|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include "e1000.h" |
|
30 #include <net/ip6_checksum.h> |
|
31 |
|
32 char e1000_driver_name[] = "e1000"; |
|
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
|
34 #define DRV_VERSION "7.3.21-k3-NAPI" |
|
35 const char e1000_driver_version[] = DRV_VERSION; |
|
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
|
37 |
|
38 /* e1000_pci_tbl - PCI Device ID Table |
|
39 * |
|
40 * Last entry must be all 0s |
|
41 * |
|
42 * Macro expands to... |
|
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
|
44 */ |
|
45 static struct pci_device_id e1000_pci_tbl[] = { |
|
46 INTEL_E1000_ETHERNET_DEVICE(0x1000), |
|
47 INTEL_E1000_ETHERNET_DEVICE(0x1001), |
|
48 INTEL_E1000_ETHERNET_DEVICE(0x1004), |
|
49 INTEL_E1000_ETHERNET_DEVICE(0x1008), |
|
50 INTEL_E1000_ETHERNET_DEVICE(0x1009), |
|
51 INTEL_E1000_ETHERNET_DEVICE(0x100C), |
|
52 INTEL_E1000_ETHERNET_DEVICE(0x100D), |
|
53 INTEL_E1000_ETHERNET_DEVICE(0x100E), |
|
54 INTEL_E1000_ETHERNET_DEVICE(0x100F), |
|
55 INTEL_E1000_ETHERNET_DEVICE(0x1010), |
|
56 INTEL_E1000_ETHERNET_DEVICE(0x1011), |
|
57 INTEL_E1000_ETHERNET_DEVICE(0x1012), |
|
58 INTEL_E1000_ETHERNET_DEVICE(0x1013), |
|
59 INTEL_E1000_ETHERNET_DEVICE(0x1014), |
|
60 INTEL_E1000_ETHERNET_DEVICE(0x1015), |
|
61 INTEL_E1000_ETHERNET_DEVICE(0x1016), |
|
62 INTEL_E1000_ETHERNET_DEVICE(0x1017), |
|
63 INTEL_E1000_ETHERNET_DEVICE(0x1018), |
|
64 INTEL_E1000_ETHERNET_DEVICE(0x1019), |
|
65 INTEL_E1000_ETHERNET_DEVICE(0x101A), |
|
66 INTEL_E1000_ETHERNET_DEVICE(0x101D), |
|
67 INTEL_E1000_ETHERNET_DEVICE(0x101E), |
|
68 INTEL_E1000_ETHERNET_DEVICE(0x1026), |
|
69 INTEL_E1000_ETHERNET_DEVICE(0x1027), |
|
70 INTEL_E1000_ETHERNET_DEVICE(0x1028), |
|
71 INTEL_E1000_ETHERNET_DEVICE(0x1075), |
|
72 INTEL_E1000_ETHERNET_DEVICE(0x1076), |
|
73 INTEL_E1000_ETHERNET_DEVICE(0x1077), |
|
74 INTEL_E1000_ETHERNET_DEVICE(0x1078), |
|
75 INTEL_E1000_ETHERNET_DEVICE(0x1079), |
|
76 INTEL_E1000_ETHERNET_DEVICE(0x107A), |
|
77 INTEL_E1000_ETHERNET_DEVICE(0x107B), |
|
78 INTEL_E1000_ETHERNET_DEVICE(0x107C), |
|
79 INTEL_E1000_ETHERNET_DEVICE(0x108A), |
|
80 INTEL_E1000_ETHERNET_DEVICE(0x1099), |
|
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
|
82 /* required last entry */ |
|
83 {0,} |
|
84 }; |
|
85 |
|
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
87 |
|
88 int e1000_up(struct e1000_adapter *adapter); |
|
89 void e1000_down(struct e1000_adapter *adapter); |
|
90 void e1000_reinit_locked(struct e1000_adapter *adapter); |
|
91 void e1000_reset(struct e1000_adapter *adapter); |
|
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); |
|
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
|
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
|
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
|
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
|
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
98 struct e1000_tx_ring *txdr); |
|
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
100 struct e1000_rx_ring *rxdr); |
|
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
102 struct e1000_tx_ring *tx_ring); |
|
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
104 struct e1000_rx_ring *rx_ring); |
|
105 void e1000_update_stats(struct e1000_adapter *adapter); |
|
106 |
|
107 static int e1000_init_module(void); |
|
108 static void e1000_exit_module(void); |
|
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
|
110 static void __devexit e1000_remove(struct pci_dev *pdev); |
|
111 static int e1000_alloc_queues(struct e1000_adapter *adapter); |
|
112 static int e1000_sw_init(struct e1000_adapter *adapter); |
|
113 static int e1000_open(struct net_device *netdev); |
|
114 static int e1000_close(struct net_device *netdev); |
|
115 static void e1000_configure_tx(struct e1000_adapter *adapter); |
|
116 static void e1000_configure_rx(struct e1000_adapter *adapter); |
|
117 static void e1000_setup_rctl(struct e1000_adapter *adapter); |
|
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
|
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
|
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
121 struct e1000_tx_ring *tx_ring); |
|
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
123 struct e1000_rx_ring *rx_ring); |
|
124 static void e1000_set_rx_mode(struct net_device *netdev); |
|
125 static void e1000_update_phy_info(unsigned long data); |
|
126 static void e1000_watchdog(unsigned long data); |
|
127 static void e1000_82547_tx_fifo_stall(unsigned long data); |
|
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
|
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
|
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
|
131 static int e1000_set_mac(struct net_device *netdev, void *p); |
|
132 static irqreturn_t e1000_intr(int irq, void *data); |
|
133 static irqreturn_t e1000_intr_msi(int irq, void *data); |
|
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
135 struct e1000_tx_ring *tx_ring); |
|
136 static int e1000_clean(struct napi_struct *napi, int budget); |
|
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
138 struct e1000_rx_ring *rx_ring, |
|
139 int *work_done, int work_to_do); |
|
140 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
|
141 struct e1000_rx_ring *rx_ring, |
|
142 int *work_done, int work_to_do); |
|
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
144 struct e1000_rx_ring *rx_ring, |
|
145 int cleaned_count); |
|
146 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
|
147 struct e1000_rx_ring *rx_ring, |
|
148 int cleaned_count); |
|
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
|
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
151 int cmd); |
|
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
|
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
|
154 static void e1000_tx_timeout(struct net_device *dev); |
|
155 static void e1000_reset_task(struct work_struct *work); |
|
156 static void e1000_smartspeed(struct e1000_adapter *adapter); |
|
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
158 struct sk_buff *skb); |
|
159 |
|
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); |
|
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); |
|
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); |
|
163 static void e1000_restore_vlan(struct e1000_adapter *adapter); |
|
164 |
|
165 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
|
166 #ifdef CONFIG_PM |
|
167 static int e1000_resume(struct pci_dev *pdev); |
|
168 #endif |
|
169 static void e1000_shutdown(struct pci_dev *pdev); |
|
170 |
|
171 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
172 /* for netdump / net console */ |
|
173 static void e1000_netpoll (struct net_device *netdev); |
|
174 #endif |
|
175 |
|
176 #define COPYBREAK_DEFAULT 256 |
|
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
|
178 module_param(copybreak, uint, 0644); |
|
179 MODULE_PARM_DESC(copybreak, |
|
180 "Maximum size of packet that is copied to a new buffer on receive"); |
|
181 |
|
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
183 pci_channel_state_t state); |
|
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
|
185 static void e1000_io_resume(struct pci_dev *pdev); |
|
186 |
|
187 static struct pci_error_handlers e1000_err_handler = { |
|
188 .error_detected = e1000_io_error_detected, |
|
189 .slot_reset = e1000_io_slot_reset, |
|
190 .resume = e1000_io_resume, |
|
191 }; |
|
192 |
|
193 static struct pci_driver e1000_driver = { |
|
194 .name = e1000_driver_name, |
|
195 .id_table = e1000_pci_tbl, |
|
196 .probe = e1000_probe, |
|
197 .remove = __devexit_p(e1000_remove), |
|
198 #ifdef CONFIG_PM |
|
199 /* Power Managment Hooks */ |
|
200 .suspend = e1000_suspend, |
|
201 .resume = e1000_resume, |
|
202 #endif |
|
203 .shutdown = e1000_shutdown, |
|
204 .err_handler = &e1000_err_handler |
|
205 }; |
|
206 |
|
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
|
209 MODULE_LICENSE("GPL"); |
|
210 MODULE_VERSION(DRV_VERSION); |
|
211 |
|
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
|
213 module_param(debug, int, 0); |
|
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
215 |
|
216 /** |
|
217 * e1000_init_module - Driver Registration Routine |
|
218 * |
|
219 * e1000_init_module is the first routine called when the driver is |
|
220 * loaded. All it does is register with the PCI subsystem. |
|
221 **/ |
|
222 |
|
223 static int __init e1000_init_module(void) |
|
224 { |
|
225 int ret; |
|
226 printk(KERN_INFO "%s - version %s\n", |
|
227 e1000_driver_string, e1000_driver_version); |
|
228 |
|
229 printk(KERN_INFO "%s\n", e1000_copyright); |
|
230 |
|
231 ret = pci_register_driver(&e1000_driver); |
|
232 if (copybreak != COPYBREAK_DEFAULT) { |
|
233 if (copybreak == 0) |
|
234 printk(KERN_INFO "e1000: copybreak disabled\n"); |
|
235 else |
|
236 printk(KERN_INFO "e1000: copybreak enabled for " |
|
237 "packets <= %u bytes\n", copybreak); |
|
238 } |
|
239 return ret; |
|
240 } |
|
241 |
|
242 module_init(e1000_init_module); |
|
243 |
|
244 /** |
|
245 * e1000_exit_module - Driver Exit Cleanup Routine |
|
246 * |
|
247 * e1000_exit_module is called just before the driver is removed |
|
248 * from memory. |
|
249 **/ |
|
250 |
|
251 static void __exit e1000_exit_module(void) |
|
252 { |
|
253 pci_unregister_driver(&e1000_driver); |
|
254 } |
|
255 |
|
256 module_exit(e1000_exit_module); |
|
257 |
|
258 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
259 { |
|
260 struct e1000_hw *hw = &adapter->hw; |
|
261 struct net_device *netdev = adapter->netdev; |
|
262 irq_handler_t handler = e1000_intr; |
|
263 int irq_flags = IRQF_SHARED; |
|
264 int err; |
|
265 |
|
266 if (hw->mac_type >= e1000_82571) { |
|
267 adapter->have_msi = !pci_enable_msi(adapter->pdev); |
|
268 if (adapter->have_msi) { |
|
269 handler = e1000_intr_msi; |
|
270 irq_flags = 0; |
|
271 } |
|
272 } |
|
273 |
|
274 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
|
275 netdev); |
|
276 if (err) { |
|
277 if (adapter->have_msi) |
|
278 pci_disable_msi(adapter->pdev); |
|
279 DPRINTK(PROBE, ERR, |
|
280 "Unable to allocate interrupt Error: %d\n", err); |
|
281 } |
|
282 |
|
283 return err; |
|
284 } |
|
285 |
|
286 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
287 { |
|
288 struct net_device *netdev = adapter->netdev; |
|
289 |
|
290 free_irq(adapter->pdev->irq, netdev); |
|
291 |
|
292 if (adapter->have_msi) |
|
293 pci_disable_msi(adapter->pdev); |
|
294 } |
|
295 |
|
296 /** |
|
297 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
298 * @adapter: board private structure |
|
299 **/ |
|
300 |
|
301 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
302 { |
|
303 struct e1000_hw *hw = &adapter->hw; |
|
304 |
|
305 ew32(IMC, ~0); |
|
306 E1000_WRITE_FLUSH(); |
|
307 synchronize_irq(adapter->pdev->irq); |
|
308 } |
|
309 |
|
310 /** |
|
311 * e1000_irq_enable - Enable default interrupt generation settings |
|
312 * @adapter: board private structure |
|
313 **/ |
|
314 |
|
315 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
316 { |
|
317 struct e1000_hw *hw = &adapter->hw; |
|
318 |
|
319 ew32(IMS, IMS_ENABLE_MASK); |
|
320 E1000_WRITE_FLUSH(); |
|
321 } |
|
322 |
|
323 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
324 { |
|
325 struct e1000_hw *hw = &adapter->hw; |
|
326 struct net_device *netdev = adapter->netdev; |
|
327 u16 vid = hw->mng_cookie.vlan_id; |
|
328 u16 old_vid = adapter->mng_vlan_id; |
|
329 if (adapter->vlgrp) { |
|
330 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
331 if (hw->mng_cookie.status & |
|
332 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
|
333 e1000_vlan_rx_add_vid(netdev, vid); |
|
334 adapter->mng_vlan_id = vid; |
|
335 } else |
|
336 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
337 |
|
338 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
339 (vid != old_vid) && |
|
340 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
341 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
342 } else |
|
343 adapter->mng_vlan_id = vid; |
|
344 } |
|
345 } |
|
346 |
|
347 /** |
|
348 * e1000_release_hw_control - release control of the h/w to f/w |
|
349 * @adapter: address of board private structure |
|
350 * |
|
351 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
352 * For ASF and Pass Through versions of f/w this means that the |
|
353 * driver is no longer loaded. For AMT version (only with 82573) i |
|
354 * of the f/w this means that the network i/f is closed. |
|
355 * |
|
356 **/ |
|
357 |
|
358 static void e1000_release_hw_control(struct e1000_adapter *adapter) |
|
359 { |
|
360 u32 ctrl_ext; |
|
361 u32 swsm; |
|
362 struct e1000_hw *hw = &adapter->hw; |
|
363 |
|
364 /* Let firmware taken over control of h/w */ |
|
365 switch (hw->mac_type) { |
|
366 case e1000_82573: |
|
367 swsm = er32(SWSM); |
|
368 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
|
369 break; |
|
370 case e1000_82571: |
|
371 case e1000_82572: |
|
372 case e1000_80003es2lan: |
|
373 case e1000_ich8lan: |
|
374 ctrl_ext = er32(CTRL_EXT); |
|
375 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
|
376 break; |
|
377 default: |
|
378 break; |
|
379 } |
|
380 } |
|
381 |
|
382 /** |
|
383 * e1000_get_hw_control - get control of the h/w from f/w |
|
384 * @adapter: address of board private structure |
|
385 * |
|
386 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
387 * For ASF and Pass Through versions of f/w this means that |
|
388 * the driver is loaded. For AMT version (only with 82573) |
|
389 * of the f/w this means that the network i/f is open. |
|
390 * |
|
391 **/ |
|
392 |
|
393 static void e1000_get_hw_control(struct e1000_adapter *adapter) |
|
394 { |
|
395 u32 ctrl_ext; |
|
396 u32 swsm; |
|
397 struct e1000_hw *hw = &adapter->hw; |
|
398 |
|
399 /* Let firmware know the driver has taken over */ |
|
400 switch (hw->mac_type) { |
|
401 case e1000_82573: |
|
402 swsm = er32(SWSM); |
|
403 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
|
404 break; |
|
405 case e1000_82571: |
|
406 case e1000_82572: |
|
407 case e1000_80003es2lan: |
|
408 case e1000_ich8lan: |
|
409 ctrl_ext = er32(CTRL_EXT); |
|
410 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
|
411 break; |
|
412 default: |
|
413 break; |
|
414 } |
|
415 } |
|
416 |
|
417 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
418 { |
|
419 struct e1000_hw *hw = &adapter->hw; |
|
420 |
|
421 if (adapter->en_mng_pt) { |
|
422 u32 manc = er32(MANC); |
|
423 |
|
424 /* disable hardware interception of ARP */ |
|
425 manc &= ~(E1000_MANC_ARP_EN); |
|
426 |
|
427 /* enable receiving management packets to the host */ |
|
428 /* this will probably generate destination unreachable messages |
|
429 * from the host OS, but the packets will be handled on SMBUS */ |
|
430 if (hw->has_manc2h) { |
|
431 u32 manc2h = er32(MANC2H); |
|
432 |
|
433 manc |= E1000_MANC_EN_MNG2HOST; |
|
434 #define E1000_MNG2HOST_PORT_623 (1 << 5) |
|
435 #define E1000_MNG2HOST_PORT_664 (1 << 6) |
|
436 manc2h |= E1000_MNG2HOST_PORT_623; |
|
437 manc2h |= E1000_MNG2HOST_PORT_664; |
|
438 ew32(MANC2H, manc2h); |
|
439 } |
|
440 |
|
441 ew32(MANC, manc); |
|
442 } |
|
443 } |
|
444 |
|
445 static void e1000_release_manageability(struct e1000_adapter *adapter) |
|
446 { |
|
447 struct e1000_hw *hw = &adapter->hw; |
|
448 |
|
449 if (adapter->en_mng_pt) { |
|
450 u32 manc = er32(MANC); |
|
451 |
|
452 /* re-enable hardware interception of ARP */ |
|
453 manc |= E1000_MANC_ARP_EN; |
|
454 |
|
455 if (hw->has_manc2h) |
|
456 manc &= ~E1000_MANC_EN_MNG2HOST; |
|
457 |
|
458 /* don't explicitly have to mess with MANC2H since |
|
459 * MANC has an enable disable that gates MANC2H */ |
|
460 |
|
461 ew32(MANC, manc); |
|
462 } |
|
463 } |
|
464 |
|
465 /** |
|
466 * e1000_configure - configure the hardware for RX and TX |
|
467 * @adapter = private board structure |
|
468 **/ |
|
469 static void e1000_configure(struct e1000_adapter *adapter) |
|
470 { |
|
471 struct net_device *netdev = adapter->netdev; |
|
472 int i; |
|
473 |
|
474 e1000_set_rx_mode(netdev); |
|
475 |
|
476 e1000_restore_vlan(adapter); |
|
477 e1000_init_manageability(adapter); |
|
478 |
|
479 e1000_configure_tx(adapter); |
|
480 e1000_setup_rctl(adapter); |
|
481 e1000_configure_rx(adapter); |
|
482 /* call E1000_DESC_UNUSED which always leaves |
|
483 * at least 1 descriptor unused to make sure |
|
484 * next_to_use != next_to_clean */ |
|
485 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
486 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
|
487 adapter->alloc_rx_buf(adapter, ring, |
|
488 E1000_DESC_UNUSED(ring)); |
|
489 } |
|
490 |
|
491 adapter->tx_queue_len = netdev->tx_queue_len; |
|
492 } |
|
493 |
|
494 int e1000_up(struct e1000_adapter *adapter) |
|
495 { |
|
496 struct e1000_hw *hw = &adapter->hw; |
|
497 |
|
498 /* hardware has been reset, we need to reload some things */ |
|
499 e1000_configure(adapter); |
|
500 |
|
501 clear_bit(__E1000_DOWN, &adapter->flags); |
|
502 |
|
503 napi_enable(&adapter->napi); |
|
504 |
|
505 e1000_irq_enable(adapter); |
|
506 |
|
507 /* fire a link change interrupt to start the watchdog */ |
|
508 ew32(ICS, E1000_ICS_LSC); |
|
509 return 0; |
|
510 } |
|
511 |
|
512 /** |
|
513 * e1000_power_up_phy - restore link in case the phy was powered down |
|
514 * @adapter: address of board private structure |
|
515 * |
|
516 * The phy may be powered down to save power and turn off link when the |
|
517 * driver is unloaded and wake on lan is not enabled (among others) |
|
518 * *** this routine MUST be followed by a call to e1000_reset *** |
|
519 * |
|
520 **/ |
|
521 |
|
522 void e1000_power_up_phy(struct e1000_adapter *adapter) |
|
523 { |
|
524 struct e1000_hw *hw = &adapter->hw; |
|
525 u16 mii_reg = 0; |
|
526 |
|
527 /* Just clear the power down bit to wake the phy back up */ |
|
528 if (hw->media_type == e1000_media_type_copper) { |
|
529 /* according to the manual, the phy will retain its |
|
530 * settings across a power-down/up cycle */ |
|
531 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
532 mii_reg &= ~MII_CR_POWER_DOWN; |
|
533 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
534 } |
|
535 } |
|
536 |
|
537 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
538 { |
|
539 struct e1000_hw *hw = &adapter->hw; |
|
540 |
|
541 /* Power down the PHY so no link is implied when interface is down * |
|
542 * The PHY cannot be powered down if any of the following is true * |
|
543 * (a) WoL is enabled |
|
544 * (b) AMT is active |
|
545 * (c) SoL/IDER session is active */ |
|
546 if (!adapter->wol && hw->mac_type >= e1000_82540 && |
|
547 hw->media_type == e1000_media_type_copper) { |
|
548 u16 mii_reg = 0; |
|
549 |
|
550 switch (hw->mac_type) { |
|
551 case e1000_82540: |
|
552 case e1000_82545: |
|
553 case e1000_82545_rev_3: |
|
554 case e1000_82546: |
|
555 case e1000_82546_rev_3: |
|
556 case e1000_82541: |
|
557 case e1000_82541_rev_2: |
|
558 case e1000_82547: |
|
559 case e1000_82547_rev_2: |
|
560 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
561 goto out; |
|
562 break; |
|
563 case e1000_82571: |
|
564 case e1000_82572: |
|
565 case e1000_82573: |
|
566 case e1000_80003es2lan: |
|
567 case e1000_ich8lan: |
|
568 if (e1000_check_mng_mode(hw) || |
|
569 e1000_check_phy_reset_block(hw)) |
|
570 goto out; |
|
571 break; |
|
572 default: |
|
573 goto out; |
|
574 } |
|
575 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
576 mii_reg |= MII_CR_POWER_DOWN; |
|
577 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
578 mdelay(1); |
|
579 } |
|
580 out: |
|
581 return; |
|
582 } |
|
583 |
|
584 void e1000_down(struct e1000_adapter *adapter) |
|
585 { |
|
586 struct net_device *netdev = adapter->netdev; |
|
587 |
|
588 /* signal that we're down so the interrupt handler does not |
|
589 * reschedule our watchdog timer */ |
|
590 set_bit(__E1000_DOWN, &adapter->flags); |
|
591 |
|
592 napi_disable(&adapter->napi); |
|
593 |
|
594 e1000_irq_disable(adapter); |
|
595 |
|
596 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
597 del_timer_sync(&adapter->watchdog_timer); |
|
598 del_timer_sync(&adapter->phy_info_timer); |
|
599 |
|
600 netdev->tx_queue_len = adapter->tx_queue_len; |
|
601 adapter->link_speed = 0; |
|
602 adapter->link_duplex = 0; |
|
603 netif_carrier_off(netdev); |
|
604 netif_stop_queue(netdev); |
|
605 |
|
606 e1000_reset(adapter); |
|
607 e1000_clean_all_tx_rings(adapter); |
|
608 e1000_clean_all_rx_rings(adapter); |
|
609 } |
|
610 |
|
611 void e1000_reinit_locked(struct e1000_adapter *adapter) |
|
612 { |
|
613 WARN_ON(in_interrupt()); |
|
614 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
615 msleep(1); |
|
616 e1000_down(adapter); |
|
617 e1000_up(adapter); |
|
618 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
619 } |
|
620 |
|
621 void e1000_reset(struct e1000_adapter *adapter) |
|
622 { |
|
623 struct e1000_hw *hw = &adapter->hw; |
|
624 u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
|
625 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF; |
|
626 bool legacy_pba_adjust = false; |
|
627 |
|
628 /* Repartition Pba for greater than 9k mtu |
|
629 * To take effect CTRL.RST is required. |
|
630 */ |
|
631 |
|
632 switch (hw->mac_type) { |
|
633 case e1000_82542_rev2_0: |
|
634 case e1000_82542_rev2_1: |
|
635 case e1000_82543: |
|
636 case e1000_82544: |
|
637 case e1000_82540: |
|
638 case e1000_82541: |
|
639 case e1000_82541_rev_2: |
|
640 legacy_pba_adjust = true; |
|
641 pba = E1000_PBA_48K; |
|
642 break; |
|
643 case e1000_82545: |
|
644 case e1000_82545_rev_3: |
|
645 case e1000_82546: |
|
646 case e1000_82546_rev_3: |
|
647 pba = E1000_PBA_48K; |
|
648 break; |
|
649 case e1000_82547: |
|
650 case e1000_82547_rev_2: |
|
651 legacy_pba_adjust = true; |
|
652 pba = E1000_PBA_30K; |
|
653 break; |
|
654 case e1000_82571: |
|
655 case e1000_82572: |
|
656 case e1000_80003es2lan: |
|
657 pba = E1000_PBA_38K; |
|
658 break; |
|
659 case e1000_82573: |
|
660 pba = E1000_PBA_20K; |
|
661 break; |
|
662 case e1000_ich8lan: |
|
663 pba = E1000_PBA_8K; |
|
664 case e1000_undefined: |
|
665 case e1000_num_macs: |
|
666 break; |
|
667 } |
|
668 |
|
669 if (legacy_pba_adjust) { |
|
670 if (adapter->netdev->mtu > E1000_RXBUFFER_8192) |
|
671 pba -= 8; /* allocate more FIFO for Tx */ |
|
672 |
|
673 if (hw->mac_type == e1000_82547) { |
|
674 adapter->tx_fifo_head = 0; |
|
675 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
|
676 adapter->tx_fifo_size = |
|
677 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
|
678 atomic_set(&adapter->tx_fifo_stall, 0); |
|
679 } |
|
680 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
681 /* adjust PBA for jumbo frames */ |
|
682 ew32(PBA, pba); |
|
683 |
|
684 /* To maintain wire speed transmits, the Tx FIFO should be |
|
685 * large enough to accomodate two full transmit packets, |
|
686 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
687 * the Rx FIFO should be large enough to accomodate at least |
|
688 * one full receive packet and is similarly rounded up and |
|
689 * expressed in KB. */ |
|
690 pba = er32(PBA); |
|
691 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
692 tx_space = pba >> 16; |
|
693 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
694 pba &= 0xffff; |
|
695 /* don't include ethernet FCS because hardware appends/strips */ |
|
696 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE + |
|
697 VLAN_TAG_SIZE; |
|
698 min_tx_space = min_rx_space; |
|
699 min_tx_space *= 2; |
|
700 min_tx_space = ALIGN(min_tx_space, 1024); |
|
701 min_tx_space >>= 10; |
|
702 min_rx_space = ALIGN(min_rx_space, 1024); |
|
703 min_rx_space >>= 10; |
|
704 |
|
705 /* If current Tx allocation is less than the min Tx FIFO size, |
|
706 * and the min Tx FIFO size is less than the current Rx FIFO |
|
707 * allocation, take space away from current Rx allocation */ |
|
708 if (tx_space < min_tx_space && |
|
709 ((min_tx_space - tx_space) < pba)) { |
|
710 pba = pba - (min_tx_space - tx_space); |
|
711 |
|
712 /* PCI/PCIx hardware has PBA alignment constraints */ |
|
713 switch (hw->mac_type) { |
|
714 case e1000_82545 ... e1000_82546_rev_3: |
|
715 pba &= ~(E1000_PBA_8K - 1); |
|
716 break; |
|
717 default: |
|
718 break; |
|
719 } |
|
720 |
|
721 /* if short on rx space, rx wins and must trump tx |
|
722 * adjustment or use Early Receive if available */ |
|
723 if (pba < min_rx_space) { |
|
724 switch (hw->mac_type) { |
|
725 case e1000_82573: |
|
726 /* ERT enabled in e1000_configure_rx */ |
|
727 break; |
|
728 default: |
|
729 pba = min_rx_space; |
|
730 break; |
|
731 } |
|
732 } |
|
733 } |
|
734 } |
|
735 |
|
736 ew32(PBA, pba); |
|
737 |
|
738 /* flow control settings */ |
|
739 /* Set the FC high water mark to 90% of the FIFO size. |
|
740 * Required to clear last 3 LSB */ |
|
741 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; |
|
742 /* We can't use 90% on small FIFOs because the remainder |
|
743 * would be less than 1 full frame. In this case, we size |
|
744 * it to allow at least a full frame above the high water |
|
745 * mark. */ |
|
746 if (pba < E1000_PBA_16K) |
|
747 fc_high_water_mark = (pba * 1024) - 1600; |
|
748 |
|
749 hw->fc_high_water = fc_high_water_mark; |
|
750 hw->fc_low_water = fc_high_water_mark - 8; |
|
751 if (hw->mac_type == e1000_80003es2lan) |
|
752 hw->fc_pause_time = 0xFFFF; |
|
753 else |
|
754 hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
|
755 hw->fc_send_xon = 1; |
|
756 hw->fc = hw->original_fc; |
|
757 |
|
758 /* Allow time for pending master requests to run */ |
|
759 e1000_reset_hw(hw); |
|
760 if (hw->mac_type >= e1000_82544) |
|
761 ew32(WUC, 0); |
|
762 |
|
763 if (e1000_init_hw(hw)) |
|
764 DPRINTK(PROBE, ERR, "Hardware Error\n"); |
|
765 e1000_update_mng_vlan(adapter); |
|
766 |
|
767 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
|
768 if (hw->mac_type >= e1000_82544 && |
|
769 hw->mac_type <= e1000_82547_rev_2 && |
|
770 hw->autoneg == 1 && |
|
771 hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
772 u32 ctrl = er32(CTRL); |
|
773 /* clear phy power management bit if we are in gig only mode, |
|
774 * which if enabled will attempt negotiation to 100Mb, which |
|
775 * can cause a loss of link at power off or driver unload */ |
|
776 ctrl &= ~E1000_CTRL_SWDPIN3; |
|
777 ew32(CTRL, ctrl); |
|
778 } |
|
779 |
|
780 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
781 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
|
782 |
|
783 e1000_reset_adaptive(hw); |
|
784 e1000_phy_get_info(hw, &adapter->phy_info); |
|
785 |
|
786 if (!adapter->smart_power_down && |
|
787 (hw->mac_type == e1000_82571 || |
|
788 hw->mac_type == e1000_82572)) { |
|
789 u16 phy_data = 0; |
|
790 /* speed up time to link by disabling smart power down, ignore |
|
791 * the return value of this function because there is nothing |
|
792 * different we would do if it failed */ |
|
793 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
794 &phy_data); |
|
795 phy_data &= ~IGP02E1000_PM_SPD; |
|
796 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
797 phy_data); |
|
798 } |
|
799 |
|
800 e1000_release_manageability(adapter); |
|
801 } |
|
802 |
|
803 /** |
|
804 * Dump the eeprom for users having checksum issues |
|
805 **/ |
|
806 static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
|
807 { |
|
808 struct net_device *netdev = adapter->netdev; |
|
809 struct ethtool_eeprom eeprom; |
|
810 const struct ethtool_ops *ops = netdev->ethtool_ops; |
|
811 u8 *data; |
|
812 int i; |
|
813 u16 csum_old, csum_new = 0; |
|
814 |
|
815 eeprom.len = ops->get_eeprom_len(netdev); |
|
816 eeprom.offset = 0; |
|
817 |
|
818 data = kmalloc(eeprom.len, GFP_KERNEL); |
|
819 if (!data) { |
|
820 printk(KERN_ERR "Unable to allocate memory to dump EEPROM" |
|
821 " data\n"); |
|
822 return; |
|
823 } |
|
824 |
|
825 ops->get_eeprom(netdev, &eeprom, data); |
|
826 |
|
827 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
|
828 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
|
829 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
|
830 csum_new += data[i] + (data[i + 1] << 8); |
|
831 csum_new = EEPROM_SUM - csum_new; |
|
832 |
|
833 printk(KERN_ERR "/*********************/\n"); |
|
834 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old); |
|
835 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new); |
|
836 |
|
837 printk(KERN_ERR "Offset Values\n"); |
|
838 printk(KERN_ERR "======== ======\n"); |
|
839 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
|
840 |
|
841 printk(KERN_ERR "Include this output when contacting your support " |
|
842 "provider.\n"); |
|
843 printk(KERN_ERR "This is not a software error! Something bad " |
|
844 "happened to your hardware or\n"); |
|
845 printk(KERN_ERR "EEPROM image. Ignoring this " |
|
846 "problem could result in further problems,\n"); |
|
847 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n"); |
|
848 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, " |
|
849 "which is invalid\n"); |
|
850 printk(KERN_ERR "and requires you to set the proper MAC " |
|
851 "address manually before continuing\n"); |
|
852 printk(KERN_ERR "to enable this network device.\n"); |
|
853 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue " |
|
854 "to your hardware vendor\n"); |
|
855 printk(KERN_ERR "or Intel Customer Support.\n"); |
|
856 printk(KERN_ERR "/*********************/\n"); |
|
857 |
|
858 kfree(data); |
|
859 } |
|
860 |
|
861 /** |
|
862 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
|
863 * @pdev: PCI device information struct |
|
864 * |
|
865 * Return true if an adapter needs ioport resources |
|
866 **/ |
|
867 static int e1000_is_need_ioport(struct pci_dev *pdev) |
|
868 { |
|
869 switch (pdev->device) { |
|
870 case E1000_DEV_ID_82540EM: |
|
871 case E1000_DEV_ID_82540EM_LOM: |
|
872 case E1000_DEV_ID_82540EP: |
|
873 case E1000_DEV_ID_82540EP_LOM: |
|
874 case E1000_DEV_ID_82540EP_LP: |
|
875 case E1000_DEV_ID_82541EI: |
|
876 case E1000_DEV_ID_82541EI_MOBILE: |
|
877 case E1000_DEV_ID_82541ER: |
|
878 case E1000_DEV_ID_82541ER_LOM: |
|
879 case E1000_DEV_ID_82541GI: |
|
880 case E1000_DEV_ID_82541GI_LF: |
|
881 case E1000_DEV_ID_82541GI_MOBILE: |
|
882 case E1000_DEV_ID_82544EI_COPPER: |
|
883 case E1000_DEV_ID_82544EI_FIBER: |
|
884 case E1000_DEV_ID_82544GC_COPPER: |
|
885 case E1000_DEV_ID_82544GC_LOM: |
|
886 case E1000_DEV_ID_82545EM_COPPER: |
|
887 case E1000_DEV_ID_82545EM_FIBER: |
|
888 case E1000_DEV_ID_82546EB_COPPER: |
|
889 case E1000_DEV_ID_82546EB_FIBER: |
|
890 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
891 return true; |
|
892 default: |
|
893 return false; |
|
894 } |
|
895 } |
|
896 |
|
897 /** |
|
898 * e1000_probe - Device Initialization Routine |
|
899 * @pdev: PCI device information struct |
|
900 * @ent: entry in e1000_pci_tbl |
|
901 * |
|
902 * Returns 0 on success, negative on failure |
|
903 * |
|
904 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
905 * The OS initialization, configuring of the adapter private structure, |
|
906 * and a hardware reset occur. |
|
907 **/ |
|
908 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
909 const struct pci_device_id *ent) |
|
910 { |
|
911 struct net_device *netdev; |
|
912 struct e1000_adapter *adapter; |
|
913 struct e1000_hw *hw; |
|
914 |
|
915 static int cards_found = 0; |
|
916 static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
|
917 int i, err, pci_using_dac; |
|
918 u16 eeprom_data = 0; |
|
919 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
920 int bars, need_ioport; |
|
921 DECLARE_MAC_BUF(mac); |
|
922 |
|
923 /* do not allocate ioport bars when not needed */ |
|
924 need_ioport = e1000_is_need_ioport(pdev); |
|
925 if (need_ioport) { |
|
926 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
|
927 err = pci_enable_device(pdev); |
|
928 } else { |
|
929 bars = pci_select_bars(pdev, IORESOURCE_MEM); |
|
930 err = pci_enable_device_mem(pdev); |
|
931 } |
|
932 if (err) |
|
933 return err; |
|
934 |
|
935 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) && |
|
936 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) { |
|
937 pci_using_dac = 1; |
|
938 } else { |
|
939 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
|
940 if (err) { |
|
941 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
|
942 if (err) { |
|
943 E1000_ERR("No usable DMA configuration, " |
|
944 "aborting\n"); |
|
945 goto err_dma; |
|
946 } |
|
947 } |
|
948 pci_using_dac = 0; |
|
949 } |
|
950 |
|
951 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
|
952 if (err) |
|
953 goto err_pci_reg; |
|
954 |
|
955 pci_set_master(pdev); |
|
956 |
|
957 err = -ENOMEM; |
|
958 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
959 if (!netdev) |
|
960 goto err_alloc_etherdev; |
|
961 |
|
962 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
963 |
|
964 pci_set_drvdata(pdev, netdev); |
|
965 adapter = netdev_priv(netdev); |
|
966 adapter->netdev = netdev; |
|
967 adapter->pdev = pdev; |
|
968 adapter->msg_enable = (1 << debug) - 1; |
|
969 adapter->bars = bars; |
|
970 adapter->need_ioport = need_ioport; |
|
971 |
|
972 hw = &adapter->hw; |
|
973 hw->back = adapter; |
|
974 |
|
975 err = -EIO; |
|
976 hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0), |
|
977 pci_resource_len(pdev, BAR_0)); |
|
978 if (!hw->hw_addr) |
|
979 goto err_ioremap; |
|
980 |
|
981 if (adapter->need_ioport) { |
|
982 for (i = BAR_1; i <= BAR_5; i++) { |
|
983 if (pci_resource_len(pdev, i) == 0) |
|
984 continue; |
|
985 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
|
986 hw->io_base = pci_resource_start(pdev, i); |
|
987 break; |
|
988 } |
|
989 } |
|
990 } |
|
991 |
|
992 netdev->open = &e1000_open; |
|
993 netdev->stop = &e1000_close; |
|
994 netdev->hard_start_xmit = &e1000_xmit_frame; |
|
995 netdev->get_stats = &e1000_get_stats; |
|
996 netdev->set_rx_mode = &e1000_set_rx_mode; |
|
997 netdev->set_mac_address = &e1000_set_mac; |
|
998 netdev->change_mtu = &e1000_change_mtu; |
|
999 netdev->do_ioctl = &e1000_ioctl; |
|
1000 e1000_set_ethtool_ops(netdev); |
|
1001 netdev->tx_timeout = &e1000_tx_timeout; |
|
1002 netdev->watchdog_timeo = 5 * HZ; |
|
1003 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
1004 netdev->vlan_rx_register = e1000_vlan_rx_register; |
|
1005 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; |
|
1006 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; |
|
1007 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
1008 netdev->poll_controller = e1000_netpoll; |
|
1009 #endif |
|
1010 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
1011 |
|
1012 adapter->bd_number = cards_found; |
|
1013 |
|
1014 /* setup the private structure */ |
|
1015 |
|
1016 err = e1000_sw_init(adapter); |
|
1017 if (err) |
|
1018 goto err_sw_init; |
|
1019 |
|
1020 err = -EIO; |
|
1021 /* Flash BAR mapping must happen after e1000_sw_init |
|
1022 * because it depends on mac_type */ |
|
1023 if ((hw->mac_type == e1000_ich8lan) && |
|
1024 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
|
1025 hw->flash_address = |
|
1026 ioremap(pci_resource_start(pdev, 1), |
|
1027 pci_resource_len(pdev, 1)); |
|
1028 if (!hw->flash_address) |
|
1029 goto err_flashmap; |
|
1030 } |
|
1031 |
|
1032 if (e1000_check_phy_reset_block(hw)) |
|
1033 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); |
|
1034 |
|
1035 if (hw->mac_type >= e1000_82543) { |
|
1036 netdev->features = NETIF_F_SG | |
|
1037 NETIF_F_HW_CSUM | |
|
1038 NETIF_F_HW_VLAN_TX | |
|
1039 NETIF_F_HW_VLAN_RX | |
|
1040 NETIF_F_HW_VLAN_FILTER; |
|
1041 if (hw->mac_type == e1000_ich8lan) |
|
1042 netdev->features &= ~NETIF_F_HW_VLAN_FILTER; |
|
1043 } |
|
1044 |
|
1045 if ((hw->mac_type >= e1000_82544) && |
|
1046 (hw->mac_type != e1000_82547)) |
|
1047 netdev->features |= NETIF_F_TSO; |
|
1048 |
|
1049 if (hw->mac_type > e1000_82547_rev_2) |
|
1050 netdev->features |= NETIF_F_TSO6; |
|
1051 if (pci_using_dac) |
|
1052 netdev->features |= NETIF_F_HIGHDMA; |
|
1053 |
|
1054 netdev->features |= NETIF_F_LLTX; |
|
1055 |
|
1056 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
|
1057 |
|
1058 /* initialize eeprom parameters */ |
|
1059 if (e1000_init_eeprom_params(hw)) { |
|
1060 E1000_ERR("EEPROM initialization failed\n"); |
|
1061 goto err_eeprom; |
|
1062 } |
|
1063 |
|
1064 /* before reading the EEPROM, reset the controller to |
|
1065 * put the device in a known good starting state */ |
|
1066 |
|
1067 e1000_reset_hw(hw); |
|
1068 |
|
1069 /* make sure the EEPROM is good */ |
|
1070 if (e1000_validate_eeprom_checksum(hw) < 0) { |
|
1071 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); |
|
1072 e1000_dump_eeprom(adapter); |
|
1073 /* |
|
1074 * set MAC address to all zeroes to invalidate and temporary |
|
1075 * disable this device for the user. This blocks regular |
|
1076 * traffic while still permitting ethtool ioctls from reaching |
|
1077 * the hardware as well as allowing the user to run the |
|
1078 * interface after manually setting a hw addr using |
|
1079 * `ip set address` |
|
1080 */ |
|
1081 memset(hw->mac_addr, 0, netdev->addr_len); |
|
1082 } else { |
|
1083 /* copy the MAC address out of the EEPROM */ |
|
1084 if (e1000_read_mac_addr(hw)) |
|
1085 DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); |
|
1086 } |
|
1087 /* don't block initalization here due to bad MAC address */ |
|
1088 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
|
1089 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); |
|
1090 |
|
1091 if (!is_valid_ether_addr(netdev->perm_addr)) |
|
1092 DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); |
|
1093 |
|
1094 e1000_get_bus_info(hw); |
|
1095 |
|
1096 init_timer(&adapter->tx_fifo_stall_timer); |
|
1097 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; |
|
1098 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; |
|
1099 |
|
1100 init_timer(&adapter->watchdog_timer); |
|
1101 adapter->watchdog_timer.function = &e1000_watchdog; |
|
1102 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
1103 |
|
1104 init_timer(&adapter->phy_info_timer); |
|
1105 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
1106 adapter->phy_info_timer.data = (unsigned long)adapter; |
|
1107 |
|
1108 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
1109 |
|
1110 e1000_check_options(adapter); |
|
1111 |
|
1112 /* Initial Wake on LAN setting |
|
1113 * If APM wake is enabled in the EEPROM, |
|
1114 * enable the ACPI Magic Packet filter |
|
1115 */ |
|
1116 |
|
1117 switch (hw->mac_type) { |
|
1118 case e1000_82542_rev2_0: |
|
1119 case e1000_82542_rev2_1: |
|
1120 case e1000_82543: |
|
1121 break; |
|
1122 case e1000_82544: |
|
1123 e1000_read_eeprom(hw, |
|
1124 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
|
1125 eeprom_apme_mask = E1000_EEPROM_82544_APM; |
|
1126 break; |
|
1127 case e1000_ich8lan: |
|
1128 e1000_read_eeprom(hw, |
|
1129 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); |
|
1130 eeprom_apme_mask = E1000_EEPROM_ICH8_APME; |
|
1131 break; |
|
1132 case e1000_82546: |
|
1133 case e1000_82546_rev_3: |
|
1134 case e1000_82571: |
|
1135 case e1000_80003es2lan: |
|
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
|
1137 e1000_read_eeprom(hw, |
|
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
1139 break; |
|
1140 } |
|
1141 /* Fall Through */ |
|
1142 default: |
|
1143 e1000_read_eeprom(hw, |
|
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
1145 break; |
|
1146 } |
|
1147 if (eeprom_data & eeprom_apme_mask) |
|
1148 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
1149 |
|
1150 /* now that we have the eeprom settings, apply the special cases |
|
1151 * where the eeprom may be wrong or the board simply won't support |
|
1152 * wake on lan on a particular port */ |
|
1153 switch (pdev->device) { |
|
1154 case E1000_DEV_ID_82546GB_PCIE: |
|
1155 adapter->eeprom_wol = 0; |
|
1156 break; |
|
1157 case E1000_DEV_ID_82546EB_FIBER: |
|
1158 case E1000_DEV_ID_82546GB_FIBER: |
|
1159 case E1000_DEV_ID_82571EB_FIBER: |
|
1160 /* Wake events only supported on port A for dual fiber |
|
1161 * regardless of eeprom setting */ |
|
1162 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
1163 adapter->eeprom_wol = 0; |
|
1164 break; |
|
1165 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1166 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
1167 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
1168 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
|
1169 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
1170 /* if quad port adapter, disable WoL on all but port A */ |
|
1171 if (global_quad_port_a != 0) |
|
1172 adapter->eeprom_wol = 0; |
|
1173 else |
|
1174 adapter->quad_port_a = 1; |
|
1175 /* Reset for multiple quad port adapters */ |
|
1176 if (++global_quad_port_a == 4) |
|
1177 global_quad_port_a = 0; |
|
1178 break; |
|
1179 } |
|
1180 |
|
1181 /* initialize the wol settings based on the eeprom settings */ |
|
1182 adapter->wol = adapter->eeprom_wol; |
|
1183 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1184 |
|
1185 /* print bus type/speed/width info */ |
|
1186 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", |
|
1187 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : |
|
1188 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), |
|
1189 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : |
|
1190 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : |
|
1191 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : |
|
1192 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : |
|
1193 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), |
|
1194 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : |
|
1195 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : |
|
1196 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : |
|
1197 "32-bit")); |
|
1198 |
|
1199 printk("%s\n", print_mac(mac, netdev->dev_addr)); |
|
1200 |
|
1201 if (hw->bus_type == e1000_bus_type_pci_express) { |
|
1202 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no " |
|
1203 "longer be supported by this driver in the future.\n", |
|
1204 pdev->vendor, pdev->device); |
|
1205 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" " |
|
1206 "driver instead.\n"); |
|
1207 } |
|
1208 |
|
1209 /* reset the hardware with the new settings */ |
|
1210 e1000_reset(adapter); |
|
1211 |
|
1212 /* If the controller is 82573 and f/w is AMT, do not set |
|
1213 * DRV_LOAD until the interface is up. For all other cases, |
|
1214 * let the f/w know that the h/w is now under the control |
|
1215 * of the driver. */ |
|
1216 if (hw->mac_type != e1000_82573 || |
|
1217 !e1000_check_mng_mode(hw)) |
|
1218 e1000_get_hw_control(adapter); |
|
1219 |
|
1220 /* tell the stack to leave us alone until e1000_open() is called */ |
|
1221 netif_carrier_off(netdev); |
|
1222 netif_stop_queue(netdev); |
|
1223 |
|
1224 strcpy(netdev->name, "eth%d"); |
|
1225 err = register_netdev(netdev); |
|
1226 if (err) |
|
1227 goto err_register; |
|
1228 |
|
1229 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); |
|
1230 |
|
1231 cards_found++; |
|
1232 return 0; |
|
1233 |
|
1234 err_register: |
|
1235 e1000_release_hw_control(adapter); |
|
1236 err_eeprom: |
|
1237 if (!e1000_check_phy_reset_block(hw)) |
|
1238 e1000_phy_hw_reset(hw); |
|
1239 |
|
1240 if (hw->flash_address) |
|
1241 iounmap(hw->flash_address); |
|
1242 err_flashmap: |
|
1243 for (i = 0; i < adapter->num_rx_queues; i++) |
|
1244 dev_put(&adapter->polling_netdev[i]); |
|
1245 |
|
1246 kfree(adapter->tx_ring); |
|
1247 kfree(adapter->rx_ring); |
|
1248 kfree(adapter->polling_netdev); |
|
1249 err_sw_init: |
|
1250 iounmap(hw->hw_addr); |
|
1251 err_ioremap: |
|
1252 free_netdev(netdev); |
|
1253 err_alloc_etherdev: |
|
1254 pci_release_selected_regions(pdev, bars); |
|
1255 err_pci_reg: |
|
1256 err_dma: |
|
1257 pci_disable_device(pdev); |
|
1258 return err; |
|
1259 } |
|
1260 |
|
1261 /** |
|
1262 * e1000_remove - Device Removal Routine |
|
1263 * @pdev: PCI device information struct |
|
1264 * |
|
1265 * e1000_remove is called by the PCI subsystem to alert the driver |
|
1266 * that it should release a PCI device. The could be caused by a |
|
1267 * Hot-Plug event, or because the driver is going to be removed from |
|
1268 * memory. |
|
1269 **/ |
|
1270 |
|
1271 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
1272 { |
|
1273 struct net_device *netdev = pci_get_drvdata(pdev); |
|
1274 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1275 struct e1000_hw *hw = &adapter->hw; |
|
1276 int i; |
|
1277 |
|
1278 cancel_work_sync(&adapter->reset_task); |
|
1279 |
|
1280 e1000_release_manageability(adapter); |
|
1281 |
|
1282 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
1283 * would have already happened in close and is redundant. */ |
|
1284 e1000_release_hw_control(adapter); |
|
1285 |
|
1286 for (i = 0; i < adapter->num_rx_queues; i++) |
|
1287 dev_put(&adapter->polling_netdev[i]); |
|
1288 |
|
1289 unregister_netdev(netdev); |
|
1290 |
|
1291 if (!e1000_check_phy_reset_block(hw)) |
|
1292 e1000_phy_hw_reset(hw); |
|
1293 |
|
1294 kfree(adapter->tx_ring); |
|
1295 kfree(adapter->rx_ring); |
|
1296 kfree(adapter->polling_netdev); |
|
1297 |
|
1298 iounmap(hw->hw_addr); |
|
1299 if (hw->flash_address) |
|
1300 iounmap(hw->flash_address); |
|
1301 pci_release_selected_regions(pdev, adapter->bars); |
|
1302 |
|
1303 free_netdev(netdev); |
|
1304 |
|
1305 pci_disable_device(pdev); |
|
1306 } |
|
1307 |
|
1308 /** |
|
1309 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
1310 * @adapter: board private structure to initialize |
|
1311 * |
|
1312 * e1000_sw_init initializes the Adapter private data structure. |
|
1313 * Fields are initialized based on PCI device information and |
|
1314 * OS network device settings (MTU size). |
|
1315 **/ |
|
1316 |
|
1317 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
1318 { |
|
1319 struct e1000_hw *hw = &adapter->hw; |
|
1320 struct net_device *netdev = adapter->netdev; |
|
1321 struct pci_dev *pdev = adapter->pdev; |
|
1322 int i; |
|
1323 |
|
1324 /* PCI config space info */ |
|
1325 |
|
1326 hw->vendor_id = pdev->vendor; |
|
1327 hw->device_id = pdev->device; |
|
1328 hw->subsystem_vendor_id = pdev->subsystem_vendor; |
|
1329 hw->subsystem_id = pdev->subsystem_device; |
|
1330 hw->revision_id = pdev->revision; |
|
1331 |
|
1332 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
|
1333 |
|
1334 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
1335 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; |
|
1336 hw->max_frame_size = netdev->mtu + |
|
1337 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
1338 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
|
1339 |
|
1340 /* identify the MAC */ |
|
1341 |
|
1342 if (e1000_set_mac_type(hw)) { |
|
1343 DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); |
|
1344 return -EIO; |
|
1345 } |
|
1346 |
|
1347 switch (hw->mac_type) { |
|
1348 default: |
|
1349 break; |
|
1350 case e1000_82541: |
|
1351 case e1000_82547: |
|
1352 case e1000_82541_rev_2: |
|
1353 case e1000_82547_rev_2: |
|
1354 hw->phy_init_script = 1; |
|
1355 break; |
|
1356 } |
|
1357 |
|
1358 e1000_set_media_type(hw); |
|
1359 |
|
1360 hw->wait_autoneg_complete = false; |
|
1361 hw->tbi_compatibility_en = true; |
|
1362 hw->adaptive_ifs = true; |
|
1363 |
|
1364 /* Copper options */ |
|
1365 |
|
1366 if (hw->media_type == e1000_media_type_copper) { |
|
1367 hw->mdix = AUTO_ALL_MODES; |
|
1368 hw->disable_polarity_correction = false; |
|
1369 hw->master_slave = E1000_MASTER_SLAVE; |
|
1370 } |
|
1371 |
|
1372 adapter->num_tx_queues = 1; |
|
1373 adapter->num_rx_queues = 1; |
|
1374 |
|
1375 if (e1000_alloc_queues(adapter)) { |
|
1376 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); |
|
1377 return -ENOMEM; |
|
1378 } |
|
1379 |
|
1380 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1381 adapter->polling_netdev[i].priv = adapter; |
|
1382 dev_hold(&adapter->polling_netdev[i]); |
|
1383 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); |
|
1384 } |
|
1385 spin_lock_init(&adapter->tx_queue_lock); |
|
1386 |
|
1387 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
1388 e1000_irq_disable(adapter); |
|
1389 |
|
1390 spin_lock_init(&adapter->stats_lock); |
|
1391 |
|
1392 set_bit(__E1000_DOWN, &adapter->flags); |
|
1393 |
|
1394 return 0; |
|
1395 } |
|
1396 |
|
1397 /** |
|
1398 * e1000_alloc_queues - Allocate memory for all rings |
|
1399 * @adapter: board private structure to initialize |
|
1400 * |
|
1401 * We allocate one ring per queue at run-time since we don't know the |
|
1402 * number of queues at compile-time. The polling_netdev array is |
|
1403 * intended for Multiqueue, but should work fine with a single queue. |
|
1404 **/ |
|
1405 |
|
1406 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1407 { |
|
1408 adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
|
1409 sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
1410 if (!adapter->tx_ring) |
|
1411 return -ENOMEM; |
|
1412 |
|
1413 adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
|
1414 sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
1415 if (!adapter->rx_ring) { |
|
1416 kfree(adapter->tx_ring); |
|
1417 return -ENOMEM; |
|
1418 } |
|
1419 |
|
1420 adapter->polling_netdev = kcalloc(adapter->num_rx_queues, |
|
1421 sizeof(struct net_device), |
|
1422 GFP_KERNEL); |
|
1423 if (!adapter->polling_netdev) { |
|
1424 kfree(adapter->tx_ring); |
|
1425 kfree(adapter->rx_ring); |
|
1426 return -ENOMEM; |
|
1427 } |
|
1428 |
|
1429 return E1000_SUCCESS; |
|
1430 } |
|
1431 |
|
1432 /** |
|
1433 * e1000_open - Called when a network interface is made active |
|
1434 * @netdev: network interface device structure |
|
1435 * |
|
1436 * Returns 0 on success, negative value on failure |
|
1437 * |
|
1438 * The open entry point is called when a network interface is made |
|
1439 * active by the system (IFF_UP). At this point all resources needed |
|
1440 * for transmit and receive operations are allocated, the interrupt |
|
1441 * handler is registered with the OS, the watchdog timer is started, |
|
1442 * and the stack is notified that the interface is ready. |
|
1443 **/ |
|
1444 |
|
1445 static int e1000_open(struct net_device *netdev) |
|
1446 { |
|
1447 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1448 struct e1000_hw *hw = &adapter->hw; |
|
1449 int err; |
|
1450 |
|
1451 /* disallow open during test */ |
|
1452 if (test_bit(__E1000_TESTING, &adapter->flags)) |
|
1453 return -EBUSY; |
|
1454 |
|
1455 /* allocate transmit descriptors */ |
|
1456 err = e1000_setup_all_tx_resources(adapter); |
|
1457 if (err) |
|
1458 goto err_setup_tx; |
|
1459 |
|
1460 /* allocate receive descriptors */ |
|
1461 err = e1000_setup_all_rx_resources(adapter); |
|
1462 if (err) |
|
1463 goto err_setup_rx; |
|
1464 |
|
1465 e1000_power_up_phy(adapter); |
|
1466 |
|
1467 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
1468 if ((hw->mng_cookie.status & |
|
1469 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
|
1470 e1000_update_mng_vlan(adapter); |
|
1471 } |
|
1472 |
|
1473 /* If AMT is enabled, let the firmware know that the network |
|
1474 * interface is now open */ |
|
1475 if (hw->mac_type == e1000_82573 && |
|
1476 e1000_check_mng_mode(hw)) |
|
1477 e1000_get_hw_control(adapter); |
|
1478 |
|
1479 /* before we allocate an interrupt, we must be ready to handle it. |
|
1480 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
1481 * as soon as we call pci_request_irq, so we have to setup our |
|
1482 * clean_rx handler before we do so. */ |
|
1483 e1000_configure(adapter); |
|
1484 |
|
1485 err = e1000_request_irq(adapter); |
|
1486 if (err) |
|
1487 goto err_req_irq; |
|
1488 |
|
1489 /* From here on the code is the same as e1000_up() */ |
|
1490 clear_bit(__E1000_DOWN, &adapter->flags); |
|
1491 |
|
1492 napi_enable(&adapter->napi); |
|
1493 |
|
1494 e1000_irq_enable(adapter); |
|
1495 |
|
1496 netif_start_queue(netdev); |
|
1497 |
|
1498 /* fire a link status change interrupt to start the watchdog */ |
|
1499 ew32(ICS, E1000_ICS_LSC); |
|
1500 |
|
1501 return E1000_SUCCESS; |
|
1502 |
|
1503 err_req_irq: |
|
1504 e1000_release_hw_control(adapter); |
|
1505 e1000_power_down_phy(adapter); |
|
1506 e1000_free_all_rx_resources(adapter); |
|
1507 err_setup_rx: |
|
1508 e1000_free_all_tx_resources(adapter); |
|
1509 err_setup_tx: |
|
1510 e1000_reset(adapter); |
|
1511 |
|
1512 return err; |
|
1513 } |
|
1514 |
|
1515 /** |
|
1516 * e1000_close - Disables a network interface |
|
1517 * @netdev: network interface device structure |
|
1518 * |
|
1519 * Returns 0, this is not allowed to fail |
|
1520 * |
|
1521 * The close entry point is called when an interface is de-activated |
|
1522 * by the OS. The hardware is still under the drivers control, but |
|
1523 * needs to be disabled. A global MAC reset is issued to stop the |
|
1524 * hardware, and all transmit and receive resources are freed. |
|
1525 **/ |
|
1526 |
|
1527 static int e1000_close(struct net_device *netdev) |
|
1528 { |
|
1529 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1530 struct e1000_hw *hw = &adapter->hw; |
|
1531 |
|
1532 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
1533 e1000_down(adapter); |
|
1534 e1000_power_down_phy(adapter); |
|
1535 e1000_free_irq(adapter); |
|
1536 |
|
1537 e1000_free_all_tx_resources(adapter); |
|
1538 e1000_free_all_rx_resources(adapter); |
|
1539 |
|
1540 /* kill manageability vlan ID if supported, but not if a vlan with |
|
1541 * the same ID is registered on the host OS (let 8021q kill it) */ |
|
1542 if ((hw->mng_cookie.status & |
|
1543 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
1544 !(adapter->vlgrp && |
|
1545 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { |
|
1546 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
1547 } |
|
1548 |
|
1549 /* If AMT is enabled, let the firmware know that the network |
|
1550 * interface is now closed */ |
|
1551 if (hw->mac_type == e1000_82573 && |
|
1552 e1000_check_mng_mode(hw)) |
|
1553 e1000_release_hw_control(adapter); |
|
1554 |
|
1555 return 0; |
|
1556 } |
|
1557 |
|
1558 /** |
|
1559 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
|
1560 * @adapter: address of board private structure |
|
1561 * @start: address of beginning of memory |
|
1562 * @len: length of memory |
|
1563 **/ |
|
1564 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
|
1565 unsigned long len) |
|
1566 { |
|
1567 struct e1000_hw *hw = &adapter->hw; |
|
1568 unsigned long begin = (unsigned long)start; |
|
1569 unsigned long end = begin + len; |
|
1570 |
|
1571 /* First rev 82545 and 82546 need to not allow any memory |
|
1572 * write location to cross 64k boundary due to errata 23 */ |
|
1573 if (hw->mac_type == e1000_82545 || |
|
1574 hw->mac_type == e1000_82546) { |
|
1575 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
|
1576 } |
|
1577 |
|
1578 return true; |
|
1579 } |
|
1580 |
|
1581 /** |
|
1582 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1583 * @adapter: board private structure |
|
1584 * @txdr: tx descriptor ring (for a specific queue) to setup |
|
1585 * |
|
1586 * Return 0 on success, negative on failure |
|
1587 **/ |
|
1588 |
|
1589 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
1590 struct e1000_tx_ring *txdr) |
|
1591 { |
|
1592 struct pci_dev *pdev = adapter->pdev; |
|
1593 int size; |
|
1594 |
|
1595 size = sizeof(struct e1000_buffer) * txdr->count; |
|
1596 txdr->buffer_info = vmalloc(size); |
|
1597 if (!txdr->buffer_info) { |
|
1598 DPRINTK(PROBE, ERR, |
|
1599 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1600 return -ENOMEM; |
|
1601 } |
|
1602 memset(txdr->buffer_info, 0, size); |
|
1603 |
|
1604 /* round up to nearest 4K */ |
|
1605 |
|
1606 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1607 txdr->size = ALIGN(txdr->size, 4096); |
|
1608 |
|
1609 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1610 if (!txdr->desc) { |
|
1611 setup_tx_desc_die: |
|
1612 vfree(txdr->buffer_info); |
|
1613 DPRINTK(PROBE, ERR, |
|
1614 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1615 return -ENOMEM; |
|
1616 } |
|
1617 |
|
1618 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1619 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1620 void *olddesc = txdr->desc; |
|
1621 dma_addr_t olddma = txdr->dma; |
|
1622 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " |
|
1623 "at %p\n", txdr->size, txdr->desc); |
|
1624 /* Try again, without freeing the previous */ |
|
1625 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1626 /* Failed allocation, critical failure */ |
|
1627 if (!txdr->desc) { |
|
1628 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1629 goto setup_tx_desc_die; |
|
1630 } |
|
1631 |
|
1632 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1633 /* give up */ |
|
1634 pci_free_consistent(pdev, txdr->size, txdr->desc, |
|
1635 txdr->dma); |
|
1636 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1637 DPRINTK(PROBE, ERR, |
|
1638 "Unable to allocate aligned memory " |
|
1639 "for the transmit descriptor ring\n"); |
|
1640 vfree(txdr->buffer_info); |
|
1641 return -ENOMEM; |
|
1642 } else { |
|
1643 /* Free old allocation, new allocation was successful */ |
|
1644 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1645 } |
|
1646 } |
|
1647 memset(txdr->desc, 0, txdr->size); |
|
1648 |
|
1649 txdr->next_to_use = 0; |
|
1650 txdr->next_to_clean = 0; |
|
1651 spin_lock_init(&txdr->tx_lock); |
|
1652 |
|
1653 return 0; |
|
1654 } |
|
1655 |
|
1656 /** |
|
1657 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
|
1658 * (Descriptors) for all queues |
|
1659 * @adapter: board private structure |
|
1660 * |
|
1661 * Return 0 on success, negative on failure |
|
1662 **/ |
|
1663 |
|
1664 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
|
1665 { |
|
1666 int i, err = 0; |
|
1667 |
|
1668 for (i = 0; i < adapter->num_tx_queues; i++) { |
|
1669 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1670 if (err) { |
|
1671 DPRINTK(PROBE, ERR, |
|
1672 "Allocation for Tx Queue %u failed\n", i); |
|
1673 for (i-- ; i >= 0; i--) |
|
1674 e1000_free_tx_resources(adapter, |
|
1675 &adapter->tx_ring[i]); |
|
1676 break; |
|
1677 } |
|
1678 } |
|
1679 |
|
1680 return err; |
|
1681 } |
|
1682 |
|
1683 /** |
|
1684 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
1685 * @adapter: board private structure |
|
1686 * |
|
1687 * Configure the Tx unit of the MAC after a reset. |
|
1688 **/ |
|
1689 |
|
1690 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
1691 { |
|
1692 u64 tdba; |
|
1693 struct e1000_hw *hw = &adapter->hw; |
|
1694 u32 tdlen, tctl, tipg, tarc; |
|
1695 u32 ipgr1, ipgr2; |
|
1696 |
|
1697 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
1698 |
|
1699 switch (adapter->num_tx_queues) { |
|
1700 case 1: |
|
1701 default: |
|
1702 tdba = adapter->tx_ring[0].dma; |
|
1703 tdlen = adapter->tx_ring[0].count * |
|
1704 sizeof(struct e1000_tx_desc); |
|
1705 ew32(TDLEN, tdlen); |
|
1706 ew32(TDBAH, (tdba >> 32)); |
|
1707 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
|
1708 ew32(TDT, 0); |
|
1709 ew32(TDH, 0); |
|
1710 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); |
|
1711 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); |
|
1712 break; |
|
1713 } |
|
1714 |
|
1715 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
1716 if (hw->mac_type <= e1000_82547_rev_2 && |
|
1717 (hw->media_type == e1000_media_type_fiber || |
|
1718 hw->media_type == e1000_media_type_internal_serdes)) |
|
1719 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
|
1720 else |
|
1721 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
|
1722 |
|
1723 switch (hw->mac_type) { |
|
1724 case e1000_82542_rev2_0: |
|
1725 case e1000_82542_rev2_1: |
|
1726 tipg = DEFAULT_82542_TIPG_IPGT; |
|
1727 ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
|
1728 ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
|
1729 break; |
|
1730 case e1000_80003es2lan: |
|
1731 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1732 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; |
|
1733 break; |
|
1734 default: |
|
1735 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1736 ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
|
1737 break; |
|
1738 } |
|
1739 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
1740 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
1741 ew32(TIPG, tipg); |
|
1742 |
|
1743 /* Set the Tx Interrupt Delay register */ |
|
1744 |
|
1745 ew32(TIDV, adapter->tx_int_delay); |
|
1746 if (hw->mac_type >= e1000_82540) |
|
1747 ew32(TADV, adapter->tx_abs_int_delay); |
|
1748 |
|
1749 /* Program the Transmit Control Register */ |
|
1750 |
|
1751 tctl = er32(TCTL); |
|
1752 tctl &= ~E1000_TCTL_CT; |
|
1753 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
1754 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
1755 |
|
1756 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { |
|
1757 tarc = er32(TARC0); |
|
1758 /* set the speed mode bit, we'll clear it if we're not at |
|
1759 * gigabit link later */ |
|
1760 tarc |= (1 << 21); |
|
1761 ew32(TARC0, tarc); |
|
1762 } else if (hw->mac_type == e1000_80003es2lan) { |
|
1763 tarc = er32(TARC0); |
|
1764 tarc |= 1; |
|
1765 ew32(TARC0, tarc); |
|
1766 tarc = er32(TARC1); |
|
1767 tarc |= 1; |
|
1768 ew32(TARC1, tarc); |
|
1769 } |
|
1770 |
|
1771 e1000_config_collision_dist(hw); |
|
1772 |
|
1773 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
1774 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
1775 |
|
1776 /* only set IDE if we are delaying interrupts using the timers */ |
|
1777 if (adapter->tx_int_delay) |
|
1778 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
1779 |
|
1780 if (hw->mac_type < e1000_82543) |
|
1781 adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
|
1782 else |
|
1783 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
1784 |
|
1785 /* Cache if we're 82544 running in PCI-X because we'll |
|
1786 * need this to apply a workaround later in the send path. */ |
|
1787 if (hw->mac_type == e1000_82544 && |
|
1788 hw->bus_type == e1000_bus_type_pcix) |
|
1789 adapter->pcix_82544 = 1; |
|
1790 |
|
1791 ew32(TCTL, tctl); |
|
1792 |
|
1793 } |
|
1794 |
|
1795 /** |
|
1796 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1797 * @adapter: board private structure |
|
1798 * @rxdr: rx descriptor ring (for a specific queue) to setup |
|
1799 * |
|
1800 * Returns 0 on success, negative on failure |
|
1801 **/ |
|
1802 |
|
1803 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
1804 struct e1000_rx_ring *rxdr) |
|
1805 { |
|
1806 struct e1000_hw *hw = &adapter->hw; |
|
1807 struct pci_dev *pdev = adapter->pdev; |
|
1808 int size, desc_len; |
|
1809 |
|
1810 size = sizeof(struct e1000_buffer) * rxdr->count; |
|
1811 rxdr->buffer_info = vmalloc(size); |
|
1812 if (!rxdr->buffer_info) { |
|
1813 DPRINTK(PROBE, ERR, |
|
1814 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1815 return -ENOMEM; |
|
1816 } |
|
1817 memset(rxdr->buffer_info, 0, size); |
|
1818 |
|
1819 rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page), |
|
1820 GFP_KERNEL); |
|
1821 if (!rxdr->ps_page) { |
|
1822 vfree(rxdr->buffer_info); |
|
1823 DPRINTK(PROBE, ERR, |
|
1824 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1825 return -ENOMEM; |
|
1826 } |
|
1827 |
|
1828 rxdr->ps_page_dma = kcalloc(rxdr->count, |
|
1829 sizeof(struct e1000_ps_page_dma), |
|
1830 GFP_KERNEL); |
|
1831 if (!rxdr->ps_page_dma) { |
|
1832 vfree(rxdr->buffer_info); |
|
1833 kfree(rxdr->ps_page); |
|
1834 DPRINTK(PROBE, ERR, |
|
1835 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1836 return -ENOMEM; |
|
1837 } |
|
1838 |
|
1839 if (hw->mac_type <= e1000_82547_rev_2) |
|
1840 desc_len = sizeof(struct e1000_rx_desc); |
|
1841 else |
|
1842 desc_len = sizeof(union e1000_rx_desc_packet_split); |
|
1843 |
|
1844 /* Round up to nearest 4K */ |
|
1845 |
|
1846 rxdr->size = rxdr->count * desc_len; |
|
1847 rxdr->size = ALIGN(rxdr->size, 4096); |
|
1848 |
|
1849 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1850 |
|
1851 if (!rxdr->desc) { |
|
1852 DPRINTK(PROBE, ERR, |
|
1853 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1854 setup_rx_desc_die: |
|
1855 vfree(rxdr->buffer_info); |
|
1856 kfree(rxdr->ps_page); |
|
1857 kfree(rxdr->ps_page_dma); |
|
1858 return -ENOMEM; |
|
1859 } |
|
1860 |
|
1861 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1862 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1863 void *olddesc = rxdr->desc; |
|
1864 dma_addr_t olddma = rxdr->dma; |
|
1865 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " |
|
1866 "at %p\n", rxdr->size, rxdr->desc); |
|
1867 /* Try again, without freeing the previous */ |
|
1868 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1869 /* Failed allocation, critical failure */ |
|
1870 if (!rxdr->desc) { |
|
1871 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1872 DPRINTK(PROBE, ERR, |
|
1873 "Unable to allocate memory " |
|
1874 "for the receive descriptor ring\n"); |
|
1875 goto setup_rx_desc_die; |
|
1876 } |
|
1877 |
|
1878 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1879 /* give up */ |
|
1880 pci_free_consistent(pdev, rxdr->size, rxdr->desc, |
|
1881 rxdr->dma); |
|
1882 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1883 DPRINTK(PROBE, ERR, |
|
1884 "Unable to allocate aligned memory " |
|
1885 "for the receive descriptor ring\n"); |
|
1886 goto setup_rx_desc_die; |
|
1887 } else { |
|
1888 /* Free old allocation, new allocation was successful */ |
|
1889 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1890 } |
|
1891 } |
|
1892 memset(rxdr->desc, 0, rxdr->size); |
|
1893 |
|
1894 rxdr->next_to_clean = 0; |
|
1895 rxdr->next_to_use = 0; |
|
1896 |
|
1897 return 0; |
|
1898 } |
|
1899 |
|
1900 /** |
|
1901 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
|
1902 * (Descriptors) for all queues |
|
1903 * @adapter: board private structure |
|
1904 * |
|
1905 * Return 0 on success, negative on failure |
|
1906 **/ |
|
1907 |
|
1908 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
|
1909 { |
|
1910 int i, err = 0; |
|
1911 |
|
1912 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1913 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1914 if (err) { |
|
1915 DPRINTK(PROBE, ERR, |
|
1916 "Allocation for Rx Queue %u failed\n", i); |
|
1917 for (i-- ; i >= 0; i--) |
|
1918 e1000_free_rx_resources(adapter, |
|
1919 &adapter->rx_ring[i]); |
|
1920 break; |
|
1921 } |
|
1922 } |
|
1923 |
|
1924 return err; |
|
1925 } |
|
1926 |
|
1927 /** |
|
1928 * e1000_setup_rctl - configure the receive control registers |
|
1929 * @adapter: Board private structure |
|
1930 **/ |
|
1931 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
|
1932 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
|
1933 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
1934 { |
|
1935 struct e1000_hw *hw = &adapter->hw; |
|
1936 u32 rctl, rfctl; |
|
1937 u32 psrctl = 0; |
|
1938 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT |
|
1939 u32 pages = 0; |
|
1940 #endif |
|
1941 |
|
1942 rctl = er32(RCTL); |
|
1943 |
|
1944 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
1945 |
|
1946 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
1947 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1948 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1949 |
|
1950 if (hw->tbi_compatibility_on == 1) |
|
1951 rctl |= E1000_RCTL_SBP; |
|
1952 else |
|
1953 rctl &= ~E1000_RCTL_SBP; |
|
1954 |
|
1955 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
1956 rctl &= ~E1000_RCTL_LPE; |
|
1957 else |
|
1958 rctl |= E1000_RCTL_LPE; |
|
1959 |
|
1960 /* Setup buffer sizes */ |
|
1961 rctl &= ~E1000_RCTL_SZ_4096; |
|
1962 rctl |= E1000_RCTL_BSEX; |
|
1963 switch (adapter->rx_buffer_len) { |
|
1964 case E1000_RXBUFFER_256: |
|
1965 rctl |= E1000_RCTL_SZ_256; |
|
1966 rctl &= ~E1000_RCTL_BSEX; |
|
1967 break; |
|
1968 case E1000_RXBUFFER_512: |
|
1969 rctl |= E1000_RCTL_SZ_512; |
|
1970 rctl &= ~E1000_RCTL_BSEX; |
|
1971 break; |
|
1972 case E1000_RXBUFFER_1024: |
|
1973 rctl |= E1000_RCTL_SZ_1024; |
|
1974 rctl &= ~E1000_RCTL_BSEX; |
|
1975 break; |
|
1976 case E1000_RXBUFFER_2048: |
|
1977 default: |
|
1978 rctl |= E1000_RCTL_SZ_2048; |
|
1979 rctl &= ~E1000_RCTL_BSEX; |
|
1980 break; |
|
1981 case E1000_RXBUFFER_4096: |
|
1982 rctl |= E1000_RCTL_SZ_4096; |
|
1983 break; |
|
1984 case E1000_RXBUFFER_8192: |
|
1985 rctl |= E1000_RCTL_SZ_8192; |
|
1986 break; |
|
1987 case E1000_RXBUFFER_16384: |
|
1988 rctl |= E1000_RCTL_SZ_16384; |
|
1989 break; |
|
1990 } |
|
1991 |
|
1992 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT |
|
1993 /* 82571 and greater support packet-split where the protocol |
|
1994 * header is placed in skb->data and the packet data is |
|
1995 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
|
1996 * In the case of a non-split, skb->data is linearly filled, |
|
1997 * followed by the page buffers. Therefore, skb->data is |
|
1998 * sized to hold the largest protocol header. |
|
1999 */ |
|
2000 /* allocations using alloc_page take too long for regular MTU |
|
2001 * so only enable packet split for jumbo frames */ |
|
2002 pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
|
2003 if ((hw->mac_type >= e1000_82571) && (pages <= 3) && |
|
2004 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE)) |
|
2005 adapter->rx_ps_pages = pages; |
|
2006 else |
|
2007 adapter->rx_ps_pages = 0; |
|
2008 #endif |
|
2009 if (adapter->rx_ps_pages) { |
|
2010 /* Configure extra packet-split registers */ |
|
2011 rfctl = er32(RFCTL); |
|
2012 rfctl |= E1000_RFCTL_EXTEN; |
|
2013 /* disable packet split support for IPv6 extension headers, |
|
2014 * because some malformed IPv6 headers can hang the RX */ |
|
2015 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
|
2016 E1000_RFCTL_NEW_IPV6_EXT_DIS); |
|
2017 |
|
2018 ew32(RFCTL, rfctl); |
|
2019 |
|
2020 rctl |= E1000_RCTL_DTYP_PS; |
|
2021 |
|
2022 psrctl |= adapter->rx_ps_bsize0 >> |
|
2023 E1000_PSRCTL_BSIZE0_SHIFT; |
|
2024 |
|
2025 switch (adapter->rx_ps_pages) { |
|
2026 case 3: |
|
2027 psrctl |= PAGE_SIZE << |
|
2028 E1000_PSRCTL_BSIZE3_SHIFT; |
|
2029 case 2: |
|
2030 psrctl |= PAGE_SIZE << |
|
2031 E1000_PSRCTL_BSIZE2_SHIFT; |
|
2032 case 1: |
|
2033 psrctl |= PAGE_SIZE >> |
|
2034 E1000_PSRCTL_BSIZE1_SHIFT; |
|
2035 break; |
|
2036 } |
|
2037 |
|
2038 ew32(PSRCTL, psrctl); |
|
2039 } |
|
2040 |
|
2041 ew32(RCTL, rctl); |
|
2042 } |
|
2043 |
|
2044 /** |
|
2045 * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
|
2046 * @adapter: board private structure |
|
2047 * |
|
2048 * Configure the Rx unit of the MAC after a reset. |
|
2049 **/ |
|
2050 |
|
2051 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
2052 { |
|
2053 u64 rdba; |
|
2054 struct e1000_hw *hw = &adapter->hw; |
|
2055 u32 rdlen, rctl, rxcsum, ctrl_ext; |
|
2056 |
|
2057 if (adapter->rx_ps_pages) { |
|
2058 /* this is a 32 byte descriptor */ |
|
2059 rdlen = adapter->rx_ring[0].count * |
|
2060 sizeof(union e1000_rx_desc_packet_split); |
|
2061 adapter->clean_rx = e1000_clean_rx_irq_ps; |
|
2062 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
|
2063 } else { |
|
2064 rdlen = adapter->rx_ring[0].count * |
|
2065 sizeof(struct e1000_rx_desc); |
|
2066 adapter->clean_rx = e1000_clean_rx_irq; |
|
2067 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
2068 } |
|
2069 |
|
2070 /* disable receives while setting up the descriptors */ |
|
2071 rctl = er32(RCTL); |
|
2072 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
2073 |
|
2074 /* set the Receive Delay Timer Register */ |
|
2075 ew32(RDTR, adapter->rx_int_delay); |
|
2076 |
|
2077 if (hw->mac_type >= e1000_82540) { |
|
2078 ew32(RADV, adapter->rx_abs_int_delay); |
|
2079 if (adapter->itr_setting != 0) |
|
2080 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
2081 } |
|
2082 |
|
2083 if (hw->mac_type >= e1000_82571) { |
|
2084 ctrl_ext = er32(CTRL_EXT); |
|
2085 /* Reset delay timers after every interrupt */ |
|
2086 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
|
2087 /* Auto-Mask interrupts upon ICR access */ |
|
2088 ctrl_ext |= E1000_CTRL_EXT_IAME; |
|
2089 ew32(IAM, 0xffffffff); |
|
2090 ew32(CTRL_EXT, ctrl_ext); |
|
2091 E1000_WRITE_FLUSH(); |
|
2092 } |
|
2093 |
|
2094 /* Setup the HW Rx Head and Tail Descriptor Pointers and |
|
2095 * the Base and Length of the Rx Descriptor Ring */ |
|
2096 switch (adapter->num_rx_queues) { |
|
2097 case 1: |
|
2098 default: |
|
2099 rdba = adapter->rx_ring[0].dma; |
|
2100 ew32(RDLEN, rdlen); |
|
2101 ew32(RDBAH, (rdba >> 32)); |
|
2102 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
|
2103 ew32(RDT, 0); |
|
2104 ew32(RDH, 0); |
|
2105 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); |
|
2106 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); |
|
2107 break; |
|
2108 } |
|
2109 |
|
2110 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
|
2111 if (hw->mac_type >= e1000_82543) { |
|
2112 rxcsum = er32(RXCSUM); |
|
2113 if (adapter->rx_csum) { |
|
2114 rxcsum |= E1000_RXCSUM_TUOFL; |
|
2115 |
|
2116 /* Enable 82571 IPv4 payload checksum for UDP fragments |
|
2117 * Must be used in conjunction with packet-split. */ |
|
2118 if ((hw->mac_type >= e1000_82571) && |
|
2119 (adapter->rx_ps_pages)) { |
|
2120 rxcsum |= E1000_RXCSUM_IPPCSE; |
|
2121 } |
|
2122 } else { |
|
2123 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
2124 /* don't need to clear IPPCSE as it defaults to 0 */ |
|
2125 } |
|
2126 ew32(RXCSUM, rxcsum); |
|
2127 } |
|
2128 |
|
2129 /* enable early receives on 82573, only takes effect if using > 2048 |
|
2130 * byte total frame size. for example only for jumbo frames */ |
|
2131 #define E1000_ERT_2048 0x100 |
|
2132 if (hw->mac_type == e1000_82573) |
|
2133 ew32(ERT, E1000_ERT_2048); |
|
2134 |
|
2135 /* Enable Receives */ |
|
2136 ew32(RCTL, rctl); |
|
2137 } |
|
2138 |
|
2139 /** |
|
2140 * e1000_free_tx_resources - Free Tx Resources per Queue |
|
2141 * @adapter: board private structure |
|
2142 * @tx_ring: Tx descriptor ring for a specific queue |
|
2143 * |
|
2144 * Free all transmit software resources |
|
2145 **/ |
|
2146 |
|
2147 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
2148 struct e1000_tx_ring *tx_ring) |
|
2149 { |
|
2150 struct pci_dev *pdev = adapter->pdev; |
|
2151 |
|
2152 e1000_clean_tx_ring(adapter, tx_ring); |
|
2153 |
|
2154 vfree(tx_ring->buffer_info); |
|
2155 tx_ring->buffer_info = NULL; |
|
2156 |
|
2157 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); |
|
2158 |
|
2159 tx_ring->desc = NULL; |
|
2160 } |
|
2161 |
|
2162 /** |
|
2163 * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
|
2164 * @adapter: board private structure |
|
2165 * |
|
2166 * Free all transmit software resources |
|
2167 **/ |
|
2168 |
|
2169 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
|
2170 { |
|
2171 int i; |
|
2172 |
|
2173 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2174 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
|
2175 } |
|
2176 |
|
2177 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
|
2178 struct e1000_buffer *buffer_info) |
|
2179 { |
|
2180 if (buffer_info->dma) { |
|
2181 pci_unmap_page(adapter->pdev, |
|
2182 buffer_info->dma, |
|
2183 buffer_info->length, |
|
2184 PCI_DMA_TODEVICE); |
|
2185 buffer_info->dma = 0; |
|
2186 } |
|
2187 if (buffer_info->skb) { |
|
2188 dev_kfree_skb_any(buffer_info->skb); |
|
2189 buffer_info->skb = NULL; |
|
2190 } |
|
2191 /* buffer_info must be completely set up in the transmit path */ |
|
2192 } |
|
2193 |
|
2194 /** |
|
2195 * e1000_clean_tx_ring - Free Tx Buffers |
|
2196 * @adapter: board private structure |
|
2197 * @tx_ring: ring to be cleaned |
|
2198 **/ |
|
2199 |
|
2200 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
2201 struct e1000_tx_ring *tx_ring) |
|
2202 { |
|
2203 struct e1000_hw *hw = &adapter->hw; |
|
2204 struct e1000_buffer *buffer_info; |
|
2205 unsigned long size; |
|
2206 unsigned int i; |
|
2207 |
|
2208 /* Free all the Tx ring sk_buffs */ |
|
2209 |
|
2210 for (i = 0; i < tx_ring->count; i++) { |
|
2211 buffer_info = &tx_ring->buffer_info[i]; |
|
2212 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
2213 } |
|
2214 |
|
2215 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
2216 memset(tx_ring->buffer_info, 0, size); |
|
2217 |
|
2218 /* Zero out the descriptor ring */ |
|
2219 |
|
2220 memset(tx_ring->desc, 0, tx_ring->size); |
|
2221 |
|
2222 tx_ring->next_to_use = 0; |
|
2223 tx_ring->next_to_clean = 0; |
|
2224 tx_ring->last_tx_tso = 0; |
|
2225 |
|
2226 writel(0, hw->hw_addr + tx_ring->tdh); |
|
2227 writel(0, hw->hw_addr + tx_ring->tdt); |
|
2228 } |
|
2229 |
|
2230 /** |
|
2231 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
|
2232 * @adapter: board private structure |
|
2233 **/ |
|
2234 |
|
2235 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
|
2236 { |
|
2237 int i; |
|
2238 |
|
2239 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2240 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
|
2241 } |
|
2242 |
|
2243 /** |
|
2244 * e1000_free_rx_resources - Free Rx Resources |
|
2245 * @adapter: board private structure |
|
2246 * @rx_ring: ring to clean the resources from |
|
2247 * |
|
2248 * Free all receive software resources |
|
2249 **/ |
|
2250 |
|
2251 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
2252 struct e1000_rx_ring *rx_ring) |
|
2253 { |
|
2254 struct pci_dev *pdev = adapter->pdev; |
|
2255 |
|
2256 e1000_clean_rx_ring(adapter, rx_ring); |
|
2257 |
|
2258 vfree(rx_ring->buffer_info); |
|
2259 rx_ring->buffer_info = NULL; |
|
2260 kfree(rx_ring->ps_page); |
|
2261 rx_ring->ps_page = NULL; |
|
2262 kfree(rx_ring->ps_page_dma); |
|
2263 rx_ring->ps_page_dma = NULL; |
|
2264 |
|
2265 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
|
2266 |
|
2267 rx_ring->desc = NULL; |
|
2268 } |
|
2269 |
|
2270 /** |
|
2271 * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
|
2272 * @adapter: board private structure |
|
2273 * |
|
2274 * Free all receive software resources |
|
2275 **/ |
|
2276 |
|
2277 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
|
2278 { |
|
2279 int i; |
|
2280 |
|
2281 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2282 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
|
2283 } |
|
2284 |
|
2285 /** |
|
2286 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
2287 * @adapter: board private structure |
|
2288 * @rx_ring: ring to free buffers from |
|
2289 **/ |
|
2290 |
|
2291 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
2292 struct e1000_rx_ring *rx_ring) |
|
2293 { |
|
2294 struct e1000_hw *hw = &adapter->hw; |
|
2295 struct e1000_buffer *buffer_info; |
|
2296 struct e1000_ps_page *ps_page; |
|
2297 struct e1000_ps_page_dma *ps_page_dma; |
|
2298 struct pci_dev *pdev = adapter->pdev; |
|
2299 unsigned long size; |
|
2300 unsigned int i, j; |
|
2301 |
|
2302 /* Free all the Rx ring sk_buffs */ |
|
2303 for (i = 0; i < rx_ring->count; i++) { |
|
2304 buffer_info = &rx_ring->buffer_info[i]; |
|
2305 if (buffer_info->skb) { |
|
2306 pci_unmap_single(pdev, |
|
2307 buffer_info->dma, |
|
2308 buffer_info->length, |
|
2309 PCI_DMA_FROMDEVICE); |
|
2310 |
|
2311 dev_kfree_skb(buffer_info->skb); |
|
2312 buffer_info->skb = NULL; |
|
2313 } |
|
2314 ps_page = &rx_ring->ps_page[i]; |
|
2315 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
2316 for (j = 0; j < adapter->rx_ps_pages; j++) { |
|
2317 if (!ps_page->ps_page[j]) break; |
|
2318 pci_unmap_page(pdev, |
|
2319 ps_page_dma->ps_page_dma[j], |
|
2320 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
2321 ps_page_dma->ps_page_dma[j] = 0; |
|
2322 put_page(ps_page->ps_page[j]); |
|
2323 ps_page->ps_page[j] = NULL; |
|
2324 } |
|
2325 } |
|
2326 |
|
2327 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
2328 memset(rx_ring->buffer_info, 0, size); |
|
2329 size = sizeof(struct e1000_ps_page) * rx_ring->count; |
|
2330 memset(rx_ring->ps_page, 0, size); |
|
2331 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; |
|
2332 memset(rx_ring->ps_page_dma, 0, size); |
|
2333 |
|
2334 /* Zero out the descriptor ring */ |
|
2335 |
|
2336 memset(rx_ring->desc, 0, rx_ring->size); |
|
2337 |
|
2338 rx_ring->next_to_clean = 0; |
|
2339 rx_ring->next_to_use = 0; |
|
2340 |
|
2341 writel(0, hw->hw_addr + rx_ring->rdh); |
|
2342 writel(0, hw->hw_addr + rx_ring->rdt); |
|
2343 } |
|
2344 |
|
2345 /** |
|
2346 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
|
2347 * @adapter: board private structure |
|
2348 **/ |
|
2349 |
|
2350 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
|
2351 { |
|
2352 int i; |
|
2353 |
|
2354 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2355 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
|
2356 } |
|
2357 |
|
2358 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
|
2359 * and memory write and invalidate disabled for certain operations |
|
2360 */ |
|
2361 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
|
2362 { |
|
2363 struct e1000_hw *hw = &adapter->hw; |
|
2364 struct net_device *netdev = adapter->netdev; |
|
2365 u32 rctl; |
|
2366 |
|
2367 e1000_pci_clear_mwi(hw); |
|
2368 |
|
2369 rctl = er32(RCTL); |
|
2370 rctl |= E1000_RCTL_RST; |
|
2371 ew32(RCTL, rctl); |
|
2372 E1000_WRITE_FLUSH(); |
|
2373 mdelay(5); |
|
2374 |
|
2375 if (netif_running(netdev)) |
|
2376 e1000_clean_all_rx_rings(adapter); |
|
2377 } |
|
2378 |
|
2379 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
|
2380 { |
|
2381 struct e1000_hw *hw = &adapter->hw; |
|
2382 struct net_device *netdev = adapter->netdev; |
|
2383 u32 rctl; |
|
2384 |
|
2385 rctl = er32(RCTL); |
|
2386 rctl &= ~E1000_RCTL_RST; |
|
2387 ew32(RCTL, rctl); |
|
2388 E1000_WRITE_FLUSH(); |
|
2389 mdelay(5); |
|
2390 |
|
2391 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
2392 e1000_pci_set_mwi(hw); |
|
2393 |
|
2394 if (netif_running(netdev)) { |
|
2395 /* No need to loop, because 82542 supports only 1 queue */ |
|
2396 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
|
2397 e1000_configure_rx(adapter); |
|
2398 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
|
2399 } |
|
2400 } |
|
2401 |
|
2402 /** |
|
2403 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
2404 * @netdev: network interface device structure |
|
2405 * @p: pointer to an address structure |
|
2406 * |
|
2407 * Returns 0 on success, negative on failure |
|
2408 **/ |
|
2409 |
|
2410 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
2411 { |
|
2412 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2413 struct e1000_hw *hw = &adapter->hw; |
|
2414 struct sockaddr *addr = p; |
|
2415 |
|
2416 if (!is_valid_ether_addr(addr->sa_data)) |
|
2417 return -EADDRNOTAVAIL; |
|
2418 |
|
2419 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2420 |
|
2421 if (hw->mac_type == e1000_82542_rev2_0) |
|
2422 e1000_enter_82542_rst(adapter); |
|
2423 |
|
2424 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2425 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
|
2426 |
|
2427 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2428 |
|
2429 /* With 82571 controllers, LAA may be overwritten (with the default) |
|
2430 * due to controller reset from the other port. */ |
|
2431 if (hw->mac_type == e1000_82571) { |
|
2432 /* activate the work around */ |
|
2433 hw->laa_is_present = 1; |
|
2434 |
|
2435 /* Hold a copy of the LAA in RAR[14] This is done so that |
|
2436 * between the time RAR[0] gets clobbered and the time it |
|
2437 * gets fixed (in e1000_watchdog), the actual LAA is in one |
|
2438 * of the RARs and no incoming packets directed to this port |
|
2439 * are dropped. Eventaully the LAA will be in RAR[0] and |
|
2440 * RAR[14] */ |
|
2441 e1000_rar_set(hw, hw->mac_addr, |
|
2442 E1000_RAR_ENTRIES - 1); |
|
2443 } |
|
2444 |
|
2445 if (hw->mac_type == e1000_82542_rev2_0) |
|
2446 e1000_leave_82542_rst(adapter); |
|
2447 |
|
2448 return 0; |
|
2449 } |
|
2450 |
|
2451 /** |
|
2452 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
|
2453 * @netdev: network interface device structure |
|
2454 * |
|
2455 * The set_rx_mode entry point is called whenever the unicast or multicast |
|
2456 * address lists or the network interface flags are updated. This routine is |
|
2457 * responsible for configuring the hardware for proper unicast, multicast, |
|
2458 * promiscuous mode, and all-multi behavior. |
|
2459 **/ |
|
2460 |
|
2461 static void e1000_set_rx_mode(struct net_device *netdev) |
|
2462 { |
|
2463 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2464 struct e1000_hw *hw = &adapter->hw; |
|
2465 struct dev_addr_list *uc_ptr; |
|
2466 struct dev_addr_list *mc_ptr; |
|
2467 u32 rctl; |
|
2468 u32 hash_value; |
|
2469 int i, rar_entries = E1000_RAR_ENTRIES; |
|
2470 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? |
|
2471 E1000_NUM_MTA_REGISTERS_ICH8LAN : |
|
2472 E1000_NUM_MTA_REGISTERS; |
|
2473 |
|
2474 if (hw->mac_type == e1000_ich8lan) |
|
2475 rar_entries = E1000_RAR_ENTRIES_ICH8LAN; |
|
2476 |
|
2477 /* reserve RAR[14] for LAA over-write work-around */ |
|
2478 if (hw->mac_type == e1000_82571) |
|
2479 rar_entries--; |
|
2480 |
|
2481 /* Check for Promiscuous and All Multicast modes */ |
|
2482 |
|
2483 rctl = er32(RCTL); |
|
2484 |
|
2485 if (netdev->flags & IFF_PROMISC) { |
|
2486 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2487 rctl &= ~E1000_RCTL_VFE; |
|
2488 } else { |
|
2489 if (netdev->flags & IFF_ALLMULTI) { |
|
2490 rctl |= E1000_RCTL_MPE; |
|
2491 } else { |
|
2492 rctl &= ~E1000_RCTL_MPE; |
|
2493 } |
|
2494 if (adapter->hw.mac_type != e1000_ich8lan) |
|
2495 rctl |= E1000_RCTL_VFE; |
|
2496 } |
|
2497 |
|
2498 uc_ptr = NULL; |
|
2499 if (netdev->uc_count > rar_entries - 1) { |
|
2500 rctl |= E1000_RCTL_UPE; |
|
2501 } else if (!(netdev->flags & IFF_PROMISC)) { |
|
2502 rctl &= ~E1000_RCTL_UPE; |
|
2503 uc_ptr = netdev->uc_list; |
|
2504 } |
|
2505 |
|
2506 ew32(RCTL, rctl); |
|
2507 |
|
2508 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2509 |
|
2510 if (hw->mac_type == e1000_82542_rev2_0) |
|
2511 e1000_enter_82542_rst(adapter); |
|
2512 |
|
2513 /* load the first 14 addresses into the exact filters 1-14. Unicast |
|
2514 * addresses take precedence to avoid disabling unicast filtering |
|
2515 * when possible. |
|
2516 * |
|
2517 * RAR 0 is used for the station MAC adddress |
|
2518 * if there are not 14 addresses, go ahead and clear the filters |
|
2519 * -- with 82571 controllers only 0-13 entries are filled here |
|
2520 */ |
|
2521 mc_ptr = netdev->mc_list; |
|
2522 |
|
2523 for (i = 1; i < rar_entries; i++) { |
|
2524 if (uc_ptr) { |
|
2525 e1000_rar_set(hw, uc_ptr->da_addr, i); |
|
2526 uc_ptr = uc_ptr->next; |
|
2527 } else if (mc_ptr) { |
|
2528 e1000_rar_set(hw, mc_ptr->da_addr, i); |
|
2529 mc_ptr = mc_ptr->next; |
|
2530 } else { |
|
2531 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
|
2532 E1000_WRITE_FLUSH(); |
|
2533 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
|
2534 E1000_WRITE_FLUSH(); |
|
2535 } |
|
2536 } |
|
2537 WARN_ON(uc_ptr != NULL); |
|
2538 |
|
2539 /* clear the old settings from the multicast hash table */ |
|
2540 |
|
2541 for (i = 0; i < mta_reg_count; i++) { |
|
2542 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
|
2543 E1000_WRITE_FLUSH(); |
|
2544 } |
|
2545 |
|
2546 /* load any remaining addresses into the hash table */ |
|
2547 |
|
2548 for (; mc_ptr; mc_ptr = mc_ptr->next) { |
|
2549 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr); |
|
2550 e1000_mta_set(hw, hash_value); |
|
2551 } |
|
2552 |
|
2553 if (hw->mac_type == e1000_82542_rev2_0) |
|
2554 e1000_leave_82542_rst(adapter); |
|
2555 } |
|
2556 |
|
2557 /* Need to wait a few seconds after link up to get diagnostic information from |
|
2558 * the phy */ |
|
2559 |
|
2560 static void e1000_update_phy_info(unsigned long data) |
|
2561 { |
|
2562 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2563 struct e1000_hw *hw = &adapter->hw; |
|
2564 e1000_phy_get_info(hw, &adapter->phy_info); |
|
2565 } |
|
2566 |
|
2567 /** |
|
2568 * e1000_82547_tx_fifo_stall - Timer Call-back |
|
2569 * @data: pointer to adapter cast into an unsigned long |
|
2570 **/ |
|
2571 |
|
2572 static void e1000_82547_tx_fifo_stall(unsigned long data) |
|
2573 { |
|
2574 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2575 struct e1000_hw *hw = &adapter->hw; |
|
2576 struct net_device *netdev = adapter->netdev; |
|
2577 u32 tctl; |
|
2578 |
|
2579 if (atomic_read(&adapter->tx_fifo_stall)) { |
|
2580 if ((er32(TDT) == er32(TDH)) && |
|
2581 (er32(TDFT) == er32(TDFH)) && |
|
2582 (er32(TDFTS) == er32(TDFHS))) { |
|
2583 tctl = er32(TCTL); |
|
2584 ew32(TCTL, tctl & ~E1000_TCTL_EN); |
|
2585 ew32(TDFT, adapter->tx_head_addr); |
|
2586 ew32(TDFH, adapter->tx_head_addr); |
|
2587 ew32(TDFTS, adapter->tx_head_addr); |
|
2588 ew32(TDFHS, adapter->tx_head_addr); |
|
2589 ew32(TCTL, tctl); |
|
2590 E1000_WRITE_FLUSH(); |
|
2591 |
|
2592 adapter->tx_fifo_head = 0; |
|
2593 atomic_set(&adapter->tx_fifo_stall, 0); |
|
2594 netif_wake_queue(netdev); |
|
2595 } else { |
|
2596 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
2597 } |
|
2598 } |
|
2599 } |
|
2600 |
|
2601 /** |
|
2602 * e1000_watchdog - Timer Call-back |
|
2603 * @data: pointer to adapter cast into an unsigned long |
|
2604 **/ |
|
2605 static void e1000_watchdog(unsigned long data) |
|
2606 { |
|
2607 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2608 struct e1000_hw *hw = &adapter->hw; |
|
2609 struct net_device *netdev = adapter->netdev; |
|
2610 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
2611 u32 link, tctl; |
|
2612 s32 ret_val; |
|
2613 |
|
2614 ret_val = e1000_check_for_link(hw); |
|
2615 if ((ret_val == E1000_ERR_PHY) && |
|
2616 (hw->phy_type == e1000_phy_igp_3) && |
|
2617 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
|
2618 /* See e1000_kumeran_lock_loss_workaround() */ |
|
2619 DPRINTK(LINK, INFO, |
|
2620 "Gigabit has been disabled, downgrading speed\n"); |
|
2621 } |
|
2622 |
|
2623 if (hw->mac_type == e1000_82573) { |
|
2624 e1000_enable_tx_pkt_filtering(hw); |
|
2625 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id) |
|
2626 e1000_update_mng_vlan(adapter); |
|
2627 } |
|
2628 |
|
2629 if ((hw->media_type == e1000_media_type_internal_serdes) && |
|
2630 !(er32(TXCW) & E1000_TXCW_ANE)) |
|
2631 link = !hw->serdes_link_down; |
|
2632 else |
|
2633 link = er32(STATUS) & E1000_STATUS_LU; |
|
2634 |
|
2635 if (link) { |
|
2636 if (!netif_carrier_ok(netdev)) { |
|
2637 u32 ctrl; |
|
2638 bool txb2b = true; |
|
2639 e1000_get_speed_and_duplex(hw, |
|
2640 &adapter->link_speed, |
|
2641 &adapter->link_duplex); |
|
2642 |
|
2643 ctrl = er32(CTRL); |
|
2644 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, " |
|
2645 "Flow Control: %s\n", |
|
2646 adapter->link_speed, |
|
2647 adapter->link_duplex == FULL_DUPLEX ? |
|
2648 "Full Duplex" : "Half Duplex", |
|
2649 ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
|
2650 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
|
2651 E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
|
2652 E1000_CTRL_TFCE) ? "TX" : "None" ))); |
|
2653 |
|
2654 /* tweak tx_queue_len according to speed/duplex |
|
2655 * and adjust the timeout factor */ |
|
2656 netdev->tx_queue_len = adapter->tx_queue_len; |
|
2657 adapter->tx_timeout_factor = 1; |
|
2658 switch (adapter->link_speed) { |
|
2659 case SPEED_10: |
|
2660 txb2b = false; |
|
2661 netdev->tx_queue_len = 10; |
|
2662 adapter->tx_timeout_factor = 8; |
|
2663 break; |
|
2664 case SPEED_100: |
|
2665 txb2b = false; |
|
2666 netdev->tx_queue_len = 100; |
|
2667 /* maybe add some timeout factor ? */ |
|
2668 break; |
|
2669 } |
|
2670 |
|
2671 if ((hw->mac_type == e1000_82571 || |
|
2672 hw->mac_type == e1000_82572) && |
|
2673 !txb2b) { |
|
2674 u32 tarc0; |
|
2675 tarc0 = er32(TARC0); |
|
2676 tarc0 &= ~(1 << 21); |
|
2677 ew32(TARC0, tarc0); |
|
2678 } |
|
2679 |
|
2680 /* disable TSO for pcie and 10/100 speeds, to avoid |
|
2681 * some hardware issues */ |
|
2682 if (!adapter->tso_force && |
|
2683 hw->bus_type == e1000_bus_type_pci_express){ |
|
2684 switch (adapter->link_speed) { |
|
2685 case SPEED_10: |
|
2686 case SPEED_100: |
|
2687 DPRINTK(PROBE,INFO, |
|
2688 "10/100 speed: disabling TSO\n"); |
|
2689 netdev->features &= ~NETIF_F_TSO; |
|
2690 netdev->features &= ~NETIF_F_TSO6; |
|
2691 break; |
|
2692 case SPEED_1000: |
|
2693 netdev->features |= NETIF_F_TSO; |
|
2694 netdev->features |= NETIF_F_TSO6; |
|
2695 break; |
|
2696 default: |
|
2697 /* oops */ |
|
2698 break; |
|
2699 } |
|
2700 } |
|
2701 |
|
2702 /* enable transmits in the hardware, need to do this |
|
2703 * after setting TARC0 */ |
|
2704 tctl = er32(TCTL); |
|
2705 tctl |= E1000_TCTL_EN; |
|
2706 ew32(TCTL, tctl); |
|
2707 |
|
2708 netif_carrier_on(netdev); |
|
2709 netif_wake_queue(netdev); |
|
2710 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2711 adapter->smartspeed = 0; |
|
2712 } else { |
|
2713 /* make sure the receive unit is started */ |
|
2714 if (hw->rx_needs_kicking) { |
|
2715 u32 rctl = er32(RCTL); |
|
2716 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
2717 } |
|
2718 } |
|
2719 } else { |
|
2720 if (netif_carrier_ok(netdev)) { |
|
2721 adapter->link_speed = 0; |
|
2722 adapter->link_duplex = 0; |
|
2723 DPRINTK(LINK, INFO, "NIC Link is Down\n"); |
|
2724 netif_carrier_off(netdev); |
|
2725 netif_stop_queue(netdev); |
|
2726 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2727 |
|
2728 /* 80003ES2LAN workaround-- |
|
2729 * For packet buffer work-around on link down event; |
|
2730 * disable receives in the ISR and |
|
2731 * reset device here in the watchdog |
|
2732 */ |
|
2733 if (hw->mac_type == e1000_80003es2lan) |
|
2734 /* reset device */ |
|
2735 schedule_work(&adapter->reset_task); |
|
2736 } |
|
2737 |
|
2738 e1000_smartspeed(adapter); |
|
2739 } |
|
2740 |
|
2741 e1000_update_stats(adapter); |
|
2742 |
|
2743 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
2744 adapter->tpt_old = adapter->stats.tpt; |
|
2745 hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
2746 adapter->colc_old = adapter->stats.colc; |
|
2747 |
|
2748 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
|
2749 adapter->gorcl_old = adapter->stats.gorcl; |
|
2750 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
|
2751 adapter->gotcl_old = adapter->stats.gotcl; |
|
2752 |
|
2753 e1000_update_adaptive(hw); |
|
2754 |
|
2755 if (!netif_carrier_ok(netdev)) { |
|
2756 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
|
2757 /* We've lost link, so the controller stops DMA, |
|
2758 * but we've got queued Tx work that's never going |
|
2759 * to get done, so reset controller to flush Tx. |
|
2760 * (Do the reset outside of interrupt context). */ |
|
2761 adapter->tx_timeout_count++; |
|
2762 schedule_work(&adapter->reset_task); |
|
2763 } |
|
2764 } |
|
2765 |
|
2766 /* Cause software interrupt to ensure rx ring is cleaned */ |
|
2767 ew32(ICS, E1000_ICS_RXDMT0); |
|
2768 |
|
2769 /* Force detection of hung controller every watchdog period */ |
|
2770 adapter->detect_tx_hung = true; |
|
2771 |
|
2772 /* With 82571 controllers, LAA may be overwritten due to controller |
|
2773 * reset from the other port. Set the appropriate LAA in RAR[0] */ |
|
2774 if (hw->mac_type == e1000_82571 && hw->laa_is_present) |
|
2775 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2776 |
|
2777 /* Reset the timer */ |
|
2778 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2779 } |
|
2780 |
|
2781 enum latency_range { |
|
2782 lowest_latency = 0, |
|
2783 low_latency = 1, |
|
2784 bulk_latency = 2, |
|
2785 latency_invalid = 255 |
|
2786 }; |
|
2787 |
|
2788 /** |
|
2789 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2790 * Stores a new ITR value based on packets and byte |
|
2791 * counts during the last interrupt. The advantage of per interrupt |
|
2792 * computation is faster updates and more accurate ITR for the current |
|
2793 * traffic pattern. Constants in this function were computed |
|
2794 * based on theoretical maximum wire speed and thresholds were set based |
|
2795 * on testing data as well as attempting to minimize response time |
|
2796 * while increasing bulk throughput. |
|
2797 * this functionality is controlled by the InterruptThrottleRate module |
|
2798 * parameter (see e1000_param.c) |
|
2799 * @adapter: pointer to adapter |
|
2800 * @itr_setting: current adapter->itr |
|
2801 * @packets: the number of packets during this measurement interval |
|
2802 * @bytes: the number of bytes during this measurement interval |
|
2803 **/ |
|
2804 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2805 u16 itr_setting, int packets, int bytes) |
|
2806 { |
|
2807 unsigned int retval = itr_setting; |
|
2808 struct e1000_hw *hw = &adapter->hw; |
|
2809 |
|
2810 if (unlikely(hw->mac_type < e1000_82540)) |
|
2811 goto update_itr_done; |
|
2812 |
|
2813 if (packets == 0) |
|
2814 goto update_itr_done; |
|
2815 |
|
2816 switch (itr_setting) { |
|
2817 case lowest_latency: |
|
2818 /* jumbo frames get bulk treatment*/ |
|
2819 if (bytes/packets > 8000) |
|
2820 retval = bulk_latency; |
|
2821 else if ((packets < 5) && (bytes > 512)) |
|
2822 retval = low_latency; |
|
2823 break; |
|
2824 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2825 if (bytes > 10000) { |
|
2826 /* jumbo frames need bulk latency setting */ |
|
2827 if (bytes/packets > 8000) |
|
2828 retval = bulk_latency; |
|
2829 else if ((packets < 10) || ((bytes/packets) > 1200)) |
|
2830 retval = bulk_latency; |
|
2831 else if ((packets > 35)) |
|
2832 retval = lowest_latency; |
|
2833 } else if (bytes/packets > 2000) |
|
2834 retval = bulk_latency; |
|
2835 else if (packets <= 2 && bytes < 512) |
|
2836 retval = lowest_latency; |
|
2837 break; |
|
2838 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2839 if (bytes > 25000) { |
|
2840 if (packets > 35) |
|
2841 retval = low_latency; |
|
2842 } else if (bytes < 6000) { |
|
2843 retval = low_latency; |
|
2844 } |
|
2845 break; |
|
2846 } |
|
2847 |
|
2848 update_itr_done: |
|
2849 return retval; |
|
2850 } |
|
2851 |
|
2852 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2853 { |
|
2854 struct e1000_hw *hw = &adapter->hw; |
|
2855 u16 current_itr; |
|
2856 u32 new_itr = adapter->itr; |
|
2857 |
|
2858 if (unlikely(hw->mac_type < e1000_82540)) |
|
2859 return; |
|
2860 |
|
2861 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2862 if (unlikely(adapter->link_speed != SPEED_1000)) { |
|
2863 current_itr = 0; |
|
2864 new_itr = 4000; |
|
2865 goto set_itr_now; |
|
2866 } |
|
2867 |
|
2868 adapter->tx_itr = e1000_update_itr(adapter, |
|
2869 adapter->tx_itr, |
|
2870 adapter->total_tx_packets, |
|
2871 adapter->total_tx_bytes); |
|
2872 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2873 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2874 adapter->tx_itr = low_latency; |
|
2875 |
|
2876 adapter->rx_itr = e1000_update_itr(adapter, |
|
2877 adapter->rx_itr, |
|
2878 adapter->total_rx_packets, |
|
2879 adapter->total_rx_bytes); |
|
2880 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2881 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2882 adapter->rx_itr = low_latency; |
|
2883 |
|
2884 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2885 |
|
2886 switch (current_itr) { |
|
2887 /* counts and packets in update_itr are dependent on these numbers */ |
|
2888 case lowest_latency: |
|
2889 new_itr = 70000; |
|
2890 break; |
|
2891 case low_latency: |
|
2892 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2893 break; |
|
2894 case bulk_latency: |
|
2895 new_itr = 4000; |
|
2896 break; |
|
2897 default: |
|
2898 break; |
|
2899 } |
|
2900 |
|
2901 set_itr_now: |
|
2902 if (new_itr != adapter->itr) { |
|
2903 /* this attempts to bias the interrupt rate towards Bulk |
|
2904 * by adding intermediate steps when interrupt rate is |
|
2905 * increasing */ |
|
2906 new_itr = new_itr > adapter->itr ? |
|
2907 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2908 new_itr; |
|
2909 adapter->itr = new_itr; |
|
2910 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2911 } |
|
2912 |
|
2913 return; |
|
2914 } |
|
2915 |
|
2916 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
2917 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
2918 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
2919 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
2920 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
2921 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
2922 |
|
2923 static int e1000_tso(struct e1000_adapter *adapter, |
|
2924 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2925 { |
|
2926 struct e1000_context_desc *context_desc; |
|
2927 struct e1000_buffer *buffer_info; |
|
2928 unsigned int i; |
|
2929 u32 cmd_length = 0; |
|
2930 u16 ipcse = 0, tucse, mss; |
|
2931 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
2932 int err; |
|
2933 |
|
2934 if (skb_is_gso(skb)) { |
|
2935 if (skb_header_cloned(skb)) { |
|
2936 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
2937 if (err) |
|
2938 return err; |
|
2939 } |
|
2940 |
|
2941 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
2942 mss = skb_shinfo(skb)->gso_size; |
|
2943 if (skb->protocol == htons(ETH_P_IP)) { |
|
2944 struct iphdr *iph = ip_hdr(skb); |
|
2945 iph->tot_len = 0; |
|
2946 iph->check = 0; |
|
2947 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
2948 iph->daddr, 0, |
|
2949 IPPROTO_TCP, |
|
2950 0); |
|
2951 cmd_length = E1000_TXD_CMD_IP; |
|
2952 ipcse = skb_transport_offset(skb) - 1; |
|
2953 } else if (skb->protocol == htons(ETH_P_IPV6)) { |
|
2954 ipv6_hdr(skb)->payload_len = 0; |
|
2955 tcp_hdr(skb)->check = |
|
2956 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
2957 &ipv6_hdr(skb)->daddr, |
|
2958 0, IPPROTO_TCP, 0); |
|
2959 ipcse = 0; |
|
2960 } |
|
2961 ipcss = skb_network_offset(skb); |
|
2962 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
2963 tucss = skb_transport_offset(skb); |
|
2964 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
2965 tucse = 0; |
|
2966 |
|
2967 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
2968 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
2969 |
|
2970 i = tx_ring->next_to_use; |
|
2971 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2972 buffer_info = &tx_ring->buffer_info[i]; |
|
2973 |
|
2974 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
2975 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
2976 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
2977 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
2978 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
2979 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
2980 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
2981 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
2982 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
2983 |
|
2984 buffer_info->time_stamp = jiffies; |
|
2985 buffer_info->next_to_watch = i; |
|
2986 |
|
2987 if (++i == tx_ring->count) i = 0; |
|
2988 tx_ring->next_to_use = i; |
|
2989 |
|
2990 return true; |
|
2991 } |
|
2992 return false; |
|
2993 } |
|
2994 |
|
2995 static bool e1000_tx_csum(struct e1000_adapter *adapter, |
|
2996 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2997 { |
|
2998 struct e1000_context_desc *context_desc; |
|
2999 struct e1000_buffer *buffer_info; |
|
3000 unsigned int i; |
|
3001 u8 css; |
|
3002 |
|
3003 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { |
|
3004 css = skb_transport_offset(skb); |
|
3005 |
|
3006 i = tx_ring->next_to_use; |
|
3007 buffer_info = &tx_ring->buffer_info[i]; |
|
3008 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
3009 |
|
3010 context_desc->lower_setup.ip_config = 0; |
|
3011 context_desc->upper_setup.tcp_fields.tucss = css; |
|
3012 context_desc->upper_setup.tcp_fields.tucso = |
|
3013 css + skb->csum_offset; |
|
3014 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
3015 context_desc->tcp_seg_setup.data = 0; |
|
3016 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); |
|
3017 |
|
3018 buffer_info->time_stamp = jiffies; |
|
3019 buffer_info->next_to_watch = i; |
|
3020 |
|
3021 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3022 tx_ring->next_to_use = i; |
|
3023 |
|
3024 return true; |
|
3025 } |
|
3026 |
|
3027 return false; |
|
3028 } |
|
3029 |
|
3030 #define E1000_MAX_TXD_PWR 12 |
|
3031 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
|
3032 |
|
3033 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
3034 struct e1000_tx_ring *tx_ring, |
|
3035 struct sk_buff *skb, unsigned int first, |
|
3036 unsigned int max_per_txd, unsigned int nr_frags, |
|
3037 unsigned int mss) |
|
3038 { |
|
3039 struct e1000_hw *hw = &adapter->hw; |
|
3040 struct e1000_buffer *buffer_info; |
|
3041 unsigned int len = skb->len; |
|
3042 unsigned int offset = 0, size, count = 0, i; |
|
3043 unsigned int f; |
|
3044 len -= skb->data_len; |
|
3045 |
|
3046 i = tx_ring->next_to_use; |
|
3047 |
|
3048 while (len) { |
|
3049 buffer_info = &tx_ring->buffer_info[i]; |
|
3050 size = min(len, max_per_txd); |
|
3051 /* Workaround for Controller erratum -- |
|
3052 * descriptor for non-tso packet in a linear SKB that follows a |
|
3053 * tso gets written back prematurely before the data is fully |
|
3054 * DMA'd to the controller */ |
|
3055 if (!skb->data_len && tx_ring->last_tx_tso && |
|
3056 !skb_is_gso(skb)) { |
|
3057 tx_ring->last_tx_tso = 0; |
|
3058 size -= 4; |
|
3059 } |
|
3060 |
|
3061 /* Workaround for premature desc write-backs |
|
3062 * in TSO mode. Append 4-byte sentinel desc */ |
|
3063 if (unlikely(mss && !nr_frags && size == len && size > 8)) |
|
3064 size -= 4; |
|
3065 /* work-around for errata 10 and it applies |
|
3066 * to all controllers in PCI-X mode |
|
3067 * The fix is to make sure that the first descriptor of a |
|
3068 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
|
3069 */ |
|
3070 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3071 (size > 2015) && count == 0)) |
|
3072 size = 2015; |
|
3073 |
|
3074 /* Workaround for potential 82544 hang in PCI-X. Avoid |
|
3075 * terminating buffers within evenly-aligned dwords. */ |
|
3076 if (unlikely(adapter->pcix_82544 && |
|
3077 !((unsigned long)(skb->data + offset + size - 1) & 4) && |
|
3078 size > 4)) |
|
3079 size -= 4; |
|
3080 |
|
3081 buffer_info->length = size; |
|
3082 buffer_info->dma = |
|
3083 pci_map_single(adapter->pdev, |
|
3084 skb->data + offset, |
|
3085 size, |
|
3086 PCI_DMA_TODEVICE); |
|
3087 buffer_info->time_stamp = jiffies; |
|
3088 buffer_info->next_to_watch = i; |
|
3089 |
|
3090 len -= size; |
|
3091 offset += size; |
|
3092 count++; |
|
3093 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3094 } |
|
3095 |
|
3096 for (f = 0; f < nr_frags; f++) { |
|
3097 struct skb_frag_struct *frag; |
|
3098 |
|
3099 frag = &skb_shinfo(skb)->frags[f]; |
|
3100 len = frag->size; |
|
3101 offset = frag->page_offset; |
|
3102 |
|
3103 while (len) { |
|
3104 buffer_info = &tx_ring->buffer_info[i]; |
|
3105 size = min(len, max_per_txd); |
|
3106 /* Workaround for premature desc write-backs |
|
3107 * in TSO mode. Append 4-byte sentinel desc */ |
|
3108 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) |
|
3109 size -= 4; |
|
3110 /* Workaround for potential 82544 hang in PCI-X. |
|
3111 * Avoid terminating buffers within evenly-aligned |
|
3112 * dwords. */ |
|
3113 if (unlikely(adapter->pcix_82544 && |
|
3114 !((unsigned long)(frag->page+offset+size-1) & 4) && |
|
3115 size > 4)) |
|
3116 size -= 4; |
|
3117 |
|
3118 buffer_info->length = size; |
|
3119 buffer_info->dma = |
|
3120 pci_map_page(adapter->pdev, |
|
3121 frag->page, |
|
3122 offset, |
|
3123 size, |
|
3124 PCI_DMA_TODEVICE); |
|
3125 buffer_info->time_stamp = jiffies; |
|
3126 buffer_info->next_to_watch = i; |
|
3127 |
|
3128 len -= size; |
|
3129 offset += size; |
|
3130 count++; |
|
3131 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3132 } |
|
3133 } |
|
3134 |
|
3135 i = (i == 0) ? tx_ring->count - 1 : i - 1; |
|
3136 tx_ring->buffer_info[i].skb = skb; |
|
3137 tx_ring->buffer_info[first].next_to_watch = i; |
|
3138 |
|
3139 return count; |
|
3140 } |
|
3141 |
|
3142 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
3143 struct e1000_tx_ring *tx_ring, int tx_flags, |
|
3144 int count) |
|
3145 { |
|
3146 struct e1000_hw *hw = &adapter->hw; |
|
3147 struct e1000_tx_desc *tx_desc = NULL; |
|
3148 struct e1000_buffer *buffer_info; |
|
3149 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
3150 unsigned int i; |
|
3151 |
|
3152 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
|
3153 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
3154 E1000_TXD_CMD_TSE; |
|
3155 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3156 |
|
3157 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
|
3158 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
3159 } |
|
3160 |
|
3161 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
|
3162 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
3163 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3164 } |
|
3165 |
|
3166 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
|
3167 txd_lower |= E1000_TXD_CMD_VLE; |
|
3168 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
3169 } |
|
3170 |
|
3171 i = tx_ring->next_to_use; |
|
3172 |
|
3173 while (count--) { |
|
3174 buffer_info = &tx_ring->buffer_info[i]; |
|
3175 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3176 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
3177 tx_desc->lower.data = |
|
3178 cpu_to_le32(txd_lower | buffer_info->length); |
|
3179 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
3180 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3181 } |
|
3182 |
|
3183 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
3184 |
|
3185 /* Force memory writes to complete before letting h/w |
|
3186 * know there are new descriptors to fetch. (Only |
|
3187 * applicable for weak-ordered memory model archs, |
|
3188 * such as IA-64). */ |
|
3189 wmb(); |
|
3190 |
|
3191 tx_ring->next_to_use = i; |
|
3192 writel(i, hw->hw_addr + tx_ring->tdt); |
|
3193 /* we need this if more than one processor can write to our tail |
|
3194 * at a time, it syncronizes IO on IA64/Altix systems */ |
|
3195 mmiowb(); |
|
3196 } |
|
3197 |
|
3198 /** |
|
3199 * 82547 workaround to avoid controller hang in half-duplex environment. |
|
3200 * The workaround is to avoid queuing a large packet that would span |
|
3201 * the internal Tx FIFO ring boundary by notifying the stack to resend |
|
3202 * the packet at a later time. This gives the Tx FIFO an opportunity to |
|
3203 * flush all packets. When that occurs, we reset the Tx FIFO pointers |
|
3204 * to the beginning of the Tx FIFO. |
|
3205 **/ |
|
3206 |
|
3207 #define E1000_FIFO_HDR 0x10 |
|
3208 #define E1000_82547_PAD_LEN 0x3E0 |
|
3209 |
|
3210 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
3211 struct sk_buff *skb) |
|
3212 { |
|
3213 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
|
3214 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
|
3215 |
|
3216 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
|
3217 |
|
3218 if (adapter->link_duplex != HALF_DUPLEX) |
|
3219 goto no_fifo_stall_required; |
|
3220 |
|
3221 if (atomic_read(&adapter->tx_fifo_stall)) |
|
3222 return 1; |
|
3223 |
|
3224 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
|
3225 atomic_set(&adapter->tx_fifo_stall, 1); |
|
3226 return 1; |
|
3227 } |
|
3228 |
|
3229 no_fifo_stall_required: |
|
3230 adapter->tx_fifo_head += skb_fifo_len; |
|
3231 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
|
3232 adapter->tx_fifo_head -= adapter->tx_fifo_size; |
|
3233 return 0; |
|
3234 } |
|
3235 |
|
3236 #define MINIMUM_DHCP_PACKET_SIZE 282 |
|
3237 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
|
3238 struct sk_buff *skb) |
|
3239 { |
|
3240 struct e1000_hw *hw = &adapter->hw; |
|
3241 u16 length, offset; |
|
3242 if (vlan_tx_tag_present(skb)) { |
|
3243 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) && |
|
3244 ( hw->mng_cookie.status & |
|
3245 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) |
|
3246 return 0; |
|
3247 } |
|
3248 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { |
|
3249 struct ethhdr *eth = (struct ethhdr *)skb->data; |
|
3250 if ((htons(ETH_P_IP) == eth->h_proto)) { |
|
3251 const struct iphdr *ip = |
|
3252 (struct iphdr *)((u8 *)skb->data+14); |
|
3253 if (IPPROTO_UDP == ip->protocol) { |
|
3254 struct udphdr *udp = |
|
3255 (struct udphdr *)((u8 *)ip + |
|
3256 (ip->ihl << 2)); |
|
3257 if (ntohs(udp->dest) == 67) { |
|
3258 offset = (u8 *)udp + 8 - skb->data; |
|
3259 length = skb->len - offset; |
|
3260 |
|
3261 return e1000_mng_write_dhcp_info(hw, |
|
3262 (u8 *)udp + 8, |
|
3263 length); |
|
3264 } |
|
3265 } |
|
3266 } |
|
3267 } |
|
3268 return 0; |
|
3269 } |
|
3270 |
|
3271 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
3272 { |
|
3273 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3274 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
3275 |
|
3276 netif_stop_queue(netdev); |
|
3277 /* Herbert's original patch had: |
|
3278 * smp_mb__after_netif_stop_queue(); |
|
3279 * but since that doesn't exist yet, just open code it. */ |
|
3280 smp_mb(); |
|
3281 |
|
3282 /* We need to check again in a case another CPU has just |
|
3283 * made room available. */ |
|
3284 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
|
3285 return -EBUSY; |
|
3286 |
|
3287 /* A reprieve! */ |
|
3288 netif_start_queue(netdev); |
|
3289 ++adapter->restart_queue; |
|
3290 return 0; |
|
3291 } |
|
3292 |
|
3293 static int e1000_maybe_stop_tx(struct net_device *netdev, |
|
3294 struct e1000_tx_ring *tx_ring, int size) |
|
3295 { |
|
3296 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
|
3297 return 0; |
|
3298 return __e1000_maybe_stop_tx(netdev, size); |
|
3299 } |
|
3300 |
|
3301 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
3302 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
|
3303 { |
|
3304 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3305 struct e1000_hw *hw = &adapter->hw; |
|
3306 struct e1000_tx_ring *tx_ring; |
|
3307 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
|
3308 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
3309 unsigned int tx_flags = 0; |
|
3310 unsigned int len = skb->len - skb->data_len; |
|
3311 unsigned long flags; |
|
3312 unsigned int nr_frags; |
|
3313 unsigned int mss; |
|
3314 int count = 0; |
|
3315 int tso; |
|
3316 unsigned int f; |
|
3317 |
|
3318 /* This goes back to the question of how to logically map a tx queue |
|
3319 * to a flow. Right now, performance is impacted slightly negatively |
|
3320 * if using multiple tx queues. If the stack breaks away from a |
|
3321 * single qdisc implementation, we can look at this again. */ |
|
3322 tx_ring = adapter->tx_ring; |
|
3323 |
|
3324 if (unlikely(skb->len <= 0)) { |
|
3325 dev_kfree_skb_any(skb); |
|
3326 return NETDEV_TX_OK; |
|
3327 } |
|
3328 |
|
3329 /* 82571 and newer doesn't need the workaround that limited descriptor |
|
3330 * length to 4kB */ |
|
3331 if (hw->mac_type >= e1000_82571) |
|
3332 max_per_txd = 8192; |
|
3333 |
|
3334 mss = skb_shinfo(skb)->gso_size; |
|
3335 /* The controller does a simple calculation to |
|
3336 * make sure there is enough room in the FIFO before |
|
3337 * initiating the DMA for each buffer. The calc is: |
|
3338 * 4 = ceil(buffer len/mss). To make sure we don't |
|
3339 * overrun the FIFO, adjust the max buffer len if mss |
|
3340 * drops. */ |
|
3341 if (mss) { |
|
3342 u8 hdr_len; |
|
3343 max_per_txd = min(mss << 2, max_per_txd); |
|
3344 max_txd_pwr = fls(max_per_txd) - 1; |
|
3345 |
|
3346 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data |
|
3347 * points to just header, pull a few bytes of payload from |
|
3348 * frags into skb->data */ |
|
3349 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3350 if (skb->data_len && hdr_len == len) { |
|
3351 switch (hw->mac_type) { |
|
3352 unsigned int pull_size; |
|
3353 case e1000_82544: |
|
3354 /* Make sure we have room to chop off 4 bytes, |
|
3355 * and that the end alignment will work out to |
|
3356 * this hardware's requirements |
|
3357 * NOTE: this is a TSO only workaround |
|
3358 * if end byte alignment not correct move us |
|
3359 * into the next dword */ |
|
3360 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) |
|
3361 break; |
|
3362 /* fall through */ |
|
3363 case e1000_82571: |
|
3364 case e1000_82572: |
|
3365 case e1000_82573: |
|
3366 case e1000_ich8lan: |
|
3367 pull_size = min((unsigned int)4, skb->data_len); |
|
3368 if (!__pskb_pull_tail(skb, pull_size)) { |
|
3369 DPRINTK(DRV, ERR, |
|
3370 "__pskb_pull_tail failed.\n"); |
|
3371 dev_kfree_skb_any(skb); |
|
3372 return NETDEV_TX_OK; |
|
3373 } |
|
3374 len = skb->len - skb->data_len; |
|
3375 break; |
|
3376 default: |
|
3377 /* do nothing */ |
|
3378 break; |
|
3379 } |
|
3380 } |
|
3381 } |
|
3382 |
|
3383 /* reserve a descriptor for the offload context */ |
|
3384 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
3385 count++; |
|
3386 count++; |
|
3387 |
|
3388 /* Controller Erratum workaround */ |
|
3389 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
|
3390 count++; |
|
3391 |
|
3392 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
3393 |
|
3394 if (adapter->pcix_82544) |
|
3395 count++; |
|
3396 |
|
3397 /* work-around for errata 10 and it applies to all controllers |
|
3398 * in PCI-X mode, so add one more descriptor to the count |
|
3399 */ |
|
3400 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3401 (len > 2015))) |
|
3402 count++; |
|
3403 |
|
3404 nr_frags = skb_shinfo(skb)->nr_frags; |
|
3405 for (f = 0; f < nr_frags; f++) |
|
3406 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
3407 max_txd_pwr); |
|
3408 if (adapter->pcix_82544) |
|
3409 count += nr_frags; |
|
3410 |
|
3411 |
|
3412 if (hw->tx_pkt_filtering && |
|
3413 (hw->mac_type == e1000_82573)) |
|
3414 e1000_transfer_dhcp_info(adapter, skb); |
|
3415 |
|
3416 if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags)) |
|
3417 /* Collision - tell upper layer to requeue */ |
|
3418 return NETDEV_TX_LOCKED; |
|
3419 |
|
3420 /* need: count + 2 desc gap to keep tail from touching |
|
3421 * head, otherwise try next time */ |
|
3422 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) { |
|
3423 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3424 return NETDEV_TX_BUSY; |
|
3425 } |
|
3426 |
|
3427 if (unlikely(hw->mac_type == e1000_82547)) { |
|
3428 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { |
|
3429 netif_stop_queue(netdev); |
|
3430 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
3431 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3432 return NETDEV_TX_BUSY; |
|
3433 } |
|
3434 } |
|
3435 |
|
3436 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { |
|
3437 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
3438 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
3439 } |
|
3440 |
|
3441 first = tx_ring->next_to_use; |
|
3442 |
|
3443 tso = e1000_tso(adapter, tx_ring, skb); |
|
3444 if (tso < 0) { |
|
3445 dev_kfree_skb_any(skb); |
|
3446 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3447 return NETDEV_TX_OK; |
|
3448 } |
|
3449 |
|
3450 if (likely(tso)) { |
|
3451 tx_ring->last_tx_tso = 1; |
|
3452 tx_flags |= E1000_TX_FLAGS_TSO; |
|
3453 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
|
3454 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
3455 |
|
3456 /* Old method was to assume IPv4 packet by default if TSO was enabled. |
|
3457 * 82571 hardware supports TSO capabilities for IPv6 as well... |
|
3458 * no longer assume, we must. */ |
|
3459 if (likely(skb->protocol == htons(ETH_P_IP))) |
|
3460 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
3461 |
|
3462 e1000_tx_queue(adapter, tx_ring, tx_flags, |
|
3463 e1000_tx_map(adapter, tx_ring, skb, first, |
|
3464 max_per_txd, nr_frags, mss)); |
|
3465 |
|
3466 netdev->trans_start = jiffies; |
|
3467 |
|
3468 /* Make sure there is space in the ring for the next send. */ |
|
3469 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
|
3470 |
|
3471 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3472 return NETDEV_TX_OK; |
|
3473 } |
|
3474 |
|
3475 /** |
|
3476 * e1000_tx_timeout - Respond to a Tx Hang |
|
3477 * @netdev: network interface device structure |
|
3478 **/ |
|
3479 |
|
3480 static void e1000_tx_timeout(struct net_device *netdev) |
|
3481 { |
|
3482 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3483 |
|
3484 /* Do the reset outside of interrupt context */ |
|
3485 adapter->tx_timeout_count++; |
|
3486 schedule_work(&adapter->reset_task); |
|
3487 } |
|
3488 |
|
3489 static void e1000_reset_task(struct work_struct *work) |
|
3490 { |
|
3491 struct e1000_adapter *adapter = |
|
3492 container_of(work, struct e1000_adapter, reset_task); |
|
3493 |
|
3494 e1000_reinit_locked(adapter); |
|
3495 } |
|
3496 |
|
3497 /** |
|
3498 * e1000_get_stats - Get System Network Statistics |
|
3499 * @netdev: network interface device structure |
|
3500 * |
|
3501 * Returns the address of the device statistics structure. |
|
3502 * The statistics are actually updated from the timer callback. |
|
3503 **/ |
|
3504 |
|
3505 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
3506 { |
|
3507 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3508 |
|
3509 /* only return the current stats */ |
|
3510 return &adapter->net_stats; |
|
3511 } |
|
3512 |
|
3513 /** |
|
3514 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
3515 * @netdev: network interface device structure |
|
3516 * @new_mtu: new value for maximum frame size |
|
3517 * |
|
3518 * Returns 0 on success, negative on failure |
|
3519 **/ |
|
3520 |
|
3521 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
3522 { |
|
3523 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3524 struct e1000_hw *hw = &adapter->hw; |
|
3525 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
3526 u16 eeprom_data = 0; |
|
3527 |
|
3528 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
|
3529 (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
|
3530 DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); |
|
3531 return -EINVAL; |
|
3532 } |
|
3533 |
|
3534 /* Adapter-specific max frame size limits. */ |
|
3535 switch (hw->mac_type) { |
|
3536 case e1000_undefined ... e1000_82542_rev2_1: |
|
3537 case e1000_ich8lan: |
|
3538 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3539 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); |
|
3540 return -EINVAL; |
|
3541 } |
|
3542 break; |
|
3543 case e1000_82573: |
|
3544 /* Jumbo Frames not supported if: |
|
3545 * - this is not an 82573L device |
|
3546 * - ASPM is enabled in any way (0x1A bits 3:2) */ |
|
3547 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1, |
|
3548 &eeprom_data); |
|
3549 if ((hw->device_id != E1000_DEV_ID_82573L) || |
|
3550 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { |
|
3551 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3552 DPRINTK(PROBE, ERR, |
|
3553 "Jumbo Frames not supported.\n"); |
|
3554 return -EINVAL; |
|
3555 } |
|
3556 break; |
|
3557 } |
|
3558 /* ERT will be enabled later to enable wire speed receives */ |
|
3559 |
|
3560 /* fall through to get support */ |
|
3561 case e1000_82571: |
|
3562 case e1000_82572: |
|
3563 case e1000_80003es2lan: |
|
3564 #define MAX_STD_JUMBO_FRAME_SIZE 9234 |
|
3565 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
|
3566 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); |
|
3567 return -EINVAL; |
|
3568 } |
|
3569 break; |
|
3570 default: |
|
3571 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
|
3572 break; |
|
3573 } |
|
3574 |
|
3575 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
3576 * means we reserve 2 more, this pushes us to allocate from the next |
|
3577 * larger slab size |
|
3578 * i.e. RXBUFFER_2048 --> size-4096 slab */ |
|
3579 |
|
3580 if (max_frame <= E1000_RXBUFFER_256) |
|
3581 adapter->rx_buffer_len = E1000_RXBUFFER_256; |
|
3582 else if (max_frame <= E1000_RXBUFFER_512) |
|
3583 adapter->rx_buffer_len = E1000_RXBUFFER_512; |
|
3584 else if (max_frame <= E1000_RXBUFFER_1024) |
|
3585 adapter->rx_buffer_len = E1000_RXBUFFER_1024; |
|
3586 else if (max_frame <= E1000_RXBUFFER_2048) |
|
3587 adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
|
3588 else if (max_frame <= E1000_RXBUFFER_4096) |
|
3589 adapter->rx_buffer_len = E1000_RXBUFFER_4096; |
|
3590 else if (max_frame <= E1000_RXBUFFER_8192) |
|
3591 adapter->rx_buffer_len = E1000_RXBUFFER_8192; |
|
3592 else if (max_frame <= E1000_RXBUFFER_16384) |
|
3593 adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
|
3594 |
|
3595 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
3596 if (!hw->tbi_compatibility_on && |
|
3597 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || |
|
3598 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
|
3599 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
3600 |
|
3601 netdev->mtu = new_mtu; |
|
3602 hw->max_frame_size = max_frame; |
|
3603 |
|
3604 if (netif_running(netdev)) |
|
3605 e1000_reinit_locked(adapter); |
|
3606 |
|
3607 return 0; |
|
3608 } |
|
3609 |
|
3610 /** |
|
3611 * e1000_update_stats - Update the board statistics counters |
|
3612 * @adapter: board private structure |
|
3613 **/ |
|
3614 |
|
3615 void e1000_update_stats(struct e1000_adapter *adapter) |
|
3616 { |
|
3617 struct e1000_hw *hw = &adapter->hw; |
|
3618 struct pci_dev *pdev = adapter->pdev; |
|
3619 unsigned long flags; |
|
3620 u16 phy_tmp; |
|
3621 |
|
3622 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
|
3623 |
|
3624 /* |
|
3625 * Prevent stats update while adapter is being reset, or if the pci |
|
3626 * connection is down. |
|
3627 */ |
|
3628 if (adapter->link_speed == 0) |
|
3629 return; |
|
3630 if (pci_channel_offline(pdev)) |
|
3631 return; |
|
3632 |
|
3633 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3634 |
|
3635 /* these counters are modified from e1000_tbi_adjust_stats, |
|
3636 * called from the interrupt context, so they must only |
|
3637 * be written while holding adapter->stats_lock |
|
3638 */ |
|
3639 |
|
3640 adapter->stats.crcerrs += er32(CRCERRS); |
|
3641 adapter->stats.gprc += er32(GPRC); |
|
3642 adapter->stats.gorcl += er32(GORCL); |
|
3643 adapter->stats.gorch += er32(GORCH); |
|
3644 adapter->stats.bprc += er32(BPRC); |
|
3645 adapter->stats.mprc += er32(MPRC); |
|
3646 adapter->stats.roc += er32(ROC); |
|
3647 |
|
3648 if (hw->mac_type != e1000_ich8lan) { |
|
3649 adapter->stats.prc64 += er32(PRC64); |
|
3650 adapter->stats.prc127 += er32(PRC127); |
|
3651 adapter->stats.prc255 += er32(PRC255); |
|
3652 adapter->stats.prc511 += er32(PRC511); |
|
3653 adapter->stats.prc1023 += er32(PRC1023); |
|
3654 adapter->stats.prc1522 += er32(PRC1522); |
|
3655 } |
|
3656 |
|
3657 adapter->stats.symerrs += er32(SYMERRS); |
|
3658 adapter->stats.mpc += er32(MPC); |
|
3659 adapter->stats.scc += er32(SCC); |
|
3660 adapter->stats.ecol += er32(ECOL); |
|
3661 adapter->stats.mcc += er32(MCC); |
|
3662 adapter->stats.latecol += er32(LATECOL); |
|
3663 adapter->stats.dc += er32(DC); |
|
3664 adapter->stats.sec += er32(SEC); |
|
3665 adapter->stats.rlec += er32(RLEC); |
|
3666 adapter->stats.xonrxc += er32(XONRXC); |
|
3667 adapter->stats.xontxc += er32(XONTXC); |
|
3668 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3669 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3670 adapter->stats.fcruc += er32(FCRUC); |
|
3671 adapter->stats.gptc += er32(GPTC); |
|
3672 adapter->stats.gotcl += er32(GOTCL); |
|
3673 adapter->stats.gotch += er32(GOTCH); |
|
3674 adapter->stats.rnbc += er32(RNBC); |
|
3675 adapter->stats.ruc += er32(RUC); |
|
3676 adapter->stats.rfc += er32(RFC); |
|
3677 adapter->stats.rjc += er32(RJC); |
|
3678 adapter->stats.torl += er32(TORL); |
|
3679 adapter->stats.torh += er32(TORH); |
|
3680 adapter->stats.totl += er32(TOTL); |
|
3681 adapter->stats.toth += er32(TOTH); |
|
3682 adapter->stats.tpr += er32(TPR); |
|
3683 |
|
3684 if (hw->mac_type != e1000_ich8lan) { |
|
3685 adapter->stats.ptc64 += er32(PTC64); |
|
3686 adapter->stats.ptc127 += er32(PTC127); |
|
3687 adapter->stats.ptc255 += er32(PTC255); |
|
3688 adapter->stats.ptc511 += er32(PTC511); |
|
3689 adapter->stats.ptc1023 += er32(PTC1023); |
|
3690 adapter->stats.ptc1522 += er32(PTC1522); |
|
3691 } |
|
3692 |
|
3693 adapter->stats.mptc += er32(MPTC); |
|
3694 adapter->stats.bptc += er32(BPTC); |
|
3695 |
|
3696 /* used for adaptive IFS */ |
|
3697 |
|
3698 hw->tx_packet_delta = er32(TPT); |
|
3699 adapter->stats.tpt += hw->tx_packet_delta; |
|
3700 hw->collision_delta = er32(COLC); |
|
3701 adapter->stats.colc += hw->collision_delta; |
|
3702 |
|
3703 if (hw->mac_type >= e1000_82543) { |
|
3704 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3705 adapter->stats.rxerrc += er32(RXERRC); |
|
3706 adapter->stats.tncrs += er32(TNCRS); |
|
3707 adapter->stats.cexterr += er32(CEXTERR); |
|
3708 adapter->stats.tsctc += er32(TSCTC); |
|
3709 adapter->stats.tsctfc += er32(TSCTFC); |
|
3710 } |
|
3711 if (hw->mac_type > e1000_82547_rev_2) { |
|
3712 adapter->stats.iac += er32(IAC); |
|
3713 adapter->stats.icrxoc += er32(ICRXOC); |
|
3714 |
|
3715 if (hw->mac_type != e1000_ich8lan) { |
|
3716 adapter->stats.icrxptc += er32(ICRXPTC); |
|
3717 adapter->stats.icrxatc += er32(ICRXATC); |
|
3718 adapter->stats.ictxptc += er32(ICTXPTC); |
|
3719 adapter->stats.ictxatc += er32(ICTXATC); |
|
3720 adapter->stats.ictxqec += er32(ICTXQEC); |
|
3721 adapter->stats.ictxqmtc += er32(ICTXQMTC); |
|
3722 adapter->stats.icrxdmtc += er32(ICRXDMTC); |
|
3723 } |
|
3724 } |
|
3725 |
|
3726 /* Fill out the OS statistics structure */ |
|
3727 adapter->net_stats.multicast = adapter->stats.mprc; |
|
3728 adapter->net_stats.collisions = adapter->stats.colc; |
|
3729 |
|
3730 /* Rx Errors */ |
|
3731 |
|
3732 /* RLEC on some newer hardware can be incorrect so build |
|
3733 * our own version based on RUC and ROC */ |
|
3734 adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
|
3735 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3736 adapter->stats.ruc + adapter->stats.roc + |
|
3737 adapter->stats.cexterr; |
|
3738 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
|
3739 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc; |
|
3740 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3741 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3742 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
|
3743 |
|
3744 /* Tx Errors */ |
|
3745 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
|
3746 adapter->net_stats.tx_errors = adapter->stats.txerrc; |
|
3747 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
|
3748 adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
|
3749 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3750 if (hw->bad_tx_carr_stats_fd && |
|
3751 adapter->link_duplex == FULL_DUPLEX) { |
|
3752 adapter->net_stats.tx_carrier_errors = 0; |
|
3753 adapter->stats.tncrs = 0; |
|
3754 } |
|
3755 |
|
3756 /* Tx Dropped needs to be maintained elsewhere */ |
|
3757 |
|
3758 /* Phy Stats */ |
|
3759 if (hw->media_type == e1000_media_type_copper) { |
|
3760 if ((adapter->link_speed == SPEED_1000) && |
|
3761 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
|
3762 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
|
3763 adapter->phy_stats.idle_errors += phy_tmp; |
|
3764 } |
|
3765 |
|
3766 if ((hw->mac_type <= e1000_82546) && |
|
3767 (hw->phy_type == e1000_phy_m88) && |
|
3768 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
|
3769 adapter->phy_stats.receive_errors += phy_tmp; |
|
3770 } |
|
3771 |
|
3772 /* Management Stats */ |
|
3773 if (hw->has_smbus) { |
|
3774 adapter->stats.mgptc += er32(MGTPTC); |
|
3775 adapter->stats.mgprc += er32(MGTPRC); |
|
3776 adapter->stats.mgpdc += er32(MGTPDC); |
|
3777 } |
|
3778 |
|
3779 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
3780 } |
|
3781 |
|
3782 /** |
|
3783 * e1000_intr_msi - Interrupt Handler |
|
3784 * @irq: interrupt number |
|
3785 * @data: pointer to a network interface device structure |
|
3786 **/ |
|
3787 |
|
3788 static irqreturn_t e1000_intr_msi(int irq, void *data) |
|
3789 { |
|
3790 struct net_device *netdev = data; |
|
3791 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3792 struct e1000_hw *hw = &adapter->hw; |
|
3793 u32 icr = er32(ICR); |
|
3794 |
|
3795 /* in NAPI mode read ICR disables interrupts using IAM */ |
|
3796 |
|
3797 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
|
3798 hw->get_link_status = 1; |
|
3799 /* 80003ES2LAN workaround-- For packet buffer work-around on |
|
3800 * link down event; disable receives here in the ISR and reset |
|
3801 * adapter in watchdog */ |
|
3802 if (netif_carrier_ok(netdev) && |
|
3803 (hw->mac_type == e1000_80003es2lan)) { |
|
3804 /* disable receives */ |
|
3805 u32 rctl = er32(RCTL); |
|
3806 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3807 } |
|
3808 /* guard against interrupt when we're going down */ |
|
3809 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3810 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3811 } |
|
3812 |
|
3813 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { |
|
3814 adapter->total_tx_bytes = 0; |
|
3815 adapter->total_tx_packets = 0; |
|
3816 adapter->total_rx_bytes = 0; |
|
3817 adapter->total_rx_packets = 0; |
|
3818 __netif_rx_schedule(netdev, &adapter->napi); |
|
3819 } else |
|
3820 e1000_irq_enable(adapter); |
|
3821 |
|
3822 return IRQ_HANDLED; |
|
3823 } |
|
3824 |
|
3825 /** |
|
3826 * e1000_intr - Interrupt Handler |
|
3827 * @irq: interrupt number |
|
3828 * @data: pointer to a network interface device structure |
|
3829 **/ |
|
3830 |
|
3831 static irqreturn_t e1000_intr(int irq, void *data) |
|
3832 { |
|
3833 struct net_device *netdev = data; |
|
3834 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3835 struct e1000_hw *hw = &adapter->hw; |
|
3836 u32 rctl, icr = er32(ICR); |
|
3837 |
|
3838 if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags))) |
|
3839 return IRQ_NONE; /* Not our interrupt */ |
|
3840 |
|
3841 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
|
3842 * not set, then the adapter didn't send an interrupt */ |
|
3843 if (unlikely(hw->mac_type >= e1000_82571 && |
|
3844 !(icr & E1000_ICR_INT_ASSERTED))) |
|
3845 return IRQ_NONE; |
|
3846 |
|
3847 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No |
|
3848 * need for the IMC write */ |
|
3849 |
|
3850 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
|
3851 hw->get_link_status = 1; |
|
3852 /* 80003ES2LAN workaround-- |
|
3853 * For packet buffer work-around on link down event; |
|
3854 * disable receives here in the ISR and |
|
3855 * reset adapter in watchdog |
|
3856 */ |
|
3857 if (netif_carrier_ok(netdev) && |
|
3858 (hw->mac_type == e1000_80003es2lan)) { |
|
3859 /* disable receives */ |
|
3860 rctl = er32(RCTL); |
|
3861 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3862 } |
|
3863 /* guard against interrupt when we're going down */ |
|
3864 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3865 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3866 } |
|
3867 |
|
3868 if (unlikely(hw->mac_type < e1000_82571)) { |
|
3869 /* disable interrupts, without the synchronize_irq bit */ |
|
3870 ew32(IMC, ~0); |
|
3871 E1000_WRITE_FLUSH(); |
|
3872 } |
|
3873 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { |
|
3874 adapter->total_tx_bytes = 0; |
|
3875 adapter->total_tx_packets = 0; |
|
3876 adapter->total_rx_bytes = 0; |
|
3877 adapter->total_rx_packets = 0; |
|
3878 __netif_rx_schedule(netdev, &adapter->napi); |
|
3879 } else |
|
3880 /* this really should not happen! if it does it is basically a |
|
3881 * bug, but not a hard error, so enable ints and continue */ |
|
3882 e1000_irq_enable(adapter); |
|
3883 |
|
3884 return IRQ_HANDLED; |
|
3885 } |
|
3886 |
|
3887 /** |
|
3888 * e1000_clean - NAPI Rx polling callback |
|
3889 * @adapter: board private structure |
|
3890 **/ |
|
3891 static int e1000_clean(struct napi_struct *napi, int budget) |
|
3892 { |
|
3893 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
3894 struct net_device *poll_dev = adapter->netdev; |
|
3895 int tx_cleaned = 0, work_done = 0; |
|
3896 |
|
3897 /* Must NOT use netdev_priv macro here. */ |
|
3898 adapter = poll_dev->priv; |
|
3899 |
|
3900 /* e1000_clean is called per-cpu. This lock protects |
|
3901 * tx_ring[0] from being cleaned by multiple cpus |
|
3902 * simultaneously. A failure obtaining the lock means |
|
3903 * tx_ring[0] is currently being cleaned anyway. */ |
|
3904 if (spin_trylock(&adapter->tx_queue_lock)) { |
|
3905 tx_cleaned = e1000_clean_tx_irq(adapter, |
|
3906 &adapter->tx_ring[0]); |
|
3907 spin_unlock(&adapter->tx_queue_lock); |
|
3908 } |
|
3909 |
|
3910 adapter->clean_rx(adapter, &adapter->rx_ring[0], |
|
3911 &work_done, budget); |
|
3912 |
|
3913 if (tx_cleaned) |
|
3914 work_done = budget; |
|
3915 |
|
3916 /* If budget not fully consumed, exit the polling mode */ |
|
3917 if (work_done < budget) { |
|
3918 if (likely(adapter->itr_setting & 3)) |
|
3919 e1000_set_itr(adapter); |
|
3920 netif_rx_complete(poll_dev, napi); |
|
3921 e1000_irq_enable(adapter); |
|
3922 } |
|
3923 |
|
3924 return work_done; |
|
3925 } |
|
3926 |
|
3927 /** |
|
3928 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
3929 * @adapter: board private structure |
|
3930 **/ |
|
3931 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
3932 struct e1000_tx_ring *tx_ring) |
|
3933 { |
|
3934 struct e1000_hw *hw = &adapter->hw; |
|
3935 struct net_device *netdev = adapter->netdev; |
|
3936 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
3937 struct e1000_buffer *buffer_info; |
|
3938 unsigned int i, eop; |
|
3939 unsigned int count = 0; |
|
3940 bool cleaned = false; |
|
3941 unsigned int total_tx_bytes=0, total_tx_packets=0; |
|
3942 |
|
3943 i = tx_ring->next_to_clean; |
|
3944 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3945 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3946 |
|
3947 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { |
|
3948 for (cleaned = false; !cleaned; ) { |
|
3949 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3950 buffer_info = &tx_ring->buffer_info[i]; |
|
3951 cleaned = (i == eop); |
|
3952 |
|
3953 if (cleaned) { |
|
3954 struct sk_buff *skb = buffer_info->skb; |
|
3955 unsigned int segs, bytecount; |
|
3956 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
3957 /* multiply data chunks by size of headers */ |
|
3958 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
3959 skb->len; |
|
3960 total_tx_packets += segs; |
|
3961 total_tx_bytes += bytecount; |
|
3962 } |
|
3963 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
3964 tx_desc->upper.data = 0; |
|
3965 |
|
3966 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3967 } |
|
3968 |
|
3969 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3970 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3971 #define E1000_TX_WEIGHT 64 |
|
3972 /* weight of a sort for tx, to avoid endless transmit cleanup */ |
|
3973 if (count++ == E1000_TX_WEIGHT) |
|
3974 break; |
|
3975 } |
|
3976 |
|
3977 tx_ring->next_to_clean = i; |
|
3978 |
|
3979 #define TX_WAKE_THRESHOLD 32 |
|
3980 if (unlikely(cleaned && netif_carrier_ok(netdev) && |
|
3981 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
|
3982 /* Make sure that anybody stopping the queue after this |
|
3983 * sees the new next_to_clean. |
|
3984 */ |
|
3985 smp_mb(); |
|
3986 if (netif_queue_stopped(netdev)) { |
|
3987 netif_wake_queue(netdev); |
|
3988 ++adapter->restart_queue; |
|
3989 } |
|
3990 } |
|
3991 |
|
3992 if (adapter->detect_tx_hung) { |
|
3993 /* Detect a transmit hang in hardware, this serializes the |
|
3994 * check with the clearing of time_stamp and movement of i */ |
|
3995 adapter->detect_tx_hung = false; |
|
3996 if (tx_ring->buffer_info[eop].dma && |
|
3997 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
|
3998 (adapter->tx_timeout_factor * HZ)) |
|
3999 && !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
4000 |
|
4001 /* detected Tx unit hang */ |
|
4002 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" |
|
4003 " Tx Queue <%lu>\n" |
|
4004 " TDH <%x>\n" |
|
4005 " TDT <%x>\n" |
|
4006 " next_to_use <%x>\n" |
|
4007 " next_to_clean <%x>\n" |
|
4008 "buffer_info[next_to_clean]\n" |
|
4009 " time_stamp <%lx>\n" |
|
4010 " next_to_watch <%x>\n" |
|
4011 " jiffies <%lx>\n" |
|
4012 " next_to_watch.status <%x>\n", |
|
4013 (unsigned long)((tx_ring - adapter->tx_ring) / |
|
4014 sizeof(struct e1000_tx_ring)), |
|
4015 readl(hw->hw_addr + tx_ring->tdh), |
|
4016 readl(hw->hw_addr + tx_ring->tdt), |
|
4017 tx_ring->next_to_use, |
|
4018 tx_ring->next_to_clean, |
|
4019 tx_ring->buffer_info[eop].time_stamp, |
|
4020 eop, |
|
4021 jiffies, |
|
4022 eop_desc->upper.fields.status); |
|
4023 netif_stop_queue(netdev); |
|
4024 } |
|
4025 } |
|
4026 adapter->total_tx_bytes += total_tx_bytes; |
|
4027 adapter->total_tx_packets += total_tx_packets; |
|
4028 adapter->net_stats.tx_bytes += total_tx_bytes; |
|
4029 adapter->net_stats.tx_packets += total_tx_packets; |
|
4030 return cleaned; |
|
4031 } |
|
4032 |
|
4033 /** |
|
4034 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
4035 * @adapter: board private structure |
|
4036 * @status_err: receive descriptor status and error fields |
|
4037 * @csum: receive descriptor csum field |
|
4038 * @sk_buff: socket buffer with received data |
|
4039 **/ |
|
4040 |
|
4041 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
4042 u32 csum, struct sk_buff *skb) |
|
4043 { |
|
4044 struct e1000_hw *hw = &adapter->hw; |
|
4045 u16 status = (u16)status_err; |
|
4046 u8 errors = (u8)(status_err >> 24); |
|
4047 skb->ip_summed = CHECKSUM_NONE; |
|
4048 |
|
4049 /* 82543 or newer only */ |
|
4050 if (unlikely(hw->mac_type < e1000_82543)) return; |
|
4051 /* Ignore Checksum bit is set */ |
|
4052 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
|
4053 /* TCP/UDP checksum error bit is set */ |
|
4054 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
|
4055 /* let the stack verify checksum errors */ |
|
4056 adapter->hw_csum_err++; |
|
4057 return; |
|
4058 } |
|
4059 /* TCP/UDP Checksum has not been calculated */ |
|
4060 if (hw->mac_type <= e1000_82547_rev_2) { |
|
4061 if (!(status & E1000_RXD_STAT_TCPCS)) |
|
4062 return; |
|
4063 } else { |
|
4064 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
|
4065 return; |
|
4066 } |
|
4067 /* It must be a TCP or UDP packet with a valid checksum */ |
|
4068 if (likely(status & E1000_RXD_STAT_TCPCS)) { |
|
4069 /* TCP checksum is good */ |
|
4070 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
4071 } else if (hw->mac_type > e1000_82547_rev_2) { |
|
4072 /* IP fragment with UDP payload */ |
|
4073 /* Hardware complements the payload checksum, so we undo it |
|
4074 * and then put the value in host order for further stack use. |
|
4075 */ |
|
4076 __sum16 sum = (__force __sum16)htons(csum); |
|
4077 skb->csum = csum_unfold(~sum); |
|
4078 skb->ip_summed = CHECKSUM_COMPLETE; |
|
4079 } |
|
4080 adapter->hw_csum_good++; |
|
4081 } |
|
4082 |
|
4083 /** |
|
4084 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
4085 * @adapter: board private structure |
|
4086 **/ |
|
4087 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
4088 struct e1000_rx_ring *rx_ring, |
|
4089 int *work_done, int work_to_do) |
|
4090 { |
|
4091 struct e1000_hw *hw = &adapter->hw; |
|
4092 struct net_device *netdev = adapter->netdev; |
|
4093 struct pci_dev *pdev = adapter->pdev; |
|
4094 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
4095 struct e1000_buffer *buffer_info, *next_buffer; |
|
4096 unsigned long flags; |
|
4097 u32 length; |
|
4098 u8 last_byte; |
|
4099 unsigned int i; |
|
4100 int cleaned_count = 0; |
|
4101 bool cleaned = false; |
|
4102 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
4103 |
|
4104 i = rx_ring->next_to_clean; |
|
4105 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4106 buffer_info = &rx_ring->buffer_info[i]; |
|
4107 |
|
4108 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
4109 struct sk_buff *skb; |
|
4110 u8 status; |
|
4111 |
|
4112 if (*work_done >= work_to_do) |
|
4113 break; |
|
4114 (*work_done)++; |
|
4115 |
|
4116 status = rx_desc->status; |
|
4117 skb = buffer_info->skb; |
|
4118 buffer_info->skb = NULL; |
|
4119 |
|
4120 prefetch(skb->data - NET_IP_ALIGN); |
|
4121 |
|
4122 if (++i == rx_ring->count) i = 0; |
|
4123 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
4124 prefetch(next_rxd); |
|
4125 |
|
4126 next_buffer = &rx_ring->buffer_info[i]; |
|
4127 |
|
4128 cleaned = true; |
|
4129 cleaned_count++; |
|
4130 pci_unmap_single(pdev, |
|
4131 buffer_info->dma, |
|
4132 buffer_info->length, |
|
4133 PCI_DMA_FROMDEVICE); |
|
4134 |
|
4135 length = le16_to_cpu(rx_desc->length); |
|
4136 /* !EOP means multiple descriptors were used to store a single |
|
4137 * packet, if thats the case we need to toss it. In fact, we |
|
4138 * to toss every packet with the EOP bit clear and the next |
|
4139 * frame that _does_ have the EOP bit set, as it is by |
|
4140 * definition only a frame fragment |
|
4141 */ |
|
4142 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
4143 set_bit(__E1000_DISCARDING, &adapter->flags); |
|
4144 |
|
4145 if (test_bit(__E1000_DISCARDING, &adapter->flags)) { |
|
4146 /* All receives must fit into a single buffer */ |
|
4147 E1000_DBG("%s: Receive packet consumed multiple" |
|
4148 " buffers\n", netdev->name); |
|
4149 /* recycle */ |
|
4150 buffer_info->skb = skb; |
|
4151 if (status & E1000_RXD_STAT_EOP) |
|
4152 clear_bit(__E1000_DISCARDING, &adapter->flags); |
|
4153 goto next_desc; |
|
4154 } |
|
4155 |
|
4156 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
4157 last_byte = *(skb->data + length - 1); |
|
4158 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
4159 last_byte)) { |
|
4160 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4161 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
4162 length, skb->data); |
|
4163 spin_unlock_irqrestore(&adapter->stats_lock, |
|
4164 flags); |
|
4165 length--; |
|
4166 } else { |
|
4167 /* recycle */ |
|
4168 buffer_info->skb = skb; |
|
4169 goto next_desc; |
|
4170 } |
|
4171 } |
|
4172 |
|
4173 /* adjust length to remove Ethernet CRC, this must be |
|
4174 * done after the TBI_ACCEPT workaround above */ |
|
4175 length -= 4; |
|
4176 |
|
4177 /* probably a little skewed due to removing CRC */ |
|
4178 total_rx_bytes += length; |
|
4179 total_rx_packets++; |
|
4180 |
|
4181 /* code added for copybreak, this should improve |
|
4182 * performance for small packets with large amounts |
|
4183 * of reassembly being done in the stack */ |
|
4184 if (length < copybreak) { |
|
4185 struct sk_buff *new_skb = |
|
4186 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
|
4187 if (new_skb) { |
|
4188 skb_reserve(new_skb, NET_IP_ALIGN); |
|
4189 skb_copy_to_linear_data_offset(new_skb, |
|
4190 -NET_IP_ALIGN, |
|
4191 (skb->data - |
|
4192 NET_IP_ALIGN), |
|
4193 (length + |
|
4194 NET_IP_ALIGN)); |
|
4195 /* save the skb in buffer_info as good */ |
|
4196 buffer_info->skb = skb; |
|
4197 skb = new_skb; |
|
4198 } |
|
4199 /* else just continue with the old one */ |
|
4200 } |
|
4201 /* end copybreak code */ |
|
4202 skb_put(skb, length); |
|
4203 |
|
4204 /* Receive Checksum Offload */ |
|
4205 e1000_rx_checksum(adapter, |
|
4206 (u32)(status) | |
|
4207 ((u32)(rx_desc->errors) << 24), |
|
4208 le16_to_cpu(rx_desc->csum), skb); |
|
4209 |
|
4210 skb->protocol = eth_type_trans(skb, netdev); |
|
4211 |
|
4212 if (unlikely(adapter->vlgrp && |
|
4213 (status & E1000_RXD_STAT_VP))) { |
|
4214 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
4215 le16_to_cpu(rx_desc->special)); |
|
4216 } else { |
|
4217 netif_receive_skb(skb); |
|
4218 } |
|
4219 |
|
4220 netdev->last_rx = jiffies; |
|
4221 |
|
4222 next_desc: |
|
4223 rx_desc->status = 0; |
|
4224 |
|
4225 /* return some buffers to hardware, one at a time is too slow */ |
|
4226 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4227 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4228 cleaned_count = 0; |
|
4229 } |
|
4230 |
|
4231 /* use prefetched values */ |
|
4232 rx_desc = next_rxd; |
|
4233 buffer_info = next_buffer; |
|
4234 } |
|
4235 rx_ring->next_to_clean = i; |
|
4236 |
|
4237 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4238 if (cleaned_count) |
|
4239 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4240 |
|
4241 adapter->total_rx_packets += total_rx_packets; |
|
4242 adapter->total_rx_bytes += total_rx_bytes; |
|
4243 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
4244 adapter->net_stats.rx_packets += total_rx_packets; |
|
4245 return cleaned; |
|
4246 } |
|
4247 |
|
4248 /** |
|
4249 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
|
4250 * @adapter: board private structure |
|
4251 **/ |
|
4252 |
|
4253 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
|
4254 struct e1000_rx_ring *rx_ring, |
|
4255 int *work_done, int work_to_do) |
|
4256 { |
|
4257 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
|
4258 struct net_device *netdev = adapter->netdev; |
|
4259 struct pci_dev *pdev = adapter->pdev; |
|
4260 struct e1000_buffer *buffer_info, *next_buffer; |
|
4261 struct e1000_ps_page *ps_page; |
|
4262 struct e1000_ps_page_dma *ps_page_dma; |
|
4263 struct sk_buff *skb; |
|
4264 unsigned int i, j; |
|
4265 u32 length, staterr; |
|
4266 int cleaned_count = 0; |
|
4267 bool cleaned = false; |
|
4268 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
4269 |
|
4270 i = rx_ring->next_to_clean; |
|
4271 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
4272 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
4273 buffer_info = &rx_ring->buffer_info[i]; |
|
4274 |
|
4275 while (staterr & E1000_RXD_STAT_DD) { |
|
4276 ps_page = &rx_ring->ps_page[i]; |
|
4277 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
4278 |
|
4279 if (unlikely(*work_done >= work_to_do)) |
|
4280 break; |
|
4281 (*work_done)++; |
|
4282 |
|
4283 skb = buffer_info->skb; |
|
4284 |
|
4285 /* in the packet split case this is header only */ |
|
4286 prefetch(skb->data - NET_IP_ALIGN); |
|
4287 |
|
4288 if (++i == rx_ring->count) i = 0; |
|
4289 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
|
4290 prefetch(next_rxd); |
|
4291 |
|
4292 next_buffer = &rx_ring->buffer_info[i]; |
|
4293 |
|
4294 cleaned = true; |
|
4295 cleaned_count++; |
|
4296 pci_unmap_single(pdev, buffer_info->dma, |
|
4297 buffer_info->length, |
|
4298 PCI_DMA_FROMDEVICE); |
|
4299 |
|
4300 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) { |
|
4301 E1000_DBG("%s: Packet Split buffers didn't pick up" |
|
4302 " the full packet\n", netdev->name); |
|
4303 dev_kfree_skb_irq(skb); |
|
4304 goto next_desc; |
|
4305 } |
|
4306 |
|
4307 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { |
|
4308 dev_kfree_skb_irq(skb); |
|
4309 goto next_desc; |
|
4310 } |
|
4311 |
|
4312 length = le16_to_cpu(rx_desc->wb.middle.length0); |
|
4313 |
|
4314 if (unlikely(!length)) { |
|
4315 E1000_DBG("%s: Last part of the packet spanning" |
|
4316 " multiple descriptors\n", netdev->name); |
|
4317 dev_kfree_skb_irq(skb); |
|
4318 goto next_desc; |
|
4319 } |
|
4320 |
|
4321 /* Good Receive */ |
|
4322 skb_put(skb, length); |
|
4323 |
|
4324 { |
|
4325 /* this looks ugly, but it seems compiler issues make it |
|
4326 more efficient than reusing j */ |
|
4327 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
|
4328 |
|
4329 /* page alloc/put takes too long and effects small packet |
|
4330 * throughput, so unsplit small packets and save the alloc/put*/ |
|
4331 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) { |
|
4332 u8 *vaddr; |
|
4333 /* there is no documentation about how to call |
|
4334 * kmap_atomic, so we can't hold the mapping |
|
4335 * very long */ |
|
4336 pci_dma_sync_single_for_cpu(pdev, |
|
4337 ps_page_dma->ps_page_dma[0], |
|
4338 PAGE_SIZE, |
|
4339 PCI_DMA_FROMDEVICE); |
|
4340 vaddr = kmap_atomic(ps_page->ps_page[0], |
|
4341 KM_SKB_DATA_SOFTIRQ); |
|
4342 memcpy(skb_tail_pointer(skb), vaddr, l1); |
|
4343 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); |
|
4344 pci_dma_sync_single_for_device(pdev, |
|
4345 ps_page_dma->ps_page_dma[0], |
|
4346 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
4347 /* remove the CRC */ |
|
4348 l1 -= 4; |
|
4349 skb_put(skb, l1); |
|
4350 goto copydone; |
|
4351 } /* if */ |
|
4352 } |
|
4353 |
|
4354 for (j = 0; j < adapter->rx_ps_pages; j++) { |
|
4355 length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
|
4356 if (!length) |
|
4357 break; |
|
4358 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], |
|
4359 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
4360 ps_page_dma->ps_page_dma[j] = 0; |
|
4361 skb_add_rx_frag(skb, j, ps_page->ps_page[j], 0, length); |
|
4362 ps_page->ps_page[j] = NULL; |
|
4363 } |
|
4364 |
|
4365 /* strip the ethernet crc, problem is we're using pages now so |
|
4366 * this whole operation can get a little cpu intensive */ |
|
4367 pskb_trim(skb, skb->len - 4); |
|
4368 |
|
4369 copydone: |
|
4370 total_rx_bytes += skb->len; |
|
4371 total_rx_packets++; |
|
4372 |
|
4373 e1000_rx_checksum(adapter, staterr, |
|
4374 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
|
4375 skb->protocol = eth_type_trans(skb, netdev); |
|
4376 |
|
4377 if (likely(rx_desc->wb.upper.header_status & |
|
4378 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))) |
|
4379 adapter->rx_hdr_split++; |
|
4380 |
|
4381 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { |
|
4382 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
4383 le16_to_cpu(rx_desc->wb.middle.vlan)); |
|
4384 } else { |
|
4385 netif_receive_skb(skb); |
|
4386 } |
|
4387 |
|
4388 netdev->last_rx = jiffies; |
|
4389 |
|
4390 next_desc: |
|
4391 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
|
4392 buffer_info->skb = NULL; |
|
4393 |
|
4394 /* return some buffers to hardware, one at a time is too slow */ |
|
4395 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4396 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4397 cleaned_count = 0; |
|
4398 } |
|
4399 |
|
4400 /* use prefetched values */ |
|
4401 rx_desc = next_rxd; |
|
4402 buffer_info = next_buffer; |
|
4403 |
|
4404 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
4405 } |
|
4406 rx_ring->next_to_clean = i; |
|
4407 |
|
4408 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4409 if (cleaned_count) |
|
4410 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4411 |
|
4412 adapter->total_rx_packets += total_rx_packets; |
|
4413 adapter->total_rx_bytes += total_rx_bytes; |
|
4414 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
4415 adapter->net_stats.rx_packets += total_rx_packets; |
|
4416 return cleaned; |
|
4417 } |
|
4418 |
|
4419 /** |
|
4420 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
4421 * @adapter: address of board private structure |
|
4422 **/ |
|
4423 |
|
4424 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
4425 struct e1000_rx_ring *rx_ring, |
|
4426 int cleaned_count) |
|
4427 { |
|
4428 struct e1000_hw *hw = &adapter->hw; |
|
4429 struct net_device *netdev = adapter->netdev; |
|
4430 struct pci_dev *pdev = adapter->pdev; |
|
4431 struct e1000_rx_desc *rx_desc; |
|
4432 struct e1000_buffer *buffer_info; |
|
4433 struct sk_buff *skb; |
|
4434 unsigned int i; |
|
4435 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; |
|
4436 |
|
4437 i = rx_ring->next_to_use; |
|
4438 buffer_info = &rx_ring->buffer_info[i]; |
|
4439 |
|
4440 while (cleaned_count--) { |
|
4441 skb = buffer_info->skb; |
|
4442 if (skb) { |
|
4443 skb_trim(skb, 0); |
|
4444 goto map_skb; |
|
4445 } |
|
4446 |
|
4447 skb = netdev_alloc_skb(netdev, bufsz); |
|
4448 if (unlikely(!skb)) { |
|
4449 /* Better luck next round */ |
|
4450 adapter->alloc_rx_buff_failed++; |
|
4451 break; |
|
4452 } |
|
4453 |
|
4454 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4455 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4456 struct sk_buff *oldskb = skb; |
|
4457 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " |
|
4458 "at %p\n", bufsz, skb->data); |
|
4459 /* Try again, without freeing the previous */ |
|
4460 skb = netdev_alloc_skb(netdev, bufsz); |
|
4461 /* Failed allocation, critical failure */ |
|
4462 if (!skb) { |
|
4463 dev_kfree_skb(oldskb); |
|
4464 break; |
|
4465 } |
|
4466 |
|
4467 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4468 /* give up */ |
|
4469 dev_kfree_skb(skb); |
|
4470 dev_kfree_skb(oldskb); |
|
4471 break; /* while !buffer_info->skb */ |
|
4472 } |
|
4473 |
|
4474 /* Use new allocation */ |
|
4475 dev_kfree_skb(oldskb); |
|
4476 } |
|
4477 /* Make buffer alignment 2 beyond a 16 byte boundary |
|
4478 * this will result in a 16 byte aligned IP header after |
|
4479 * the 14 byte MAC header is removed |
|
4480 */ |
|
4481 skb_reserve(skb, NET_IP_ALIGN); |
|
4482 |
|
4483 buffer_info->skb = skb; |
|
4484 buffer_info->length = adapter->rx_buffer_len; |
|
4485 map_skb: |
|
4486 buffer_info->dma = pci_map_single(pdev, |
|
4487 skb->data, |
|
4488 adapter->rx_buffer_len, |
|
4489 PCI_DMA_FROMDEVICE); |
|
4490 |
|
4491 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4492 if (!e1000_check_64k_bound(adapter, |
|
4493 (void *)(unsigned long)buffer_info->dma, |
|
4494 adapter->rx_buffer_len)) { |
|
4495 DPRINTK(RX_ERR, ERR, |
|
4496 "dma align check failed: %u bytes at %p\n", |
|
4497 adapter->rx_buffer_len, |
|
4498 (void *)(unsigned long)buffer_info->dma); |
|
4499 dev_kfree_skb(skb); |
|
4500 buffer_info->skb = NULL; |
|
4501 |
|
4502 pci_unmap_single(pdev, buffer_info->dma, |
|
4503 adapter->rx_buffer_len, |
|
4504 PCI_DMA_FROMDEVICE); |
|
4505 |
|
4506 break; /* while !buffer_info->skb */ |
|
4507 } |
|
4508 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4509 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4510 |
|
4511 if (unlikely(++i == rx_ring->count)) |
|
4512 i = 0; |
|
4513 buffer_info = &rx_ring->buffer_info[i]; |
|
4514 } |
|
4515 |
|
4516 if (likely(rx_ring->next_to_use != i)) { |
|
4517 rx_ring->next_to_use = i; |
|
4518 if (unlikely(i-- == 0)) |
|
4519 i = (rx_ring->count - 1); |
|
4520 |
|
4521 /* Force memory writes to complete before letting h/w |
|
4522 * know there are new descriptors to fetch. (Only |
|
4523 * applicable for weak-ordered memory model archs, |
|
4524 * such as IA-64). */ |
|
4525 wmb(); |
|
4526 writel(i, hw->hw_addr + rx_ring->rdt); |
|
4527 } |
|
4528 } |
|
4529 |
|
4530 /** |
|
4531 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
|
4532 * @adapter: address of board private structure |
|
4533 **/ |
|
4534 |
|
4535 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
|
4536 struct e1000_rx_ring *rx_ring, |
|
4537 int cleaned_count) |
|
4538 { |
|
4539 struct e1000_hw *hw = &adapter->hw; |
|
4540 struct net_device *netdev = adapter->netdev; |
|
4541 struct pci_dev *pdev = adapter->pdev; |
|
4542 union e1000_rx_desc_packet_split *rx_desc; |
|
4543 struct e1000_buffer *buffer_info; |
|
4544 struct e1000_ps_page *ps_page; |
|
4545 struct e1000_ps_page_dma *ps_page_dma; |
|
4546 struct sk_buff *skb; |
|
4547 unsigned int i, j; |
|
4548 |
|
4549 i = rx_ring->next_to_use; |
|
4550 buffer_info = &rx_ring->buffer_info[i]; |
|
4551 ps_page = &rx_ring->ps_page[i]; |
|
4552 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
4553 |
|
4554 while (cleaned_count--) { |
|
4555 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
4556 |
|
4557 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
4558 if (j < adapter->rx_ps_pages) { |
|
4559 if (likely(!ps_page->ps_page[j])) { |
|
4560 ps_page->ps_page[j] = |
|
4561 netdev_alloc_page(netdev); |
|
4562 if (unlikely(!ps_page->ps_page[j])) { |
|
4563 adapter->alloc_rx_buff_failed++; |
|
4564 goto no_buffers; |
|
4565 } |
|
4566 ps_page_dma->ps_page_dma[j] = |
|
4567 pci_map_page(pdev, |
|
4568 ps_page->ps_page[j], |
|
4569 0, PAGE_SIZE, |
|
4570 PCI_DMA_FROMDEVICE); |
|
4571 } |
|
4572 /* Refresh the desc even if buffer_addrs didn't |
|
4573 * change because each write-back erases |
|
4574 * this info. |
|
4575 */ |
|
4576 rx_desc->read.buffer_addr[j+1] = |
|
4577 cpu_to_le64(ps_page_dma->ps_page_dma[j]); |
|
4578 } else |
|
4579 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
|
4580 } |
|
4581 |
|
4582 skb = netdev_alloc_skb(netdev, |
|
4583 adapter->rx_ps_bsize0 + NET_IP_ALIGN); |
|
4584 |
|
4585 if (unlikely(!skb)) { |
|
4586 adapter->alloc_rx_buff_failed++; |
|
4587 break; |
|
4588 } |
|
4589 |
|
4590 /* Make buffer alignment 2 beyond a 16 byte boundary |
|
4591 * this will result in a 16 byte aligned IP header after |
|
4592 * the 14 byte MAC header is removed |
|
4593 */ |
|
4594 skb_reserve(skb, NET_IP_ALIGN); |
|
4595 |
|
4596 buffer_info->skb = skb; |
|
4597 buffer_info->length = adapter->rx_ps_bsize0; |
|
4598 buffer_info->dma = pci_map_single(pdev, skb->data, |
|
4599 adapter->rx_ps_bsize0, |
|
4600 PCI_DMA_FROMDEVICE); |
|
4601 |
|
4602 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
|
4603 |
|
4604 if (unlikely(++i == rx_ring->count)) i = 0; |
|
4605 buffer_info = &rx_ring->buffer_info[i]; |
|
4606 ps_page = &rx_ring->ps_page[i]; |
|
4607 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
4608 } |
|
4609 |
|
4610 no_buffers: |
|
4611 if (likely(rx_ring->next_to_use != i)) { |
|
4612 rx_ring->next_to_use = i; |
|
4613 if (unlikely(i-- == 0)) i = (rx_ring->count - 1); |
|
4614 |
|
4615 /* Force memory writes to complete before letting h/w |
|
4616 * know there are new descriptors to fetch. (Only |
|
4617 * applicable for weak-ordered memory model archs, |
|
4618 * such as IA-64). */ |
|
4619 wmb(); |
|
4620 /* Hardware increments by 16 bytes, but packet split |
|
4621 * descriptors are 32 bytes...so we increment tail |
|
4622 * twice as much. |
|
4623 */ |
|
4624 writel(i<<1, hw->hw_addr + rx_ring->rdt); |
|
4625 } |
|
4626 } |
|
4627 |
|
4628 /** |
|
4629 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
|
4630 * @adapter: |
|
4631 **/ |
|
4632 |
|
4633 static void e1000_smartspeed(struct e1000_adapter *adapter) |
|
4634 { |
|
4635 struct e1000_hw *hw = &adapter->hw; |
|
4636 u16 phy_status; |
|
4637 u16 phy_ctrl; |
|
4638 |
|
4639 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
|
4640 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
|
4641 return; |
|
4642 |
|
4643 if (adapter->smartspeed == 0) { |
|
4644 /* If Master/Slave config fault is asserted twice, |
|
4645 * we assume back-to-back */ |
|
4646 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4647 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4648 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4649 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4650 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4651 if (phy_ctrl & CR_1000T_MS_ENABLE) { |
|
4652 phy_ctrl &= ~CR_1000T_MS_ENABLE; |
|
4653 e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
4654 phy_ctrl); |
|
4655 adapter->smartspeed++; |
|
4656 if (!e1000_phy_setup_autoneg(hw) && |
|
4657 !e1000_read_phy_reg(hw, PHY_CTRL, |
|
4658 &phy_ctrl)) { |
|
4659 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4660 MII_CR_RESTART_AUTO_NEG); |
|
4661 e1000_write_phy_reg(hw, PHY_CTRL, |
|
4662 phy_ctrl); |
|
4663 } |
|
4664 } |
|
4665 return; |
|
4666 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
|
4667 /* If still no link, perhaps using 2/3 pair cable */ |
|
4668 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4669 phy_ctrl |= CR_1000T_MS_ENABLE; |
|
4670 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
|
4671 if (!e1000_phy_setup_autoneg(hw) && |
|
4672 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
|
4673 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4674 MII_CR_RESTART_AUTO_NEG); |
|
4675 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
|
4676 } |
|
4677 } |
|
4678 /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
|
4679 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
|
4680 adapter->smartspeed = 0; |
|
4681 } |
|
4682 |
|
4683 /** |
|
4684 * e1000_ioctl - |
|
4685 * @netdev: |
|
4686 * @ifreq: |
|
4687 * @cmd: |
|
4688 **/ |
|
4689 |
|
4690 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4691 { |
|
4692 switch (cmd) { |
|
4693 case SIOCGMIIPHY: |
|
4694 case SIOCGMIIREG: |
|
4695 case SIOCSMIIREG: |
|
4696 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4697 default: |
|
4698 return -EOPNOTSUPP; |
|
4699 } |
|
4700 } |
|
4701 |
|
4702 /** |
|
4703 * e1000_mii_ioctl - |
|
4704 * @netdev: |
|
4705 * @ifreq: |
|
4706 * @cmd: |
|
4707 **/ |
|
4708 |
|
4709 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4710 int cmd) |
|
4711 { |
|
4712 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4713 struct e1000_hw *hw = &adapter->hw; |
|
4714 struct mii_ioctl_data *data = if_mii(ifr); |
|
4715 int retval; |
|
4716 u16 mii_reg; |
|
4717 u16 spddplx; |
|
4718 unsigned long flags; |
|
4719 |
|
4720 if (hw->media_type != e1000_media_type_copper) |
|
4721 return -EOPNOTSUPP; |
|
4722 |
|
4723 switch (cmd) { |
|
4724 case SIOCGMIIPHY: |
|
4725 data->phy_id = hw->phy_addr; |
|
4726 break; |
|
4727 case SIOCGMIIREG: |
|
4728 if (!capable(CAP_NET_ADMIN)) |
|
4729 return -EPERM; |
|
4730 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4731 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
|
4732 &data->val_out)) { |
|
4733 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4734 return -EIO; |
|
4735 } |
|
4736 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4737 break; |
|
4738 case SIOCSMIIREG: |
|
4739 if (!capable(CAP_NET_ADMIN)) |
|
4740 return -EPERM; |
|
4741 if (data->reg_num & ~(0x1F)) |
|
4742 return -EFAULT; |
|
4743 mii_reg = data->val_in; |
|
4744 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4745 if (e1000_write_phy_reg(hw, data->reg_num, |
|
4746 mii_reg)) { |
|
4747 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4748 return -EIO; |
|
4749 } |
|
4750 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4751 if (hw->media_type == e1000_media_type_copper) { |
|
4752 switch (data->reg_num) { |
|
4753 case PHY_CTRL: |
|
4754 if (mii_reg & MII_CR_POWER_DOWN) |
|
4755 break; |
|
4756 if (mii_reg & MII_CR_AUTO_NEG_EN) { |
|
4757 hw->autoneg = 1; |
|
4758 hw->autoneg_advertised = 0x2F; |
|
4759 } else { |
|
4760 if (mii_reg & 0x40) |
|
4761 spddplx = SPEED_1000; |
|
4762 else if (mii_reg & 0x2000) |
|
4763 spddplx = SPEED_100; |
|
4764 else |
|
4765 spddplx = SPEED_10; |
|
4766 spddplx += (mii_reg & 0x100) |
|
4767 ? DUPLEX_FULL : |
|
4768 DUPLEX_HALF; |
|
4769 retval = e1000_set_spd_dplx(adapter, |
|
4770 spddplx); |
|
4771 if (retval) |
|
4772 return retval; |
|
4773 } |
|
4774 if (netif_running(adapter->netdev)) |
|
4775 e1000_reinit_locked(adapter); |
|
4776 else |
|
4777 e1000_reset(adapter); |
|
4778 break; |
|
4779 case M88E1000_PHY_SPEC_CTRL: |
|
4780 case M88E1000_EXT_PHY_SPEC_CTRL: |
|
4781 if (e1000_phy_reset(hw)) |
|
4782 return -EIO; |
|
4783 break; |
|
4784 } |
|
4785 } else { |
|
4786 switch (data->reg_num) { |
|
4787 case PHY_CTRL: |
|
4788 if (mii_reg & MII_CR_POWER_DOWN) |
|
4789 break; |
|
4790 if (netif_running(adapter->netdev)) |
|
4791 e1000_reinit_locked(adapter); |
|
4792 else |
|
4793 e1000_reset(adapter); |
|
4794 break; |
|
4795 } |
|
4796 } |
|
4797 break; |
|
4798 default: |
|
4799 return -EOPNOTSUPP; |
|
4800 } |
|
4801 return E1000_SUCCESS; |
|
4802 } |
|
4803 |
|
4804 void e1000_pci_set_mwi(struct e1000_hw *hw) |
|
4805 { |
|
4806 struct e1000_adapter *adapter = hw->back; |
|
4807 int ret_val = pci_set_mwi(adapter->pdev); |
|
4808 |
|
4809 if (ret_val) |
|
4810 DPRINTK(PROBE, ERR, "Error in setting MWI\n"); |
|
4811 } |
|
4812 |
|
4813 void e1000_pci_clear_mwi(struct e1000_hw *hw) |
|
4814 { |
|
4815 struct e1000_adapter *adapter = hw->back; |
|
4816 |
|
4817 pci_clear_mwi(adapter->pdev); |
|
4818 } |
|
4819 |
|
4820 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
|
4821 { |
|
4822 struct e1000_adapter *adapter = hw->back; |
|
4823 return pcix_get_mmrbc(adapter->pdev); |
|
4824 } |
|
4825 |
|
4826 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
|
4827 { |
|
4828 struct e1000_adapter *adapter = hw->back; |
|
4829 pcix_set_mmrbc(adapter->pdev, mmrbc); |
|
4830 } |
|
4831 |
|
4832 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
|
4833 { |
|
4834 struct e1000_adapter *adapter = hw->back; |
|
4835 u16 cap_offset; |
|
4836 |
|
4837 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
|
4838 if (!cap_offset) |
|
4839 return -E1000_ERR_CONFIG; |
|
4840 |
|
4841 pci_read_config_word(adapter->pdev, cap_offset + reg, value); |
|
4842 |
|
4843 return E1000_SUCCESS; |
|
4844 } |
|
4845 |
|
4846 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
|
4847 { |
|
4848 outl(value, port); |
|
4849 } |
|
4850 |
|
4851 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
4852 struct vlan_group *grp) |
|
4853 { |
|
4854 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4855 struct e1000_hw *hw = &adapter->hw; |
|
4856 u32 ctrl, rctl; |
|
4857 |
|
4858 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4859 e1000_irq_disable(adapter); |
|
4860 adapter->vlgrp = grp; |
|
4861 |
|
4862 if (grp) { |
|
4863 /* enable VLAN tag insert/strip */ |
|
4864 ctrl = er32(CTRL); |
|
4865 ctrl |= E1000_CTRL_VME; |
|
4866 ew32(CTRL, ctrl); |
|
4867 |
|
4868 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
4869 /* enable VLAN receive filtering */ |
|
4870 rctl = er32(RCTL); |
|
4871 rctl &= ~E1000_RCTL_CFIEN; |
|
4872 ew32(RCTL, rctl); |
|
4873 e1000_update_mng_vlan(adapter); |
|
4874 } |
|
4875 } else { |
|
4876 /* disable VLAN tag insert/strip */ |
|
4877 ctrl = er32(CTRL); |
|
4878 ctrl &= ~E1000_CTRL_VME; |
|
4879 ew32(CTRL, ctrl); |
|
4880 |
|
4881 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
4882 if (adapter->mng_vlan_id != |
|
4883 (u16)E1000_MNG_VLAN_NONE) { |
|
4884 e1000_vlan_rx_kill_vid(netdev, |
|
4885 adapter->mng_vlan_id); |
|
4886 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
4887 } |
|
4888 } |
|
4889 } |
|
4890 |
|
4891 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4892 e1000_irq_enable(adapter); |
|
4893 } |
|
4894 |
|
4895 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
4896 { |
|
4897 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4898 struct e1000_hw *hw = &adapter->hw; |
|
4899 u32 vfta, index; |
|
4900 |
|
4901 if ((hw->mng_cookie.status & |
|
4902 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4903 (vid == adapter->mng_vlan_id)) |
|
4904 return; |
|
4905 /* add VID to filter table */ |
|
4906 index = (vid >> 5) & 0x7F; |
|
4907 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4908 vfta |= (1 << (vid & 0x1F)); |
|
4909 e1000_write_vfta(hw, index, vfta); |
|
4910 } |
|
4911 |
|
4912 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
4913 { |
|
4914 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4915 struct e1000_hw *hw = &adapter->hw; |
|
4916 u32 vfta, index; |
|
4917 |
|
4918 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4919 e1000_irq_disable(adapter); |
|
4920 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
4921 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4922 e1000_irq_enable(adapter); |
|
4923 |
|
4924 if ((hw->mng_cookie.status & |
|
4925 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4926 (vid == adapter->mng_vlan_id)) { |
|
4927 /* release control to f/w */ |
|
4928 e1000_release_hw_control(adapter); |
|
4929 return; |
|
4930 } |
|
4931 |
|
4932 /* remove VID from filter table */ |
|
4933 index = (vid >> 5) & 0x7F; |
|
4934 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4935 vfta &= ~(1 << (vid & 0x1F)); |
|
4936 e1000_write_vfta(hw, index, vfta); |
|
4937 } |
|
4938 |
|
4939 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
4940 { |
|
4941 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
4942 |
|
4943 if (adapter->vlgrp) { |
|
4944 u16 vid; |
|
4945 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
4946 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
4947 continue; |
|
4948 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
4949 } |
|
4950 } |
|
4951 } |
|
4952 |
|
4953 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
|
4954 { |
|
4955 struct e1000_hw *hw = &adapter->hw; |
|
4956 |
|
4957 hw->autoneg = 0; |
|
4958 |
|
4959 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
4960 if ((hw->media_type == e1000_media_type_fiber) && |
|
4961 spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
|
4962 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
4963 return -EINVAL; |
|
4964 } |
|
4965 |
|
4966 switch (spddplx) { |
|
4967 case SPEED_10 + DUPLEX_HALF: |
|
4968 hw->forced_speed_duplex = e1000_10_half; |
|
4969 break; |
|
4970 case SPEED_10 + DUPLEX_FULL: |
|
4971 hw->forced_speed_duplex = e1000_10_full; |
|
4972 break; |
|
4973 case SPEED_100 + DUPLEX_HALF: |
|
4974 hw->forced_speed_duplex = e1000_100_half; |
|
4975 break; |
|
4976 case SPEED_100 + DUPLEX_FULL: |
|
4977 hw->forced_speed_duplex = e1000_100_full; |
|
4978 break; |
|
4979 case SPEED_1000 + DUPLEX_FULL: |
|
4980 hw->autoneg = 1; |
|
4981 hw->autoneg_advertised = ADVERTISE_1000_FULL; |
|
4982 break; |
|
4983 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
4984 default: |
|
4985 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
4986 return -EINVAL; |
|
4987 } |
|
4988 return 0; |
|
4989 } |
|
4990 |
|
4991 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
4992 { |
|
4993 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4994 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4995 struct e1000_hw *hw = &adapter->hw; |
|
4996 u32 ctrl, ctrl_ext, rctl, status; |
|
4997 u32 wufc = adapter->wol; |
|
4998 #ifdef CONFIG_PM |
|
4999 int retval = 0; |
|
5000 #endif |
|
5001 |
|
5002 netif_device_detach(netdev); |
|
5003 |
|
5004 if (netif_running(netdev)) { |
|
5005 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
5006 e1000_down(adapter); |
|
5007 } |
|
5008 |
|
5009 #ifdef CONFIG_PM |
|
5010 retval = pci_save_state(pdev); |
|
5011 if (retval) |
|
5012 return retval; |
|
5013 #endif |
|
5014 |
|
5015 status = er32(STATUS); |
|
5016 if (status & E1000_STATUS_LU) |
|
5017 wufc &= ~E1000_WUFC_LNKC; |
|
5018 |
|
5019 if (wufc) { |
|
5020 e1000_setup_rctl(adapter); |
|
5021 e1000_set_rx_mode(netdev); |
|
5022 |
|
5023 /* turn on all-multi mode if wake on multicast is enabled */ |
|
5024 if (wufc & E1000_WUFC_MC) { |
|
5025 rctl = er32(RCTL); |
|
5026 rctl |= E1000_RCTL_MPE; |
|
5027 ew32(RCTL, rctl); |
|
5028 } |
|
5029 |
|
5030 if (hw->mac_type >= e1000_82540) { |
|
5031 ctrl = er32(CTRL); |
|
5032 /* advertise wake from D3Cold */ |
|
5033 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
5034 /* phy power management enable */ |
|
5035 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
5036 ctrl |= E1000_CTRL_ADVD3WUC | |
|
5037 E1000_CTRL_EN_PHY_PWR_MGMT; |
|
5038 ew32(CTRL, ctrl); |
|
5039 } |
|
5040 |
|
5041 if (hw->media_type == e1000_media_type_fiber || |
|
5042 hw->media_type == e1000_media_type_internal_serdes) { |
|
5043 /* keep the laser running in D3 */ |
|
5044 ctrl_ext = er32(CTRL_EXT); |
|
5045 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
5046 ew32(CTRL_EXT, ctrl_ext); |
|
5047 } |
|
5048 |
|
5049 /* Allow time for pending master requests to run */ |
|
5050 e1000_disable_pciex_master(hw); |
|
5051 |
|
5052 ew32(WUC, E1000_WUC_PME_EN); |
|
5053 ew32(WUFC, wufc); |
|
5054 pci_enable_wake(pdev, PCI_D3hot, 1); |
|
5055 pci_enable_wake(pdev, PCI_D3cold, 1); |
|
5056 } else { |
|
5057 ew32(WUC, 0); |
|
5058 ew32(WUFC, 0); |
|
5059 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5060 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5061 } |
|
5062 |
|
5063 e1000_release_manageability(adapter); |
|
5064 |
|
5065 /* make sure adapter isn't asleep if manageability is enabled */ |
|
5066 if (adapter->en_mng_pt) { |
|
5067 pci_enable_wake(pdev, PCI_D3hot, 1); |
|
5068 pci_enable_wake(pdev, PCI_D3cold, 1); |
|
5069 } |
|
5070 |
|
5071 if (hw->phy_type == e1000_phy_igp_3) |
|
5072 e1000_phy_powerdown_workaround(hw); |
|
5073 |
|
5074 if (netif_running(netdev)) |
|
5075 e1000_free_irq(adapter); |
|
5076 |
|
5077 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
5078 * would have already happened in close and is redundant. */ |
|
5079 e1000_release_hw_control(adapter); |
|
5080 |
|
5081 pci_disable_device(pdev); |
|
5082 |
|
5083 pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
|
5084 |
|
5085 return 0; |
|
5086 } |
|
5087 |
|
5088 #ifdef CONFIG_PM |
|
5089 static int e1000_resume(struct pci_dev *pdev) |
|
5090 { |
|
5091 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5092 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5093 struct e1000_hw *hw = &adapter->hw; |
|
5094 u32 err; |
|
5095 |
|
5096 pci_set_power_state(pdev, PCI_D0); |
|
5097 pci_restore_state(pdev); |
|
5098 |
|
5099 if (adapter->need_ioport) |
|
5100 err = pci_enable_device(pdev); |
|
5101 else |
|
5102 err = pci_enable_device_mem(pdev); |
|
5103 if (err) { |
|
5104 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n"); |
|
5105 return err; |
|
5106 } |
|
5107 pci_set_master(pdev); |
|
5108 |
|
5109 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5110 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5111 |
|
5112 if (netif_running(netdev)) { |
|
5113 err = e1000_request_irq(adapter); |
|
5114 if (err) |
|
5115 return err; |
|
5116 } |
|
5117 |
|
5118 e1000_power_up_phy(adapter); |
|
5119 e1000_reset(adapter); |
|
5120 ew32(WUS, ~0); |
|
5121 |
|
5122 e1000_init_manageability(adapter); |
|
5123 |
|
5124 if (netif_running(netdev)) |
|
5125 e1000_up(adapter); |
|
5126 |
|
5127 netif_device_attach(netdev); |
|
5128 |
|
5129 /* If the controller is 82573 and f/w is AMT, do not set |
|
5130 * DRV_LOAD until the interface is up. For all other cases, |
|
5131 * let the f/w know that the h/w is now under the control |
|
5132 * of the driver. */ |
|
5133 if (hw->mac_type != e1000_82573 || |
|
5134 !e1000_check_mng_mode(hw)) |
|
5135 e1000_get_hw_control(adapter); |
|
5136 |
|
5137 return 0; |
|
5138 } |
|
5139 #endif |
|
5140 |
|
5141 static void e1000_shutdown(struct pci_dev *pdev) |
|
5142 { |
|
5143 e1000_suspend(pdev, PMSG_SUSPEND); |
|
5144 } |
|
5145 |
|
5146 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
5147 /* |
|
5148 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
5149 * without having to re-enable interrupts. It's not called while |
|
5150 * the interrupt routine is executing. |
|
5151 */ |
|
5152 static void e1000_netpoll(struct net_device *netdev) |
|
5153 { |
|
5154 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5155 |
|
5156 disable_irq(adapter->pdev->irq); |
|
5157 e1000_intr(adapter->pdev->irq, netdev); |
|
5158 enable_irq(adapter->pdev->irq); |
|
5159 } |
|
5160 #endif |
|
5161 |
|
5162 /** |
|
5163 * e1000_io_error_detected - called when PCI error is detected |
|
5164 * @pdev: Pointer to PCI device |
|
5165 * @state: The current pci conneection state |
|
5166 * |
|
5167 * This function is called after a PCI bus error affecting |
|
5168 * this device has been detected. |
|
5169 */ |
|
5170 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
5171 pci_channel_state_t state) |
|
5172 { |
|
5173 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5174 struct e1000_adapter *adapter = netdev->priv; |
|
5175 |
|
5176 netif_device_detach(netdev); |
|
5177 |
|
5178 if (state == pci_channel_io_perm_failure) |
|
5179 return PCI_ERS_RESULT_DISCONNECT; |
|
5180 |
|
5181 if (netif_running(netdev)) |
|
5182 e1000_down(adapter); |
|
5183 pci_disable_device(pdev); |
|
5184 |
|
5185 /* Request a slot slot reset. */ |
|
5186 return PCI_ERS_RESULT_NEED_RESET; |
|
5187 } |
|
5188 |
|
5189 /** |
|
5190 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
5191 * @pdev: Pointer to PCI device |
|
5192 * |
|
5193 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
5194 * resembles the first-half of the e1000_resume routine. |
|
5195 */ |
|
5196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
5197 { |
|
5198 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5199 struct e1000_adapter *adapter = netdev->priv; |
|
5200 struct e1000_hw *hw = &adapter->hw; |
|
5201 int err; |
|
5202 |
|
5203 if (adapter->need_ioport) |
|
5204 err = pci_enable_device(pdev); |
|
5205 else |
|
5206 err = pci_enable_device_mem(pdev); |
|
5207 if (err) { |
|
5208 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); |
|
5209 return PCI_ERS_RESULT_DISCONNECT; |
|
5210 } |
|
5211 pci_set_master(pdev); |
|
5212 |
|
5213 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5214 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5215 |
|
5216 e1000_reset(adapter); |
|
5217 ew32(WUS, ~0); |
|
5218 |
|
5219 return PCI_ERS_RESULT_RECOVERED; |
|
5220 } |
|
5221 |
|
5222 /** |
|
5223 * e1000_io_resume - called when traffic can start flowing again. |
|
5224 * @pdev: Pointer to PCI device |
|
5225 * |
|
5226 * This callback is called when the error recovery driver tells us that |
|
5227 * its OK to resume normal operation. Implementation resembles the |
|
5228 * second-half of the e1000_resume routine. |
|
5229 */ |
|
5230 static void e1000_io_resume(struct pci_dev *pdev) |
|
5231 { |
|
5232 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5233 struct e1000_adapter *adapter = netdev->priv; |
|
5234 struct e1000_hw *hw = &adapter->hw; |
|
5235 |
|
5236 e1000_init_manageability(adapter); |
|
5237 |
|
5238 if (netif_running(netdev)) { |
|
5239 if (e1000_up(adapter)) { |
|
5240 printk("e1000: can't bring device back up after reset\n"); |
|
5241 return; |
|
5242 } |
|
5243 } |
|
5244 |
|
5245 netif_device_attach(netdev); |
|
5246 |
|
5247 /* If the controller is 82573 and f/w is AMT, do not set |
|
5248 * DRV_LOAD until the interface is up. For all other cases, |
|
5249 * let the f/w know that the h/w is now under the control |
|
5250 * of the driver. */ |
|
5251 if (hw->mac_type != e1000_82573 || |
|
5252 !e1000_check_mng_mode(hw)) |
|
5253 e1000_get_hw_control(adapter); |
|
5254 |
|
5255 } |
|
5256 |
|
5257 /* e1000_main.c */ |