|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* ethtool support for e1000 */ |
|
30 |
|
31 #include "e1000-2.6.35-ethercat.h" |
|
32 #include <asm/uaccess.h> |
|
33 |
|
34 enum {NETDEV_STATS, E1000_STATS}; |
|
35 |
|
36 struct e1000_stats { |
|
37 char stat_string[ETH_GSTRING_LEN]; |
|
38 int type; |
|
39 int sizeof_stat; |
|
40 int stat_offset; |
|
41 }; |
|
42 |
|
43 #define E1000_STAT(m) E1000_STATS, \ |
|
44 sizeof(((struct e1000_adapter *)0)->m), \ |
|
45 offsetof(struct e1000_adapter, m) |
|
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ |
|
47 sizeof(((struct net_device *)0)->m), \ |
|
48 offsetof(struct net_device, m) |
|
49 |
|
50 static const struct e1000_stats e1000_gstrings_stats[] = { |
|
51 { "rx_packets", E1000_STAT(stats.gprc) }, |
|
52 { "tx_packets", E1000_STAT(stats.gptc) }, |
|
53 { "rx_bytes", E1000_STAT(stats.gorcl) }, |
|
54 { "tx_bytes", E1000_STAT(stats.gotcl) }, |
|
55 { "rx_broadcast", E1000_STAT(stats.bprc) }, |
|
56 { "tx_broadcast", E1000_STAT(stats.bptc) }, |
|
57 { "rx_multicast", E1000_STAT(stats.mprc) }, |
|
58 { "tx_multicast", E1000_STAT(stats.mptc) }, |
|
59 { "rx_errors", E1000_STAT(stats.rxerrc) }, |
|
60 { "tx_errors", E1000_STAT(stats.txerrc) }, |
|
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, |
|
62 { "multicast", E1000_STAT(stats.mprc) }, |
|
63 { "collisions", E1000_STAT(stats.colc) }, |
|
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, |
|
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, |
|
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, |
|
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, |
|
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, |
|
69 { "rx_missed_errors", E1000_STAT(stats.mpc) }, |
|
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, |
|
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, |
|
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, |
|
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, |
|
74 { "tx_window_errors", E1000_STAT(stats.latecol) }, |
|
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, |
|
76 { "tx_deferred_ok", E1000_STAT(stats.dc) }, |
|
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, |
|
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, |
|
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, |
|
80 { "tx_restart_queue", E1000_STAT(restart_queue) }, |
|
81 { "rx_long_length_errors", E1000_STAT(stats.roc) }, |
|
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, |
|
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, |
|
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, |
|
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, |
|
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, |
|
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, |
|
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, |
|
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, |
|
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, |
|
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, |
|
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, |
|
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, |
|
94 { "tx_smbus", E1000_STAT(stats.mgptc) }, |
|
95 { "rx_smbus", E1000_STAT(stats.mgprc) }, |
|
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, |
|
97 }; |
|
98 |
|
99 #define E1000_QUEUE_STATS_LEN 0 |
|
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) |
|
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) |
|
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { |
|
103 "Register test (offline)", "Eeprom test (offline)", |
|
104 "Interrupt test (offline)", "Loopback test (offline)", |
|
105 "Link test (on/offline)" |
|
106 }; |
|
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) |
|
108 |
|
109 static int e1000_get_settings(struct net_device *netdev, |
|
110 struct ethtool_cmd *ecmd) |
|
111 { |
|
112 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
113 struct e1000_hw *hw = &adapter->hw; |
|
114 |
|
115 if (hw->media_type == e1000_media_type_copper) { |
|
116 |
|
117 ecmd->supported = (SUPPORTED_10baseT_Half | |
|
118 SUPPORTED_10baseT_Full | |
|
119 SUPPORTED_100baseT_Half | |
|
120 SUPPORTED_100baseT_Full | |
|
121 SUPPORTED_1000baseT_Full| |
|
122 SUPPORTED_Autoneg | |
|
123 SUPPORTED_TP); |
|
124 ecmd->advertising = ADVERTISED_TP; |
|
125 |
|
126 if (hw->autoneg == 1) { |
|
127 ecmd->advertising |= ADVERTISED_Autoneg; |
|
128 /* the e1000 autoneg seems to match ethtool nicely */ |
|
129 ecmd->advertising |= hw->autoneg_advertised; |
|
130 } |
|
131 |
|
132 ecmd->port = PORT_TP; |
|
133 ecmd->phy_address = hw->phy_addr; |
|
134 |
|
135 if (hw->mac_type == e1000_82543) |
|
136 ecmd->transceiver = XCVR_EXTERNAL; |
|
137 else |
|
138 ecmd->transceiver = XCVR_INTERNAL; |
|
139 |
|
140 } else { |
|
141 ecmd->supported = (SUPPORTED_1000baseT_Full | |
|
142 SUPPORTED_FIBRE | |
|
143 SUPPORTED_Autoneg); |
|
144 |
|
145 ecmd->advertising = (ADVERTISED_1000baseT_Full | |
|
146 ADVERTISED_FIBRE | |
|
147 ADVERTISED_Autoneg); |
|
148 |
|
149 ecmd->port = PORT_FIBRE; |
|
150 |
|
151 if (hw->mac_type >= e1000_82545) |
|
152 ecmd->transceiver = XCVR_INTERNAL; |
|
153 else |
|
154 ecmd->transceiver = XCVR_EXTERNAL; |
|
155 } |
|
156 |
|
157 if (er32(STATUS) & E1000_STATUS_LU) { |
|
158 |
|
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed, |
|
160 &adapter->link_duplex); |
|
161 ecmd->speed = adapter->link_speed; |
|
162 |
|
163 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL |
|
164 * and HALF_DUPLEX != DUPLEX_HALF */ |
|
165 |
|
166 if (adapter->link_duplex == FULL_DUPLEX) |
|
167 ecmd->duplex = DUPLEX_FULL; |
|
168 else |
|
169 ecmd->duplex = DUPLEX_HALF; |
|
170 } else { |
|
171 ecmd->speed = -1; |
|
172 ecmd->duplex = -1; |
|
173 } |
|
174 |
|
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || |
|
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
|
177 return 0; |
|
178 } |
|
179 |
|
180 static int e1000_set_settings(struct net_device *netdev, |
|
181 struct ethtool_cmd *ecmd) |
|
182 { |
|
183 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
184 struct e1000_hw *hw = &adapter->hw; |
|
185 |
|
186 if (adapter->ecdev) |
|
187 return -EBUSY; |
|
188 |
|
189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
190 msleep(1); |
|
191 |
|
192 if (ecmd->autoneg == AUTONEG_ENABLE) { |
|
193 hw->autoneg = 1; |
|
194 if (hw->media_type == e1000_media_type_fiber) |
|
195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | |
|
196 ADVERTISED_FIBRE | |
|
197 ADVERTISED_Autoneg; |
|
198 else |
|
199 hw->autoneg_advertised = ecmd->advertising | |
|
200 ADVERTISED_TP | |
|
201 ADVERTISED_Autoneg; |
|
202 ecmd->advertising = hw->autoneg_advertised; |
|
203 } else |
|
204 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { |
|
205 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
206 return -EINVAL; |
|
207 } |
|
208 |
|
209 /* reset the link */ |
|
210 |
|
211 if (netif_running(adapter->netdev)) { |
|
212 e1000_down(adapter); |
|
213 e1000_up(adapter); |
|
214 } else |
|
215 e1000_reset(adapter); |
|
216 |
|
217 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
218 return 0; |
|
219 } |
|
220 |
|
221 static u32 e1000_get_link(struct net_device *netdev) |
|
222 { |
|
223 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
224 |
|
225 /* |
|
226 * If the link is not reported up to netdev, interrupts are disabled, |
|
227 * and so the physical link state may have changed since we last |
|
228 * looked. Set get_link_status to make sure that the true link |
|
229 * state is interrogated, rather than pulling a cached and possibly |
|
230 * stale link state from the driver. |
|
231 */ |
|
232 if (!netif_carrier_ok(netdev)) |
|
233 adapter->hw.get_link_status = 1; |
|
234 |
|
235 return e1000_has_link(adapter); |
|
236 } |
|
237 |
|
238 static void e1000_get_pauseparam(struct net_device *netdev, |
|
239 struct ethtool_pauseparam *pause) |
|
240 { |
|
241 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
242 struct e1000_hw *hw = &adapter->hw; |
|
243 |
|
244 pause->autoneg = |
|
245 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
|
246 |
|
247 if (hw->fc == E1000_FC_RX_PAUSE) |
|
248 pause->rx_pause = 1; |
|
249 else if (hw->fc == E1000_FC_TX_PAUSE) |
|
250 pause->tx_pause = 1; |
|
251 else if (hw->fc == E1000_FC_FULL) { |
|
252 pause->rx_pause = 1; |
|
253 pause->tx_pause = 1; |
|
254 } |
|
255 } |
|
256 |
|
257 static int e1000_set_pauseparam(struct net_device *netdev, |
|
258 struct ethtool_pauseparam *pause) |
|
259 { |
|
260 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
261 struct e1000_hw *hw = &adapter->hw; |
|
262 int retval = 0; |
|
263 |
|
264 if (adapter->ecdev) |
|
265 return -EBUSY; |
|
266 |
|
267 adapter->fc_autoneg = pause->autoneg; |
|
268 |
|
269 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
270 msleep(1); |
|
271 |
|
272 if (pause->rx_pause && pause->tx_pause) |
|
273 hw->fc = E1000_FC_FULL; |
|
274 else if (pause->rx_pause && !pause->tx_pause) |
|
275 hw->fc = E1000_FC_RX_PAUSE; |
|
276 else if (!pause->rx_pause && pause->tx_pause) |
|
277 hw->fc = E1000_FC_TX_PAUSE; |
|
278 else if (!pause->rx_pause && !pause->tx_pause) |
|
279 hw->fc = E1000_FC_NONE; |
|
280 |
|
281 hw->original_fc = hw->fc; |
|
282 |
|
283 if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
|
284 if (netif_running(adapter->netdev)) { |
|
285 e1000_down(adapter); |
|
286 e1000_up(adapter); |
|
287 } else |
|
288 e1000_reset(adapter); |
|
289 } else |
|
290 retval = ((hw->media_type == e1000_media_type_fiber) ? |
|
291 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); |
|
292 |
|
293 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
294 return retval; |
|
295 } |
|
296 |
|
297 static u32 e1000_get_rx_csum(struct net_device *netdev) |
|
298 { |
|
299 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
300 return adapter->rx_csum; |
|
301 } |
|
302 |
|
303 static int e1000_set_rx_csum(struct net_device *netdev, u32 data) |
|
304 { |
|
305 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
306 |
|
307 if (adapter->ecdev) |
|
308 return -EBUSY; |
|
309 |
|
310 adapter->rx_csum = data; |
|
311 |
|
312 if (netif_running(netdev)) |
|
313 e1000_reinit_locked(adapter); |
|
314 else |
|
315 e1000_reset(adapter); |
|
316 return 0; |
|
317 } |
|
318 |
|
319 static u32 e1000_get_tx_csum(struct net_device *netdev) |
|
320 { |
|
321 return (netdev->features & NETIF_F_HW_CSUM) != 0; |
|
322 } |
|
323 |
|
324 static int e1000_set_tx_csum(struct net_device *netdev, u32 data) |
|
325 { |
|
326 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
327 struct e1000_hw *hw = &adapter->hw; |
|
328 |
|
329 if (hw->mac_type < e1000_82543) { |
|
330 if (!data) |
|
331 return -EINVAL; |
|
332 return 0; |
|
333 } |
|
334 |
|
335 if (data) |
|
336 netdev->features |= NETIF_F_HW_CSUM; |
|
337 else |
|
338 netdev->features &= ~NETIF_F_HW_CSUM; |
|
339 |
|
340 return 0; |
|
341 } |
|
342 |
|
343 static int e1000_set_tso(struct net_device *netdev, u32 data) |
|
344 { |
|
345 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
346 struct e1000_hw *hw = &adapter->hw; |
|
347 |
|
348 if ((hw->mac_type < e1000_82544) || |
|
349 (hw->mac_type == e1000_82547)) |
|
350 return data ? -EINVAL : 0; |
|
351 |
|
352 if (data) |
|
353 netdev->features |= NETIF_F_TSO; |
|
354 else |
|
355 netdev->features &= ~NETIF_F_TSO; |
|
356 |
|
357 netdev->features &= ~NETIF_F_TSO6; |
|
358 |
|
359 e_info("TSO is %s\n", data ? "Enabled" : "Disabled"); |
|
360 adapter->tso_force = true; |
|
361 return 0; |
|
362 } |
|
363 |
|
364 static u32 e1000_get_msglevel(struct net_device *netdev) |
|
365 { |
|
366 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
367 return adapter->msg_enable; |
|
368 } |
|
369 |
|
370 static void e1000_set_msglevel(struct net_device *netdev, u32 data) |
|
371 { |
|
372 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
373 adapter->msg_enable = data; |
|
374 } |
|
375 |
|
376 static int e1000_get_regs_len(struct net_device *netdev) |
|
377 { |
|
378 #define E1000_REGS_LEN 32 |
|
379 return E1000_REGS_LEN * sizeof(u32); |
|
380 } |
|
381 |
|
382 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, |
|
383 void *p) |
|
384 { |
|
385 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
386 struct e1000_hw *hw = &adapter->hw; |
|
387 u32 *regs_buff = p; |
|
388 u16 phy_data; |
|
389 |
|
390 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); |
|
391 |
|
392 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; |
|
393 |
|
394 regs_buff[0] = er32(CTRL); |
|
395 regs_buff[1] = er32(STATUS); |
|
396 |
|
397 regs_buff[2] = er32(RCTL); |
|
398 regs_buff[3] = er32(RDLEN); |
|
399 regs_buff[4] = er32(RDH); |
|
400 regs_buff[5] = er32(RDT); |
|
401 regs_buff[6] = er32(RDTR); |
|
402 |
|
403 regs_buff[7] = er32(TCTL); |
|
404 regs_buff[8] = er32(TDLEN); |
|
405 regs_buff[9] = er32(TDH); |
|
406 regs_buff[10] = er32(TDT); |
|
407 regs_buff[11] = er32(TIDV); |
|
408 |
|
409 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ |
|
410 if (hw->phy_type == e1000_phy_igp) { |
|
411 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
412 IGP01E1000_PHY_AGC_A); |
|
413 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & |
|
414 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
415 regs_buff[13] = (u32)phy_data; /* cable length */ |
|
416 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
417 IGP01E1000_PHY_AGC_B); |
|
418 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & |
|
419 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
420 regs_buff[14] = (u32)phy_data; /* cable length */ |
|
421 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
422 IGP01E1000_PHY_AGC_C); |
|
423 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & |
|
424 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
425 regs_buff[15] = (u32)phy_data; /* cable length */ |
|
426 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
427 IGP01E1000_PHY_AGC_D); |
|
428 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & |
|
429 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
430 regs_buff[16] = (u32)phy_data; /* cable length */ |
|
431 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ |
|
432 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
|
433 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & |
|
434 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
435 regs_buff[18] = (u32)phy_data; /* cable polarity */ |
|
436 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
437 IGP01E1000_PHY_PCS_INIT_REG); |
|
438 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & |
|
439 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
440 regs_buff[19] = (u32)phy_data; /* cable polarity */ |
|
441 regs_buff[20] = 0; /* polarity correction enabled (always) */ |
|
442 regs_buff[22] = 0; /* phy receive errors (unavailable) */ |
|
443 regs_buff[23] = regs_buff[18]; /* mdix mode */ |
|
444 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
|
445 } else { |
|
446 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
|
447 regs_buff[13] = (u32)phy_data; /* cable length */ |
|
448 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
449 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
450 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
451 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
452 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ |
|
453 regs_buff[18] = regs_buff[13]; /* cable polarity */ |
|
454 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
455 regs_buff[20] = regs_buff[17]; /* polarity correction */ |
|
456 /* phy receive errors */ |
|
457 regs_buff[22] = adapter->phy_stats.receive_errors; |
|
458 regs_buff[23] = regs_buff[13]; /* mdix mode */ |
|
459 } |
|
460 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ |
|
461 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
462 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ |
|
463 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ |
|
464 if (hw->mac_type >= e1000_82540 && |
|
465 hw->media_type == e1000_media_type_copper) { |
|
466 regs_buff[26] = er32(MANC); |
|
467 } |
|
468 } |
|
469 |
|
470 static int e1000_get_eeprom_len(struct net_device *netdev) |
|
471 { |
|
472 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
473 struct e1000_hw *hw = &adapter->hw; |
|
474 |
|
475 return hw->eeprom.word_size * 2; |
|
476 } |
|
477 |
|
478 static int e1000_get_eeprom(struct net_device *netdev, |
|
479 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
480 { |
|
481 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
482 struct e1000_hw *hw = &adapter->hw; |
|
483 u16 *eeprom_buff; |
|
484 int first_word, last_word; |
|
485 int ret_val = 0; |
|
486 u16 i; |
|
487 |
|
488 if (eeprom->len == 0) |
|
489 return -EINVAL; |
|
490 |
|
491 eeprom->magic = hw->vendor_id | (hw->device_id << 16); |
|
492 |
|
493 first_word = eeprom->offset >> 1; |
|
494 last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
|
495 |
|
496 eeprom_buff = kmalloc(sizeof(u16) * |
|
497 (last_word - first_word + 1), GFP_KERNEL); |
|
498 if (!eeprom_buff) |
|
499 return -ENOMEM; |
|
500 |
|
501 if (hw->eeprom.type == e1000_eeprom_spi) |
|
502 ret_val = e1000_read_eeprom(hw, first_word, |
|
503 last_word - first_word + 1, |
|
504 eeprom_buff); |
|
505 else { |
|
506 for (i = 0; i < last_word - first_word + 1; i++) { |
|
507 ret_val = e1000_read_eeprom(hw, first_word + i, 1, |
|
508 &eeprom_buff[i]); |
|
509 if (ret_val) |
|
510 break; |
|
511 } |
|
512 } |
|
513 |
|
514 /* Device's eeprom is always little-endian, word addressable */ |
|
515 for (i = 0; i < last_word - first_word + 1; i++) |
|
516 le16_to_cpus(&eeprom_buff[i]); |
|
517 |
|
518 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), |
|
519 eeprom->len); |
|
520 kfree(eeprom_buff); |
|
521 |
|
522 return ret_val; |
|
523 } |
|
524 |
|
525 static int e1000_set_eeprom(struct net_device *netdev, |
|
526 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
527 { |
|
528 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
529 struct e1000_hw *hw = &adapter->hw; |
|
530 u16 *eeprom_buff; |
|
531 void *ptr; |
|
532 int max_len, first_word, last_word, ret_val = 0; |
|
533 u16 i; |
|
534 |
|
535 if (eeprom->len == 0) |
|
536 return -EOPNOTSUPP; |
|
537 |
|
538 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) |
|
539 return -EFAULT; |
|
540 |
|
541 max_len = hw->eeprom.word_size * 2; |
|
542 |
|
543 first_word = eeprom->offset >> 1; |
|
544 last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
|
545 eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
|
546 if (!eeprom_buff) |
|
547 return -ENOMEM; |
|
548 |
|
549 ptr = (void *)eeprom_buff; |
|
550 |
|
551 if (eeprom->offset & 1) { |
|
552 /* need read/modify/write of first changed EEPROM word */ |
|
553 /* only the second byte of the word is being modified */ |
|
554 ret_val = e1000_read_eeprom(hw, first_word, 1, |
|
555 &eeprom_buff[0]); |
|
556 ptr++; |
|
557 } |
|
558 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { |
|
559 /* need read/modify/write of last changed EEPROM word */ |
|
560 /* only the first byte of the word is being modified */ |
|
561 ret_val = e1000_read_eeprom(hw, last_word, 1, |
|
562 &eeprom_buff[last_word - first_word]); |
|
563 } |
|
564 |
|
565 /* Device's eeprom is always little-endian, word addressable */ |
|
566 for (i = 0; i < last_word - first_word + 1; i++) |
|
567 le16_to_cpus(&eeprom_buff[i]); |
|
568 |
|
569 memcpy(ptr, bytes, eeprom->len); |
|
570 |
|
571 for (i = 0; i < last_word - first_word + 1; i++) |
|
572 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); |
|
573 |
|
574 ret_val = e1000_write_eeprom(hw, first_word, |
|
575 last_word - first_word + 1, eeprom_buff); |
|
576 |
|
577 /* Update the checksum over the first part of the EEPROM if needed */ |
|
578 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) |
|
579 e1000_update_eeprom_checksum(hw); |
|
580 |
|
581 kfree(eeprom_buff); |
|
582 return ret_val; |
|
583 } |
|
584 |
|
585 static void e1000_get_drvinfo(struct net_device *netdev, |
|
586 struct ethtool_drvinfo *drvinfo) |
|
587 { |
|
588 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
589 char firmware_version[32]; |
|
590 |
|
591 strncpy(drvinfo->driver, e1000_driver_name, 32); |
|
592 strncpy(drvinfo->version, e1000_driver_version, 32); |
|
593 |
|
594 sprintf(firmware_version, "N/A"); |
|
595 strncpy(drvinfo->fw_version, firmware_version, 32); |
|
596 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); |
|
597 drvinfo->regdump_len = e1000_get_regs_len(netdev); |
|
598 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); |
|
599 } |
|
600 |
|
601 static void e1000_get_ringparam(struct net_device *netdev, |
|
602 struct ethtool_ringparam *ring) |
|
603 { |
|
604 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
605 struct e1000_hw *hw = &adapter->hw; |
|
606 e1000_mac_type mac_type = hw->mac_type; |
|
607 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
608 struct e1000_rx_ring *rxdr = adapter->rx_ring; |
|
609 |
|
610 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : |
|
611 E1000_MAX_82544_RXD; |
|
612 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : |
|
613 E1000_MAX_82544_TXD; |
|
614 ring->rx_mini_max_pending = 0; |
|
615 ring->rx_jumbo_max_pending = 0; |
|
616 ring->rx_pending = rxdr->count; |
|
617 ring->tx_pending = txdr->count; |
|
618 ring->rx_mini_pending = 0; |
|
619 ring->rx_jumbo_pending = 0; |
|
620 } |
|
621 |
|
622 static int e1000_set_ringparam(struct net_device *netdev, |
|
623 struct ethtool_ringparam *ring) |
|
624 { |
|
625 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
626 struct e1000_hw *hw = &adapter->hw; |
|
627 e1000_mac_type mac_type = hw->mac_type; |
|
628 struct e1000_tx_ring *txdr, *tx_old; |
|
629 struct e1000_rx_ring *rxdr, *rx_old; |
|
630 int i, err; |
|
631 |
|
632 if (adapter->ecdev) |
|
633 return -EBUSY; |
|
634 |
|
635 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
|
636 return -EINVAL; |
|
637 |
|
638 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
639 msleep(1); |
|
640 |
|
641 if (netif_running(adapter->netdev)) |
|
642 e1000_down(adapter); |
|
643 |
|
644 tx_old = adapter->tx_ring; |
|
645 rx_old = adapter->rx_ring; |
|
646 |
|
647 err = -ENOMEM; |
|
648 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
649 if (!txdr) |
|
650 goto err_alloc_tx; |
|
651 |
|
652 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
653 if (!rxdr) |
|
654 goto err_alloc_rx; |
|
655 |
|
656 adapter->tx_ring = txdr; |
|
657 adapter->rx_ring = rxdr; |
|
658 |
|
659 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); |
|
660 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? |
|
661 E1000_MAX_RXD : E1000_MAX_82544_RXD)); |
|
662 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
|
663 |
|
664 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); |
|
665 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? |
|
666 E1000_MAX_TXD : E1000_MAX_82544_TXD)); |
|
667 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
|
668 |
|
669 for (i = 0; i < adapter->num_tx_queues; i++) |
|
670 txdr[i].count = txdr->count; |
|
671 for (i = 0; i < adapter->num_rx_queues; i++) |
|
672 rxdr[i].count = rxdr->count; |
|
673 |
|
674 if (netif_running(adapter->netdev)) { |
|
675 /* Try to get new resources before deleting old */ |
|
676 err = e1000_setup_all_rx_resources(adapter); |
|
677 if (err) |
|
678 goto err_setup_rx; |
|
679 err = e1000_setup_all_tx_resources(adapter); |
|
680 if (err) |
|
681 goto err_setup_tx; |
|
682 |
|
683 /* save the new, restore the old in order to free it, |
|
684 * then restore the new back again */ |
|
685 |
|
686 adapter->rx_ring = rx_old; |
|
687 adapter->tx_ring = tx_old; |
|
688 e1000_free_all_rx_resources(adapter); |
|
689 e1000_free_all_tx_resources(adapter); |
|
690 kfree(tx_old); |
|
691 kfree(rx_old); |
|
692 adapter->rx_ring = rxdr; |
|
693 adapter->tx_ring = txdr; |
|
694 err = e1000_up(adapter); |
|
695 if (err) |
|
696 goto err_setup; |
|
697 } |
|
698 |
|
699 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
700 return 0; |
|
701 err_setup_tx: |
|
702 e1000_free_all_rx_resources(adapter); |
|
703 err_setup_rx: |
|
704 adapter->rx_ring = rx_old; |
|
705 adapter->tx_ring = tx_old; |
|
706 kfree(rxdr); |
|
707 err_alloc_rx: |
|
708 kfree(txdr); |
|
709 err_alloc_tx: |
|
710 e1000_up(adapter); |
|
711 err_setup: |
|
712 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
713 return err; |
|
714 } |
|
715 |
|
716 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, |
|
717 u32 mask, u32 write) |
|
718 { |
|
719 struct e1000_hw *hw = &adapter->hw; |
|
720 static const u32 test[] = |
|
721 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; |
|
722 u8 __iomem *address = hw->hw_addr + reg; |
|
723 u32 read; |
|
724 int i; |
|
725 |
|
726 for (i = 0; i < ARRAY_SIZE(test); i++) { |
|
727 writel(write & test[i], address); |
|
728 read = readl(address); |
|
729 if (read != (write & test[i] & mask)) { |
|
730 e_info("pattern test reg %04X failed: " |
|
731 "got 0x%08X expected 0x%08X\n", |
|
732 reg, read, (write & test[i] & mask)); |
|
733 *data = reg; |
|
734 return true; |
|
735 } |
|
736 } |
|
737 return false; |
|
738 } |
|
739 |
|
740 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, |
|
741 u32 mask, u32 write) |
|
742 { |
|
743 struct e1000_hw *hw = &adapter->hw; |
|
744 u8 __iomem *address = hw->hw_addr + reg; |
|
745 u32 read; |
|
746 |
|
747 writel(write & mask, address); |
|
748 read = readl(address); |
|
749 if ((read & mask) != (write & mask)) { |
|
750 e_err("set/check reg %04X test failed: " |
|
751 "got 0x%08X expected 0x%08X\n", |
|
752 reg, (read & mask), (write & mask)); |
|
753 *data = reg; |
|
754 return true; |
|
755 } |
|
756 return false; |
|
757 } |
|
758 |
|
759 #define REG_PATTERN_TEST(reg, mask, write) \ |
|
760 do { \ |
|
761 if (reg_pattern_test(adapter, data, \ |
|
762 (hw->mac_type >= e1000_82543) \ |
|
763 ? E1000_##reg : E1000_82542_##reg, \ |
|
764 mask, write)) \ |
|
765 return 1; \ |
|
766 } while (0) |
|
767 |
|
768 #define REG_SET_AND_CHECK(reg, mask, write) \ |
|
769 do { \ |
|
770 if (reg_set_and_check(adapter, data, \ |
|
771 (hw->mac_type >= e1000_82543) \ |
|
772 ? E1000_##reg : E1000_82542_##reg, \ |
|
773 mask, write)) \ |
|
774 return 1; \ |
|
775 } while (0) |
|
776 |
|
777 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) |
|
778 { |
|
779 u32 value, before, after; |
|
780 u32 i, toggle; |
|
781 struct e1000_hw *hw = &adapter->hw; |
|
782 |
|
783 /* The status register is Read Only, so a write should fail. |
|
784 * Some bits that get toggled are ignored. |
|
785 */ |
|
786 |
|
787 /* there are several bits on newer hardware that are r/w */ |
|
788 toggle = 0xFFFFF833; |
|
789 |
|
790 before = er32(STATUS); |
|
791 value = (er32(STATUS) & toggle); |
|
792 ew32(STATUS, toggle); |
|
793 after = er32(STATUS) & toggle; |
|
794 if (value != after) { |
|
795 e_err("failed STATUS register test got: " |
|
796 "0x%08X expected: 0x%08X\n", after, value); |
|
797 *data = 1; |
|
798 return 1; |
|
799 } |
|
800 /* restore previous status */ |
|
801 ew32(STATUS, before); |
|
802 |
|
803 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
|
804 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); |
|
805 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); |
|
806 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); |
|
807 |
|
808 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); |
|
809 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
|
810 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); |
|
811 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); |
|
812 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); |
|
813 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); |
|
814 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); |
|
815 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); |
|
816 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
|
817 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); |
|
818 |
|
819 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); |
|
820 |
|
821 before = 0x06DFB3FE; |
|
822 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); |
|
823 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); |
|
824 |
|
825 if (hw->mac_type >= e1000_82543) { |
|
826 |
|
827 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); |
|
828 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
|
829 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); |
|
830 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
|
831 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); |
|
832 value = E1000_RAR_ENTRIES; |
|
833 for (i = 0; i < value; i++) { |
|
834 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, |
|
835 0xFFFFFFFF); |
|
836 } |
|
837 |
|
838 } else { |
|
839 |
|
840 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); |
|
841 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); |
|
842 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); |
|
843 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); |
|
844 |
|
845 } |
|
846 |
|
847 value = E1000_MC_TBL_SIZE; |
|
848 for (i = 0; i < value; i++) |
|
849 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); |
|
850 |
|
851 *data = 0; |
|
852 return 0; |
|
853 } |
|
854 |
|
855 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) |
|
856 { |
|
857 struct e1000_hw *hw = &adapter->hw; |
|
858 u16 temp; |
|
859 u16 checksum = 0; |
|
860 u16 i; |
|
861 |
|
862 *data = 0; |
|
863 /* Read and add up the contents of the EEPROM */ |
|
864 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
|
865 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { |
|
866 *data = 1; |
|
867 break; |
|
868 } |
|
869 checksum += temp; |
|
870 } |
|
871 |
|
872 /* If Checksum is not Correct return error else test passed */ |
|
873 if ((checksum != (u16)EEPROM_SUM) && !(*data)) |
|
874 *data = 2; |
|
875 |
|
876 return *data; |
|
877 } |
|
878 |
|
879 static irqreturn_t e1000_test_intr(int irq, void *data) |
|
880 { |
|
881 struct net_device *netdev = (struct net_device *)data; |
|
882 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
883 struct e1000_hw *hw = &adapter->hw; |
|
884 |
|
885 adapter->test_icr |= er32(ICR); |
|
886 |
|
887 return IRQ_HANDLED; |
|
888 } |
|
889 |
|
890 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) |
|
891 { |
|
892 struct net_device *netdev = adapter->netdev; |
|
893 u32 mask, i = 0; |
|
894 bool shared_int = true; |
|
895 u32 irq = adapter->pdev->irq; |
|
896 struct e1000_hw *hw = &adapter->hw; |
|
897 |
|
898 *data = 0; |
|
899 |
|
900 /* NOTE: we don't test MSI interrupts here, yet */ |
|
901 /* Hook up test interrupt handler just for this test */ |
|
902 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, |
|
903 netdev)) |
|
904 shared_int = false; |
|
905 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, |
|
906 netdev->name, netdev)) { |
|
907 *data = 1; |
|
908 return -1; |
|
909 } |
|
910 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); |
|
911 |
|
912 /* Disable all the interrupts */ |
|
913 ew32(IMC, 0xFFFFFFFF); |
|
914 msleep(10); |
|
915 |
|
916 /* Test each interrupt */ |
|
917 for (; i < 10; i++) { |
|
918 |
|
919 /* Interrupt to test */ |
|
920 mask = 1 << i; |
|
921 |
|
922 if (!shared_int) { |
|
923 /* Disable the interrupt to be reported in |
|
924 * the cause register and then force the same |
|
925 * interrupt and see if one gets posted. If |
|
926 * an interrupt was posted to the bus, the |
|
927 * test failed. |
|
928 */ |
|
929 adapter->test_icr = 0; |
|
930 ew32(IMC, mask); |
|
931 ew32(ICS, mask); |
|
932 msleep(10); |
|
933 |
|
934 if (adapter->test_icr & mask) { |
|
935 *data = 3; |
|
936 break; |
|
937 } |
|
938 } |
|
939 |
|
940 /* Enable the interrupt to be reported in |
|
941 * the cause register and then force the same |
|
942 * interrupt and see if one gets posted. If |
|
943 * an interrupt was not posted to the bus, the |
|
944 * test failed. |
|
945 */ |
|
946 adapter->test_icr = 0; |
|
947 ew32(IMS, mask); |
|
948 ew32(ICS, mask); |
|
949 msleep(10); |
|
950 |
|
951 if (!(adapter->test_icr & mask)) { |
|
952 *data = 4; |
|
953 break; |
|
954 } |
|
955 |
|
956 if (!shared_int) { |
|
957 /* Disable the other interrupts to be reported in |
|
958 * the cause register and then force the other |
|
959 * interrupts and see if any get posted. If |
|
960 * an interrupt was posted to the bus, the |
|
961 * test failed. |
|
962 */ |
|
963 adapter->test_icr = 0; |
|
964 ew32(IMC, ~mask & 0x00007FFF); |
|
965 ew32(ICS, ~mask & 0x00007FFF); |
|
966 msleep(10); |
|
967 |
|
968 if (adapter->test_icr) { |
|
969 *data = 5; |
|
970 break; |
|
971 } |
|
972 } |
|
973 } |
|
974 |
|
975 /* Disable all the interrupts */ |
|
976 ew32(IMC, 0xFFFFFFFF); |
|
977 msleep(10); |
|
978 |
|
979 /* Unhook test interrupt handler */ |
|
980 free_irq(irq, netdev); |
|
981 |
|
982 return *data; |
|
983 } |
|
984 |
|
985 static void e1000_free_desc_rings(struct e1000_adapter *adapter) |
|
986 { |
|
987 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
|
988 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
|
989 struct pci_dev *pdev = adapter->pdev; |
|
990 int i; |
|
991 |
|
992 if (txdr->desc && txdr->buffer_info) { |
|
993 for (i = 0; i < txdr->count; i++) { |
|
994 if (txdr->buffer_info[i].dma) |
|
995 dma_unmap_single(&pdev->dev, |
|
996 txdr->buffer_info[i].dma, |
|
997 txdr->buffer_info[i].length, |
|
998 DMA_TO_DEVICE); |
|
999 if (txdr->buffer_info[i].skb) |
|
1000 dev_kfree_skb(txdr->buffer_info[i].skb); |
|
1001 } |
|
1002 } |
|
1003 |
|
1004 if (rxdr->desc && rxdr->buffer_info) { |
|
1005 for (i = 0; i < rxdr->count; i++) { |
|
1006 if (rxdr->buffer_info[i].dma) |
|
1007 dma_unmap_single(&pdev->dev, |
|
1008 rxdr->buffer_info[i].dma, |
|
1009 rxdr->buffer_info[i].length, |
|
1010 DMA_FROM_DEVICE); |
|
1011 if (rxdr->buffer_info[i].skb) |
|
1012 dev_kfree_skb(rxdr->buffer_info[i].skb); |
|
1013 } |
|
1014 } |
|
1015 |
|
1016 if (txdr->desc) { |
|
1017 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, |
|
1018 txdr->dma); |
|
1019 txdr->desc = NULL; |
|
1020 } |
|
1021 if (rxdr->desc) { |
|
1022 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, |
|
1023 rxdr->dma); |
|
1024 rxdr->desc = NULL; |
|
1025 } |
|
1026 |
|
1027 kfree(txdr->buffer_info); |
|
1028 txdr->buffer_info = NULL; |
|
1029 kfree(rxdr->buffer_info); |
|
1030 rxdr->buffer_info = NULL; |
|
1031 } |
|
1032 |
|
1033 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) |
|
1034 { |
|
1035 struct e1000_hw *hw = &adapter->hw; |
|
1036 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
|
1037 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
|
1038 struct pci_dev *pdev = adapter->pdev; |
|
1039 u32 rctl; |
|
1040 int i, ret_val; |
|
1041 |
|
1042 /* Setup Tx descriptor ring and Tx buffers */ |
|
1043 |
|
1044 if (!txdr->count) |
|
1045 txdr->count = E1000_DEFAULT_TXD; |
|
1046 |
|
1047 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), |
|
1048 GFP_KERNEL); |
|
1049 if (!txdr->buffer_info) { |
|
1050 ret_val = 1; |
|
1051 goto err_nomem; |
|
1052 } |
|
1053 |
|
1054 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1055 txdr->size = ALIGN(txdr->size, 4096); |
|
1056 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, |
|
1057 GFP_KERNEL); |
|
1058 if (!txdr->desc) { |
|
1059 ret_val = 2; |
|
1060 goto err_nomem; |
|
1061 } |
|
1062 memset(txdr->desc, 0, txdr->size); |
|
1063 txdr->next_to_use = txdr->next_to_clean = 0; |
|
1064 |
|
1065 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); |
|
1066 ew32(TDBAH, ((u64)txdr->dma >> 32)); |
|
1067 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); |
|
1068 ew32(TDH, 0); |
|
1069 ew32(TDT, 0); |
|
1070 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | |
|
1071 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
|
1072 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
|
1073 |
|
1074 for (i = 0; i < txdr->count; i++) { |
|
1075 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); |
|
1076 struct sk_buff *skb; |
|
1077 unsigned int size = 1024; |
|
1078 |
|
1079 skb = alloc_skb(size, GFP_KERNEL); |
|
1080 if (!skb) { |
|
1081 ret_val = 3; |
|
1082 goto err_nomem; |
|
1083 } |
|
1084 skb_put(skb, size); |
|
1085 txdr->buffer_info[i].skb = skb; |
|
1086 txdr->buffer_info[i].length = skb->len; |
|
1087 txdr->buffer_info[i].dma = |
|
1088 dma_map_single(&pdev->dev, skb->data, skb->len, |
|
1089 DMA_TO_DEVICE); |
|
1090 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); |
|
1091 tx_desc->lower.data = cpu_to_le32(skb->len); |
|
1092 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
|
1093 E1000_TXD_CMD_IFCS | |
|
1094 E1000_TXD_CMD_RPS); |
|
1095 tx_desc->upper.data = 0; |
|
1096 } |
|
1097 |
|
1098 /* Setup Rx descriptor ring and Rx buffers */ |
|
1099 |
|
1100 if (!rxdr->count) |
|
1101 rxdr->count = E1000_DEFAULT_RXD; |
|
1102 |
|
1103 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), |
|
1104 GFP_KERNEL); |
|
1105 if (!rxdr->buffer_info) { |
|
1106 ret_val = 4; |
|
1107 goto err_nomem; |
|
1108 } |
|
1109 |
|
1110 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); |
|
1111 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, |
|
1112 GFP_KERNEL); |
|
1113 if (!rxdr->desc) { |
|
1114 ret_val = 5; |
|
1115 goto err_nomem; |
|
1116 } |
|
1117 memset(rxdr->desc, 0, rxdr->size); |
|
1118 rxdr->next_to_use = rxdr->next_to_clean = 0; |
|
1119 |
|
1120 rctl = er32(RCTL); |
|
1121 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1122 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); |
|
1123 ew32(RDBAH, ((u64)rxdr->dma >> 32)); |
|
1124 ew32(RDLEN, rxdr->size); |
|
1125 ew32(RDH, 0); |
|
1126 ew32(RDT, 0); |
|
1127 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
|
1128 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1129 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1130 ew32(RCTL, rctl); |
|
1131 |
|
1132 for (i = 0; i < rxdr->count; i++) { |
|
1133 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); |
|
1134 struct sk_buff *skb; |
|
1135 |
|
1136 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); |
|
1137 if (!skb) { |
|
1138 ret_val = 6; |
|
1139 goto err_nomem; |
|
1140 } |
|
1141 skb_reserve(skb, NET_IP_ALIGN); |
|
1142 rxdr->buffer_info[i].skb = skb; |
|
1143 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; |
|
1144 rxdr->buffer_info[i].dma = |
|
1145 dma_map_single(&pdev->dev, skb->data, |
|
1146 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); |
|
1147 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); |
|
1148 memset(skb->data, 0x00, skb->len); |
|
1149 } |
|
1150 |
|
1151 return 0; |
|
1152 |
|
1153 err_nomem: |
|
1154 e1000_free_desc_rings(adapter); |
|
1155 return ret_val; |
|
1156 } |
|
1157 |
|
1158 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) |
|
1159 { |
|
1160 struct e1000_hw *hw = &adapter->hw; |
|
1161 |
|
1162 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
|
1163 e1000_write_phy_reg(hw, 29, 0x001F); |
|
1164 e1000_write_phy_reg(hw, 30, 0x8FFC); |
|
1165 e1000_write_phy_reg(hw, 29, 0x001A); |
|
1166 e1000_write_phy_reg(hw, 30, 0x8FF0); |
|
1167 } |
|
1168 |
|
1169 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) |
|
1170 { |
|
1171 struct e1000_hw *hw = &adapter->hw; |
|
1172 u16 phy_reg; |
|
1173 |
|
1174 /* Because we reset the PHY above, we need to re-force TX_CLK in the |
|
1175 * Extended PHY Specific Control Register to 25MHz clock. This |
|
1176 * value defaults back to a 2.5MHz clock when the PHY is reset. |
|
1177 */ |
|
1178 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
|
1179 phy_reg |= M88E1000_EPSCR_TX_CLK_25; |
|
1180 e1000_write_phy_reg(hw, |
|
1181 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); |
|
1182 |
|
1183 /* In addition, because of the s/w reset above, we need to enable |
|
1184 * CRS on TX. This must be set for both full and half duplex |
|
1185 * operation. |
|
1186 */ |
|
1187 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
|
1188 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
1189 e1000_write_phy_reg(hw, |
|
1190 M88E1000_PHY_SPEC_CTRL, phy_reg); |
|
1191 } |
|
1192 |
|
1193 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) |
|
1194 { |
|
1195 struct e1000_hw *hw = &adapter->hw; |
|
1196 u32 ctrl_reg; |
|
1197 u16 phy_reg; |
|
1198 |
|
1199 /* Setup the Device Control Register for PHY loopback test. */ |
|
1200 |
|
1201 ctrl_reg = er32(CTRL); |
|
1202 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ |
|
1203 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
|
1204 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
|
1205 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ |
|
1206 E1000_CTRL_FD); /* Force Duplex to FULL */ |
|
1207 |
|
1208 ew32(CTRL, ctrl_reg); |
|
1209 |
|
1210 /* Read the PHY Specific Control Register (0x10) */ |
|
1211 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
|
1212 |
|
1213 /* Clear Auto-Crossover bits in PHY Specific Control Register |
|
1214 * (bits 6:5). |
|
1215 */ |
|
1216 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
1217 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); |
|
1218 |
|
1219 /* Perform software reset on the PHY */ |
|
1220 e1000_phy_reset(hw); |
|
1221 |
|
1222 /* Have to setup TX_CLK and TX_CRS after software reset */ |
|
1223 e1000_phy_reset_clk_and_crs(adapter); |
|
1224 |
|
1225 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); |
|
1226 |
|
1227 /* Wait for reset to complete. */ |
|
1228 udelay(500); |
|
1229 |
|
1230 /* Have to setup TX_CLK and TX_CRS after software reset */ |
|
1231 e1000_phy_reset_clk_and_crs(adapter); |
|
1232 |
|
1233 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
|
1234 e1000_phy_disable_receiver(adapter); |
|
1235 |
|
1236 /* Set the loopback bit in the PHY control register. */ |
|
1237 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1238 phy_reg |= MII_CR_LOOPBACK; |
|
1239 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); |
|
1240 |
|
1241 /* Setup TX_CLK and TX_CRS one more time. */ |
|
1242 e1000_phy_reset_clk_and_crs(adapter); |
|
1243 |
|
1244 /* Check Phy Configuration */ |
|
1245 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1246 if (phy_reg != 0x4100) |
|
1247 return 9; |
|
1248 |
|
1249 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
|
1250 if (phy_reg != 0x0070) |
|
1251 return 10; |
|
1252 |
|
1253 e1000_read_phy_reg(hw, 29, &phy_reg); |
|
1254 if (phy_reg != 0x001A) |
|
1255 return 11; |
|
1256 |
|
1257 return 0; |
|
1258 } |
|
1259 |
|
1260 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) |
|
1261 { |
|
1262 struct e1000_hw *hw = &adapter->hw; |
|
1263 u32 ctrl_reg = 0; |
|
1264 u32 stat_reg = 0; |
|
1265 |
|
1266 hw->autoneg = false; |
|
1267 |
|
1268 if (hw->phy_type == e1000_phy_m88) { |
|
1269 /* Auto-MDI/MDIX Off */ |
|
1270 e1000_write_phy_reg(hw, |
|
1271 M88E1000_PHY_SPEC_CTRL, 0x0808); |
|
1272 /* reset to update Auto-MDI/MDIX */ |
|
1273 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); |
|
1274 /* autoneg off */ |
|
1275 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); |
|
1276 } |
|
1277 |
|
1278 ctrl_reg = er32(CTRL); |
|
1279 |
|
1280 /* force 1000, set loopback */ |
|
1281 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); |
|
1282 |
|
1283 /* Now set up the MAC to the same speed/duplex as the PHY. */ |
|
1284 ctrl_reg = er32(CTRL); |
|
1285 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
|
1286 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
|
1287 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
|
1288 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
|
1289 E1000_CTRL_FD); /* Force Duplex to FULL */ |
|
1290 |
|
1291 if (hw->media_type == e1000_media_type_copper && |
|
1292 hw->phy_type == e1000_phy_m88) |
|
1293 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
|
1294 else { |
|
1295 /* Set the ILOS bit on the fiber Nic is half |
|
1296 * duplex link is detected. */ |
|
1297 stat_reg = er32(STATUS); |
|
1298 if ((stat_reg & E1000_STATUS_FD) == 0) |
|
1299 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
|
1300 } |
|
1301 |
|
1302 ew32(CTRL, ctrl_reg); |
|
1303 |
|
1304 /* Disable the receiver on the PHY so when a cable is plugged in, the |
|
1305 * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
|
1306 */ |
|
1307 if (hw->phy_type == e1000_phy_m88) |
|
1308 e1000_phy_disable_receiver(adapter); |
|
1309 |
|
1310 udelay(500); |
|
1311 |
|
1312 return 0; |
|
1313 } |
|
1314 |
|
1315 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) |
|
1316 { |
|
1317 struct e1000_hw *hw = &adapter->hw; |
|
1318 u16 phy_reg = 0; |
|
1319 u16 count = 0; |
|
1320 |
|
1321 switch (hw->mac_type) { |
|
1322 case e1000_82543: |
|
1323 if (hw->media_type == e1000_media_type_copper) { |
|
1324 /* Attempt to setup Loopback mode on Non-integrated PHY. |
|
1325 * Some PHY registers get corrupted at random, so |
|
1326 * attempt this 10 times. |
|
1327 */ |
|
1328 while (e1000_nonintegrated_phy_loopback(adapter) && |
|
1329 count++ < 10); |
|
1330 if (count < 11) |
|
1331 return 0; |
|
1332 } |
|
1333 break; |
|
1334 |
|
1335 case e1000_82544: |
|
1336 case e1000_82540: |
|
1337 case e1000_82545: |
|
1338 case e1000_82545_rev_3: |
|
1339 case e1000_82546: |
|
1340 case e1000_82546_rev_3: |
|
1341 case e1000_82541: |
|
1342 case e1000_82541_rev_2: |
|
1343 case e1000_82547: |
|
1344 case e1000_82547_rev_2: |
|
1345 return e1000_integrated_phy_loopback(adapter); |
|
1346 break; |
|
1347 default: |
|
1348 /* Default PHY loopback work is to read the MII |
|
1349 * control register and assert bit 14 (loopback mode). |
|
1350 */ |
|
1351 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1352 phy_reg |= MII_CR_LOOPBACK; |
|
1353 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); |
|
1354 return 0; |
|
1355 break; |
|
1356 } |
|
1357 |
|
1358 return 8; |
|
1359 } |
|
1360 |
|
1361 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) |
|
1362 { |
|
1363 struct e1000_hw *hw = &adapter->hw; |
|
1364 u32 rctl; |
|
1365 |
|
1366 if (hw->media_type == e1000_media_type_fiber || |
|
1367 hw->media_type == e1000_media_type_internal_serdes) { |
|
1368 switch (hw->mac_type) { |
|
1369 case e1000_82545: |
|
1370 case e1000_82546: |
|
1371 case e1000_82545_rev_3: |
|
1372 case e1000_82546_rev_3: |
|
1373 return e1000_set_phy_loopback(adapter); |
|
1374 break; |
|
1375 default: |
|
1376 rctl = er32(RCTL); |
|
1377 rctl |= E1000_RCTL_LBM_TCVR; |
|
1378 ew32(RCTL, rctl); |
|
1379 return 0; |
|
1380 } |
|
1381 } else if (hw->media_type == e1000_media_type_copper) |
|
1382 return e1000_set_phy_loopback(adapter); |
|
1383 |
|
1384 return 7; |
|
1385 } |
|
1386 |
|
1387 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) |
|
1388 { |
|
1389 struct e1000_hw *hw = &adapter->hw; |
|
1390 u32 rctl; |
|
1391 u16 phy_reg; |
|
1392 |
|
1393 rctl = er32(RCTL); |
|
1394 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
|
1395 ew32(RCTL, rctl); |
|
1396 |
|
1397 switch (hw->mac_type) { |
|
1398 case e1000_82545: |
|
1399 case e1000_82546: |
|
1400 case e1000_82545_rev_3: |
|
1401 case e1000_82546_rev_3: |
|
1402 default: |
|
1403 hw->autoneg = true; |
|
1404 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1405 if (phy_reg & MII_CR_LOOPBACK) { |
|
1406 phy_reg &= ~MII_CR_LOOPBACK; |
|
1407 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); |
|
1408 e1000_phy_reset(hw); |
|
1409 } |
|
1410 break; |
|
1411 } |
|
1412 } |
|
1413 |
|
1414 static void e1000_create_lbtest_frame(struct sk_buff *skb, |
|
1415 unsigned int frame_size) |
|
1416 { |
|
1417 memset(skb->data, 0xFF, frame_size); |
|
1418 frame_size &= ~1; |
|
1419 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
|
1420 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
|
1421 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
|
1422 } |
|
1423 |
|
1424 static int e1000_check_lbtest_frame(struct sk_buff *skb, |
|
1425 unsigned int frame_size) |
|
1426 { |
|
1427 frame_size &= ~1; |
|
1428 if (*(skb->data + 3) == 0xFF) { |
|
1429 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
|
1430 (*(skb->data + frame_size / 2 + 12) == 0xAF)) { |
|
1431 return 0; |
|
1432 } |
|
1433 } |
|
1434 return 13; |
|
1435 } |
|
1436 |
|
1437 static int e1000_run_loopback_test(struct e1000_adapter *adapter) |
|
1438 { |
|
1439 struct e1000_hw *hw = &adapter->hw; |
|
1440 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
|
1441 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
|
1442 struct pci_dev *pdev = adapter->pdev; |
|
1443 int i, j, k, l, lc, good_cnt, ret_val=0; |
|
1444 unsigned long time; |
|
1445 |
|
1446 ew32(RDT, rxdr->count - 1); |
|
1447 |
|
1448 /* Calculate the loop count based on the largest descriptor ring |
|
1449 * The idea is to wrap the largest ring a number of times using 64 |
|
1450 * send/receive pairs during each loop |
|
1451 */ |
|
1452 |
|
1453 if (rxdr->count <= txdr->count) |
|
1454 lc = ((txdr->count / 64) * 2) + 1; |
|
1455 else |
|
1456 lc = ((rxdr->count / 64) * 2) + 1; |
|
1457 |
|
1458 k = l = 0; |
|
1459 for (j = 0; j <= lc; j++) { /* loop count loop */ |
|
1460 for (i = 0; i < 64; i++) { /* send the packets */ |
|
1461 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, |
|
1462 1024); |
|
1463 dma_sync_single_for_device(&pdev->dev, |
|
1464 txdr->buffer_info[k].dma, |
|
1465 txdr->buffer_info[k].length, |
|
1466 DMA_TO_DEVICE); |
|
1467 if (unlikely(++k == txdr->count)) k = 0; |
|
1468 } |
|
1469 ew32(TDT, k); |
|
1470 msleep(200); |
|
1471 time = jiffies; /* set the start time for the receive */ |
|
1472 good_cnt = 0; |
|
1473 do { /* receive the sent packets */ |
|
1474 dma_sync_single_for_cpu(&pdev->dev, |
|
1475 rxdr->buffer_info[l].dma, |
|
1476 rxdr->buffer_info[l].length, |
|
1477 DMA_FROM_DEVICE); |
|
1478 |
|
1479 ret_val = e1000_check_lbtest_frame( |
|
1480 rxdr->buffer_info[l].skb, |
|
1481 1024); |
|
1482 if (!ret_val) |
|
1483 good_cnt++; |
|
1484 if (unlikely(++l == rxdr->count)) l = 0; |
|
1485 /* time + 20 msecs (200 msecs on 2.4) is more than |
|
1486 * enough time to complete the receives, if it's |
|
1487 * exceeded, break and error off |
|
1488 */ |
|
1489 } while (good_cnt < 64 && jiffies < (time + 20)); |
|
1490 if (good_cnt != 64) { |
|
1491 ret_val = 13; /* ret_val is the same as mis-compare */ |
|
1492 break; |
|
1493 } |
|
1494 if (jiffies >= (time + 2)) { |
|
1495 ret_val = 14; /* error code for time out error */ |
|
1496 break; |
|
1497 } |
|
1498 } /* end loop count loop */ |
|
1499 return ret_val; |
|
1500 } |
|
1501 |
|
1502 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) |
|
1503 { |
|
1504 *data = e1000_setup_desc_rings(adapter); |
|
1505 if (*data) |
|
1506 goto out; |
|
1507 *data = e1000_setup_loopback_test(adapter); |
|
1508 if (*data) |
|
1509 goto err_loopback; |
|
1510 *data = e1000_run_loopback_test(adapter); |
|
1511 e1000_loopback_cleanup(adapter); |
|
1512 |
|
1513 err_loopback: |
|
1514 e1000_free_desc_rings(adapter); |
|
1515 out: |
|
1516 return *data; |
|
1517 } |
|
1518 |
|
1519 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) |
|
1520 { |
|
1521 struct e1000_hw *hw = &adapter->hw; |
|
1522 *data = 0; |
|
1523 if (hw->media_type == e1000_media_type_internal_serdes) { |
|
1524 int i = 0; |
|
1525 hw->serdes_has_link = false; |
|
1526 |
|
1527 /* On some blade server designs, link establishment |
|
1528 * could take as long as 2-3 minutes */ |
|
1529 do { |
|
1530 e1000_check_for_link(hw); |
|
1531 if (hw->serdes_has_link) |
|
1532 return *data; |
|
1533 msleep(20); |
|
1534 } while (i++ < 3750); |
|
1535 |
|
1536 *data = 1; |
|
1537 } else { |
|
1538 e1000_check_for_link(hw); |
|
1539 if (hw->autoneg) /* if auto_neg is set wait for it */ |
|
1540 msleep(4000); |
|
1541 |
|
1542 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
1543 *data = 1; |
|
1544 } |
|
1545 } |
|
1546 return *data; |
|
1547 } |
|
1548 |
|
1549 static int e1000_get_sset_count(struct net_device *netdev, int sset) |
|
1550 { |
|
1551 switch (sset) { |
|
1552 case ETH_SS_TEST: |
|
1553 return E1000_TEST_LEN; |
|
1554 case ETH_SS_STATS: |
|
1555 return E1000_STATS_LEN; |
|
1556 default: |
|
1557 return -EOPNOTSUPP; |
|
1558 } |
|
1559 } |
|
1560 |
|
1561 static void e1000_diag_test(struct net_device *netdev, |
|
1562 struct ethtool_test *eth_test, u64 *data) |
|
1563 { |
|
1564 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1565 struct e1000_hw *hw = &adapter->hw; |
|
1566 bool if_running; |
|
1567 |
|
1568 if (adapter->ecdev) |
|
1569 return; |
|
1570 |
|
1571 if_running = netif_running(netdev); |
|
1572 |
|
1573 set_bit(__E1000_TESTING, &adapter->flags); |
|
1574 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
|
1575 /* Offline tests */ |
|
1576 |
|
1577 /* save speed, duplex, autoneg settings */ |
|
1578 u16 autoneg_advertised = hw->autoneg_advertised; |
|
1579 u8 forced_speed_duplex = hw->forced_speed_duplex; |
|
1580 u8 autoneg = hw->autoneg; |
|
1581 |
|
1582 e_info("offline testing starting\n"); |
|
1583 |
|
1584 /* Link test performed before hardware reset so autoneg doesn't |
|
1585 * interfere with test result */ |
|
1586 if (e1000_link_test(adapter, &data[4])) |
|
1587 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1588 |
|
1589 if (if_running) |
|
1590 /* indicate we're in test mode */ |
|
1591 dev_close(netdev); |
|
1592 else |
|
1593 e1000_reset(adapter); |
|
1594 |
|
1595 if (e1000_reg_test(adapter, &data[0])) |
|
1596 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1597 |
|
1598 e1000_reset(adapter); |
|
1599 if (e1000_eeprom_test(adapter, &data[1])) |
|
1600 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1601 |
|
1602 e1000_reset(adapter); |
|
1603 if (e1000_intr_test(adapter, &data[2])) |
|
1604 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1605 |
|
1606 e1000_reset(adapter); |
|
1607 /* make sure the phy is powered up */ |
|
1608 e1000_power_up_phy(adapter); |
|
1609 if (e1000_loopback_test(adapter, &data[3])) |
|
1610 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1611 |
|
1612 /* restore speed, duplex, autoneg settings */ |
|
1613 hw->autoneg_advertised = autoneg_advertised; |
|
1614 hw->forced_speed_duplex = forced_speed_duplex; |
|
1615 hw->autoneg = autoneg; |
|
1616 |
|
1617 e1000_reset(adapter); |
|
1618 clear_bit(__E1000_TESTING, &adapter->flags); |
|
1619 if (if_running) |
|
1620 dev_open(netdev); |
|
1621 } else { |
|
1622 e_info("online testing starting\n"); |
|
1623 /* Online tests */ |
|
1624 if (e1000_link_test(adapter, &data[4])) |
|
1625 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1626 |
|
1627 /* Online tests aren't run; pass by default */ |
|
1628 data[0] = 0; |
|
1629 data[1] = 0; |
|
1630 data[2] = 0; |
|
1631 data[3] = 0; |
|
1632 |
|
1633 clear_bit(__E1000_TESTING, &adapter->flags); |
|
1634 } |
|
1635 msleep_interruptible(4 * 1000); |
|
1636 } |
|
1637 |
|
1638 static int e1000_wol_exclusion(struct e1000_adapter *adapter, |
|
1639 struct ethtool_wolinfo *wol) |
|
1640 { |
|
1641 struct e1000_hw *hw = &adapter->hw; |
|
1642 int retval = 1; /* fail by default */ |
|
1643 |
|
1644 switch (hw->device_id) { |
|
1645 case E1000_DEV_ID_82542: |
|
1646 case E1000_DEV_ID_82543GC_FIBER: |
|
1647 case E1000_DEV_ID_82543GC_COPPER: |
|
1648 case E1000_DEV_ID_82544EI_FIBER: |
|
1649 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
1650 case E1000_DEV_ID_82545EM_FIBER: |
|
1651 case E1000_DEV_ID_82545EM_COPPER: |
|
1652 case E1000_DEV_ID_82546GB_QUAD_COPPER: |
|
1653 case E1000_DEV_ID_82546GB_PCIE: |
|
1654 /* these don't support WoL at all */ |
|
1655 wol->supported = 0; |
|
1656 break; |
|
1657 case E1000_DEV_ID_82546EB_FIBER: |
|
1658 case E1000_DEV_ID_82546GB_FIBER: |
|
1659 /* Wake events not supported on port B */ |
|
1660 if (er32(STATUS) & E1000_STATUS_FUNC_1) { |
|
1661 wol->supported = 0; |
|
1662 break; |
|
1663 } |
|
1664 /* return success for non excluded adapter ports */ |
|
1665 retval = 0; |
|
1666 break; |
|
1667 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1668 /* quad port adapters only support WoL on port A */ |
|
1669 if (!adapter->quad_port_a) { |
|
1670 wol->supported = 0; |
|
1671 break; |
|
1672 } |
|
1673 /* return success for non excluded adapter ports */ |
|
1674 retval = 0; |
|
1675 break; |
|
1676 default: |
|
1677 /* dual port cards only support WoL on port A from now on |
|
1678 * unless it was enabled in the eeprom for port B |
|
1679 * so exclude FUNC_1 ports from having WoL enabled */ |
|
1680 if (er32(STATUS) & E1000_STATUS_FUNC_1 && |
|
1681 !adapter->eeprom_wol) { |
|
1682 wol->supported = 0; |
|
1683 break; |
|
1684 } |
|
1685 |
|
1686 retval = 0; |
|
1687 } |
|
1688 |
|
1689 return retval; |
|
1690 } |
|
1691 |
|
1692 static void e1000_get_wol(struct net_device *netdev, |
|
1693 struct ethtool_wolinfo *wol) |
|
1694 { |
|
1695 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1696 struct e1000_hw *hw = &adapter->hw; |
|
1697 |
|
1698 wol->supported = WAKE_UCAST | WAKE_MCAST | |
|
1699 WAKE_BCAST | WAKE_MAGIC; |
|
1700 wol->wolopts = 0; |
|
1701 |
|
1702 /* this function will set ->supported = 0 and return 1 if wol is not |
|
1703 * supported by this hardware */ |
|
1704 if (e1000_wol_exclusion(adapter, wol) || |
|
1705 !device_can_wakeup(&adapter->pdev->dev)) |
|
1706 return; |
|
1707 |
|
1708 /* apply any specific unsupported masks here */ |
|
1709 switch (hw->device_id) { |
|
1710 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1711 /* KSP3 does not suppport UCAST wake-ups */ |
|
1712 wol->supported &= ~WAKE_UCAST; |
|
1713 |
|
1714 if (adapter->wol & E1000_WUFC_EX) |
|
1715 e_err("Interface does not support " |
|
1716 "directed (unicast) frame wake-up packets\n"); |
|
1717 break; |
|
1718 default: |
|
1719 break; |
|
1720 } |
|
1721 |
|
1722 if (adapter->wol & E1000_WUFC_EX) |
|
1723 wol->wolopts |= WAKE_UCAST; |
|
1724 if (adapter->wol & E1000_WUFC_MC) |
|
1725 wol->wolopts |= WAKE_MCAST; |
|
1726 if (adapter->wol & E1000_WUFC_BC) |
|
1727 wol->wolopts |= WAKE_BCAST; |
|
1728 if (adapter->wol & E1000_WUFC_MAG) |
|
1729 wol->wolopts |= WAKE_MAGIC; |
|
1730 } |
|
1731 |
|
1732 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
1733 { |
|
1734 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1735 struct e1000_hw *hw = &adapter->hw; |
|
1736 |
|
1737 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) |
|
1738 return -EOPNOTSUPP; |
|
1739 |
|
1740 if (e1000_wol_exclusion(adapter, wol) || |
|
1741 !device_can_wakeup(&adapter->pdev->dev)) |
|
1742 return wol->wolopts ? -EOPNOTSUPP : 0; |
|
1743 |
|
1744 switch (hw->device_id) { |
|
1745 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1746 if (wol->wolopts & WAKE_UCAST) { |
|
1747 e_err("Interface does not support " |
|
1748 "directed (unicast) frame wake-up packets\n"); |
|
1749 return -EOPNOTSUPP; |
|
1750 } |
|
1751 break; |
|
1752 default: |
|
1753 break; |
|
1754 } |
|
1755 |
|
1756 /* these settings will always override what we currently have */ |
|
1757 adapter->wol = 0; |
|
1758 |
|
1759 if (wol->wolopts & WAKE_UCAST) |
|
1760 adapter->wol |= E1000_WUFC_EX; |
|
1761 if (wol->wolopts & WAKE_MCAST) |
|
1762 adapter->wol |= E1000_WUFC_MC; |
|
1763 if (wol->wolopts & WAKE_BCAST) |
|
1764 adapter->wol |= E1000_WUFC_BC; |
|
1765 if (wol->wolopts & WAKE_MAGIC) |
|
1766 adapter->wol |= E1000_WUFC_MAG; |
|
1767 |
|
1768 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1769 |
|
1770 return 0; |
|
1771 } |
|
1772 |
|
1773 /* toggle LED 4 times per second = 2 "blinks" per second */ |
|
1774 #define E1000_ID_INTERVAL (HZ/4) |
|
1775 |
|
1776 /* bit defines for adapter->led_status */ |
|
1777 #define E1000_LED_ON 0 |
|
1778 |
|
1779 static void e1000_led_blink_callback(unsigned long data) |
|
1780 { |
|
1781 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
1782 struct e1000_hw *hw = &adapter->hw; |
|
1783 |
|
1784 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) |
|
1785 e1000_led_off(hw); |
|
1786 else |
|
1787 e1000_led_on(hw); |
|
1788 |
|
1789 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); |
|
1790 } |
|
1791 |
|
1792 static int e1000_phys_id(struct net_device *netdev, u32 data) |
|
1793 { |
|
1794 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1795 struct e1000_hw *hw = &adapter->hw; |
|
1796 |
|
1797 if (!data) |
|
1798 data = INT_MAX; |
|
1799 |
|
1800 if (!adapter->blink_timer.function) { |
|
1801 init_timer(&adapter->blink_timer); |
|
1802 adapter->blink_timer.function = e1000_led_blink_callback; |
|
1803 adapter->blink_timer.data = (unsigned long)adapter; |
|
1804 } |
|
1805 e1000_setup_led(hw); |
|
1806 mod_timer(&adapter->blink_timer, jiffies); |
|
1807 msleep_interruptible(data * 1000); |
|
1808 del_timer_sync(&adapter->blink_timer); |
|
1809 |
|
1810 e1000_led_off(hw); |
|
1811 clear_bit(E1000_LED_ON, &adapter->led_status); |
|
1812 e1000_cleanup_led(hw); |
|
1813 |
|
1814 return 0; |
|
1815 } |
|
1816 |
|
1817 static int e1000_get_coalesce(struct net_device *netdev, |
|
1818 struct ethtool_coalesce *ec) |
|
1819 { |
|
1820 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1821 |
|
1822 if (adapter->hw.mac_type < e1000_82545) |
|
1823 return -EOPNOTSUPP; |
|
1824 |
|
1825 if (adapter->itr_setting <= 4) |
|
1826 ec->rx_coalesce_usecs = adapter->itr_setting; |
|
1827 else |
|
1828 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; |
|
1829 |
|
1830 return 0; |
|
1831 } |
|
1832 |
|
1833 static int e1000_set_coalesce(struct net_device *netdev, |
|
1834 struct ethtool_coalesce *ec) |
|
1835 { |
|
1836 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1837 struct e1000_hw *hw = &adapter->hw; |
|
1838 |
|
1839 if (hw->mac_type < e1000_82545) |
|
1840 return -EOPNOTSUPP; |
|
1841 |
|
1842 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || |
|
1843 ((ec->rx_coalesce_usecs > 4) && |
|
1844 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || |
|
1845 (ec->rx_coalesce_usecs == 2)) |
|
1846 return -EINVAL; |
|
1847 |
|
1848 if (ec->rx_coalesce_usecs == 4) { |
|
1849 adapter->itr = adapter->itr_setting = 4; |
|
1850 } else if (ec->rx_coalesce_usecs <= 3) { |
|
1851 adapter->itr = 20000; |
|
1852 adapter->itr_setting = ec->rx_coalesce_usecs; |
|
1853 } else { |
|
1854 adapter->itr = (1000000 / ec->rx_coalesce_usecs); |
|
1855 adapter->itr_setting = adapter->itr & ~3; |
|
1856 } |
|
1857 |
|
1858 if (adapter->itr_setting != 0) |
|
1859 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
1860 else |
|
1861 ew32(ITR, 0); |
|
1862 |
|
1863 return 0; |
|
1864 } |
|
1865 |
|
1866 static int e1000_nway_reset(struct net_device *netdev) |
|
1867 { |
|
1868 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1869 |
|
1870 if (adapter->ecdev) |
|
1871 return -EBUSY; |
|
1872 |
|
1873 if (netif_running(netdev)) |
|
1874 e1000_reinit_locked(adapter); |
|
1875 return 0; |
|
1876 } |
|
1877 |
|
1878 static void e1000_get_ethtool_stats(struct net_device *netdev, |
|
1879 struct ethtool_stats *stats, u64 *data) |
|
1880 { |
|
1881 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1882 int i; |
|
1883 char *p = NULL; |
|
1884 |
|
1885 e1000_update_stats(adapter); |
|
1886 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
|
1887 switch (e1000_gstrings_stats[i].type) { |
|
1888 case NETDEV_STATS: |
|
1889 p = (char *) netdev + |
|
1890 e1000_gstrings_stats[i].stat_offset; |
|
1891 break; |
|
1892 case E1000_STATS: |
|
1893 p = (char *) adapter + |
|
1894 e1000_gstrings_stats[i].stat_offset; |
|
1895 break; |
|
1896 } |
|
1897 |
|
1898 data[i] = (e1000_gstrings_stats[i].sizeof_stat == |
|
1899 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; |
|
1900 } |
|
1901 /* BUG_ON(i != E1000_STATS_LEN); */ |
|
1902 } |
|
1903 |
|
1904 static void e1000_get_strings(struct net_device *netdev, u32 stringset, |
|
1905 u8 *data) |
|
1906 { |
|
1907 u8 *p = data; |
|
1908 int i; |
|
1909 |
|
1910 switch (stringset) { |
|
1911 case ETH_SS_TEST: |
|
1912 memcpy(data, *e1000_gstrings_test, |
|
1913 sizeof(e1000_gstrings_test)); |
|
1914 break; |
|
1915 case ETH_SS_STATS: |
|
1916 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
|
1917 memcpy(p, e1000_gstrings_stats[i].stat_string, |
|
1918 ETH_GSTRING_LEN); |
|
1919 p += ETH_GSTRING_LEN; |
|
1920 } |
|
1921 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ |
|
1922 break; |
|
1923 } |
|
1924 } |
|
1925 |
|
1926 static const struct ethtool_ops e1000_ethtool_ops = { |
|
1927 .get_settings = e1000_get_settings, |
|
1928 .set_settings = e1000_set_settings, |
|
1929 .get_drvinfo = e1000_get_drvinfo, |
|
1930 .get_regs_len = e1000_get_regs_len, |
|
1931 .get_regs = e1000_get_regs, |
|
1932 .get_wol = e1000_get_wol, |
|
1933 .set_wol = e1000_set_wol, |
|
1934 .get_msglevel = e1000_get_msglevel, |
|
1935 .set_msglevel = e1000_set_msglevel, |
|
1936 .nway_reset = e1000_nway_reset, |
|
1937 .get_link = e1000_get_link, |
|
1938 .get_eeprom_len = e1000_get_eeprom_len, |
|
1939 .get_eeprom = e1000_get_eeprom, |
|
1940 .set_eeprom = e1000_set_eeprom, |
|
1941 .get_ringparam = e1000_get_ringparam, |
|
1942 .set_ringparam = e1000_set_ringparam, |
|
1943 .get_pauseparam = e1000_get_pauseparam, |
|
1944 .set_pauseparam = e1000_set_pauseparam, |
|
1945 .get_rx_csum = e1000_get_rx_csum, |
|
1946 .set_rx_csum = e1000_set_rx_csum, |
|
1947 .get_tx_csum = e1000_get_tx_csum, |
|
1948 .set_tx_csum = e1000_set_tx_csum, |
|
1949 .set_sg = ethtool_op_set_sg, |
|
1950 .set_tso = e1000_set_tso, |
|
1951 .self_test = e1000_diag_test, |
|
1952 .get_strings = e1000_get_strings, |
|
1953 .phys_id = e1000_phys_id, |
|
1954 .get_ethtool_stats = e1000_get_ethtool_stats, |
|
1955 .get_sset_count = e1000_get_sset_count, |
|
1956 .get_coalesce = e1000_get_coalesce, |
|
1957 .set_coalesce = e1000_set_coalesce, |
|
1958 }; |
|
1959 |
|
1960 void e1000_set_ethtool_ops(struct net_device *netdev) |
|
1961 { |
|
1962 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); |
|
1963 } |