devices/e1000/e1000_main-2.6.27-orig.c
changeset 1900 25f848e2fbf4
child 2252 6001f50617a7
equal deleted inserted replaced
1899:689b41081536 1900:25f848e2fbf4
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 #include <net/ip6_checksum.h>
       
    31 
       
    32 char e1000_driver_name[] = "e1000";
       
    33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
       
    34 #define DRV_VERSION "7.3.21-k3-NAPI"
       
    35 const char e1000_driver_version[] = DRV_VERSION;
       
    36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    37 
       
    38 /* e1000_pci_tbl - PCI Device ID Table
       
    39  *
       
    40  * Last entry must be all 0s
       
    41  *
       
    42  * Macro expands to...
       
    43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    44  */
       
    45 static struct pci_device_id e1000_pci_tbl[] = {
       
    46 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    47 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    48 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    49 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    50 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    51 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    52 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    53 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    54 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    55 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    56 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
    82 	/* required last entry */
       
    83 	{0,}
       
    84 };
       
    85 
       
    86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
    87 
       
    88 int e1000_up(struct e1000_adapter *adapter);
       
    89 void e1000_down(struct e1000_adapter *adapter);
       
    90 void e1000_reinit_locked(struct e1000_adapter *adapter);
       
    91 void e1000_reset(struct e1000_adapter *adapter);
       
    92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
       
    93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
    94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
    95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
    96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
    97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
    98                              struct e1000_tx_ring *txdr);
       
    99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   100                              struct e1000_rx_ring *rxdr);
       
   101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   102                              struct e1000_tx_ring *tx_ring);
       
   103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   104                              struct e1000_rx_ring *rx_ring);
       
   105 void e1000_update_stats(struct e1000_adapter *adapter);
       
   106 
       
   107 static int e1000_init_module(void);
       
   108 static void e1000_exit_module(void);
       
   109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   110 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   112 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   113 static int e1000_open(struct net_device *netdev);
       
   114 static int e1000_close(struct net_device *netdev);
       
   115 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   116 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   121                                 struct e1000_tx_ring *tx_ring);
       
   122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   123                                 struct e1000_rx_ring *rx_ring);
       
   124 static void e1000_set_rx_mode(struct net_device *netdev);
       
   125 static void e1000_update_phy_info(unsigned long data);
       
   126 static void e1000_watchdog(unsigned long data);
       
   127 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
       
   129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   131 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   132 static irqreturn_t e1000_intr(int irq, void *data);
       
   133 static irqreturn_t e1000_intr_msi(int irq, void *data);
       
   134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   135 			       struct e1000_tx_ring *tx_ring);
       
   136 static int e1000_clean(struct napi_struct *napi, int budget);
       
   137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   138 			       struct e1000_rx_ring *rx_ring,
       
   139 			       int *work_done, int work_to_do);
       
   140 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   141 				  struct e1000_rx_ring *rx_ring,
       
   142 				  int *work_done, int work_to_do);
       
   143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   144                                    struct e1000_rx_ring *rx_ring,
       
   145 				   int cleaned_count);
       
   146 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   147                                       struct e1000_rx_ring *rx_ring,
       
   148 				      int cleaned_count);
       
   149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   151 			   int cmd);
       
   152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   154 static void e1000_tx_timeout(struct net_device *dev);
       
   155 static void e1000_reset_task(struct work_struct *work);
       
   156 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   158                                        struct sk_buff *skb);
       
   159 
       
   160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
       
   162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
       
   163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   164 
       
   165 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   166 #ifdef CONFIG_PM
       
   167 static int e1000_resume(struct pci_dev *pdev);
       
   168 #endif
       
   169 static void e1000_shutdown(struct pci_dev *pdev);
       
   170 
       
   171 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   172 /* for netdump / net console */
       
   173 static void e1000_netpoll (struct net_device *netdev);
       
   174 #endif
       
   175 
       
   176 #define COPYBREAK_DEFAULT 256
       
   177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
       
   178 module_param(copybreak, uint, 0644);
       
   179 MODULE_PARM_DESC(copybreak,
       
   180 	"Maximum size of packet that is copied to a new buffer on receive");
       
   181 
       
   182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   183                      pci_channel_state_t state);
       
   184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   185 static void e1000_io_resume(struct pci_dev *pdev);
       
   186 
       
   187 static struct pci_error_handlers e1000_err_handler = {
       
   188 	.error_detected = e1000_io_error_detected,
       
   189 	.slot_reset = e1000_io_slot_reset,
       
   190 	.resume = e1000_io_resume,
       
   191 };
       
   192 
       
   193 static struct pci_driver e1000_driver = {
       
   194 	.name     = e1000_driver_name,
       
   195 	.id_table = e1000_pci_tbl,
       
   196 	.probe    = e1000_probe,
       
   197 	.remove   = __devexit_p(e1000_remove),
       
   198 #ifdef CONFIG_PM
       
   199 	/* Power Managment Hooks */
       
   200 	.suspend  = e1000_suspend,
       
   201 	.resume   = e1000_resume,
       
   202 #endif
       
   203 	.shutdown = e1000_shutdown,
       
   204 	.err_handler = &e1000_err_handler
       
   205 };
       
   206 
       
   207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
   208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
   209 MODULE_LICENSE("GPL");
       
   210 MODULE_VERSION(DRV_VERSION);
       
   211 
       
   212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   213 module_param(debug, int, 0);
       
   214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   215 
       
   216 /**
       
   217  * e1000_init_module - Driver Registration Routine
       
   218  *
       
   219  * e1000_init_module is the first routine called when the driver is
       
   220  * loaded. All it does is register with the PCI subsystem.
       
   221  **/
       
   222 
       
   223 static int __init e1000_init_module(void)
       
   224 {
       
   225 	int ret;
       
   226 	printk(KERN_INFO "%s - version %s\n",
       
   227 	       e1000_driver_string, e1000_driver_version);
       
   228 
       
   229 	printk(KERN_INFO "%s\n", e1000_copyright);
       
   230 
       
   231 	ret = pci_register_driver(&e1000_driver);
       
   232 	if (copybreak != COPYBREAK_DEFAULT) {
       
   233 		if (copybreak == 0)
       
   234 			printk(KERN_INFO "e1000: copybreak disabled\n");
       
   235 		else
       
   236 			printk(KERN_INFO "e1000: copybreak enabled for "
       
   237 			       "packets <= %u bytes\n", copybreak);
       
   238 	}
       
   239 	return ret;
       
   240 }
       
   241 
       
   242 module_init(e1000_init_module);
       
   243 
       
   244 /**
       
   245  * e1000_exit_module - Driver Exit Cleanup Routine
       
   246  *
       
   247  * e1000_exit_module is called just before the driver is removed
       
   248  * from memory.
       
   249  **/
       
   250 
       
   251 static void __exit e1000_exit_module(void)
       
   252 {
       
   253 	pci_unregister_driver(&e1000_driver);
       
   254 }
       
   255 
       
   256 module_exit(e1000_exit_module);
       
   257 
       
   258 static int e1000_request_irq(struct e1000_adapter *adapter)
       
   259 {
       
   260 	struct e1000_hw *hw = &adapter->hw;
       
   261 	struct net_device *netdev = adapter->netdev;
       
   262 	irq_handler_t handler = e1000_intr;
       
   263 	int irq_flags = IRQF_SHARED;
       
   264 	int err;
       
   265 
       
   266 	if (hw->mac_type >= e1000_82571) {
       
   267 		adapter->have_msi = !pci_enable_msi(adapter->pdev);
       
   268 		if (adapter->have_msi) {
       
   269 			handler = e1000_intr_msi;
       
   270 			irq_flags = 0;
       
   271 		}
       
   272 	}
       
   273 
       
   274 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
       
   275 	                  netdev);
       
   276 	if (err) {
       
   277 		if (adapter->have_msi)
       
   278 			pci_disable_msi(adapter->pdev);
       
   279 		DPRINTK(PROBE, ERR,
       
   280 		        "Unable to allocate interrupt Error: %d\n", err);
       
   281 	}
       
   282 
       
   283 	return err;
       
   284 }
       
   285 
       
   286 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   287 {
       
   288 	struct net_device *netdev = adapter->netdev;
       
   289 
       
   290 	free_irq(adapter->pdev->irq, netdev);
       
   291 
       
   292 	if (adapter->have_msi)
       
   293 		pci_disable_msi(adapter->pdev);
       
   294 }
       
   295 
       
   296 /**
       
   297  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   298  * @adapter: board private structure
       
   299  **/
       
   300 
       
   301 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
   302 {
       
   303 	struct e1000_hw *hw = &adapter->hw;
       
   304 
       
   305 	ew32(IMC, ~0);
       
   306 	E1000_WRITE_FLUSH();
       
   307 	synchronize_irq(adapter->pdev->irq);
       
   308 }
       
   309 
       
   310 /**
       
   311  * e1000_irq_enable - Enable default interrupt generation settings
       
   312  * @adapter: board private structure
       
   313  **/
       
   314 
       
   315 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
   316 {
       
   317 	struct e1000_hw *hw = &adapter->hw;
       
   318 
       
   319 	ew32(IMS, IMS_ENABLE_MASK);
       
   320 	E1000_WRITE_FLUSH();
       
   321 }
       
   322 
       
   323 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   324 {
       
   325 	struct e1000_hw *hw = &adapter->hw;
       
   326 	struct net_device *netdev = adapter->netdev;
       
   327 	u16 vid = hw->mng_cookie.vlan_id;
       
   328 	u16 old_vid = adapter->mng_vlan_id;
       
   329 	if (adapter->vlgrp) {
       
   330 		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
   331 			if (hw->mng_cookie.status &
       
   332 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   333 				e1000_vlan_rx_add_vid(netdev, vid);
       
   334 				adapter->mng_vlan_id = vid;
       
   335 			} else
       
   336 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   337 
       
   338 			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
   339 					(vid != old_vid) &&
       
   340 			    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
   341 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   342 		} else
       
   343 			adapter->mng_vlan_id = vid;
       
   344 	}
       
   345 }
       
   346 
       
   347 /**
       
   348  * e1000_release_hw_control - release control of the h/w to f/w
       
   349  * @adapter: address of board private structure
       
   350  *
       
   351  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   352  * For ASF and Pass Through versions of f/w this means that the
       
   353  * driver is no longer loaded. For AMT version (only with 82573) i
       
   354  * of the f/w this means that the network i/f is closed.
       
   355  *
       
   356  **/
       
   357 
       
   358 static void e1000_release_hw_control(struct e1000_adapter *adapter)
       
   359 {
       
   360 	u32 ctrl_ext;
       
   361 	u32 swsm;
       
   362 	struct e1000_hw *hw = &adapter->hw;
       
   363 
       
   364 	/* Let firmware taken over control of h/w */
       
   365 	switch (hw->mac_type) {
       
   366 	case e1000_82573:
       
   367 		swsm = er32(SWSM);
       
   368 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
       
   369 		break;
       
   370 	case e1000_82571:
       
   371 	case e1000_82572:
       
   372 	case e1000_80003es2lan:
       
   373 	case e1000_ich8lan:
       
   374 		ctrl_ext = er32(CTRL_EXT);
       
   375 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
   376 		break;
       
   377 	default:
       
   378 		break;
       
   379 	}
       
   380 }
       
   381 
       
   382 /**
       
   383  * e1000_get_hw_control - get control of the h/w from f/w
       
   384  * @adapter: address of board private structure
       
   385  *
       
   386  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   387  * For ASF and Pass Through versions of f/w this means that
       
   388  * the driver is loaded. For AMT version (only with 82573)
       
   389  * of the f/w this means that the network i/f is open.
       
   390  *
       
   391  **/
       
   392 
       
   393 static void e1000_get_hw_control(struct e1000_adapter *adapter)
       
   394 {
       
   395 	u32 ctrl_ext;
       
   396 	u32 swsm;
       
   397 	struct e1000_hw *hw = &adapter->hw;
       
   398 
       
   399 	/* Let firmware know the driver has taken over */
       
   400 	switch (hw->mac_type) {
       
   401 	case e1000_82573:
       
   402 		swsm = er32(SWSM);
       
   403 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
       
   404 		break;
       
   405 	case e1000_82571:
       
   406 	case e1000_82572:
       
   407 	case e1000_80003es2lan:
       
   408 	case e1000_ich8lan:
       
   409 		ctrl_ext = er32(CTRL_EXT);
       
   410 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
   411 		break;
       
   412 	default:
       
   413 		break;
       
   414 	}
       
   415 }
       
   416 
       
   417 static void e1000_init_manageability(struct e1000_adapter *adapter)
       
   418 {
       
   419 	struct e1000_hw *hw = &adapter->hw;
       
   420 
       
   421 	if (adapter->en_mng_pt) {
       
   422 		u32 manc = er32(MANC);
       
   423 
       
   424 		/* disable hardware interception of ARP */
       
   425 		manc &= ~(E1000_MANC_ARP_EN);
       
   426 
       
   427 		/* enable receiving management packets to the host */
       
   428 		/* this will probably generate destination unreachable messages
       
   429 		 * from the host OS, but the packets will be handled on SMBUS */
       
   430 		if (hw->has_manc2h) {
       
   431 			u32 manc2h = er32(MANC2H);
       
   432 
       
   433 			manc |= E1000_MANC_EN_MNG2HOST;
       
   434 #define E1000_MNG2HOST_PORT_623 (1 << 5)
       
   435 #define E1000_MNG2HOST_PORT_664 (1 << 6)
       
   436 			manc2h |= E1000_MNG2HOST_PORT_623;
       
   437 			manc2h |= E1000_MNG2HOST_PORT_664;
       
   438 			ew32(MANC2H, manc2h);
       
   439 		}
       
   440 
       
   441 		ew32(MANC, manc);
       
   442 	}
       
   443 }
       
   444 
       
   445 static void e1000_release_manageability(struct e1000_adapter *adapter)
       
   446 {
       
   447 	struct e1000_hw *hw = &adapter->hw;
       
   448 
       
   449 	if (adapter->en_mng_pt) {
       
   450 		u32 manc = er32(MANC);
       
   451 
       
   452 		/* re-enable hardware interception of ARP */
       
   453 		manc |= E1000_MANC_ARP_EN;
       
   454 
       
   455 		if (hw->has_manc2h)
       
   456 			manc &= ~E1000_MANC_EN_MNG2HOST;
       
   457 
       
   458 		/* don't explicitly have to mess with MANC2H since
       
   459 		 * MANC has an enable disable that gates MANC2H */
       
   460 
       
   461 		ew32(MANC, manc);
       
   462 	}
       
   463 }
       
   464 
       
   465 /**
       
   466  * e1000_configure - configure the hardware for RX and TX
       
   467  * @adapter = private board structure
       
   468  **/
       
   469 static void e1000_configure(struct e1000_adapter *adapter)
       
   470 {
       
   471 	struct net_device *netdev = adapter->netdev;
       
   472 	int i;
       
   473 
       
   474 	e1000_set_rx_mode(netdev);
       
   475 
       
   476 	e1000_restore_vlan(adapter);
       
   477 	e1000_init_manageability(adapter);
       
   478 
       
   479 	e1000_configure_tx(adapter);
       
   480 	e1000_setup_rctl(adapter);
       
   481 	e1000_configure_rx(adapter);
       
   482 	/* call E1000_DESC_UNUSED which always leaves
       
   483 	 * at least 1 descriptor unused to make sure
       
   484 	 * next_to_use != next_to_clean */
       
   485 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   486 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   487 		adapter->alloc_rx_buf(adapter, ring,
       
   488 		                      E1000_DESC_UNUSED(ring));
       
   489 	}
       
   490 
       
   491 	adapter->tx_queue_len = netdev->tx_queue_len;
       
   492 }
       
   493 
       
   494 int e1000_up(struct e1000_adapter *adapter)
       
   495 {
       
   496 	struct e1000_hw *hw = &adapter->hw;
       
   497 
       
   498 	/* hardware has been reset, we need to reload some things */
       
   499 	e1000_configure(adapter);
       
   500 
       
   501 	clear_bit(__E1000_DOWN, &adapter->flags);
       
   502 
       
   503 	napi_enable(&adapter->napi);
       
   504 
       
   505 	e1000_irq_enable(adapter);
       
   506 
       
   507 	/* fire a link change interrupt to start the watchdog */
       
   508 	ew32(ICS, E1000_ICS_LSC);
       
   509 	return 0;
       
   510 }
       
   511 
       
   512 /**
       
   513  * e1000_power_up_phy - restore link in case the phy was powered down
       
   514  * @adapter: address of board private structure
       
   515  *
       
   516  * The phy may be powered down to save power and turn off link when the
       
   517  * driver is unloaded and wake on lan is not enabled (among others)
       
   518  * *** this routine MUST be followed by a call to e1000_reset ***
       
   519  *
       
   520  **/
       
   521 
       
   522 void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   523 {
       
   524 	struct e1000_hw *hw = &adapter->hw;
       
   525 	u16 mii_reg = 0;
       
   526 
       
   527 	/* Just clear the power down bit to wake the phy back up */
       
   528 	if (hw->media_type == e1000_media_type_copper) {
       
   529 		/* according to the manual, the phy will retain its
       
   530 		 * settings across a power-down/up cycle */
       
   531 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   532 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   533 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   534 	}
       
   535 }
       
   536 
       
   537 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   538 {
       
   539 	struct e1000_hw *hw = &adapter->hw;
       
   540 
       
   541 	/* Power down the PHY so no link is implied when interface is down *
       
   542 	 * The PHY cannot be powered down if any of the following is true *
       
   543 	 * (a) WoL is enabled
       
   544 	 * (b) AMT is active
       
   545 	 * (c) SoL/IDER session is active */
       
   546 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
       
   547 	   hw->media_type == e1000_media_type_copper) {
       
   548 		u16 mii_reg = 0;
       
   549 
       
   550 		switch (hw->mac_type) {
       
   551 		case e1000_82540:
       
   552 		case e1000_82545:
       
   553 		case e1000_82545_rev_3:
       
   554 		case e1000_82546:
       
   555 		case e1000_82546_rev_3:
       
   556 		case e1000_82541:
       
   557 		case e1000_82541_rev_2:
       
   558 		case e1000_82547:
       
   559 		case e1000_82547_rev_2:
       
   560 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
       
   561 				goto out;
       
   562 			break;
       
   563 		case e1000_82571:
       
   564 		case e1000_82572:
       
   565 		case e1000_82573:
       
   566 		case e1000_80003es2lan:
       
   567 		case e1000_ich8lan:
       
   568 			if (e1000_check_mng_mode(hw) ||
       
   569 			    e1000_check_phy_reset_block(hw))
       
   570 				goto out;
       
   571 			break;
       
   572 		default:
       
   573 			goto out;
       
   574 		}
       
   575 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   576 		mii_reg |= MII_CR_POWER_DOWN;
       
   577 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   578 		mdelay(1);
       
   579 	}
       
   580 out:
       
   581 	return;
       
   582 }
       
   583 
       
   584 void e1000_down(struct e1000_adapter *adapter)
       
   585 {
       
   586 	struct net_device *netdev = adapter->netdev;
       
   587 
       
   588 	/* signal that we're down so the interrupt handler does not
       
   589 	 * reschedule our watchdog timer */
       
   590 	set_bit(__E1000_DOWN, &adapter->flags);
       
   591 
       
   592 	napi_disable(&adapter->napi);
       
   593 
       
   594 	e1000_irq_disable(adapter);
       
   595 
       
   596 	del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   597 	del_timer_sync(&adapter->watchdog_timer);
       
   598 	del_timer_sync(&adapter->phy_info_timer);
       
   599 
       
   600 	netdev->tx_queue_len = adapter->tx_queue_len;
       
   601 	adapter->link_speed = 0;
       
   602 	adapter->link_duplex = 0;
       
   603 	netif_carrier_off(netdev);
       
   604 	netif_stop_queue(netdev);
       
   605 
       
   606 	e1000_reset(adapter);
       
   607 	e1000_clean_all_tx_rings(adapter);
       
   608 	e1000_clean_all_rx_rings(adapter);
       
   609 }
       
   610 
       
   611 void e1000_reinit_locked(struct e1000_adapter *adapter)
       
   612 {
       
   613 	WARN_ON(in_interrupt());
       
   614 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   615 		msleep(1);
       
   616 	e1000_down(adapter);
       
   617 	e1000_up(adapter);
       
   618 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   619 }
       
   620 
       
   621 void e1000_reset(struct e1000_adapter *adapter)
       
   622 {
       
   623 	struct e1000_hw *hw = &adapter->hw;
       
   624 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
       
   625 	u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
       
   626 	bool legacy_pba_adjust = false;
       
   627 
       
   628 	/* Repartition Pba for greater than 9k mtu
       
   629 	 * To take effect CTRL.RST is required.
       
   630 	 */
       
   631 
       
   632 	switch (hw->mac_type) {
       
   633 	case e1000_82542_rev2_0:
       
   634 	case e1000_82542_rev2_1:
       
   635 	case e1000_82543:
       
   636 	case e1000_82544:
       
   637 	case e1000_82540:
       
   638 	case e1000_82541:
       
   639 	case e1000_82541_rev_2:
       
   640 		legacy_pba_adjust = true;
       
   641 		pba = E1000_PBA_48K;
       
   642 		break;
       
   643 	case e1000_82545:
       
   644 	case e1000_82545_rev_3:
       
   645 	case e1000_82546:
       
   646 	case e1000_82546_rev_3:
       
   647 		pba = E1000_PBA_48K;
       
   648 		break;
       
   649 	case e1000_82547:
       
   650 	case e1000_82547_rev_2:
       
   651 		legacy_pba_adjust = true;
       
   652 		pba = E1000_PBA_30K;
       
   653 		break;
       
   654 	case e1000_82571:
       
   655 	case e1000_82572:
       
   656 	case e1000_80003es2lan:
       
   657 		pba = E1000_PBA_38K;
       
   658 		break;
       
   659 	case e1000_82573:
       
   660 		pba = E1000_PBA_20K;
       
   661 		break;
       
   662 	case e1000_ich8lan:
       
   663 		pba = E1000_PBA_8K;
       
   664 	case e1000_undefined:
       
   665 	case e1000_num_macs:
       
   666 		break;
       
   667 	}
       
   668 
       
   669 	if (legacy_pba_adjust) {
       
   670 		if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
       
   671 			pba -= 8; /* allocate more FIFO for Tx */
       
   672 
       
   673 		if (hw->mac_type == e1000_82547) {
       
   674 			adapter->tx_fifo_head = 0;
       
   675 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   676 			adapter->tx_fifo_size =
       
   677 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   678 			atomic_set(&adapter->tx_fifo_stall, 0);
       
   679 		}
       
   680 	} else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
   681 		/* adjust PBA for jumbo frames */
       
   682 		ew32(PBA, pba);
       
   683 
       
   684 		/* To maintain wire speed transmits, the Tx FIFO should be
       
   685 		 * large enough to accomodate two full transmit packets,
       
   686 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
   687 		 * the Rx FIFO should be large enough to accomodate at least
       
   688 		 * one full receive packet and is similarly rounded up and
       
   689 		 * expressed in KB. */
       
   690 		pba = er32(PBA);
       
   691 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
   692 		tx_space = pba >> 16;
       
   693 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
   694 		pba &= 0xffff;
       
   695 		/* don't include ethernet FCS because hardware appends/strips */
       
   696 		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
       
   697 		               VLAN_TAG_SIZE;
       
   698 		min_tx_space = min_rx_space;
       
   699 		min_tx_space *= 2;
       
   700 		min_tx_space = ALIGN(min_tx_space, 1024);
       
   701 		min_tx_space >>= 10;
       
   702 		min_rx_space = ALIGN(min_rx_space, 1024);
       
   703 		min_rx_space >>= 10;
       
   704 
       
   705 		/* If current Tx allocation is less than the min Tx FIFO size,
       
   706 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
   707 		 * allocation, take space away from current Rx allocation */
       
   708 		if (tx_space < min_tx_space &&
       
   709 		    ((min_tx_space - tx_space) < pba)) {
       
   710 			pba = pba - (min_tx_space - tx_space);
       
   711 
       
   712 			/* PCI/PCIx hardware has PBA alignment constraints */
       
   713 			switch (hw->mac_type) {
       
   714 			case e1000_82545 ... e1000_82546_rev_3:
       
   715 				pba &= ~(E1000_PBA_8K - 1);
       
   716 				break;
       
   717 			default:
       
   718 				break;
       
   719 			}
       
   720 
       
   721 			/* if short on rx space, rx wins and must trump tx
       
   722 			 * adjustment or use Early Receive if available */
       
   723 			if (pba < min_rx_space) {
       
   724 				switch (hw->mac_type) {
       
   725 				case e1000_82573:
       
   726 					/* ERT enabled in e1000_configure_rx */
       
   727 					break;
       
   728 				default:
       
   729 					pba = min_rx_space;
       
   730 					break;
       
   731 				}
       
   732 			}
       
   733 		}
       
   734 	}
       
   735 
       
   736 	ew32(PBA, pba);
       
   737 
       
   738 	/* flow control settings */
       
   739 	/* Set the FC high water mark to 90% of the FIFO size.
       
   740 	 * Required to clear last 3 LSB */
       
   741 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
       
   742 	/* We can't use 90% on small FIFOs because the remainder
       
   743 	 * would be less than 1 full frame.  In this case, we size
       
   744 	 * it to allow at least a full frame above the high water
       
   745 	 *  mark. */
       
   746 	if (pba < E1000_PBA_16K)
       
   747 		fc_high_water_mark = (pba * 1024) - 1600;
       
   748 
       
   749 	hw->fc_high_water = fc_high_water_mark;
       
   750 	hw->fc_low_water = fc_high_water_mark - 8;
       
   751 	if (hw->mac_type == e1000_80003es2lan)
       
   752 		hw->fc_pause_time = 0xFFFF;
       
   753 	else
       
   754 		hw->fc_pause_time = E1000_FC_PAUSE_TIME;
       
   755 	hw->fc_send_xon = 1;
       
   756 	hw->fc = hw->original_fc;
       
   757 
       
   758 	/* Allow time for pending master requests to run */
       
   759 	e1000_reset_hw(hw);
       
   760 	if (hw->mac_type >= e1000_82544)
       
   761 		ew32(WUC, 0);
       
   762 
       
   763 	if (e1000_init_hw(hw))
       
   764 		DPRINTK(PROBE, ERR, "Hardware Error\n");
       
   765 	e1000_update_mng_vlan(adapter);
       
   766 
       
   767 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
       
   768 	if (hw->mac_type >= e1000_82544 &&
       
   769 	    hw->mac_type <= e1000_82547_rev_2 &&
       
   770 	    hw->autoneg == 1 &&
       
   771 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   772 		u32 ctrl = er32(CTRL);
       
   773 		/* clear phy power management bit if we are in gig only mode,
       
   774 		 * which if enabled will attempt negotiation to 100Mb, which
       
   775 		 * can cause a loss of link at power off or driver unload */
       
   776 		ctrl &= ~E1000_CTRL_SWDPIN3;
       
   777 		ew32(CTRL, ctrl);
       
   778 	}
       
   779 
       
   780 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   781 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
       
   782 
       
   783 	e1000_reset_adaptive(hw);
       
   784 	e1000_phy_get_info(hw, &adapter->phy_info);
       
   785 
       
   786 	if (!adapter->smart_power_down &&
       
   787 	    (hw->mac_type == e1000_82571 ||
       
   788 	     hw->mac_type == e1000_82572)) {
       
   789 		u16 phy_data = 0;
       
   790 		/* speed up time to link by disabling smart power down, ignore
       
   791 		 * the return value of this function because there is nothing
       
   792 		 * different we would do if it failed */
       
   793 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
   794 		                   &phy_data);
       
   795 		phy_data &= ~IGP02E1000_PM_SPD;
       
   796 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
   797 		                    phy_data);
       
   798 	}
       
   799 
       
   800 	e1000_release_manageability(adapter);
       
   801 }
       
   802 
       
   803 /**
       
   804  *  Dump the eeprom for users having checksum issues
       
   805  **/
       
   806 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
       
   807 {
       
   808 	struct net_device *netdev = adapter->netdev;
       
   809 	struct ethtool_eeprom eeprom;
       
   810 	const struct ethtool_ops *ops = netdev->ethtool_ops;
       
   811 	u8 *data;
       
   812 	int i;
       
   813 	u16 csum_old, csum_new = 0;
       
   814 
       
   815 	eeprom.len = ops->get_eeprom_len(netdev);
       
   816 	eeprom.offset = 0;
       
   817 
       
   818 	data = kmalloc(eeprom.len, GFP_KERNEL);
       
   819 	if (!data) {
       
   820 		printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
       
   821 		       " data\n");
       
   822 		return;
       
   823 	}
       
   824 
       
   825 	ops->get_eeprom(netdev, &eeprom, data);
       
   826 
       
   827 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
       
   828 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
       
   829 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
       
   830 		csum_new += data[i] + (data[i + 1] << 8);
       
   831 	csum_new = EEPROM_SUM - csum_new;
       
   832 
       
   833 	printk(KERN_ERR "/*********************/\n");
       
   834 	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
       
   835 	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
       
   836 
       
   837 	printk(KERN_ERR "Offset    Values\n");
       
   838 	printk(KERN_ERR "========  ======\n");
       
   839 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
       
   840 
       
   841 	printk(KERN_ERR "Include this output when contacting your support "
       
   842 	       "provider.\n");
       
   843 	printk(KERN_ERR "This is not a software error! Something bad "
       
   844 	       "happened to your hardware or\n");
       
   845 	printk(KERN_ERR "EEPROM image. Ignoring this "
       
   846 	       "problem could result in further problems,\n");
       
   847 	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
       
   848 	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
       
   849 	       "which is invalid\n");
       
   850 	printk(KERN_ERR "and requires you to set the proper MAC "
       
   851 	       "address manually before continuing\n");
       
   852 	printk(KERN_ERR "to enable this network device.\n");
       
   853 	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
       
   854 	       "to your hardware vendor\n");
       
   855 	printk(KERN_ERR "or Intel Customer Support.\n");
       
   856 	printk(KERN_ERR "/*********************/\n");
       
   857 
       
   858 	kfree(data);
       
   859 }
       
   860 
       
   861 /**
       
   862  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
       
   863  * @pdev: PCI device information struct
       
   864  *
       
   865  * Return true if an adapter needs ioport resources
       
   866  **/
       
   867 static int e1000_is_need_ioport(struct pci_dev *pdev)
       
   868 {
       
   869 	switch (pdev->device) {
       
   870 	case E1000_DEV_ID_82540EM:
       
   871 	case E1000_DEV_ID_82540EM_LOM:
       
   872 	case E1000_DEV_ID_82540EP:
       
   873 	case E1000_DEV_ID_82540EP_LOM:
       
   874 	case E1000_DEV_ID_82540EP_LP:
       
   875 	case E1000_DEV_ID_82541EI:
       
   876 	case E1000_DEV_ID_82541EI_MOBILE:
       
   877 	case E1000_DEV_ID_82541ER:
       
   878 	case E1000_DEV_ID_82541ER_LOM:
       
   879 	case E1000_DEV_ID_82541GI:
       
   880 	case E1000_DEV_ID_82541GI_LF:
       
   881 	case E1000_DEV_ID_82541GI_MOBILE:
       
   882 	case E1000_DEV_ID_82544EI_COPPER:
       
   883 	case E1000_DEV_ID_82544EI_FIBER:
       
   884 	case E1000_DEV_ID_82544GC_COPPER:
       
   885 	case E1000_DEV_ID_82544GC_LOM:
       
   886 	case E1000_DEV_ID_82545EM_COPPER:
       
   887 	case E1000_DEV_ID_82545EM_FIBER:
       
   888 	case E1000_DEV_ID_82546EB_COPPER:
       
   889 	case E1000_DEV_ID_82546EB_FIBER:
       
   890 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
   891 		return true;
       
   892 	default:
       
   893 		return false;
       
   894 	}
       
   895 }
       
   896 
       
   897 /**
       
   898  * e1000_probe - Device Initialization Routine
       
   899  * @pdev: PCI device information struct
       
   900  * @ent: entry in e1000_pci_tbl
       
   901  *
       
   902  * Returns 0 on success, negative on failure
       
   903  *
       
   904  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   905  * The OS initialization, configuring of the adapter private structure,
       
   906  * and a hardware reset occur.
       
   907  **/
       
   908 static int __devinit e1000_probe(struct pci_dev *pdev,
       
   909 				 const struct pci_device_id *ent)
       
   910 {
       
   911 	struct net_device *netdev;
       
   912 	struct e1000_adapter *adapter;
       
   913 	struct e1000_hw *hw;
       
   914 
       
   915 	static int cards_found = 0;
       
   916 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
       
   917 	int i, err, pci_using_dac;
       
   918 	u16 eeprom_data = 0;
       
   919 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
   920 	int bars, need_ioport;
       
   921 	DECLARE_MAC_BUF(mac);
       
   922 
       
   923 	/* do not allocate ioport bars when not needed */
       
   924 	need_ioport = e1000_is_need_ioport(pdev);
       
   925 	if (need_ioport) {
       
   926 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
       
   927 		err = pci_enable_device(pdev);
       
   928 	} else {
       
   929 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
       
   930 		err = pci_enable_device_mem(pdev);
       
   931 	}
       
   932 	if (err)
       
   933 		return err;
       
   934 
       
   935 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
       
   936 	    !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
       
   937 		pci_using_dac = 1;
       
   938 	} else {
       
   939 		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
       
   940 		if (err) {
       
   941 			err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
       
   942 			if (err) {
       
   943 				E1000_ERR("No usable DMA configuration, "
       
   944 					  "aborting\n");
       
   945 				goto err_dma;
       
   946 			}
       
   947 		}
       
   948 		pci_using_dac = 0;
       
   949 	}
       
   950 
       
   951 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
       
   952 	if (err)
       
   953 		goto err_pci_reg;
       
   954 
       
   955 	pci_set_master(pdev);
       
   956 
       
   957 	err = -ENOMEM;
       
   958 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   959 	if (!netdev)
       
   960 		goto err_alloc_etherdev;
       
   961 
       
   962 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   963 
       
   964 	pci_set_drvdata(pdev, netdev);
       
   965 	adapter = netdev_priv(netdev);
       
   966 	adapter->netdev = netdev;
       
   967 	adapter->pdev = pdev;
       
   968 	adapter->msg_enable = (1 << debug) - 1;
       
   969 	adapter->bars = bars;
       
   970 	adapter->need_ioport = need_ioport;
       
   971 
       
   972 	hw = &adapter->hw;
       
   973 	hw->back = adapter;
       
   974 
       
   975 	err = -EIO;
       
   976 	hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
       
   977 			      pci_resource_len(pdev, BAR_0));
       
   978 	if (!hw->hw_addr)
       
   979 		goto err_ioremap;
       
   980 
       
   981 	if (adapter->need_ioport) {
       
   982 		for (i = BAR_1; i <= BAR_5; i++) {
       
   983 			if (pci_resource_len(pdev, i) == 0)
       
   984 				continue;
       
   985 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
   986 				hw->io_base = pci_resource_start(pdev, i);
       
   987 				break;
       
   988 			}
       
   989 		}
       
   990 	}
       
   991 
       
   992 	netdev->open = &e1000_open;
       
   993 	netdev->stop = &e1000_close;
       
   994 	netdev->hard_start_xmit = &e1000_xmit_frame;
       
   995 	netdev->get_stats = &e1000_get_stats;
       
   996 	netdev->set_rx_mode = &e1000_set_rx_mode;
       
   997 	netdev->set_mac_address = &e1000_set_mac;
       
   998 	netdev->change_mtu = &e1000_change_mtu;
       
   999 	netdev->do_ioctl = &e1000_ioctl;
       
  1000 	e1000_set_ethtool_ops(netdev);
       
  1001 	netdev->tx_timeout = &e1000_tx_timeout;
       
  1002 	netdev->watchdog_timeo = 5 * HZ;
       
  1003 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
  1004 	netdev->vlan_rx_register = e1000_vlan_rx_register;
       
  1005 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
       
  1006 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
       
  1007 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  1008 	netdev->poll_controller = e1000_netpoll;
       
  1009 #endif
       
  1010 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  1011 
       
  1012 	adapter->bd_number = cards_found;
       
  1013 
       
  1014 	/* setup the private structure */
       
  1015 
       
  1016 	err = e1000_sw_init(adapter);
       
  1017 	if (err)
       
  1018 		goto err_sw_init;
       
  1019 
       
  1020 	err = -EIO;
       
  1021 	/* Flash BAR mapping must happen after e1000_sw_init
       
  1022 	 * because it depends on mac_type */
       
  1023 	if ((hw->mac_type == e1000_ich8lan) &&
       
  1024 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
  1025 		hw->flash_address =
       
  1026 			ioremap(pci_resource_start(pdev, 1),
       
  1027 				pci_resource_len(pdev, 1));
       
  1028 		if (!hw->flash_address)
       
  1029 			goto err_flashmap;
       
  1030 	}
       
  1031 
       
  1032 	if (e1000_check_phy_reset_block(hw))
       
  1033 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
       
  1034 
       
  1035 	if (hw->mac_type >= e1000_82543) {
       
  1036 		netdev->features = NETIF_F_SG |
       
  1037 				   NETIF_F_HW_CSUM |
       
  1038 				   NETIF_F_HW_VLAN_TX |
       
  1039 				   NETIF_F_HW_VLAN_RX |
       
  1040 				   NETIF_F_HW_VLAN_FILTER;
       
  1041 		if (hw->mac_type == e1000_ich8lan)
       
  1042 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
       
  1043 	}
       
  1044 
       
  1045 	if ((hw->mac_type >= e1000_82544) &&
       
  1046 	   (hw->mac_type != e1000_82547))
       
  1047 		netdev->features |= NETIF_F_TSO;
       
  1048 
       
  1049 	if (hw->mac_type > e1000_82547_rev_2)
       
  1050 		netdev->features |= NETIF_F_TSO6;
       
  1051 	if (pci_using_dac)
       
  1052 		netdev->features |= NETIF_F_HIGHDMA;
       
  1053 
       
  1054 	netdev->features |= NETIF_F_LLTX;
       
  1055 
       
  1056 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
       
  1057 
       
  1058 	/* initialize eeprom parameters */
       
  1059 	if (e1000_init_eeprom_params(hw)) {
       
  1060 		E1000_ERR("EEPROM initialization failed\n");
       
  1061 		goto err_eeprom;
       
  1062 	}
       
  1063 
       
  1064 	/* before reading the EEPROM, reset the controller to
       
  1065 	 * put the device in a known good starting state */
       
  1066 
       
  1067 	e1000_reset_hw(hw);
       
  1068 
       
  1069 	/* make sure the EEPROM is good */
       
  1070 	if (e1000_validate_eeprom_checksum(hw) < 0) {
       
  1071 		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
       
  1072 		e1000_dump_eeprom(adapter);
       
  1073 		/*
       
  1074 		 * set MAC address to all zeroes to invalidate and temporary
       
  1075 		 * disable this device for the user. This blocks regular
       
  1076 		 * traffic while still permitting ethtool ioctls from reaching
       
  1077 		 * the hardware as well as allowing the user to run the
       
  1078 		 * interface after manually setting a hw addr using
       
  1079 		 * `ip set address`
       
  1080 		 */
       
  1081 		memset(hw->mac_addr, 0, netdev->addr_len);
       
  1082 	} else {
       
  1083 		/* copy the MAC address out of the EEPROM */
       
  1084 		if (e1000_read_mac_addr(hw))
       
  1085 			DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
       
  1086 	}
       
  1087 	/* don't block initalization here due to bad MAC address */
       
  1088 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
       
  1089 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
       
  1090 
       
  1091 	if (!is_valid_ether_addr(netdev->perm_addr))
       
  1092 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
       
  1093 
       
  1094 	e1000_get_bus_info(hw);
       
  1095 
       
  1096 	init_timer(&adapter->tx_fifo_stall_timer);
       
  1097 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
  1098 	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
       
  1099 
       
  1100 	init_timer(&adapter->watchdog_timer);
       
  1101 	adapter->watchdog_timer.function = &e1000_watchdog;
       
  1102 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  1103 
       
  1104 	init_timer(&adapter->phy_info_timer);
       
  1105 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
  1106 	adapter->phy_info_timer.data = (unsigned long)adapter;
       
  1107 
       
  1108 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  1109 
       
  1110 	e1000_check_options(adapter);
       
  1111 
       
  1112 	/* Initial Wake on LAN setting
       
  1113 	 * If APM wake is enabled in the EEPROM,
       
  1114 	 * enable the ACPI Magic Packet filter
       
  1115 	 */
       
  1116 
       
  1117 	switch (hw->mac_type) {
       
  1118 	case e1000_82542_rev2_0:
       
  1119 	case e1000_82542_rev2_1:
       
  1120 	case e1000_82543:
       
  1121 		break;
       
  1122 	case e1000_82544:
       
  1123 		e1000_read_eeprom(hw,
       
  1124 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
  1125 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
  1126 		break;
       
  1127 	case e1000_ich8lan:
       
  1128 		e1000_read_eeprom(hw,
       
  1129 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
       
  1130 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
       
  1131 		break;
       
  1132 	case e1000_82546:
       
  1133 	case e1000_82546_rev_3:
       
  1134 	case e1000_82571:
       
  1135 	case e1000_80003es2lan:
       
  1136 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
       
  1137 			e1000_read_eeprom(hw,
       
  1138 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  1139 			break;
       
  1140 		}
       
  1141 		/* Fall Through */
       
  1142 	default:
       
  1143 		e1000_read_eeprom(hw,
       
  1144 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  1145 		break;
       
  1146 	}
       
  1147 	if (eeprom_data & eeprom_apme_mask)
       
  1148 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  1149 
       
  1150 	/* now that we have the eeprom settings, apply the special cases
       
  1151 	 * where the eeprom may be wrong or the board simply won't support
       
  1152 	 * wake on lan on a particular port */
       
  1153 	switch (pdev->device) {
       
  1154 	case E1000_DEV_ID_82546GB_PCIE:
       
  1155 		adapter->eeprom_wol = 0;
       
  1156 		break;
       
  1157 	case E1000_DEV_ID_82546EB_FIBER:
       
  1158 	case E1000_DEV_ID_82546GB_FIBER:
       
  1159 	case E1000_DEV_ID_82571EB_FIBER:
       
  1160 		/* Wake events only supported on port A for dual fiber
       
  1161 		 * regardless of eeprom setting */
       
  1162 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
       
  1163 			adapter->eeprom_wol = 0;
       
  1164 		break;
       
  1165 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1166 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
  1167 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
  1168 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
       
  1169 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
  1170 		/* if quad port adapter, disable WoL on all but port A */
       
  1171 		if (global_quad_port_a != 0)
       
  1172 			adapter->eeprom_wol = 0;
       
  1173 		else
       
  1174 			adapter->quad_port_a = 1;
       
  1175 		/* Reset for multiple quad port adapters */
       
  1176 		if (++global_quad_port_a == 4)
       
  1177 			global_quad_port_a = 0;
       
  1178 		break;
       
  1179 	}
       
  1180 
       
  1181 	/* initialize the wol settings based on the eeprom settings */
       
  1182 	adapter->wol = adapter->eeprom_wol;
       
  1183 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1184 
       
  1185 	/* print bus type/speed/width info */
       
  1186 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
       
  1187 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
       
  1188 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
       
  1189 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
       
  1190 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
       
  1191 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
       
  1192 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
       
  1193 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
       
  1194 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
       
  1195 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
       
  1196 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
       
  1197 		 "32-bit"));
       
  1198 
       
  1199 	printk("%s\n", print_mac(mac, netdev->dev_addr));
       
  1200 
       
  1201 	if (hw->bus_type == e1000_bus_type_pci_express) {
       
  1202 		DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
       
  1203 			"longer be supported by this driver in the future.\n",
       
  1204 			pdev->vendor, pdev->device);
       
  1205 		DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
       
  1206 			"driver instead.\n");
       
  1207 	}
       
  1208 
       
  1209 	/* reset the hardware with the new settings */
       
  1210 	e1000_reset(adapter);
       
  1211 
       
  1212 	/* If the controller is 82573 and f/w is AMT, do not set
       
  1213 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  1214 	 * let the f/w know that the h/w is now under the control
       
  1215 	 * of the driver. */
       
  1216 	if (hw->mac_type != e1000_82573 ||
       
  1217 	    !e1000_check_mng_mode(hw))
       
  1218 		e1000_get_hw_control(adapter);
       
  1219 
       
  1220 	/* tell the stack to leave us alone until e1000_open() is called */
       
  1221 	netif_carrier_off(netdev);
       
  1222 	netif_stop_queue(netdev);
       
  1223 
       
  1224 	strcpy(netdev->name, "eth%d");
       
  1225 	err = register_netdev(netdev);
       
  1226 	if (err)
       
  1227 		goto err_register;
       
  1228 
       
  1229 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
       
  1230 
       
  1231 	cards_found++;
       
  1232 	return 0;
       
  1233 
       
  1234 err_register:
       
  1235 	e1000_release_hw_control(adapter);
       
  1236 err_eeprom:
       
  1237 	if (!e1000_check_phy_reset_block(hw))
       
  1238 		e1000_phy_hw_reset(hw);
       
  1239 
       
  1240 	if (hw->flash_address)
       
  1241 		iounmap(hw->flash_address);
       
  1242 err_flashmap:
       
  1243 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1244 		dev_put(&adapter->polling_netdev[i]);
       
  1245 
       
  1246 	kfree(adapter->tx_ring);
       
  1247 	kfree(adapter->rx_ring);
       
  1248 	kfree(adapter->polling_netdev);
       
  1249 err_sw_init:
       
  1250 	iounmap(hw->hw_addr);
       
  1251 err_ioremap:
       
  1252 	free_netdev(netdev);
       
  1253 err_alloc_etherdev:
       
  1254 	pci_release_selected_regions(pdev, bars);
       
  1255 err_pci_reg:
       
  1256 err_dma:
       
  1257 	pci_disable_device(pdev);
       
  1258 	return err;
       
  1259 }
       
  1260 
       
  1261 /**
       
  1262  * e1000_remove - Device Removal Routine
       
  1263  * @pdev: PCI device information struct
       
  1264  *
       
  1265  * e1000_remove is called by the PCI subsystem to alert the driver
       
  1266  * that it should release a PCI device.  The could be caused by a
       
  1267  * Hot-Plug event, or because the driver is going to be removed from
       
  1268  * memory.
       
  1269  **/
       
  1270 
       
  1271 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  1272 {
       
  1273 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  1274 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1275 	struct e1000_hw *hw = &adapter->hw;
       
  1276 	int i;
       
  1277 
       
  1278 	cancel_work_sync(&adapter->reset_task);
       
  1279 
       
  1280 	e1000_release_manageability(adapter);
       
  1281 
       
  1282 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  1283 	 * would have already happened in close and is redundant. */
       
  1284 	e1000_release_hw_control(adapter);
       
  1285 
       
  1286 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1287 		dev_put(&adapter->polling_netdev[i]);
       
  1288 
       
  1289 	unregister_netdev(netdev);
       
  1290 
       
  1291 	if (!e1000_check_phy_reset_block(hw))
       
  1292 		e1000_phy_hw_reset(hw);
       
  1293 
       
  1294 	kfree(adapter->tx_ring);
       
  1295 	kfree(adapter->rx_ring);
       
  1296 	kfree(adapter->polling_netdev);
       
  1297 
       
  1298 	iounmap(hw->hw_addr);
       
  1299 	if (hw->flash_address)
       
  1300 		iounmap(hw->flash_address);
       
  1301 	pci_release_selected_regions(pdev, adapter->bars);
       
  1302 
       
  1303 	free_netdev(netdev);
       
  1304 
       
  1305 	pci_disable_device(pdev);
       
  1306 }
       
  1307 
       
  1308 /**
       
  1309  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1310  * @adapter: board private structure to initialize
       
  1311  *
       
  1312  * e1000_sw_init initializes the Adapter private data structure.
       
  1313  * Fields are initialized based on PCI device information and
       
  1314  * OS network device settings (MTU size).
       
  1315  **/
       
  1316 
       
  1317 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  1318 {
       
  1319 	struct e1000_hw *hw = &adapter->hw;
       
  1320 	struct net_device *netdev = adapter->netdev;
       
  1321 	struct pci_dev *pdev = adapter->pdev;
       
  1322 	int i;
       
  1323 
       
  1324 	/* PCI config space info */
       
  1325 
       
  1326 	hw->vendor_id = pdev->vendor;
       
  1327 	hw->device_id = pdev->device;
       
  1328 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  1329 	hw->subsystem_id = pdev->subsystem_device;
       
  1330 	hw->revision_id = pdev->revision;
       
  1331 
       
  1332 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
  1333 
       
  1334 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1335 	adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
       
  1336 	hw->max_frame_size = netdev->mtu +
       
  1337 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  1338 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
  1339 
       
  1340 	/* identify the MAC */
       
  1341 
       
  1342 	if (e1000_set_mac_type(hw)) {
       
  1343 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
       
  1344 		return -EIO;
       
  1345 	}
       
  1346 
       
  1347 	switch (hw->mac_type) {
       
  1348 	default:
       
  1349 		break;
       
  1350 	case e1000_82541:
       
  1351 	case e1000_82547:
       
  1352 	case e1000_82541_rev_2:
       
  1353 	case e1000_82547_rev_2:
       
  1354 		hw->phy_init_script = 1;
       
  1355 		break;
       
  1356 	}
       
  1357 
       
  1358 	e1000_set_media_type(hw);
       
  1359 
       
  1360 	hw->wait_autoneg_complete = false;
       
  1361 	hw->tbi_compatibility_en = true;
       
  1362 	hw->adaptive_ifs = true;
       
  1363 
       
  1364 	/* Copper options */
       
  1365 
       
  1366 	if (hw->media_type == e1000_media_type_copper) {
       
  1367 		hw->mdix = AUTO_ALL_MODES;
       
  1368 		hw->disable_polarity_correction = false;
       
  1369 		hw->master_slave = E1000_MASTER_SLAVE;
       
  1370 	}
       
  1371 
       
  1372 	adapter->num_tx_queues = 1;
       
  1373 	adapter->num_rx_queues = 1;
       
  1374 
       
  1375 	if (e1000_alloc_queues(adapter)) {
       
  1376 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
       
  1377 		return -ENOMEM;
       
  1378 	}
       
  1379 
       
  1380 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1381 		adapter->polling_netdev[i].priv = adapter;
       
  1382 		dev_hold(&adapter->polling_netdev[i]);
       
  1383 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
       
  1384 	}
       
  1385 	spin_lock_init(&adapter->tx_queue_lock);
       
  1386 
       
  1387 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  1388 	e1000_irq_disable(adapter);
       
  1389 
       
  1390 	spin_lock_init(&adapter->stats_lock);
       
  1391 
       
  1392 	set_bit(__E1000_DOWN, &adapter->flags);
       
  1393 
       
  1394 	return 0;
       
  1395 }
       
  1396 
       
  1397 /**
       
  1398  * e1000_alloc_queues - Allocate memory for all rings
       
  1399  * @adapter: board private structure to initialize
       
  1400  *
       
  1401  * We allocate one ring per queue at run-time since we don't know the
       
  1402  * number of queues at compile-time.  The polling_netdev array is
       
  1403  * intended for Multiqueue, but should work fine with a single queue.
       
  1404  **/
       
  1405 
       
  1406 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1407 {
       
  1408 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
       
  1409 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
       
  1410 	if (!adapter->tx_ring)
       
  1411 		return -ENOMEM;
       
  1412 
       
  1413 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
       
  1414 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
       
  1415 	if (!adapter->rx_ring) {
       
  1416 		kfree(adapter->tx_ring);
       
  1417 		return -ENOMEM;
       
  1418 	}
       
  1419 
       
  1420 	adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
       
  1421 	                                  sizeof(struct net_device),
       
  1422 	                                  GFP_KERNEL);
       
  1423 	if (!adapter->polling_netdev) {
       
  1424 		kfree(adapter->tx_ring);
       
  1425 		kfree(adapter->rx_ring);
       
  1426 		return -ENOMEM;
       
  1427 	}
       
  1428 
       
  1429 	return E1000_SUCCESS;
       
  1430 }
       
  1431 
       
  1432 /**
       
  1433  * e1000_open - Called when a network interface is made active
       
  1434  * @netdev: network interface device structure
       
  1435  *
       
  1436  * Returns 0 on success, negative value on failure
       
  1437  *
       
  1438  * The open entry point is called when a network interface is made
       
  1439  * active by the system (IFF_UP).  At this point all resources needed
       
  1440  * for transmit and receive operations are allocated, the interrupt
       
  1441  * handler is registered with the OS, the watchdog timer is started,
       
  1442  * and the stack is notified that the interface is ready.
       
  1443  **/
       
  1444 
       
  1445 static int e1000_open(struct net_device *netdev)
       
  1446 {
       
  1447 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1448 	struct e1000_hw *hw = &adapter->hw;
       
  1449 	int err;
       
  1450 
       
  1451 	/* disallow open during test */
       
  1452 	if (test_bit(__E1000_TESTING, &adapter->flags))
       
  1453 		return -EBUSY;
       
  1454 
       
  1455 	/* allocate transmit descriptors */
       
  1456 	err = e1000_setup_all_tx_resources(adapter);
       
  1457 	if (err)
       
  1458 		goto err_setup_tx;
       
  1459 
       
  1460 	/* allocate receive descriptors */
       
  1461 	err = e1000_setup_all_rx_resources(adapter);
       
  1462 	if (err)
       
  1463 		goto err_setup_rx;
       
  1464 
       
  1465 	e1000_power_up_phy(adapter);
       
  1466 
       
  1467 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1468 	if ((hw->mng_cookie.status &
       
  1469 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1470 		e1000_update_mng_vlan(adapter);
       
  1471 	}
       
  1472 
       
  1473 	/* If AMT is enabled, let the firmware know that the network
       
  1474 	 * interface is now open */
       
  1475 	if (hw->mac_type == e1000_82573 &&
       
  1476 	    e1000_check_mng_mode(hw))
       
  1477 		e1000_get_hw_control(adapter);
       
  1478 
       
  1479 	/* before we allocate an interrupt, we must be ready to handle it.
       
  1480 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  1481 	 * as soon as we call pci_request_irq, so we have to setup our
       
  1482 	 * clean_rx handler before we do so.  */
       
  1483 	e1000_configure(adapter);
       
  1484 
       
  1485 	err = e1000_request_irq(adapter);
       
  1486 	if (err)
       
  1487 		goto err_req_irq;
       
  1488 
       
  1489 	/* From here on the code is the same as e1000_up() */
       
  1490 	clear_bit(__E1000_DOWN, &adapter->flags);
       
  1491 
       
  1492 	napi_enable(&adapter->napi);
       
  1493 
       
  1494 	e1000_irq_enable(adapter);
       
  1495 
       
  1496 	netif_start_queue(netdev);
       
  1497 
       
  1498 	/* fire a link status change interrupt to start the watchdog */
       
  1499 	ew32(ICS, E1000_ICS_LSC);
       
  1500 
       
  1501 	return E1000_SUCCESS;
       
  1502 
       
  1503 err_req_irq:
       
  1504 	e1000_release_hw_control(adapter);
       
  1505 	e1000_power_down_phy(adapter);
       
  1506 	e1000_free_all_rx_resources(adapter);
       
  1507 err_setup_rx:
       
  1508 	e1000_free_all_tx_resources(adapter);
       
  1509 err_setup_tx:
       
  1510 	e1000_reset(adapter);
       
  1511 
       
  1512 	return err;
       
  1513 }
       
  1514 
       
  1515 /**
       
  1516  * e1000_close - Disables a network interface
       
  1517  * @netdev: network interface device structure
       
  1518  *
       
  1519  * Returns 0, this is not allowed to fail
       
  1520  *
       
  1521  * The close entry point is called when an interface is de-activated
       
  1522  * by the OS.  The hardware is still under the drivers control, but
       
  1523  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1524  * hardware, and all transmit and receive resources are freed.
       
  1525  **/
       
  1526 
       
  1527 static int e1000_close(struct net_device *netdev)
       
  1528 {
       
  1529 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1530 	struct e1000_hw *hw = &adapter->hw;
       
  1531 
       
  1532 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1533 	e1000_down(adapter);
       
  1534 	e1000_power_down_phy(adapter);
       
  1535 	e1000_free_irq(adapter);
       
  1536 
       
  1537 	e1000_free_all_tx_resources(adapter);
       
  1538 	e1000_free_all_rx_resources(adapter);
       
  1539 
       
  1540 	/* kill manageability vlan ID if supported, but not if a vlan with
       
  1541 	 * the same ID is registered on the host OS (let 8021q kill it) */
       
  1542 	if ((hw->mng_cookie.status &
       
  1543 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  1544 	     !(adapter->vlgrp &&
       
  1545 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
       
  1546 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1547 	}
       
  1548 
       
  1549 	/* If AMT is enabled, let the firmware know that the network
       
  1550 	 * interface is now closed */
       
  1551 	if (hw->mac_type == e1000_82573 &&
       
  1552 	    e1000_check_mng_mode(hw))
       
  1553 		e1000_release_hw_control(adapter);
       
  1554 
       
  1555 	return 0;
       
  1556 }
       
  1557 
       
  1558 /**
       
  1559  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1560  * @adapter: address of board private structure
       
  1561  * @start: address of beginning of memory
       
  1562  * @len: length of memory
       
  1563  **/
       
  1564 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
       
  1565 				  unsigned long len)
       
  1566 {
       
  1567 	struct e1000_hw *hw = &adapter->hw;
       
  1568 	unsigned long begin = (unsigned long)start;
       
  1569 	unsigned long end = begin + len;
       
  1570 
       
  1571 	/* First rev 82545 and 82546 need to not allow any memory
       
  1572 	 * write location to cross 64k boundary due to errata 23 */
       
  1573 	if (hw->mac_type == e1000_82545 ||
       
  1574 	    hw->mac_type == e1000_82546) {
       
  1575 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
       
  1576 	}
       
  1577 
       
  1578 	return true;
       
  1579 }
       
  1580 
       
  1581 /**
       
  1582  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1583  * @adapter: board private structure
       
  1584  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1585  *
       
  1586  * Return 0 on success, negative on failure
       
  1587  **/
       
  1588 
       
  1589 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1590 				    struct e1000_tx_ring *txdr)
       
  1591 {
       
  1592 	struct pci_dev *pdev = adapter->pdev;
       
  1593 	int size;
       
  1594 
       
  1595 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1596 	txdr->buffer_info = vmalloc(size);
       
  1597 	if (!txdr->buffer_info) {
       
  1598 		DPRINTK(PROBE, ERR,
       
  1599 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1600 		return -ENOMEM;
       
  1601 	}
       
  1602 	memset(txdr->buffer_info, 0, size);
       
  1603 
       
  1604 	/* round up to nearest 4K */
       
  1605 
       
  1606 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1607 	txdr->size = ALIGN(txdr->size, 4096);
       
  1608 
       
  1609 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1610 	if (!txdr->desc) {
       
  1611 setup_tx_desc_die:
       
  1612 		vfree(txdr->buffer_info);
       
  1613 		DPRINTK(PROBE, ERR,
       
  1614 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1615 		return -ENOMEM;
       
  1616 	}
       
  1617 
       
  1618 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1619 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1620 		void *olddesc = txdr->desc;
       
  1621 		dma_addr_t olddma = txdr->dma;
       
  1622 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
       
  1623 				     "at %p\n", txdr->size, txdr->desc);
       
  1624 		/* Try again, without freeing the previous */
       
  1625 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1626 		/* Failed allocation, critical failure */
       
  1627 		if (!txdr->desc) {
       
  1628 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1629 			goto setup_tx_desc_die;
       
  1630 		}
       
  1631 
       
  1632 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1633 			/* give up */
       
  1634 			pci_free_consistent(pdev, txdr->size, txdr->desc,
       
  1635 					    txdr->dma);
       
  1636 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1637 			DPRINTK(PROBE, ERR,
       
  1638 				"Unable to allocate aligned memory "
       
  1639 				"for the transmit descriptor ring\n");
       
  1640 			vfree(txdr->buffer_info);
       
  1641 			return -ENOMEM;
       
  1642 		} else {
       
  1643 			/* Free old allocation, new allocation was successful */
       
  1644 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1645 		}
       
  1646 	}
       
  1647 	memset(txdr->desc, 0, txdr->size);
       
  1648 
       
  1649 	txdr->next_to_use = 0;
       
  1650 	txdr->next_to_clean = 0;
       
  1651 	spin_lock_init(&txdr->tx_lock);
       
  1652 
       
  1653 	return 0;
       
  1654 }
       
  1655 
       
  1656 /**
       
  1657  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1658  * 				  (Descriptors) for all queues
       
  1659  * @adapter: board private structure
       
  1660  *
       
  1661  * Return 0 on success, negative on failure
       
  1662  **/
       
  1663 
       
  1664 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1665 {
       
  1666 	int i, err = 0;
       
  1667 
       
  1668 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1669 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1670 		if (err) {
       
  1671 			DPRINTK(PROBE, ERR,
       
  1672 				"Allocation for Tx Queue %u failed\n", i);
       
  1673 			for (i-- ; i >= 0; i--)
       
  1674 				e1000_free_tx_resources(adapter,
       
  1675 							&adapter->tx_ring[i]);
       
  1676 			break;
       
  1677 		}
       
  1678 	}
       
  1679 
       
  1680 	return err;
       
  1681 }
       
  1682 
       
  1683 /**
       
  1684  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1685  * @adapter: board private structure
       
  1686  *
       
  1687  * Configure the Tx unit of the MAC after a reset.
       
  1688  **/
       
  1689 
       
  1690 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  1691 {
       
  1692 	u64 tdba;
       
  1693 	struct e1000_hw *hw = &adapter->hw;
       
  1694 	u32 tdlen, tctl, tipg, tarc;
       
  1695 	u32 ipgr1, ipgr2;
       
  1696 
       
  1697 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1698 
       
  1699 	switch (adapter->num_tx_queues) {
       
  1700 	case 1:
       
  1701 	default:
       
  1702 		tdba = adapter->tx_ring[0].dma;
       
  1703 		tdlen = adapter->tx_ring[0].count *
       
  1704 			sizeof(struct e1000_tx_desc);
       
  1705 		ew32(TDLEN, tdlen);
       
  1706 		ew32(TDBAH, (tdba >> 32));
       
  1707 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1708 		ew32(TDT, 0);
       
  1709 		ew32(TDH, 0);
       
  1710 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1711 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1712 		break;
       
  1713 	}
       
  1714 
       
  1715 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1716 	if (hw->mac_type <= e1000_82547_rev_2 &&
       
  1717 	    (hw->media_type == e1000_media_type_fiber ||
       
  1718 	     hw->media_type == e1000_media_type_internal_serdes))
       
  1719 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1720 	else
       
  1721 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1722 
       
  1723 	switch (hw->mac_type) {
       
  1724 	case e1000_82542_rev2_0:
       
  1725 	case e1000_82542_rev2_1:
       
  1726 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1727 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1728 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1729 		break;
       
  1730 	case e1000_80003es2lan:
       
  1731 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1732 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
       
  1733 		break;
       
  1734 	default:
       
  1735 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1736 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1737 		break;
       
  1738 	}
       
  1739 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1740 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1741 	ew32(TIPG, tipg);
       
  1742 
       
  1743 	/* Set the Tx Interrupt Delay register */
       
  1744 
       
  1745 	ew32(TIDV, adapter->tx_int_delay);
       
  1746 	if (hw->mac_type >= e1000_82540)
       
  1747 		ew32(TADV, adapter->tx_abs_int_delay);
       
  1748 
       
  1749 	/* Program the Transmit Control Register */
       
  1750 
       
  1751 	tctl = er32(TCTL);
       
  1752 	tctl &= ~E1000_TCTL_CT;
       
  1753 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1754 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1755 
       
  1756 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
       
  1757 		tarc = er32(TARC0);
       
  1758 		/* set the speed mode bit, we'll clear it if we're not at
       
  1759 		 * gigabit link later */
       
  1760 		tarc |= (1 << 21);
       
  1761 		ew32(TARC0, tarc);
       
  1762 	} else if (hw->mac_type == e1000_80003es2lan) {
       
  1763 		tarc = er32(TARC0);
       
  1764 		tarc |= 1;
       
  1765 		ew32(TARC0, tarc);
       
  1766 		tarc = er32(TARC1);
       
  1767 		tarc |= 1;
       
  1768 		ew32(TARC1, tarc);
       
  1769 	}
       
  1770 
       
  1771 	e1000_config_collision_dist(hw);
       
  1772 
       
  1773 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1774 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  1775 
       
  1776 	/* only set IDE if we are delaying interrupts using the timers */
       
  1777 	if (adapter->tx_int_delay)
       
  1778 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  1779 
       
  1780 	if (hw->mac_type < e1000_82543)
       
  1781 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1782 	else
       
  1783 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1784 
       
  1785 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1786 	 * need this to apply a workaround later in the send path. */
       
  1787 	if (hw->mac_type == e1000_82544 &&
       
  1788 	    hw->bus_type == e1000_bus_type_pcix)
       
  1789 		adapter->pcix_82544 = 1;
       
  1790 
       
  1791 	ew32(TCTL, tctl);
       
  1792 
       
  1793 }
       
  1794 
       
  1795 /**
       
  1796  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1797  * @adapter: board private structure
       
  1798  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1799  *
       
  1800  * Returns 0 on success, negative on failure
       
  1801  **/
       
  1802 
       
  1803 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1804 				    struct e1000_rx_ring *rxdr)
       
  1805 {
       
  1806 	struct e1000_hw *hw = &adapter->hw;
       
  1807 	struct pci_dev *pdev = adapter->pdev;
       
  1808 	int size, desc_len;
       
  1809 
       
  1810 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1811 	rxdr->buffer_info = vmalloc(size);
       
  1812 	if (!rxdr->buffer_info) {
       
  1813 		DPRINTK(PROBE, ERR,
       
  1814 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1815 		return -ENOMEM;
       
  1816 	}
       
  1817 	memset(rxdr->buffer_info, 0, size);
       
  1818 
       
  1819 	rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
       
  1820 	                        GFP_KERNEL);
       
  1821 	if (!rxdr->ps_page) {
       
  1822 		vfree(rxdr->buffer_info);
       
  1823 		DPRINTK(PROBE, ERR,
       
  1824 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1825 		return -ENOMEM;
       
  1826 	}
       
  1827 
       
  1828 	rxdr->ps_page_dma = kcalloc(rxdr->count,
       
  1829 	                            sizeof(struct e1000_ps_page_dma),
       
  1830 	                            GFP_KERNEL);
       
  1831 	if (!rxdr->ps_page_dma) {
       
  1832 		vfree(rxdr->buffer_info);
       
  1833 		kfree(rxdr->ps_page);
       
  1834 		DPRINTK(PROBE, ERR,
       
  1835 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1836 		return -ENOMEM;
       
  1837 	}
       
  1838 
       
  1839 	if (hw->mac_type <= e1000_82547_rev_2)
       
  1840 		desc_len = sizeof(struct e1000_rx_desc);
       
  1841 	else
       
  1842 		desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1843 
       
  1844 	/* Round up to nearest 4K */
       
  1845 
       
  1846 	rxdr->size = rxdr->count * desc_len;
       
  1847 	rxdr->size = ALIGN(rxdr->size, 4096);
       
  1848 
       
  1849 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1850 
       
  1851 	if (!rxdr->desc) {
       
  1852 		DPRINTK(PROBE, ERR,
       
  1853 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1854 setup_rx_desc_die:
       
  1855 		vfree(rxdr->buffer_info);
       
  1856 		kfree(rxdr->ps_page);
       
  1857 		kfree(rxdr->ps_page_dma);
       
  1858 		return -ENOMEM;
       
  1859 	}
       
  1860 
       
  1861 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1862 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1863 		void *olddesc = rxdr->desc;
       
  1864 		dma_addr_t olddma = rxdr->dma;
       
  1865 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
       
  1866 				     "at %p\n", rxdr->size, rxdr->desc);
       
  1867 		/* Try again, without freeing the previous */
       
  1868 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1869 		/* Failed allocation, critical failure */
       
  1870 		if (!rxdr->desc) {
       
  1871 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1872 			DPRINTK(PROBE, ERR,
       
  1873 				"Unable to allocate memory "
       
  1874 				"for the receive descriptor ring\n");
       
  1875 			goto setup_rx_desc_die;
       
  1876 		}
       
  1877 
       
  1878 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1879 			/* give up */
       
  1880 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
       
  1881 					    rxdr->dma);
       
  1882 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1883 			DPRINTK(PROBE, ERR,
       
  1884 				"Unable to allocate aligned memory "
       
  1885 				"for the receive descriptor ring\n");
       
  1886 			goto setup_rx_desc_die;
       
  1887 		} else {
       
  1888 			/* Free old allocation, new allocation was successful */
       
  1889 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1890 		}
       
  1891 	}
       
  1892 	memset(rxdr->desc, 0, rxdr->size);
       
  1893 
       
  1894 	rxdr->next_to_clean = 0;
       
  1895 	rxdr->next_to_use = 0;
       
  1896 
       
  1897 	return 0;
       
  1898 }
       
  1899 
       
  1900 /**
       
  1901  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1902  * 				  (Descriptors) for all queues
       
  1903  * @adapter: board private structure
       
  1904  *
       
  1905  * Return 0 on success, negative on failure
       
  1906  **/
       
  1907 
       
  1908 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1909 {
       
  1910 	int i, err = 0;
       
  1911 
       
  1912 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1913 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1914 		if (err) {
       
  1915 			DPRINTK(PROBE, ERR,
       
  1916 				"Allocation for Rx Queue %u failed\n", i);
       
  1917 			for (i-- ; i >= 0; i--)
       
  1918 				e1000_free_rx_resources(adapter,
       
  1919 							&adapter->rx_ring[i]);
       
  1920 			break;
       
  1921 		}
       
  1922 	}
       
  1923 
       
  1924 	return err;
       
  1925 }
       
  1926 
       
  1927 /**
       
  1928  * e1000_setup_rctl - configure the receive control registers
       
  1929  * @adapter: Board private structure
       
  1930  **/
       
  1931 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  1932 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  1933 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1934 {
       
  1935 	struct e1000_hw *hw = &adapter->hw;
       
  1936 	u32 rctl, rfctl;
       
  1937 	u32 psrctl = 0;
       
  1938 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1939 	u32 pages = 0;
       
  1940 #endif
       
  1941 
       
  1942 	rctl = er32(RCTL);
       
  1943 
       
  1944 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1945 
       
  1946 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1947 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1948 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1949 
       
  1950 	if (hw->tbi_compatibility_on == 1)
       
  1951 		rctl |= E1000_RCTL_SBP;
       
  1952 	else
       
  1953 		rctl &= ~E1000_RCTL_SBP;
       
  1954 
       
  1955 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1956 		rctl &= ~E1000_RCTL_LPE;
       
  1957 	else
       
  1958 		rctl |= E1000_RCTL_LPE;
       
  1959 
       
  1960 	/* Setup buffer sizes */
       
  1961 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1962 	rctl |= E1000_RCTL_BSEX;
       
  1963 	switch (adapter->rx_buffer_len) {
       
  1964 		case E1000_RXBUFFER_256:
       
  1965 			rctl |= E1000_RCTL_SZ_256;
       
  1966 			rctl &= ~E1000_RCTL_BSEX;
       
  1967 			break;
       
  1968 		case E1000_RXBUFFER_512:
       
  1969 			rctl |= E1000_RCTL_SZ_512;
       
  1970 			rctl &= ~E1000_RCTL_BSEX;
       
  1971 			break;
       
  1972 		case E1000_RXBUFFER_1024:
       
  1973 			rctl |= E1000_RCTL_SZ_1024;
       
  1974 			rctl &= ~E1000_RCTL_BSEX;
       
  1975 			break;
       
  1976 		case E1000_RXBUFFER_2048:
       
  1977 		default:
       
  1978 			rctl |= E1000_RCTL_SZ_2048;
       
  1979 			rctl &= ~E1000_RCTL_BSEX;
       
  1980 			break;
       
  1981 		case E1000_RXBUFFER_4096:
       
  1982 			rctl |= E1000_RCTL_SZ_4096;
       
  1983 			break;
       
  1984 		case E1000_RXBUFFER_8192:
       
  1985 			rctl |= E1000_RCTL_SZ_8192;
       
  1986 			break;
       
  1987 		case E1000_RXBUFFER_16384:
       
  1988 			rctl |= E1000_RCTL_SZ_16384;
       
  1989 			break;
       
  1990 	}
       
  1991 
       
  1992 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1993 	/* 82571 and greater support packet-split where the protocol
       
  1994 	 * header is placed in skb->data and the packet data is
       
  1995 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  1996 	 * In the case of a non-split, skb->data is linearly filled,
       
  1997 	 * followed by the page buffers.  Therefore, skb->data is
       
  1998 	 * sized to hold the largest protocol header.
       
  1999 	 */
       
  2000 	/* allocations using alloc_page take too long for regular MTU
       
  2001 	 * so only enable packet split for jumbo frames */
       
  2002 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  2003 	if ((hw->mac_type >= e1000_82571) && (pages <= 3) &&
       
  2004 	    PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
       
  2005 		adapter->rx_ps_pages = pages;
       
  2006 	else
       
  2007 		adapter->rx_ps_pages = 0;
       
  2008 #endif
       
  2009 	if (adapter->rx_ps_pages) {
       
  2010 		/* Configure extra packet-split registers */
       
  2011 		rfctl = er32(RFCTL);
       
  2012 		rfctl |= E1000_RFCTL_EXTEN;
       
  2013 		/* disable packet split support for IPv6 extension headers,
       
  2014 		 * because some malformed IPv6 headers can hang the RX */
       
  2015 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
       
  2016 		          E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  2017 
       
  2018 		ew32(RFCTL, rfctl);
       
  2019 
       
  2020 		rctl |= E1000_RCTL_DTYP_PS;
       
  2021 
       
  2022 		psrctl |= adapter->rx_ps_bsize0 >>
       
  2023 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  2024 
       
  2025 		switch (adapter->rx_ps_pages) {
       
  2026 		case 3:
       
  2027 			psrctl |= PAGE_SIZE <<
       
  2028 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  2029 		case 2:
       
  2030 			psrctl |= PAGE_SIZE <<
       
  2031 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  2032 		case 1:
       
  2033 			psrctl |= PAGE_SIZE >>
       
  2034 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  2035 			break;
       
  2036 		}
       
  2037 
       
  2038 		ew32(PSRCTL, psrctl);
       
  2039 	}
       
  2040 
       
  2041 	ew32(RCTL, rctl);
       
  2042 }
       
  2043 
       
  2044 /**
       
  2045  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  2046  * @adapter: board private structure
       
  2047  *
       
  2048  * Configure the Rx unit of the MAC after a reset.
       
  2049  **/
       
  2050 
       
  2051 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  2052 {
       
  2053 	u64 rdba;
       
  2054 	struct e1000_hw *hw = &adapter->hw;
       
  2055 	u32 rdlen, rctl, rxcsum, ctrl_ext;
       
  2056 
       
  2057 	if (adapter->rx_ps_pages) {
       
  2058 		/* this is a 32 byte descriptor */
       
  2059 		rdlen = adapter->rx_ring[0].count *
       
  2060 			sizeof(union e1000_rx_desc_packet_split);
       
  2061 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  2062 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  2063 	} else {
       
  2064 		rdlen = adapter->rx_ring[0].count *
       
  2065 			sizeof(struct e1000_rx_desc);
       
  2066 		adapter->clean_rx = e1000_clean_rx_irq;
       
  2067 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  2068 	}
       
  2069 
       
  2070 	/* disable receives while setting up the descriptors */
       
  2071 	rctl = er32(RCTL);
       
  2072 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  2073 
       
  2074 	/* set the Receive Delay Timer Register */
       
  2075 	ew32(RDTR, adapter->rx_int_delay);
       
  2076 
       
  2077 	if (hw->mac_type >= e1000_82540) {
       
  2078 		ew32(RADV, adapter->rx_abs_int_delay);
       
  2079 		if (adapter->itr_setting != 0)
       
  2080 			ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  2081 	}
       
  2082 
       
  2083 	if (hw->mac_type >= e1000_82571) {
       
  2084 		ctrl_ext = er32(CTRL_EXT);
       
  2085 		/* Reset delay timers after every interrupt */
       
  2086 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
       
  2087 		/* Auto-Mask interrupts upon ICR access */
       
  2088 		ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  2089 		ew32(IAM, 0xffffffff);
       
  2090 		ew32(CTRL_EXT, ctrl_ext);
       
  2091 		E1000_WRITE_FLUSH();
       
  2092 	}
       
  2093 
       
  2094 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  2095 	 * the Base and Length of the Rx Descriptor Ring */
       
  2096 	switch (adapter->num_rx_queues) {
       
  2097 	case 1:
       
  2098 	default:
       
  2099 		rdba = adapter->rx_ring[0].dma;
       
  2100 		ew32(RDLEN, rdlen);
       
  2101 		ew32(RDBAH, (rdba >> 32));
       
  2102 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
       
  2103 		ew32(RDT, 0);
       
  2104 		ew32(RDH, 0);
       
  2105 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  2106 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  2107 		break;
       
  2108 	}
       
  2109 
       
  2110 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  2111 	if (hw->mac_type >= e1000_82543) {
       
  2112 		rxcsum = er32(RXCSUM);
       
  2113 		if (adapter->rx_csum) {
       
  2114 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  2115 
       
  2116 			/* Enable 82571 IPv4 payload checksum for UDP fragments
       
  2117 			 * Must be used in conjunction with packet-split. */
       
  2118 			if ((hw->mac_type >= e1000_82571) &&
       
  2119 			    (adapter->rx_ps_pages)) {
       
  2120 				rxcsum |= E1000_RXCSUM_IPPCSE;
       
  2121 			}
       
  2122 		} else {
       
  2123 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  2124 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  2125 		}
       
  2126 		ew32(RXCSUM, rxcsum);
       
  2127 	}
       
  2128 
       
  2129 	/* enable early receives on 82573, only takes effect if using > 2048
       
  2130 	 * byte total frame size.  for example only for jumbo frames */
       
  2131 #define E1000_ERT_2048 0x100
       
  2132 	if (hw->mac_type == e1000_82573)
       
  2133 		ew32(ERT, E1000_ERT_2048);
       
  2134 
       
  2135 	/* Enable Receives */
       
  2136 	ew32(RCTL, rctl);
       
  2137 }
       
  2138 
       
  2139 /**
       
  2140  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  2141  * @adapter: board private structure
       
  2142  * @tx_ring: Tx descriptor ring for a specific queue
       
  2143  *
       
  2144  * Free all transmit software resources
       
  2145  **/
       
  2146 
       
  2147 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  2148 				    struct e1000_tx_ring *tx_ring)
       
  2149 {
       
  2150 	struct pci_dev *pdev = adapter->pdev;
       
  2151 
       
  2152 	e1000_clean_tx_ring(adapter, tx_ring);
       
  2153 
       
  2154 	vfree(tx_ring->buffer_info);
       
  2155 	tx_ring->buffer_info = NULL;
       
  2156 
       
  2157 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
       
  2158 
       
  2159 	tx_ring->desc = NULL;
       
  2160 }
       
  2161 
       
  2162 /**
       
  2163  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  2164  * @adapter: board private structure
       
  2165  *
       
  2166  * Free all transmit software resources
       
  2167  **/
       
  2168 
       
  2169 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  2170 {
       
  2171 	int i;
       
  2172 
       
  2173 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2174 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  2175 }
       
  2176 
       
  2177 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  2178 					     struct e1000_buffer *buffer_info)
       
  2179 {
       
  2180 	if (buffer_info->dma) {
       
  2181 		pci_unmap_page(adapter->pdev,
       
  2182 				buffer_info->dma,
       
  2183 				buffer_info->length,
       
  2184 				PCI_DMA_TODEVICE);
       
  2185 		buffer_info->dma = 0;
       
  2186 	}
       
  2187 	if (buffer_info->skb) {
       
  2188 		dev_kfree_skb_any(buffer_info->skb);
       
  2189 		buffer_info->skb = NULL;
       
  2190 	}
       
  2191 	/* buffer_info must be completely set up in the transmit path */
       
  2192 }
       
  2193 
       
  2194 /**
       
  2195  * e1000_clean_tx_ring - Free Tx Buffers
       
  2196  * @adapter: board private structure
       
  2197  * @tx_ring: ring to be cleaned
       
  2198  **/
       
  2199 
       
  2200 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  2201 				struct e1000_tx_ring *tx_ring)
       
  2202 {
       
  2203 	struct e1000_hw *hw = &adapter->hw;
       
  2204 	struct e1000_buffer *buffer_info;
       
  2205 	unsigned long size;
       
  2206 	unsigned int i;
       
  2207 
       
  2208 	/* Free all the Tx ring sk_buffs */
       
  2209 
       
  2210 	for (i = 0; i < tx_ring->count; i++) {
       
  2211 		buffer_info = &tx_ring->buffer_info[i];
       
  2212 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  2213 	}
       
  2214 
       
  2215 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2216 	memset(tx_ring->buffer_info, 0, size);
       
  2217 
       
  2218 	/* Zero out the descriptor ring */
       
  2219 
       
  2220 	memset(tx_ring->desc, 0, tx_ring->size);
       
  2221 
       
  2222 	tx_ring->next_to_use = 0;
       
  2223 	tx_ring->next_to_clean = 0;
       
  2224 	tx_ring->last_tx_tso = 0;
       
  2225 
       
  2226 	writel(0, hw->hw_addr + tx_ring->tdh);
       
  2227 	writel(0, hw->hw_addr + tx_ring->tdt);
       
  2228 }
       
  2229 
       
  2230 /**
       
  2231  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  2232  * @adapter: board private structure
       
  2233  **/
       
  2234 
       
  2235 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  2236 {
       
  2237 	int i;
       
  2238 
       
  2239 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2240 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  2241 }
       
  2242 
       
  2243 /**
       
  2244  * e1000_free_rx_resources - Free Rx Resources
       
  2245  * @adapter: board private structure
       
  2246  * @rx_ring: ring to clean the resources from
       
  2247  *
       
  2248  * Free all receive software resources
       
  2249  **/
       
  2250 
       
  2251 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  2252 				    struct e1000_rx_ring *rx_ring)
       
  2253 {
       
  2254 	struct pci_dev *pdev = adapter->pdev;
       
  2255 
       
  2256 	e1000_clean_rx_ring(adapter, rx_ring);
       
  2257 
       
  2258 	vfree(rx_ring->buffer_info);
       
  2259 	rx_ring->buffer_info = NULL;
       
  2260 	kfree(rx_ring->ps_page);
       
  2261 	rx_ring->ps_page = NULL;
       
  2262 	kfree(rx_ring->ps_page_dma);
       
  2263 	rx_ring->ps_page_dma = NULL;
       
  2264 
       
  2265 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
       
  2266 
       
  2267 	rx_ring->desc = NULL;
       
  2268 }
       
  2269 
       
  2270 /**
       
  2271  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  2272  * @adapter: board private structure
       
  2273  *
       
  2274  * Free all receive software resources
       
  2275  **/
       
  2276 
       
  2277 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  2278 {
       
  2279 	int i;
       
  2280 
       
  2281 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2282 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  2283 }
       
  2284 
       
  2285 /**
       
  2286  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  2287  * @adapter: board private structure
       
  2288  * @rx_ring: ring to free buffers from
       
  2289  **/
       
  2290 
       
  2291 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  2292 				struct e1000_rx_ring *rx_ring)
       
  2293 {
       
  2294 	struct e1000_hw *hw = &adapter->hw;
       
  2295 	struct e1000_buffer *buffer_info;
       
  2296 	struct e1000_ps_page *ps_page;
       
  2297 	struct e1000_ps_page_dma *ps_page_dma;
       
  2298 	struct pci_dev *pdev = adapter->pdev;
       
  2299 	unsigned long size;
       
  2300 	unsigned int i, j;
       
  2301 
       
  2302 	/* Free all the Rx ring sk_buffs */
       
  2303 	for (i = 0; i < rx_ring->count; i++) {
       
  2304 		buffer_info = &rx_ring->buffer_info[i];
       
  2305 		if (buffer_info->skb) {
       
  2306 			pci_unmap_single(pdev,
       
  2307 					 buffer_info->dma,
       
  2308 					 buffer_info->length,
       
  2309 					 PCI_DMA_FROMDEVICE);
       
  2310 
       
  2311 			dev_kfree_skb(buffer_info->skb);
       
  2312 			buffer_info->skb = NULL;
       
  2313 		}
       
  2314 		ps_page = &rx_ring->ps_page[i];
       
  2315 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  2316 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  2317 			if (!ps_page->ps_page[j]) break;
       
  2318 			pci_unmap_page(pdev,
       
  2319 				       ps_page_dma->ps_page_dma[j],
       
  2320 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  2321 			ps_page_dma->ps_page_dma[j] = 0;
       
  2322 			put_page(ps_page->ps_page[j]);
       
  2323 			ps_page->ps_page[j] = NULL;
       
  2324 		}
       
  2325 	}
       
  2326 
       
  2327 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2328 	memset(rx_ring->buffer_info, 0, size);
       
  2329 	size = sizeof(struct e1000_ps_page) * rx_ring->count;
       
  2330 	memset(rx_ring->ps_page, 0, size);
       
  2331 	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
       
  2332 	memset(rx_ring->ps_page_dma, 0, size);
       
  2333 
       
  2334 	/* Zero out the descriptor ring */
       
  2335 
       
  2336 	memset(rx_ring->desc, 0, rx_ring->size);
       
  2337 
       
  2338 	rx_ring->next_to_clean = 0;
       
  2339 	rx_ring->next_to_use = 0;
       
  2340 
       
  2341 	writel(0, hw->hw_addr + rx_ring->rdh);
       
  2342 	writel(0, hw->hw_addr + rx_ring->rdt);
       
  2343 }
       
  2344 
       
  2345 /**
       
  2346  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2347  * @adapter: board private structure
       
  2348  **/
       
  2349 
       
  2350 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2351 {
       
  2352 	int i;
       
  2353 
       
  2354 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2355 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2356 }
       
  2357 
       
  2358 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2359  * and memory write and invalidate disabled for certain operations
       
  2360  */
       
  2361 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2362 {
       
  2363 	struct e1000_hw *hw = &adapter->hw;
       
  2364 	struct net_device *netdev = adapter->netdev;
       
  2365 	u32 rctl;
       
  2366 
       
  2367 	e1000_pci_clear_mwi(hw);
       
  2368 
       
  2369 	rctl = er32(RCTL);
       
  2370 	rctl |= E1000_RCTL_RST;
       
  2371 	ew32(RCTL, rctl);
       
  2372 	E1000_WRITE_FLUSH();
       
  2373 	mdelay(5);
       
  2374 
       
  2375 	if (netif_running(netdev))
       
  2376 		e1000_clean_all_rx_rings(adapter);
       
  2377 }
       
  2378 
       
  2379 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2380 {
       
  2381 	struct e1000_hw *hw = &adapter->hw;
       
  2382 	struct net_device *netdev = adapter->netdev;
       
  2383 	u32 rctl;
       
  2384 
       
  2385 	rctl = er32(RCTL);
       
  2386 	rctl &= ~E1000_RCTL_RST;
       
  2387 	ew32(RCTL, rctl);
       
  2388 	E1000_WRITE_FLUSH();
       
  2389 	mdelay(5);
       
  2390 
       
  2391 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2392 		e1000_pci_set_mwi(hw);
       
  2393 
       
  2394 	if (netif_running(netdev)) {
       
  2395 		/* No need to loop, because 82542 supports only 1 queue */
       
  2396 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2397 		e1000_configure_rx(adapter);
       
  2398 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2399 	}
       
  2400 }
       
  2401 
       
  2402 /**
       
  2403  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2404  * @netdev: network interface device structure
       
  2405  * @p: pointer to an address structure
       
  2406  *
       
  2407  * Returns 0 on success, negative on failure
       
  2408  **/
       
  2409 
       
  2410 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  2411 {
       
  2412 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2413 	struct e1000_hw *hw = &adapter->hw;
       
  2414 	struct sockaddr *addr = p;
       
  2415 
       
  2416 	if (!is_valid_ether_addr(addr->sa_data))
       
  2417 		return -EADDRNOTAVAIL;
       
  2418 
       
  2419 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2420 
       
  2421 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2422 		e1000_enter_82542_rst(adapter);
       
  2423 
       
  2424 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2425 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
       
  2426 
       
  2427 	e1000_rar_set(hw, hw->mac_addr, 0);
       
  2428 
       
  2429 	/* With 82571 controllers, LAA may be overwritten (with the default)
       
  2430 	 * due to controller reset from the other port. */
       
  2431 	if (hw->mac_type == e1000_82571) {
       
  2432 		/* activate the work around */
       
  2433 		hw->laa_is_present = 1;
       
  2434 
       
  2435 		/* Hold a copy of the LAA in RAR[14] This is done so that
       
  2436 		 * between the time RAR[0] gets clobbered  and the time it
       
  2437 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  2438 		 * of the RARs and no incoming packets directed to this port
       
  2439 		 * are dropped. Eventaully the LAA will be in RAR[0] and
       
  2440 		 * RAR[14] */
       
  2441 		e1000_rar_set(hw, hw->mac_addr,
       
  2442 					E1000_RAR_ENTRIES - 1);
       
  2443 	}
       
  2444 
       
  2445 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2446 		e1000_leave_82542_rst(adapter);
       
  2447 
       
  2448 	return 0;
       
  2449 }
       
  2450 
       
  2451 /**
       
  2452  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
       
  2453  * @netdev: network interface device structure
       
  2454  *
       
  2455  * The set_rx_mode entry point is called whenever the unicast or multicast
       
  2456  * address lists or the network interface flags are updated. This routine is
       
  2457  * responsible for configuring the hardware for proper unicast, multicast,
       
  2458  * promiscuous mode, and all-multi behavior.
       
  2459  **/
       
  2460 
       
  2461 static void e1000_set_rx_mode(struct net_device *netdev)
       
  2462 {
       
  2463 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2464 	struct e1000_hw *hw = &adapter->hw;
       
  2465 	struct dev_addr_list *uc_ptr;
       
  2466 	struct dev_addr_list *mc_ptr;
       
  2467 	u32 rctl;
       
  2468 	u32 hash_value;
       
  2469 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2470 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
       
  2471 				E1000_NUM_MTA_REGISTERS_ICH8LAN :
       
  2472 				E1000_NUM_MTA_REGISTERS;
       
  2473 
       
  2474 	if (hw->mac_type == e1000_ich8lan)
       
  2475 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
       
  2476 
       
  2477 	/* reserve RAR[14] for LAA over-write work-around */
       
  2478 	if (hw->mac_type == e1000_82571)
       
  2479 		rar_entries--;
       
  2480 
       
  2481 	/* Check for Promiscuous and All Multicast modes */
       
  2482 
       
  2483 	rctl = er32(RCTL);
       
  2484 
       
  2485 	if (netdev->flags & IFF_PROMISC) {
       
  2486 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2487 		rctl &= ~E1000_RCTL_VFE;
       
  2488 	} else {
       
  2489 		if (netdev->flags & IFF_ALLMULTI) {
       
  2490 			rctl |= E1000_RCTL_MPE;
       
  2491 		} else {
       
  2492 			rctl &= ~E1000_RCTL_MPE;
       
  2493 		}
       
  2494 		if (adapter->hw.mac_type != e1000_ich8lan)
       
  2495 			rctl |= E1000_RCTL_VFE;
       
  2496 	}
       
  2497 
       
  2498 	uc_ptr = NULL;
       
  2499 	if (netdev->uc_count > rar_entries - 1) {
       
  2500 		rctl |= E1000_RCTL_UPE;
       
  2501 	} else if (!(netdev->flags & IFF_PROMISC)) {
       
  2502 		rctl &= ~E1000_RCTL_UPE;
       
  2503 		uc_ptr = netdev->uc_list;
       
  2504 	}
       
  2505 
       
  2506 	ew32(RCTL, rctl);
       
  2507 
       
  2508 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2509 
       
  2510 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2511 		e1000_enter_82542_rst(adapter);
       
  2512 
       
  2513 	/* load the first 14 addresses into the exact filters 1-14. Unicast
       
  2514 	 * addresses take precedence to avoid disabling unicast filtering
       
  2515 	 * when possible.
       
  2516 	 *
       
  2517 	 * RAR 0 is used for the station MAC adddress
       
  2518 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2519 	 * -- with 82571 controllers only 0-13 entries are filled here
       
  2520 	 */
       
  2521 	mc_ptr = netdev->mc_list;
       
  2522 
       
  2523 	for (i = 1; i < rar_entries; i++) {
       
  2524 		if (uc_ptr) {
       
  2525 			e1000_rar_set(hw, uc_ptr->da_addr, i);
       
  2526 			uc_ptr = uc_ptr->next;
       
  2527 		} else if (mc_ptr) {
       
  2528 			e1000_rar_set(hw, mc_ptr->da_addr, i);
       
  2529 			mc_ptr = mc_ptr->next;
       
  2530 		} else {
       
  2531 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2532 			E1000_WRITE_FLUSH();
       
  2533 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2534 			E1000_WRITE_FLUSH();
       
  2535 		}
       
  2536 	}
       
  2537 	WARN_ON(uc_ptr != NULL);
       
  2538 
       
  2539 	/* clear the old settings from the multicast hash table */
       
  2540 
       
  2541 	for (i = 0; i < mta_reg_count; i++) {
       
  2542 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
  2543 		E1000_WRITE_FLUSH();
       
  2544 	}
       
  2545 
       
  2546 	/* load any remaining addresses into the hash table */
       
  2547 
       
  2548 	for (; mc_ptr; mc_ptr = mc_ptr->next) {
       
  2549 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
       
  2550 		e1000_mta_set(hw, hash_value);
       
  2551 	}
       
  2552 
       
  2553 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2554 		e1000_leave_82542_rst(adapter);
       
  2555 }
       
  2556 
       
  2557 /* Need to wait a few seconds after link up to get diagnostic information from
       
  2558  * the phy */
       
  2559 
       
  2560 static void e1000_update_phy_info(unsigned long data)
       
  2561 {
       
  2562 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2563 	struct e1000_hw *hw = &adapter->hw;
       
  2564 	e1000_phy_get_info(hw, &adapter->phy_info);
       
  2565 }
       
  2566 
       
  2567 /**
       
  2568  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  2569  * @data: pointer to adapter cast into an unsigned long
       
  2570  **/
       
  2571 
       
  2572 static void e1000_82547_tx_fifo_stall(unsigned long data)
       
  2573 {
       
  2574 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2575 	struct e1000_hw *hw = &adapter->hw;
       
  2576 	struct net_device *netdev = adapter->netdev;
       
  2577 	u32 tctl;
       
  2578 
       
  2579 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2580 		if ((er32(TDT) == er32(TDH)) &&
       
  2581 		   (er32(TDFT) == er32(TDFH)) &&
       
  2582 		   (er32(TDFTS) == er32(TDFHS))) {
       
  2583 			tctl = er32(TCTL);
       
  2584 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
       
  2585 			ew32(TDFT, adapter->tx_head_addr);
       
  2586 			ew32(TDFH, adapter->tx_head_addr);
       
  2587 			ew32(TDFTS, adapter->tx_head_addr);
       
  2588 			ew32(TDFHS, adapter->tx_head_addr);
       
  2589 			ew32(TCTL, tctl);
       
  2590 			E1000_WRITE_FLUSH();
       
  2591 
       
  2592 			adapter->tx_fifo_head = 0;
       
  2593 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2594 			netif_wake_queue(netdev);
       
  2595 		} else {
       
  2596 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  2597 		}
       
  2598 	}
       
  2599 }
       
  2600 
       
  2601 /**
       
  2602  * e1000_watchdog - Timer Call-back
       
  2603  * @data: pointer to adapter cast into an unsigned long
       
  2604  **/
       
  2605 static void e1000_watchdog(unsigned long data)
       
  2606 {
       
  2607 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2608 	struct e1000_hw *hw = &adapter->hw;
       
  2609 	struct net_device *netdev = adapter->netdev;
       
  2610 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2611 	u32 link, tctl;
       
  2612 	s32 ret_val;
       
  2613 
       
  2614 	ret_val = e1000_check_for_link(hw);
       
  2615 	if ((ret_val == E1000_ERR_PHY) &&
       
  2616 	    (hw->phy_type == e1000_phy_igp_3) &&
       
  2617 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  2618 		/* See e1000_kumeran_lock_loss_workaround() */
       
  2619 		DPRINTK(LINK, INFO,
       
  2620 			"Gigabit has been disabled, downgrading speed\n");
       
  2621 	}
       
  2622 
       
  2623 	if (hw->mac_type == e1000_82573) {
       
  2624 		e1000_enable_tx_pkt_filtering(hw);
       
  2625 		if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
       
  2626 			e1000_update_mng_vlan(adapter);
       
  2627 	}
       
  2628 
       
  2629 	if ((hw->media_type == e1000_media_type_internal_serdes) &&
       
  2630 	   !(er32(TXCW) & E1000_TXCW_ANE))
       
  2631 		link = !hw->serdes_link_down;
       
  2632 	else
       
  2633 		link = er32(STATUS) & E1000_STATUS_LU;
       
  2634 
       
  2635 	if (link) {
       
  2636 		if (!netif_carrier_ok(netdev)) {
       
  2637 			u32 ctrl;
       
  2638 			bool txb2b = true;
       
  2639 			e1000_get_speed_and_duplex(hw,
       
  2640 			                           &adapter->link_speed,
       
  2641 			                           &adapter->link_duplex);
       
  2642 
       
  2643 			ctrl = er32(CTRL);
       
  2644 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
       
  2645 			        "Flow Control: %s\n",
       
  2646 			        adapter->link_speed,
       
  2647 			        adapter->link_duplex == FULL_DUPLEX ?
       
  2648 			        "Full Duplex" : "Half Duplex",
       
  2649 			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
       
  2650 			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
       
  2651 			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
       
  2652 			        E1000_CTRL_TFCE) ? "TX" : "None" )));
       
  2653 
       
  2654 			/* tweak tx_queue_len according to speed/duplex
       
  2655 			 * and adjust the timeout factor */
       
  2656 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  2657 			adapter->tx_timeout_factor = 1;
       
  2658 			switch (adapter->link_speed) {
       
  2659 			case SPEED_10:
       
  2660 				txb2b = false;
       
  2661 				netdev->tx_queue_len = 10;
       
  2662 				adapter->tx_timeout_factor = 8;
       
  2663 				break;
       
  2664 			case SPEED_100:
       
  2665 				txb2b = false;
       
  2666 				netdev->tx_queue_len = 100;
       
  2667 				/* maybe add some timeout factor ? */
       
  2668 				break;
       
  2669 			}
       
  2670 
       
  2671 			if ((hw->mac_type == e1000_82571 ||
       
  2672 			     hw->mac_type == e1000_82572) &&
       
  2673 			    !txb2b) {
       
  2674 				u32 tarc0;
       
  2675 				tarc0 = er32(TARC0);
       
  2676 				tarc0 &= ~(1 << 21);
       
  2677 				ew32(TARC0, tarc0);
       
  2678 			}
       
  2679 
       
  2680 			/* disable TSO for pcie and 10/100 speeds, to avoid
       
  2681 			 * some hardware issues */
       
  2682 			if (!adapter->tso_force &&
       
  2683 			    hw->bus_type == e1000_bus_type_pci_express){
       
  2684 				switch (adapter->link_speed) {
       
  2685 				case SPEED_10:
       
  2686 				case SPEED_100:
       
  2687 					DPRINTK(PROBE,INFO,
       
  2688 				        "10/100 speed: disabling TSO\n");
       
  2689 					netdev->features &= ~NETIF_F_TSO;
       
  2690 					netdev->features &= ~NETIF_F_TSO6;
       
  2691 					break;
       
  2692 				case SPEED_1000:
       
  2693 					netdev->features |= NETIF_F_TSO;
       
  2694 					netdev->features |= NETIF_F_TSO6;
       
  2695 					break;
       
  2696 				default:
       
  2697 					/* oops */
       
  2698 					break;
       
  2699 				}
       
  2700 			}
       
  2701 
       
  2702 			/* enable transmits in the hardware, need to do this
       
  2703 			 * after setting TARC0 */
       
  2704 			tctl = er32(TCTL);
       
  2705 			tctl |= E1000_TCTL_EN;
       
  2706 			ew32(TCTL, tctl);
       
  2707 
       
  2708 			netif_carrier_on(netdev);
       
  2709 			netif_wake_queue(netdev);
       
  2710 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2711 			adapter->smartspeed = 0;
       
  2712 		} else {
       
  2713 			/* make sure the receive unit is started */
       
  2714 			if (hw->rx_needs_kicking) {
       
  2715 				u32 rctl = er32(RCTL);
       
  2716 				ew32(RCTL, rctl | E1000_RCTL_EN);
       
  2717 			}
       
  2718 		}
       
  2719 	} else {
       
  2720 		if (netif_carrier_ok(netdev)) {
       
  2721 			adapter->link_speed = 0;
       
  2722 			adapter->link_duplex = 0;
       
  2723 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
       
  2724 			netif_carrier_off(netdev);
       
  2725 			netif_stop_queue(netdev);
       
  2726 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2727 
       
  2728 			/* 80003ES2LAN workaround--
       
  2729 			 * For packet buffer work-around on link down event;
       
  2730 			 * disable receives in the ISR and
       
  2731 			 * reset device here in the watchdog
       
  2732 			 */
       
  2733 			if (hw->mac_type == e1000_80003es2lan)
       
  2734 				/* reset device */
       
  2735 				schedule_work(&adapter->reset_task);
       
  2736 		}
       
  2737 
       
  2738 		e1000_smartspeed(adapter);
       
  2739 	}
       
  2740 
       
  2741 	e1000_update_stats(adapter);
       
  2742 
       
  2743 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2744 	adapter->tpt_old = adapter->stats.tpt;
       
  2745 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2746 	adapter->colc_old = adapter->stats.colc;
       
  2747 
       
  2748 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2749 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2750 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2751 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2752 
       
  2753 	e1000_update_adaptive(hw);
       
  2754 
       
  2755 	if (!netif_carrier_ok(netdev)) {
       
  2756 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2757 			/* We've lost link, so the controller stops DMA,
       
  2758 			 * but we've got queued Tx work that's never going
       
  2759 			 * to get done, so reset controller to flush Tx.
       
  2760 			 * (Do the reset outside of interrupt context). */
       
  2761 			adapter->tx_timeout_count++;
       
  2762 			schedule_work(&adapter->reset_task);
       
  2763 		}
       
  2764 	}
       
  2765 
       
  2766 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2767 	ew32(ICS, E1000_ICS_RXDMT0);
       
  2768 
       
  2769 	/* Force detection of hung controller every watchdog period */
       
  2770 	adapter->detect_tx_hung = true;
       
  2771 
       
  2772 	/* With 82571 controllers, LAA may be overwritten due to controller
       
  2773 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
       
  2774 	if (hw->mac_type == e1000_82571 && hw->laa_is_present)
       
  2775 		e1000_rar_set(hw, hw->mac_addr, 0);
       
  2776 
       
  2777 	/* Reset the timer */
       
  2778 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
       
  2779 }
       
  2780 
       
  2781 enum latency_range {
       
  2782 	lowest_latency = 0,
       
  2783 	low_latency = 1,
       
  2784 	bulk_latency = 2,
       
  2785 	latency_invalid = 255
       
  2786 };
       
  2787 
       
  2788 /**
       
  2789  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2790  *      Stores a new ITR value based on packets and byte
       
  2791  *      counts during the last interrupt.  The advantage of per interrupt
       
  2792  *      computation is faster updates and more accurate ITR for the current
       
  2793  *      traffic pattern.  Constants in this function were computed
       
  2794  *      based on theoretical maximum wire speed and thresholds were set based
       
  2795  *      on testing data as well as attempting to minimize response time
       
  2796  *      while increasing bulk throughput.
       
  2797  *      this functionality is controlled by the InterruptThrottleRate module
       
  2798  *      parameter (see e1000_param.c)
       
  2799  * @adapter: pointer to adapter
       
  2800  * @itr_setting: current adapter->itr
       
  2801  * @packets: the number of packets during this measurement interval
       
  2802  * @bytes: the number of bytes during this measurement interval
       
  2803  **/
       
  2804 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2805 				     u16 itr_setting, int packets, int bytes)
       
  2806 {
       
  2807 	unsigned int retval = itr_setting;
       
  2808 	struct e1000_hw *hw = &adapter->hw;
       
  2809 
       
  2810 	if (unlikely(hw->mac_type < e1000_82540))
       
  2811 		goto update_itr_done;
       
  2812 
       
  2813 	if (packets == 0)
       
  2814 		goto update_itr_done;
       
  2815 
       
  2816 	switch (itr_setting) {
       
  2817 	case lowest_latency:
       
  2818 		/* jumbo frames get bulk treatment*/
       
  2819 		if (bytes/packets > 8000)
       
  2820 			retval = bulk_latency;
       
  2821 		else if ((packets < 5) && (bytes > 512))
       
  2822 			retval = low_latency;
       
  2823 		break;
       
  2824 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2825 		if (bytes > 10000) {
       
  2826 			/* jumbo frames need bulk latency setting */
       
  2827 			if (bytes/packets > 8000)
       
  2828 				retval = bulk_latency;
       
  2829 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  2830 				retval = bulk_latency;
       
  2831 			else if ((packets > 35))
       
  2832 				retval = lowest_latency;
       
  2833 		} else if (bytes/packets > 2000)
       
  2834 			retval = bulk_latency;
       
  2835 		else if (packets <= 2 && bytes < 512)
       
  2836 			retval = lowest_latency;
       
  2837 		break;
       
  2838 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2839 		if (bytes > 25000) {
       
  2840 			if (packets > 35)
       
  2841 				retval = low_latency;
       
  2842 		} else if (bytes < 6000) {
       
  2843 			retval = low_latency;
       
  2844 		}
       
  2845 		break;
       
  2846 	}
       
  2847 
       
  2848 update_itr_done:
       
  2849 	return retval;
       
  2850 }
       
  2851 
       
  2852 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2853 {
       
  2854 	struct e1000_hw *hw = &adapter->hw;
       
  2855 	u16 current_itr;
       
  2856 	u32 new_itr = adapter->itr;
       
  2857 
       
  2858 	if (unlikely(hw->mac_type < e1000_82540))
       
  2859 		return;
       
  2860 
       
  2861 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2862 	if (unlikely(adapter->link_speed != SPEED_1000)) {
       
  2863 		current_itr = 0;
       
  2864 		new_itr = 4000;
       
  2865 		goto set_itr_now;
       
  2866 	}
       
  2867 
       
  2868 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2869 	                            adapter->tx_itr,
       
  2870 	                            adapter->total_tx_packets,
       
  2871 	                            adapter->total_tx_bytes);
       
  2872 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2873 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2874 		adapter->tx_itr = low_latency;
       
  2875 
       
  2876 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2877 	                            adapter->rx_itr,
       
  2878 	                            adapter->total_rx_packets,
       
  2879 	                            adapter->total_rx_bytes);
       
  2880 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2881 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2882 		adapter->rx_itr = low_latency;
       
  2883 
       
  2884 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2885 
       
  2886 	switch (current_itr) {
       
  2887 	/* counts and packets in update_itr are dependent on these numbers */
       
  2888 	case lowest_latency:
       
  2889 		new_itr = 70000;
       
  2890 		break;
       
  2891 	case low_latency:
       
  2892 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2893 		break;
       
  2894 	case bulk_latency:
       
  2895 		new_itr = 4000;
       
  2896 		break;
       
  2897 	default:
       
  2898 		break;
       
  2899 	}
       
  2900 
       
  2901 set_itr_now:
       
  2902 	if (new_itr != adapter->itr) {
       
  2903 		/* this attempts to bias the interrupt rate towards Bulk
       
  2904 		 * by adding intermediate steps when interrupt rate is
       
  2905 		 * increasing */
       
  2906 		new_itr = new_itr > adapter->itr ?
       
  2907 		             min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2908 		             new_itr;
       
  2909 		adapter->itr = new_itr;
       
  2910 		ew32(ITR, 1000000000 / (new_itr * 256));
       
  2911 	}
       
  2912 
       
  2913 	return;
       
  2914 }
       
  2915 
       
  2916 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2917 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2918 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2919 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2920 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2921 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2922 
       
  2923 static int e1000_tso(struct e1000_adapter *adapter,
       
  2924 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2925 {
       
  2926 	struct e1000_context_desc *context_desc;
       
  2927 	struct e1000_buffer *buffer_info;
       
  2928 	unsigned int i;
       
  2929 	u32 cmd_length = 0;
       
  2930 	u16 ipcse = 0, tucse, mss;
       
  2931 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  2932 	int err;
       
  2933 
       
  2934 	if (skb_is_gso(skb)) {
       
  2935 		if (skb_header_cloned(skb)) {
       
  2936 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2937 			if (err)
       
  2938 				return err;
       
  2939 		}
       
  2940 
       
  2941 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  2942 		mss = skb_shinfo(skb)->gso_size;
       
  2943 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2944 			struct iphdr *iph = ip_hdr(skb);
       
  2945 			iph->tot_len = 0;
       
  2946 			iph->check = 0;
       
  2947 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  2948 								 iph->daddr, 0,
       
  2949 								 IPPROTO_TCP,
       
  2950 								 0);
       
  2951 			cmd_length = E1000_TXD_CMD_IP;
       
  2952 			ipcse = skb_transport_offset(skb) - 1;
       
  2953 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
       
  2954 			ipv6_hdr(skb)->payload_len = 0;
       
  2955 			tcp_hdr(skb)->check =
       
  2956 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  2957 						 &ipv6_hdr(skb)->daddr,
       
  2958 						 0, IPPROTO_TCP, 0);
       
  2959 			ipcse = 0;
       
  2960 		}
       
  2961 		ipcss = skb_network_offset(skb);
       
  2962 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  2963 		tucss = skb_transport_offset(skb);
       
  2964 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  2965 		tucse = 0;
       
  2966 
       
  2967 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  2968 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  2969 
       
  2970 		i = tx_ring->next_to_use;
       
  2971 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2972 		buffer_info = &tx_ring->buffer_info[i];
       
  2973 
       
  2974 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  2975 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  2976 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  2977 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  2978 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  2979 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  2980 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  2981 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  2982 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  2983 
       
  2984 		buffer_info->time_stamp = jiffies;
       
  2985 		buffer_info->next_to_watch = i;
       
  2986 
       
  2987 		if (++i == tx_ring->count) i = 0;
       
  2988 		tx_ring->next_to_use = i;
       
  2989 
       
  2990 		return true;
       
  2991 	}
       
  2992 	return false;
       
  2993 }
       
  2994 
       
  2995 static bool e1000_tx_csum(struct e1000_adapter *adapter,
       
  2996 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2997 {
       
  2998 	struct e1000_context_desc *context_desc;
       
  2999 	struct e1000_buffer *buffer_info;
       
  3000 	unsigned int i;
       
  3001 	u8 css;
       
  3002 
       
  3003 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
       
  3004 		css = skb_transport_offset(skb);
       
  3005 
       
  3006 		i = tx_ring->next_to_use;
       
  3007 		buffer_info = &tx_ring->buffer_info[i];
       
  3008 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  3009 
       
  3010 		context_desc->lower_setup.ip_config = 0;
       
  3011 		context_desc->upper_setup.tcp_fields.tucss = css;
       
  3012 		context_desc->upper_setup.tcp_fields.tucso =
       
  3013 			css + skb->csum_offset;
       
  3014 		context_desc->upper_setup.tcp_fields.tucse = 0;
       
  3015 		context_desc->tcp_seg_setup.data = 0;
       
  3016 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
       
  3017 
       
  3018 		buffer_info->time_stamp = jiffies;
       
  3019 		buffer_info->next_to_watch = i;
       
  3020 
       
  3021 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3022 		tx_ring->next_to_use = i;
       
  3023 
       
  3024 		return true;
       
  3025 	}
       
  3026 
       
  3027 	return false;
       
  3028 }
       
  3029 
       
  3030 #define E1000_MAX_TXD_PWR	12
       
  3031 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  3032 
       
  3033 static int e1000_tx_map(struct e1000_adapter *adapter,
       
  3034 			struct e1000_tx_ring *tx_ring,
       
  3035 			struct sk_buff *skb, unsigned int first,
       
  3036 			unsigned int max_per_txd, unsigned int nr_frags,
       
  3037 			unsigned int mss)
       
  3038 {
       
  3039 	struct e1000_hw *hw = &adapter->hw;
       
  3040 	struct e1000_buffer *buffer_info;
       
  3041 	unsigned int len = skb->len;
       
  3042 	unsigned int offset = 0, size, count = 0, i;
       
  3043 	unsigned int f;
       
  3044 	len -= skb->data_len;
       
  3045 
       
  3046 	i = tx_ring->next_to_use;
       
  3047 
       
  3048 	while (len) {
       
  3049 		buffer_info = &tx_ring->buffer_info[i];
       
  3050 		size = min(len, max_per_txd);
       
  3051 		/* Workaround for Controller erratum --
       
  3052 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  3053 		 * tso gets written back prematurely before the data is fully
       
  3054 		 * DMA'd to the controller */
       
  3055 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  3056 		    !skb_is_gso(skb)) {
       
  3057 			tx_ring->last_tx_tso = 0;
       
  3058 			size -= 4;
       
  3059 		}
       
  3060 
       
  3061 		/* Workaround for premature desc write-backs
       
  3062 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  3063 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  3064 			size -= 4;
       
  3065 		/* work-around for errata 10 and it applies
       
  3066 		 * to all controllers in PCI-X mode
       
  3067 		 * The fix is to make sure that the first descriptor of a
       
  3068 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  3069 		 */
       
  3070 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  3071 		                (size > 2015) && count == 0))
       
  3072 		        size = 2015;
       
  3073 
       
  3074 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  3075 		 * terminating buffers within evenly-aligned dwords. */
       
  3076 		if (unlikely(adapter->pcix_82544 &&
       
  3077 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  3078 		   size > 4))
       
  3079 			size -= 4;
       
  3080 
       
  3081 		buffer_info->length = size;
       
  3082 		buffer_info->dma =
       
  3083 			pci_map_single(adapter->pdev,
       
  3084 				skb->data + offset,
       
  3085 				size,
       
  3086 				PCI_DMA_TODEVICE);
       
  3087 		buffer_info->time_stamp = jiffies;
       
  3088 		buffer_info->next_to_watch = i;
       
  3089 
       
  3090 		len -= size;
       
  3091 		offset += size;
       
  3092 		count++;
       
  3093 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3094 	}
       
  3095 
       
  3096 	for (f = 0; f < nr_frags; f++) {
       
  3097 		struct skb_frag_struct *frag;
       
  3098 
       
  3099 		frag = &skb_shinfo(skb)->frags[f];
       
  3100 		len = frag->size;
       
  3101 		offset = frag->page_offset;
       
  3102 
       
  3103 		while (len) {
       
  3104 			buffer_info = &tx_ring->buffer_info[i];
       
  3105 			size = min(len, max_per_txd);
       
  3106 			/* Workaround for premature desc write-backs
       
  3107 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  3108 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  3109 				size -= 4;
       
  3110 			/* Workaround for potential 82544 hang in PCI-X.
       
  3111 			 * Avoid terminating buffers within evenly-aligned
       
  3112 			 * dwords. */
       
  3113 			if (unlikely(adapter->pcix_82544 &&
       
  3114 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
       
  3115 			   size > 4))
       
  3116 				size -= 4;
       
  3117 
       
  3118 			buffer_info->length = size;
       
  3119 			buffer_info->dma =
       
  3120 				pci_map_page(adapter->pdev,
       
  3121 					frag->page,
       
  3122 					offset,
       
  3123 					size,
       
  3124 					PCI_DMA_TODEVICE);
       
  3125 			buffer_info->time_stamp = jiffies;
       
  3126 			buffer_info->next_to_watch = i;
       
  3127 
       
  3128 			len -= size;
       
  3129 			offset += size;
       
  3130 			count++;
       
  3131 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3132 		}
       
  3133 	}
       
  3134 
       
  3135 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
       
  3136 	tx_ring->buffer_info[i].skb = skb;
       
  3137 	tx_ring->buffer_info[first].next_to_watch = i;
       
  3138 
       
  3139 	return count;
       
  3140 }
       
  3141 
       
  3142 static void e1000_tx_queue(struct e1000_adapter *adapter,
       
  3143 			   struct e1000_tx_ring *tx_ring, int tx_flags,
       
  3144 			   int count)
       
  3145 {
       
  3146 	struct e1000_hw *hw = &adapter->hw;
       
  3147 	struct e1000_tx_desc *tx_desc = NULL;
       
  3148 	struct e1000_buffer *buffer_info;
       
  3149 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  3150 	unsigned int i;
       
  3151 
       
  3152 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  3153 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  3154 		             E1000_TXD_CMD_TSE;
       
  3155 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3156 
       
  3157 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  3158 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  3159 	}
       
  3160 
       
  3161 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  3162 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  3163 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3164 	}
       
  3165 
       
  3166 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  3167 		txd_lower |= E1000_TXD_CMD_VLE;
       
  3168 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  3169 	}
       
  3170 
       
  3171 	i = tx_ring->next_to_use;
       
  3172 
       
  3173 	while (count--) {
       
  3174 		buffer_info = &tx_ring->buffer_info[i];
       
  3175 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3176 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  3177 		tx_desc->lower.data =
       
  3178 			cpu_to_le32(txd_lower | buffer_info->length);
       
  3179 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  3180 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3181 	}
       
  3182 
       
  3183 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  3184 
       
  3185 	/* Force memory writes to complete before letting h/w
       
  3186 	 * know there are new descriptors to fetch.  (Only
       
  3187 	 * applicable for weak-ordered memory model archs,
       
  3188 	 * such as IA-64). */
       
  3189 	wmb();
       
  3190 
       
  3191 	tx_ring->next_to_use = i;
       
  3192 	writel(i, hw->hw_addr + tx_ring->tdt);
       
  3193 	/* we need this if more than one processor can write to our tail
       
  3194 	 * at a time, it syncronizes IO on IA64/Altix systems */
       
  3195 	mmiowb();
       
  3196 }
       
  3197 
       
  3198 /**
       
  3199  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  3200  * The workaround is to avoid queuing a large packet that would span
       
  3201  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  3202  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  3203  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  3204  * to the beginning of the Tx FIFO.
       
  3205  **/
       
  3206 
       
  3207 #define E1000_FIFO_HDR			0x10
       
  3208 #define E1000_82547_PAD_LEN		0x3E0
       
  3209 
       
  3210 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
  3211 				       struct sk_buff *skb)
       
  3212 {
       
  3213 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  3214 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  3215 
       
  3216 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
       
  3217 
       
  3218 	if (adapter->link_duplex != HALF_DUPLEX)
       
  3219 		goto no_fifo_stall_required;
       
  3220 
       
  3221 	if (atomic_read(&adapter->tx_fifo_stall))
       
  3222 		return 1;
       
  3223 
       
  3224 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  3225 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  3226 		return 1;
       
  3227 	}
       
  3228 
       
  3229 no_fifo_stall_required:
       
  3230 	adapter->tx_fifo_head += skb_fifo_len;
       
  3231 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  3232 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  3233 	return 0;
       
  3234 }
       
  3235 
       
  3236 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  3237 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
       
  3238 				    struct sk_buff *skb)
       
  3239 {
       
  3240 	struct e1000_hw *hw =  &adapter->hw;
       
  3241 	u16 length, offset;
       
  3242 	if (vlan_tx_tag_present(skb)) {
       
  3243 		if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
       
  3244 			( hw->mng_cookie.status &
       
  3245 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
       
  3246 			return 0;
       
  3247 	}
       
  3248 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
       
  3249 		struct ethhdr *eth = (struct ethhdr *)skb->data;
       
  3250 		if ((htons(ETH_P_IP) == eth->h_proto)) {
       
  3251 			const struct iphdr *ip =
       
  3252 				(struct iphdr *)((u8 *)skb->data+14);
       
  3253 			if (IPPROTO_UDP == ip->protocol) {
       
  3254 				struct udphdr *udp =
       
  3255 					(struct udphdr *)((u8 *)ip +
       
  3256 						(ip->ihl << 2));
       
  3257 				if (ntohs(udp->dest) == 67) {
       
  3258 					offset = (u8 *)udp + 8 - skb->data;
       
  3259 					length = skb->len - offset;
       
  3260 
       
  3261 					return e1000_mng_write_dhcp_info(hw,
       
  3262 							(u8 *)udp + 8,
       
  3263 							length);
       
  3264 				}
       
  3265 			}
       
  3266 		}
       
  3267 	}
       
  3268 	return 0;
       
  3269 }
       
  3270 
       
  3271 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  3272 {
       
  3273 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3274 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
       
  3275 
       
  3276 	netif_stop_queue(netdev);
       
  3277 	/* Herbert's original patch had:
       
  3278 	 *  smp_mb__after_netif_stop_queue();
       
  3279 	 * but since that doesn't exist yet, just open code it. */
       
  3280 	smp_mb();
       
  3281 
       
  3282 	/* We need to check again in a case another CPU has just
       
  3283 	 * made room available. */
       
  3284 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
       
  3285 		return -EBUSY;
       
  3286 
       
  3287 	/* A reprieve! */
       
  3288 	netif_start_queue(netdev);
       
  3289 	++adapter->restart_queue;
       
  3290 	return 0;
       
  3291 }
       
  3292 
       
  3293 static int e1000_maybe_stop_tx(struct net_device *netdev,
       
  3294                                struct e1000_tx_ring *tx_ring, int size)
       
  3295 {
       
  3296 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
       
  3297 		return 0;
       
  3298 	return __e1000_maybe_stop_tx(netdev, size);
       
  3299 }
       
  3300 
       
  3301 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  3302 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  3303 {
       
  3304 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3305 	struct e1000_hw *hw = &adapter->hw;
       
  3306 	struct e1000_tx_ring *tx_ring;
       
  3307 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  3308 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  3309 	unsigned int tx_flags = 0;
       
  3310 	unsigned int len = skb->len - skb->data_len;
       
  3311 	unsigned long flags;
       
  3312 	unsigned int nr_frags;
       
  3313 	unsigned int mss;
       
  3314 	int count = 0;
       
  3315 	int tso;
       
  3316 	unsigned int f;
       
  3317 
       
  3318 	/* This goes back to the question of how to logically map a tx queue
       
  3319 	 * to a flow.  Right now, performance is impacted slightly negatively
       
  3320 	 * if using multiple tx queues.  If the stack breaks away from a
       
  3321 	 * single qdisc implementation, we can look at this again. */
       
  3322 	tx_ring = adapter->tx_ring;
       
  3323 
       
  3324 	if (unlikely(skb->len <= 0)) {
       
  3325 		dev_kfree_skb_any(skb);
       
  3326 		return NETDEV_TX_OK;
       
  3327 	}
       
  3328 
       
  3329 	/* 82571 and newer doesn't need the workaround that limited descriptor
       
  3330 	 * length to 4kB */
       
  3331 	if (hw->mac_type >= e1000_82571)
       
  3332 		max_per_txd = 8192;
       
  3333 
       
  3334 	mss = skb_shinfo(skb)->gso_size;
       
  3335 	/* The controller does a simple calculation to
       
  3336 	 * make sure there is enough room in the FIFO before
       
  3337 	 * initiating the DMA for each buffer.  The calc is:
       
  3338 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  3339 	 * overrun the FIFO, adjust the max buffer len if mss
       
  3340 	 * drops. */
       
  3341 	if (mss) {
       
  3342 		u8 hdr_len;
       
  3343 		max_per_txd = min(mss << 2, max_per_txd);
       
  3344 		max_txd_pwr = fls(max_per_txd) - 1;
       
  3345 
       
  3346 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  3347 		* points to just header, pull a few bytes of payload from
       
  3348 		* frags into skb->data */
       
  3349 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  3350 		if (skb->data_len && hdr_len == len) {
       
  3351 			switch (hw->mac_type) {
       
  3352 				unsigned int pull_size;
       
  3353 			case e1000_82544:
       
  3354 				/* Make sure we have room to chop off 4 bytes,
       
  3355 				 * and that the end alignment will work out to
       
  3356 				 * this hardware's requirements
       
  3357 				 * NOTE: this is a TSO only workaround
       
  3358 				 * if end byte alignment not correct move us
       
  3359 				 * into the next dword */
       
  3360 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
       
  3361 					break;
       
  3362 				/* fall through */
       
  3363 			case e1000_82571:
       
  3364 			case e1000_82572:
       
  3365 			case e1000_82573:
       
  3366 			case e1000_ich8lan:
       
  3367 				pull_size = min((unsigned int)4, skb->data_len);
       
  3368 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  3369 					DPRINTK(DRV, ERR,
       
  3370 						"__pskb_pull_tail failed.\n");
       
  3371 					dev_kfree_skb_any(skb);
       
  3372 					return NETDEV_TX_OK;
       
  3373 				}
       
  3374 				len = skb->len - skb->data_len;
       
  3375 				break;
       
  3376 			default:
       
  3377 				/* do nothing */
       
  3378 				break;
       
  3379 			}
       
  3380 		}
       
  3381 	}
       
  3382 
       
  3383 	/* reserve a descriptor for the offload context */
       
  3384 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  3385 		count++;
       
  3386 	count++;
       
  3387 
       
  3388 	/* Controller Erratum workaround */
       
  3389 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  3390 		count++;
       
  3391 
       
  3392 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  3393 
       
  3394 	if (adapter->pcix_82544)
       
  3395 		count++;
       
  3396 
       
  3397 	/* work-around for errata 10 and it applies to all controllers
       
  3398 	 * in PCI-X mode, so add one more descriptor to the count
       
  3399 	 */
       
  3400 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  3401 			(len > 2015)))
       
  3402 		count++;
       
  3403 
       
  3404 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  3405 	for (f = 0; f < nr_frags; f++)
       
  3406 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  3407 				       max_txd_pwr);
       
  3408 	if (adapter->pcix_82544)
       
  3409 		count += nr_frags;
       
  3410 
       
  3411 
       
  3412 	if (hw->tx_pkt_filtering &&
       
  3413 	    (hw->mac_type == e1000_82573))
       
  3414 		e1000_transfer_dhcp_info(adapter, skb);
       
  3415 
       
  3416 	if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
       
  3417 		/* Collision - tell upper layer to requeue */
       
  3418 		return NETDEV_TX_LOCKED;
       
  3419 
       
  3420 	/* need: count + 2 desc gap to keep tail from touching
       
  3421 	 * head, otherwise try next time */
       
  3422 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
       
  3423 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3424 		return NETDEV_TX_BUSY;
       
  3425 	}
       
  3426 
       
  3427 	if (unlikely(hw->mac_type == e1000_82547)) {
       
  3428 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  3429 			netif_stop_queue(netdev);
       
  3430 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  3431 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3432 			return NETDEV_TX_BUSY;
       
  3433 		}
       
  3434 	}
       
  3435 
       
  3436 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  3437 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  3438 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  3439 	}
       
  3440 
       
  3441 	first = tx_ring->next_to_use;
       
  3442 
       
  3443 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3444 	if (tso < 0) {
       
  3445 		dev_kfree_skb_any(skb);
       
  3446 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3447 		return NETDEV_TX_OK;
       
  3448 	}
       
  3449 
       
  3450 	if (likely(tso)) {
       
  3451 		tx_ring->last_tx_tso = 1;
       
  3452 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3453 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3454 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3455 
       
  3456 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
       
  3457 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  3458 	 * no longer assume, we must. */
       
  3459 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3460 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3461 
       
  3462 	e1000_tx_queue(adapter, tx_ring, tx_flags,
       
  3463 	               e1000_tx_map(adapter, tx_ring, skb, first,
       
  3464 	                            max_per_txd, nr_frags, mss));
       
  3465 
       
  3466 	netdev->trans_start = jiffies;
       
  3467 
       
  3468 	/* Make sure there is space in the ring for the next send. */
       
  3469 	e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
       
  3470 
       
  3471 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3472 	return NETDEV_TX_OK;
       
  3473 }
       
  3474 
       
  3475 /**
       
  3476  * e1000_tx_timeout - Respond to a Tx Hang
       
  3477  * @netdev: network interface device structure
       
  3478  **/
       
  3479 
       
  3480 static void e1000_tx_timeout(struct net_device *netdev)
       
  3481 {
       
  3482 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3483 
       
  3484 	/* Do the reset outside of interrupt context */
       
  3485 	adapter->tx_timeout_count++;
       
  3486 	schedule_work(&adapter->reset_task);
       
  3487 }
       
  3488 
       
  3489 static void e1000_reset_task(struct work_struct *work)
       
  3490 {
       
  3491 	struct e1000_adapter *adapter =
       
  3492 		container_of(work, struct e1000_adapter, reset_task);
       
  3493 
       
  3494 	e1000_reinit_locked(adapter);
       
  3495 }
       
  3496 
       
  3497 /**
       
  3498  * e1000_get_stats - Get System Network Statistics
       
  3499  * @netdev: network interface device structure
       
  3500  *
       
  3501  * Returns the address of the device statistics structure.
       
  3502  * The statistics are actually updated from the timer callback.
       
  3503  **/
       
  3504 
       
  3505 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
       
  3506 {
       
  3507 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3508 
       
  3509 	/* only return the current stats */
       
  3510 	return &adapter->net_stats;
       
  3511 }
       
  3512 
       
  3513 /**
       
  3514  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3515  * @netdev: network interface device structure
       
  3516  * @new_mtu: new value for maximum frame size
       
  3517  *
       
  3518  * Returns 0 on success, negative on failure
       
  3519  **/
       
  3520 
       
  3521 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3522 {
       
  3523 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3524 	struct e1000_hw *hw = &adapter->hw;
       
  3525 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3526 	u16 eeprom_data = 0;
       
  3527 
       
  3528 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3529 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3530 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
       
  3531 		return -EINVAL;
       
  3532 	}
       
  3533 
       
  3534 	/* Adapter-specific max frame size limits. */
       
  3535 	switch (hw->mac_type) {
       
  3536 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3537 	case e1000_ich8lan:
       
  3538 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3539 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
       
  3540 			return -EINVAL;
       
  3541 		}
       
  3542 		break;
       
  3543 	case e1000_82573:
       
  3544 		/* Jumbo Frames not supported if:
       
  3545 		 * - this is not an 82573L device
       
  3546 		 * - ASPM is enabled in any way (0x1A bits 3:2) */
       
  3547 		e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
       
  3548 		                  &eeprom_data);
       
  3549 		if ((hw->device_id != E1000_DEV_ID_82573L) ||
       
  3550 		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
       
  3551 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3552 				DPRINTK(PROBE, ERR,
       
  3553 			            	"Jumbo Frames not supported.\n");
       
  3554 				return -EINVAL;
       
  3555 			}
       
  3556 			break;
       
  3557 		}
       
  3558 		/* ERT will be enabled later to enable wire speed receives */
       
  3559 
       
  3560 		/* fall through to get support */
       
  3561 	case e1000_82571:
       
  3562 	case e1000_82572:
       
  3563 	case e1000_80003es2lan:
       
  3564 #define MAX_STD_JUMBO_FRAME_SIZE 9234
       
  3565 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
       
  3566 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
       
  3567 			return -EINVAL;
       
  3568 		}
       
  3569 		break;
       
  3570 	default:
       
  3571 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3572 		break;
       
  3573 	}
       
  3574 
       
  3575 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3576 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3577 	 * larger slab size
       
  3578 	 * i.e. RXBUFFER_2048 --> size-4096 slab */
       
  3579 
       
  3580 	if (max_frame <= E1000_RXBUFFER_256)
       
  3581 		adapter->rx_buffer_len = E1000_RXBUFFER_256;
       
  3582 	else if (max_frame <= E1000_RXBUFFER_512)
       
  3583 		adapter->rx_buffer_len = E1000_RXBUFFER_512;
       
  3584 	else if (max_frame <= E1000_RXBUFFER_1024)
       
  3585 		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
       
  3586 	else if (max_frame <= E1000_RXBUFFER_2048)
       
  3587 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3588 	else if (max_frame <= E1000_RXBUFFER_4096)
       
  3589 		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
       
  3590 	else if (max_frame <= E1000_RXBUFFER_8192)
       
  3591 		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
       
  3592 	else if (max_frame <= E1000_RXBUFFER_16384)
       
  3593 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3594 
       
  3595 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3596 	if (!hw->tbi_compatibility_on &&
       
  3597 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
       
  3598 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3599 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3600 
       
  3601 	netdev->mtu = new_mtu;
       
  3602 	hw->max_frame_size = max_frame;
       
  3603 
       
  3604 	if (netif_running(netdev))
       
  3605 		e1000_reinit_locked(adapter);
       
  3606 
       
  3607 	return 0;
       
  3608 }
       
  3609 
       
  3610 /**
       
  3611  * e1000_update_stats - Update the board statistics counters
       
  3612  * @adapter: board private structure
       
  3613  **/
       
  3614 
       
  3615 void e1000_update_stats(struct e1000_adapter *adapter)
       
  3616 {
       
  3617 	struct e1000_hw *hw = &adapter->hw;
       
  3618 	struct pci_dev *pdev = adapter->pdev;
       
  3619 	unsigned long flags;
       
  3620 	u16 phy_tmp;
       
  3621 
       
  3622 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3623 
       
  3624 	/*
       
  3625 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3626 	 * connection is down.
       
  3627 	 */
       
  3628 	if (adapter->link_speed == 0)
       
  3629 		return;
       
  3630 	if (pci_channel_offline(pdev))
       
  3631 		return;
       
  3632 
       
  3633 	spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3634 
       
  3635 	/* these counters are modified from e1000_tbi_adjust_stats,
       
  3636 	 * called from the interrupt context, so they must only
       
  3637 	 * be written while holding adapter->stats_lock
       
  3638 	 */
       
  3639 
       
  3640 	adapter->stats.crcerrs += er32(CRCERRS);
       
  3641 	adapter->stats.gprc += er32(GPRC);
       
  3642 	adapter->stats.gorcl += er32(GORCL);
       
  3643 	adapter->stats.gorch += er32(GORCH);
       
  3644 	adapter->stats.bprc += er32(BPRC);
       
  3645 	adapter->stats.mprc += er32(MPRC);
       
  3646 	adapter->stats.roc += er32(ROC);
       
  3647 
       
  3648 	if (hw->mac_type != e1000_ich8lan) {
       
  3649 		adapter->stats.prc64 += er32(PRC64);
       
  3650 		adapter->stats.prc127 += er32(PRC127);
       
  3651 		adapter->stats.prc255 += er32(PRC255);
       
  3652 		adapter->stats.prc511 += er32(PRC511);
       
  3653 		adapter->stats.prc1023 += er32(PRC1023);
       
  3654 		adapter->stats.prc1522 += er32(PRC1522);
       
  3655 	}
       
  3656 
       
  3657 	adapter->stats.symerrs += er32(SYMERRS);
       
  3658 	adapter->stats.mpc += er32(MPC);
       
  3659 	adapter->stats.scc += er32(SCC);
       
  3660 	adapter->stats.ecol += er32(ECOL);
       
  3661 	adapter->stats.mcc += er32(MCC);
       
  3662 	adapter->stats.latecol += er32(LATECOL);
       
  3663 	adapter->stats.dc += er32(DC);
       
  3664 	adapter->stats.sec += er32(SEC);
       
  3665 	adapter->stats.rlec += er32(RLEC);
       
  3666 	adapter->stats.xonrxc += er32(XONRXC);
       
  3667 	adapter->stats.xontxc += er32(XONTXC);
       
  3668 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  3669 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  3670 	adapter->stats.fcruc += er32(FCRUC);
       
  3671 	adapter->stats.gptc += er32(GPTC);
       
  3672 	adapter->stats.gotcl += er32(GOTCL);
       
  3673 	adapter->stats.gotch += er32(GOTCH);
       
  3674 	adapter->stats.rnbc += er32(RNBC);
       
  3675 	adapter->stats.ruc += er32(RUC);
       
  3676 	adapter->stats.rfc += er32(RFC);
       
  3677 	adapter->stats.rjc += er32(RJC);
       
  3678 	adapter->stats.torl += er32(TORL);
       
  3679 	adapter->stats.torh += er32(TORH);
       
  3680 	adapter->stats.totl += er32(TOTL);
       
  3681 	adapter->stats.toth += er32(TOTH);
       
  3682 	adapter->stats.tpr += er32(TPR);
       
  3683 
       
  3684 	if (hw->mac_type != e1000_ich8lan) {
       
  3685 		adapter->stats.ptc64 += er32(PTC64);
       
  3686 		adapter->stats.ptc127 += er32(PTC127);
       
  3687 		adapter->stats.ptc255 += er32(PTC255);
       
  3688 		adapter->stats.ptc511 += er32(PTC511);
       
  3689 		adapter->stats.ptc1023 += er32(PTC1023);
       
  3690 		adapter->stats.ptc1522 += er32(PTC1522);
       
  3691 	}
       
  3692 
       
  3693 	adapter->stats.mptc += er32(MPTC);
       
  3694 	adapter->stats.bptc += er32(BPTC);
       
  3695 
       
  3696 	/* used for adaptive IFS */
       
  3697 
       
  3698 	hw->tx_packet_delta = er32(TPT);
       
  3699 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3700 	hw->collision_delta = er32(COLC);
       
  3701 	adapter->stats.colc += hw->collision_delta;
       
  3702 
       
  3703 	if (hw->mac_type >= e1000_82543) {
       
  3704 		adapter->stats.algnerrc += er32(ALGNERRC);
       
  3705 		adapter->stats.rxerrc += er32(RXERRC);
       
  3706 		adapter->stats.tncrs += er32(TNCRS);
       
  3707 		adapter->stats.cexterr += er32(CEXTERR);
       
  3708 		adapter->stats.tsctc += er32(TSCTC);
       
  3709 		adapter->stats.tsctfc += er32(TSCTFC);
       
  3710 	}
       
  3711 	if (hw->mac_type > e1000_82547_rev_2) {
       
  3712 		adapter->stats.iac += er32(IAC);
       
  3713 		adapter->stats.icrxoc += er32(ICRXOC);
       
  3714 
       
  3715 		if (hw->mac_type != e1000_ich8lan) {
       
  3716 			adapter->stats.icrxptc += er32(ICRXPTC);
       
  3717 			adapter->stats.icrxatc += er32(ICRXATC);
       
  3718 			adapter->stats.ictxptc += er32(ICTXPTC);
       
  3719 			adapter->stats.ictxatc += er32(ICTXATC);
       
  3720 			adapter->stats.ictxqec += er32(ICTXQEC);
       
  3721 			adapter->stats.ictxqmtc += er32(ICTXQMTC);
       
  3722 			adapter->stats.icrxdmtc += er32(ICRXDMTC);
       
  3723 		}
       
  3724 	}
       
  3725 
       
  3726 	/* Fill out the OS statistics structure */
       
  3727 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  3728 	adapter->net_stats.collisions = adapter->stats.colc;
       
  3729 
       
  3730 	/* Rx Errors */
       
  3731 
       
  3732 	/* RLEC on some newer hardware can be incorrect so build
       
  3733 	* our own version based on RUC and ROC */
       
  3734 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  3735 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3736 		adapter->stats.ruc + adapter->stats.roc +
       
  3737 		adapter->stats.cexterr;
       
  3738 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
       
  3739 	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
       
  3740 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3741 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3742 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  3743 
       
  3744 	/* Tx Errors */
       
  3745 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
       
  3746 	adapter->net_stats.tx_errors = adapter->stats.txerrc;
       
  3747 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  3748 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  3749 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3750 	if (hw->bad_tx_carr_stats_fd &&
       
  3751 	    adapter->link_duplex == FULL_DUPLEX) {
       
  3752 		adapter->net_stats.tx_carrier_errors = 0;
       
  3753 		adapter->stats.tncrs = 0;
       
  3754 	}
       
  3755 
       
  3756 	/* Tx Dropped needs to be maintained elsewhere */
       
  3757 
       
  3758 	/* Phy Stats */
       
  3759 	if (hw->media_type == e1000_media_type_copper) {
       
  3760 		if ((adapter->link_speed == SPEED_1000) &&
       
  3761 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3762 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3763 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3764 		}
       
  3765 
       
  3766 		if ((hw->mac_type <= e1000_82546) &&
       
  3767 		   (hw->phy_type == e1000_phy_m88) &&
       
  3768 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3769 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3770 	}
       
  3771 
       
  3772 	/* Management Stats */
       
  3773 	if (hw->has_smbus) {
       
  3774 		adapter->stats.mgptc += er32(MGTPTC);
       
  3775 		adapter->stats.mgprc += er32(MGTPRC);
       
  3776 		adapter->stats.mgpdc += er32(MGTPDC);
       
  3777 	}
       
  3778 
       
  3779 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3780 }
       
  3781 
       
  3782 /**
       
  3783  * e1000_intr_msi - Interrupt Handler
       
  3784  * @irq: interrupt number
       
  3785  * @data: pointer to a network interface device structure
       
  3786  **/
       
  3787 
       
  3788 static irqreturn_t e1000_intr_msi(int irq, void *data)
       
  3789 {
       
  3790 	struct net_device *netdev = data;
       
  3791 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3792 	struct e1000_hw *hw = &adapter->hw;
       
  3793 	u32 icr = er32(ICR);
       
  3794 
       
  3795 	/* in NAPI mode read ICR disables interrupts using IAM */
       
  3796 
       
  3797 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
       
  3798 		hw->get_link_status = 1;
       
  3799 		/* 80003ES2LAN workaround-- For packet buffer work-around on
       
  3800 		 * link down event; disable receives here in the ISR and reset
       
  3801 		 * adapter in watchdog */
       
  3802 		if (netif_carrier_ok(netdev) &&
       
  3803 		    (hw->mac_type == e1000_80003es2lan)) {
       
  3804 			/* disable receives */
       
  3805 			u32 rctl = er32(RCTL);
       
  3806 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  3807 		}
       
  3808 		/* guard against interrupt when we're going down */
       
  3809 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3810 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3811 	}
       
  3812 
       
  3813 	if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
       
  3814 		adapter->total_tx_bytes = 0;
       
  3815 		adapter->total_tx_packets = 0;
       
  3816 		adapter->total_rx_bytes = 0;
       
  3817 		adapter->total_rx_packets = 0;
       
  3818 		__netif_rx_schedule(netdev, &adapter->napi);
       
  3819 	} else
       
  3820 		e1000_irq_enable(adapter);
       
  3821 
       
  3822 	return IRQ_HANDLED;
       
  3823 }
       
  3824 
       
  3825 /**
       
  3826  * e1000_intr - Interrupt Handler
       
  3827  * @irq: interrupt number
       
  3828  * @data: pointer to a network interface device structure
       
  3829  **/
       
  3830 
       
  3831 static irqreturn_t e1000_intr(int irq, void *data)
       
  3832 {
       
  3833 	struct net_device *netdev = data;
       
  3834 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3835 	struct e1000_hw *hw = &adapter->hw;
       
  3836 	u32 rctl, icr = er32(ICR);
       
  3837 
       
  3838 	if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
       
  3839 		return IRQ_NONE;  /* Not our interrupt */
       
  3840 
       
  3841 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  3842 	 * not set, then the adapter didn't send an interrupt */
       
  3843 	if (unlikely(hw->mac_type >= e1000_82571 &&
       
  3844 	             !(icr & E1000_ICR_INT_ASSERTED)))
       
  3845 		return IRQ_NONE;
       
  3846 
       
  3847 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
       
  3848 	 * need for the IMC write */
       
  3849 
       
  3850 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3851 		hw->get_link_status = 1;
       
  3852 		/* 80003ES2LAN workaround--
       
  3853 		 * For packet buffer work-around on link down event;
       
  3854 		 * disable receives here in the ISR and
       
  3855 		 * reset adapter in watchdog
       
  3856 		 */
       
  3857 		if (netif_carrier_ok(netdev) &&
       
  3858 		    (hw->mac_type == e1000_80003es2lan)) {
       
  3859 			/* disable receives */
       
  3860 			rctl = er32(RCTL);
       
  3861 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  3862 		}
       
  3863 		/* guard against interrupt when we're going down */
       
  3864 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3865 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3866 	}
       
  3867 
       
  3868 	if (unlikely(hw->mac_type < e1000_82571)) {
       
  3869 		/* disable interrupts, without the synchronize_irq bit */
       
  3870 		ew32(IMC, ~0);
       
  3871 		E1000_WRITE_FLUSH();
       
  3872 	}
       
  3873 	if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
       
  3874 		adapter->total_tx_bytes = 0;
       
  3875 		adapter->total_tx_packets = 0;
       
  3876 		adapter->total_rx_bytes = 0;
       
  3877 		adapter->total_rx_packets = 0;
       
  3878 		__netif_rx_schedule(netdev, &adapter->napi);
       
  3879 	} else
       
  3880 		/* this really should not happen! if it does it is basically a
       
  3881 		 * bug, but not a hard error, so enable ints and continue */
       
  3882 		e1000_irq_enable(adapter);
       
  3883 
       
  3884 	return IRQ_HANDLED;
       
  3885 }
       
  3886 
       
  3887 /**
       
  3888  * e1000_clean - NAPI Rx polling callback
       
  3889  * @adapter: board private structure
       
  3890  **/
       
  3891 static int e1000_clean(struct napi_struct *napi, int budget)
       
  3892 {
       
  3893 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  3894 	struct net_device *poll_dev = adapter->netdev;
       
  3895 	int tx_cleaned = 0, work_done = 0;
       
  3896 
       
  3897 	/* Must NOT use netdev_priv macro here. */
       
  3898 	adapter = poll_dev->priv;
       
  3899 
       
  3900 	/* e1000_clean is called per-cpu.  This lock protects
       
  3901 	 * tx_ring[0] from being cleaned by multiple cpus
       
  3902 	 * simultaneously.  A failure obtaining the lock means
       
  3903 	 * tx_ring[0] is currently being cleaned anyway. */
       
  3904 	if (spin_trylock(&adapter->tx_queue_lock)) {
       
  3905 		tx_cleaned = e1000_clean_tx_irq(adapter,
       
  3906 						&adapter->tx_ring[0]);
       
  3907 		spin_unlock(&adapter->tx_queue_lock);
       
  3908 	}
       
  3909 
       
  3910 	adapter->clean_rx(adapter, &adapter->rx_ring[0],
       
  3911 	                  &work_done, budget);
       
  3912 
       
  3913 	if (tx_cleaned)
       
  3914 		work_done = budget;
       
  3915 
       
  3916 	/* If budget not fully consumed, exit the polling mode */
       
  3917 	if (work_done < budget) {
       
  3918 		if (likely(adapter->itr_setting & 3))
       
  3919 			e1000_set_itr(adapter);
       
  3920 		netif_rx_complete(poll_dev, napi);
       
  3921 		e1000_irq_enable(adapter);
       
  3922 	}
       
  3923 
       
  3924 	return work_done;
       
  3925 }
       
  3926 
       
  3927 /**
       
  3928  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  3929  * @adapter: board private structure
       
  3930  **/
       
  3931 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  3932 			       struct e1000_tx_ring *tx_ring)
       
  3933 {
       
  3934 	struct e1000_hw *hw = &adapter->hw;
       
  3935 	struct net_device *netdev = adapter->netdev;
       
  3936 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  3937 	struct e1000_buffer *buffer_info;
       
  3938 	unsigned int i, eop;
       
  3939 	unsigned int count = 0;
       
  3940 	bool cleaned = false;
       
  3941 	unsigned int total_tx_bytes=0, total_tx_packets=0;
       
  3942 
       
  3943 	i = tx_ring->next_to_clean;
       
  3944 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  3945 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3946 
       
  3947 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
       
  3948 		for (cleaned = false; !cleaned; ) {
       
  3949 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3950 			buffer_info = &tx_ring->buffer_info[i];
       
  3951 			cleaned = (i == eop);
       
  3952 
       
  3953 			if (cleaned) {
       
  3954 				struct sk_buff *skb = buffer_info->skb;
       
  3955 				unsigned int segs, bytecount;
       
  3956 				segs = skb_shinfo(skb)->gso_segs ?: 1;
       
  3957 				/* multiply data chunks by size of headers */
       
  3958 				bytecount = ((segs - 1) * skb_headlen(skb)) +
       
  3959 				            skb->len;
       
  3960 				total_tx_packets += segs;
       
  3961 				total_tx_bytes += bytecount;
       
  3962 			}
       
  3963 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  3964 			tx_desc->upper.data = 0;
       
  3965 
       
  3966 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3967 		}
       
  3968 
       
  3969 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  3970 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3971 #define E1000_TX_WEIGHT 64
       
  3972 		/* weight of a sort for tx, to avoid endless transmit cleanup */
       
  3973 		if (count++ == E1000_TX_WEIGHT)
       
  3974 			break;
       
  3975 	}
       
  3976 
       
  3977 	tx_ring->next_to_clean = i;
       
  3978 
       
  3979 #define TX_WAKE_THRESHOLD 32
       
  3980 	if (unlikely(cleaned && netif_carrier_ok(netdev) &&
       
  3981 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
       
  3982 		/* Make sure that anybody stopping the queue after this
       
  3983 		 * sees the new next_to_clean.
       
  3984 		 */
       
  3985 		smp_mb();
       
  3986 		if (netif_queue_stopped(netdev)) {
       
  3987 			netif_wake_queue(netdev);
       
  3988 			++adapter->restart_queue;
       
  3989 		}
       
  3990 	}
       
  3991 
       
  3992 	if (adapter->detect_tx_hung) {
       
  3993 		/* Detect a transmit hang in hardware, this serializes the
       
  3994 		 * check with the clearing of time_stamp and movement of i */
       
  3995 		adapter->detect_tx_hung = false;
       
  3996 		if (tx_ring->buffer_info[eop].dma &&
       
  3997 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  3998 		               (adapter->tx_timeout_factor * HZ))
       
  3999 		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
       
  4000 
       
  4001 			/* detected Tx unit hang */
       
  4002 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
       
  4003 					"  Tx Queue             <%lu>\n"
       
  4004 					"  TDH                  <%x>\n"
       
  4005 					"  TDT                  <%x>\n"
       
  4006 					"  next_to_use          <%x>\n"
       
  4007 					"  next_to_clean        <%x>\n"
       
  4008 					"buffer_info[next_to_clean]\n"
       
  4009 					"  time_stamp           <%lx>\n"
       
  4010 					"  next_to_watch        <%x>\n"
       
  4011 					"  jiffies              <%lx>\n"
       
  4012 					"  next_to_watch.status <%x>\n",
       
  4013 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  4014 					sizeof(struct e1000_tx_ring)),
       
  4015 				readl(hw->hw_addr + tx_ring->tdh),
       
  4016 				readl(hw->hw_addr + tx_ring->tdt),
       
  4017 				tx_ring->next_to_use,
       
  4018 				tx_ring->next_to_clean,
       
  4019 				tx_ring->buffer_info[eop].time_stamp,
       
  4020 				eop,
       
  4021 				jiffies,
       
  4022 				eop_desc->upper.fields.status);
       
  4023 			netif_stop_queue(netdev);
       
  4024 		}
       
  4025 	}
       
  4026 	adapter->total_tx_bytes += total_tx_bytes;
       
  4027 	adapter->total_tx_packets += total_tx_packets;
       
  4028 	adapter->net_stats.tx_bytes += total_tx_bytes;
       
  4029 	adapter->net_stats.tx_packets += total_tx_packets;
       
  4030 	return cleaned;
       
  4031 }
       
  4032 
       
  4033 /**
       
  4034  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  4035  * @adapter:     board private structure
       
  4036  * @status_err:  receive descriptor status and error fields
       
  4037  * @csum:        receive descriptor csum field
       
  4038  * @sk_buff:     socket buffer with received data
       
  4039  **/
       
  4040 
       
  4041 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
  4042 			      u32 csum, struct sk_buff *skb)
       
  4043 {
       
  4044 	struct e1000_hw *hw = &adapter->hw;
       
  4045 	u16 status = (u16)status_err;
       
  4046 	u8 errors = (u8)(status_err >> 24);
       
  4047 	skb->ip_summed = CHECKSUM_NONE;
       
  4048 
       
  4049 	/* 82543 or newer only */
       
  4050 	if (unlikely(hw->mac_type < e1000_82543)) return;
       
  4051 	/* Ignore Checksum bit is set */
       
  4052 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  4053 	/* TCP/UDP checksum error bit is set */
       
  4054 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  4055 		/* let the stack verify checksum errors */
       
  4056 		adapter->hw_csum_err++;
       
  4057 		return;
       
  4058 	}
       
  4059 	/* TCP/UDP Checksum has not been calculated */
       
  4060 	if (hw->mac_type <= e1000_82547_rev_2) {
       
  4061 		if (!(status & E1000_RXD_STAT_TCPCS))
       
  4062 			return;
       
  4063 	} else {
       
  4064 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
  4065 			return;
       
  4066 	}
       
  4067 	/* It must be a TCP or UDP packet with a valid checksum */
       
  4068 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  4069 		/* TCP checksum is good */
       
  4070 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  4071 	} else if (hw->mac_type > e1000_82547_rev_2) {
       
  4072 		/* IP fragment with UDP payload */
       
  4073 		/* Hardware complements the payload checksum, so we undo it
       
  4074 		 * and then put the value in host order for further stack use.
       
  4075 		 */
       
  4076 		__sum16 sum = (__force __sum16)htons(csum);
       
  4077 		skb->csum = csum_unfold(~sum);
       
  4078 		skb->ip_summed = CHECKSUM_COMPLETE;
       
  4079 	}
       
  4080 	adapter->hw_csum_good++;
       
  4081 }
       
  4082 
       
  4083 /**
       
  4084  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  4085  * @adapter: board private structure
       
  4086  **/
       
  4087 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  4088 			       struct e1000_rx_ring *rx_ring,
       
  4089 			       int *work_done, int work_to_do)
       
  4090 {
       
  4091 	struct e1000_hw *hw = &adapter->hw;
       
  4092 	struct net_device *netdev = adapter->netdev;
       
  4093 	struct pci_dev *pdev = adapter->pdev;
       
  4094 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  4095 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4096 	unsigned long flags;
       
  4097 	u32 length;
       
  4098 	u8 last_byte;
       
  4099 	unsigned int i;
       
  4100 	int cleaned_count = 0;
       
  4101 	bool cleaned = false;
       
  4102 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4103 
       
  4104 	i = rx_ring->next_to_clean;
       
  4105 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4106 	buffer_info = &rx_ring->buffer_info[i];
       
  4107 
       
  4108 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  4109 		struct sk_buff *skb;
       
  4110 		u8 status;
       
  4111 
       
  4112 		if (*work_done >= work_to_do)
       
  4113 			break;
       
  4114 		(*work_done)++;
       
  4115 
       
  4116 		status = rx_desc->status;
       
  4117 		skb = buffer_info->skb;
       
  4118 		buffer_info->skb = NULL;
       
  4119 
       
  4120 		prefetch(skb->data - NET_IP_ALIGN);
       
  4121 
       
  4122 		if (++i == rx_ring->count) i = 0;
       
  4123 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  4124 		prefetch(next_rxd);
       
  4125 
       
  4126 		next_buffer = &rx_ring->buffer_info[i];
       
  4127 
       
  4128 		cleaned = true;
       
  4129 		cleaned_count++;
       
  4130 		pci_unmap_single(pdev,
       
  4131 		                 buffer_info->dma,
       
  4132 		                 buffer_info->length,
       
  4133 		                 PCI_DMA_FROMDEVICE);
       
  4134 
       
  4135 		length = le16_to_cpu(rx_desc->length);
       
  4136 		/* !EOP means multiple descriptors were used to store a single
       
  4137 		 * packet, if thats the case we need to toss it.  In fact, we
       
  4138 		 * to toss every packet with the EOP bit clear and the next
       
  4139 		 * frame that _does_ have the EOP bit set, as it is by
       
  4140 		 * definition only a frame fragment
       
  4141 		 */
       
  4142 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
       
  4143 			set_bit(__E1000_DISCARDING, &adapter->flags);
       
  4144 
       
  4145 		if (test_bit(__E1000_DISCARDING, &adapter->flags)) {
       
  4146 			/* All receives must fit into a single buffer */
       
  4147 			E1000_DBG("%s: Receive packet consumed multiple"
       
  4148 				  " buffers\n", netdev->name);
       
  4149 			/* recycle */
       
  4150 			buffer_info->skb = skb;
       
  4151 			if (status & E1000_RXD_STAT_EOP)
       
  4152 				clear_bit(__E1000_DISCARDING, &adapter->flags);
       
  4153 			goto next_desc;
       
  4154 		}
       
  4155 
       
  4156 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  4157 			last_byte = *(skb->data + length - 1);
       
  4158 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
       
  4159 				       last_byte)) {
       
  4160 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4161 				e1000_tbi_adjust_stats(hw, &adapter->stats,
       
  4162 				                       length, skb->data);
       
  4163 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  4164 				                       flags);
       
  4165 				length--;
       
  4166 			} else {
       
  4167 				/* recycle */
       
  4168 				buffer_info->skb = skb;
       
  4169 				goto next_desc;
       
  4170 			}
       
  4171 		}
       
  4172 
       
  4173 		/* adjust length to remove Ethernet CRC, this must be
       
  4174 		 * done after the TBI_ACCEPT workaround above */
       
  4175 		length -= 4;
       
  4176 
       
  4177 		/* probably a little skewed due to removing CRC */
       
  4178 		total_rx_bytes += length;
       
  4179 		total_rx_packets++;
       
  4180 
       
  4181 		/* code added for copybreak, this should improve
       
  4182 		 * performance for small packets with large amounts
       
  4183 		 * of reassembly being done in the stack */
       
  4184 		if (length < copybreak) {
       
  4185 			struct sk_buff *new_skb =
       
  4186 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
       
  4187 			if (new_skb) {
       
  4188 				skb_reserve(new_skb, NET_IP_ALIGN);
       
  4189 				skb_copy_to_linear_data_offset(new_skb,
       
  4190 							       -NET_IP_ALIGN,
       
  4191 							       (skb->data -
       
  4192 							        NET_IP_ALIGN),
       
  4193 							       (length +
       
  4194 							        NET_IP_ALIGN));
       
  4195 				/* save the skb in buffer_info as good */
       
  4196 				buffer_info->skb = skb;
       
  4197 				skb = new_skb;
       
  4198 			}
       
  4199 			/* else just continue with the old one */
       
  4200 		}
       
  4201 		/* end copybreak code */
       
  4202 		skb_put(skb, length);
       
  4203 
       
  4204 		/* Receive Checksum Offload */
       
  4205 		e1000_rx_checksum(adapter,
       
  4206 				  (u32)(status) |
       
  4207 				  ((u32)(rx_desc->errors) << 24),
       
  4208 				  le16_to_cpu(rx_desc->csum), skb);
       
  4209 
       
  4210 		skb->protocol = eth_type_trans(skb, netdev);
       
  4211 
       
  4212 		if (unlikely(adapter->vlgrp &&
       
  4213 			    (status & E1000_RXD_STAT_VP))) {
       
  4214 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  4215 						 le16_to_cpu(rx_desc->special));
       
  4216 		} else {
       
  4217 			netif_receive_skb(skb);
       
  4218 		}
       
  4219 
       
  4220 		netdev->last_rx = jiffies;
       
  4221 
       
  4222 next_desc:
       
  4223 		rx_desc->status = 0;
       
  4224 
       
  4225 		/* return some buffers to hardware, one at a time is too slow */
       
  4226 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4227 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4228 			cleaned_count = 0;
       
  4229 		}
       
  4230 
       
  4231 		/* use prefetched values */
       
  4232 		rx_desc = next_rxd;
       
  4233 		buffer_info = next_buffer;
       
  4234 	}
       
  4235 	rx_ring->next_to_clean = i;
       
  4236 
       
  4237 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4238 	if (cleaned_count)
       
  4239 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4240 
       
  4241 	adapter->total_rx_packets += total_rx_packets;
       
  4242 	adapter->total_rx_bytes += total_rx_bytes;
       
  4243 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
  4244 	adapter->net_stats.rx_packets += total_rx_packets;
       
  4245 	return cleaned;
       
  4246 }
       
  4247 
       
  4248 /**
       
  4249  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  4250  * @adapter: board private structure
       
  4251  **/
       
  4252 
       
  4253 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  4254 				  struct e1000_rx_ring *rx_ring,
       
  4255 				  int *work_done, int work_to_do)
       
  4256 {
       
  4257 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
  4258 	struct net_device *netdev = adapter->netdev;
       
  4259 	struct pci_dev *pdev = adapter->pdev;
       
  4260 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4261 	struct e1000_ps_page *ps_page;
       
  4262 	struct e1000_ps_page_dma *ps_page_dma;
       
  4263 	struct sk_buff *skb;
       
  4264 	unsigned int i, j;
       
  4265 	u32 length, staterr;
       
  4266 	int cleaned_count = 0;
       
  4267 	bool cleaned = false;
       
  4268 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4269 
       
  4270 	i = rx_ring->next_to_clean;
       
  4271 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4272 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  4273 	buffer_info = &rx_ring->buffer_info[i];
       
  4274 
       
  4275 	while (staterr & E1000_RXD_STAT_DD) {
       
  4276 		ps_page = &rx_ring->ps_page[i];
       
  4277 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4278 
       
  4279 		if (unlikely(*work_done >= work_to_do))
       
  4280 			break;
       
  4281 		(*work_done)++;
       
  4282 
       
  4283 		skb = buffer_info->skb;
       
  4284 
       
  4285 		/* in the packet split case this is header only */
       
  4286 		prefetch(skb->data - NET_IP_ALIGN);
       
  4287 
       
  4288 		if (++i == rx_ring->count) i = 0;
       
  4289 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
  4290 		prefetch(next_rxd);
       
  4291 
       
  4292 		next_buffer = &rx_ring->buffer_info[i];
       
  4293 
       
  4294 		cleaned = true;
       
  4295 		cleaned_count++;
       
  4296 		pci_unmap_single(pdev, buffer_info->dma,
       
  4297 				 buffer_info->length,
       
  4298 				 PCI_DMA_FROMDEVICE);
       
  4299 
       
  4300 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
       
  4301 			E1000_DBG("%s: Packet Split buffers didn't pick up"
       
  4302 				  " the full packet\n", netdev->name);
       
  4303 			dev_kfree_skb_irq(skb);
       
  4304 			goto next_desc;
       
  4305 		}
       
  4306 
       
  4307 		if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
       
  4308 			dev_kfree_skb_irq(skb);
       
  4309 			goto next_desc;
       
  4310 		}
       
  4311 
       
  4312 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  4313 
       
  4314 		if (unlikely(!length)) {
       
  4315 			E1000_DBG("%s: Last part of the packet spanning"
       
  4316 				  " multiple descriptors\n", netdev->name);
       
  4317 			dev_kfree_skb_irq(skb);
       
  4318 			goto next_desc;
       
  4319 		}
       
  4320 
       
  4321 		/* Good Receive */
       
  4322 		skb_put(skb, length);
       
  4323 
       
  4324 		{
       
  4325 		/* this looks ugly, but it seems compiler issues make it
       
  4326 		   more efficient than reusing j */
       
  4327 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
  4328 
       
  4329 		/* page alloc/put takes too long and effects small packet
       
  4330 		 * throughput, so unsplit small packets and save the alloc/put*/
       
  4331 		if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
       
  4332 			u8 *vaddr;
       
  4333 			/* there is no documentation about how to call
       
  4334 			 * kmap_atomic, so we can't hold the mapping
       
  4335 			 * very long */
       
  4336 			pci_dma_sync_single_for_cpu(pdev,
       
  4337 				ps_page_dma->ps_page_dma[0],
       
  4338 				PAGE_SIZE,
       
  4339 				PCI_DMA_FROMDEVICE);
       
  4340 			vaddr = kmap_atomic(ps_page->ps_page[0],
       
  4341 			                    KM_SKB_DATA_SOFTIRQ);
       
  4342 			memcpy(skb_tail_pointer(skb), vaddr, l1);
       
  4343 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
  4344 			pci_dma_sync_single_for_device(pdev,
       
  4345 				ps_page_dma->ps_page_dma[0],
       
  4346 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  4347 			/* remove the CRC */
       
  4348 			l1 -= 4;
       
  4349 			skb_put(skb, l1);
       
  4350 			goto copydone;
       
  4351 		} /* if */
       
  4352 		}
       
  4353 
       
  4354 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  4355 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
       
  4356 			if (!length)
       
  4357 				break;
       
  4358 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
       
  4359 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  4360 			ps_page_dma->ps_page_dma[j] = 0;
       
  4361 			skb_add_rx_frag(skb, j, ps_page->ps_page[j], 0, length);
       
  4362 			ps_page->ps_page[j] = NULL;
       
  4363 		}
       
  4364 
       
  4365 		/* strip the ethernet crc, problem is we're using pages now so
       
  4366 		 * this whole operation can get a little cpu intensive */
       
  4367 		pskb_trim(skb, skb->len - 4);
       
  4368 
       
  4369 copydone:
       
  4370 		total_rx_bytes += skb->len;
       
  4371 		total_rx_packets++;
       
  4372 
       
  4373 		e1000_rx_checksum(adapter, staterr,
       
  4374 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
  4375 		skb->protocol = eth_type_trans(skb, netdev);
       
  4376 
       
  4377 		if (likely(rx_desc->wb.upper.header_status &
       
  4378 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
       
  4379 			adapter->rx_hdr_split++;
       
  4380 
       
  4381 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  4382 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  4383 				le16_to_cpu(rx_desc->wb.middle.vlan));
       
  4384 		} else {
       
  4385 			netif_receive_skb(skb);
       
  4386 		}
       
  4387 
       
  4388 		netdev->last_rx = jiffies;
       
  4389 
       
  4390 next_desc:
       
  4391 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
  4392 		buffer_info->skb = NULL;
       
  4393 
       
  4394 		/* return some buffers to hardware, one at a time is too slow */
       
  4395 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4396 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4397 			cleaned_count = 0;
       
  4398 		}
       
  4399 
       
  4400 		/* use prefetched values */
       
  4401 		rx_desc = next_rxd;
       
  4402 		buffer_info = next_buffer;
       
  4403 
       
  4404 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  4405 	}
       
  4406 	rx_ring->next_to_clean = i;
       
  4407 
       
  4408 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4409 	if (cleaned_count)
       
  4410 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4411 
       
  4412 	adapter->total_rx_packets += total_rx_packets;
       
  4413 	adapter->total_rx_bytes += total_rx_bytes;
       
  4414 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
  4415 	adapter->net_stats.rx_packets += total_rx_packets;
       
  4416 	return cleaned;
       
  4417 }
       
  4418 
       
  4419 /**
       
  4420  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  4421  * @adapter: address of board private structure
       
  4422  **/
       
  4423 
       
  4424 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  4425 				   struct e1000_rx_ring *rx_ring,
       
  4426 				   int cleaned_count)
       
  4427 {
       
  4428 	struct e1000_hw *hw = &adapter->hw;
       
  4429 	struct net_device *netdev = adapter->netdev;
       
  4430 	struct pci_dev *pdev = adapter->pdev;
       
  4431 	struct e1000_rx_desc *rx_desc;
       
  4432 	struct e1000_buffer *buffer_info;
       
  4433 	struct sk_buff *skb;
       
  4434 	unsigned int i;
       
  4435 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
  4436 
       
  4437 	i = rx_ring->next_to_use;
       
  4438 	buffer_info = &rx_ring->buffer_info[i];
       
  4439 
       
  4440 	while (cleaned_count--) {
       
  4441 		skb = buffer_info->skb;
       
  4442 		if (skb) {
       
  4443 			skb_trim(skb, 0);
       
  4444 			goto map_skb;
       
  4445 		}
       
  4446 
       
  4447 		skb = netdev_alloc_skb(netdev, bufsz);
       
  4448 		if (unlikely(!skb)) {
       
  4449 			/* Better luck next round */
       
  4450 			adapter->alloc_rx_buff_failed++;
       
  4451 			break;
       
  4452 		}
       
  4453 
       
  4454 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4455 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4456 			struct sk_buff *oldskb = skb;
       
  4457 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
       
  4458 					     "at %p\n", bufsz, skb->data);
       
  4459 			/* Try again, without freeing the previous */
       
  4460 			skb = netdev_alloc_skb(netdev, bufsz);
       
  4461 			/* Failed allocation, critical failure */
       
  4462 			if (!skb) {
       
  4463 				dev_kfree_skb(oldskb);
       
  4464 				break;
       
  4465 			}
       
  4466 
       
  4467 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4468 				/* give up */
       
  4469 				dev_kfree_skb(skb);
       
  4470 				dev_kfree_skb(oldskb);
       
  4471 				break; /* while !buffer_info->skb */
       
  4472 			}
       
  4473 
       
  4474 			/* Use new allocation */
       
  4475 			dev_kfree_skb(oldskb);
       
  4476 		}
       
  4477 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4478 		 * this will result in a 16 byte aligned IP header after
       
  4479 		 * the 14 byte MAC header is removed
       
  4480 		 */
       
  4481 		skb_reserve(skb, NET_IP_ALIGN);
       
  4482 
       
  4483 		buffer_info->skb = skb;
       
  4484 		buffer_info->length = adapter->rx_buffer_len;
       
  4485 map_skb:
       
  4486 		buffer_info->dma = pci_map_single(pdev,
       
  4487 						  skb->data,
       
  4488 						  adapter->rx_buffer_len,
       
  4489 						  PCI_DMA_FROMDEVICE);
       
  4490 
       
  4491 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4492 		if (!e1000_check_64k_bound(adapter,
       
  4493 					(void *)(unsigned long)buffer_info->dma,
       
  4494 					adapter->rx_buffer_len)) {
       
  4495 			DPRINTK(RX_ERR, ERR,
       
  4496 				"dma align check failed: %u bytes at %p\n",
       
  4497 				adapter->rx_buffer_len,
       
  4498 				(void *)(unsigned long)buffer_info->dma);
       
  4499 			dev_kfree_skb(skb);
       
  4500 			buffer_info->skb = NULL;
       
  4501 
       
  4502 			pci_unmap_single(pdev, buffer_info->dma,
       
  4503 					 adapter->rx_buffer_len,
       
  4504 					 PCI_DMA_FROMDEVICE);
       
  4505 
       
  4506 			break; /* while !buffer_info->skb */
       
  4507 		}
       
  4508 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4509 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4510 
       
  4511 		if (unlikely(++i == rx_ring->count))
       
  4512 			i = 0;
       
  4513 		buffer_info = &rx_ring->buffer_info[i];
       
  4514 	}
       
  4515 
       
  4516 	if (likely(rx_ring->next_to_use != i)) {
       
  4517 		rx_ring->next_to_use = i;
       
  4518 		if (unlikely(i-- == 0))
       
  4519 			i = (rx_ring->count - 1);
       
  4520 
       
  4521 		/* Force memory writes to complete before letting h/w
       
  4522 		 * know there are new descriptors to fetch.  (Only
       
  4523 		 * applicable for weak-ordered memory model archs,
       
  4524 		 * such as IA-64). */
       
  4525 		wmb();
       
  4526 		writel(i, hw->hw_addr + rx_ring->rdt);
       
  4527 	}
       
  4528 }
       
  4529 
       
  4530 /**
       
  4531  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
  4532  * @adapter: address of board private structure
       
  4533  **/
       
  4534 
       
  4535 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
  4536 				      struct e1000_rx_ring *rx_ring,
       
  4537 				      int cleaned_count)
       
  4538 {
       
  4539 	struct e1000_hw *hw = &adapter->hw;
       
  4540 	struct net_device *netdev = adapter->netdev;
       
  4541 	struct pci_dev *pdev = adapter->pdev;
       
  4542 	union e1000_rx_desc_packet_split *rx_desc;
       
  4543 	struct e1000_buffer *buffer_info;
       
  4544 	struct e1000_ps_page *ps_page;
       
  4545 	struct e1000_ps_page_dma *ps_page_dma;
       
  4546 	struct sk_buff *skb;
       
  4547 	unsigned int i, j;
       
  4548 
       
  4549 	i = rx_ring->next_to_use;
       
  4550 	buffer_info = &rx_ring->buffer_info[i];
       
  4551 	ps_page = &rx_ring->ps_page[i];
       
  4552 	ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4553 
       
  4554 	while (cleaned_count--) {
       
  4555 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4556 
       
  4557 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  4558 			if (j < adapter->rx_ps_pages) {
       
  4559 				if (likely(!ps_page->ps_page[j])) {
       
  4560 					ps_page->ps_page[j] =
       
  4561 						netdev_alloc_page(netdev);
       
  4562 					if (unlikely(!ps_page->ps_page[j])) {
       
  4563 						adapter->alloc_rx_buff_failed++;
       
  4564 						goto no_buffers;
       
  4565 					}
       
  4566 					ps_page_dma->ps_page_dma[j] =
       
  4567 						pci_map_page(pdev,
       
  4568 							    ps_page->ps_page[j],
       
  4569 							    0, PAGE_SIZE,
       
  4570 							    PCI_DMA_FROMDEVICE);
       
  4571 				}
       
  4572 				/* Refresh the desc even if buffer_addrs didn't
       
  4573 				 * change because each write-back erases
       
  4574 				 * this info.
       
  4575 				 */
       
  4576 				rx_desc->read.buffer_addr[j+1] =
       
  4577 				     cpu_to_le64(ps_page_dma->ps_page_dma[j]);
       
  4578 			} else
       
  4579 				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
       
  4580 		}
       
  4581 
       
  4582 		skb = netdev_alloc_skb(netdev,
       
  4583 		                       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
       
  4584 
       
  4585 		if (unlikely(!skb)) {
       
  4586 			adapter->alloc_rx_buff_failed++;
       
  4587 			break;
       
  4588 		}
       
  4589 
       
  4590 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4591 		 * this will result in a 16 byte aligned IP header after
       
  4592 		 * the 14 byte MAC header is removed
       
  4593 		 */
       
  4594 		skb_reserve(skb, NET_IP_ALIGN);
       
  4595 
       
  4596 		buffer_info->skb = skb;
       
  4597 		buffer_info->length = adapter->rx_ps_bsize0;
       
  4598 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
  4599 						  adapter->rx_ps_bsize0,
       
  4600 						  PCI_DMA_FROMDEVICE);
       
  4601 
       
  4602 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
  4603 
       
  4604 		if (unlikely(++i == rx_ring->count)) i = 0;
       
  4605 		buffer_info = &rx_ring->buffer_info[i];
       
  4606 		ps_page = &rx_ring->ps_page[i];
       
  4607 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4608 	}
       
  4609 
       
  4610 no_buffers:
       
  4611 	if (likely(rx_ring->next_to_use != i)) {
       
  4612 		rx_ring->next_to_use = i;
       
  4613 		if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
       
  4614 
       
  4615 		/* Force memory writes to complete before letting h/w
       
  4616 		 * know there are new descriptors to fetch.  (Only
       
  4617 		 * applicable for weak-ordered memory model archs,
       
  4618 		 * such as IA-64). */
       
  4619 		wmb();
       
  4620 		/* Hardware increments by 16 bytes, but packet split
       
  4621 		 * descriptors are 32 bytes...so we increment tail
       
  4622 		 * twice as much.
       
  4623 		 */
       
  4624 		writel(i<<1, hw->hw_addr + rx_ring->rdt);
       
  4625 	}
       
  4626 }
       
  4627 
       
  4628 /**
       
  4629  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4630  * @adapter:
       
  4631  **/
       
  4632 
       
  4633 static void e1000_smartspeed(struct e1000_adapter *adapter)
       
  4634 {
       
  4635 	struct e1000_hw *hw = &adapter->hw;
       
  4636 	u16 phy_status;
       
  4637 	u16 phy_ctrl;
       
  4638 
       
  4639 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
       
  4640 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
       
  4641 		return;
       
  4642 
       
  4643 	if (adapter->smartspeed == 0) {
       
  4644 		/* If Master/Slave config fault is asserted twice,
       
  4645 		 * we assume back-to-back */
       
  4646 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4647 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4648 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4649 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4650 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4651 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4652 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4653 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
       
  4654 					    phy_ctrl);
       
  4655 			adapter->smartspeed++;
       
  4656 			if (!e1000_phy_setup_autoneg(hw) &&
       
  4657 			   !e1000_read_phy_reg(hw, PHY_CTRL,
       
  4658 				   	       &phy_ctrl)) {
       
  4659 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4660 					     MII_CR_RESTART_AUTO_NEG);
       
  4661 				e1000_write_phy_reg(hw, PHY_CTRL,
       
  4662 						    phy_ctrl);
       
  4663 			}
       
  4664 		}
       
  4665 		return;
       
  4666 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4667 		/* If still no link, perhaps using 2/3 pair cable */
       
  4668 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4669 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4670 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
       
  4671 		if (!e1000_phy_setup_autoneg(hw) &&
       
  4672 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
       
  4673 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4674 				     MII_CR_RESTART_AUTO_NEG);
       
  4675 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
       
  4676 		}
       
  4677 	}
       
  4678 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4679 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4680 		adapter->smartspeed = 0;
       
  4681 }
       
  4682 
       
  4683 /**
       
  4684  * e1000_ioctl -
       
  4685  * @netdev:
       
  4686  * @ifreq:
       
  4687  * @cmd:
       
  4688  **/
       
  4689 
       
  4690 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4691 {
       
  4692 	switch (cmd) {
       
  4693 	case SIOCGMIIPHY:
       
  4694 	case SIOCGMIIREG:
       
  4695 	case SIOCSMIIREG:
       
  4696 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4697 	default:
       
  4698 		return -EOPNOTSUPP;
       
  4699 	}
       
  4700 }
       
  4701 
       
  4702 /**
       
  4703  * e1000_mii_ioctl -
       
  4704  * @netdev:
       
  4705  * @ifreq:
       
  4706  * @cmd:
       
  4707  **/
       
  4708 
       
  4709 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  4710 			   int cmd)
       
  4711 {
       
  4712 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4713 	struct e1000_hw *hw = &adapter->hw;
       
  4714 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4715 	int retval;
       
  4716 	u16 mii_reg;
       
  4717 	u16 spddplx;
       
  4718 	unsigned long flags;
       
  4719 
       
  4720 	if (hw->media_type != e1000_media_type_copper)
       
  4721 		return -EOPNOTSUPP;
       
  4722 
       
  4723 	switch (cmd) {
       
  4724 	case SIOCGMIIPHY:
       
  4725 		data->phy_id = hw->phy_addr;
       
  4726 		break;
       
  4727 	case SIOCGMIIREG:
       
  4728 		if (!capable(CAP_NET_ADMIN))
       
  4729 			return -EPERM;
       
  4730 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4731 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
       
  4732 				   &data->val_out)) {
       
  4733 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4734 			return -EIO;
       
  4735 		}
       
  4736 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4737 		break;
       
  4738 	case SIOCSMIIREG:
       
  4739 		if (!capable(CAP_NET_ADMIN))
       
  4740 			return -EPERM;
       
  4741 		if (data->reg_num & ~(0x1F))
       
  4742 			return -EFAULT;
       
  4743 		mii_reg = data->val_in;
       
  4744 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4745 		if (e1000_write_phy_reg(hw, data->reg_num,
       
  4746 					mii_reg)) {
       
  4747 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4748 			return -EIO;
       
  4749 		}
       
  4750 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4751 		if (hw->media_type == e1000_media_type_copper) {
       
  4752 			switch (data->reg_num) {
       
  4753 			case PHY_CTRL:
       
  4754 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4755 					break;
       
  4756 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4757 					hw->autoneg = 1;
       
  4758 					hw->autoneg_advertised = 0x2F;
       
  4759 				} else {
       
  4760 					if (mii_reg & 0x40)
       
  4761 						spddplx = SPEED_1000;
       
  4762 					else if (mii_reg & 0x2000)
       
  4763 						spddplx = SPEED_100;
       
  4764 					else
       
  4765 						spddplx = SPEED_10;
       
  4766 					spddplx += (mii_reg & 0x100)
       
  4767 						   ? DUPLEX_FULL :
       
  4768 						   DUPLEX_HALF;
       
  4769 					retval = e1000_set_spd_dplx(adapter,
       
  4770 								    spddplx);
       
  4771 					if (retval)
       
  4772 						return retval;
       
  4773 				}
       
  4774 				if (netif_running(adapter->netdev))
       
  4775 					e1000_reinit_locked(adapter);
       
  4776 				else
       
  4777 					e1000_reset(adapter);
       
  4778 				break;
       
  4779 			case M88E1000_PHY_SPEC_CTRL:
       
  4780 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4781 				if (e1000_phy_reset(hw))
       
  4782 					return -EIO;
       
  4783 				break;
       
  4784 			}
       
  4785 		} else {
       
  4786 			switch (data->reg_num) {
       
  4787 			case PHY_CTRL:
       
  4788 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4789 					break;
       
  4790 				if (netif_running(adapter->netdev))
       
  4791 					e1000_reinit_locked(adapter);
       
  4792 				else
       
  4793 					e1000_reset(adapter);
       
  4794 				break;
       
  4795 			}
       
  4796 		}
       
  4797 		break;
       
  4798 	default:
       
  4799 		return -EOPNOTSUPP;
       
  4800 	}
       
  4801 	return E1000_SUCCESS;
       
  4802 }
       
  4803 
       
  4804 void e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4805 {
       
  4806 	struct e1000_adapter *adapter = hw->back;
       
  4807 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4808 
       
  4809 	if (ret_val)
       
  4810 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
       
  4811 }
       
  4812 
       
  4813 void e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4814 {
       
  4815 	struct e1000_adapter *adapter = hw->back;
       
  4816 
       
  4817 	pci_clear_mwi(adapter->pdev);
       
  4818 }
       
  4819 
       
  4820 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
       
  4821 {
       
  4822 	struct e1000_adapter *adapter = hw->back;
       
  4823 	return pcix_get_mmrbc(adapter->pdev);
       
  4824 }
       
  4825 
       
  4826 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
       
  4827 {
       
  4828 	struct e1000_adapter *adapter = hw->back;
       
  4829 	pcix_set_mmrbc(adapter->pdev, mmrbc);
       
  4830 }
       
  4831 
       
  4832 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
       
  4833 {
       
  4834     struct e1000_adapter *adapter = hw->back;
       
  4835     u16 cap_offset;
       
  4836 
       
  4837     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
  4838     if (!cap_offset)
       
  4839         return -E1000_ERR_CONFIG;
       
  4840 
       
  4841     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
       
  4842 
       
  4843     return E1000_SUCCESS;
       
  4844 }
       
  4845 
       
  4846 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
       
  4847 {
       
  4848 	outl(value, port);
       
  4849 }
       
  4850 
       
  4851 static void e1000_vlan_rx_register(struct net_device *netdev,
       
  4852 				   struct vlan_group *grp)
       
  4853 {
       
  4854 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4855 	struct e1000_hw *hw = &adapter->hw;
       
  4856 	u32 ctrl, rctl;
       
  4857 
       
  4858 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4859 		e1000_irq_disable(adapter);
       
  4860 	adapter->vlgrp = grp;
       
  4861 
       
  4862 	if (grp) {
       
  4863 		/* enable VLAN tag insert/strip */
       
  4864 		ctrl = er32(CTRL);
       
  4865 		ctrl |= E1000_CTRL_VME;
       
  4866 		ew32(CTRL, ctrl);
       
  4867 
       
  4868 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4869 			/* enable VLAN receive filtering */
       
  4870 			rctl = er32(RCTL);
       
  4871 			rctl &= ~E1000_RCTL_CFIEN;
       
  4872 			ew32(RCTL, rctl);
       
  4873 			e1000_update_mng_vlan(adapter);
       
  4874 		}
       
  4875 	} else {
       
  4876 		/* disable VLAN tag insert/strip */
       
  4877 		ctrl = er32(CTRL);
       
  4878 		ctrl &= ~E1000_CTRL_VME;
       
  4879 		ew32(CTRL, ctrl);
       
  4880 
       
  4881 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4882 			if (adapter->mng_vlan_id !=
       
  4883 			    (u16)E1000_MNG_VLAN_NONE) {
       
  4884 				e1000_vlan_rx_kill_vid(netdev,
       
  4885 				                       adapter->mng_vlan_id);
       
  4886 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  4887 			}
       
  4888 		}
       
  4889 	}
       
  4890 
       
  4891 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4892 		e1000_irq_enable(adapter);
       
  4893 }
       
  4894 
       
  4895 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  4896 {
       
  4897 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4898 	struct e1000_hw *hw = &adapter->hw;
       
  4899 	u32 vfta, index;
       
  4900 
       
  4901 	if ((hw->mng_cookie.status &
       
  4902 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4903 	    (vid == adapter->mng_vlan_id))
       
  4904 		return;
       
  4905 	/* add VID to filter table */
       
  4906 	index = (vid >> 5) & 0x7F;
       
  4907 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4908 	vfta |= (1 << (vid & 0x1F));
       
  4909 	e1000_write_vfta(hw, index, vfta);
       
  4910 }
       
  4911 
       
  4912 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  4913 {
       
  4914 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4915 	struct e1000_hw *hw = &adapter->hw;
       
  4916 	u32 vfta, index;
       
  4917 
       
  4918 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4919 		e1000_irq_disable(adapter);
       
  4920 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  4921 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4922 		e1000_irq_enable(adapter);
       
  4923 
       
  4924 	if ((hw->mng_cookie.status &
       
  4925 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4926 	    (vid == adapter->mng_vlan_id)) {
       
  4927 		/* release control to f/w */
       
  4928 		e1000_release_hw_control(adapter);
       
  4929 		return;
       
  4930 	}
       
  4931 
       
  4932 	/* remove VID from filter table */
       
  4933 	index = (vid >> 5) & 0x7F;
       
  4934 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4935 	vfta &= ~(1 << (vid & 0x1F));
       
  4936 	e1000_write_vfta(hw, index, vfta);
       
  4937 }
       
  4938 
       
  4939 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  4940 {
       
  4941 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  4942 
       
  4943 	if (adapter->vlgrp) {
       
  4944 		u16 vid;
       
  4945 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  4946 			if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  4947 				continue;
       
  4948 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  4949 		}
       
  4950 	}
       
  4951 }
       
  4952 
       
  4953 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
       
  4954 {
       
  4955 	struct e1000_hw *hw = &adapter->hw;
       
  4956 
       
  4957 	hw->autoneg = 0;
       
  4958 
       
  4959 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  4960 	if ((hw->media_type == e1000_media_type_fiber) &&
       
  4961 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  4962 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4963 		return -EINVAL;
       
  4964 	}
       
  4965 
       
  4966 	switch (spddplx) {
       
  4967 	case SPEED_10 + DUPLEX_HALF:
       
  4968 		hw->forced_speed_duplex = e1000_10_half;
       
  4969 		break;
       
  4970 	case SPEED_10 + DUPLEX_FULL:
       
  4971 		hw->forced_speed_duplex = e1000_10_full;
       
  4972 		break;
       
  4973 	case SPEED_100 + DUPLEX_HALF:
       
  4974 		hw->forced_speed_duplex = e1000_100_half;
       
  4975 		break;
       
  4976 	case SPEED_100 + DUPLEX_FULL:
       
  4977 		hw->forced_speed_duplex = e1000_100_full;
       
  4978 		break;
       
  4979 	case SPEED_1000 + DUPLEX_FULL:
       
  4980 		hw->autoneg = 1;
       
  4981 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
       
  4982 		break;
       
  4983 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  4984 	default:
       
  4985 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4986 		return -EINVAL;
       
  4987 	}
       
  4988 	return 0;
       
  4989 }
       
  4990 
       
  4991 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  4992 {
       
  4993 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4994 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4995 	struct e1000_hw *hw = &adapter->hw;
       
  4996 	u32 ctrl, ctrl_ext, rctl, status;
       
  4997 	u32 wufc = adapter->wol;
       
  4998 #ifdef CONFIG_PM
       
  4999 	int retval = 0;
       
  5000 #endif
       
  5001 
       
  5002 	netif_device_detach(netdev);
       
  5003 
       
  5004 	if (netif_running(netdev)) {
       
  5005 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  5006 		e1000_down(adapter);
       
  5007 	}
       
  5008 
       
  5009 #ifdef CONFIG_PM
       
  5010 	retval = pci_save_state(pdev);
       
  5011 	if (retval)
       
  5012 		return retval;
       
  5013 #endif
       
  5014 
       
  5015 	status = er32(STATUS);
       
  5016 	if (status & E1000_STATUS_LU)
       
  5017 		wufc &= ~E1000_WUFC_LNKC;
       
  5018 
       
  5019 	if (wufc) {
       
  5020 		e1000_setup_rctl(adapter);
       
  5021 		e1000_set_rx_mode(netdev);
       
  5022 
       
  5023 		/* turn on all-multi mode if wake on multicast is enabled */
       
  5024 		if (wufc & E1000_WUFC_MC) {
       
  5025 			rctl = er32(RCTL);
       
  5026 			rctl |= E1000_RCTL_MPE;
       
  5027 			ew32(RCTL, rctl);
       
  5028 		}
       
  5029 
       
  5030 		if (hw->mac_type >= e1000_82540) {
       
  5031 			ctrl = er32(CTRL);
       
  5032 			/* advertise wake from D3Cold */
       
  5033 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  5034 			/* phy power management enable */
       
  5035 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  5036 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  5037 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  5038 			ew32(CTRL, ctrl);
       
  5039 		}
       
  5040 
       
  5041 		if (hw->media_type == e1000_media_type_fiber ||
       
  5042 		   hw->media_type == e1000_media_type_internal_serdes) {
       
  5043 			/* keep the laser running in D3 */
       
  5044 			ctrl_ext = er32(CTRL_EXT);
       
  5045 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  5046 			ew32(CTRL_EXT, ctrl_ext);
       
  5047 		}
       
  5048 
       
  5049 		/* Allow time for pending master requests to run */
       
  5050 		e1000_disable_pciex_master(hw);
       
  5051 
       
  5052 		ew32(WUC, E1000_WUC_PME_EN);
       
  5053 		ew32(WUFC, wufc);
       
  5054 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  5055 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  5056 	} else {
       
  5057 		ew32(WUC, 0);
       
  5058 		ew32(WUFC, 0);
       
  5059 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5060 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5061 	}
       
  5062 
       
  5063 	e1000_release_manageability(adapter);
       
  5064 
       
  5065 	/* make sure adapter isn't asleep if manageability is enabled */
       
  5066 	if (adapter->en_mng_pt) {
       
  5067 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  5068 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  5069 	}
       
  5070 
       
  5071 	if (hw->phy_type == e1000_phy_igp_3)
       
  5072 		e1000_phy_powerdown_workaround(hw);
       
  5073 
       
  5074 	if (netif_running(netdev))
       
  5075 		e1000_free_irq(adapter);
       
  5076 
       
  5077 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  5078 	 * would have already happened in close and is redundant. */
       
  5079 	e1000_release_hw_control(adapter);
       
  5080 
       
  5081 	pci_disable_device(pdev);
       
  5082 
       
  5083 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
       
  5084 
       
  5085 	return 0;
       
  5086 }
       
  5087 
       
  5088 #ifdef CONFIG_PM
       
  5089 static int e1000_resume(struct pci_dev *pdev)
       
  5090 {
       
  5091 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5092 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5093 	struct e1000_hw *hw = &adapter->hw;
       
  5094 	u32 err;
       
  5095 
       
  5096 	pci_set_power_state(pdev, PCI_D0);
       
  5097 	pci_restore_state(pdev);
       
  5098 
       
  5099 	if (adapter->need_ioport)
       
  5100 		err = pci_enable_device(pdev);
       
  5101 	else
       
  5102 		err = pci_enable_device_mem(pdev);
       
  5103 	if (err) {
       
  5104 		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
       
  5105 		return err;
       
  5106 	}
       
  5107 	pci_set_master(pdev);
       
  5108 
       
  5109 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5110 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5111 
       
  5112 	if (netif_running(netdev)) {
       
  5113 		err = e1000_request_irq(adapter);
       
  5114 		if (err)
       
  5115 			return err;
       
  5116 	}
       
  5117 
       
  5118 	e1000_power_up_phy(adapter);
       
  5119 	e1000_reset(adapter);
       
  5120 	ew32(WUS, ~0);
       
  5121 
       
  5122 	e1000_init_manageability(adapter);
       
  5123 
       
  5124 	if (netif_running(netdev))
       
  5125 		e1000_up(adapter);
       
  5126 
       
  5127 	netif_device_attach(netdev);
       
  5128 
       
  5129 	/* If the controller is 82573 and f/w is AMT, do not set
       
  5130 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  5131 	 * let the f/w know that the h/w is now under the control
       
  5132 	 * of the driver. */
       
  5133 	if (hw->mac_type != e1000_82573 ||
       
  5134 	    !e1000_check_mng_mode(hw))
       
  5135 		e1000_get_hw_control(adapter);
       
  5136 
       
  5137 	return 0;
       
  5138 }
       
  5139 #endif
       
  5140 
       
  5141 static void e1000_shutdown(struct pci_dev *pdev)
       
  5142 {
       
  5143 	e1000_suspend(pdev, PMSG_SUSPEND);
       
  5144 }
       
  5145 
       
  5146 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5147 /*
       
  5148  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  5149  * without having to re-enable interrupts. It's not called while
       
  5150  * the interrupt routine is executing.
       
  5151  */
       
  5152 static void e1000_netpoll(struct net_device *netdev)
       
  5153 {
       
  5154 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5155 
       
  5156 	disable_irq(adapter->pdev->irq);
       
  5157 	e1000_intr(adapter->pdev->irq, netdev);
       
  5158 	enable_irq(adapter->pdev->irq);
       
  5159 }
       
  5160 #endif
       
  5161 
       
  5162 /**
       
  5163  * e1000_io_error_detected - called when PCI error is detected
       
  5164  * @pdev: Pointer to PCI device
       
  5165  * @state: The current pci conneection state
       
  5166  *
       
  5167  * This function is called after a PCI bus error affecting
       
  5168  * this device has been detected.
       
  5169  */
       
  5170 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  5171 						pci_channel_state_t state)
       
  5172 {
       
  5173 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5174 	struct e1000_adapter *adapter = netdev->priv;
       
  5175 
       
  5176 	netif_device_detach(netdev);
       
  5177 
       
  5178 	if (state == pci_channel_io_perm_failure)
       
  5179 		return PCI_ERS_RESULT_DISCONNECT;
       
  5180 
       
  5181 	if (netif_running(netdev))
       
  5182 		e1000_down(adapter);
       
  5183 	pci_disable_device(pdev);
       
  5184 
       
  5185 	/* Request a slot slot reset. */
       
  5186 	return PCI_ERS_RESULT_NEED_RESET;
       
  5187 }
       
  5188 
       
  5189 /**
       
  5190  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  5191  * @pdev: Pointer to PCI device
       
  5192  *
       
  5193  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  5194  * resembles the first-half of the e1000_resume routine.
       
  5195  */
       
  5196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  5197 {
       
  5198 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5199 	struct e1000_adapter *adapter = netdev->priv;
       
  5200 	struct e1000_hw *hw = &adapter->hw;
       
  5201 	int err;
       
  5202 
       
  5203 	if (adapter->need_ioport)
       
  5204 		err = pci_enable_device(pdev);
       
  5205 	else
       
  5206 		err = pci_enable_device_mem(pdev);
       
  5207 	if (err) {
       
  5208 		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
       
  5209 		return PCI_ERS_RESULT_DISCONNECT;
       
  5210 	}
       
  5211 	pci_set_master(pdev);
       
  5212 
       
  5213 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5214 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5215 
       
  5216 	e1000_reset(adapter);
       
  5217 	ew32(WUS, ~0);
       
  5218 
       
  5219 	return PCI_ERS_RESULT_RECOVERED;
       
  5220 }
       
  5221 
       
  5222 /**
       
  5223  * e1000_io_resume - called when traffic can start flowing again.
       
  5224  * @pdev: Pointer to PCI device
       
  5225  *
       
  5226  * This callback is called when the error recovery driver tells us that
       
  5227  * its OK to resume normal operation. Implementation resembles the
       
  5228  * second-half of the e1000_resume routine.
       
  5229  */
       
  5230 static void e1000_io_resume(struct pci_dev *pdev)
       
  5231 {
       
  5232 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5233 	struct e1000_adapter *adapter = netdev->priv;
       
  5234 	struct e1000_hw *hw = &adapter->hw;
       
  5235 
       
  5236 	e1000_init_manageability(adapter);
       
  5237 
       
  5238 	if (netif_running(netdev)) {
       
  5239 		if (e1000_up(adapter)) {
       
  5240 			printk("e1000: can't bring device back up after reset\n");
       
  5241 			return;
       
  5242 		}
       
  5243 	}
       
  5244 
       
  5245 	netif_device_attach(netdev);
       
  5246 
       
  5247 	/* If the controller is 82573 and f/w is AMT, do not set
       
  5248 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  5249 	 * let the f/w know that the h/w is now under the control
       
  5250 	 * of the driver. */
       
  5251 	if (hw->mac_type != e1000_82573 ||
       
  5252 	    !e1000_check_mng_mode(hw))
       
  5253 		e1000_get_hw_control(adapter);
       
  5254 
       
  5255 }
       
  5256 
       
  5257 /* e1000_main.c */