
4000 prefetch(next_rxd); |
|
4001 |
|
4002 next_buffer = &rx_ring->buffer_info[i]; |
|
4003 |
|
4004 cleaned = true; |
|
4005 cleaned_count++; |
|
4006 pci_unmap_single(pdev, |
|
4007 buffer_info->dma, |
|
4008 buffer_info->length, |
|
4009 PCI_DMA_FROMDEVICE); |
|
4010 |
|
4011 length = le16_to_cpu(rx_desc->length); |
|
4012 |
|
4013 if (unlikely(!(status & E1000_RXD_STAT_EOP))) { |
|
4014 /* All receives must fit into a single buffer */ |
|
4015 E1000_DBG("%s: Receive packet consumed multiple" |
|
4016 " buffers\n", netdev->name); |
|
4017 /* recycle */ |
|
4018 buffer_info->skb = skb; |
|
4019 goto next_desc; |
|
4020 } |
|
4021 |
|
4022 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
4023 last_byte = *(skb->data + length - 1); |
|
4024 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
4025 last_byte)) { |
|
4026 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4027 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
4028 length, skb->data); |
|
4029 spin_unlock_irqrestore(&adapter->stats_lock, |
|
4030 flags); |
|
4031 length--; |
|
4032 } else { |
|
4033 /* recycle */ |
|
4034 buffer_info->skb = skb; |
|
4035 goto next_desc; |
|
4036 } |
|
4037 } |
|
4038 |
|
4039 /* adjust length to remove Ethernet CRC, this must be |
|
4040 * done after the TBI_ACCEPT workaround above */ |
|
4041 length -= 4; |
|
4042 |
|
4043 /* probably a little skewed due to removing CRC */ |
|
4044 total_rx_bytes += length; |
|
4045 total_rx_packets++; |
|
4046 |
|
4047 /* code added for copybreak, this should improve |
|
4048 * performance for small packets with large amounts |
|
4049 * of reassembly being done in the stack */ |
|
4050 if (length < copybreak) { |
|
4051 struct sk_buff *new_skb = |
|
4052 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
|
4053 if (new_skb) { |
|
4054 skb_reserve(new_skb, NET_IP_ALIGN); |
|
4055 skb_copy_to_linear_data_offset(new_skb, |
|
4056 -NET_IP_ALIGN, |
|
4057 (skb->data - |
|
4058 NET_IP_ALIGN), |
|
4059 (length + |
|
4060 NET_IP_ALIGN)); |
|
4061 /* save the skb in buffer_info as good */ |
|
4062 buffer_info->skb = skb; |
|
4063 skb = new_skb; |
|
4064 } |
|
4065 /* else just continue with the old one */ |
|
4066 } |
|
4067 /* end copybreak code */ |
|
4068 skb_put(skb, length); |
|
4069 |
|
4070 /* Receive Checksum Offload */ |
|
4071 e1000_rx_checksum(adapter, |
|
4072 (u32)(status) | |
|
4073 ((u32)(rx_desc->errors) << 24), |
|
4074 le16_to_cpu(rx_desc->csum), skb); |
|
4075 |
|
4076 skb->protocol = eth_type_trans(skb, netdev); |
|
4077 |
|
4078 if (unlikely(adapter->vlgrp && |
|
4079 (status & E1000_RXD_STAT_VP))) { |
|
4080 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
4081 le16_to_cpu(rx_desc->special)); |
|
4082 } else { |
|
4083 netif_receive_skb(skb); |
|
4084 } |
|
4085 |
|
4086 next_desc: |
|
4087 rx_desc->status = 0; |
|
4088 |
|
4089 /* return some buffers to hardware, one at a time is too slow */ |
|
4090 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4091 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4092 cleaned_count = 0; |
|
4093 } |
|
4094 |
|
4095 /* use prefetched values */ |
|
4096 rx_desc = next_rxd; |
|
4097 buffer_info = next_buffer; |
|
4098 } |
|
4099 rx_ring->next_to_clean = i; |
|
4100 |
|
4101 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4102 if (cleaned_count) |
|
4103 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4104 |
|
4105 adapter->total_rx_packets += total_rx_packets; |
|
4106 adapter->total_rx_bytes += total_rx_bytes; |
|
4107 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
4108 adapter->net_stats.rx_packets += total_rx_packets; |
|
4109 return cleaned; |
|
4110 } |
|
4111 |
|
4112 /** |
|
4113 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
4114 * @adapter: address of board private structure |
|
4115 **/ |
|
4116 |
|
4117 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
4118 struct e1000_rx_ring *rx_ring, |
|
4119 int cleaned_count) |
|
4120 { |
|
4121 struct e1000_hw *hw = &adapter->hw; |
|
4122 struct net_device *netdev = adapter->netdev; |
|
4123 struct pci_dev *pdev = adapter->pdev; |
|
4124 struct e1000_rx_desc *rx_desc; |
|
4125 struct e1000_buffer *buffer_info; |
|
4126 struct sk_buff *skb; |
|
4127 unsigned int i; |
|
4128 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; |
|
4129 |
|
4130 i = rx_ring->next_to_use; |
|
4131 buffer_info = &rx_ring->buffer_info[i]; |
|
4132 |
|
4133 while (cleaned_count--) { |
|
4134 skb = buffer_info->skb; |
|
4135 if (skb) { |
|
4136 skb_trim(skb, 0); |
|
4137 goto map_skb; |
|
4138 } |
|
4139 |
|
4140 skb = netdev_alloc_skb(netdev, bufsz); |
|
4141 if (unlikely(!skb)) { |
|
4142 /* Better luck next round */ |
|
4143 adapter->alloc_rx_buff_failed++; |
|
4144 break; |
|
4145 } |
|
4146 |
|
4147 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4148 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4149 struct sk_buff *oldskb = skb; |
|
4150 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " |
|
4151 "at %p\n", bufsz, skb->data); |
|
4152 /* Try again, without freeing the previous */ |
|
4153 skb = netdev_alloc_skb(netdev, bufsz); |
|
4154 /* Failed allocation, critical failure */ |
|
4155 if (!skb) { |
|
4156 dev_kfree_skb(oldskb); |
|
4157 break; |
|
4158 } |
|
4159 |
|
4160 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4161 /* give up */ |
|
4162 dev_kfree_skb(skb); |
|
4163 dev_kfree_skb(oldskb); |
|
4164 break; /* while !buffer_info->skb */ |
|
4165 } |
|
4166 |
|
4167 /* Use new allocation */ |
|
4168 dev_kfree_skb(oldskb); |
|
4169 } |
|
4170 /* Make buffer alignment 2 beyond a 16 byte boundary |
|
4171 * this will result in a 16 byte aligned IP header after |
|
4172 * the 14 byte MAC header is removed |
|
4173 */ |
|
4174 skb_reserve(skb, NET_IP_ALIGN); |
|
4175 |
|
4176 buffer_info->skb = skb; |
|
4177 buffer_info->length = adapter->rx_buffer_len; |
|
4178 map_skb: |
|
4179 buffer_info->dma = pci_map_single(pdev, |
|
4180 skb->data, |
|
4181 adapter->rx_buffer_len, |
|
4182 PCI_DMA_FROMDEVICE); |
|
4183 |
|
4184 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4185 if (!e1000_check_64k_bound(adapter, |
|
4186 (void *)(unsigned long)buffer_info->dma, |
|
4187 adapter->rx_buffer_len)) { |
|
4188 DPRINTK(RX_ERR, ERR, |
|
4189 "dma align check failed: %u bytes at %p\n", |
|
4190 adapter->rx_buffer_len, |
|
4191 (void *)(unsigned long)buffer_info->dma); |
|
4192 dev_kfree_skb(skb); |
|
4193 buffer_info->skb = NULL; |
|
4194 |
|
4195 pci_unmap_single(pdev, buffer_info->dma, |
|
4196 adapter->rx_buffer_len, |
|
4197 PCI_DMA_FROMDEVICE); |
|
4198 |
|
4199 break; /* while !buffer_info->skb */ |
|
4200 } |
|
4201 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4202 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4203 |
|
4204 if (unlikely(++i == rx_ring->count)) |
|
4205 i = 0; |
|
4206 buffer_info = &rx_ring->buffer_info[i]; |
|
4207 } |
|
4208 |
|
4209 if (likely(rx_ring->next_to_use != i)) { |
|
4210 rx_ring->next_to_use = i; |
|
4211 if (unlikely(i-- == 0)) |
|
4212 i = (rx_ring->count - 1); |
|
4213 |
|
4214 /* Force memory writes to complete before letting h/w |
|
4215 * know there are new descriptors to fetch. (Only |
|
4216 * applicable for weak-ordered memory model archs, |
|
4217 * such as IA-64). */ |
|
4218 wmb(); |
|
4219 writel(i, hw->hw_addr + rx_ring->rdt); |
|
4220 } |
|
4221 } |
|
4222 |
|
4223 /** |
|
4224 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
|
4225 * @adapter: |
|
4226 **/ |
|
4227 |
|
4228 static void e1000_smartspeed(struct e1000_adapter *adapter) |
|
4229 { |
|
4230 struct e1000_hw *hw = &adapter->hw; |
|
4231 u16 phy_status; |
|
4232 u16 phy_ctrl; |
|
4233 |
|
4234 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
|
4235 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
|
4236 return; |
|
4237 |
|
4238 if (adapter->smartspeed == 0) { |
|
4239 /* If Master/Slave config fault is asserted twice, |
|
4240 * we assume back-to-back */ |
|
4241 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4242 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4243 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4244 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4245 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4246 if (phy_ctrl & CR_1000T_MS_ENABLE) { |
|
4247 phy_ctrl &= ~CR_1000T_MS_ENABLE; |
|
4248 e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
4249 phy_ctrl); |
|
4250 adapter->smartspeed++; |
|
4251 if (!e1000_phy_setup_autoneg(hw) && |
|
4252 !e1000_read_phy_reg(hw, PHY_CTRL, |
|
4253 &phy_ctrl)) { |
|
4254 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4255 MII_CR_RESTART_AUTO_NEG); |
|
4256 e1000_write_phy_reg(hw, PHY_CTRL, |
|
4257 phy_ctrl); |
|
4258 } |
|
4259 } |
|
4260 return; |
|
4261 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
|
4262 /* If still no link, perhaps using 2/3 pair cable */ |
|
4263 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4264 phy_ctrl |= CR_1000T_MS_ENABLE; |
|
4265 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
|
4266 if (!e1000_phy_setup_autoneg(hw) && |
|
4267 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
|
4268 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4269 MII_CR_RESTART_AUTO_NEG); |
|
4270 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
|
4271 } |
|
4272 } |
|
4273 /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
|
4274 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
|
4275 adapter->smartspeed = 0; |
|
4276 } |
|
4277 |
|
4278 /** |
|
4279 * e1000_ioctl - |
|
4280 * @netdev: |
|
4281 * @ifreq: |
|
4282 * @cmd: |
|
4283 **/ |
|
4284 |
|
4285 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4286 { |
|
4287 switch (cmd) { |
|
4288 case SIOCGMIIPHY: |
|
4289 case SIOCGMIIREG: |
|
4290 case SIOCSMIIREG: |
|
4291 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4292 default: |
|
4293 return -EOPNOTSUPP; |
|
4294 } |
|
4295 } |
|
4296 |
|
4297 /** |
|
4298 * e1000_mii_ioctl - |
|
4299 * @netdev: |
|
4300 * @ifreq: |
|
4301 * @cmd: |
|
4302 **/ |
|
4303 |
|
4304 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4305 int cmd) |
|
4306 { |
|
4307 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4308 struct e1000_hw *hw = &adapter->hw; |
|
4309 struct mii_ioctl_data *data = if_mii(ifr); |
|
4310 int retval; |
|
4311 u16 mii_reg; |
|
4312 u16 spddplx; |
|
4313 unsigned long flags; |
|
4314 |
|
4315 if (hw->media_type != e1000_media_type_copper) |
|
4316 return -EOPNOTSUPP; |
|
4317 |
|
4318 switch (cmd) { |
|
4319 case SIOCGMIIPHY: |
|
4320 data->phy_id = hw->phy_addr; |
|
4321 break; |
|
4322 case SIOCGMIIREG: |
|
4323 if (!capable(CAP_NET_ADMIN)) |
|
4324 return -EPERM; |
|
4325 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4326 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
|
4327 &data->val_out)) { |
|
4328 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4329 return -EIO; |
|
4330 } |
|
4331 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4332 break; |
|
4333 case SIOCSMIIREG: |
|
4334 if (!capable(CAP_NET_ADMIN)) |
|
4335 return -EPERM; |
|
4336 if (data->reg_num & ~(0x1F)) |
|
4337 return -EFAULT; |
|
4338 mii_reg = data->val_in; |
|
4339 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4340 if (e1000_write_phy_reg(hw, data->reg_num, |
|
4341 mii_reg)) { |
|
4342 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4343 return -EIO; |
|
4344 } |
|
4345 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4346 if (hw->media_type == e1000_media_type_copper) { |
|
4347 switch (data->reg_num) { |
|
4348 case PHY_CTRL: |
|
4349 if (mii_reg & MII_CR_POWER_DOWN) |
|
4350 break; |
|
4351 if (mii_reg & MII_CR_AUTO_NEG_EN) { |
|
4352 hw->autoneg = 1; |
|
4353 hw->autoneg_advertised = 0x2F; |
|
4354 } else { |
|
4355 if (mii_reg & 0x40) |
|
4356 spddplx = SPEED_1000; |
|
4357 else if (mii_reg & 0x2000) |
|
4358 spddplx = SPEED_100; |
|
4359 else |
|
4360 spddplx = SPEED_10; |
|
4361 spddplx += (mii_reg & 0x100) |
|
4362 ? DUPLEX_FULL : |
|
4363 DUPLEX_HALF; |
|
4364 retval = e1000_set_spd_dplx(adapter, |
|
4365 spddplx); |
|
4366 if (retval) |
|
4367 return retval; |
|
4368 } |
|
4369 if (netif_running(adapter->netdev)) |
|
4370 e1000_reinit_locked(adapter); |
|
4371 else |
|
4372 e1000_reset(adapter); |
|
4373 break; |
|
4374 case M88E1000_PHY_SPEC_CTRL: |
|
4375 case M88E1000_EXT_PHY_SPEC_CTRL: |
|
4376 if (e1000_phy_reset(hw)) |
|
4377 return -EIO; |
|
4378 break; |
|
4379 } |
|
4380 } else { |
|
4381 switch (data->reg_num) { |
|
4382 case PHY_CTRL: |
|
4383 if (mii_reg & MII_CR_POWER_DOWN) |
|
4384 break; |
|
4385 if (netif_running(adapter->netdev)) |
|
4386 e1000_reinit_locked(adapter); |
|
4387 else |
|
4388 e1000_reset(adapter); |
|
4389 break; |
|
4390 } |
|
4391 } |
|
4392 break; |
|
4393 default: |
|
4394 return -EOPNOTSUPP; |
|
4395 } |
|
4396 return E1000_SUCCESS; |
|
4397 } |
|
4398 |
|
4399 void e1000_pci_set_mwi(struct e1000_hw *hw) |
|
4400 { |
|
4401 struct e1000_adapter *adapter = hw->back; |
|
4402 int ret_val = pci_set_mwi(adapter->pdev); |
|
4403 |
|
4404 if (ret_val) |
|
4405 DPRINTK(PROBE, ERR, "Error in setting MWI\n"); |
|
4406 } |
|
4407 |
|
4408 void e1000_pci_clear_mwi(struct e1000_hw *hw) |
|
4409 { |
|
4410 struct e1000_adapter *adapter = hw->back; |
|
4411 |
|
4412 pci_clear_mwi(adapter->pdev); |
|
4413 } |
|
4414 |
|
4415 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
|
4416 { |
|
4417 struct e1000_adapter *adapter = hw->back; |
|
4418 return pcix_get_mmrbc(adapter->pdev); |
|
4419 } |
|
4420 |
|
4421 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
|
4422 { |
|
4423 struct e1000_adapter *adapter = hw->back; |
|
4424 pcix_set_mmrbc(adapter->pdev, mmrbc); |
|
4425 } |
|
4426 |
|
4427 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
|
4428 { |
|
4429 struct e1000_adapter *adapter = hw->back; |
|
4430 u16 cap_offset; |
|
4431 |
|
4432 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
|
4433 if (!cap_offset) |
|
4434 return -E1000_ERR_CONFIG; |
|
4435 |
|
4436 pci_read_config_word(adapter->pdev, cap_offset + reg, value); |
|
4437 |
|
4438 return E1000_SUCCESS; |
|
4439 } |
|
4440 |
|
4441 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
|
4442 { |
|
4443 outl(value, port); |
|
4444 } |
|
4445 |
|
4446 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
4447 struct vlan_group *grp) |
|
4448 { |
|
4449 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4450 struct e1000_hw *hw = &adapter->hw; |
|
4451 u32 ctrl, rctl; |
|
4452 |
|
4453 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4454 e1000_irq_disable(adapter); |
|
4455 adapter->vlgrp = grp; |
|
4456 |
|
4457 if (grp) { |
|
4458 /* enable VLAN tag insert/strip */ |
|
4459 ctrl = er32(CTRL); |
|
4460 ctrl |= E1000_CTRL_VME; |
|
4461 ew32(CTRL, ctrl); |
|
4462 |
|
4463 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
4464 /* enable VLAN receive filtering */ |
|
4465 rctl = er32(RCTL); |
|
4466 rctl &= ~E1000_RCTL_CFIEN; |
|
4467 ew32(RCTL, rctl); |
|
4468 e1000_update_mng_vlan(adapter); |
|
4469 } |
|
4470 } else { |
|
4471 /* disable VLAN tag insert/strip */ |
|
4472 ctrl = er32(CTRL); |
|
4473 ctrl &= ~E1000_CTRL_VME; |
|
4474 ew32(CTRL, ctrl); |
|
4475 |
|
4476 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
4477 if (adapter->mng_vlan_id != |
|
4478 (u16)E1000_MNG_VLAN_NONE) { |
|
4479 e1000_vlan_rx_kill_vid(netdev, |
|
4480 adapter->mng_vlan_id); |
|
4481 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
4482 } |
|
4483 } |
|
4484 } |
|
4485 |
|
4486 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4487 e1000_irq_enable(adapter); |
|
4488 } |
|
4489 |
|
4490 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
4491 { |
|
4492 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4493 struct e1000_hw *hw = &adapter->hw; |
|
4494 u32 vfta, index; |
|
4495 |
|
4496 if ((hw->mng_cookie.status & |
|
4497 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4498 (vid == adapter->mng_vlan_id)) |
|
4499 return; |
|
4500 /* add VID to filter table */ |
|
4501 index = (vid >> 5) & 0x7F; |
|
4502 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4503 vfta |= (1 << (vid & 0x1F)); |
|
4504 e1000_write_vfta(hw, index, vfta); |
|
4505 } |
|
4506 |
|
4507 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
4508 { |
|
4509 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4510 struct e1000_hw *hw = &adapter->hw; |
|
4511 u32 vfta, index; |
|
4512 |
|
4513 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4514 e1000_irq_disable(adapter); |
|
4515 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
4516 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4517 e1000_irq_enable(adapter); |
|
4518 |
|
4519 if ((hw->mng_cookie.status & |
|
4520 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4521 (vid == adapter->mng_vlan_id)) { |
|
4522 /* release control to f/w */ |
|
4523 e1000_release_hw_control(adapter); |
|
4524 return; |
|
4525 } |
|
4526 |
|
4527 /* remove VID from filter table */ |
|
4528 index = (vid >> 5) & 0x7F; |
|
4529 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4530 vfta &= ~(1 << (vid & 0x1F)); |
|
4531 e1000_write_vfta(hw, index, vfta); |
|
4532 } |
|
4533 |
|
4534 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
4535 { |
|
4536 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
4537 |
|
4538 if (adapter->vlgrp) { |
|
4539 u16 vid; |
|
4540 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
4541 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
4542 continue; |
|
4543 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
4544 } |
|
4545 } |
|
4546 } |
|
4547 |
|
4548 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
|
4549 { |
|
4550 struct e1000_hw *hw = &adapter->hw; |
|
4551 |
|
4552 hw->autoneg = 0; |
|
4553 |
|
4554 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
4555 if ((hw->media_type == e1000_media_type_fiber) && |
|
4556 spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
|
4557 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
4558 return -EINVAL; |
|
4559 } |
|
4560 |
|
4561 switch (spddplx) { |
|
4562 case SPEED_10 + DUPLEX_HALF: |
|
4563 hw->forced_speed_duplex = e1000_10_half; |
|
4564 break; |
|
4565 case SPEED_10 + DUPLEX_FULL: |
|
4566 hw->forced_speed_duplex = e1000_10_full; |
|
4567 break; |
|
4568 case SPEED_100 + DUPLEX_HALF: |
|
4569 hw->forced_speed_duplex = e1000_100_half; |
|
4570 break; |
|
4571 case SPEED_100 + DUPLEX_FULL: |
|
4572 hw->forced_speed_duplex = e1000_100_full; |
|
4573 break; |
|
4574 case SPEED_1000 + DUPLEX_FULL: |
|
4575 hw->autoneg = 1; |
|
4576 hw->autoneg_advertised = ADVERTISE_1000_FULL; |
|
4577 break; |
|
4578 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
4579 default: |
|
4580 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
4581 return -EINVAL; |
|
4582 } |
|
4583 return 0; |
|
4584 } |
|
4585 |
|
4586 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
4587 { |
|
4588 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4589 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4590 struct e1000_hw *hw = &adapter->hw; |
|
4591 u32 ctrl, ctrl_ext, rctl, status; |
|
4592 u32 wufc = adapter->wol; |
|
4593 #ifdef CONFIG_PM |
|
4594 int retval = 0; |
|
4595 #endif |
|
4596 |
|
4597 netif_device_detach(netdev); |
|
4598 |
|
4599 if (netif_running(netdev)) { |
|
4600 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
4601 e1000_down(adapter); |
|
4602 } |
|
4603 |
|
4604 #ifdef CONFIG_PM |
|
4605 retval = pci_save_state(pdev); |
|
4606 if (retval) |
|
4607 return retval; |
|
4608 #endif |
|
4609 |
|
4610 status = er32(STATUS); |
|
4611 if (status & E1000_STATUS_LU) |
|
4612 wufc &= ~E1000_WUFC_LNKC; |
|
4613 |
|
4614 if (wufc) { |
|
4615 e1000_setup_rctl(adapter); |
|
4616 e1000_set_rx_mode(netdev); |
|
4617 |
|
4618 /* turn on all-multi mode if wake on multicast is enabled */ |
|
4619 if (wufc & E1000_WUFC_MC) { |
|
4620 rctl = er32(RCTL); |
|
4621 rctl |= E1000_RCTL_MPE; |
|
4622 ew32(RCTL, rctl); |
|
4623 } |
|
4624 |
|
4625 if (hw->mac_type >= e1000_82540) { |
|
4626 ctrl = er32(CTRL); |
|
4627 /* advertise wake from D3Cold */ |
|
4628 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
4629 /* phy power management enable */ |
|
4630 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
4631 ctrl |= E1000_CTRL_ADVD3WUC | |
|
4632 E1000_CTRL_EN_PHY_PWR_MGMT; |
|
4633 ew32(CTRL, ctrl); |
|
4634 } |
|
4635 |
|
4636 if (hw->media_type == e1000_media_type_fiber || |
|
4637 hw->media_type == e1000_media_type_internal_serdes) { |
|
4638 /* keep the laser running in D3 */ |
|
4639 ctrl_ext = er32(CTRL_EXT); |
|
4640 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
4641 ew32(CTRL_EXT, ctrl_ext); |
|
4642 } |
|
4643 |
|
4644 /* Allow time for pending master requests to run */ |
|
4645 e1000_disable_pciex_master(hw); |
|
4646 |
|
4647 ew32(WUC, E1000_WUC_PME_EN); |
|
4648 ew32(WUFC, wufc); |
|
4649 pci_enable_wake(pdev, PCI_D3hot, 1); |
|
4650 pci_enable_wake(pdev, PCI_D3cold, 1); |
|
4651 } else { |
|
4652 ew32(WUC, 0); |
|
4653 ew32(WUFC, 0); |
|
4654 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4655 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4656 } |
|
4657 |
|
4658 e1000_release_manageability(adapter); |
|
4659 |
|
4660 /* make sure adapter isn't asleep if manageability is enabled */ |
|
4661 if (adapter->en_mng_pt) { |
|
4662 pci_enable_wake(pdev, PCI_D3hot, 1); |
|
4663 pci_enable_wake(pdev, PCI_D3cold, 1); |
|
4664 } |
|
4665 |
|
4666 if (hw->phy_type == e1000_phy_igp_3) |
|
4667 e1000_phy_powerdown_workaround(hw); |
|
4668 |
|
4669 if (netif_running(netdev)) |
|
4670 e1000_free_irq(adapter); |
|
4671 |
|
4672 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
4673 * would have already happened in close and is redundant. */ |
|
4674 e1000_release_hw_control(adapter); |
|
4675 |
|
4676 pci_disable_device(pdev); |
|
4677 |
|
4678 pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
|
4679 |
|
4680 return 0; |
|
4681 } |
|
4682 |
|
4683 #ifdef CONFIG_PM |
|
4684 static int e1000_resume(struct pci_dev *pdev) |
|
4685 { |
|
4686 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4687 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4688 struct e1000_hw *hw = &adapter->hw; |
|
4689 u32 err; |
|
4690 |
|
4691 pci_set_power_state(pdev, PCI_D0); |
|
4692 pci_restore_state(pdev); |
|
4693 |
|
4694 if (adapter->need_ioport) |
|
4695 err = pci_enable_device(pdev); |
|
4696 else |
|
4697 err = pci_enable_device_mem(pdev); |
|
4698 if (err) { |
|
4699 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n"); |
|
4700 return err; |
|
4701 } |
|
4702 pci_set_master(pdev); |
|
4703 |
|
4704 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4705 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4706 |
|
4707 if (netif_running(netdev)) { |
|
4708 err = e1000_request_irq(adapter); |
|
4709 if (err) |
|
4710 return err; |
|
4711 } |
|
4712 |
|
4713 e1000_power_up_phy(adapter); |
|
4714 e1000_reset(adapter); |
|
4715 ew32(WUS, ~0); |
|
4716 |
|
4717 e1000_init_manageability(adapter); |
|
4718 |
|
4719 if (netif_running(netdev)) |
|
4720 e1000_up(adapter); |
|
4721 |
|
4722 netif_device_attach(netdev); |
|
4723 |
|
4724 /* If the controller is 82573 and f/w is AMT, do not set |
|
4725 * DRV_LOAD until the interface is up. For all other cases, |
|
4726 * let the f/w know that the h/w is now under the control |
|
4727 * of the driver. */ |
|
4728 if (hw->mac_type != e1000_82573 || |
|
4729 !e1000_check_mng_mode(hw)) |
|
4730 e1000_get_hw_control(adapter); |
|
4731 |
|
4732 return 0; |
|
4733 } |
|
4734 #endif |
|
4735 |
|
4736 static void e1000_shutdown(struct pci_dev *pdev) |
|
4737 { |
|
4738 e1000_suspend(pdev, PMSG_SUSPEND); |
|
4739 } |
|
4740 |
|
4741 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
4742 /* |
|
4743 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
4744 * without having to re-enable interrupts. It's not called while |
|
4745 * the interrupt routine is executing. |
|
4746 */ |
|
4747 static void e1000_netpoll(struct net_device *netdev) |
|
4748 { |
|
4749 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4750 |
|
4751 disable_irq(adapter->pdev->irq); |
|
4752 e1000_intr(adapter->pdev->irq, netdev); |
|
4753 enable_irq(adapter->pdev->irq); |
|
4754 } |
|
4755 #endif |
|
4756 |
|
4757 /** |
|
4758 * e1000_io_error_detected - called when PCI error is detected |
|
4759 * @pdev: Pointer to PCI device |
|
4760 * @state: The current pci conneection state |
|
4761 * |
|
4762 * This function is called after a PCI bus error affecting |
|
4763 * this device has been detected. |
|
4764 */ |
|
4765 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
4766 pci_channel_state_t state) |
|
4767 { |
|
4768 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4769 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4770 |
|
4771 netif_device_detach(netdev); |
|
4772 |
|
4773 if (netif_running(netdev)) |
|
4774 e1000_down(adapter); |
|
4775 pci_disable_device(pdev); |
|
4776 |
|
4777 /* Request a slot slot reset. */ |
|
4778 return PCI_ERS_RESULT_NEED_RESET; |
|
4779 } |
|
4780 |
|
4781 /** |
|
4782 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
4783 * @pdev: Pointer to PCI device |
|
4784 * |
|
4785 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
4786 * resembles the first-half of the e1000_resume routine. |
|
4787 */ |
|
4788 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
4789 { |
|
4790 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4791 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4792 struct e1000_hw *hw = &adapter->hw; |
|
4793 int err; |
|
4794 |
|
4795 if (adapter->need_ioport) |
|
4796 err = pci_enable_device(pdev); |
|
4797 else |
|
4798 err = pci_enable_device_mem(pdev); |
|
4799 if (err) { |
|
4800 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); |
|
4801 return PCI_ERS_RESULT_DISCONNECT; |
|
4802 } |
|
4803 pci_set_master(pdev); |
|
4804 |
|
4805 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4806 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4807 |
|
4808 e1000_reset(adapter); |
|
4809 ew32(WUS, ~0); |
|
4810 |
|
4811 return PCI_ERS_RESULT_RECOVERED; |
|
4812 } |
|
4813 |
|
4814 /** |
|
4815 * e1000_io_resume - called when traffic can start flowing again. |
|
4816 * @pdev: Pointer to PCI device |
|
4817 * |
|
4818 * This callback is called when the error recovery driver tells us that |
|
4819 * its OK to resume normal operation. Implementation resembles the |
|
4820 * second-half of the e1000_resume routine. |
|
4821 */ |
|
4822 static void e1000_io_resume(struct pci_dev *pdev) |
|
4823 { |
|
4824 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4825 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4826 struct e1000_hw *hw = &adapter->hw; |
|
4827 |
|
4828 e1000_init_manageability(adapter); |
|
4829 |
|
4830 if (netif_running(netdev)) { |
|
4831 if (e1000_up(adapter)) { |
|
4832 printk("e1000: can't bring device back up after reset\n"); |
|
4833 return; |
|
4834 } |
|
4835 } |
|
4836 |
|
4837 netif_device_attach(netdev); |
|
4838 |
|
4839 /* If the controller is 82573 and f/w is AMT, do not set |
|
4840 * DRV_LOAD until the interface is up. For all other cases, |
|
4841 * let the f/w know that the h/w is now under the control |
|
4842 * of the driver. */ |
|
4843 if (hw->mac_type != e1000_82573 || |
|
4844 !e1000_check_mng_mode(hw)) |
|
4845 e1000_get_hw_control(adapter); |
|
4846 |
|
4847 } |
|
4848 |
|
4849 /* e1000_main.c */ |