|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include "e1000.h" |
|
30 #include <net/ip6_checksum.h> |
|
31 |
|
32 char e1000_driver_name[] = "e1000"; |
|
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
|
34 #define DRV_VERSION "7.3.21-k3-NAPI" |
|
35 const char e1000_driver_version[] = DRV_VERSION; |
|
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
|
37 |
|
38 /* e1000_pci_tbl - PCI Device ID Table |
|
39 * |
|
40 * Last entry must be all 0s |
|
41 * |
|
42 * Macro expands to... |
|
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
|
44 */ |
|
45 static struct pci_device_id e1000_pci_tbl[] = { |
|
46 INTEL_E1000_ETHERNET_DEVICE(0x1000), |
|
47 INTEL_E1000_ETHERNET_DEVICE(0x1001), |
|
48 INTEL_E1000_ETHERNET_DEVICE(0x1004), |
|
49 INTEL_E1000_ETHERNET_DEVICE(0x1008), |
|
50 INTEL_E1000_ETHERNET_DEVICE(0x1009), |
|
51 INTEL_E1000_ETHERNET_DEVICE(0x100C), |
|
52 INTEL_E1000_ETHERNET_DEVICE(0x100D), |
|
53 INTEL_E1000_ETHERNET_DEVICE(0x100E), |
|
54 INTEL_E1000_ETHERNET_DEVICE(0x100F), |
|
55 INTEL_E1000_ETHERNET_DEVICE(0x1010), |
|
56 INTEL_E1000_ETHERNET_DEVICE(0x1011), |
|
57 INTEL_E1000_ETHERNET_DEVICE(0x1012), |
|
58 INTEL_E1000_ETHERNET_DEVICE(0x1013), |
|
59 INTEL_E1000_ETHERNET_DEVICE(0x1014), |
|
60 INTEL_E1000_ETHERNET_DEVICE(0x1015), |
|
61 INTEL_E1000_ETHERNET_DEVICE(0x1016), |
|
62 INTEL_E1000_ETHERNET_DEVICE(0x1017), |
|
63 INTEL_E1000_ETHERNET_DEVICE(0x1018), |
|
64 INTEL_E1000_ETHERNET_DEVICE(0x1019), |
|
65 INTEL_E1000_ETHERNET_DEVICE(0x101A), |
|
66 INTEL_E1000_ETHERNET_DEVICE(0x101D), |
|
67 INTEL_E1000_ETHERNET_DEVICE(0x101E), |
|
68 INTEL_E1000_ETHERNET_DEVICE(0x1026), |
|
69 INTEL_E1000_ETHERNET_DEVICE(0x1027), |
|
70 INTEL_E1000_ETHERNET_DEVICE(0x1028), |
|
71 INTEL_E1000_ETHERNET_DEVICE(0x1075), |
|
72 INTEL_E1000_ETHERNET_DEVICE(0x1076), |
|
73 INTEL_E1000_ETHERNET_DEVICE(0x1077), |
|
74 INTEL_E1000_ETHERNET_DEVICE(0x1078), |
|
75 INTEL_E1000_ETHERNET_DEVICE(0x1079), |
|
76 INTEL_E1000_ETHERNET_DEVICE(0x107A), |
|
77 INTEL_E1000_ETHERNET_DEVICE(0x107B), |
|
78 INTEL_E1000_ETHERNET_DEVICE(0x107C), |
|
79 INTEL_E1000_ETHERNET_DEVICE(0x108A), |
|
80 INTEL_E1000_ETHERNET_DEVICE(0x1099), |
|
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
|
82 /* required last entry */ |
|
83 {0,} |
|
84 }; |
|
85 |
|
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
87 |
|
88 int e1000_up(struct e1000_adapter *adapter); |
|
89 void e1000_down(struct e1000_adapter *adapter); |
|
90 void e1000_reinit_locked(struct e1000_adapter *adapter); |
|
91 void e1000_reset(struct e1000_adapter *adapter); |
|
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); |
|
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
|
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
|
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
|
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
|
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
98 struct e1000_tx_ring *txdr); |
|
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
100 struct e1000_rx_ring *rxdr); |
|
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
102 struct e1000_tx_ring *tx_ring); |
|
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
104 struct e1000_rx_ring *rx_ring); |
|
105 void e1000_update_stats(struct e1000_adapter *adapter); |
|
106 |
|
107 static int e1000_init_module(void); |
|
108 static void e1000_exit_module(void); |
|
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
|
110 static void __devexit e1000_remove(struct pci_dev *pdev); |
|
111 static int e1000_alloc_queues(struct e1000_adapter *adapter); |
|
112 static int e1000_sw_init(struct e1000_adapter *adapter); |
|
113 static int e1000_open(struct net_device *netdev); |
|
114 static int e1000_close(struct net_device *netdev); |
|
115 static void e1000_configure_tx(struct e1000_adapter *adapter); |
|
116 static void e1000_configure_rx(struct e1000_adapter *adapter); |
|
117 static void e1000_setup_rctl(struct e1000_adapter *adapter); |
|
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
|
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
|
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
121 struct e1000_tx_ring *tx_ring); |
|
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
123 struct e1000_rx_ring *rx_ring); |
|
124 static void e1000_set_rx_mode(struct net_device *netdev); |
|
125 static void e1000_update_phy_info(unsigned long data); |
|
126 static void e1000_watchdog(unsigned long data); |
|
127 static void e1000_82547_tx_fifo_stall(unsigned long data); |
|
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
|
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
|
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
|
131 static int e1000_set_mac(struct net_device *netdev, void *p); |
|
132 static irqreturn_t e1000_intr(int irq, void *data); |
|
133 static irqreturn_t e1000_intr_msi(int irq, void *data); |
|
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
135 struct e1000_tx_ring *tx_ring); |
|
136 static int e1000_clean(struct napi_struct *napi, int budget); |
|
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
138 struct e1000_rx_ring *rx_ring, |
|
139 int *work_done, int work_to_do); |
|
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
141 struct e1000_rx_ring *rx_ring, |
|
142 int cleaned_count); |
|
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
|
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
145 int cmd); |
|
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
|
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
|
148 static void e1000_tx_timeout(struct net_device *dev); |
|
149 static void e1000_reset_task(struct work_struct *work); |
|
150 static void e1000_smartspeed(struct e1000_adapter *adapter); |
|
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
152 struct sk_buff *skb); |
|
153 |
|
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); |
|
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); |
|
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); |
|
157 static void e1000_restore_vlan(struct e1000_adapter *adapter); |
|
158 |
|
159 #ifdef CONFIG_PM |
|
160 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
|
161 static int e1000_resume(struct pci_dev *pdev); |
|
162 #endif |
|
163 static void e1000_shutdown(struct pci_dev *pdev); |
|
164 |
|
165 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
166 /* for netdump / net console */ |
|
167 static void e1000_netpoll (struct net_device *netdev); |
|
168 #endif |
|
169 |
|
170 #define COPYBREAK_DEFAULT 256 |
|
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
|
172 module_param(copybreak, uint, 0644); |
|
173 MODULE_PARM_DESC(copybreak, |
|
174 "Maximum size of packet that is copied to a new buffer on receive"); |
|
175 |
|
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
177 pci_channel_state_t state); |
|
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
|
179 static void e1000_io_resume(struct pci_dev *pdev); |
|
180 |
|
181 static struct pci_error_handlers e1000_err_handler = { |
|
182 .error_detected = e1000_io_error_detected, |
|
183 .slot_reset = e1000_io_slot_reset, |
|
184 .resume = e1000_io_resume, |
|
185 }; |
|
186 |
|
187 static struct pci_driver e1000_driver = { |
|
188 .name = e1000_driver_name, |
|
189 .id_table = e1000_pci_tbl, |
|
190 .probe = e1000_probe, |
|
191 .remove = __devexit_p(e1000_remove), |
|
192 #ifdef CONFIG_PM |
|
193 /* Power Managment Hooks */ |
|
194 .suspend = e1000_suspend, |
|
195 .resume = e1000_resume, |
|
196 #endif |
|
197 .shutdown = e1000_shutdown, |
|
198 .err_handler = &e1000_err_handler |
|
199 }; |
|
200 |
|
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
|
203 MODULE_LICENSE("GPL"); |
|
204 MODULE_VERSION(DRV_VERSION); |
|
205 |
|
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
|
207 module_param(debug, int, 0); |
|
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
209 |
|
210 /** |
|
211 * e1000_init_module - Driver Registration Routine |
|
212 * |
|
213 * e1000_init_module is the first routine called when the driver is |
|
214 * loaded. All it does is register with the PCI subsystem. |
|
215 **/ |
|
216 |
|
217 static int __init e1000_init_module(void) |
|
218 { |
|
219 int ret; |
|
220 printk(KERN_INFO "%s - version %s\n", |
|
221 e1000_driver_string, e1000_driver_version); |
|
222 |
|
223 printk(KERN_INFO "%s\n", e1000_copyright); |
|
224 |
|
225 ret = pci_register_driver(&e1000_driver); |
|
226 if (copybreak != COPYBREAK_DEFAULT) { |
|
227 if (copybreak == 0) |
|
228 printk(KERN_INFO "e1000: copybreak disabled\n"); |
|
229 else |
|
230 printk(KERN_INFO "e1000: copybreak enabled for " |
|
231 "packets <= %u bytes\n", copybreak); |
|
232 } |
|
233 return ret; |
|
234 } |
|
235 |
|
236 module_init(e1000_init_module); |
|
237 |
|
238 /** |
|
239 * e1000_exit_module - Driver Exit Cleanup Routine |
|
240 * |
|
241 * e1000_exit_module is called just before the driver is removed |
|
242 * from memory. |
|
243 **/ |
|
244 |
|
245 static void __exit e1000_exit_module(void) |
|
246 { |
|
247 pci_unregister_driver(&e1000_driver); |
|
248 } |
|
249 |
|
250 module_exit(e1000_exit_module); |
|
251 |
|
252 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
253 { |
|
254 struct e1000_hw *hw = &adapter->hw; |
|
255 struct net_device *netdev = adapter->netdev; |
|
256 irq_handler_t handler = e1000_intr; |
|
257 int irq_flags = IRQF_SHARED; |
|
258 int err; |
|
259 |
|
260 if (hw->mac_type >= e1000_82571) { |
|
261 adapter->have_msi = !pci_enable_msi(adapter->pdev); |
|
262 if (adapter->have_msi) { |
|
263 handler = e1000_intr_msi; |
|
264 irq_flags = 0; |
|
265 } |
|
266 } |
|
267 |
|
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
|
269 netdev); |
|
270 if (err) { |
|
271 if (adapter->have_msi) |
|
272 pci_disable_msi(adapter->pdev); |
|
273 DPRINTK(PROBE, ERR, |
|
274 "Unable to allocate interrupt Error: %d\n", err); |
|
275 } |
|
276 |
|
277 return err; |
|
278 } |
|
279 |
|
280 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
281 { |
|
282 struct net_device *netdev = adapter->netdev; |
|
283 |
|
284 free_irq(adapter->pdev->irq, netdev); |
|
285 |
|
286 if (adapter->have_msi) |
|
287 pci_disable_msi(adapter->pdev); |
|
288 } |
|
289 |
|
290 /** |
|
291 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
292 * @adapter: board private structure |
|
293 **/ |
|
294 |
|
295 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
296 { |
|
297 struct e1000_hw *hw = &adapter->hw; |
|
298 |
|
299 ew32(IMC, ~0); |
|
300 E1000_WRITE_FLUSH(); |
|
301 synchronize_irq(adapter->pdev->irq); |
|
302 } |
|
303 |
|
304 /** |
|
305 * e1000_irq_enable - Enable default interrupt generation settings |
|
306 * @adapter: board private structure |
|
307 **/ |
|
308 |
|
309 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
310 { |
|
311 struct e1000_hw *hw = &adapter->hw; |
|
312 |
|
313 ew32(IMS, IMS_ENABLE_MASK); |
|
314 E1000_WRITE_FLUSH(); |
|
315 } |
|
316 |
|
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
318 { |
|
319 struct e1000_hw *hw = &adapter->hw; |
|
320 struct net_device *netdev = adapter->netdev; |
|
321 u16 vid = hw->mng_cookie.vlan_id; |
|
322 u16 old_vid = adapter->mng_vlan_id; |
|
323 if (adapter->vlgrp) { |
|
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
325 if (hw->mng_cookie.status & |
|
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
|
327 e1000_vlan_rx_add_vid(netdev, vid); |
|
328 adapter->mng_vlan_id = vid; |
|
329 } else |
|
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
331 |
|
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
333 (vid != old_vid) && |
|
334 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
335 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
336 } else |
|
337 adapter->mng_vlan_id = vid; |
|
338 } |
|
339 } |
|
340 |
|
341 /** |
|
342 * e1000_release_hw_control - release control of the h/w to f/w |
|
343 * @adapter: address of board private structure |
|
344 * |
|
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
346 * For ASF and Pass Through versions of f/w this means that the |
|
347 * driver is no longer loaded. For AMT version (only with 82573) i |
|
348 * of the f/w this means that the network i/f is closed. |
|
349 * |
|
350 **/ |
|
351 |
|
352 static void e1000_release_hw_control(struct e1000_adapter *adapter) |
|
353 { |
|
354 u32 ctrl_ext; |
|
355 u32 swsm; |
|
356 struct e1000_hw *hw = &adapter->hw; |
|
357 |
|
358 /* Let firmware taken over control of h/w */ |
|
359 switch (hw->mac_type) { |
|
360 case e1000_82573: |
|
361 swsm = er32(SWSM); |
|
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
|
363 break; |
|
364 case e1000_82571: |
|
365 case e1000_82572: |
|
366 case e1000_80003es2lan: |
|
367 case e1000_ich8lan: |
|
368 ctrl_ext = er32(CTRL_EXT); |
|
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
|
370 break; |
|
371 default: |
|
372 break; |
|
373 } |
|
374 } |
|
375 |
|
376 /** |
|
377 * e1000_get_hw_control - get control of the h/w from f/w |
|
378 * @adapter: address of board private structure |
|
379 * |
|
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
381 * For ASF and Pass Through versions of f/w this means that |
|
382 * the driver is loaded. For AMT version (only with 82573) |
|
383 * of the f/w this means that the network i/f is open. |
|
384 * |
|
385 **/ |
|
386 |
|
387 static void e1000_get_hw_control(struct e1000_adapter *adapter) |
|
388 { |
|
389 u32 ctrl_ext; |
|
390 u32 swsm; |
|
391 struct e1000_hw *hw = &adapter->hw; |
|
392 |
|
393 /* Let firmware know the driver has taken over */ |
|
394 switch (hw->mac_type) { |
|
395 case e1000_82573: |
|
396 swsm = er32(SWSM); |
|
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
|
398 break; |
|
399 case e1000_82571: |
|
400 case e1000_82572: |
|
401 case e1000_80003es2lan: |
|
402 case e1000_ich8lan: |
|
403 ctrl_ext = er32(CTRL_EXT); |
|
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
|
405 break; |
|
406 default: |
|
407 break; |
|
408 } |
|
409 } |
|
410 |
|
411 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
412 { |
|
413 struct e1000_hw *hw = &adapter->hw; |
|
414 |
|
415 if (adapter->en_mng_pt) { |
|
416 u32 manc = er32(MANC); |
|
417 |
|
418 /* disable hardware interception of ARP */ |
|
419 manc &= ~(E1000_MANC_ARP_EN); |
|
420 |
|
421 /* enable receiving management packets to the host */ |
|
422 /* this will probably generate destination unreachable messages |
|
423 * from the host OS, but the packets will be handled on SMBUS */ |
|
424 if (hw->has_manc2h) { |
|
425 u32 manc2h = er32(MANC2H); |
|
426 |
|
427 manc |= E1000_MANC_EN_MNG2HOST; |
|
428 #define E1000_MNG2HOST_PORT_623 (1 << 5) |
|
429 #define E1000_MNG2HOST_PORT_664 (1 << 6) |
|
430 manc2h |= E1000_MNG2HOST_PORT_623; |
|
431 manc2h |= E1000_MNG2HOST_PORT_664; |
|
432 ew32(MANC2H, manc2h); |
|
433 } |
|
434 |
|
435 ew32(MANC, manc); |
|
436 } |
|
437 } |
|
438 |
|
439 static void e1000_release_manageability(struct e1000_adapter *adapter) |
|
440 { |
|
441 struct e1000_hw *hw = &adapter->hw; |
|
442 |
|
443 if (adapter->en_mng_pt) { |
|
444 u32 manc = er32(MANC); |
|
445 |
|
446 /* re-enable hardware interception of ARP */ |
|
447 manc |= E1000_MANC_ARP_EN; |
|
448 |
|
449 if (hw->has_manc2h) |
|
450 manc &= ~E1000_MANC_EN_MNG2HOST; |
|
451 |
|
452 /* don't explicitly have to mess with MANC2H since |
|
453 * MANC has an enable disable that gates MANC2H */ |
|
454 |
|
455 ew32(MANC, manc); |
|
456 } |
|
457 } |
|
458 |
|
459 /** |
|
460 * e1000_configure - configure the hardware for RX and TX |
|
461 * @adapter = private board structure |
|
462 **/ |
|
463 static void e1000_configure(struct e1000_adapter *adapter) |
|
464 { |
|
465 struct net_device *netdev = adapter->netdev; |
|
466 int i; |
|
467 |
|
468 e1000_set_rx_mode(netdev); |
|
469 |
|
470 e1000_restore_vlan(adapter); |
|
471 e1000_init_manageability(adapter); |
|
472 |
|
473 e1000_configure_tx(adapter); |
|
474 e1000_setup_rctl(adapter); |
|
475 e1000_configure_rx(adapter); |
|
476 /* call E1000_DESC_UNUSED which always leaves |
|
477 * at least 1 descriptor unused to make sure |
|
478 * next_to_use != next_to_clean */ |
|
479 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
|
481 adapter->alloc_rx_buf(adapter, ring, |
|
482 E1000_DESC_UNUSED(ring)); |
|
483 } |
|
484 |
|
485 adapter->tx_queue_len = netdev->tx_queue_len; |
|
486 } |
|
487 |
|
488 int e1000_up(struct e1000_adapter *adapter) |
|
489 { |
|
490 struct e1000_hw *hw = &adapter->hw; |
|
491 |
|
492 /* hardware has been reset, we need to reload some things */ |
|
493 e1000_configure(adapter); |
|
494 |
|
495 clear_bit(__E1000_DOWN, &adapter->flags); |
|
496 |
|
497 napi_enable(&adapter->napi); |
|
498 |
|
499 e1000_irq_enable(adapter); |
|
500 |
|
501 netif_wake_queue(adapter->netdev); |
|
502 |
|
503 /* fire a link change interrupt to start the watchdog */ |
|
504 ew32(ICS, E1000_ICS_LSC); |
|
505 return 0; |
|
506 } |
|
507 |
|
508 /** |
|
509 * e1000_power_up_phy - restore link in case the phy was powered down |
|
510 * @adapter: address of board private structure |
|
511 * |
|
512 * The phy may be powered down to save power and turn off link when the |
|
513 * driver is unloaded and wake on lan is not enabled (among others) |
|
514 * *** this routine MUST be followed by a call to e1000_reset *** |
|
515 * |
|
516 **/ |
|
517 |
|
518 void e1000_power_up_phy(struct e1000_adapter *adapter) |
|
519 { |
|
520 struct e1000_hw *hw = &adapter->hw; |
|
521 u16 mii_reg = 0; |
|
522 |
|
523 /* Just clear the power down bit to wake the phy back up */ |
|
524 if (hw->media_type == e1000_media_type_copper) { |
|
525 /* according to the manual, the phy will retain its |
|
526 * settings across a power-down/up cycle */ |
|
527 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
528 mii_reg &= ~MII_CR_POWER_DOWN; |
|
529 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
530 } |
|
531 } |
|
532 |
|
533 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
534 { |
|
535 struct e1000_hw *hw = &adapter->hw; |
|
536 |
|
537 /* Power down the PHY so no link is implied when interface is down * |
|
538 * The PHY cannot be powered down if any of the following is true * |
|
539 * (a) WoL is enabled |
|
540 * (b) AMT is active |
|
541 * (c) SoL/IDER session is active */ |
|
542 if (!adapter->wol && hw->mac_type >= e1000_82540 && |
|
543 hw->media_type == e1000_media_type_copper) { |
|
544 u16 mii_reg = 0; |
|
545 |
|
546 switch (hw->mac_type) { |
|
547 case e1000_82540: |
|
548 case e1000_82545: |
|
549 case e1000_82545_rev_3: |
|
550 case e1000_82546: |
|
551 case e1000_82546_rev_3: |
|
552 case e1000_82541: |
|
553 case e1000_82541_rev_2: |
|
554 case e1000_82547: |
|
555 case e1000_82547_rev_2: |
|
556 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
557 goto out; |
|
558 break; |
|
559 case e1000_82571: |
|
560 case e1000_82572: |
|
561 case e1000_82573: |
|
562 case e1000_80003es2lan: |
|
563 case e1000_ich8lan: |
|
564 if (e1000_check_mng_mode(hw) || |
|
565 e1000_check_phy_reset_block(hw)) |
|
566 goto out; |
|
567 break; |
|
568 default: |
|
569 goto out; |
|
570 } |
|
571 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
572 mii_reg |= MII_CR_POWER_DOWN; |
|
573 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
574 mdelay(1); |
|
575 } |
|
576 out: |
|
577 return; |
|
578 } |
|
579 |
|
580 void e1000_down(struct e1000_adapter *adapter) |
|
581 { |
|
582 struct e1000_hw *hw = &adapter->hw; |
|
583 struct net_device *netdev = adapter->netdev; |
|
584 u32 rctl, tctl; |
|
585 |
|
586 /* signal that we're down so the interrupt handler does not |
|
587 * reschedule our watchdog timer */ |
|
588 set_bit(__E1000_DOWN, &adapter->flags); |
|
589 |
|
590 /* disable receives in the hardware */ |
|
591 rctl = er32(RCTL); |
|
592 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
593 /* flush and sleep below */ |
|
594 |
|
595 /* can be netif_tx_disable when NETIF_F_LLTX is removed */ |
|
596 netif_stop_queue(netdev); |
|
597 |
|
598 /* disable transmits in the hardware */ |
|
599 tctl = er32(TCTL); |
|
600 tctl &= ~E1000_TCTL_EN; |
|
601 ew32(TCTL, tctl); |
|
602 /* flush both disables and wait for them to finish */ |
|
603 E1000_WRITE_FLUSH(); |
|
604 msleep(10); |
|
605 |
|
606 napi_disable(&adapter->napi); |
|
607 |
|
608 e1000_irq_disable(adapter); |
|
609 |
|
610 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
611 del_timer_sync(&adapter->watchdog_timer); |
|
612 del_timer_sync(&adapter->phy_info_timer); |
|
613 |
|
614 netdev->tx_queue_len = adapter->tx_queue_len; |
|
615 adapter->link_speed = 0; |
|
616 adapter->link_duplex = 0; |
|
617 netif_carrier_off(netdev); |
|
618 |
|
619 e1000_reset(adapter); |
|
620 e1000_clean_all_tx_rings(adapter); |
|
621 e1000_clean_all_rx_rings(adapter); |
|
622 } |
|
623 |
|
624 void e1000_reinit_locked(struct e1000_adapter *adapter) |
|
625 { |
|
626 WARN_ON(in_interrupt()); |
|
627 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
628 msleep(1); |
|
629 e1000_down(adapter); |
|
630 e1000_up(adapter); |
|
631 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
632 } |
|
633 |
|
634 void e1000_reset(struct e1000_adapter *adapter) |
|
635 { |
|
636 struct e1000_hw *hw = &adapter->hw; |
|
637 u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
|
638 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF; |
|
639 bool legacy_pba_adjust = false; |
|
640 |
|
641 /* Repartition Pba for greater than 9k mtu |
|
642 * To take effect CTRL.RST is required. |
|
643 */ |
|
644 |
|
645 switch (hw->mac_type) { |
|
646 case e1000_82542_rev2_0: |
|
647 case e1000_82542_rev2_1: |
|
648 case e1000_82543: |
|
649 case e1000_82544: |
|
650 case e1000_82540: |
|
651 case e1000_82541: |
|
652 case e1000_82541_rev_2: |
|
653 legacy_pba_adjust = true; |
|
654 pba = E1000_PBA_48K; |
|
655 break; |
|
656 case e1000_82545: |
|
657 case e1000_82545_rev_3: |
|
658 case e1000_82546: |
|
659 case e1000_82546_rev_3: |
|
660 pba = E1000_PBA_48K; |
|
661 break; |
|
662 case e1000_82547: |
|
663 case e1000_82547_rev_2: |
|
664 legacy_pba_adjust = true; |
|
665 pba = E1000_PBA_30K; |
|
666 break; |
|
667 case e1000_82571: |
|
668 case e1000_82572: |
|
669 case e1000_80003es2lan: |
|
670 pba = E1000_PBA_38K; |
|
671 break; |
|
672 case e1000_82573: |
|
673 pba = E1000_PBA_20K; |
|
674 break; |
|
675 case e1000_ich8lan: |
|
676 pba = E1000_PBA_8K; |
|
677 case e1000_undefined: |
|
678 case e1000_num_macs: |
|
679 break; |
|
680 } |
|
681 |
|
682 if (legacy_pba_adjust) { |
|
683 if (adapter->netdev->mtu > E1000_RXBUFFER_8192) |
|
684 pba -= 8; /* allocate more FIFO for Tx */ |
|
685 |
|
686 if (hw->mac_type == e1000_82547) { |
|
687 adapter->tx_fifo_head = 0; |
|
688 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
|
689 adapter->tx_fifo_size = |
|
690 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
|
691 atomic_set(&adapter->tx_fifo_stall, 0); |
|
692 } |
|
693 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
694 /* adjust PBA for jumbo frames */ |
|
695 ew32(PBA, pba); |
|
696 |
|
697 /* To maintain wire speed transmits, the Tx FIFO should be |
|
698 * large enough to accomodate two full transmit packets, |
|
699 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
700 * the Rx FIFO should be large enough to accomodate at least |
|
701 * one full receive packet and is similarly rounded up and |
|
702 * expressed in KB. */ |
|
703 pba = er32(PBA); |
|
704 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
705 tx_space = pba >> 16; |
|
706 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
707 pba &= 0xffff; |
|
708 /* don't include ethernet FCS because hardware appends/strips */ |
|
709 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE + |
|
710 VLAN_TAG_SIZE; |
|
711 min_tx_space = min_rx_space; |
|
712 min_tx_space *= 2; |
|
713 min_tx_space = ALIGN(min_tx_space, 1024); |
|
714 min_tx_space >>= 10; |
|
715 min_rx_space = ALIGN(min_rx_space, 1024); |
|
716 min_rx_space >>= 10; |
|
717 |
|
718 /* If current Tx allocation is less than the min Tx FIFO size, |
|
719 * and the min Tx FIFO size is less than the current Rx FIFO |
|
720 * allocation, take space away from current Rx allocation */ |
|
721 if (tx_space < min_tx_space && |
|
722 ((min_tx_space - tx_space) < pba)) { |
|
723 pba = pba - (min_tx_space - tx_space); |
|
724 |
|
725 /* PCI/PCIx hardware has PBA alignment constraints */ |
|
726 switch (hw->mac_type) { |
|
727 case e1000_82545 ... e1000_82546_rev_3: |
|
728 pba &= ~(E1000_PBA_8K - 1); |
|
729 break; |
|
730 default: |
|
731 break; |
|
732 } |
|
733 |
|
734 /* if short on rx space, rx wins and must trump tx |
|
735 * adjustment or use Early Receive if available */ |
|
736 if (pba < min_rx_space) { |
|
737 switch (hw->mac_type) { |
|
738 case e1000_82573: |
|
739 /* ERT enabled in e1000_configure_rx */ |
|
740 break; |
|
741 default: |
|
742 pba = min_rx_space; |
|
743 break; |
|
744 } |
|
745 } |
|
746 } |
|
747 } |
|
748 |
|
749 ew32(PBA, pba); |
|
750 |
|
751 /* flow control settings */ |
|
752 /* Set the FC high water mark to 90% of the FIFO size. |
|
753 * Required to clear last 3 LSB */ |
|
754 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; |
|
755 /* We can't use 90% on small FIFOs because the remainder |
|
756 * would be less than 1 full frame. In this case, we size |
|
757 * it to allow at least a full frame above the high water |
|
758 * mark. */ |
|
759 if (pba < E1000_PBA_16K) |
|
760 fc_high_water_mark = (pba * 1024) - 1600; |
|
761 |
|
762 hw->fc_high_water = fc_high_water_mark; |
|
763 hw->fc_low_water = fc_high_water_mark - 8; |
|
764 if (hw->mac_type == e1000_80003es2lan) |
|
765 hw->fc_pause_time = 0xFFFF; |
|
766 else |
|
767 hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
|
768 hw->fc_send_xon = 1; |
|
769 hw->fc = hw->original_fc; |
|
770 |
|
771 /* Allow time for pending master requests to run */ |
|
772 e1000_reset_hw(hw); |
|
773 if (hw->mac_type >= e1000_82544) |
|
774 ew32(WUC, 0); |
|
775 |
|
776 if (e1000_init_hw(hw)) |
|
777 DPRINTK(PROBE, ERR, "Hardware Error\n"); |
|
778 e1000_update_mng_vlan(adapter); |
|
779 |
|
780 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
|
781 if (hw->mac_type >= e1000_82544 && |
|
782 hw->mac_type <= e1000_82547_rev_2 && |
|
783 hw->autoneg == 1 && |
|
784 hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
785 u32 ctrl = er32(CTRL); |
|
786 /* clear phy power management bit if we are in gig only mode, |
|
787 * which if enabled will attempt negotiation to 100Mb, which |
|
788 * can cause a loss of link at power off or driver unload */ |
|
789 ctrl &= ~E1000_CTRL_SWDPIN3; |
|
790 ew32(CTRL, ctrl); |
|
791 } |
|
792 |
|
793 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
794 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
|
795 |
|
796 e1000_reset_adaptive(hw); |
|
797 e1000_phy_get_info(hw, &adapter->phy_info); |
|
798 |
|
799 if (!adapter->smart_power_down && |
|
800 (hw->mac_type == e1000_82571 || |
|
801 hw->mac_type == e1000_82572)) { |
|
802 u16 phy_data = 0; |
|
803 /* speed up time to link by disabling smart power down, ignore |
|
804 * the return value of this function because there is nothing |
|
805 * different we would do if it failed */ |
|
806 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
807 &phy_data); |
|
808 phy_data &= ~IGP02E1000_PM_SPD; |
|
809 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
810 phy_data); |
|
811 } |
|
812 |
|
813 e1000_release_manageability(adapter); |
|
814 } |
|
815 |
|
816 /** |
|
817 * Dump the eeprom for users having checksum issues |
|
818 **/ |
|
819 static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
|
820 { |
|
821 struct net_device *netdev = adapter->netdev; |
|
822 struct ethtool_eeprom eeprom; |
|
823 const struct ethtool_ops *ops = netdev->ethtool_ops; |
|
824 u8 *data; |
|
825 int i; |
|
826 u16 csum_old, csum_new = 0; |
|
827 |
|
828 eeprom.len = ops->get_eeprom_len(netdev); |
|
829 eeprom.offset = 0; |
|
830 |
|
831 data = kmalloc(eeprom.len, GFP_KERNEL); |
|
832 if (!data) { |
|
833 printk(KERN_ERR "Unable to allocate memory to dump EEPROM" |
|
834 " data\n"); |
|
835 return; |
|
836 } |
|
837 |
|
838 ops->get_eeprom(netdev, &eeprom, data); |
|
839 |
|
840 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
|
841 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
|
842 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
|
843 csum_new += data[i] + (data[i + 1] << 8); |
|
844 csum_new = EEPROM_SUM - csum_new; |
|
845 |
|
846 printk(KERN_ERR "/*********************/\n"); |
|
847 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old); |
|
848 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new); |
|
849 |
|
850 printk(KERN_ERR "Offset Values\n"); |
|
851 printk(KERN_ERR "======== ======\n"); |
|
852 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
|
853 |
|
854 printk(KERN_ERR "Include this output when contacting your support " |
|
855 "provider.\n"); |
|
856 printk(KERN_ERR "This is not a software error! Something bad " |
|
857 "happened to your hardware or\n"); |
|
858 printk(KERN_ERR "EEPROM image. Ignoring this " |
|
859 "problem could result in further problems,\n"); |
|
860 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n"); |
|
861 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, " |
|
862 "which is invalid\n"); |
|
863 printk(KERN_ERR "and requires you to set the proper MAC " |
|
864 "address manually before continuing\n"); |
|
865 printk(KERN_ERR "to enable this network device.\n"); |
|
866 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue " |
|
867 "to your hardware vendor\n"); |
|
868 printk(KERN_ERR "or Intel Customer Support.\n"); |
|
869 printk(KERN_ERR "/*********************/\n"); |
|
870 |
|
871 kfree(data); |
|
872 } |
|
873 |
|
874 /** |
|
875 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
|
876 * @pdev: PCI device information struct |
|
877 * |
|
878 * Return true if an adapter needs ioport resources |
|
879 **/ |
|
880 static int e1000_is_need_ioport(struct pci_dev *pdev) |
|
881 { |
|
882 switch (pdev->device) { |
|
883 case E1000_DEV_ID_82540EM: |
|
884 case E1000_DEV_ID_82540EM_LOM: |
|
885 case E1000_DEV_ID_82540EP: |
|
886 case E1000_DEV_ID_82540EP_LOM: |
|
887 case E1000_DEV_ID_82540EP_LP: |
|
888 case E1000_DEV_ID_82541EI: |
|
889 case E1000_DEV_ID_82541EI_MOBILE: |
|
890 case E1000_DEV_ID_82541ER: |
|
891 case E1000_DEV_ID_82541ER_LOM: |
|
892 case E1000_DEV_ID_82541GI: |
|
893 case E1000_DEV_ID_82541GI_LF: |
|
894 case E1000_DEV_ID_82541GI_MOBILE: |
|
895 case E1000_DEV_ID_82544EI_COPPER: |
|
896 case E1000_DEV_ID_82544EI_FIBER: |
|
897 case E1000_DEV_ID_82544GC_COPPER: |
|
898 case E1000_DEV_ID_82544GC_LOM: |
|
899 case E1000_DEV_ID_82545EM_COPPER: |
|
900 case E1000_DEV_ID_82545EM_FIBER: |
|
901 case E1000_DEV_ID_82546EB_COPPER: |
|
902 case E1000_DEV_ID_82546EB_FIBER: |
|
903 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
904 return true; |
|
905 default: |
|
906 return false; |
|
907 } |
|
908 } |
|
909 |
|
910 static const struct net_device_ops e1000_netdev_ops = { |
|
911 .ndo_open = e1000_open, |
|
912 .ndo_stop = e1000_close, |
|
913 .ndo_start_xmit = e1000_xmit_frame, |
|
914 .ndo_get_stats = e1000_get_stats, |
|
915 .ndo_set_rx_mode = e1000_set_rx_mode, |
|
916 .ndo_set_mac_address = e1000_set_mac, |
|
917 .ndo_tx_timeout = e1000_tx_timeout, |
|
918 .ndo_change_mtu = e1000_change_mtu, |
|
919 .ndo_do_ioctl = e1000_ioctl, |
|
920 .ndo_validate_addr = eth_validate_addr, |
|
921 |
|
922 .ndo_vlan_rx_register = e1000_vlan_rx_register, |
|
923 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
924 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
925 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
926 .ndo_poll_controller = e1000_netpoll, |
|
927 #endif |
|
928 }; |
|
929 |
|
930 /** |
|
931 * e1000_probe - Device Initialization Routine |
|
932 * @pdev: PCI device information struct |
|
933 * @ent: entry in e1000_pci_tbl |
|
934 * |
|
935 * Returns 0 on success, negative on failure |
|
936 * |
|
937 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
938 * The OS initialization, configuring of the adapter private structure, |
|
939 * and a hardware reset occur. |
|
940 **/ |
|
941 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
942 const struct pci_device_id *ent) |
|
943 { |
|
944 struct net_device *netdev; |
|
945 struct e1000_adapter *adapter; |
|
946 struct e1000_hw *hw; |
|
947 |
|
948 static int cards_found = 0; |
|
949 static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
|
950 int i, err, pci_using_dac; |
|
951 u16 eeprom_data = 0; |
|
952 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
953 int bars, need_ioport; |
|
954 |
|
955 /* do not allocate ioport bars when not needed */ |
|
956 need_ioport = e1000_is_need_ioport(pdev); |
|
957 if (need_ioport) { |
|
958 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
|
959 err = pci_enable_device(pdev); |
|
960 } else { |
|
961 bars = pci_select_bars(pdev, IORESOURCE_MEM); |
|
962 err = pci_enable_device_mem(pdev); |
|
963 } |
|
964 if (err) |
|
965 return err; |
|
966 |
|
967 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && |
|
968 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { |
|
969 pci_using_dac = 1; |
|
970 } else { |
|
971 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
|
972 if (err) { |
|
973 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
|
974 if (err) { |
|
975 E1000_ERR("No usable DMA configuration, " |
|
976 "aborting\n"); |
|
977 goto err_dma; |
|
978 } |
|
979 } |
|
980 pci_using_dac = 0; |
|
981 } |
|
982 |
|
983 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
|
984 if (err) |
|
985 goto err_pci_reg; |
|
986 |
|
987 pci_set_master(pdev); |
|
988 |
|
989 err = -ENOMEM; |
|
990 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
991 if (!netdev) |
|
992 goto err_alloc_etherdev; |
|
993 |
|
994 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
995 |
|
996 pci_set_drvdata(pdev, netdev); |
|
997 adapter = netdev_priv(netdev); |
|
998 adapter->netdev = netdev; |
|
999 adapter->pdev = pdev; |
|
1000 adapter->msg_enable = (1 << debug) - 1; |
|
1001 adapter->bars = bars; |
|
1002 adapter->need_ioport = need_ioport; |
|
1003 |
|
1004 hw = &adapter->hw; |
|
1005 hw->back = adapter; |
|
1006 |
|
1007 err = -EIO; |
|
1008 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); |
|
1009 if (!hw->hw_addr) |
|
1010 goto err_ioremap; |
|
1011 |
|
1012 if (adapter->need_ioport) { |
|
1013 for (i = BAR_1; i <= BAR_5; i++) { |
|
1014 if (pci_resource_len(pdev, i) == 0) |
|
1015 continue; |
|
1016 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
|
1017 hw->io_base = pci_resource_start(pdev, i); |
|
1018 break; |
|
1019 } |
|
1020 } |
|
1021 } |
|
1022 |
|
1023 netdev->netdev_ops = &e1000_netdev_ops; |
|
1024 e1000_set_ethtool_ops(netdev); |
|
1025 netdev->watchdog_timeo = 5 * HZ; |
|
1026 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
1027 |
|
1028 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
1029 |
|
1030 adapter->bd_number = cards_found; |
|
1031 |
|
1032 /* setup the private structure */ |
|
1033 |
|
1034 err = e1000_sw_init(adapter); |
|
1035 if (err) |
|
1036 goto err_sw_init; |
|
1037 |
|
1038 err = -EIO; |
|
1039 /* Flash BAR mapping must happen after e1000_sw_init |
|
1040 * because it depends on mac_type */ |
|
1041 if ((hw->mac_type == e1000_ich8lan) && |
|
1042 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
|
1043 hw->flash_address = pci_ioremap_bar(pdev, 1); |
|
1044 if (!hw->flash_address) |
|
1045 goto err_flashmap; |
|
1046 } |
|
1047 |
|
1048 if (e1000_check_phy_reset_block(hw)) |
|
1049 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); |
|
1050 |
|
1051 if (hw->mac_type >= e1000_82543) { |
|
1052 netdev->features = NETIF_F_SG | |
|
1053 NETIF_F_HW_CSUM | |
|
1054 NETIF_F_HW_VLAN_TX | |
|
1055 NETIF_F_HW_VLAN_RX | |
|
1056 NETIF_F_HW_VLAN_FILTER; |
|
1057 if (hw->mac_type == e1000_ich8lan) |
|
1058 netdev->features &= ~NETIF_F_HW_VLAN_FILTER; |
|
1059 } |
|
1060 |
|
1061 if ((hw->mac_type >= e1000_82544) && |
|
1062 (hw->mac_type != e1000_82547)) |
|
1063 netdev->features |= NETIF_F_TSO; |
|
1064 |
|
1065 if (hw->mac_type > e1000_82547_rev_2) |
|
1066 netdev->features |= NETIF_F_TSO6; |
|
1067 if (pci_using_dac) |
|
1068 netdev->features |= NETIF_F_HIGHDMA; |
|
1069 |
|
1070 netdev->vlan_features |= NETIF_F_TSO; |
|
1071 netdev->vlan_features |= NETIF_F_TSO6; |
|
1072 netdev->vlan_features |= NETIF_F_HW_CSUM; |
|
1073 netdev->vlan_features |= NETIF_F_SG; |
|
1074 |
|
1075 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
|
1076 |
|
1077 /* initialize eeprom parameters */ |
|
1078 if (e1000_init_eeprom_params(hw)) { |
|
1079 E1000_ERR("EEPROM initialization failed\n"); |
|
1080 goto err_eeprom; |
|
1081 } |
|
1082 |
|
1083 /* before reading the EEPROM, reset the controller to |
|
1084 * put the device in a known good starting state */ |
|
1085 |
|
1086 e1000_reset_hw(hw); |
|
1087 |
|
1088 /* make sure the EEPROM is good */ |
|
1089 if (e1000_validate_eeprom_checksum(hw) < 0) { |
|
1090 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); |
|
1091 e1000_dump_eeprom(adapter); |
|
1092 /* |
|
1093 * set MAC address to all zeroes to invalidate and temporary |
|
1094 * disable this device for the user. This blocks regular |
|
1095 * traffic while still permitting ethtool ioctls from reaching |
|
1096 * the hardware as well as allowing the user to run the |
|
1097 * interface after manually setting a hw addr using |
|
1098 * `ip set address` |
|
1099 */ |
|
1100 memset(hw->mac_addr, 0, netdev->addr_len); |
|
1101 } else { |
|
1102 /* copy the MAC address out of the EEPROM */ |
|
1103 if (e1000_read_mac_addr(hw)) |
|
1104 DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); |
|
1105 } |
|
1106 /* don't block initalization here due to bad MAC address */ |
|
1107 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
|
1108 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); |
|
1109 |
|
1110 if (!is_valid_ether_addr(netdev->perm_addr)) |
|
1111 DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); |
|
1112 |
|
1113 e1000_get_bus_info(hw); |
|
1114 |
|
1115 init_timer(&adapter->tx_fifo_stall_timer); |
|
1116 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; |
|
1117 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; |
|
1118 |
|
1119 init_timer(&adapter->watchdog_timer); |
|
1120 adapter->watchdog_timer.function = &e1000_watchdog; |
|
1121 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
1122 |
|
1123 init_timer(&adapter->phy_info_timer); |
|
1124 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
1125 adapter->phy_info_timer.data = (unsigned long)adapter; |
|
1126 |
|
1127 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
1128 |
|
1129 e1000_check_options(adapter); |
|
1130 |
|
1131 /* Initial Wake on LAN setting |
|
1132 * If APM wake is enabled in the EEPROM, |
|
1133 * enable the ACPI Magic Packet filter |
|
1134 */ |
|
1135 |
|
1136 switch (hw->mac_type) { |
|
1137 case e1000_82542_rev2_0: |
|
1138 case e1000_82542_rev2_1: |
|
1139 case e1000_82543: |
|
1140 break; |
|
1141 case e1000_82544: |
|
1142 e1000_read_eeprom(hw, |
|
1143 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
|
1144 eeprom_apme_mask = E1000_EEPROM_82544_APM; |
|
1145 break; |
|
1146 case e1000_ich8lan: |
|
1147 e1000_read_eeprom(hw, |
|
1148 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); |
|
1149 eeprom_apme_mask = E1000_EEPROM_ICH8_APME; |
|
1150 break; |
|
1151 case e1000_82546: |
|
1152 case e1000_82546_rev_3: |
|
1153 case e1000_82571: |
|
1154 case e1000_80003es2lan: |
|
1155 if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
|
1156 e1000_read_eeprom(hw, |
|
1157 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
1158 break; |
|
1159 } |
|
1160 /* Fall Through */ |
|
1161 default: |
|
1162 e1000_read_eeprom(hw, |
|
1163 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
1164 break; |
|
1165 } |
|
1166 if (eeprom_data & eeprom_apme_mask) |
|
1167 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
1168 |
|
1169 /* now that we have the eeprom settings, apply the special cases |
|
1170 * where the eeprom may be wrong or the board simply won't support |
|
1171 * wake on lan on a particular port */ |
|
1172 switch (pdev->device) { |
|
1173 case E1000_DEV_ID_82546GB_PCIE: |
|
1174 adapter->eeprom_wol = 0; |
|
1175 break; |
|
1176 case E1000_DEV_ID_82546EB_FIBER: |
|
1177 case E1000_DEV_ID_82546GB_FIBER: |
|
1178 case E1000_DEV_ID_82571EB_FIBER: |
|
1179 /* Wake events only supported on port A for dual fiber |
|
1180 * regardless of eeprom setting */ |
|
1181 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
1182 adapter->eeprom_wol = 0; |
|
1183 break; |
|
1184 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1185 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
1186 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
1187 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
|
1188 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
1189 /* if quad port adapter, disable WoL on all but port A */ |
|
1190 if (global_quad_port_a != 0) |
|
1191 adapter->eeprom_wol = 0; |
|
1192 else |
|
1193 adapter->quad_port_a = 1; |
|
1194 /* Reset for multiple quad port adapters */ |
|
1195 if (++global_quad_port_a == 4) |
|
1196 global_quad_port_a = 0; |
|
1197 break; |
|
1198 } |
|
1199 |
|
1200 /* initialize the wol settings based on the eeprom settings */ |
|
1201 adapter->wol = adapter->eeprom_wol; |
|
1202 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1203 |
|
1204 /* print bus type/speed/width info */ |
|
1205 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", |
|
1206 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : |
|
1207 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), |
|
1208 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : |
|
1209 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : |
|
1210 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : |
|
1211 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : |
|
1212 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), |
|
1213 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : |
|
1214 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : |
|
1215 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : |
|
1216 "32-bit")); |
|
1217 |
|
1218 printk("%pM\n", netdev->dev_addr); |
|
1219 |
|
1220 if (hw->bus_type == e1000_bus_type_pci_express) { |
|
1221 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no " |
|
1222 "longer be supported by this driver in the future.\n", |
|
1223 pdev->vendor, pdev->device); |
|
1224 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" " |
|
1225 "driver instead.\n"); |
|
1226 } |
|
1227 |
|
1228 /* reset the hardware with the new settings */ |
|
1229 e1000_reset(adapter); |
|
1230 |
|
1231 /* If the controller is 82573 and f/w is AMT, do not set |
|
1232 * DRV_LOAD until the interface is up. For all other cases, |
|
1233 * let the f/w know that the h/w is now under the control |
|
1234 * of the driver. */ |
|
1235 if (hw->mac_type != e1000_82573 || |
|
1236 !e1000_check_mng_mode(hw)) |
|
1237 e1000_get_hw_control(adapter); |
|
1238 |
|
1239 strcpy(netdev->name, "eth%d"); |
|
1240 err = register_netdev(netdev); |
|
1241 if (err) |
|
1242 goto err_register; |
|
1243 |
|
1244 /* carrier off reporting is important to ethtool even BEFORE open */ |
|
1245 netif_carrier_off(netdev); |
|
1246 |
|
1247 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); |
|
1248 |
|
1249 cards_found++; |
|
1250 return 0; |
|
1251 |
|
1252 err_register: |
|
1253 e1000_release_hw_control(adapter); |
|
1254 err_eeprom: |
|
1255 if (!e1000_check_phy_reset_block(hw)) |
|
1256 e1000_phy_hw_reset(hw); |
|
1257 |
|
1258 if (hw->flash_address) |
|
1259 iounmap(hw->flash_address); |
|
1260 err_flashmap: |
|
1261 kfree(adapter->tx_ring); |
|
1262 kfree(adapter->rx_ring); |
|
1263 err_sw_init: |
|
1264 iounmap(hw->hw_addr); |
|
1265 err_ioremap: |
|
1266 free_netdev(netdev); |
|
1267 err_alloc_etherdev: |
|
1268 pci_release_selected_regions(pdev, bars); |
|
1269 err_pci_reg: |
|
1270 err_dma: |
|
1271 pci_disable_device(pdev); |
|
1272 return err; |
|
1273 } |
|
1274 |
|
1275 /** |
|
1276 * e1000_remove - Device Removal Routine |
|
1277 * @pdev: PCI device information struct |
|
1278 * |
|
1279 * e1000_remove is called by the PCI subsystem to alert the driver |
|
1280 * that it should release a PCI device. The could be caused by a |
|
1281 * Hot-Plug event, or because the driver is going to be removed from |
|
1282 * memory. |
|
1283 **/ |
|
1284 |
|
1285 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
1286 { |
|
1287 struct net_device *netdev = pci_get_drvdata(pdev); |
|
1288 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1289 struct e1000_hw *hw = &adapter->hw; |
|
1290 |
|
1291 cancel_work_sync(&adapter->reset_task); |
|
1292 |
|
1293 e1000_release_manageability(adapter); |
|
1294 |
|
1295 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
1296 * would have already happened in close and is redundant. */ |
|
1297 e1000_release_hw_control(adapter); |
|
1298 |
|
1299 unregister_netdev(netdev); |
|
1300 |
|
1301 if (!e1000_check_phy_reset_block(hw)) |
|
1302 e1000_phy_hw_reset(hw); |
|
1303 |
|
1304 kfree(adapter->tx_ring); |
|
1305 kfree(adapter->rx_ring); |
|
1306 |
|
1307 iounmap(hw->hw_addr); |
|
1308 if (hw->flash_address) |
|
1309 iounmap(hw->flash_address); |
|
1310 pci_release_selected_regions(pdev, adapter->bars); |
|
1311 |
|
1312 free_netdev(netdev); |
|
1313 |
|
1314 pci_disable_device(pdev); |
|
1315 } |
|
1316 |
|
1317 /** |
|
1318 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
1319 * @adapter: board private structure to initialize |
|
1320 * |
|
1321 * e1000_sw_init initializes the Adapter private data structure. |
|
1322 * Fields are initialized based on PCI device information and |
|
1323 * OS network device settings (MTU size). |
|
1324 **/ |
|
1325 |
|
1326 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
1327 { |
|
1328 struct e1000_hw *hw = &adapter->hw; |
|
1329 struct net_device *netdev = adapter->netdev; |
|
1330 struct pci_dev *pdev = adapter->pdev; |
|
1331 |
|
1332 /* PCI config space info */ |
|
1333 |
|
1334 hw->vendor_id = pdev->vendor; |
|
1335 hw->device_id = pdev->device; |
|
1336 hw->subsystem_vendor_id = pdev->subsystem_vendor; |
|
1337 hw->subsystem_id = pdev->subsystem_device; |
|
1338 hw->revision_id = pdev->revision; |
|
1339 |
|
1340 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
|
1341 |
|
1342 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
1343 hw->max_frame_size = netdev->mtu + |
|
1344 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
1345 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
|
1346 |
|
1347 /* identify the MAC */ |
|
1348 |
|
1349 if (e1000_set_mac_type(hw)) { |
|
1350 DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); |
|
1351 return -EIO; |
|
1352 } |
|
1353 |
|
1354 switch (hw->mac_type) { |
|
1355 default: |
|
1356 break; |
|
1357 case e1000_82541: |
|
1358 case e1000_82547: |
|
1359 case e1000_82541_rev_2: |
|
1360 case e1000_82547_rev_2: |
|
1361 hw->phy_init_script = 1; |
|
1362 break; |
|
1363 } |
|
1364 |
|
1365 e1000_set_media_type(hw); |
|
1366 |
|
1367 hw->wait_autoneg_complete = false; |
|
1368 hw->tbi_compatibility_en = true; |
|
1369 hw->adaptive_ifs = true; |
|
1370 |
|
1371 /* Copper options */ |
|
1372 |
|
1373 if (hw->media_type == e1000_media_type_copper) { |
|
1374 hw->mdix = AUTO_ALL_MODES; |
|
1375 hw->disable_polarity_correction = false; |
|
1376 hw->master_slave = E1000_MASTER_SLAVE; |
|
1377 } |
|
1378 |
|
1379 adapter->num_tx_queues = 1; |
|
1380 adapter->num_rx_queues = 1; |
|
1381 |
|
1382 if (e1000_alloc_queues(adapter)) { |
|
1383 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); |
|
1384 return -ENOMEM; |
|
1385 } |
|
1386 |
|
1387 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
1388 e1000_irq_disable(adapter); |
|
1389 |
|
1390 spin_lock_init(&adapter->stats_lock); |
|
1391 |
|
1392 set_bit(__E1000_DOWN, &adapter->flags); |
|
1393 |
|
1394 return 0; |
|
1395 } |
|
1396 |
|
1397 /** |
|
1398 * e1000_alloc_queues - Allocate memory for all rings |
|
1399 * @adapter: board private structure to initialize |
|
1400 * |
|
1401 * We allocate one ring per queue at run-time since we don't know the |
|
1402 * number of queues at compile-time. |
|
1403 **/ |
|
1404 |
|
1405 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1406 { |
|
1407 adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
|
1408 sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
1409 if (!adapter->tx_ring) |
|
1410 return -ENOMEM; |
|
1411 |
|
1412 adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
|
1413 sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
1414 if (!adapter->rx_ring) { |
|
1415 kfree(adapter->tx_ring); |
|
1416 return -ENOMEM; |
|
1417 } |
|
1418 |
|
1419 return E1000_SUCCESS; |
|
1420 } |
|
1421 |
|
1422 /** |
|
1423 * e1000_open - Called when a network interface is made active |
|
1424 * @netdev: network interface device structure |
|
1425 * |
|
1426 * Returns 0 on success, negative value on failure |
|
1427 * |
|
1428 * The open entry point is called when a network interface is made |
|
1429 * active by the system (IFF_UP). At this point all resources needed |
|
1430 * for transmit and receive operations are allocated, the interrupt |
|
1431 * handler is registered with the OS, the watchdog timer is started, |
|
1432 * and the stack is notified that the interface is ready. |
|
1433 **/ |
|
1434 |
|
1435 static int e1000_open(struct net_device *netdev) |
|
1436 { |
|
1437 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1438 struct e1000_hw *hw = &adapter->hw; |
|
1439 int err; |
|
1440 |
|
1441 /* disallow open during test */ |
|
1442 if (test_bit(__E1000_TESTING, &adapter->flags)) |
|
1443 return -EBUSY; |
|
1444 |
|
1445 netif_carrier_off(netdev); |
|
1446 |
|
1447 /* allocate transmit descriptors */ |
|
1448 err = e1000_setup_all_tx_resources(adapter); |
|
1449 if (err) |
|
1450 goto err_setup_tx; |
|
1451 |
|
1452 /* allocate receive descriptors */ |
|
1453 err = e1000_setup_all_rx_resources(adapter); |
|
1454 if (err) |
|
1455 goto err_setup_rx; |
|
1456 |
|
1457 e1000_power_up_phy(adapter); |
|
1458 |
|
1459 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
1460 if ((hw->mng_cookie.status & |
|
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
|
1462 e1000_update_mng_vlan(adapter); |
|
1463 } |
|
1464 |
|
1465 /* If AMT is enabled, let the firmware know that the network |
|
1466 * interface is now open */ |
|
1467 if (hw->mac_type == e1000_82573 && |
|
1468 e1000_check_mng_mode(hw)) |
|
1469 e1000_get_hw_control(adapter); |
|
1470 |
|
1471 /* before we allocate an interrupt, we must be ready to handle it. |
|
1472 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
1473 * as soon as we call pci_request_irq, so we have to setup our |
|
1474 * clean_rx handler before we do so. */ |
|
1475 e1000_configure(adapter); |
|
1476 |
|
1477 err = e1000_request_irq(adapter); |
|
1478 if (err) |
|
1479 goto err_req_irq; |
|
1480 |
|
1481 /* From here on the code is the same as e1000_up() */ |
|
1482 clear_bit(__E1000_DOWN, &adapter->flags); |
|
1483 |
|
1484 napi_enable(&adapter->napi); |
|
1485 |
|
1486 e1000_irq_enable(adapter); |
|
1487 |
|
1488 netif_start_queue(netdev); |
|
1489 |
|
1490 /* fire a link status change interrupt to start the watchdog */ |
|
1491 ew32(ICS, E1000_ICS_LSC); |
|
1492 |
|
1493 return E1000_SUCCESS; |
|
1494 |
|
1495 err_req_irq: |
|
1496 e1000_release_hw_control(adapter); |
|
1497 e1000_power_down_phy(adapter); |
|
1498 e1000_free_all_rx_resources(adapter); |
|
1499 err_setup_rx: |
|
1500 e1000_free_all_tx_resources(adapter); |
|
1501 err_setup_tx: |
|
1502 e1000_reset(adapter); |
|
1503 |
|
1504 return err; |
|
1505 } |
|
1506 |
|
1507 /** |
|
1508 * e1000_close - Disables a network interface |
|
1509 * @netdev: network interface device structure |
|
1510 * |
|
1511 * Returns 0, this is not allowed to fail |
|
1512 * |
|
1513 * The close entry point is called when an interface is de-activated |
|
1514 * by the OS. The hardware is still under the drivers control, but |
|
1515 * needs to be disabled. A global MAC reset is issued to stop the |
|
1516 * hardware, and all transmit and receive resources are freed. |
|
1517 **/ |
|
1518 |
|
1519 static int e1000_close(struct net_device *netdev) |
|
1520 { |
|
1521 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1522 struct e1000_hw *hw = &adapter->hw; |
|
1523 |
|
1524 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
1525 e1000_down(adapter); |
|
1526 e1000_power_down_phy(adapter); |
|
1527 e1000_free_irq(adapter); |
|
1528 |
|
1529 e1000_free_all_tx_resources(adapter); |
|
1530 e1000_free_all_rx_resources(adapter); |
|
1531 |
|
1532 /* kill manageability vlan ID if supported, but not if a vlan with |
|
1533 * the same ID is registered on the host OS (let 8021q kill it) */ |
|
1534 if ((hw->mng_cookie.status & |
|
1535 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
1536 !(adapter->vlgrp && |
|
1537 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { |
|
1538 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
1539 } |
|
1540 |
|
1541 /* If AMT is enabled, let the firmware know that the network |
|
1542 * interface is now closed */ |
|
1543 if (hw->mac_type == e1000_82573 && |
|
1544 e1000_check_mng_mode(hw)) |
|
1545 e1000_release_hw_control(adapter); |
|
1546 |
|
1547 return 0; |
|
1548 } |
|
1549 |
|
1550 /** |
|
1551 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
|
1552 * @adapter: address of board private structure |
|
1553 * @start: address of beginning of memory |
|
1554 * @len: length of memory |
|
1555 **/ |
|
1556 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
|
1557 unsigned long len) |
|
1558 { |
|
1559 struct e1000_hw *hw = &adapter->hw; |
|
1560 unsigned long begin = (unsigned long)start; |
|
1561 unsigned long end = begin + len; |
|
1562 |
|
1563 /* First rev 82545 and 82546 need to not allow any memory |
|
1564 * write location to cross 64k boundary due to errata 23 */ |
|
1565 if (hw->mac_type == e1000_82545 || |
|
1566 hw->mac_type == e1000_82546) { |
|
1567 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
|
1568 } |
|
1569 |
|
1570 return true; |
|
1571 } |
|
1572 |
|
1573 /** |
|
1574 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1575 * @adapter: board private structure |
|
1576 * @txdr: tx descriptor ring (for a specific queue) to setup |
|
1577 * |
|
1578 * Return 0 on success, negative on failure |
|
1579 **/ |
|
1580 |
|
1581 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
1582 struct e1000_tx_ring *txdr) |
|
1583 { |
|
1584 struct pci_dev *pdev = adapter->pdev; |
|
1585 int size; |
|
1586 |
|
1587 size = sizeof(struct e1000_buffer) * txdr->count; |
|
1588 txdr->buffer_info = vmalloc(size); |
|
1589 if (!txdr->buffer_info) { |
|
1590 DPRINTK(PROBE, ERR, |
|
1591 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1592 return -ENOMEM; |
|
1593 } |
|
1594 memset(txdr->buffer_info, 0, size); |
|
1595 |
|
1596 /* round up to nearest 4K */ |
|
1597 |
|
1598 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1599 txdr->size = ALIGN(txdr->size, 4096); |
|
1600 |
|
1601 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1602 if (!txdr->desc) { |
|
1603 setup_tx_desc_die: |
|
1604 vfree(txdr->buffer_info); |
|
1605 DPRINTK(PROBE, ERR, |
|
1606 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1607 return -ENOMEM; |
|
1608 } |
|
1609 |
|
1610 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1611 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1612 void *olddesc = txdr->desc; |
|
1613 dma_addr_t olddma = txdr->dma; |
|
1614 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " |
|
1615 "at %p\n", txdr->size, txdr->desc); |
|
1616 /* Try again, without freeing the previous */ |
|
1617 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1618 /* Failed allocation, critical failure */ |
|
1619 if (!txdr->desc) { |
|
1620 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1621 goto setup_tx_desc_die; |
|
1622 } |
|
1623 |
|
1624 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1625 /* give up */ |
|
1626 pci_free_consistent(pdev, txdr->size, txdr->desc, |
|
1627 txdr->dma); |
|
1628 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1629 DPRINTK(PROBE, ERR, |
|
1630 "Unable to allocate aligned memory " |
|
1631 "for the transmit descriptor ring\n"); |
|
1632 vfree(txdr->buffer_info); |
|
1633 return -ENOMEM; |
|
1634 } else { |
|
1635 /* Free old allocation, new allocation was successful */ |
|
1636 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1637 } |
|
1638 } |
|
1639 memset(txdr->desc, 0, txdr->size); |
|
1640 |
|
1641 txdr->next_to_use = 0; |
|
1642 txdr->next_to_clean = 0; |
|
1643 |
|
1644 return 0; |
|
1645 } |
|
1646 |
|
1647 /** |
|
1648 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
|
1649 * (Descriptors) for all queues |
|
1650 * @adapter: board private structure |
|
1651 * |
|
1652 * Return 0 on success, negative on failure |
|
1653 **/ |
|
1654 |
|
1655 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
|
1656 { |
|
1657 int i, err = 0; |
|
1658 |
|
1659 for (i = 0; i < adapter->num_tx_queues; i++) { |
|
1660 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1661 if (err) { |
|
1662 DPRINTK(PROBE, ERR, |
|
1663 "Allocation for Tx Queue %u failed\n", i); |
|
1664 for (i-- ; i >= 0; i--) |
|
1665 e1000_free_tx_resources(adapter, |
|
1666 &adapter->tx_ring[i]); |
|
1667 break; |
|
1668 } |
|
1669 } |
|
1670 |
|
1671 return err; |
|
1672 } |
|
1673 |
|
1674 /** |
|
1675 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
1676 * @adapter: board private structure |
|
1677 * |
|
1678 * Configure the Tx unit of the MAC after a reset. |
|
1679 **/ |
|
1680 |
|
1681 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
1682 { |
|
1683 u64 tdba; |
|
1684 struct e1000_hw *hw = &adapter->hw; |
|
1685 u32 tdlen, tctl, tipg, tarc; |
|
1686 u32 ipgr1, ipgr2; |
|
1687 |
|
1688 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
1689 |
|
1690 switch (adapter->num_tx_queues) { |
|
1691 case 1: |
|
1692 default: |
|
1693 tdba = adapter->tx_ring[0].dma; |
|
1694 tdlen = adapter->tx_ring[0].count * |
|
1695 sizeof(struct e1000_tx_desc); |
|
1696 ew32(TDLEN, tdlen); |
|
1697 ew32(TDBAH, (tdba >> 32)); |
|
1698 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
|
1699 ew32(TDT, 0); |
|
1700 ew32(TDH, 0); |
|
1701 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); |
|
1702 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); |
|
1703 break; |
|
1704 } |
|
1705 |
|
1706 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
1707 if (hw->mac_type <= e1000_82547_rev_2 && |
|
1708 (hw->media_type == e1000_media_type_fiber || |
|
1709 hw->media_type == e1000_media_type_internal_serdes)) |
|
1710 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
|
1711 else |
|
1712 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
|
1713 |
|
1714 switch (hw->mac_type) { |
|
1715 case e1000_82542_rev2_0: |
|
1716 case e1000_82542_rev2_1: |
|
1717 tipg = DEFAULT_82542_TIPG_IPGT; |
|
1718 ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
|
1719 ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
|
1720 break; |
|
1721 case e1000_80003es2lan: |
|
1722 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1723 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; |
|
1724 break; |
|
1725 default: |
|
1726 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1727 ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
|
1728 break; |
|
1729 } |
|
1730 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
1731 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
1732 ew32(TIPG, tipg); |
|
1733 |
|
1734 /* Set the Tx Interrupt Delay register */ |
|
1735 |
|
1736 ew32(TIDV, adapter->tx_int_delay); |
|
1737 if (hw->mac_type >= e1000_82540) |
|
1738 ew32(TADV, adapter->tx_abs_int_delay); |
|
1739 |
|
1740 /* Program the Transmit Control Register */ |
|
1741 |
|
1742 tctl = er32(TCTL); |
|
1743 tctl &= ~E1000_TCTL_CT; |
|
1744 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
1745 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
1746 |
|
1747 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { |
|
1748 tarc = er32(TARC0); |
|
1749 /* set the speed mode bit, we'll clear it if we're not at |
|
1750 * gigabit link later */ |
|
1751 tarc |= (1 << 21); |
|
1752 ew32(TARC0, tarc); |
|
1753 } else if (hw->mac_type == e1000_80003es2lan) { |
|
1754 tarc = er32(TARC0); |
|
1755 tarc |= 1; |
|
1756 ew32(TARC0, tarc); |
|
1757 tarc = er32(TARC1); |
|
1758 tarc |= 1; |
|
1759 ew32(TARC1, tarc); |
|
1760 } |
|
1761 |
|
1762 e1000_config_collision_dist(hw); |
|
1763 |
|
1764 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
1765 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
1766 |
|
1767 /* only set IDE if we are delaying interrupts using the timers */ |
|
1768 if (adapter->tx_int_delay) |
|
1769 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
1770 |
|
1771 if (hw->mac_type < e1000_82543) |
|
1772 adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
|
1773 else |
|
1774 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
1775 |
|
1776 /* Cache if we're 82544 running in PCI-X because we'll |
|
1777 * need this to apply a workaround later in the send path. */ |
|
1778 if (hw->mac_type == e1000_82544 && |
|
1779 hw->bus_type == e1000_bus_type_pcix) |
|
1780 adapter->pcix_82544 = 1; |
|
1781 |
|
1782 ew32(TCTL, tctl); |
|
1783 |
|
1784 } |
|
1785 |
|
1786 /** |
|
1787 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1788 * @adapter: board private structure |
|
1789 * @rxdr: rx descriptor ring (for a specific queue) to setup |
|
1790 * |
|
1791 * Returns 0 on success, negative on failure |
|
1792 **/ |
|
1793 |
|
1794 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
1795 struct e1000_rx_ring *rxdr) |
|
1796 { |
|
1797 struct e1000_hw *hw = &adapter->hw; |
|
1798 struct pci_dev *pdev = adapter->pdev; |
|
1799 int size, desc_len; |
|
1800 |
|
1801 size = sizeof(struct e1000_buffer) * rxdr->count; |
|
1802 rxdr->buffer_info = vmalloc(size); |
|
1803 if (!rxdr->buffer_info) { |
|
1804 DPRINTK(PROBE, ERR, |
|
1805 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1806 return -ENOMEM; |
|
1807 } |
|
1808 memset(rxdr->buffer_info, 0, size); |
|
1809 |
|
1810 if (hw->mac_type <= e1000_82547_rev_2) |
|
1811 desc_len = sizeof(struct e1000_rx_desc); |
|
1812 else |
|
1813 desc_len = sizeof(union e1000_rx_desc_packet_split); |
|
1814 |
|
1815 /* Round up to nearest 4K */ |
|
1816 |
|
1817 rxdr->size = rxdr->count * desc_len; |
|
1818 rxdr->size = ALIGN(rxdr->size, 4096); |
|
1819 |
|
1820 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1821 |
|
1822 if (!rxdr->desc) { |
|
1823 DPRINTK(PROBE, ERR, |
|
1824 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1825 setup_rx_desc_die: |
|
1826 vfree(rxdr->buffer_info); |
|
1827 return -ENOMEM; |
|
1828 } |
|
1829 |
|
1830 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1831 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1832 void *olddesc = rxdr->desc; |
|
1833 dma_addr_t olddma = rxdr->dma; |
|
1834 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " |
|
1835 "at %p\n", rxdr->size, rxdr->desc); |
|
1836 /* Try again, without freeing the previous */ |
|
1837 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1838 /* Failed allocation, critical failure */ |
|
1839 if (!rxdr->desc) { |
|
1840 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1841 DPRINTK(PROBE, ERR, |
|
1842 "Unable to allocate memory " |
|
1843 "for the receive descriptor ring\n"); |
|
1844 goto setup_rx_desc_die; |
|
1845 } |
|
1846 |
|
1847 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1848 /* give up */ |
|
1849 pci_free_consistent(pdev, rxdr->size, rxdr->desc, |
|
1850 rxdr->dma); |
|
1851 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1852 DPRINTK(PROBE, ERR, |
|
1853 "Unable to allocate aligned memory " |
|
1854 "for the receive descriptor ring\n"); |
|
1855 goto setup_rx_desc_die; |
|
1856 } else { |
|
1857 /* Free old allocation, new allocation was successful */ |
|
1858 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1859 } |
|
1860 } |
|
1861 memset(rxdr->desc, 0, rxdr->size); |
|
1862 |
|
1863 rxdr->next_to_clean = 0; |
|
1864 rxdr->next_to_use = 0; |
|
1865 |
|
1866 return 0; |
|
1867 } |
|
1868 |
|
1869 /** |
|
1870 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
|
1871 * (Descriptors) for all queues |
|
1872 * @adapter: board private structure |
|
1873 * |
|
1874 * Return 0 on success, negative on failure |
|
1875 **/ |
|
1876 |
|
1877 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
|
1878 { |
|
1879 int i, err = 0; |
|
1880 |
|
1881 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1882 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1883 if (err) { |
|
1884 DPRINTK(PROBE, ERR, |
|
1885 "Allocation for Rx Queue %u failed\n", i); |
|
1886 for (i-- ; i >= 0; i--) |
|
1887 e1000_free_rx_resources(adapter, |
|
1888 &adapter->rx_ring[i]); |
|
1889 break; |
|
1890 } |
|
1891 } |
|
1892 |
|
1893 return err; |
|
1894 } |
|
1895 |
|
1896 /** |
|
1897 * e1000_setup_rctl - configure the receive control registers |
|
1898 * @adapter: Board private structure |
|
1899 **/ |
|
1900 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
1901 { |
|
1902 struct e1000_hw *hw = &adapter->hw; |
|
1903 u32 rctl; |
|
1904 |
|
1905 rctl = er32(RCTL); |
|
1906 |
|
1907 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
1908 |
|
1909 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
1910 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1911 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1912 |
|
1913 if (hw->tbi_compatibility_on == 1) |
|
1914 rctl |= E1000_RCTL_SBP; |
|
1915 else |
|
1916 rctl &= ~E1000_RCTL_SBP; |
|
1917 |
|
1918 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
1919 rctl &= ~E1000_RCTL_LPE; |
|
1920 else |
|
1921 rctl |= E1000_RCTL_LPE; |
|
1922 |
|
1923 /* Setup buffer sizes */ |
|
1924 rctl &= ~E1000_RCTL_SZ_4096; |
|
1925 rctl |= E1000_RCTL_BSEX; |
|
1926 switch (adapter->rx_buffer_len) { |
|
1927 case E1000_RXBUFFER_256: |
|
1928 rctl |= E1000_RCTL_SZ_256; |
|
1929 rctl &= ~E1000_RCTL_BSEX; |
|
1930 break; |
|
1931 case E1000_RXBUFFER_512: |
|
1932 rctl |= E1000_RCTL_SZ_512; |
|
1933 rctl &= ~E1000_RCTL_BSEX; |
|
1934 break; |
|
1935 case E1000_RXBUFFER_1024: |
|
1936 rctl |= E1000_RCTL_SZ_1024; |
|
1937 rctl &= ~E1000_RCTL_BSEX; |
|
1938 break; |
|
1939 case E1000_RXBUFFER_2048: |
|
1940 default: |
|
1941 rctl |= E1000_RCTL_SZ_2048; |
|
1942 rctl &= ~E1000_RCTL_BSEX; |
|
1943 break; |
|
1944 case E1000_RXBUFFER_4096: |
|
1945 rctl |= E1000_RCTL_SZ_4096; |
|
1946 break; |
|
1947 case E1000_RXBUFFER_8192: |
|
1948 rctl |= E1000_RCTL_SZ_8192; |
|
1949 break; |
|
1950 case E1000_RXBUFFER_16384: |
|
1951 rctl |= E1000_RCTL_SZ_16384; |
|
1952 break; |
|
1953 } |
|
1954 |
|
1955 ew32(RCTL, rctl); |
|
1956 } |
|
1957 |
|
1958 /** |
|
1959 * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
|
1960 * @adapter: board private structure |
|
1961 * |
|
1962 * Configure the Rx unit of the MAC after a reset. |
|
1963 **/ |
|
1964 |
|
1965 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
1966 { |
|
1967 u64 rdba; |
|
1968 struct e1000_hw *hw = &adapter->hw; |
|
1969 u32 rdlen, rctl, rxcsum, ctrl_ext; |
|
1970 |
|
1971 rdlen = adapter->rx_ring[0].count * |
|
1972 sizeof(struct e1000_rx_desc); |
|
1973 adapter->clean_rx = e1000_clean_rx_irq; |
|
1974 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
1975 |
|
1976 /* disable receives while setting up the descriptors */ |
|
1977 rctl = er32(RCTL); |
|
1978 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1979 |
|
1980 /* set the Receive Delay Timer Register */ |
|
1981 ew32(RDTR, adapter->rx_int_delay); |
|
1982 |
|
1983 if (hw->mac_type >= e1000_82540) { |
|
1984 ew32(RADV, adapter->rx_abs_int_delay); |
|
1985 if (adapter->itr_setting != 0) |
|
1986 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
1987 } |
|
1988 |
|
1989 if (hw->mac_type >= e1000_82571) { |
|
1990 ctrl_ext = er32(CTRL_EXT); |
|
1991 /* Reset delay timers after every interrupt */ |
|
1992 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
|
1993 /* Auto-Mask interrupts upon ICR access */ |
|
1994 ctrl_ext |= E1000_CTRL_EXT_IAME; |
|
1995 ew32(IAM, 0xffffffff); |
|
1996 ew32(CTRL_EXT, ctrl_ext); |
|
1997 E1000_WRITE_FLUSH(); |
|
1998 } |
|
1999 |
|
2000 /* Setup the HW Rx Head and Tail Descriptor Pointers and |
|
2001 * the Base and Length of the Rx Descriptor Ring */ |
|
2002 switch (adapter->num_rx_queues) { |
|
2003 case 1: |
|
2004 default: |
|
2005 rdba = adapter->rx_ring[0].dma; |
|
2006 ew32(RDLEN, rdlen); |
|
2007 ew32(RDBAH, (rdba >> 32)); |
|
2008 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
|
2009 ew32(RDT, 0); |
|
2010 ew32(RDH, 0); |
|
2011 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); |
|
2012 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); |
|
2013 break; |
|
2014 } |
|
2015 |
|
2016 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
|
2017 if (hw->mac_type >= e1000_82543) { |
|
2018 rxcsum = er32(RXCSUM); |
|
2019 if (adapter->rx_csum) |
|
2020 rxcsum |= E1000_RXCSUM_TUOFL; |
|
2021 else |
|
2022 /* don't need to clear IPPCSE as it defaults to 0 */ |
|
2023 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
2024 ew32(RXCSUM, rxcsum); |
|
2025 } |
|
2026 |
|
2027 /* Enable Receives */ |
|
2028 ew32(RCTL, rctl); |
|
2029 } |
|
2030 |
|
2031 /** |
|
2032 * e1000_free_tx_resources - Free Tx Resources per Queue |
|
2033 * @adapter: board private structure |
|
2034 * @tx_ring: Tx descriptor ring for a specific queue |
|
2035 * |
|
2036 * Free all transmit software resources |
|
2037 **/ |
|
2038 |
|
2039 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
2040 struct e1000_tx_ring *tx_ring) |
|
2041 { |
|
2042 struct pci_dev *pdev = adapter->pdev; |
|
2043 |
|
2044 e1000_clean_tx_ring(adapter, tx_ring); |
|
2045 |
|
2046 vfree(tx_ring->buffer_info); |
|
2047 tx_ring->buffer_info = NULL; |
|
2048 |
|
2049 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); |
|
2050 |
|
2051 tx_ring->desc = NULL; |
|
2052 } |
|
2053 |
|
2054 /** |
|
2055 * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
|
2056 * @adapter: board private structure |
|
2057 * |
|
2058 * Free all transmit software resources |
|
2059 **/ |
|
2060 |
|
2061 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
|
2062 { |
|
2063 int i; |
|
2064 |
|
2065 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2066 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
|
2067 } |
|
2068 |
|
2069 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
|
2070 struct e1000_buffer *buffer_info) |
|
2071 { |
|
2072 buffer_info->dma = 0; |
|
2073 if (buffer_info->skb) { |
|
2074 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb, |
|
2075 DMA_TO_DEVICE); |
|
2076 dev_kfree_skb_any(buffer_info->skb); |
|
2077 buffer_info->skb = NULL; |
|
2078 } |
|
2079 buffer_info->time_stamp = 0; |
|
2080 /* buffer_info must be completely set up in the transmit path */ |
|
2081 } |
|
2082 |
|
2083 /** |
|
2084 * e1000_clean_tx_ring - Free Tx Buffers |
|
2085 * @adapter: board private structure |
|
2086 * @tx_ring: ring to be cleaned |
|
2087 **/ |
|
2088 |
|
2089 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
2090 struct e1000_tx_ring *tx_ring) |
|
2091 { |
|
2092 struct e1000_hw *hw = &adapter->hw; |
|
2093 struct e1000_buffer *buffer_info; |
|
2094 unsigned long size; |
|
2095 unsigned int i; |
|
2096 |
|
2097 /* Free all the Tx ring sk_buffs */ |
|
2098 |
|
2099 for (i = 0; i < tx_ring->count; i++) { |
|
2100 buffer_info = &tx_ring->buffer_info[i]; |
|
2101 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
2102 } |
|
2103 |
|
2104 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
2105 memset(tx_ring->buffer_info, 0, size); |
|
2106 |
|
2107 /* Zero out the descriptor ring */ |
|
2108 |
|
2109 memset(tx_ring->desc, 0, tx_ring->size); |
|
2110 |
|
2111 tx_ring->next_to_use = 0; |
|
2112 tx_ring->next_to_clean = 0; |
|
2113 tx_ring->last_tx_tso = 0; |
|
2114 |
|
2115 writel(0, hw->hw_addr + tx_ring->tdh); |
|
2116 writel(0, hw->hw_addr + tx_ring->tdt); |
|
2117 } |
|
2118 |
|
2119 /** |
|
2120 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
|
2121 * @adapter: board private structure |
|
2122 **/ |
|
2123 |
|
2124 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
|
2125 { |
|
2126 int i; |
|
2127 |
|
2128 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2129 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
|
2130 } |
|
2131 |
|
2132 /** |
|
2133 * e1000_free_rx_resources - Free Rx Resources |
|
2134 * @adapter: board private structure |
|
2135 * @rx_ring: ring to clean the resources from |
|
2136 * |
|
2137 * Free all receive software resources |
|
2138 **/ |
|
2139 |
|
2140 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
2141 struct e1000_rx_ring *rx_ring) |
|
2142 { |
|
2143 struct pci_dev *pdev = adapter->pdev; |
|
2144 |
|
2145 e1000_clean_rx_ring(adapter, rx_ring); |
|
2146 |
|
2147 vfree(rx_ring->buffer_info); |
|
2148 rx_ring->buffer_info = NULL; |
|
2149 |
|
2150 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
|
2151 |
|
2152 rx_ring->desc = NULL; |
|
2153 } |
|
2154 |
|
2155 /** |
|
2156 * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
|
2157 * @adapter: board private structure |
|
2158 * |
|
2159 * Free all receive software resources |
|
2160 **/ |
|
2161 |
|
2162 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
|
2163 { |
|
2164 int i; |
|
2165 |
|
2166 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2167 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
|
2168 } |
|
2169 |
|
2170 /** |
|
2171 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
2172 * @adapter: board private structure |
|
2173 * @rx_ring: ring to free buffers from |
|
2174 **/ |
|
2175 |
|
2176 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
2177 struct e1000_rx_ring *rx_ring) |
|
2178 { |
|
2179 struct e1000_hw *hw = &adapter->hw; |
|
2180 struct e1000_buffer *buffer_info; |
|
2181 struct pci_dev *pdev = adapter->pdev; |
|
2182 unsigned long size; |
|
2183 unsigned int i; |
|
2184 |
|
2185 /* Free all the Rx ring sk_buffs */ |
|
2186 for (i = 0; i < rx_ring->count; i++) { |
|
2187 buffer_info = &rx_ring->buffer_info[i]; |
|
2188 if (buffer_info->dma) { |
|
2189 pci_unmap_single(pdev, |
|
2190 buffer_info->dma, |
|
2191 buffer_info->length, |
|
2192 PCI_DMA_FROMDEVICE); |
|
2193 } |
|
2194 |
|
2195 buffer_info->dma = 0; |
|
2196 |
|
2197 if (buffer_info->skb) { |
|
2198 dev_kfree_skb(buffer_info->skb); |
|
2199 buffer_info->skb = NULL; |
|
2200 } |
|
2201 } |
|
2202 |
|
2203 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
2204 memset(rx_ring->buffer_info, 0, size); |
|
2205 |
|
2206 /* Zero out the descriptor ring */ |
|
2207 |
|
2208 memset(rx_ring->desc, 0, rx_ring->size); |
|
2209 |
|
2210 rx_ring->next_to_clean = 0; |
|
2211 rx_ring->next_to_use = 0; |
|
2212 |
|
2213 writel(0, hw->hw_addr + rx_ring->rdh); |
|
2214 writel(0, hw->hw_addr + rx_ring->rdt); |
|
2215 } |
|
2216 |
|
2217 /** |
|
2218 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
|
2219 * @adapter: board private structure |
|
2220 **/ |
|
2221 |
|
2222 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
|
2223 { |
|
2224 int i; |
|
2225 |
|
2226 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2227 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
|
2228 } |
|
2229 |
|
2230 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
|
2231 * and memory write and invalidate disabled for certain operations |
|
2232 */ |
|
2233 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
|
2234 { |
|
2235 struct e1000_hw *hw = &adapter->hw; |
|
2236 struct net_device *netdev = adapter->netdev; |
|
2237 u32 rctl; |
|
2238 |
|
2239 e1000_pci_clear_mwi(hw); |
|
2240 |
|
2241 rctl = er32(RCTL); |
|
2242 rctl |= E1000_RCTL_RST; |
|
2243 ew32(RCTL, rctl); |
|
2244 E1000_WRITE_FLUSH(); |
|
2245 mdelay(5); |
|
2246 |
|
2247 if (netif_running(netdev)) |
|
2248 e1000_clean_all_rx_rings(adapter); |
|
2249 } |
|
2250 |
|
2251 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
|
2252 { |
|
2253 struct e1000_hw *hw = &adapter->hw; |
|
2254 struct net_device *netdev = adapter->netdev; |
|
2255 u32 rctl; |
|
2256 |
|
2257 rctl = er32(RCTL); |
|
2258 rctl &= ~E1000_RCTL_RST; |
|
2259 ew32(RCTL, rctl); |
|
2260 E1000_WRITE_FLUSH(); |
|
2261 mdelay(5); |
|
2262 |
|
2263 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
2264 e1000_pci_set_mwi(hw); |
|
2265 |
|
2266 if (netif_running(netdev)) { |
|
2267 /* No need to loop, because 82542 supports only 1 queue */ |
|
2268 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
|
2269 e1000_configure_rx(adapter); |
|
2270 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
|
2271 } |
|
2272 } |
|
2273 |
|
2274 /** |
|
2275 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
2276 * @netdev: network interface device structure |
|
2277 * @p: pointer to an address structure |
|
2278 * |
|
2279 * Returns 0 on success, negative on failure |
|
2280 **/ |
|
2281 |
|
2282 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
2283 { |
|
2284 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2285 struct e1000_hw *hw = &adapter->hw; |
|
2286 struct sockaddr *addr = p; |
|
2287 |
|
2288 if (!is_valid_ether_addr(addr->sa_data)) |
|
2289 return -EADDRNOTAVAIL; |
|
2290 |
|
2291 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2292 |
|
2293 if (hw->mac_type == e1000_82542_rev2_0) |
|
2294 e1000_enter_82542_rst(adapter); |
|
2295 |
|
2296 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2297 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
|
2298 |
|
2299 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2300 |
|
2301 /* With 82571 controllers, LAA may be overwritten (with the default) |
|
2302 * due to controller reset from the other port. */ |
|
2303 if (hw->mac_type == e1000_82571) { |
|
2304 /* activate the work around */ |
|
2305 hw->laa_is_present = 1; |
|
2306 |
|
2307 /* Hold a copy of the LAA in RAR[14] This is done so that |
|
2308 * between the time RAR[0] gets clobbered and the time it |
|
2309 * gets fixed (in e1000_watchdog), the actual LAA is in one |
|
2310 * of the RARs and no incoming packets directed to this port |
|
2311 * are dropped. Eventaully the LAA will be in RAR[0] and |
|
2312 * RAR[14] */ |
|
2313 e1000_rar_set(hw, hw->mac_addr, |
|
2314 E1000_RAR_ENTRIES - 1); |
|
2315 } |
|
2316 |
|
2317 if (hw->mac_type == e1000_82542_rev2_0) |
|
2318 e1000_leave_82542_rst(adapter); |
|
2319 |
|
2320 return 0; |
|
2321 } |
|
2322 |
|
2323 /** |
|
2324 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
|
2325 * @netdev: network interface device structure |
|
2326 * |
|
2327 * The set_rx_mode entry point is called whenever the unicast or multicast |
|
2328 * address lists or the network interface flags are updated. This routine is |
|
2329 * responsible for configuring the hardware for proper unicast, multicast, |
|
2330 * promiscuous mode, and all-multi behavior. |
|
2331 **/ |
|
2332 |
|
2333 static void e1000_set_rx_mode(struct net_device *netdev) |
|
2334 { |
|
2335 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2336 struct e1000_hw *hw = &adapter->hw; |
|
2337 struct netdev_hw_addr *ha; |
|
2338 bool use_uc = false; |
|
2339 struct dev_addr_list *mc_ptr; |
|
2340 u32 rctl; |
|
2341 u32 hash_value; |
|
2342 int i, rar_entries = E1000_RAR_ENTRIES; |
|
2343 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? |
|
2344 E1000_NUM_MTA_REGISTERS_ICH8LAN : |
|
2345 E1000_NUM_MTA_REGISTERS; |
|
2346 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); |
|
2347 |
|
2348 if (!mcarray) { |
|
2349 DPRINTK(PROBE, ERR, "memory allocation failed\n"); |
|
2350 return; |
|
2351 } |
|
2352 |
|
2353 if (hw->mac_type == e1000_ich8lan) |
|
2354 rar_entries = E1000_RAR_ENTRIES_ICH8LAN; |
|
2355 |
|
2356 /* reserve RAR[14] for LAA over-write work-around */ |
|
2357 if (hw->mac_type == e1000_82571) |
|
2358 rar_entries--; |
|
2359 |
|
2360 /* Check for Promiscuous and All Multicast modes */ |
|
2361 |
|
2362 rctl = er32(RCTL); |
|
2363 |
|
2364 if (netdev->flags & IFF_PROMISC) { |
|
2365 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2366 rctl &= ~E1000_RCTL_VFE; |
|
2367 } else { |
|
2368 if (netdev->flags & IFF_ALLMULTI) { |
|
2369 rctl |= E1000_RCTL_MPE; |
|
2370 } else { |
|
2371 rctl &= ~E1000_RCTL_MPE; |
|
2372 } |
|
2373 if (adapter->hw.mac_type != e1000_ich8lan) |
|
2374 rctl |= E1000_RCTL_VFE; |
|
2375 } |
|
2376 |
|
2377 if (netdev->uc.count > rar_entries - 1) { |
|
2378 rctl |= E1000_RCTL_UPE; |
|
2379 } else if (!(netdev->flags & IFF_PROMISC)) { |
|
2380 rctl &= ~E1000_RCTL_UPE; |
|
2381 use_uc = true; |
|
2382 } |
|
2383 |
|
2384 ew32(RCTL, rctl); |
|
2385 |
|
2386 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2387 |
|
2388 if (hw->mac_type == e1000_82542_rev2_0) |
|
2389 e1000_enter_82542_rst(adapter); |
|
2390 |
|
2391 /* load the first 14 addresses into the exact filters 1-14. Unicast |
|
2392 * addresses take precedence to avoid disabling unicast filtering |
|
2393 * when possible. |
|
2394 * |
|
2395 * RAR 0 is used for the station MAC adddress |
|
2396 * if there are not 14 addresses, go ahead and clear the filters |
|
2397 * -- with 82571 controllers only 0-13 entries are filled here |
|
2398 */ |
|
2399 i = 1; |
|
2400 if (use_uc) |
|
2401 list_for_each_entry(ha, &netdev->uc.list, list) { |
|
2402 if (i == rar_entries) |
|
2403 break; |
|
2404 e1000_rar_set(hw, ha->addr, i++); |
|
2405 } |
|
2406 |
|
2407 WARN_ON(i == rar_entries); |
|
2408 |
|
2409 mc_ptr = netdev->mc_list; |
|
2410 |
|
2411 for (; i < rar_entries; i++) { |
|
2412 if (mc_ptr) { |
|
2413 e1000_rar_set(hw, mc_ptr->da_addr, i); |
|
2414 mc_ptr = mc_ptr->next; |
|
2415 } else { |
|
2416 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
|
2417 E1000_WRITE_FLUSH(); |
|
2418 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
|
2419 E1000_WRITE_FLUSH(); |
|
2420 } |
|
2421 } |
|
2422 |
|
2423 /* load any remaining addresses into the hash table */ |
|
2424 |
|
2425 for (; mc_ptr; mc_ptr = mc_ptr->next) { |
|
2426 u32 hash_reg, hash_bit, mta; |
|
2427 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr); |
|
2428 hash_reg = (hash_value >> 5) & 0x7F; |
|
2429 hash_bit = hash_value & 0x1F; |
|
2430 mta = (1 << hash_bit); |
|
2431 mcarray[hash_reg] |= mta; |
|
2432 } |
|
2433 |
|
2434 /* write the hash table completely, write from bottom to avoid |
|
2435 * both stupid write combining chipsets, and flushing each write */ |
|
2436 for (i = mta_reg_count - 1; i >= 0 ; i--) { |
|
2437 /* |
|
2438 * If we are on an 82544 has an errata where writing odd |
|
2439 * offsets overwrites the previous even offset, but writing |
|
2440 * backwards over the range solves the issue by always |
|
2441 * writing the odd offset first |
|
2442 */ |
|
2443 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); |
|
2444 } |
|
2445 E1000_WRITE_FLUSH(); |
|
2446 |
|
2447 if (hw->mac_type == e1000_82542_rev2_0) |
|
2448 e1000_leave_82542_rst(adapter); |
|
2449 |
|
2450 kfree(mcarray); |
|
2451 } |
|
2452 |
|
2453 /* Need to wait a few seconds after link up to get diagnostic information from |
|
2454 * the phy */ |
|
2455 |
|
2456 static void e1000_update_phy_info(unsigned long data) |
|
2457 { |
|
2458 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2459 struct e1000_hw *hw = &adapter->hw; |
|
2460 e1000_phy_get_info(hw, &adapter->phy_info); |
|
2461 } |
|
2462 |
|
2463 /** |
|
2464 * e1000_82547_tx_fifo_stall - Timer Call-back |
|
2465 * @data: pointer to adapter cast into an unsigned long |
|
2466 **/ |
|
2467 |
|
2468 static void e1000_82547_tx_fifo_stall(unsigned long data) |
|
2469 { |
|
2470 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2471 struct e1000_hw *hw = &adapter->hw; |
|
2472 struct net_device *netdev = adapter->netdev; |
|
2473 u32 tctl; |
|
2474 |
|
2475 if (atomic_read(&adapter->tx_fifo_stall)) { |
|
2476 if ((er32(TDT) == er32(TDH)) && |
|
2477 (er32(TDFT) == er32(TDFH)) && |
|
2478 (er32(TDFTS) == er32(TDFHS))) { |
|
2479 tctl = er32(TCTL); |
|
2480 ew32(TCTL, tctl & ~E1000_TCTL_EN); |
|
2481 ew32(TDFT, adapter->tx_head_addr); |
|
2482 ew32(TDFH, adapter->tx_head_addr); |
|
2483 ew32(TDFTS, adapter->tx_head_addr); |
|
2484 ew32(TDFHS, adapter->tx_head_addr); |
|
2485 ew32(TCTL, tctl); |
|
2486 E1000_WRITE_FLUSH(); |
|
2487 |
|
2488 adapter->tx_fifo_head = 0; |
|
2489 atomic_set(&adapter->tx_fifo_stall, 0); |
|
2490 netif_wake_queue(netdev); |
|
2491 } else { |
|
2492 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
2493 } |
|
2494 } |
|
2495 } |
|
2496 |
|
2497 /** |
|
2498 * e1000_watchdog - Timer Call-back |
|
2499 * @data: pointer to adapter cast into an unsigned long |
|
2500 **/ |
|
2501 static void e1000_watchdog(unsigned long data) |
|
2502 { |
|
2503 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2504 struct e1000_hw *hw = &adapter->hw; |
|
2505 struct net_device *netdev = adapter->netdev; |
|
2506 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
2507 u32 link, tctl; |
|
2508 s32 ret_val; |
|
2509 |
|
2510 ret_val = e1000_check_for_link(hw); |
|
2511 if ((ret_val == E1000_ERR_PHY) && |
|
2512 (hw->phy_type == e1000_phy_igp_3) && |
|
2513 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
|
2514 /* See e1000_kumeran_lock_loss_workaround() */ |
|
2515 DPRINTK(LINK, INFO, |
|
2516 "Gigabit has been disabled, downgrading speed\n"); |
|
2517 } |
|
2518 |
|
2519 if (hw->mac_type == e1000_82573) { |
|
2520 e1000_enable_tx_pkt_filtering(hw); |
|
2521 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id) |
|
2522 e1000_update_mng_vlan(adapter); |
|
2523 } |
|
2524 |
|
2525 if ((hw->media_type == e1000_media_type_internal_serdes) && |
|
2526 !(er32(TXCW) & E1000_TXCW_ANE)) |
|
2527 link = !hw->serdes_link_down; |
|
2528 else |
|
2529 link = er32(STATUS) & E1000_STATUS_LU; |
|
2530 |
|
2531 if (link) { |
|
2532 if (!netif_carrier_ok(netdev)) { |
|
2533 u32 ctrl; |
|
2534 bool txb2b = true; |
|
2535 e1000_get_speed_and_duplex(hw, |
|
2536 &adapter->link_speed, |
|
2537 &adapter->link_duplex); |
|
2538 |
|
2539 ctrl = er32(CTRL); |
|
2540 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, " |
|
2541 "Flow Control: %s\n", |
|
2542 netdev->name, |
|
2543 adapter->link_speed, |
|
2544 adapter->link_duplex == FULL_DUPLEX ? |
|
2545 "Full Duplex" : "Half Duplex", |
|
2546 ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
|
2547 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
|
2548 E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
|
2549 E1000_CTRL_TFCE) ? "TX" : "None" ))); |
|
2550 |
|
2551 /* tweak tx_queue_len according to speed/duplex |
|
2552 * and adjust the timeout factor */ |
|
2553 netdev->tx_queue_len = adapter->tx_queue_len; |
|
2554 adapter->tx_timeout_factor = 1; |
|
2555 switch (adapter->link_speed) { |
|
2556 case SPEED_10: |
|
2557 txb2b = false; |
|
2558 netdev->tx_queue_len = 10; |
|
2559 adapter->tx_timeout_factor = 8; |
|
2560 break; |
|
2561 case SPEED_100: |
|
2562 txb2b = false; |
|
2563 netdev->tx_queue_len = 100; |
|
2564 /* maybe add some timeout factor ? */ |
|
2565 break; |
|
2566 } |
|
2567 |
|
2568 if ((hw->mac_type == e1000_82571 || |
|
2569 hw->mac_type == e1000_82572) && |
|
2570 !txb2b) { |
|
2571 u32 tarc0; |
|
2572 tarc0 = er32(TARC0); |
|
2573 tarc0 &= ~(1 << 21); |
|
2574 ew32(TARC0, tarc0); |
|
2575 } |
|
2576 |
|
2577 /* disable TSO for pcie and 10/100 speeds, to avoid |
|
2578 * some hardware issues */ |
|
2579 if (!adapter->tso_force && |
|
2580 hw->bus_type == e1000_bus_type_pci_express){ |
|
2581 switch (adapter->link_speed) { |
|
2582 case SPEED_10: |
|
2583 case SPEED_100: |
|
2584 DPRINTK(PROBE,INFO, |
|
2585 "10/100 speed: disabling TSO\n"); |
|
2586 netdev->features &= ~NETIF_F_TSO; |
|
2587 netdev->features &= ~NETIF_F_TSO6; |
|
2588 break; |
|
2589 case SPEED_1000: |
|
2590 netdev->features |= NETIF_F_TSO; |
|
2591 netdev->features |= NETIF_F_TSO6; |
|
2592 break; |
|
2593 default: |
|
2594 /* oops */ |
|
2595 break; |
|
2596 } |
|
2597 } |
|
2598 |
|
2599 /* enable transmits in the hardware, need to do this |
|
2600 * after setting TARC0 */ |
|
2601 tctl = er32(TCTL); |
|
2602 tctl |= E1000_TCTL_EN; |
|
2603 ew32(TCTL, tctl); |
|
2604 |
|
2605 netif_carrier_on(netdev); |
|
2606 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2607 adapter->smartspeed = 0; |
|
2608 } else { |
|
2609 /* make sure the receive unit is started */ |
|
2610 if (hw->rx_needs_kicking) { |
|
2611 u32 rctl = er32(RCTL); |
|
2612 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
2613 } |
|
2614 } |
|
2615 } else { |
|
2616 if (netif_carrier_ok(netdev)) { |
|
2617 adapter->link_speed = 0; |
|
2618 adapter->link_duplex = 0; |
|
2619 printk(KERN_INFO "e1000: %s NIC Link is Down\n", |
|
2620 netdev->name); |
|
2621 netif_carrier_off(netdev); |
|
2622 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2623 |
|
2624 /* 80003ES2LAN workaround-- |
|
2625 * For packet buffer work-around on link down event; |
|
2626 * disable receives in the ISR and |
|
2627 * reset device here in the watchdog |
|
2628 */ |
|
2629 if (hw->mac_type == e1000_80003es2lan) |
|
2630 /* reset device */ |
|
2631 schedule_work(&adapter->reset_task); |
|
2632 } |
|
2633 |
|
2634 e1000_smartspeed(adapter); |
|
2635 } |
|
2636 |
|
2637 e1000_update_stats(adapter); |
|
2638 |
|
2639 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
2640 adapter->tpt_old = adapter->stats.tpt; |
|
2641 hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
2642 adapter->colc_old = adapter->stats.colc; |
|
2643 |
|
2644 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
|
2645 adapter->gorcl_old = adapter->stats.gorcl; |
|
2646 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
|
2647 adapter->gotcl_old = adapter->stats.gotcl; |
|
2648 |
|
2649 e1000_update_adaptive(hw); |
|
2650 |
|
2651 if (!netif_carrier_ok(netdev)) { |
|
2652 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
|
2653 /* We've lost link, so the controller stops DMA, |
|
2654 * but we've got queued Tx work that's never going |
|
2655 * to get done, so reset controller to flush Tx. |
|
2656 * (Do the reset outside of interrupt context). */ |
|
2657 adapter->tx_timeout_count++; |
|
2658 schedule_work(&adapter->reset_task); |
|
2659 /* return immediately since reset is imminent */ |
|
2660 return; |
|
2661 } |
|
2662 } |
|
2663 |
|
2664 /* Cause software interrupt to ensure rx ring is cleaned */ |
|
2665 ew32(ICS, E1000_ICS_RXDMT0); |
|
2666 |
|
2667 /* Force detection of hung controller every watchdog period */ |
|
2668 adapter->detect_tx_hung = true; |
|
2669 |
|
2670 /* With 82571 controllers, LAA may be overwritten due to controller |
|
2671 * reset from the other port. Set the appropriate LAA in RAR[0] */ |
|
2672 if (hw->mac_type == e1000_82571 && hw->laa_is_present) |
|
2673 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2674 |
|
2675 /* Reset the timer */ |
|
2676 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2677 } |
|
2678 |
|
2679 enum latency_range { |
|
2680 lowest_latency = 0, |
|
2681 low_latency = 1, |
|
2682 bulk_latency = 2, |
|
2683 latency_invalid = 255 |
|
2684 }; |
|
2685 |
|
2686 /** |
|
2687 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2688 * Stores a new ITR value based on packets and byte |
|
2689 * counts during the last interrupt. The advantage of per interrupt |
|
2690 * computation is faster updates and more accurate ITR for the current |
|
2691 * traffic pattern. Constants in this function were computed |
|
2692 * based on theoretical maximum wire speed and thresholds were set based |
|
2693 * on testing data as well as attempting to minimize response time |
|
2694 * while increasing bulk throughput. |
|
2695 * this functionality is controlled by the InterruptThrottleRate module |
|
2696 * parameter (see e1000_param.c) |
|
2697 * @adapter: pointer to adapter |
|
2698 * @itr_setting: current adapter->itr |
|
2699 * @packets: the number of packets during this measurement interval |
|
2700 * @bytes: the number of bytes during this measurement interval |
|
2701 **/ |
|
2702 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2703 u16 itr_setting, int packets, int bytes) |
|
2704 { |
|
2705 unsigned int retval = itr_setting; |
|
2706 struct e1000_hw *hw = &adapter->hw; |
|
2707 |
|
2708 if (unlikely(hw->mac_type < e1000_82540)) |
|
2709 goto update_itr_done; |
|
2710 |
|
2711 if (packets == 0) |
|
2712 goto update_itr_done; |
|
2713 |
|
2714 switch (itr_setting) { |
|
2715 case lowest_latency: |
|
2716 /* jumbo frames get bulk treatment*/ |
|
2717 if (bytes/packets > 8000) |
|
2718 retval = bulk_latency; |
|
2719 else if ((packets < 5) && (bytes > 512)) |
|
2720 retval = low_latency; |
|
2721 break; |
|
2722 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2723 if (bytes > 10000) { |
|
2724 /* jumbo frames need bulk latency setting */ |
|
2725 if (bytes/packets > 8000) |
|
2726 retval = bulk_latency; |
|
2727 else if ((packets < 10) || ((bytes/packets) > 1200)) |
|
2728 retval = bulk_latency; |
|
2729 else if ((packets > 35)) |
|
2730 retval = lowest_latency; |
|
2731 } else if (bytes/packets > 2000) |
|
2732 retval = bulk_latency; |
|
2733 else if (packets <= 2 && bytes < 512) |
|
2734 retval = lowest_latency; |
|
2735 break; |
|
2736 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2737 if (bytes > 25000) { |
|
2738 if (packets > 35) |
|
2739 retval = low_latency; |
|
2740 } else if (bytes < 6000) { |
|
2741 retval = low_latency; |
|
2742 } |
|
2743 break; |
|
2744 } |
|
2745 |
|
2746 update_itr_done: |
|
2747 return retval; |
|
2748 } |
|
2749 |
|
2750 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2751 { |
|
2752 struct e1000_hw *hw = &adapter->hw; |
|
2753 u16 current_itr; |
|
2754 u32 new_itr = adapter->itr; |
|
2755 |
|
2756 if (unlikely(hw->mac_type < e1000_82540)) |
|
2757 return; |
|
2758 |
|
2759 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2760 if (unlikely(adapter->link_speed != SPEED_1000)) { |
|
2761 current_itr = 0; |
|
2762 new_itr = 4000; |
|
2763 goto set_itr_now; |
|
2764 } |
|
2765 |
|
2766 adapter->tx_itr = e1000_update_itr(adapter, |
|
2767 adapter->tx_itr, |
|
2768 adapter->total_tx_packets, |
|
2769 adapter->total_tx_bytes); |
|
2770 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2771 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2772 adapter->tx_itr = low_latency; |
|
2773 |
|
2774 adapter->rx_itr = e1000_update_itr(adapter, |
|
2775 adapter->rx_itr, |
|
2776 adapter->total_rx_packets, |
|
2777 adapter->total_rx_bytes); |
|
2778 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2779 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2780 adapter->rx_itr = low_latency; |
|
2781 |
|
2782 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2783 |
|
2784 switch (current_itr) { |
|
2785 /* counts and packets in update_itr are dependent on these numbers */ |
|
2786 case lowest_latency: |
|
2787 new_itr = 70000; |
|
2788 break; |
|
2789 case low_latency: |
|
2790 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2791 break; |
|
2792 case bulk_latency: |
|
2793 new_itr = 4000; |
|
2794 break; |
|
2795 default: |
|
2796 break; |
|
2797 } |
|
2798 |
|
2799 set_itr_now: |
|
2800 if (new_itr != adapter->itr) { |
|
2801 /* this attempts to bias the interrupt rate towards Bulk |
|
2802 * by adding intermediate steps when interrupt rate is |
|
2803 * increasing */ |
|
2804 new_itr = new_itr > adapter->itr ? |
|
2805 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2806 new_itr; |
|
2807 adapter->itr = new_itr; |
|
2808 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2809 } |
|
2810 |
|
2811 return; |
|
2812 } |
|
2813 |
|
2814 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
2815 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
2816 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
2817 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
2818 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
2819 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
2820 |
|
2821 static int e1000_tso(struct e1000_adapter *adapter, |
|
2822 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2823 { |
|
2824 struct e1000_context_desc *context_desc; |
|
2825 struct e1000_buffer *buffer_info; |
|
2826 unsigned int i; |
|
2827 u32 cmd_length = 0; |
|
2828 u16 ipcse = 0, tucse, mss; |
|
2829 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
2830 int err; |
|
2831 |
|
2832 if (skb_is_gso(skb)) { |
|
2833 if (skb_header_cloned(skb)) { |
|
2834 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
2835 if (err) |
|
2836 return err; |
|
2837 } |
|
2838 |
|
2839 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
2840 mss = skb_shinfo(skb)->gso_size; |
|
2841 if (skb->protocol == htons(ETH_P_IP)) { |
|
2842 struct iphdr *iph = ip_hdr(skb); |
|
2843 iph->tot_len = 0; |
|
2844 iph->check = 0; |
|
2845 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
2846 iph->daddr, 0, |
|
2847 IPPROTO_TCP, |
|
2848 0); |
|
2849 cmd_length = E1000_TXD_CMD_IP; |
|
2850 ipcse = skb_transport_offset(skb) - 1; |
|
2851 } else if (skb->protocol == htons(ETH_P_IPV6)) { |
|
2852 ipv6_hdr(skb)->payload_len = 0; |
|
2853 tcp_hdr(skb)->check = |
|
2854 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
2855 &ipv6_hdr(skb)->daddr, |
|
2856 0, IPPROTO_TCP, 0); |
|
2857 ipcse = 0; |
|
2858 } |
|
2859 ipcss = skb_network_offset(skb); |
|
2860 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
2861 tucss = skb_transport_offset(skb); |
|
2862 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
2863 tucse = 0; |
|
2864 |
|
2865 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
2866 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
2867 |
|
2868 i = tx_ring->next_to_use; |
|
2869 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2870 buffer_info = &tx_ring->buffer_info[i]; |
|
2871 |
|
2872 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
2873 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
2874 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
2875 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
2876 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
2877 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
2878 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
2879 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
2880 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
2881 |
|
2882 buffer_info->time_stamp = jiffies; |
|
2883 buffer_info->next_to_watch = i; |
|
2884 |
|
2885 if (++i == tx_ring->count) i = 0; |
|
2886 tx_ring->next_to_use = i; |
|
2887 |
|
2888 return true; |
|
2889 } |
|
2890 return false; |
|
2891 } |
|
2892 |
|
2893 static bool e1000_tx_csum(struct e1000_adapter *adapter, |
|
2894 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2895 { |
|
2896 struct e1000_context_desc *context_desc; |
|
2897 struct e1000_buffer *buffer_info; |
|
2898 unsigned int i; |
|
2899 u8 css; |
|
2900 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
2901 |
|
2902 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
2903 return false; |
|
2904 |
|
2905 switch (skb->protocol) { |
|
2906 case cpu_to_be16(ETH_P_IP): |
|
2907 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
2908 cmd_len |= E1000_TXD_CMD_TCP; |
|
2909 break; |
|
2910 case cpu_to_be16(ETH_P_IPV6): |
|
2911 /* XXX not handling all IPV6 headers */ |
|
2912 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
2913 cmd_len |= E1000_TXD_CMD_TCP; |
|
2914 break; |
|
2915 default: |
|
2916 if (unlikely(net_ratelimit())) |
|
2917 DPRINTK(DRV, WARNING, |
|
2918 "checksum_partial proto=%x!\n", skb->protocol); |
|
2919 break; |
|
2920 } |
|
2921 |
|
2922 css = skb_transport_offset(skb); |
|
2923 |
|
2924 i = tx_ring->next_to_use; |
|
2925 buffer_info = &tx_ring->buffer_info[i]; |
|
2926 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2927 |
|
2928 context_desc->lower_setup.ip_config = 0; |
|
2929 context_desc->upper_setup.tcp_fields.tucss = css; |
|
2930 context_desc->upper_setup.tcp_fields.tucso = |
|
2931 css + skb->csum_offset; |
|
2932 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
2933 context_desc->tcp_seg_setup.data = 0; |
|
2934 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
2935 |
|
2936 buffer_info->time_stamp = jiffies; |
|
2937 buffer_info->next_to_watch = i; |
|
2938 |
|
2939 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2940 tx_ring->next_to_use = i; |
|
2941 |
|
2942 return true; |
|
2943 } |
|
2944 |
|
2945 #define E1000_MAX_TXD_PWR 12 |
|
2946 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
|
2947 |
|
2948 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
2949 struct e1000_tx_ring *tx_ring, |
|
2950 struct sk_buff *skb, unsigned int first, |
|
2951 unsigned int max_per_txd, unsigned int nr_frags, |
|
2952 unsigned int mss) |
|
2953 { |
|
2954 struct e1000_hw *hw = &adapter->hw; |
|
2955 struct e1000_buffer *buffer_info; |
|
2956 unsigned int len = skb_headlen(skb); |
|
2957 unsigned int offset, size, count = 0, i; |
|
2958 unsigned int f; |
|
2959 dma_addr_t *map; |
|
2960 |
|
2961 i = tx_ring->next_to_use; |
|
2962 |
|
2963 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) { |
|
2964 dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); |
|
2965 return 0; |
|
2966 } |
|
2967 |
|
2968 map = skb_shinfo(skb)->dma_maps; |
|
2969 offset = 0; |
|
2970 |
|
2971 while (len) { |
|
2972 buffer_info = &tx_ring->buffer_info[i]; |
|
2973 size = min(len, max_per_txd); |
|
2974 /* Workaround for Controller erratum -- |
|
2975 * descriptor for non-tso packet in a linear SKB that follows a |
|
2976 * tso gets written back prematurely before the data is fully |
|
2977 * DMA'd to the controller */ |
|
2978 if (!skb->data_len && tx_ring->last_tx_tso && |
|
2979 !skb_is_gso(skb)) { |
|
2980 tx_ring->last_tx_tso = 0; |
|
2981 size -= 4; |
|
2982 } |
|
2983 |
|
2984 /* Workaround for premature desc write-backs |
|
2985 * in TSO mode. Append 4-byte sentinel desc */ |
|
2986 if (unlikely(mss && !nr_frags && size == len && size > 8)) |
|
2987 size -= 4; |
|
2988 /* work-around for errata 10 and it applies |
|
2989 * to all controllers in PCI-X mode |
|
2990 * The fix is to make sure that the first descriptor of a |
|
2991 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
|
2992 */ |
|
2993 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
2994 (size > 2015) && count == 0)) |
|
2995 size = 2015; |
|
2996 |
|
2997 /* Workaround for potential 82544 hang in PCI-X. Avoid |
|
2998 * terminating buffers within evenly-aligned dwords. */ |
|
2999 if (unlikely(adapter->pcix_82544 && |
|
3000 !((unsigned long)(skb->data + offset + size - 1) & 4) && |
|
3001 size > 4)) |
|
3002 size -= 4; |
|
3003 |
|
3004 buffer_info->length = size; |
|
3005 buffer_info->dma = skb_shinfo(skb)->dma_head + offset; |
|
3006 buffer_info->time_stamp = jiffies; |
|
3007 buffer_info->next_to_watch = i; |
|
3008 |
|
3009 len -= size; |
|
3010 offset += size; |
|
3011 count++; |
|
3012 if (len) { |
|
3013 i++; |
|
3014 if (unlikely(i == tx_ring->count)) |
|
3015 i = 0; |
|
3016 } |
|
3017 } |
|
3018 |
|
3019 for (f = 0; f < nr_frags; f++) { |
|
3020 struct skb_frag_struct *frag; |
|
3021 |
|
3022 frag = &skb_shinfo(skb)->frags[f]; |
|
3023 len = frag->size; |
|
3024 offset = 0; |
|
3025 |
|
3026 while (len) { |
|
3027 i++; |
|
3028 if (unlikely(i == tx_ring->count)) |
|
3029 i = 0; |
|
3030 |
|
3031 buffer_info = &tx_ring->buffer_info[i]; |
|
3032 size = min(len, max_per_txd); |
|
3033 /* Workaround for premature desc write-backs |
|
3034 * in TSO mode. Append 4-byte sentinel desc */ |
|
3035 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) |
|
3036 size -= 4; |
|
3037 /* Workaround for potential 82544 hang in PCI-X. |
|
3038 * Avoid terminating buffers within evenly-aligned |
|
3039 * dwords. */ |
|
3040 if (unlikely(adapter->pcix_82544 && |
|
3041 !((unsigned long)(frag->page+offset+size-1) & 4) && |
|
3042 size > 4)) |
|
3043 size -= 4; |
|
3044 |
|
3045 buffer_info->length = size; |
|
3046 buffer_info->dma = map[f] + offset; |
|
3047 buffer_info->time_stamp = jiffies; |
|
3048 buffer_info->next_to_watch = i; |
|
3049 |
|
3050 len -= size; |
|
3051 offset += size; |
|
3052 count++; |
|
3053 } |
|
3054 } |
|
3055 |
|
3056 tx_ring->buffer_info[i].skb = skb; |
|
3057 tx_ring->buffer_info[first].next_to_watch = i; |
|
3058 |
|
3059 return count; |
|
3060 } |
|
3061 |
|
3062 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
3063 struct e1000_tx_ring *tx_ring, int tx_flags, |
|
3064 int count) |
|
3065 { |
|
3066 struct e1000_hw *hw = &adapter->hw; |
|
3067 struct e1000_tx_desc *tx_desc = NULL; |
|
3068 struct e1000_buffer *buffer_info; |
|
3069 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
3070 unsigned int i; |
|
3071 |
|
3072 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
|
3073 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
3074 E1000_TXD_CMD_TSE; |
|
3075 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3076 |
|
3077 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
|
3078 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
3079 } |
|
3080 |
|
3081 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
|
3082 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
3083 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3084 } |
|
3085 |
|
3086 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
|
3087 txd_lower |= E1000_TXD_CMD_VLE; |
|
3088 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
3089 } |
|
3090 |
|
3091 i = tx_ring->next_to_use; |
|
3092 |
|
3093 while (count--) { |
|
3094 buffer_info = &tx_ring->buffer_info[i]; |
|
3095 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3096 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
3097 tx_desc->lower.data = |
|
3098 cpu_to_le32(txd_lower | buffer_info->length); |
|
3099 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
3100 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3101 } |
|
3102 |
|
3103 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
3104 |
|
3105 /* Force memory writes to complete before letting h/w |
|
3106 * know there are new descriptors to fetch. (Only |
|
3107 * applicable for weak-ordered memory model archs, |
|
3108 * such as IA-64). */ |
|
3109 wmb(); |
|
3110 |
|
3111 tx_ring->next_to_use = i; |
|
3112 writel(i, hw->hw_addr + tx_ring->tdt); |
|
3113 /* we need this if more than one processor can write to our tail |
|
3114 * at a time, it syncronizes IO on IA64/Altix systems */ |
|
3115 mmiowb(); |
|
3116 } |
|
3117 |
|
3118 /** |
|
3119 * 82547 workaround to avoid controller hang in half-duplex environment. |
|
3120 * The workaround is to avoid queuing a large packet that would span |
|
3121 * the internal Tx FIFO ring boundary by notifying the stack to resend |
|
3122 * the packet at a later time. This gives the Tx FIFO an opportunity to |
|
3123 * flush all packets. When that occurs, we reset the Tx FIFO pointers |
|
3124 * to the beginning of the Tx FIFO. |
|
3125 **/ |
|
3126 |
|
3127 #define E1000_FIFO_HDR 0x10 |
|
3128 #define E1000_82547_PAD_LEN 0x3E0 |
|
3129 |
|
3130 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
3131 struct sk_buff *skb) |
|
3132 { |
|
3133 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
|
3134 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
|
3135 |
|
3136 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
|
3137 |
|
3138 if (adapter->link_duplex != HALF_DUPLEX) |
|
3139 goto no_fifo_stall_required; |
|
3140 |
|
3141 if (atomic_read(&adapter->tx_fifo_stall)) |
|
3142 return 1; |
|
3143 |
|
3144 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
|
3145 atomic_set(&adapter->tx_fifo_stall, 1); |
|
3146 return 1; |
|
3147 } |
|
3148 |
|
3149 no_fifo_stall_required: |
|
3150 adapter->tx_fifo_head += skb_fifo_len; |
|
3151 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
|
3152 adapter->tx_fifo_head -= adapter->tx_fifo_size; |
|
3153 return 0; |
|
3154 } |
|
3155 |
|
3156 #define MINIMUM_DHCP_PACKET_SIZE 282 |
|
3157 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
|
3158 struct sk_buff *skb) |
|
3159 { |
|
3160 struct e1000_hw *hw = &adapter->hw; |
|
3161 u16 length, offset; |
|
3162 if (vlan_tx_tag_present(skb)) { |
|
3163 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) && |
|
3164 ( hw->mng_cookie.status & |
|
3165 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) |
|
3166 return 0; |
|
3167 } |
|
3168 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { |
|
3169 struct ethhdr *eth = (struct ethhdr *)skb->data; |
|
3170 if ((htons(ETH_P_IP) == eth->h_proto)) { |
|
3171 const struct iphdr *ip = |
|
3172 (struct iphdr *)((u8 *)skb->data+14); |
|
3173 if (IPPROTO_UDP == ip->protocol) { |
|
3174 struct udphdr *udp = |
|
3175 (struct udphdr *)((u8 *)ip + |
|
3176 (ip->ihl << 2)); |
|
3177 if (ntohs(udp->dest) == 67) { |
|
3178 offset = (u8 *)udp + 8 - skb->data; |
|
3179 length = skb->len - offset; |
|
3180 |
|
3181 return e1000_mng_write_dhcp_info(hw, |
|
3182 (u8 *)udp + 8, |
|
3183 length); |
|
3184 } |
|
3185 } |
|
3186 } |
|
3187 } |
|
3188 return 0; |
|
3189 } |
|
3190 |
|
3191 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
3192 { |
|
3193 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3194 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
3195 |
|
3196 netif_stop_queue(netdev); |
|
3197 /* Herbert's original patch had: |
|
3198 * smp_mb__after_netif_stop_queue(); |
|
3199 * but since that doesn't exist yet, just open code it. */ |
|
3200 smp_mb(); |
|
3201 |
|
3202 /* We need to check again in a case another CPU has just |
|
3203 * made room available. */ |
|
3204 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
|
3205 return -EBUSY; |
|
3206 |
|
3207 /* A reprieve! */ |
|
3208 netif_start_queue(netdev); |
|
3209 ++adapter->restart_queue; |
|
3210 return 0; |
|
3211 } |
|
3212 |
|
3213 static int e1000_maybe_stop_tx(struct net_device *netdev, |
|
3214 struct e1000_tx_ring *tx_ring, int size) |
|
3215 { |
|
3216 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
|
3217 return 0; |
|
3218 return __e1000_maybe_stop_tx(netdev, size); |
|
3219 } |
|
3220 |
|
3221 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
3222 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
|
3223 { |
|
3224 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3225 struct e1000_hw *hw = &adapter->hw; |
|
3226 struct e1000_tx_ring *tx_ring; |
|
3227 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
|
3228 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
3229 unsigned int tx_flags = 0; |
|
3230 unsigned int len = skb->len - skb->data_len; |
|
3231 unsigned int nr_frags; |
|
3232 unsigned int mss; |
|
3233 int count = 0; |
|
3234 int tso; |
|
3235 unsigned int f; |
|
3236 |
|
3237 /* This goes back to the question of how to logically map a tx queue |
|
3238 * to a flow. Right now, performance is impacted slightly negatively |
|
3239 * if using multiple tx queues. If the stack breaks away from a |
|
3240 * single qdisc implementation, we can look at this again. */ |
|
3241 tx_ring = adapter->tx_ring; |
|
3242 |
|
3243 if (unlikely(skb->len <= 0)) { |
|
3244 dev_kfree_skb_any(skb); |
|
3245 return NETDEV_TX_OK; |
|
3246 } |
|
3247 |
|
3248 /* 82571 and newer doesn't need the workaround that limited descriptor |
|
3249 * length to 4kB */ |
|
3250 if (hw->mac_type >= e1000_82571) |
|
3251 max_per_txd = 8192; |
|
3252 |
|
3253 mss = skb_shinfo(skb)->gso_size; |
|
3254 /* The controller does a simple calculation to |
|
3255 * make sure there is enough room in the FIFO before |
|
3256 * initiating the DMA for each buffer. The calc is: |
|
3257 * 4 = ceil(buffer len/mss). To make sure we don't |
|
3258 * overrun the FIFO, adjust the max buffer len if mss |
|
3259 * drops. */ |
|
3260 if (mss) { |
|
3261 u8 hdr_len; |
|
3262 max_per_txd = min(mss << 2, max_per_txd); |
|
3263 max_txd_pwr = fls(max_per_txd) - 1; |
|
3264 |
|
3265 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data |
|
3266 * points to just header, pull a few bytes of payload from |
|
3267 * frags into skb->data */ |
|
3268 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3269 if (skb->data_len && hdr_len == len) { |
|
3270 switch (hw->mac_type) { |
|
3271 unsigned int pull_size; |
|
3272 case e1000_82544: |
|
3273 /* Make sure we have room to chop off 4 bytes, |
|
3274 * and that the end alignment will work out to |
|
3275 * this hardware's requirements |
|
3276 * NOTE: this is a TSO only workaround |
|
3277 * if end byte alignment not correct move us |
|
3278 * into the next dword */ |
|
3279 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) |
|
3280 break; |
|
3281 /* fall through */ |
|
3282 case e1000_82571: |
|
3283 case e1000_82572: |
|
3284 case e1000_82573: |
|
3285 case e1000_ich8lan: |
|
3286 pull_size = min((unsigned int)4, skb->data_len); |
|
3287 if (!__pskb_pull_tail(skb, pull_size)) { |
|
3288 DPRINTK(DRV, ERR, |
|
3289 "__pskb_pull_tail failed.\n"); |
|
3290 dev_kfree_skb_any(skb); |
|
3291 return NETDEV_TX_OK; |
|
3292 } |
|
3293 len = skb->len - skb->data_len; |
|
3294 break; |
|
3295 default: |
|
3296 /* do nothing */ |
|
3297 break; |
|
3298 } |
|
3299 } |
|
3300 } |
|
3301 |
|
3302 /* reserve a descriptor for the offload context */ |
|
3303 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
3304 count++; |
|
3305 count++; |
|
3306 |
|
3307 /* Controller Erratum workaround */ |
|
3308 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
|
3309 count++; |
|
3310 |
|
3311 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
3312 |
|
3313 if (adapter->pcix_82544) |
|
3314 count++; |
|
3315 |
|
3316 /* work-around for errata 10 and it applies to all controllers |
|
3317 * in PCI-X mode, so add one more descriptor to the count |
|
3318 */ |
|
3319 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3320 (len > 2015))) |
|
3321 count++; |
|
3322 |
|
3323 nr_frags = skb_shinfo(skb)->nr_frags; |
|
3324 for (f = 0; f < nr_frags; f++) |
|
3325 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
3326 max_txd_pwr); |
|
3327 if (adapter->pcix_82544) |
|
3328 count += nr_frags; |
|
3329 |
|
3330 |
|
3331 if (hw->tx_pkt_filtering && |
|
3332 (hw->mac_type == e1000_82573)) |
|
3333 e1000_transfer_dhcp_info(adapter, skb); |
|
3334 |
|
3335 /* need: count + 2 desc gap to keep tail from touching |
|
3336 * head, otherwise try next time */ |
|
3337 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) |
|
3338 return NETDEV_TX_BUSY; |
|
3339 |
|
3340 if (unlikely(hw->mac_type == e1000_82547)) { |
|
3341 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { |
|
3342 netif_stop_queue(netdev); |
|
3343 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
3344 return NETDEV_TX_BUSY; |
|
3345 } |
|
3346 } |
|
3347 |
|
3348 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { |
|
3349 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
3350 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
3351 } |
|
3352 |
|
3353 first = tx_ring->next_to_use; |
|
3354 |
|
3355 tso = e1000_tso(adapter, tx_ring, skb); |
|
3356 if (tso < 0) { |
|
3357 dev_kfree_skb_any(skb); |
|
3358 return NETDEV_TX_OK; |
|
3359 } |
|
3360 |
|
3361 if (likely(tso)) { |
|
3362 tx_ring->last_tx_tso = 1; |
|
3363 tx_flags |= E1000_TX_FLAGS_TSO; |
|
3364 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
|
3365 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
3366 |
|
3367 /* Old method was to assume IPv4 packet by default if TSO was enabled. |
|
3368 * 82571 hardware supports TSO capabilities for IPv6 as well... |
|
3369 * no longer assume, we must. */ |
|
3370 if (likely(skb->protocol == htons(ETH_P_IP))) |
|
3371 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
3372 |
|
3373 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, |
|
3374 nr_frags, mss); |
|
3375 |
|
3376 if (count) { |
|
3377 e1000_tx_queue(adapter, tx_ring, tx_flags, count); |
|
3378 /* Make sure there is space in the ring for the next send. */ |
|
3379 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
|
3380 |
|
3381 } else { |
|
3382 dev_kfree_skb_any(skb); |
|
3383 tx_ring->buffer_info[first].time_stamp = 0; |
|
3384 tx_ring->next_to_use = first; |
|
3385 } |
|
3386 |
|
3387 return NETDEV_TX_OK; |
|
3388 } |
|
3389 |
|
3390 /** |
|
3391 * e1000_tx_timeout - Respond to a Tx Hang |
|
3392 * @netdev: network interface device structure |
|
3393 **/ |
|
3394 |
|
3395 static void e1000_tx_timeout(struct net_device *netdev) |
|
3396 { |
|
3397 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3398 |
|
3399 /* Do the reset outside of interrupt context */ |
|
3400 adapter->tx_timeout_count++; |
|
3401 schedule_work(&adapter->reset_task); |
|
3402 } |
|
3403 |
|
3404 static void e1000_reset_task(struct work_struct *work) |
|
3405 { |
|
3406 struct e1000_adapter *adapter = |
|
3407 container_of(work, struct e1000_adapter, reset_task); |
|
3408 |
|
3409 e1000_reinit_locked(adapter); |
|
3410 } |
|
3411 |
|
3412 /** |
|
3413 * e1000_get_stats - Get System Network Statistics |
|
3414 * @netdev: network interface device structure |
|
3415 * |
|
3416 * Returns the address of the device statistics structure. |
|
3417 * The statistics are actually updated from the timer callback. |
|
3418 **/ |
|
3419 |
|
3420 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
3421 { |
|
3422 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3423 |
|
3424 /* only return the current stats */ |
|
3425 return &adapter->net_stats; |
|
3426 } |
|
3427 |
|
3428 /** |
|
3429 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
3430 * @netdev: network interface device structure |
|
3431 * @new_mtu: new value for maximum frame size |
|
3432 * |
|
3433 * Returns 0 on success, negative on failure |
|
3434 **/ |
|
3435 |
|
3436 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
3437 { |
|
3438 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3439 struct e1000_hw *hw = &adapter->hw; |
|
3440 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
3441 u16 eeprom_data = 0; |
|
3442 |
|
3443 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
|
3444 (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
|
3445 DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); |
|
3446 return -EINVAL; |
|
3447 } |
|
3448 |
|
3449 /* Adapter-specific max frame size limits. */ |
|
3450 switch (hw->mac_type) { |
|
3451 case e1000_undefined ... e1000_82542_rev2_1: |
|
3452 case e1000_ich8lan: |
|
3453 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3454 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); |
|
3455 return -EINVAL; |
|
3456 } |
|
3457 break; |
|
3458 case e1000_82573: |
|
3459 /* Jumbo Frames not supported if: |
|
3460 * - this is not an 82573L device |
|
3461 * - ASPM is enabled in any way (0x1A bits 3:2) */ |
|
3462 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1, |
|
3463 &eeprom_data); |
|
3464 if ((hw->device_id != E1000_DEV_ID_82573L) || |
|
3465 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { |
|
3466 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3467 DPRINTK(PROBE, ERR, |
|
3468 "Jumbo Frames not supported.\n"); |
|
3469 return -EINVAL; |
|
3470 } |
|
3471 break; |
|
3472 } |
|
3473 /* ERT will be enabled later to enable wire speed receives */ |
|
3474 |
|
3475 /* fall through to get support */ |
|
3476 case e1000_82571: |
|
3477 case e1000_82572: |
|
3478 case e1000_80003es2lan: |
|
3479 #define MAX_STD_JUMBO_FRAME_SIZE 9234 |
|
3480 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
|
3481 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); |
|
3482 return -EINVAL; |
|
3483 } |
|
3484 break; |
|
3485 default: |
|
3486 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
|
3487 break; |
|
3488 } |
|
3489 |
|
3490 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
3491 * means we reserve 2 more, this pushes us to allocate from the next |
|
3492 * larger slab size |
|
3493 * i.e. RXBUFFER_2048 --> size-4096 slab */ |
|
3494 |
|
3495 if (max_frame <= E1000_RXBUFFER_256) |
|
3496 adapter->rx_buffer_len = E1000_RXBUFFER_256; |
|
3497 else if (max_frame <= E1000_RXBUFFER_512) |
|
3498 adapter->rx_buffer_len = E1000_RXBUFFER_512; |
|
3499 else if (max_frame <= E1000_RXBUFFER_1024) |
|
3500 adapter->rx_buffer_len = E1000_RXBUFFER_1024; |
|
3501 else if (max_frame <= E1000_RXBUFFER_2048) |
|
3502 adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
|
3503 else if (max_frame <= E1000_RXBUFFER_4096) |
|
3504 adapter->rx_buffer_len = E1000_RXBUFFER_4096; |
|
3505 else if (max_frame <= E1000_RXBUFFER_8192) |
|
3506 adapter->rx_buffer_len = E1000_RXBUFFER_8192; |
|
3507 else if (max_frame <= E1000_RXBUFFER_16384) |
|
3508 adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
|
3509 |
|
3510 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
3511 if (!hw->tbi_compatibility_on && |
|
3512 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || |
|
3513 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
|
3514 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
3515 |
|
3516 netdev->mtu = new_mtu; |
|
3517 hw->max_frame_size = max_frame; |
|
3518 |
|
3519 if (netif_running(netdev)) |
|
3520 e1000_reinit_locked(adapter); |
|
3521 |
|
3522 return 0; |
|
3523 } |
|
3524 |
|
3525 /** |
|
3526 * e1000_update_stats - Update the board statistics counters |
|
3527 * @adapter: board private structure |
|
3528 **/ |
|
3529 |
|
3530 void e1000_update_stats(struct e1000_adapter *adapter) |
|
3531 { |
|
3532 struct e1000_hw *hw = &adapter->hw; |
|
3533 struct pci_dev *pdev = adapter->pdev; |
|
3534 unsigned long flags; |
|
3535 u16 phy_tmp; |
|
3536 |
|
3537 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
|
3538 |
|
3539 /* |
|
3540 * Prevent stats update while adapter is being reset, or if the pci |
|
3541 * connection is down. |
|
3542 */ |
|
3543 if (adapter->link_speed == 0) |
|
3544 return; |
|
3545 if (pci_channel_offline(pdev)) |
|
3546 return; |
|
3547 |
|
3548 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3549 |
|
3550 /* these counters are modified from e1000_tbi_adjust_stats, |
|
3551 * called from the interrupt context, so they must only |
|
3552 * be written while holding adapter->stats_lock |
|
3553 */ |
|
3554 |
|
3555 adapter->stats.crcerrs += er32(CRCERRS); |
|
3556 adapter->stats.gprc += er32(GPRC); |
|
3557 adapter->stats.gorcl += er32(GORCL); |
|
3558 adapter->stats.gorch += er32(GORCH); |
|
3559 adapter->stats.bprc += er32(BPRC); |
|
3560 adapter->stats.mprc += er32(MPRC); |
|
3561 adapter->stats.roc += er32(ROC); |
|
3562 |
|
3563 if (hw->mac_type != e1000_ich8lan) { |
|
3564 adapter->stats.prc64 += er32(PRC64); |
|
3565 adapter->stats.prc127 += er32(PRC127); |
|
3566 adapter->stats.prc255 += er32(PRC255); |
|
3567 adapter->stats.prc511 += er32(PRC511); |
|
3568 adapter->stats.prc1023 += er32(PRC1023); |
|
3569 adapter->stats.prc1522 += er32(PRC1522); |
|
3570 } |
|
3571 |
|
3572 adapter->stats.symerrs += er32(SYMERRS); |
|
3573 adapter->stats.mpc += er32(MPC); |
|
3574 adapter->stats.scc += er32(SCC); |
|
3575 adapter->stats.ecol += er32(ECOL); |
|
3576 adapter->stats.mcc += er32(MCC); |
|
3577 adapter->stats.latecol += er32(LATECOL); |
|
3578 adapter->stats.dc += er32(DC); |
|
3579 adapter->stats.sec += er32(SEC); |
|
3580 adapter->stats.rlec += er32(RLEC); |
|
3581 adapter->stats.xonrxc += er32(XONRXC); |
|
3582 adapter->stats.xontxc += er32(XONTXC); |
|
3583 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3584 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3585 adapter->stats.fcruc += er32(FCRUC); |
|
3586 adapter->stats.gptc += er32(GPTC); |
|
3587 adapter->stats.gotcl += er32(GOTCL); |
|
3588 adapter->stats.gotch += er32(GOTCH); |
|
3589 adapter->stats.rnbc += er32(RNBC); |
|
3590 adapter->stats.ruc += er32(RUC); |
|
3591 adapter->stats.rfc += er32(RFC); |
|
3592 adapter->stats.rjc += er32(RJC); |
|
3593 adapter->stats.torl += er32(TORL); |
|
3594 adapter->stats.torh += er32(TORH); |
|
3595 adapter->stats.totl += er32(TOTL); |
|
3596 adapter->stats.toth += er32(TOTH); |
|
3597 adapter->stats.tpr += er32(TPR); |
|
3598 |
|
3599 if (hw->mac_type != e1000_ich8lan) { |
|
3600 adapter->stats.ptc64 += er32(PTC64); |
|
3601 adapter->stats.ptc127 += er32(PTC127); |
|
3602 adapter->stats.ptc255 += er32(PTC255); |
|
3603 adapter->stats.ptc511 += er32(PTC511); |
|
3604 adapter->stats.ptc1023 += er32(PTC1023); |
|
3605 adapter->stats.ptc1522 += er32(PTC1522); |
|
3606 } |
|
3607 |
|
3608 adapter->stats.mptc += er32(MPTC); |
|
3609 adapter->stats.bptc += er32(BPTC); |
|
3610 |
|
3611 /* used for adaptive IFS */ |
|
3612 |
|
3613 hw->tx_packet_delta = er32(TPT); |
|
3614 adapter->stats.tpt += hw->tx_packet_delta; |
|
3615 hw->collision_delta = er32(COLC); |
|
3616 adapter->stats.colc += hw->collision_delta; |
|
3617 |
|
3618 if (hw->mac_type >= e1000_82543) { |
|
3619 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3620 adapter->stats.rxerrc += er32(RXERRC); |
|
3621 adapter->stats.tncrs += er32(TNCRS); |
|
3622 adapter->stats.cexterr += er32(CEXTERR); |
|
3623 adapter->stats.tsctc += er32(TSCTC); |
|
3624 adapter->stats.tsctfc += er32(TSCTFC); |
|
3625 } |
|
3626 if (hw->mac_type > e1000_82547_rev_2) { |
|
3627 adapter->stats.iac += er32(IAC); |
|
3628 adapter->stats.icrxoc += er32(ICRXOC); |
|
3629 |
|
3630 if (hw->mac_type != e1000_ich8lan) { |
|
3631 adapter->stats.icrxptc += er32(ICRXPTC); |
|
3632 adapter->stats.icrxatc += er32(ICRXATC); |
|
3633 adapter->stats.ictxptc += er32(ICTXPTC); |
|
3634 adapter->stats.ictxatc += er32(ICTXATC); |
|
3635 adapter->stats.ictxqec += er32(ICTXQEC); |
|
3636 adapter->stats.ictxqmtc += er32(ICTXQMTC); |
|
3637 adapter->stats.icrxdmtc += er32(ICRXDMTC); |
|
3638 } |
|
3639 } |
|
3640 |
|
3641 /* Fill out the OS statistics structure */ |
|
3642 adapter->net_stats.multicast = adapter->stats.mprc; |
|
3643 adapter->net_stats.collisions = adapter->stats.colc; |
|
3644 |
|
3645 /* Rx Errors */ |
|
3646 |
|
3647 /* RLEC on some newer hardware can be incorrect so build |
|
3648 * our own version based on RUC and ROC */ |
|
3649 adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
|
3650 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3651 adapter->stats.ruc + adapter->stats.roc + |
|
3652 adapter->stats.cexterr; |
|
3653 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
|
3654 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc; |
|
3655 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3656 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3657 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
|
3658 |
|
3659 /* Tx Errors */ |
|
3660 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
|
3661 adapter->net_stats.tx_errors = adapter->stats.txerrc; |
|
3662 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
|
3663 adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
|
3664 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3665 if (hw->bad_tx_carr_stats_fd && |
|
3666 adapter->link_duplex == FULL_DUPLEX) { |
|
3667 adapter->net_stats.tx_carrier_errors = 0; |
|
3668 adapter->stats.tncrs = 0; |
|
3669 } |
|
3670 |
|
3671 /* Tx Dropped needs to be maintained elsewhere */ |
|
3672 |
|
3673 /* Phy Stats */ |
|
3674 if (hw->media_type == e1000_media_type_copper) { |
|
3675 if ((adapter->link_speed == SPEED_1000) && |
|
3676 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
|
3677 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
|
3678 adapter->phy_stats.idle_errors += phy_tmp; |
|
3679 } |
|
3680 |
|
3681 if ((hw->mac_type <= e1000_82546) && |
|
3682 (hw->phy_type == e1000_phy_m88) && |
|
3683 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
|
3684 adapter->phy_stats.receive_errors += phy_tmp; |
|
3685 } |
|
3686 |
|
3687 /* Management Stats */ |
|
3688 if (hw->has_smbus) { |
|
3689 adapter->stats.mgptc += er32(MGTPTC); |
|
3690 adapter->stats.mgprc += er32(MGTPRC); |
|
3691 adapter->stats.mgpdc += er32(MGTPDC); |
|
3692 } |
|
3693 |
|
3694 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
3695 } |
|
3696 |
|
3697 /** |
|
3698 * e1000_intr_msi - Interrupt Handler |
|
3699 * @irq: interrupt number |
|
3700 * @data: pointer to a network interface device structure |
|
3701 **/ |
|
3702 |
|
3703 static irqreturn_t e1000_intr_msi(int irq, void *data) |
|
3704 { |
|
3705 struct net_device *netdev = data; |
|
3706 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3707 struct e1000_hw *hw = &adapter->hw; |
|
3708 u32 icr = er32(ICR); |
|
3709 |
|
3710 /* in NAPI mode read ICR disables interrupts using IAM */ |
|
3711 |
|
3712 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
|
3713 hw->get_link_status = 1; |
|
3714 /* 80003ES2LAN workaround-- For packet buffer work-around on |
|
3715 * link down event; disable receives here in the ISR and reset |
|
3716 * adapter in watchdog */ |
|
3717 if (netif_carrier_ok(netdev) && |
|
3718 (hw->mac_type == e1000_80003es2lan)) { |
|
3719 /* disable receives */ |
|
3720 u32 rctl = er32(RCTL); |
|
3721 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3722 } |
|
3723 /* guard against interrupt when we're going down */ |
|
3724 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3725 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3726 } |
|
3727 |
|
3728 if (likely(napi_schedule_prep(&adapter->napi))) { |
|
3729 adapter->total_tx_bytes = 0; |
|
3730 adapter->total_tx_packets = 0; |
|
3731 adapter->total_rx_bytes = 0; |
|
3732 adapter->total_rx_packets = 0; |
|
3733 __napi_schedule(&adapter->napi); |
|
3734 } else |
|
3735 e1000_irq_enable(adapter); |
|
3736 |
|
3737 return IRQ_HANDLED; |
|
3738 } |
|
3739 |
|
3740 /** |
|
3741 * e1000_intr - Interrupt Handler |
|
3742 * @irq: interrupt number |
|
3743 * @data: pointer to a network interface device structure |
|
3744 **/ |
|
3745 |
|
3746 static irqreturn_t e1000_intr(int irq, void *data) |
|
3747 { |
|
3748 struct net_device *netdev = data; |
|
3749 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3750 struct e1000_hw *hw = &adapter->hw; |
|
3751 u32 rctl, icr = er32(ICR); |
|
3752 |
|
3753 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags))) |
|
3754 return IRQ_NONE; /* Not our interrupt */ |
|
3755 |
|
3756 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
|
3757 * not set, then the adapter didn't send an interrupt */ |
|
3758 if (unlikely(hw->mac_type >= e1000_82571 && |
|
3759 !(icr & E1000_ICR_INT_ASSERTED))) |
|
3760 return IRQ_NONE; |
|
3761 |
|
3762 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No |
|
3763 * need for the IMC write */ |
|
3764 |
|
3765 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
|
3766 hw->get_link_status = 1; |
|
3767 /* 80003ES2LAN workaround-- |
|
3768 * For packet buffer work-around on link down event; |
|
3769 * disable receives here in the ISR and |
|
3770 * reset adapter in watchdog |
|
3771 */ |
|
3772 if (netif_carrier_ok(netdev) && |
|
3773 (hw->mac_type == e1000_80003es2lan)) { |
|
3774 /* disable receives */ |
|
3775 rctl = er32(RCTL); |
|
3776 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3777 } |
|
3778 /* guard against interrupt when we're going down */ |
|
3779 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3780 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3781 } |
|
3782 |
|
3783 if (unlikely(hw->mac_type < e1000_82571)) { |
|
3784 /* disable interrupts, without the synchronize_irq bit */ |
|
3785 ew32(IMC, ~0); |
|
3786 E1000_WRITE_FLUSH(); |
|
3787 } |
|
3788 if (likely(napi_schedule_prep(&adapter->napi))) { |
|
3789 adapter->total_tx_bytes = 0; |
|
3790 adapter->total_tx_packets = 0; |
|
3791 adapter->total_rx_bytes = 0; |
|
3792 adapter->total_rx_packets = 0; |
|
3793 __napi_schedule(&adapter->napi); |
|
3794 } else { |
|
3795 /* this really should not happen! if it does it is basically a |
|
3796 * bug, but not a hard error, so enable ints and continue */ |
|
3797 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3798 e1000_irq_enable(adapter); |
|
3799 } |
|
3800 |
|
3801 return IRQ_HANDLED; |
|
3802 } |
|
3803 |
|
3804 /** |
|
3805 * e1000_clean - NAPI Rx polling callback |
|
3806 * @adapter: board private structure |
|
3807 **/ |
|
3808 static int e1000_clean(struct napi_struct *napi, int budget) |
|
3809 { |
|
3810 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
3811 struct net_device *poll_dev = adapter->netdev; |
|
3812 int tx_cleaned = 0, work_done = 0; |
|
3813 |
|
3814 adapter = netdev_priv(poll_dev); |
|
3815 |
|
3816 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); |
|
3817 |
|
3818 adapter->clean_rx(adapter, &adapter->rx_ring[0], |
|
3819 &work_done, budget); |
|
3820 |
|
3821 if (!tx_cleaned) |
|
3822 work_done = budget; |
|
3823 |
|
3824 /* If budget not fully consumed, exit the polling mode */ |
|
3825 if (work_done < budget) { |
|
3826 if (likely(adapter->itr_setting & 3)) |
|
3827 e1000_set_itr(adapter); |
|
3828 napi_complete(napi); |
|
3829 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3830 e1000_irq_enable(adapter); |
|
3831 } |
|
3832 |
|
3833 return work_done; |
|
3834 } |
|
3835 |
|
3836 /** |
|
3837 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
3838 * @adapter: board private structure |
|
3839 **/ |
|
3840 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
3841 struct e1000_tx_ring *tx_ring) |
|
3842 { |
|
3843 struct e1000_hw *hw = &adapter->hw; |
|
3844 struct net_device *netdev = adapter->netdev; |
|
3845 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
3846 struct e1000_buffer *buffer_info; |
|
3847 unsigned int i, eop; |
|
3848 unsigned int count = 0; |
|
3849 unsigned int total_tx_bytes=0, total_tx_packets=0; |
|
3850 |
|
3851 i = tx_ring->next_to_clean; |
|
3852 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3853 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3854 |
|
3855 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
|
3856 (count < tx_ring->count)) { |
|
3857 bool cleaned = false; |
|
3858 for ( ; !cleaned; count++) { |
|
3859 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3860 buffer_info = &tx_ring->buffer_info[i]; |
|
3861 cleaned = (i == eop); |
|
3862 |
|
3863 if (cleaned) { |
|
3864 struct sk_buff *skb = buffer_info->skb; |
|
3865 unsigned int segs, bytecount; |
|
3866 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
3867 /* multiply data chunks by size of headers */ |
|
3868 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
3869 skb->len; |
|
3870 total_tx_packets += segs; |
|
3871 total_tx_bytes += bytecount; |
|
3872 } |
|
3873 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
3874 tx_desc->upper.data = 0; |
|
3875 |
|
3876 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3877 } |
|
3878 |
|
3879 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3880 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3881 } |
|
3882 |
|
3883 tx_ring->next_to_clean = i; |
|
3884 |
|
3885 #define TX_WAKE_THRESHOLD 32 |
|
3886 if (unlikely(count && netif_carrier_ok(netdev) && |
|
3887 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
|
3888 /* Make sure that anybody stopping the queue after this |
|
3889 * sees the new next_to_clean. |
|
3890 */ |
|
3891 smp_mb(); |
|
3892 if (netif_queue_stopped(netdev)) { |
|
3893 netif_wake_queue(netdev); |
|
3894 ++adapter->restart_queue; |
|
3895 } |
|
3896 } |
|
3897 |
|
3898 if (adapter->detect_tx_hung) { |
|
3899 /* Detect a transmit hang in hardware, this serializes the |
|
3900 * check with the clearing of time_stamp and movement of i */ |
|
3901 adapter->detect_tx_hung = false; |
|
3902 if (tx_ring->buffer_info[i].time_stamp && |
|
3903 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + |
|
3904 (adapter->tx_timeout_factor * HZ)) |
|
3905 && !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
3906 |
|
3907 /* detected Tx unit hang */ |
|
3908 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" |
|
3909 " Tx Queue <%lu>\n" |
|
3910 " TDH <%x>\n" |
|
3911 " TDT <%x>\n" |
|
3912 " next_to_use <%x>\n" |
|
3913 " next_to_clean <%x>\n" |
|
3914 "buffer_info[next_to_clean]\n" |
|
3915 " time_stamp <%lx>\n" |
|
3916 " next_to_watch <%x>\n" |
|
3917 " jiffies <%lx>\n" |
|
3918 " next_to_watch.status <%x>\n", |
|
3919 (unsigned long)((tx_ring - adapter->tx_ring) / |
|
3920 sizeof(struct e1000_tx_ring)), |
|
3921 readl(hw->hw_addr + tx_ring->tdh), |
|
3922 readl(hw->hw_addr + tx_ring->tdt), |
|
3923 tx_ring->next_to_use, |
|
3924 tx_ring->next_to_clean, |
|
3925 tx_ring->buffer_info[i].time_stamp, |
|
3926 eop, |
|
3927 jiffies, |
|
3928 eop_desc->upper.fields.status); |
|
3929 netif_stop_queue(netdev); |
|
3930 } |
|
3931 } |
|
3932 adapter->total_tx_bytes += total_tx_bytes; |
|
3933 adapter->total_tx_packets += total_tx_packets; |
|
3934 adapter->net_stats.tx_bytes += total_tx_bytes; |
|
3935 adapter->net_stats.tx_packets += total_tx_packets; |
|
3936 return (count < tx_ring->count); |
|
3937 } |
|
3938 |
|
3939 /** |
|
3940 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
3941 * @adapter: board private structure |
|
3942 * @status_err: receive descriptor status and error fields |
|
3943 * @csum: receive descriptor csum field |
|
3944 * @sk_buff: socket buffer with received data |
|
3945 **/ |
|
3946 |
|
3947 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
3948 u32 csum, struct sk_buff *skb) |
|
3949 { |
|
3950 struct e1000_hw *hw = &adapter->hw; |
|
3951 u16 status = (u16)status_err; |
|
3952 u8 errors = (u8)(status_err >> 24); |
|
3953 skb->ip_summed = CHECKSUM_NONE; |
|
3954 |
|
3955 /* 82543 or newer only */ |
|
3956 if (unlikely(hw->mac_type < e1000_82543)) return; |
|
3957 /* Ignore Checksum bit is set */ |
|
3958 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
|
3959 /* TCP/UDP checksum error bit is set */ |
|
3960 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
|
3961 /* let the stack verify checksum errors */ |
|
3962 adapter->hw_csum_err++; |
|
3963 return; |
|
3964 } |
|
3965 /* TCP/UDP Checksum has not been calculated */ |
|
3966 if (hw->mac_type <= e1000_82547_rev_2) { |
|
3967 if (!(status & E1000_RXD_STAT_TCPCS)) |
|
3968 return; |
|
3969 } else { |
|
3970 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
|
3971 return; |
|
3972 } |
|
3973 /* It must be a TCP or UDP packet with a valid checksum */ |
|
3974 if (likely(status & E1000_RXD_STAT_TCPCS)) { |
|
3975 /* TCP checksum is good */ |
|
3976 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
3977 } else if (hw->mac_type > e1000_82547_rev_2) { |
|
3978 /* IP fragment with UDP payload */ |
|
3979 /* Hardware complements the payload checksum, so we undo it |
|
3980 * and then put the value in host order for further stack use. |
|
3981 */ |
|
3982 __sum16 sum = (__force __sum16)htons(csum); |
|
3983 skb->csum = csum_unfold(~sum); |
|
3984 skb->ip_summed = CHECKSUM_COMPLETE; |
|
3985 } |
|
3986 adapter->hw_csum_good++; |
|
3987 } |
|
3988 |
|
3989 /** |
|
3990 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
3991 * @adapter: board private structure |
|
3992 **/ |
|
3993 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
3994 struct e1000_rx_ring *rx_ring, |
|
3995 int *work_done, int work_to_do) |
|
3996 { |
|
3997 struct e1000_hw *hw = &adapter->hw; |
|
3998 struct net_device *netdev = adapter->netdev; |
|
3999 struct pci_dev *pdev = adapter->pdev; |
|
4000 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
4001 struct e1000_buffer *buffer_info, *next_buffer; |
|
4002 unsigned long flags; |
|
4003 u32 length; |
|
4004 u8 last_byte; |
|
4005 unsigned int i; |
|
4006 int cleaned_count = 0; |
|
4007 bool cleaned = false; |
|
4008 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
4009 |
|
4010 i = rx_ring->next_to_clean; |
|
4011 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4012 buffer_info = &rx_ring->buffer_info[i]; |
|
4013 |
|
4014 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
4015 struct sk_buff *skb; |
|
4016 u8 status; |
|
4017 |
|
4018 if (*work_done >= work_to_do) |
|
4019 break; |
|
4020 (*work_done)++; |
|
4021 |
|
4022 status = rx_desc->status; |
|
4023 skb = buffer_info->skb; |
|
4024 buffer_info->skb = NULL; |
|
4025 |
|
4026 prefetch(skb->data - NET_IP_ALIGN); |
|
4027 |
|
4028 if (++i == rx_ring->count) i = 0; |
|
4029 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
4030 prefetch(next_rxd); |
|
4031 |
|
4032 next_buffer = &rx_ring->buffer_info[i]; |
|
4033 |
|
4034 cleaned = true; |
|
4035 cleaned_count++; |
|
4036 pci_unmap_single(pdev, |
|
4037 buffer_info->dma, |
|
4038 buffer_info->length, |
|
4039 PCI_DMA_FROMDEVICE); |
|
4040 buffer_info->dma = 0; |
|
4041 |
|
4042 length = le16_to_cpu(rx_desc->length); |
|
4043 /* !EOP means multiple descriptors were used to store a single |
|
4044 * packet, also make sure the frame isn't just CRC only */ |
|
4045 if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) { |
|
4046 /* All receives must fit into a single buffer */ |
|
4047 E1000_DBG("%s: Receive packet consumed multiple" |
|
4048 " buffers\n", netdev->name); |
|
4049 /* recycle */ |
|
4050 buffer_info->skb = skb; |
|
4051 goto next_desc; |
|
4052 } |
|
4053 |
|
4054 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
4055 last_byte = *(skb->data + length - 1); |
|
4056 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
4057 last_byte)) { |
|
4058 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4059 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
4060 length, skb->data); |
|
4061 spin_unlock_irqrestore(&adapter->stats_lock, |
|
4062 flags); |
|
4063 length--; |
|
4064 } else { |
|
4065 /* recycle */ |
|
4066 buffer_info->skb = skb; |
|
4067 goto next_desc; |
|
4068 } |
|
4069 } |
|
4070 |
|
4071 /* adjust length to remove Ethernet CRC, this must be |
|
4072 * done after the TBI_ACCEPT workaround above */ |
|
4073 length -= 4; |
|
4074 |
|
4075 /* probably a little skewed due to removing CRC */ |
|
4076 total_rx_bytes += length; |
|
4077 total_rx_packets++; |
|
4078 |
|
4079 /* code added for copybreak, this should improve |
|
4080 * performance for small packets with large amounts |
|
4081 * of reassembly being done in the stack */ |
|
4082 if (length < copybreak) { |
|
4083 struct sk_buff *new_skb = |
|
4084 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
|
4085 if (new_skb) { |
|
4086 skb_reserve(new_skb, NET_IP_ALIGN); |
|
4087 skb_copy_to_linear_data_offset(new_skb, |
|
4088 -NET_IP_ALIGN, |
|
4089 (skb->data - |
|
4090 NET_IP_ALIGN), |
|
4091 (length + |
|
4092 NET_IP_ALIGN)); |
|
4093 /* save the skb in buffer_info as good */ |
|
4094 buffer_info->skb = skb; |
|
4095 skb = new_skb; |
|
4096 } |
|
4097 /* else just continue with the old one */ |
|
4098 } |
|
4099 /* end copybreak code */ |
|
4100 skb_put(skb, length); |
|
4101 |
|
4102 /* Receive Checksum Offload */ |
|
4103 e1000_rx_checksum(adapter, |
|
4104 (u32)(status) | |
|
4105 ((u32)(rx_desc->errors) << 24), |
|
4106 le16_to_cpu(rx_desc->csum), skb); |
|
4107 |
|
4108 skb->protocol = eth_type_trans(skb, netdev); |
|
4109 |
|
4110 if (unlikely(adapter->vlgrp && |
|
4111 (status & E1000_RXD_STAT_VP))) { |
|
4112 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
4113 le16_to_cpu(rx_desc->special)); |
|
4114 } else { |
|
4115 netif_receive_skb(skb); |
|
4116 } |
|
4117 |
|
4118 next_desc: |
|
4119 rx_desc->status = 0; |
|
4120 |
|
4121 /* return some buffers to hardware, one at a time is too slow */ |
|
4122 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4123 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4124 cleaned_count = 0; |
|
4125 } |
|
4126 |
|
4127 /* use prefetched values */ |
|
4128 rx_desc = next_rxd; |
|
4129 buffer_info = next_buffer; |
|
4130 } |
|
4131 rx_ring->next_to_clean = i; |
|
4132 |
|
4133 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4134 if (cleaned_count) |
|
4135 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4136 |
|
4137 adapter->total_rx_packets += total_rx_packets; |
|
4138 adapter->total_rx_bytes += total_rx_bytes; |
|
4139 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
4140 adapter->net_stats.rx_packets += total_rx_packets; |
|
4141 return cleaned; |
|
4142 } |
|
4143 |
|
4144 /** |
|
4145 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
4146 * @adapter: address of board private structure |
|
4147 **/ |
|
4148 |
|
4149 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
4150 struct e1000_rx_ring *rx_ring, |
|
4151 int cleaned_count) |
|
4152 { |
|
4153 struct e1000_hw *hw = &adapter->hw; |
|
4154 struct net_device *netdev = adapter->netdev; |
|
4155 struct pci_dev *pdev = adapter->pdev; |
|
4156 struct e1000_rx_desc *rx_desc; |
|
4157 struct e1000_buffer *buffer_info; |
|
4158 struct sk_buff *skb; |
|
4159 unsigned int i; |
|
4160 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; |
|
4161 |
|
4162 i = rx_ring->next_to_use; |
|
4163 buffer_info = &rx_ring->buffer_info[i]; |
|
4164 |
|
4165 while (cleaned_count--) { |
|
4166 skb = buffer_info->skb; |
|
4167 if (skb) { |
|
4168 skb_trim(skb, 0); |
|
4169 goto map_skb; |
|
4170 } |
|
4171 |
|
4172 skb = netdev_alloc_skb(netdev, bufsz); |
|
4173 if (unlikely(!skb)) { |
|
4174 /* Better luck next round */ |
|
4175 adapter->alloc_rx_buff_failed++; |
|
4176 break; |
|
4177 } |
|
4178 |
|
4179 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4180 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4181 struct sk_buff *oldskb = skb; |
|
4182 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " |
|
4183 "at %p\n", bufsz, skb->data); |
|
4184 /* Try again, without freeing the previous */ |
|
4185 skb = netdev_alloc_skb(netdev, bufsz); |
|
4186 /* Failed allocation, critical failure */ |
|
4187 if (!skb) { |
|
4188 dev_kfree_skb(oldskb); |
|
4189 break; |
|
4190 } |
|
4191 |
|
4192 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4193 /* give up */ |
|
4194 dev_kfree_skb(skb); |
|
4195 dev_kfree_skb(oldskb); |
|
4196 break; /* while !buffer_info->skb */ |
|
4197 } |
|
4198 |
|
4199 /* Use new allocation */ |
|
4200 dev_kfree_skb(oldskb); |
|
4201 } |
|
4202 /* Make buffer alignment 2 beyond a 16 byte boundary |
|
4203 * this will result in a 16 byte aligned IP header after |
|
4204 * the 14 byte MAC header is removed |
|
4205 */ |
|
4206 skb_reserve(skb, NET_IP_ALIGN); |
|
4207 |
|
4208 buffer_info->skb = skb; |
|
4209 buffer_info->length = adapter->rx_buffer_len; |
|
4210 map_skb: |
|
4211 buffer_info->dma = pci_map_single(pdev, |
|
4212 skb->data, |
|
4213 adapter->rx_buffer_len, |
|
4214 PCI_DMA_FROMDEVICE); |
|
4215 |
|
4216 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4217 if (!e1000_check_64k_bound(adapter, |
|
4218 (void *)(unsigned long)buffer_info->dma, |
|
4219 adapter->rx_buffer_len)) { |
|
4220 DPRINTK(RX_ERR, ERR, |
|
4221 "dma align check failed: %u bytes at %p\n", |
|
4222 adapter->rx_buffer_len, |
|
4223 (void *)(unsigned long)buffer_info->dma); |
|
4224 dev_kfree_skb(skb); |
|
4225 buffer_info->skb = NULL; |
|
4226 |
|
4227 pci_unmap_single(pdev, buffer_info->dma, |
|
4228 adapter->rx_buffer_len, |
|
4229 PCI_DMA_FROMDEVICE); |
|
4230 buffer_info->dma = 0; |
|
4231 |
|
4232 break; /* while !buffer_info->skb */ |
|
4233 } |
|
4234 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4235 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4236 |
|
4237 if (unlikely(++i == rx_ring->count)) |
|
4238 i = 0; |
|
4239 buffer_info = &rx_ring->buffer_info[i]; |
|
4240 } |
|
4241 |
|
4242 if (likely(rx_ring->next_to_use != i)) { |
|
4243 rx_ring->next_to_use = i; |
|
4244 if (unlikely(i-- == 0)) |
|
4245 i = (rx_ring->count - 1); |
|
4246 |
|
4247 /* Force memory writes to complete before letting h/w |
|
4248 * know there are new descriptors to fetch. (Only |
|
4249 * applicable for weak-ordered memory model archs, |
|
4250 * such as IA-64). */ |
|
4251 wmb(); |
|
4252 writel(i, hw->hw_addr + rx_ring->rdt); |
|
4253 } |
|
4254 } |
|
4255 |
|
4256 /** |
|
4257 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
|
4258 * @adapter: |
|
4259 **/ |
|
4260 |
|
4261 static void e1000_smartspeed(struct e1000_adapter *adapter) |
|
4262 { |
|
4263 struct e1000_hw *hw = &adapter->hw; |
|
4264 u16 phy_status; |
|
4265 u16 phy_ctrl; |
|
4266 |
|
4267 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
|
4268 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
|
4269 return; |
|
4270 |
|
4271 if (adapter->smartspeed == 0) { |
|
4272 /* If Master/Slave config fault is asserted twice, |
|
4273 * we assume back-to-back */ |
|
4274 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4275 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4276 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4277 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4278 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4279 if (phy_ctrl & CR_1000T_MS_ENABLE) { |
|
4280 phy_ctrl &= ~CR_1000T_MS_ENABLE; |
|
4281 e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
4282 phy_ctrl); |
|
4283 adapter->smartspeed++; |
|
4284 if (!e1000_phy_setup_autoneg(hw) && |
|
4285 !e1000_read_phy_reg(hw, PHY_CTRL, |
|
4286 &phy_ctrl)) { |
|
4287 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4288 MII_CR_RESTART_AUTO_NEG); |
|
4289 e1000_write_phy_reg(hw, PHY_CTRL, |
|
4290 phy_ctrl); |
|
4291 } |
|
4292 } |
|
4293 return; |
|
4294 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
|
4295 /* If still no link, perhaps using 2/3 pair cable */ |
|
4296 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4297 phy_ctrl |= CR_1000T_MS_ENABLE; |
|
4298 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
|
4299 if (!e1000_phy_setup_autoneg(hw) && |
|
4300 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
|
4301 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4302 MII_CR_RESTART_AUTO_NEG); |
|
4303 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
|
4304 } |
|
4305 } |
|
4306 /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
|
4307 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
|
4308 adapter->smartspeed = 0; |
|
4309 } |
|
4310 |
|
4311 /** |
|
4312 * e1000_ioctl - |
|
4313 * @netdev: |
|
4314 * @ifreq: |
|
4315 * @cmd: |
|
4316 **/ |
|
4317 |
|
4318 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4319 { |
|
4320 switch (cmd) { |
|
4321 case SIOCGMIIPHY: |
|
4322 case SIOCGMIIREG: |
|
4323 case SIOCSMIIREG: |
|
4324 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4325 default: |
|
4326 return -EOPNOTSUPP; |
|
4327 } |
|
4328 } |
|
4329 |
|
4330 /** |
|
4331 * e1000_mii_ioctl - |
|
4332 * @netdev: |
|
4333 * @ifreq: |
|
4334 * @cmd: |
|
4335 **/ |
|
4336 |
|
4337 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4338 int cmd) |
|
4339 { |
|
4340 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4341 struct e1000_hw *hw = &adapter->hw; |
|
4342 struct mii_ioctl_data *data = if_mii(ifr); |
|
4343 int retval; |
|
4344 u16 mii_reg; |
|
4345 u16 spddplx; |
|
4346 unsigned long flags; |
|
4347 |
|
4348 if (hw->media_type != e1000_media_type_copper) |
|
4349 return -EOPNOTSUPP; |
|
4350 |
|
4351 switch (cmd) { |
|
4352 case SIOCGMIIPHY: |
|
4353 data->phy_id = hw->phy_addr; |
|
4354 break; |
|
4355 case SIOCGMIIREG: |
|
4356 if (!capable(CAP_NET_ADMIN)) |
|
4357 return -EPERM; |
|
4358 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4359 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
|
4360 &data->val_out)) { |
|
4361 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4362 return -EIO; |
|
4363 } |
|
4364 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4365 break; |
|
4366 case SIOCSMIIREG: |
|
4367 if (!capable(CAP_NET_ADMIN)) |
|
4368 return -EPERM; |
|
4369 if (data->reg_num & ~(0x1F)) |
|
4370 return -EFAULT; |
|
4371 mii_reg = data->val_in; |
|
4372 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4373 if (e1000_write_phy_reg(hw, data->reg_num, |
|
4374 mii_reg)) { |
|
4375 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4376 return -EIO; |
|
4377 } |
|
4378 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4379 if (hw->media_type == e1000_media_type_copper) { |
|
4380 switch (data->reg_num) { |
|
4381 case PHY_CTRL: |
|
4382 if (mii_reg & MII_CR_POWER_DOWN) |
|
4383 break; |
|
4384 if (mii_reg & MII_CR_AUTO_NEG_EN) { |
|
4385 hw->autoneg = 1; |
|
4386 hw->autoneg_advertised = 0x2F; |
|
4387 } else { |
|
4388 if (mii_reg & 0x40) |
|
4389 spddplx = SPEED_1000; |
|
4390 else if (mii_reg & 0x2000) |
|
4391 spddplx = SPEED_100; |
|
4392 else |
|
4393 spddplx = SPEED_10; |
|
4394 spddplx += (mii_reg & 0x100) |
|
4395 ? DUPLEX_FULL : |
|
4396 DUPLEX_HALF; |
|
4397 retval = e1000_set_spd_dplx(adapter, |
|
4398 spddplx); |
|
4399 if (retval) |
|
4400 return retval; |
|
4401 } |
|
4402 if (netif_running(adapter->netdev)) |
|
4403 e1000_reinit_locked(adapter); |
|
4404 else |
|
4405 e1000_reset(adapter); |
|
4406 break; |
|
4407 case M88E1000_PHY_SPEC_CTRL: |
|
4408 case M88E1000_EXT_PHY_SPEC_CTRL: |
|
4409 if (e1000_phy_reset(hw)) |
|
4410 return -EIO; |
|
4411 break; |
|
4412 } |
|
4413 } else { |
|
4414 switch (data->reg_num) { |
|
4415 case PHY_CTRL: |
|
4416 if (mii_reg & MII_CR_POWER_DOWN) |
|
4417 break; |
|
4418 if (netif_running(adapter->netdev)) |
|
4419 e1000_reinit_locked(adapter); |
|
4420 else |
|
4421 e1000_reset(adapter); |
|
4422 break; |
|
4423 } |
|
4424 } |
|
4425 break; |
|
4426 default: |
|
4427 return -EOPNOTSUPP; |
|
4428 } |
|
4429 return E1000_SUCCESS; |
|
4430 } |
|
4431 |
|
4432 void e1000_pci_set_mwi(struct e1000_hw *hw) |
|
4433 { |
|
4434 struct e1000_adapter *adapter = hw->back; |
|
4435 int ret_val = pci_set_mwi(adapter->pdev); |
|
4436 |
|
4437 if (ret_val) |
|
4438 DPRINTK(PROBE, ERR, "Error in setting MWI\n"); |
|
4439 } |
|
4440 |
|
4441 void e1000_pci_clear_mwi(struct e1000_hw *hw) |
|
4442 { |
|
4443 struct e1000_adapter *adapter = hw->back; |
|
4444 |
|
4445 pci_clear_mwi(adapter->pdev); |
|
4446 } |
|
4447 |
|
4448 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
|
4449 { |
|
4450 struct e1000_adapter *adapter = hw->back; |
|
4451 return pcix_get_mmrbc(adapter->pdev); |
|
4452 } |
|
4453 |
|
4454 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
|
4455 { |
|
4456 struct e1000_adapter *adapter = hw->back; |
|
4457 pcix_set_mmrbc(adapter->pdev, mmrbc); |
|
4458 } |
|
4459 |
|
4460 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
|
4461 { |
|
4462 struct e1000_adapter *adapter = hw->back; |
|
4463 u16 cap_offset; |
|
4464 |
|
4465 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
|
4466 if (!cap_offset) |
|
4467 return -E1000_ERR_CONFIG; |
|
4468 |
|
4469 pci_read_config_word(adapter->pdev, cap_offset + reg, value); |
|
4470 |
|
4471 return E1000_SUCCESS; |
|
4472 } |
|
4473 |
|
4474 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
|
4475 { |
|
4476 outl(value, port); |
|
4477 } |
|
4478 |
|
4479 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
4480 struct vlan_group *grp) |
|
4481 { |
|
4482 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4483 struct e1000_hw *hw = &adapter->hw; |
|
4484 u32 ctrl, rctl; |
|
4485 |
|
4486 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4487 e1000_irq_disable(adapter); |
|
4488 adapter->vlgrp = grp; |
|
4489 |
|
4490 if (grp) { |
|
4491 /* enable VLAN tag insert/strip */ |
|
4492 ctrl = er32(CTRL); |
|
4493 ctrl |= E1000_CTRL_VME; |
|
4494 ew32(CTRL, ctrl); |
|
4495 |
|
4496 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
4497 /* enable VLAN receive filtering */ |
|
4498 rctl = er32(RCTL); |
|
4499 rctl &= ~E1000_RCTL_CFIEN; |
|
4500 ew32(RCTL, rctl); |
|
4501 e1000_update_mng_vlan(adapter); |
|
4502 } |
|
4503 } else { |
|
4504 /* disable VLAN tag insert/strip */ |
|
4505 ctrl = er32(CTRL); |
|
4506 ctrl &= ~E1000_CTRL_VME; |
|
4507 ew32(CTRL, ctrl); |
|
4508 |
|
4509 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
4510 if (adapter->mng_vlan_id != |
|
4511 (u16)E1000_MNG_VLAN_NONE) { |
|
4512 e1000_vlan_rx_kill_vid(netdev, |
|
4513 adapter->mng_vlan_id); |
|
4514 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
4515 } |
|
4516 } |
|
4517 } |
|
4518 |
|
4519 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4520 e1000_irq_enable(adapter); |
|
4521 } |
|
4522 |
|
4523 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
4524 { |
|
4525 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4526 struct e1000_hw *hw = &adapter->hw; |
|
4527 u32 vfta, index; |
|
4528 |
|
4529 if ((hw->mng_cookie.status & |
|
4530 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4531 (vid == adapter->mng_vlan_id)) |
|
4532 return; |
|
4533 /* add VID to filter table */ |
|
4534 index = (vid >> 5) & 0x7F; |
|
4535 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4536 vfta |= (1 << (vid & 0x1F)); |
|
4537 e1000_write_vfta(hw, index, vfta); |
|
4538 } |
|
4539 |
|
4540 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
4541 { |
|
4542 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4543 struct e1000_hw *hw = &adapter->hw; |
|
4544 u32 vfta, index; |
|
4545 |
|
4546 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4547 e1000_irq_disable(adapter); |
|
4548 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
4549 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4550 e1000_irq_enable(adapter); |
|
4551 |
|
4552 if ((hw->mng_cookie.status & |
|
4553 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4554 (vid == adapter->mng_vlan_id)) { |
|
4555 /* release control to f/w */ |
|
4556 e1000_release_hw_control(adapter); |
|
4557 return; |
|
4558 } |
|
4559 |
|
4560 /* remove VID from filter table */ |
|
4561 index = (vid >> 5) & 0x7F; |
|
4562 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4563 vfta &= ~(1 << (vid & 0x1F)); |
|
4564 e1000_write_vfta(hw, index, vfta); |
|
4565 } |
|
4566 |
|
4567 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
4568 { |
|
4569 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
4570 |
|
4571 if (adapter->vlgrp) { |
|
4572 u16 vid; |
|
4573 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
4574 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
4575 continue; |
|
4576 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
4577 } |
|
4578 } |
|
4579 } |
|
4580 |
|
4581 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
|
4582 { |
|
4583 struct e1000_hw *hw = &adapter->hw; |
|
4584 |
|
4585 hw->autoneg = 0; |
|
4586 |
|
4587 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
4588 if ((hw->media_type == e1000_media_type_fiber) && |
|
4589 spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
|
4590 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
4591 return -EINVAL; |
|
4592 } |
|
4593 |
|
4594 switch (spddplx) { |
|
4595 case SPEED_10 + DUPLEX_HALF: |
|
4596 hw->forced_speed_duplex = e1000_10_half; |
|
4597 break; |
|
4598 case SPEED_10 + DUPLEX_FULL: |
|
4599 hw->forced_speed_duplex = e1000_10_full; |
|
4600 break; |
|
4601 case SPEED_100 + DUPLEX_HALF: |
|
4602 hw->forced_speed_duplex = e1000_100_half; |
|
4603 break; |
|
4604 case SPEED_100 + DUPLEX_FULL: |
|
4605 hw->forced_speed_duplex = e1000_100_full; |
|
4606 break; |
|
4607 case SPEED_1000 + DUPLEX_FULL: |
|
4608 hw->autoneg = 1; |
|
4609 hw->autoneg_advertised = ADVERTISE_1000_FULL; |
|
4610 break; |
|
4611 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
4612 default: |
|
4613 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
4614 return -EINVAL; |
|
4615 } |
|
4616 return 0; |
|
4617 } |
|
4618 |
|
4619 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
4620 { |
|
4621 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4622 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4623 struct e1000_hw *hw = &adapter->hw; |
|
4624 u32 ctrl, ctrl_ext, rctl, status; |
|
4625 u32 wufc = adapter->wol; |
|
4626 #ifdef CONFIG_PM |
|
4627 int retval = 0; |
|
4628 #endif |
|
4629 |
|
4630 netif_device_detach(netdev); |
|
4631 |
|
4632 if (netif_running(netdev)) { |
|
4633 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
4634 e1000_down(adapter); |
|
4635 } |
|
4636 |
|
4637 #ifdef CONFIG_PM |
|
4638 retval = pci_save_state(pdev); |
|
4639 if (retval) |
|
4640 return retval; |
|
4641 #endif |
|
4642 |
|
4643 status = er32(STATUS); |
|
4644 if (status & E1000_STATUS_LU) |
|
4645 wufc &= ~E1000_WUFC_LNKC; |
|
4646 |
|
4647 if (wufc) { |
|
4648 e1000_setup_rctl(adapter); |
|
4649 e1000_set_rx_mode(netdev); |
|
4650 |
|
4651 /* turn on all-multi mode if wake on multicast is enabled */ |
|
4652 if (wufc & E1000_WUFC_MC) { |
|
4653 rctl = er32(RCTL); |
|
4654 rctl |= E1000_RCTL_MPE; |
|
4655 ew32(RCTL, rctl); |
|
4656 } |
|
4657 |
|
4658 if (hw->mac_type >= e1000_82540) { |
|
4659 ctrl = er32(CTRL); |
|
4660 /* advertise wake from D3Cold */ |
|
4661 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
4662 /* phy power management enable */ |
|
4663 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
4664 ctrl |= E1000_CTRL_ADVD3WUC | |
|
4665 E1000_CTRL_EN_PHY_PWR_MGMT; |
|
4666 ew32(CTRL, ctrl); |
|
4667 } |
|
4668 |
|
4669 if (hw->media_type == e1000_media_type_fiber || |
|
4670 hw->media_type == e1000_media_type_internal_serdes) { |
|
4671 /* keep the laser running in D3 */ |
|
4672 ctrl_ext = er32(CTRL_EXT); |
|
4673 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
4674 ew32(CTRL_EXT, ctrl_ext); |
|
4675 } |
|
4676 |
|
4677 /* Allow time for pending master requests to run */ |
|
4678 e1000_disable_pciex_master(hw); |
|
4679 |
|
4680 ew32(WUC, E1000_WUC_PME_EN); |
|
4681 ew32(WUFC, wufc); |
|
4682 } else { |
|
4683 ew32(WUC, 0); |
|
4684 ew32(WUFC, 0); |
|
4685 } |
|
4686 |
|
4687 e1000_release_manageability(adapter); |
|
4688 |
|
4689 *enable_wake = !!wufc; |
|
4690 |
|
4691 /* make sure adapter isn't asleep if manageability is enabled */ |
|
4692 if (adapter->en_mng_pt) |
|
4693 *enable_wake = true; |
|
4694 |
|
4695 if (hw->phy_type == e1000_phy_igp_3) |
|
4696 e1000_phy_powerdown_workaround(hw); |
|
4697 |
|
4698 if (netif_running(netdev)) |
|
4699 e1000_free_irq(adapter); |
|
4700 |
|
4701 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
4702 * would have already happened in close and is redundant. */ |
|
4703 e1000_release_hw_control(adapter); |
|
4704 |
|
4705 pci_disable_device(pdev); |
|
4706 |
|
4707 return 0; |
|
4708 } |
|
4709 |
|
4710 #ifdef CONFIG_PM |
|
4711 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
4712 { |
|
4713 int retval; |
|
4714 bool wake; |
|
4715 |
|
4716 retval = __e1000_shutdown(pdev, &wake); |
|
4717 if (retval) |
|
4718 return retval; |
|
4719 |
|
4720 if (wake) { |
|
4721 pci_prepare_to_sleep(pdev); |
|
4722 } else { |
|
4723 pci_wake_from_d3(pdev, false); |
|
4724 pci_set_power_state(pdev, PCI_D3hot); |
|
4725 } |
|
4726 |
|
4727 return 0; |
|
4728 } |
|
4729 |
|
4730 static int e1000_resume(struct pci_dev *pdev) |
|
4731 { |
|
4732 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4733 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4734 struct e1000_hw *hw = &adapter->hw; |
|
4735 u32 err; |
|
4736 |
|
4737 pci_set_power_state(pdev, PCI_D0); |
|
4738 pci_restore_state(pdev); |
|
4739 |
|
4740 if (adapter->need_ioport) |
|
4741 err = pci_enable_device(pdev); |
|
4742 else |
|
4743 err = pci_enable_device_mem(pdev); |
|
4744 if (err) { |
|
4745 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n"); |
|
4746 return err; |
|
4747 } |
|
4748 pci_set_master(pdev); |
|
4749 |
|
4750 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4751 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4752 |
|
4753 if (netif_running(netdev)) { |
|
4754 err = e1000_request_irq(adapter); |
|
4755 if (err) |
|
4756 return err; |
|
4757 } |
|
4758 |
|
4759 e1000_power_up_phy(adapter); |
|
4760 e1000_reset(adapter); |
|
4761 ew32(WUS, ~0); |
|
4762 |
|
4763 e1000_init_manageability(adapter); |
|
4764 |
|
4765 if (netif_running(netdev)) |
|
4766 e1000_up(adapter); |
|
4767 |
|
4768 netif_device_attach(netdev); |
|
4769 |
|
4770 /* If the controller is 82573 and f/w is AMT, do not set |
|
4771 * DRV_LOAD until the interface is up. For all other cases, |
|
4772 * let the f/w know that the h/w is now under the control |
|
4773 * of the driver. */ |
|
4774 if (hw->mac_type != e1000_82573 || |
|
4775 !e1000_check_mng_mode(hw)) |
|
4776 e1000_get_hw_control(adapter); |
|
4777 |
|
4778 return 0; |
|
4779 } |
|
4780 #endif |
|
4781 |
|
4782 static void e1000_shutdown(struct pci_dev *pdev) |
|
4783 { |
|
4784 bool wake; |
|
4785 |
|
4786 __e1000_shutdown(pdev, &wake); |
|
4787 |
|
4788 if (system_state == SYSTEM_POWER_OFF) { |
|
4789 pci_wake_from_d3(pdev, wake); |
|
4790 pci_set_power_state(pdev, PCI_D3hot); |
|
4791 } |
|
4792 } |
|
4793 |
|
4794 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
4795 /* |
|
4796 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
4797 * without having to re-enable interrupts. It's not called while |
|
4798 * the interrupt routine is executing. |
|
4799 */ |
|
4800 static void e1000_netpoll(struct net_device *netdev) |
|
4801 { |
|
4802 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4803 |
|
4804 disable_irq(adapter->pdev->irq); |
|
4805 e1000_intr(adapter->pdev->irq, netdev); |
|
4806 enable_irq(adapter->pdev->irq); |
|
4807 } |
|
4808 #endif |
|
4809 |
|
4810 /** |
|
4811 * e1000_io_error_detected - called when PCI error is detected |
|
4812 * @pdev: Pointer to PCI device |
|
4813 * @state: The current pci conneection state |
|
4814 * |
|
4815 * This function is called after a PCI bus error affecting |
|
4816 * this device has been detected. |
|
4817 */ |
|
4818 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
4819 pci_channel_state_t state) |
|
4820 { |
|
4821 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4822 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4823 |
|
4824 netif_device_detach(netdev); |
|
4825 |
|
4826 if (state == pci_channel_io_perm_failure) |
|
4827 return PCI_ERS_RESULT_DISCONNECT; |
|
4828 |
|
4829 if (netif_running(netdev)) |
|
4830 e1000_down(adapter); |
|
4831 pci_disable_device(pdev); |
|
4832 |
|
4833 /* Request a slot slot reset. */ |
|
4834 return PCI_ERS_RESULT_NEED_RESET; |
|
4835 } |
|
4836 |
|
4837 /** |
|
4838 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
4839 * @pdev: Pointer to PCI device |
|
4840 * |
|
4841 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
4842 * resembles the first-half of the e1000_resume routine. |
|
4843 */ |
|
4844 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
4845 { |
|
4846 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4847 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4848 struct e1000_hw *hw = &adapter->hw; |
|
4849 int err; |
|
4850 |
|
4851 if (adapter->need_ioport) |
|
4852 err = pci_enable_device(pdev); |
|
4853 else |
|
4854 err = pci_enable_device_mem(pdev); |
|
4855 if (err) { |
|
4856 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); |
|
4857 return PCI_ERS_RESULT_DISCONNECT; |
|
4858 } |
|
4859 pci_set_master(pdev); |
|
4860 |
|
4861 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4862 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4863 |
|
4864 e1000_reset(adapter); |
|
4865 ew32(WUS, ~0); |
|
4866 |
|
4867 return PCI_ERS_RESULT_RECOVERED; |
|
4868 } |
|
4869 |
|
4870 /** |
|
4871 * e1000_io_resume - called when traffic can start flowing again. |
|
4872 * @pdev: Pointer to PCI device |
|
4873 * |
|
4874 * This callback is called when the error recovery driver tells us that |
|
4875 * its OK to resume normal operation. Implementation resembles the |
|
4876 * second-half of the e1000_resume routine. |
|
4877 */ |
|
4878 static void e1000_io_resume(struct pci_dev *pdev) |
|
4879 { |
|
4880 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4881 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4882 struct e1000_hw *hw = &adapter->hw; |
|
4883 |
|
4884 e1000_init_manageability(adapter); |
|
4885 |
|
4886 if (netif_running(netdev)) { |
|
4887 if (e1000_up(adapter)) { |
|
4888 printk("e1000: can't bring device back up after reset\n"); |
|
4889 return; |
|
4890 } |
|
4891 } |
|
4892 |
|
4893 netif_device_attach(netdev); |
|
4894 |
|
4895 /* If the controller is 82573 and f/w is AMT, do not set |
|
4896 * DRV_LOAD until the interface is up. For all other cases, |
|
4897 * let the f/w know that the h/w is now under the control |
|
4898 * of the driver. */ |
|
4899 if (hw->mac_type != e1000_82573 || |
|
4900 !e1000_check_mng_mode(hw)) |
|
4901 e1000_get_hw_control(adapter); |
|
4902 |
|
4903 } |
|
4904 |
|
4905 /* e1000_main.c */ |