2171
|
1 |
/*******************************************************************************
|
|
2 |
|
|
3 |
Intel PRO/1000 Linux driver
|
|
4 |
Copyright(c) 1999 - 2006 Intel Corporation.
|
|
5 |
|
|
6 |
This program is free software; you can redistribute it and/or modify it
|
|
7 |
under the terms and conditions of the GNU General Public License,
|
|
8 |
version 2, as published by the Free Software Foundation.
|
|
9 |
|
|
10 |
This program is distributed in the hope it will be useful, but WITHOUT
|
|
11 |
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
12 |
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
13 |
more details.
|
|
14 |
|
|
15 |
You should have received a copy of the GNU General Public License along with
|
|
16 |
this program; if not, write to the Free Software Foundation, Inc.,
|
|
17 |
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
|
|
19 |
The full GNU General Public License is included in this distribution in
|
|
20 |
the file called "COPYING".
|
|
21 |
|
|
22 |
Contact Information:
|
|
23 |
Linux NICS <linux.nics@intel.com>
|
|
24 |
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
25 |
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
26 |
|
|
27 |
*******************************************************************************/
|
|
28 |
|
|
29 |
/* ethtool support for e1000 */
|
|
30 |
|
|
31 |
#include "e1000.h"
|
|
32 |
#include <asm/uaccess.h>
|
|
33 |
|
|
34 |
struct e1000_stats {
|
|
35 |
char stat_string[ETH_GSTRING_LEN];
|
|
36 |
int sizeof_stat;
|
|
37 |
int stat_offset;
|
|
38 |
};
|
|
39 |
|
|
40 |
#define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
|
|
41 |
offsetof(struct e1000_adapter, m)
|
|
42 |
static const struct e1000_stats e1000_gstrings_stats[] = {
|
|
43 |
{ "rx_packets", E1000_STAT(stats.gprc) },
|
|
44 |
{ "tx_packets", E1000_STAT(stats.gptc) },
|
|
45 |
{ "rx_bytes", E1000_STAT(stats.gorcl) },
|
|
46 |
{ "tx_bytes", E1000_STAT(stats.gotcl) },
|
|
47 |
{ "rx_broadcast", E1000_STAT(stats.bprc) },
|
|
48 |
{ "tx_broadcast", E1000_STAT(stats.bptc) },
|
|
49 |
{ "rx_multicast", E1000_STAT(stats.mprc) },
|
|
50 |
{ "tx_multicast", E1000_STAT(stats.mptc) },
|
|
51 |
{ "rx_errors", E1000_STAT(stats.rxerrc) },
|
|
52 |
{ "tx_errors", E1000_STAT(stats.txerrc) },
|
|
53 |
{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
|
|
54 |
{ "multicast", E1000_STAT(stats.mprc) },
|
|
55 |
{ "collisions", E1000_STAT(stats.colc) },
|
|
56 |
{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
|
|
57 |
{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
|
|
58 |
{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
|
|
59 |
{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
|
|
60 |
{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
|
|
61 |
{ "rx_missed_errors", E1000_STAT(stats.mpc) },
|
|
62 |
{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
|
|
63 |
{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
|
|
64 |
{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
|
|
65 |
{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
|
|
66 |
{ "tx_window_errors", E1000_STAT(stats.latecol) },
|
|
67 |
{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
|
|
68 |
{ "tx_deferred_ok", E1000_STAT(stats.dc) },
|
|
69 |
{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
|
|
70 |
{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
|
|
71 |
{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
|
|
72 |
{ "tx_restart_queue", E1000_STAT(restart_queue) },
|
|
73 |
{ "rx_long_length_errors", E1000_STAT(stats.roc) },
|
|
74 |
{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
|
|
75 |
{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
|
|
76 |
{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
|
|
77 |
{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
|
|
78 |
{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
|
|
79 |
{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
|
|
80 |
{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
|
|
81 |
{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
|
|
82 |
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
|
|
83 |
{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
|
|
84 |
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
|
|
85 |
{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
|
|
86 |
{ "tx_smbus", E1000_STAT(stats.mgptc) },
|
|
87 |
{ "rx_smbus", E1000_STAT(stats.mgprc) },
|
|
88 |
{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
|
|
89 |
};
|
|
90 |
|
|
91 |
#define E1000_QUEUE_STATS_LEN 0
|
|
92 |
#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
|
|
93 |
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
|
|
94 |
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
|
|
95 |
"Register test (offline)", "Eeprom test (offline)",
|
|
96 |
"Interrupt test (offline)", "Loopback test (offline)",
|
|
97 |
"Link test (on/offline)"
|
|
98 |
};
|
|
99 |
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
|
|
100 |
|
|
101 |
static int e1000_get_settings(struct net_device *netdev,
|
|
102 |
struct ethtool_cmd *ecmd)
|
|
103 |
{
|
|
104 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
105 |
struct e1000_hw *hw = &adapter->hw;
|
|
106 |
|
|
107 |
if (hw->media_type == e1000_media_type_copper) {
|
|
108 |
|
|
109 |
ecmd->supported = (SUPPORTED_10baseT_Half |
|
|
110 |
SUPPORTED_10baseT_Full |
|
|
111 |
SUPPORTED_100baseT_Half |
|
|
112 |
SUPPORTED_100baseT_Full |
|
|
113 |
SUPPORTED_1000baseT_Full|
|
|
114 |
SUPPORTED_Autoneg |
|
|
115 |
SUPPORTED_TP);
|
|
116 |
ecmd->advertising = ADVERTISED_TP;
|
|
117 |
|
|
118 |
if (hw->autoneg == 1) {
|
|
119 |
ecmd->advertising |= ADVERTISED_Autoneg;
|
|
120 |
/* the e1000 autoneg seems to match ethtool nicely */
|
|
121 |
ecmd->advertising |= hw->autoneg_advertised;
|
|
122 |
}
|
|
123 |
|
|
124 |
ecmd->port = PORT_TP;
|
|
125 |
ecmd->phy_address = hw->phy_addr;
|
|
126 |
|
|
127 |
if (hw->mac_type == e1000_82543)
|
|
128 |
ecmd->transceiver = XCVR_EXTERNAL;
|
|
129 |
else
|
|
130 |
ecmd->transceiver = XCVR_INTERNAL;
|
|
131 |
|
|
132 |
} else {
|
|
133 |
ecmd->supported = (SUPPORTED_1000baseT_Full |
|
|
134 |
SUPPORTED_FIBRE |
|
|
135 |
SUPPORTED_Autoneg);
|
|
136 |
|
|
137 |
ecmd->advertising = (ADVERTISED_1000baseT_Full |
|
|
138 |
ADVERTISED_FIBRE |
|
|
139 |
ADVERTISED_Autoneg);
|
|
140 |
|
|
141 |
ecmd->port = PORT_FIBRE;
|
|
142 |
|
|
143 |
if (hw->mac_type >= e1000_82545)
|
|
144 |
ecmd->transceiver = XCVR_INTERNAL;
|
|
145 |
else
|
|
146 |
ecmd->transceiver = XCVR_EXTERNAL;
|
|
147 |
}
|
|
148 |
|
|
149 |
if (er32(STATUS) & E1000_STATUS_LU) {
|
|
150 |
|
|
151 |
e1000_get_speed_and_duplex(hw, &adapter->link_speed,
|
|
152 |
&adapter->link_duplex);
|
|
153 |
ecmd->speed = adapter->link_speed;
|
|
154 |
|
|
155 |
/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
|
|
156 |
* and HALF_DUPLEX != DUPLEX_HALF */
|
|
157 |
|
|
158 |
if (adapter->link_duplex == FULL_DUPLEX)
|
|
159 |
ecmd->duplex = DUPLEX_FULL;
|
|
160 |
else
|
|
161 |
ecmd->duplex = DUPLEX_HALF;
|
|
162 |
} else {
|
|
163 |
ecmd->speed = -1;
|
|
164 |
ecmd->duplex = -1;
|
|
165 |
}
|
|
166 |
|
|
167 |
ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
|
|
168 |
hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
|
|
169 |
return 0;
|
|
170 |
}
|
|
171 |
|
|
172 |
static int e1000_set_settings(struct net_device *netdev,
|
|
173 |
struct ethtool_cmd *ecmd)
|
|
174 |
{
|
|
175 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
176 |
struct e1000_hw *hw = &adapter->hw;
|
|
177 |
|
|
178 |
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
|
|
179 |
msleep(1);
|
|
180 |
|
|
181 |
if (ecmd->autoneg == AUTONEG_ENABLE) {
|
|
182 |
hw->autoneg = 1;
|
|
183 |
if (hw->media_type == e1000_media_type_fiber)
|
|
184 |
hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
|
|
185 |
ADVERTISED_FIBRE |
|
|
186 |
ADVERTISED_Autoneg;
|
|
187 |
else
|
|
188 |
hw->autoneg_advertised = ecmd->advertising |
|
|
189 |
ADVERTISED_TP |
|
|
190 |
ADVERTISED_Autoneg;
|
|
191 |
ecmd->advertising = hw->autoneg_advertised;
|
|
192 |
} else
|
|
193 |
if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
|
|
194 |
clear_bit(__E1000_RESETTING, &adapter->flags);
|
|
195 |
return -EINVAL;
|
|
196 |
}
|
|
197 |
|
|
198 |
/* reset the link */
|
|
199 |
|
|
200 |
if (netif_running(adapter->netdev)) {
|
|
201 |
e1000_down(adapter);
|
|
202 |
e1000_up(adapter);
|
|
203 |
} else
|
|
204 |
e1000_reset(adapter);
|
|
205 |
|
|
206 |
clear_bit(__E1000_RESETTING, &adapter->flags);
|
|
207 |
return 0;
|
|
208 |
}
|
|
209 |
|
|
210 |
static void e1000_get_pauseparam(struct net_device *netdev,
|
|
211 |
struct ethtool_pauseparam *pause)
|
|
212 |
{
|
|
213 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
214 |
struct e1000_hw *hw = &adapter->hw;
|
|
215 |
|
|
216 |
pause->autoneg =
|
|
217 |
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
|
|
218 |
|
|
219 |
if (hw->fc == E1000_FC_RX_PAUSE)
|
|
220 |
pause->rx_pause = 1;
|
|
221 |
else if (hw->fc == E1000_FC_TX_PAUSE)
|
|
222 |
pause->tx_pause = 1;
|
|
223 |
else if (hw->fc == E1000_FC_FULL) {
|
|
224 |
pause->rx_pause = 1;
|
|
225 |
pause->tx_pause = 1;
|
|
226 |
}
|
|
227 |
}
|
|
228 |
|
|
229 |
static int e1000_set_pauseparam(struct net_device *netdev,
|
|
230 |
struct ethtool_pauseparam *pause)
|
|
231 |
{
|
|
232 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
233 |
struct e1000_hw *hw = &adapter->hw;
|
|
234 |
int retval = 0;
|
|
235 |
|
|
236 |
adapter->fc_autoneg = pause->autoneg;
|
|
237 |
|
|
238 |
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
|
|
239 |
msleep(1);
|
|
240 |
|
|
241 |
if (pause->rx_pause && pause->tx_pause)
|
|
242 |
hw->fc = E1000_FC_FULL;
|
|
243 |
else if (pause->rx_pause && !pause->tx_pause)
|
|
244 |
hw->fc = E1000_FC_RX_PAUSE;
|
|
245 |
else if (!pause->rx_pause && pause->tx_pause)
|
|
246 |
hw->fc = E1000_FC_TX_PAUSE;
|
|
247 |
else if (!pause->rx_pause && !pause->tx_pause)
|
|
248 |
hw->fc = E1000_FC_NONE;
|
|
249 |
|
|
250 |
hw->original_fc = hw->fc;
|
|
251 |
|
|
252 |
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
|
|
253 |
if (netif_running(adapter->netdev)) {
|
|
254 |
e1000_down(adapter);
|
|
255 |
e1000_up(adapter);
|
|
256 |
} else
|
|
257 |
e1000_reset(adapter);
|
|
258 |
} else
|
|
259 |
retval = ((hw->media_type == e1000_media_type_fiber) ?
|
|
260 |
e1000_setup_link(hw) : e1000_force_mac_fc(hw));
|
|
261 |
|
|
262 |
clear_bit(__E1000_RESETTING, &adapter->flags);
|
|
263 |
return retval;
|
|
264 |
}
|
|
265 |
|
|
266 |
static u32 e1000_get_rx_csum(struct net_device *netdev)
|
|
267 |
{
|
|
268 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
269 |
return adapter->rx_csum;
|
|
270 |
}
|
|
271 |
|
|
272 |
static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
|
|
273 |
{
|
|
274 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
275 |
adapter->rx_csum = data;
|
|
276 |
|
|
277 |
if (netif_running(netdev))
|
|
278 |
e1000_reinit_locked(adapter);
|
|
279 |
else
|
|
280 |
e1000_reset(adapter);
|
|
281 |
return 0;
|
|
282 |
}
|
|
283 |
|
|
284 |
static u32 e1000_get_tx_csum(struct net_device *netdev)
|
|
285 |
{
|
|
286 |
return (netdev->features & NETIF_F_HW_CSUM) != 0;
|
|
287 |
}
|
|
288 |
|
|
289 |
static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
|
|
290 |
{
|
|
291 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
292 |
struct e1000_hw *hw = &adapter->hw;
|
|
293 |
|
|
294 |
if (hw->mac_type < e1000_82543) {
|
|
295 |
if (!data)
|
|
296 |
return -EINVAL;
|
|
297 |
return 0;
|
|
298 |
}
|
|
299 |
|
|
300 |
if (data)
|
|
301 |
netdev->features |= NETIF_F_HW_CSUM;
|
|
302 |
else
|
|
303 |
netdev->features &= ~NETIF_F_HW_CSUM;
|
|
304 |
|
|
305 |
return 0;
|
|
306 |
}
|
|
307 |
|
|
308 |
static int e1000_set_tso(struct net_device *netdev, u32 data)
|
|
309 |
{
|
|
310 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
311 |
struct e1000_hw *hw = &adapter->hw;
|
|
312 |
|
|
313 |
if ((hw->mac_type < e1000_82544) ||
|
|
314 |
(hw->mac_type == e1000_82547))
|
|
315 |
return data ? -EINVAL : 0;
|
|
316 |
|
|
317 |
if (data)
|
|
318 |
netdev->features |= NETIF_F_TSO;
|
|
319 |
else
|
|
320 |
netdev->features &= ~NETIF_F_TSO;
|
|
321 |
|
|
322 |
netdev->features &= ~NETIF_F_TSO6;
|
|
323 |
|
|
324 |
DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
|
|
325 |
adapter->tso_force = true;
|
|
326 |
return 0;
|
|
327 |
}
|
|
328 |
|
|
329 |
static u32 e1000_get_msglevel(struct net_device *netdev)
|
|
330 |
{
|
|
331 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
332 |
return adapter->msg_enable;
|
|
333 |
}
|
|
334 |
|
|
335 |
static void e1000_set_msglevel(struct net_device *netdev, u32 data)
|
|
336 |
{
|
|
337 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
338 |
adapter->msg_enable = data;
|
|
339 |
}
|
|
340 |
|
|
341 |
static int e1000_get_regs_len(struct net_device *netdev)
|
|
342 |
{
|
|
343 |
#define E1000_REGS_LEN 32
|
|
344 |
return E1000_REGS_LEN * sizeof(u32);
|
|
345 |
}
|
|
346 |
|
|
347 |
static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
|
|
348 |
void *p)
|
|
349 |
{
|
|
350 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
351 |
struct e1000_hw *hw = &adapter->hw;
|
|
352 |
u32 *regs_buff = p;
|
|
353 |
u16 phy_data;
|
|
354 |
|
|
355 |
memset(p, 0, E1000_REGS_LEN * sizeof(u32));
|
|
356 |
|
|
357 |
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
|
|
358 |
|
|
359 |
regs_buff[0] = er32(CTRL);
|
|
360 |
regs_buff[1] = er32(STATUS);
|
|
361 |
|
|
362 |
regs_buff[2] = er32(RCTL);
|
|
363 |
regs_buff[3] = er32(RDLEN);
|
|
364 |
regs_buff[4] = er32(RDH);
|
|
365 |
regs_buff[5] = er32(RDT);
|
|
366 |
regs_buff[6] = er32(RDTR);
|
|
367 |
|
|
368 |
regs_buff[7] = er32(TCTL);
|
|
369 |
regs_buff[8] = er32(TDLEN);
|
|
370 |
regs_buff[9] = er32(TDH);
|
|
371 |
regs_buff[10] = er32(TDT);
|
|
372 |
regs_buff[11] = er32(TIDV);
|
|
373 |
|
|
374 |
regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
|
|
375 |
if (hw->phy_type == e1000_phy_igp) {
|
|
376 |
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
377 |
IGP01E1000_PHY_AGC_A);
|
|
378 |
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
|
|
379 |
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
380 |
regs_buff[13] = (u32)phy_data; /* cable length */
|
|
381 |
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
382 |
IGP01E1000_PHY_AGC_B);
|
|
383 |
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
|
|
384 |
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
385 |
regs_buff[14] = (u32)phy_data; /* cable length */
|
|
386 |
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
387 |
IGP01E1000_PHY_AGC_C);
|
|
388 |
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
|
|
389 |
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
390 |
regs_buff[15] = (u32)phy_data; /* cable length */
|
|
391 |
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
392 |
IGP01E1000_PHY_AGC_D);
|
|
393 |
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
|
|
394 |
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
395 |
regs_buff[16] = (u32)phy_data; /* cable length */
|
|
396 |
regs_buff[17] = 0; /* extended 10bt distance (not needed) */
|
|
397 |
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
|
|
398 |
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
|
|
399 |
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
400 |
regs_buff[18] = (u32)phy_data; /* cable polarity */
|
|
401 |
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
402 |
IGP01E1000_PHY_PCS_INIT_REG);
|
|
403 |
e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
|
|
404 |
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
405 |
regs_buff[19] = (u32)phy_data; /* cable polarity */
|
|
406 |
regs_buff[20] = 0; /* polarity correction enabled (always) */
|
|
407 |
regs_buff[22] = 0; /* phy receive errors (unavailable) */
|
|
408 |
regs_buff[23] = regs_buff[18]; /* mdix mode */
|
|
409 |
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
|
|
410 |
} else {
|
|
411 |
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
|
412 |
regs_buff[13] = (u32)phy_data; /* cable length */
|
|
413 |
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
414 |
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
415 |
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
416 |
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
417 |
regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
|
|
418 |
regs_buff[18] = regs_buff[13]; /* cable polarity */
|
|
419 |
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
420 |
regs_buff[20] = regs_buff[17]; /* polarity correction */
|
|
421 |
/* phy receive errors */
|
|
422 |
regs_buff[22] = adapter->phy_stats.receive_errors;
|
|
423 |
regs_buff[23] = regs_buff[13]; /* mdix mode */
|
|
424 |
}
|
|
425 |
regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
|
|
426 |
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
427 |
regs_buff[24] = (u32)phy_data; /* phy local receiver status */
|
|
428 |
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
|
|
429 |
if (hw->mac_type >= e1000_82540 &&
|
|
430 |
hw->media_type == e1000_media_type_copper) {
|
|
431 |
regs_buff[26] = er32(MANC);
|
|
432 |
}
|
|
433 |
}
|
|
434 |
|
|
435 |
static int e1000_get_eeprom_len(struct net_device *netdev)
|
|
436 |
{
|
|
437 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
438 |
struct e1000_hw *hw = &adapter->hw;
|
|
439 |
|
|
440 |
return hw->eeprom.word_size * 2;
|
|
441 |
}
|
|
442 |
|
|
443 |
static int e1000_get_eeprom(struct net_device *netdev,
|
|
444 |
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
445 |
{
|
|
446 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
447 |
struct e1000_hw *hw = &adapter->hw;
|
|
448 |
u16 *eeprom_buff;
|
|
449 |
int first_word, last_word;
|
|
450 |
int ret_val = 0;
|
|
451 |
u16 i;
|
|
452 |
|
|
453 |
if (eeprom->len == 0)
|
|
454 |
return -EINVAL;
|
|
455 |
|
|
456 |
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
|
|
457 |
|
|
458 |
first_word = eeprom->offset >> 1;
|
|
459 |
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
460 |
|
|
461 |
eeprom_buff = kmalloc(sizeof(u16) *
|
|
462 |
(last_word - first_word + 1), GFP_KERNEL);
|
|
463 |
if (!eeprom_buff)
|
|
464 |
return -ENOMEM;
|
|
465 |
|
|
466 |
if (hw->eeprom.type == e1000_eeprom_spi)
|
|
467 |
ret_val = e1000_read_eeprom(hw, first_word,
|
|
468 |
last_word - first_word + 1,
|
|
469 |
eeprom_buff);
|
|
470 |
else {
|
|
471 |
for (i = 0; i < last_word - first_word + 1; i++) {
|
|
472 |
ret_val = e1000_read_eeprom(hw, first_word + i, 1,
|
|
473 |
&eeprom_buff[i]);
|
|
474 |
if (ret_val)
|
|
475 |
break;
|
|
476 |
}
|
|
477 |
}
|
|
478 |
|
|
479 |
/* Device's eeprom is always little-endian, word addressable */
|
|
480 |
for (i = 0; i < last_word - first_word + 1; i++)
|
|
481 |
le16_to_cpus(&eeprom_buff[i]);
|
|
482 |
|
|
483 |
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
|
|
484 |
eeprom->len);
|
|
485 |
kfree(eeprom_buff);
|
|
486 |
|
|
487 |
return ret_val;
|
|
488 |
}
|
|
489 |
|
|
490 |
static int e1000_set_eeprom(struct net_device *netdev,
|
|
491 |
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
492 |
{
|
|
493 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
494 |
struct e1000_hw *hw = &adapter->hw;
|
|
495 |
u16 *eeprom_buff;
|
|
496 |
void *ptr;
|
|
497 |
int max_len, first_word, last_word, ret_val = 0;
|
|
498 |
u16 i;
|
|
499 |
|
|
500 |
if (eeprom->len == 0)
|
|
501 |
return -EOPNOTSUPP;
|
|
502 |
|
|
503 |
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
|
|
504 |
return -EFAULT;
|
|
505 |
|
|
506 |
max_len = hw->eeprom.word_size * 2;
|
|
507 |
|
|
508 |
first_word = eeprom->offset >> 1;
|
|
509 |
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
510 |
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
|
|
511 |
if (!eeprom_buff)
|
|
512 |
return -ENOMEM;
|
|
513 |
|
|
514 |
ptr = (void *)eeprom_buff;
|
|
515 |
|
|
516 |
if (eeprom->offset & 1) {
|
|
517 |
/* need read/modify/write of first changed EEPROM word */
|
|
518 |
/* only the second byte of the word is being modified */
|
|
519 |
ret_val = e1000_read_eeprom(hw, first_word, 1,
|
|
520 |
&eeprom_buff[0]);
|
|
521 |
ptr++;
|
|
522 |
}
|
|
523 |
if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
|
|
524 |
/* need read/modify/write of last changed EEPROM word */
|
|
525 |
/* only the first byte of the word is being modified */
|
|
526 |
ret_val = e1000_read_eeprom(hw, last_word, 1,
|
|
527 |
&eeprom_buff[last_word - first_word]);
|
|
528 |
}
|
|
529 |
|
|
530 |
/* Device's eeprom is always little-endian, word addressable */
|
|
531 |
for (i = 0; i < last_word - first_word + 1; i++)
|
|
532 |
le16_to_cpus(&eeprom_buff[i]);
|
|
533 |
|
|
534 |
memcpy(ptr, bytes, eeprom->len);
|
|
535 |
|
|
536 |
for (i = 0; i < last_word - first_word + 1; i++)
|
|
537 |
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
|
|
538 |
|
|
539 |
ret_val = e1000_write_eeprom(hw, first_word,
|
|
540 |
last_word - first_word + 1, eeprom_buff);
|
|
541 |
|
|
542 |
/* Update the checksum over the first part of the EEPROM if needed */
|
|
543 |
if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
|
|
544 |
e1000_update_eeprom_checksum(hw);
|
|
545 |
|
|
546 |
kfree(eeprom_buff);
|
|
547 |
return ret_val;
|
|
548 |
}
|
|
549 |
|
|
550 |
static void e1000_get_drvinfo(struct net_device *netdev,
|
|
551 |
struct ethtool_drvinfo *drvinfo)
|
|
552 |
{
|
|
553 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
554 |
char firmware_version[32];
|
|
555 |
|
|
556 |
strncpy(drvinfo->driver, e1000_driver_name, 32);
|
|
557 |
strncpy(drvinfo->version, e1000_driver_version, 32);
|
|
558 |
|
|
559 |
sprintf(firmware_version, "N/A");
|
|
560 |
strncpy(drvinfo->fw_version, firmware_version, 32);
|
|
561 |
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
|
|
562 |
drvinfo->regdump_len = e1000_get_regs_len(netdev);
|
|
563 |
drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
|
|
564 |
}
|
|
565 |
|
|
566 |
static void e1000_get_ringparam(struct net_device *netdev,
|
|
567 |
struct ethtool_ringparam *ring)
|
|
568 |
{
|
|
569 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
570 |
struct e1000_hw *hw = &adapter->hw;
|
|
571 |
e1000_mac_type mac_type = hw->mac_type;
|
|
572 |
struct e1000_tx_ring *txdr = adapter->tx_ring;
|
|
573 |
struct e1000_rx_ring *rxdr = adapter->rx_ring;
|
|
574 |
|
|
575 |
ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
|
|
576 |
E1000_MAX_82544_RXD;
|
|
577 |
ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
|
|
578 |
E1000_MAX_82544_TXD;
|
|
579 |
ring->rx_mini_max_pending = 0;
|
|
580 |
ring->rx_jumbo_max_pending = 0;
|
|
581 |
ring->rx_pending = rxdr->count;
|
|
582 |
ring->tx_pending = txdr->count;
|
|
583 |
ring->rx_mini_pending = 0;
|
|
584 |
ring->rx_jumbo_pending = 0;
|
|
585 |
}
|
|
586 |
|
|
587 |
static int e1000_set_ringparam(struct net_device *netdev,
|
|
588 |
struct ethtool_ringparam *ring)
|
|
589 |
{
|
|
590 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
591 |
struct e1000_hw *hw = &adapter->hw;
|
|
592 |
e1000_mac_type mac_type = hw->mac_type;
|
|
593 |
struct e1000_tx_ring *txdr, *tx_old;
|
|
594 |
struct e1000_rx_ring *rxdr, *rx_old;
|
|
595 |
int i, err;
|
|
596 |
|
|
597 |
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
|
|
598 |
return -EINVAL;
|
|
599 |
|
|
600 |
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
|
|
601 |
msleep(1);
|
|
602 |
|
|
603 |
if (netif_running(adapter->netdev))
|
|
604 |
e1000_down(adapter);
|
|
605 |
|
|
606 |
tx_old = adapter->tx_ring;
|
|
607 |
rx_old = adapter->rx_ring;
|
|
608 |
|
|
609 |
err = -ENOMEM;
|
|
610 |
txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
|
|
611 |
if (!txdr)
|
|
612 |
goto err_alloc_tx;
|
|
613 |
|
|
614 |
rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
|
|
615 |
if (!rxdr)
|
|
616 |
goto err_alloc_rx;
|
|
617 |
|
|
618 |
adapter->tx_ring = txdr;
|
|
619 |
adapter->rx_ring = rxdr;
|
|
620 |
|
|
621 |
rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
|
|
622 |
rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
|
|
623 |
E1000_MAX_RXD : E1000_MAX_82544_RXD));
|
|
624 |
rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
|
|
625 |
|
|
626 |
txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
|
|
627 |
txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
|
|
628 |
E1000_MAX_TXD : E1000_MAX_82544_TXD));
|
|
629 |
txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
|
|
630 |
|
|
631 |
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
632 |
txdr[i].count = txdr->count;
|
|
633 |
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
634 |
rxdr[i].count = rxdr->count;
|
|
635 |
|
|
636 |
if (netif_running(adapter->netdev)) {
|
|
637 |
/* Try to get new resources before deleting old */
|
|
638 |
err = e1000_setup_all_rx_resources(adapter);
|
|
639 |
if (err)
|
|
640 |
goto err_setup_rx;
|
|
641 |
err = e1000_setup_all_tx_resources(adapter);
|
|
642 |
if (err)
|
|
643 |
goto err_setup_tx;
|
|
644 |
|
|
645 |
/* save the new, restore the old in order to free it,
|
|
646 |
* then restore the new back again */
|
|
647 |
|
|
648 |
adapter->rx_ring = rx_old;
|
|
649 |
adapter->tx_ring = tx_old;
|
|
650 |
e1000_free_all_rx_resources(adapter);
|
|
651 |
e1000_free_all_tx_resources(adapter);
|
|
652 |
kfree(tx_old);
|
|
653 |
kfree(rx_old);
|
|
654 |
adapter->rx_ring = rxdr;
|
|
655 |
adapter->tx_ring = txdr;
|
|
656 |
err = e1000_up(adapter);
|
|
657 |
if (err)
|
|
658 |
goto err_setup;
|
|
659 |
}
|
|
660 |
|
|
661 |
clear_bit(__E1000_RESETTING, &adapter->flags);
|
|
662 |
return 0;
|
|
663 |
err_setup_tx:
|
|
664 |
e1000_free_all_rx_resources(adapter);
|
|
665 |
err_setup_rx:
|
|
666 |
adapter->rx_ring = rx_old;
|
|
667 |
adapter->tx_ring = tx_old;
|
|
668 |
kfree(rxdr);
|
|
669 |
err_alloc_rx:
|
|
670 |
kfree(txdr);
|
|
671 |
err_alloc_tx:
|
|
672 |
e1000_up(adapter);
|
|
673 |
err_setup:
|
|
674 |
clear_bit(__E1000_RESETTING, &adapter->flags);
|
|
675 |
return err;
|
|
676 |
}
|
|
677 |
|
|
678 |
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
|
|
679 |
u32 mask, u32 write)
|
|
680 |
{
|
|
681 |
struct e1000_hw *hw = &adapter->hw;
|
|
682 |
static const u32 test[] =
|
|
683 |
{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
|
|
684 |
u8 __iomem *address = hw->hw_addr + reg;
|
|
685 |
u32 read;
|
|
686 |
int i;
|
|
687 |
|
|
688 |
for (i = 0; i < ARRAY_SIZE(test); i++) {
|
|
689 |
writel(write & test[i], address);
|
|
690 |
read = readl(address);
|
|
691 |
if (read != (write & test[i] & mask)) {
|
|
692 |
DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
|
|
693 |
"got 0x%08X expected 0x%08X\n",
|
|
694 |
reg, read, (write & test[i] & mask));
|
|
695 |
*data = reg;
|
|
696 |
return true;
|
|
697 |
}
|
|
698 |
}
|
|
699 |
return false;
|
|
700 |
}
|
|
701 |
|
|
702 |
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
|
|
703 |
u32 mask, u32 write)
|
|
704 |
{
|
|
705 |
struct e1000_hw *hw = &adapter->hw;
|
|
706 |
u8 __iomem *address = hw->hw_addr + reg;
|
|
707 |
u32 read;
|
|
708 |
|
|
709 |
writel(write & mask, address);
|
|
710 |
read = readl(address);
|
|
711 |
if ((read & mask) != (write & mask)) {
|
|
712 |
DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
|
|
713 |
"got 0x%08X expected 0x%08X\n",
|
|
714 |
reg, (read & mask), (write & mask));
|
|
715 |
*data = reg;
|
|
716 |
return true;
|
|
717 |
}
|
|
718 |
return false;
|
|
719 |
}
|
|
720 |
|
|
721 |
#define REG_PATTERN_TEST(reg, mask, write) \
|
|
722 |
do { \
|
|
723 |
if (reg_pattern_test(adapter, data, \
|
|
724 |
(hw->mac_type >= e1000_82543) \
|
|
725 |
? E1000_##reg : E1000_82542_##reg, \
|
|
726 |
mask, write)) \
|
|
727 |
return 1; \
|
|
728 |
} while (0)
|
|
729 |
|
|
730 |
#define REG_SET_AND_CHECK(reg, mask, write) \
|
|
731 |
do { \
|
|
732 |
if (reg_set_and_check(adapter, data, \
|
|
733 |
(hw->mac_type >= e1000_82543) \
|
|
734 |
? E1000_##reg : E1000_82542_##reg, \
|
|
735 |
mask, write)) \
|
|
736 |
return 1; \
|
|
737 |
} while (0)
|
|
738 |
|
|
739 |
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
|
|
740 |
{
|
|
741 |
u32 value, before, after;
|
|
742 |
u32 i, toggle;
|
|
743 |
struct e1000_hw *hw = &adapter->hw;
|
|
744 |
|
|
745 |
/* The status register is Read Only, so a write should fail.
|
|
746 |
* Some bits that get toggled are ignored.
|
|
747 |
*/
|
|
748 |
|
|
749 |
/* there are several bits on newer hardware that are r/w */
|
|
750 |
toggle = 0xFFFFF833;
|
|
751 |
|
|
752 |
before = er32(STATUS);
|
|
753 |
value = (er32(STATUS) & toggle);
|
|
754 |
ew32(STATUS, toggle);
|
|
755 |
after = er32(STATUS) & toggle;
|
|
756 |
if (value != after) {
|
|
757 |
DPRINTK(DRV, ERR, "failed STATUS register test got: "
|
|
758 |
"0x%08X expected: 0x%08X\n", after, value);
|
|
759 |
*data = 1;
|
|
760 |
return 1;
|
|
761 |
}
|
|
762 |
/* restore previous status */
|
|
763 |
ew32(STATUS, before);
|
|
764 |
|
|
765 |
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
766 |
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
|
|
767 |
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
|
|
768 |
REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
|
|
769 |
|
|
770 |
REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
|
|
771 |
REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
772 |
REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
|
|
773 |
REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
|
|
774 |
REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
|
|
775 |
REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
|
|
776 |
REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
|
|
777 |
REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
|
|
778 |
REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
779 |
REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
|
|
780 |
|
|
781 |
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
|
|
782 |
|
|
783 |
before = 0x06DFB3FE;
|
|
784 |
REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
|
|
785 |
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
|
|
786 |
|
|
787 |
if (hw->mac_type >= e1000_82543) {
|
|
788 |
|
|
789 |
REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
|
|
790 |
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
|
|
791 |
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
|
|
792 |
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
|
|
793 |
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
|
|
794 |
value = E1000_RAR_ENTRIES;
|
|
795 |
for (i = 0; i < value; i++) {
|
|
796 |
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
|
|
797 |
0xFFFFFFFF);
|
|
798 |
}
|
|
799 |
|
|
800 |
} else {
|
|
801 |
|
|
802 |
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
|
|
803 |
REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
|
|
804 |
REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
|
|
805 |
REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
|
|
806 |
|
|
807 |
}
|
|
808 |
|
|
809 |
value = E1000_MC_TBL_SIZE;
|
|
810 |
for (i = 0; i < value; i++)
|
|
811 |
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
|
|
812 |
|
|
813 |
*data = 0;
|
|
814 |
return 0;
|
|
815 |
}
|
|
816 |
|
|
817 |
static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
|
|
818 |
{
|
|
819 |
struct e1000_hw *hw = &adapter->hw;
|
|
820 |
u16 temp;
|
|
821 |
u16 checksum = 0;
|
|
822 |
u16 i;
|
|
823 |
|
|
824 |
*data = 0;
|
|
825 |
/* Read and add up the contents of the EEPROM */
|
|
826 |
for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
|
827 |
if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
|
|
828 |
*data = 1;
|
|
829 |
break;
|
|
830 |
}
|
|
831 |
checksum += temp;
|
|
832 |
}
|
|
833 |
|
|
834 |
/* If Checksum is not Correct return error else test passed */
|
|
835 |
if ((checksum != (u16)EEPROM_SUM) && !(*data))
|
|
836 |
*data = 2;
|
|
837 |
|
|
838 |
return *data;
|
|
839 |
}
|
|
840 |
|
|
841 |
static irqreturn_t e1000_test_intr(int irq, void *data)
|
|
842 |
{
|
|
843 |
struct net_device *netdev = (struct net_device *)data;
|
|
844 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
845 |
struct e1000_hw *hw = &adapter->hw;
|
|
846 |
|
|
847 |
adapter->test_icr |= er32(ICR);
|
|
848 |
|
|
849 |
return IRQ_HANDLED;
|
|
850 |
}
|
|
851 |
|
|
852 |
static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
|
|
853 |
{
|
|
854 |
struct net_device *netdev = adapter->netdev;
|
|
855 |
u32 mask, i = 0;
|
|
856 |
bool shared_int = true;
|
|
857 |
u32 irq = adapter->pdev->irq;
|
|
858 |
struct e1000_hw *hw = &adapter->hw;
|
|
859 |
|
|
860 |
*data = 0;
|
|
861 |
|
|
862 |
/* NOTE: we don't test MSI interrupts here, yet */
|
|
863 |
/* Hook up test interrupt handler just for this test */
|
|
864 |
if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
|
|
865 |
netdev))
|
|
866 |
shared_int = false;
|
|
867 |
else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
|
|
868 |
netdev->name, netdev)) {
|
|
869 |
*data = 1;
|
|
870 |
return -1;
|
|
871 |
}
|
|
872 |
DPRINTK(HW, INFO, "testing %s interrupt\n",
|
|
873 |
(shared_int ? "shared" : "unshared"));
|
|
874 |
|
|
875 |
/* Disable all the interrupts */
|
|
876 |
ew32(IMC, 0xFFFFFFFF);
|
|
877 |
msleep(10);
|
|
878 |
|
|
879 |
/* Test each interrupt */
|
|
880 |
for (; i < 10; i++) {
|
|
881 |
|
|
882 |
/* Interrupt to test */
|
|
883 |
mask = 1 << i;
|
|
884 |
|
|
885 |
if (!shared_int) {
|
|
886 |
/* Disable the interrupt to be reported in
|
|
887 |
* the cause register and then force the same
|
|
888 |
* interrupt and see if one gets posted. If
|
|
889 |
* an interrupt was posted to the bus, the
|
|
890 |
* test failed.
|
|
891 |
*/
|
|
892 |
adapter->test_icr = 0;
|
|
893 |
ew32(IMC, mask);
|
|
894 |
ew32(ICS, mask);
|
|
895 |
msleep(10);
|
|
896 |
|
|
897 |
if (adapter->test_icr & mask) {
|
|
898 |
*data = 3;
|
|
899 |
break;
|
|
900 |
}
|
|
901 |
}
|
|
902 |
|
|
903 |
/* Enable the interrupt to be reported in
|
|
904 |
* the cause register and then force the same
|
|
905 |
* interrupt and see if one gets posted. If
|
|
906 |
* an interrupt was not posted to the bus, the
|
|
907 |
* test failed.
|
|
908 |
*/
|
|
909 |
adapter->test_icr = 0;
|
|
910 |
ew32(IMS, mask);
|
|
911 |
ew32(ICS, mask);
|
|
912 |
msleep(10);
|
|
913 |
|
|
914 |
if (!(adapter->test_icr & mask)) {
|
|
915 |
*data = 4;
|
|
916 |
break;
|
|
917 |
}
|
|
918 |
|
|
919 |
if (!shared_int) {
|
|
920 |
/* Disable the other interrupts to be reported in
|
|
921 |
* the cause register and then force the other
|
|
922 |
* interrupts and see if any get posted. If
|
|
923 |
* an interrupt was posted to the bus, the
|
|
924 |
* test failed.
|
|
925 |
*/
|
|
926 |
adapter->test_icr = 0;
|
|
927 |
ew32(IMC, ~mask & 0x00007FFF);
|
|
928 |
ew32(ICS, ~mask & 0x00007FFF);
|
|
929 |
msleep(10);
|
|
930 |
|
|
931 |
if (adapter->test_icr) {
|
|
932 |
*data = 5;
|
|
933 |
break;
|
|
934 |
}
|
|
935 |
}
|
|
936 |
}
|
|
937 |
|
|
938 |
/* Disable all the interrupts */
|
|
939 |
ew32(IMC, 0xFFFFFFFF);
|
|
940 |
msleep(10);
|
|
941 |
|
|
942 |
/* Unhook test interrupt handler */
|
|
943 |
free_irq(irq, netdev);
|
|
944 |
|
|
945 |
return *data;
|
|
946 |
}
|
|
947 |
|
|
948 |
static void e1000_free_desc_rings(struct e1000_adapter *adapter)
|
|
949 |
{
|
|
950 |
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
|
|
951 |
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
|
|
952 |
struct pci_dev *pdev = adapter->pdev;
|
|
953 |
int i;
|
|
954 |
|
|
955 |
if (txdr->desc && txdr->buffer_info) {
|
|
956 |
for (i = 0; i < txdr->count; i++) {
|
|
957 |
if (txdr->buffer_info[i].dma)
|
|
958 |
pci_unmap_single(pdev, txdr->buffer_info[i].dma,
|
|
959 |
txdr->buffer_info[i].length,
|
|
960 |
PCI_DMA_TODEVICE);
|
|
961 |
if (txdr->buffer_info[i].skb)
|
|
962 |
dev_kfree_skb(txdr->buffer_info[i].skb);
|
|
963 |
}
|
|
964 |
}
|
|
965 |
|
|
966 |
if (rxdr->desc && rxdr->buffer_info) {
|
|
967 |
for (i = 0; i < rxdr->count; i++) {
|
|
968 |
if (rxdr->buffer_info[i].dma)
|
|
969 |
pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
|
|
970 |
rxdr->buffer_info[i].length,
|
|
971 |
PCI_DMA_FROMDEVICE);
|
|
972 |
if (rxdr->buffer_info[i].skb)
|
|
973 |
dev_kfree_skb(rxdr->buffer_info[i].skb);
|
|
974 |
}
|
|
975 |
}
|
|
976 |
|
|
977 |
if (txdr->desc) {
|
|
978 |
pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
|
|
979 |
txdr->desc = NULL;
|
|
980 |
}
|
|
981 |
if (rxdr->desc) {
|
|
982 |
pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
|
|
983 |
rxdr->desc = NULL;
|
|
984 |
}
|
|
985 |
|
|
986 |
kfree(txdr->buffer_info);
|
|
987 |
txdr->buffer_info = NULL;
|
|
988 |
kfree(rxdr->buffer_info);
|
|
989 |
rxdr->buffer_info = NULL;
|
|
990 |
|
|
991 |
return;
|
|
992 |
}
|
|
993 |
|
|
994 |
static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
|
|
995 |
{
|
|
996 |
struct e1000_hw *hw = &adapter->hw;
|
|
997 |
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
|
|
998 |
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
|
|
999 |
struct pci_dev *pdev = adapter->pdev;
|
|
1000 |
u32 rctl;
|
|
1001 |
int i, ret_val;
|
|
1002 |
|
|
1003 |
/* Setup Tx descriptor ring and Tx buffers */
|
|
1004 |
|
|
1005 |
if (!txdr->count)
|
|
1006 |
txdr->count = E1000_DEFAULT_TXD;
|
|
1007 |
|
|
1008 |
txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
|
|
1009 |
GFP_KERNEL);
|
|
1010 |
if (!txdr->buffer_info) {
|
|
1011 |
ret_val = 1;
|
|
1012 |
goto err_nomem;
|
|
1013 |
}
|
|
1014 |
|
|
1015 |
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
|
|
1016 |
txdr->size = ALIGN(txdr->size, 4096);
|
|
1017 |
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
|
|
1018 |
if (!txdr->desc) {
|
|
1019 |
ret_val = 2;
|
|
1020 |
goto err_nomem;
|
|
1021 |
}
|
|
1022 |
memset(txdr->desc, 0, txdr->size);
|
|
1023 |
txdr->next_to_use = txdr->next_to_clean = 0;
|
|
1024 |
|
|
1025 |
ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
|
|
1026 |
ew32(TDBAH, ((u64)txdr->dma >> 32));
|
|
1027 |
ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
|
|
1028 |
ew32(TDH, 0);
|
|
1029 |
ew32(TDT, 0);
|
|
1030 |
ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
|
|
1031 |
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
|
|
1032 |
E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
|
|
1033 |
|
|
1034 |
for (i = 0; i < txdr->count; i++) {
|
|
1035 |
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
|
|
1036 |
struct sk_buff *skb;
|
|
1037 |
unsigned int size = 1024;
|
|
1038 |
|
|
1039 |
skb = alloc_skb(size, GFP_KERNEL);
|
|
1040 |
if (!skb) {
|
|
1041 |
ret_val = 3;
|
|
1042 |
goto err_nomem;
|
|
1043 |
}
|
|
1044 |
skb_put(skb, size);
|
|
1045 |
txdr->buffer_info[i].skb = skb;
|
|
1046 |
txdr->buffer_info[i].length = skb->len;
|
|
1047 |
txdr->buffer_info[i].dma =
|
|
1048 |
pci_map_single(pdev, skb->data, skb->len,
|
|
1049 |
PCI_DMA_TODEVICE);
|
|
1050 |
tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
|
|
1051 |
tx_desc->lower.data = cpu_to_le32(skb->len);
|
|
1052 |
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
|
|
1053 |
E1000_TXD_CMD_IFCS |
|
|
1054 |
E1000_TXD_CMD_RPS);
|
|
1055 |
tx_desc->upper.data = 0;
|
|
1056 |
}
|
|
1057 |
|
|
1058 |
/* Setup Rx descriptor ring and Rx buffers */
|
|
1059 |
|
|
1060 |
if (!rxdr->count)
|
|
1061 |
rxdr->count = E1000_DEFAULT_RXD;
|
|
1062 |
|
|
1063 |
rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
|
|
1064 |
GFP_KERNEL);
|
|
1065 |
if (!rxdr->buffer_info) {
|
|
1066 |
ret_val = 4;
|
|
1067 |
goto err_nomem;
|
|
1068 |
}
|
|
1069 |
|
|
1070 |
rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
|
|
1071 |
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
|
|
1072 |
if (!rxdr->desc) {
|
|
1073 |
ret_val = 5;
|
|
1074 |
goto err_nomem;
|
|
1075 |
}
|
|
1076 |
memset(rxdr->desc, 0, rxdr->size);
|
|
1077 |
rxdr->next_to_use = rxdr->next_to_clean = 0;
|
|
1078 |
|
|
1079 |
rctl = er32(RCTL);
|
|
1080 |
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
|
1081 |
ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
|
|
1082 |
ew32(RDBAH, ((u64)rxdr->dma >> 32));
|
|
1083 |
ew32(RDLEN, rxdr->size);
|
|
1084 |
ew32(RDH, 0);
|
|
1085 |
ew32(RDT, 0);
|
|
1086 |
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
|
|
1087 |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
|
1088 |
(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
1089 |
ew32(RCTL, rctl);
|
|
1090 |
|
|
1091 |
for (i = 0; i < rxdr->count; i++) {
|
|
1092 |
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
|
|
1093 |
struct sk_buff *skb;
|
|
1094 |
|
|
1095 |
skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
|
|
1096 |
if (!skb) {
|
|
1097 |
ret_val = 6;
|
|
1098 |
goto err_nomem;
|
|
1099 |
}
|
|
1100 |
skb_reserve(skb, NET_IP_ALIGN);
|
|
1101 |
rxdr->buffer_info[i].skb = skb;
|
|
1102 |
rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
|
|
1103 |
rxdr->buffer_info[i].dma =
|
|
1104 |
pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
|
|
1105 |
PCI_DMA_FROMDEVICE);
|
|
1106 |
rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
|
|
1107 |
memset(skb->data, 0x00, skb->len);
|
|
1108 |
}
|
|
1109 |
|
|
1110 |
return 0;
|
|
1111 |
|
|
1112 |
err_nomem:
|
|
1113 |
e1000_free_desc_rings(adapter);
|
|
1114 |
return ret_val;
|
|
1115 |
}
|
|
1116 |
|
|
1117 |
static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
|
|
1118 |
{
|
|
1119 |
struct e1000_hw *hw = &adapter->hw;
|
|
1120 |
|
|
1121 |
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
|
|
1122 |
e1000_write_phy_reg(hw, 29, 0x001F);
|
|
1123 |
e1000_write_phy_reg(hw, 30, 0x8FFC);
|
|
1124 |
e1000_write_phy_reg(hw, 29, 0x001A);
|
|
1125 |
e1000_write_phy_reg(hw, 30, 0x8FF0);
|
|
1126 |
}
|
|
1127 |
|
|
1128 |
static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
|
|
1129 |
{
|
|
1130 |
struct e1000_hw *hw = &adapter->hw;
|
|
1131 |
u16 phy_reg;
|
|
1132 |
|
|
1133 |
/* Because we reset the PHY above, we need to re-force TX_CLK in the
|
|
1134 |
* Extended PHY Specific Control Register to 25MHz clock. This
|
|
1135 |
* value defaults back to a 2.5MHz clock when the PHY is reset.
|
|
1136 |
*/
|
|
1137 |
e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
|
|
1138 |
phy_reg |= M88E1000_EPSCR_TX_CLK_25;
|
|
1139 |
e1000_write_phy_reg(hw,
|
|
1140 |
M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
|
|
1141 |
|
|
1142 |
/* In addition, because of the s/w reset above, we need to enable
|
|
1143 |
* CRS on TX. This must be set for both full and half duplex
|
|
1144 |
* operation.
|
|
1145 |
*/
|
|
1146 |
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
|
|
1147 |
phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
1148 |
e1000_write_phy_reg(hw,
|
|
1149 |
M88E1000_PHY_SPEC_CTRL, phy_reg);
|
|
1150 |
}
|
|
1151 |
|
|
1152 |
static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
|
|
1153 |
{
|
|
1154 |
struct e1000_hw *hw = &adapter->hw;
|
|
1155 |
u32 ctrl_reg;
|
|
1156 |
u16 phy_reg;
|
|
1157 |
|
|
1158 |
/* Setup the Device Control Register for PHY loopback test. */
|
|
1159 |
|
|
1160 |
ctrl_reg = er32(CTRL);
|
|
1161 |
ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
|
|
1162 |
E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
|
|
1163 |
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
|
|
1164 |
E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
|
|
1165 |
E1000_CTRL_FD); /* Force Duplex to FULL */
|
|
1166 |
|
|
1167 |
ew32(CTRL, ctrl_reg);
|
|
1168 |
|
|
1169 |
/* Read the PHY Specific Control Register (0x10) */
|
|
1170 |
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
|
|
1171 |
|
|
1172 |
/* Clear Auto-Crossover bits in PHY Specific Control Register
|
|
1173 |
* (bits 6:5).
|
|
1174 |
*/
|
|
1175 |
phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
1176 |
e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
|
|
1177 |
|
|
1178 |
/* Perform software reset on the PHY */
|
|
1179 |
e1000_phy_reset(hw);
|
|
1180 |
|
|
1181 |
/* Have to setup TX_CLK and TX_CRS after software reset */
|
|
1182 |
e1000_phy_reset_clk_and_crs(adapter);
|
|
1183 |
|
|
1184 |
e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
|
|
1185 |
|
|
1186 |
/* Wait for reset to complete. */
|
|
1187 |
udelay(500);
|
|
1188 |
|
|
1189 |
/* Have to setup TX_CLK and TX_CRS after software reset */
|
|
1190 |
e1000_phy_reset_clk_and_crs(adapter);
|
|
1191 |
|
|
1192 |
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
|
|
1193 |
e1000_phy_disable_receiver(adapter);
|
|
1194 |
|
|
1195 |
/* Set the loopback bit in the PHY control register. */
|
|
1196 |
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
|
|
1197 |
phy_reg |= MII_CR_LOOPBACK;
|
|
1198 |
e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
|
|
1199 |
|
|
1200 |
/* Setup TX_CLK and TX_CRS one more time. */
|
|
1201 |
e1000_phy_reset_clk_and_crs(adapter);
|
|
1202 |
|
|
1203 |
/* Check Phy Configuration */
|
|
1204 |
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
|
|
1205 |
if (phy_reg != 0x4100)
|
|
1206 |
return 9;
|
|
1207 |
|
|
1208 |
e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
|
|
1209 |
if (phy_reg != 0x0070)
|
|
1210 |
return 10;
|
|
1211 |
|
|
1212 |
e1000_read_phy_reg(hw, 29, &phy_reg);
|
|
1213 |
if (phy_reg != 0x001A)
|
|
1214 |
return 11;
|
|
1215 |
|
|
1216 |
return 0;
|
|
1217 |
}
|
|
1218 |
|
|
1219 |
static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
|
|
1220 |
{
|
|
1221 |
struct e1000_hw *hw = &adapter->hw;
|
|
1222 |
u32 ctrl_reg = 0;
|
|
1223 |
u32 stat_reg = 0;
|
|
1224 |
|
|
1225 |
hw->autoneg = false;
|
|
1226 |
|
|
1227 |
if (hw->phy_type == e1000_phy_m88) {
|
|
1228 |
/* Auto-MDI/MDIX Off */
|
|
1229 |
e1000_write_phy_reg(hw,
|
|
1230 |
M88E1000_PHY_SPEC_CTRL, 0x0808);
|
|
1231 |
/* reset to update Auto-MDI/MDIX */
|
|
1232 |
e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
|
|
1233 |
/* autoneg off */
|
|
1234 |
e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
|
|
1235 |
}
|
|
1236 |
|
|
1237 |
ctrl_reg = er32(CTRL);
|
|
1238 |
|
|
1239 |
/* force 1000, set loopback */
|
|
1240 |
e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
|
|
1241 |
|
|
1242 |
/* Now set up the MAC to the same speed/duplex as the PHY. */
|
|
1243 |
ctrl_reg = er32(CTRL);
|
|
1244 |
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
|
|
1245 |
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
|
|
1246 |
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
|
|
1247 |
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
|
|
1248 |
E1000_CTRL_FD); /* Force Duplex to FULL */
|
|
1249 |
|
|
1250 |
if (hw->media_type == e1000_media_type_copper &&
|
|
1251 |
hw->phy_type == e1000_phy_m88)
|
|
1252 |
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
|
|
1253 |
else {
|
|
1254 |
/* Set the ILOS bit on the fiber Nic is half
|
|
1255 |
* duplex link is detected. */
|
|
1256 |
stat_reg = er32(STATUS);
|
|
1257 |
if ((stat_reg & E1000_STATUS_FD) == 0)
|
|
1258 |
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
|
|
1259 |
}
|
|
1260 |
|
|
1261 |
ew32(CTRL, ctrl_reg);
|
|
1262 |
|
|
1263 |
/* Disable the receiver on the PHY so when a cable is plugged in, the
|
|
1264 |
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
|
|
1265 |
*/
|
|
1266 |
if (hw->phy_type == e1000_phy_m88)
|
|
1267 |
e1000_phy_disable_receiver(adapter);
|
|
1268 |
|
|
1269 |
udelay(500);
|
|
1270 |
|
|
1271 |
return 0;
|
|
1272 |
}
|
|
1273 |
|
|
1274 |
static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
|
|
1275 |
{
|
|
1276 |
struct e1000_hw *hw = &adapter->hw;
|
|
1277 |
u16 phy_reg = 0;
|
|
1278 |
u16 count = 0;
|
|
1279 |
|
|
1280 |
switch (hw->mac_type) {
|
|
1281 |
case e1000_82543:
|
|
1282 |
if (hw->media_type == e1000_media_type_copper) {
|
|
1283 |
/* Attempt to setup Loopback mode on Non-integrated PHY.
|
|
1284 |
* Some PHY registers get corrupted at random, so
|
|
1285 |
* attempt this 10 times.
|
|
1286 |
*/
|
|
1287 |
while (e1000_nonintegrated_phy_loopback(adapter) &&
|
|
1288 |
count++ < 10);
|
|
1289 |
if (count < 11)
|
|
1290 |
return 0;
|
|
1291 |
}
|
|
1292 |
break;
|
|
1293 |
|
|
1294 |
case e1000_82544:
|
|
1295 |
case e1000_82540:
|
|
1296 |
case e1000_82545:
|
|
1297 |
case e1000_82545_rev_3:
|
|
1298 |
case e1000_82546:
|
|
1299 |
case e1000_82546_rev_3:
|
|
1300 |
case e1000_82541:
|
|
1301 |
case e1000_82541_rev_2:
|
|
1302 |
case e1000_82547:
|
|
1303 |
case e1000_82547_rev_2:
|
|
1304 |
return e1000_integrated_phy_loopback(adapter);
|
|
1305 |
break;
|
|
1306 |
default:
|
|
1307 |
/* Default PHY loopback work is to read the MII
|
|
1308 |
* control register and assert bit 14 (loopback mode).
|
|
1309 |
*/
|
|
1310 |
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
|
|
1311 |
phy_reg |= MII_CR_LOOPBACK;
|
|
1312 |
e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
|
|
1313 |
return 0;
|
|
1314 |
break;
|
|
1315 |
}
|
|
1316 |
|
|
1317 |
return 8;
|
|
1318 |
}
|
|
1319 |
|
|
1320 |
static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
|
|
1321 |
{
|
|
1322 |
struct e1000_hw *hw = &adapter->hw;
|
|
1323 |
u32 rctl;
|
|
1324 |
|
|
1325 |
if (hw->media_type == e1000_media_type_fiber ||
|
|
1326 |
hw->media_type == e1000_media_type_internal_serdes) {
|
|
1327 |
switch (hw->mac_type) {
|
|
1328 |
case e1000_82545:
|
|
1329 |
case e1000_82546:
|
|
1330 |
case e1000_82545_rev_3:
|
|
1331 |
case e1000_82546_rev_3:
|
|
1332 |
return e1000_set_phy_loopback(adapter);
|
|
1333 |
break;
|
|
1334 |
default:
|
|
1335 |
rctl = er32(RCTL);
|
|
1336 |
rctl |= E1000_RCTL_LBM_TCVR;
|
|
1337 |
ew32(RCTL, rctl);
|
|
1338 |
return 0;
|
|
1339 |
}
|
|
1340 |
} else if (hw->media_type == e1000_media_type_copper)
|
|
1341 |
return e1000_set_phy_loopback(adapter);
|
|
1342 |
|
|
1343 |
return 7;
|
|
1344 |
}
|
|
1345 |
|
|
1346 |
static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
|
|
1347 |
{
|
|
1348 |
struct e1000_hw *hw = &adapter->hw;
|
|
1349 |
u32 rctl;
|
|
1350 |
u16 phy_reg;
|
|
1351 |
|
|
1352 |
rctl = er32(RCTL);
|
|
1353 |
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
|
|
1354 |
ew32(RCTL, rctl);
|
|
1355 |
|
|
1356 |
switch (hw->mac_type) {
|
|
1357 |
case e1000_82545:
|
|
1358 |
case e1000_82546:
|
|
1359 |
case e1000_82545_rev_3:
|
|
1360 |
case e1000_82546_rev_3:
|
|
1361 |
default:
|
|
1362 |
hw->autoneg = true;
|
|
1363 |
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
|
|
1364 |
if (phy_reg & MII_CR_LOOPBACK) {
|
|
1365 |
phy_reg &= ~MII_CR_LOOPBACK;
|
|
1366 |
e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
|
|
1367 |
e1000_phy_reset(hw);
|
|
1368 |
}
|
|
1369 |
break;
|
|
1370 |
}
|
|
1371 |
}
|
|
1372 |
|
|
1373 |
static void e1000_create_lbtest_frame(struct sk_buff *skb,
|
|
1374 |
unsigned int frame_size)
|
|
1375 |
{
|
|
1376 |
memset(skb->data, 0xFF, frame_size);
|
|
1377 |
frame_size &= ~1;
|
|
1378 |
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
|
|
1379 |
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
|
|
1380 |
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
|
|
1381 |
}
|
|
1382 |
|
|
1383 |
static int e1000_check_lbtest_frame(struct sk_buff *skb,
|
|
1384 |
unsigned int frame_size)
|
|
1385 |
{
|
|
1386 |
frame_size &= ~1;
|
|
1387 |
if (*(skb->data + 3) == 0xFF) {
|
|
1388 |
if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
|
|
1389 |
(*(skb->data + frame_size / 2 + 12) == 0xAF)) {
|
|
1390 |
return 0;
|
|
1391 |
}
|
|
1392 |
}
|
|
1393 |
return 13;
|
|
1394 |
}
|
|
1395 |
|
|
1396 |
static int e1000_run_loopback_test(struct e1000_adapter *adapter)
|
|
1397 |
{
|
|
1398 |
struct e1000_hw *hw = &adapter->hw;
|
|
1399 |
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
|
|
1400 |
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
|
|
1401 |
struct pci_dev *pdev = adapter->pdev;
|
|
1402 |
int i, j, k, l, lc, good_cnt, ret_val=0;
|
|
1403 |
unsigned long time;
|
|
1404 |
|
|
1405 |
ew32(RDT, rxdr->count - 1);
|
|
1406 |
|
|
1407 |
/* Calculate the loop count based on the largest descriptor ring
|
|
1408 |
* The idea is to wrap the largest ring a number of times using 64
|
|
1409 |
* send/receive pairs during each loop
|
|
1410 |
*/
|
|
1411 |
|
|
1412 |
if (rxdr->count <= txdr->count)
|
|
1413 |
lc = ((txdr->count / 64) * 2) + 1;
|
|
1414 |
else
|
|
1415 |
lc = ((rxdr->count / 64) * 2) + 1;
|
|
1416 |
|
|
1417 |
k = l = 0;
|
|
1418 |
for (j = 0; j <= lc; j++) { /* loop count loop */
|
|
1419 |
for (i = 0; i < 64; i++) { /* send the packets */
|
|
1420 |
e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
|
|
1421 |
1024);
|
|
1422 |
pci_dma_sync_single_for_device(pdev,
|
|
1423 |
txdr->buffer_info[k].dma,
|
|
1424 |
txdr->buffer_info[k].length,
|
|
1425 |
PCI_DMA_TODEVICE);
|
|
1426 |
if (unlikely(++k == txdr->count)) k = 0;
|
|
1427 |
}
|
|
1428 |
ew32(TDT, k);
|
|
1429 |
msleep(200);
|
|
1430 |
time = jiffies; /* set the start time for the receive */
|
|
1431 |
good_cnt = 0;
|
|
1432 |
do { /* receive the sent packets */
|
|
1433 |
pci_dma_sync_single_for_cpu(pdev,
|
|
1434 |
rxdr->buffer_info[l].dma,
|
|
1435 |
rxdr->buffer_info[l].length,
|
|
1436 |
PCI_DMA_FROMDEVICE);
|
|
1437 |
|
|
1438 |
ret_val = e1000_check_lbtest_frame(
|
|
1439 |
rxdr->buffer_info[l].skb,
|
|
1440 |
1024);
|
|
1441 |
if (!ret_val)
|
|
1442 |
good_cnt++;
|
|
1443 |
if (unlikely(++l == rxdr->count)) l = 0;
|
|
1444 |
/* time + 20 msecs (200 msecs on 2.4) is more than
|
|
1445 |
* enough time to complete the receives, if it's
|
|
1446 |
* exceeded, break and error off
|
|
1447 |
*/
|
|
1448 |
} while (good_cnt < 64 && jiffies < (time + 20));
|
|
1449 |
if (good_cnt != 64) {
|
|
1450 |
ret_val = 13; /* ret_val is the same as mis-compare */
|
|
1451 |
break;
|
|
1452 |
}
|
|
1453 |
if (jiffies >= (time + 2)) {
|
|
1454 |
ret_val = 14; /* error code for time out error */
|
|
1455 |
break;
|
|
1456 |
}
|
|
1457 |
} /* end loop count loop */
|
|
1458 |
return ret_val;
|
|
1459 |
}
|
|
1460 |
|
|
1461 |
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
|
|
1462 |
{
|
|
1463 |
*data = e1000_setup_desc_rings(adapter);
|
|
1464 |
if (*data)
|
|
1465 |
goto out;
|
|
1466 |
*data = e1000_setup_loopback_test(adapter);
|
|
1467 |
if (*data)
|
|
1468 |
goto err_loopback;
|
|
1469 |
*data = e1000_run_loopback_test(adapter);
|
|
1470 |
e1000_loopback_cleanup(adapter);
|
|
1471 |
|
|
1472 |
err_loopback:
|
|
1473 |
e1000_free_desc_rings(adapter);
|
|
1474 |
out:
|
|
1475 |
return *data;
|
|
1476 |
}
|
|
1477 |
|
|
1478 |
static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
|
|
1479 |
{
|
|
1480 |
struct e1000_hw *hw = &adapter->hw;
|
|
1481 |
*data = 0;
|
|
1482 |
if (hw->media_type == e1000_media_type_internal_serdes) {
|
|
1483 |
int i = 0;
|
|
1484 |
hw->serdes_has_link = false;
|
|
1485 |
|
|
1486 |
/* On some blade server designs, link establishment
|
|
1487 |
* could take as long as 2-3 minutes */
|
|
1488 |
do {
|
|
1489 |
e1000_check_for_link(hw);
|
|
1490 |
if (hw->serdes_has_link)
|
|
1491 |
return *data;
|
|
1492 |
msleep(20);
|
|
1493 |
} while (i++ < 3750);
|
|
1494 |
|
|
1495 |
*data = 1;
|
|
1496 |
} else {
|
|
1497 |
e1000_check_for_link(hw);
|
|
1498 |
if (hw->autoneg) /* if auto_neg is set wait for it */
|
|
1499 |
msleep(4000);
|
|
1500 |
|
|
1501 |
if (!(er32(STATUS) & E1000_STATUS_LU)) {
|
|
1502 |
*data = 1;
|
|
1503 |
}
|
|
1504 |
}
|
|
1505 |
return *data;
|
|
1506 |
}
|
|
1507 |
|
|
1508 |
static int e1000_get_sset_count(struct net_device *netdev, int sset)
|
|
1509 |
{
|
|
1510 |
switch (sset) {
|
|
1511 |
case ETH_SS_TEST:
|
|
1512 |
return E1000_TEST_LEN;
|
|
1513 |
case ETH_SS_STATS:
|
|
1514 |
return E1000_STATS_LEN;
|
|
1515 |
default:
|
|
1516 |
return -EOPNOTSUPP;
|
|
1517 |
}
|
|
1518 |
}
|
|
1519 |
|
|
1520 |
static void e1000_diag_test(struct net_device *netdev,
|
|
1521 |
struct ethtool_test *eth_test, u64 *data)
|
|
1522 |
{
|
|
1523 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1524 |
struct e1000_hw *hw = &adapter->hw;
|
|
1525 |
bool if_running = netif_running(netdev);
|
|
1526 |
|
|
1527 |
set_bit(__E1000_TESTING, &adapter->flags);
|
|
1528 |
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
|
|
1529 |
/* Offline tests */
|
|
1530 |
|
|
1531 |
/* save speed, duplex, autoneg settings */
|
|
1532 |
u16 autoneg_advertised = hw->autoneg_advertised;
|
|
1533 |
u8 forced_speed_duplex = hw->forced_speed_duplex;
|
|
1534 |
u8 autoneg = hw->autoneg;
|
|
1535 |
|
|
1536 |
DPRINTK(HW, INFO, "offline testing starting\n");
|
|
1537 |
|
|
1538 |
/* Link test performed before hardware reset so autoneg doesn't
|
|
1539 |
* interfere with test result */
|
|
1540 |
if (e1000_link_test(adapter, &data[4]))
|
|
1541 |
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
1542 |
|
|
1543 |
if (if_running)
|
|
1544 |
/* indicate we're in test mode */
|
|
1545 |
dev_close(netdev);
|
|
1546 |
else
|
|
1547 |
e1000_reset(adapter);
|
|
1548 |
|
|
1549 |
if (e1000_reg_test(adapter, &data[0]))
|
|
1550 |
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
1551 |
|
|
1552 |
e1000_reset(adapter);
|
|
1553 |
if (e1000_eeprom_test(adapter, &data[1]))
|
|
1554 |
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
1555 |
|
|
1556 |
e1000_reset(adapter);
|
|
1557 |
if (e1000_intr_test(adapter, &data[2]))
|
|
1558 |
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
1559 |
|
|
1560 |
e1000_reset(adapter);
|
|
1561 |
/* make sure the phy is powered up */
|
|
1562 |
e1000_power_up_phy(adapter);
|
|
1563 |
if (e1000_loopback_test(adapter, &data[3]))
|
|
1564 |
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
1565 |
|
|
1566 |
/* restore speed, duplex, autoneg settings */
|
|
1567 |
hw->autoneg_advertised = autoneg_advertised;
|
|
1568 |
hw->forced_speed_duplex = forced_speed_duplex;
|
|
1569 |
hw->autoneg = autoneg;
|
|
1570 |
|
|
1571 |
e1000_reset(adapter);
|
|
1572 |
clear_bit(__E1000_TESTING, &adapter->flags);
|
|
1573 |
if (if_running)
|
|
1574 |
dev_open(netdev);
|
|
1575 |
} else {
|
|
1576 |
DPRINTK(HW, INFO, "online testing starting\n");
|
|
1577 |
/* Online tests */
|
|
1578 |
if (e1000_link_test(adapter, &data[4]))
|
|
1579 |
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
1580 |
|
|
1581 |
/* Online tests aren't run; pass by default */
|
|
1582 |
data[0] = 0;
|
|
1583 |
data[1] = 0;
|
|
1584 |
data[2] = 0;
|
|
1585 |
data[3] = 0;
|
|
1586 |
|
|
1587 |
clear_bit(__E1000_TESTING, &adapter->flags);
|
|
1588 |
}
|
|
1589 |
msleep_interruptible(4 * 1000);
|
|
1590 |
}
|
|
1591 |
|
|
1592 |
static int e1000_wol_exclusion(struct e1000_adapter *adapter,
|
|
1593 |
struct ethtool_wolinfo *wol)
|
|
1594 |
{
|
|
1595 |
struct e1000_hw *hw = &adapter->hw;
|
|
1596 |
int retval = 1; /* fail by default */
|
|
1597 |
|
|
1598 |
switch (hw->device_id) {
|
|
1599 |
case E1000_DEV_ID_82542:
|
|
1600 |
case E1000_DEV_ID_82543GC_FIBER:
|
|
1601 |
case E1000_DEV_ID_82543GC_COPPER:
|
|
1602 |
case E1000_DEV_ID_82544EI_FIBER:
|
|
1603 |
case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
|
1604 |
case E1000_DEV_ID_82545EM_FIBER:
|
|
1605 |
case E1000_DEV_ID_82545EM_COPPER:
|
|
1606 |
case E1000_DEV_ID_82546GB_QUAD_COPPER:
|
|
1607 |
case E1000_DEV_ID_82546GB_PCIE:
|
|
1608 |
/* these don't support WoL at all */
|
|
1609 |
wol->supported = 0;
|
|
1610 |
break;
|
|
1611 |
case E1000_DEV_ID_82546EB_FIBER:
|
|
1612 |
case E1000_DEV_ID_82546GB_FIBER:
|
|
1613 |
/* Wake events not supported on port B */
|
|
1614 |
if (er32(STATUS) & E1000_STATUS_FUNC_1) {
|
|
1615 |
wol->supported = 0;
|
|
1616 |
break;
|
|
1617 |
}
|
|
1618 |
/* return success for non excluded adapter ports */
|
|
1619 |
retval = 0;
|
|
1620 |
break;
|
|
1621 |
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
|
|
1622 |
/* quad port adapters only support WoL on port A */
|
|
1623 |
if (!adapter->quad_port_a) {
|
|
1624 |
wol->supported = 0;
|
|
1625 |
break;
|
|
1626 |
}
|
|
1627 |
/* return success for non excluded adapter ports */
|
|
1628 |
retval = 0;
|
|
1629 |
break;
|
|
1630 |
default:
|
|
1631 |
/* dual port cards only support WoL on port A from now on
|
|
1632 |
* unless it was enabled in the eeprom for port B
|
|
1633 |
* so exclude FUNC_1 ports from having WoL enabled */
|
|
1634 |
if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
|
|
1635 |
!adapter->eeprom_wol) {
|
|
1636 |
wol->supported = 0;
|
|
1637 |
break;
|
|
1638 |
}
|
|
1639 |
|
|
1640 |
retval = 0;
|
|
1641 |
}
|
|
1642 |
|
|
1643 |
return retval;
|
|
1644 |
}
|
|
1645 |
|
|
1646 |
static void e1000_get_wol(struct net_device *netdev,
|
|
1647 |
struct ethtool_wolinfo *wol)
|
|
1648 |
{
|
|
1649 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1650 |
struct e1000_hw *hw = &adapter->hw;
|
|
1651 |
|
|
1652 |
wol->supported = WAKE_UCAST | WAKE_MCAST |
|
|
1653 |
WAKE_BCAST | WAKE_MAGIC;
|
|
1654 |
wol->wolopts = 0;
|
|
1655 |
|
|
1656 |
/* this function will set ->supported = 0 and return 1 if wol is not
|
|
1657 |
* supported by this hardware */
|
|
1658 |
if (e1000_wol_exclusion(adapter, wol) ||
|
|
1659 |
!device_can_wakeup(&adapter->pdev->dev))
|
|
1660 |
return;
|
|
1661 |
|
|
1662 |
/* apply any specific unsupported masks here */
|
|
1663 |
switch (hw->device_id) {
|
|
1664 |
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
|
|
1665 |
/* KSP3 does not suppport UCAST wake-ups */
|
|
1666 |
wol->supported &= ~WAKE_UCAST;
|
|
1667 |
|
|
1668 |
if (adapter->wol & E1000_WUFC_EX)
|
|
1669 |
DPRINTK(DRV, ERR, "Interface does not support "
|
|
1670 |
"directed (unicast) frame wake-up packets\n");
|
|
1671 |
break;
|
|
1672 |
default:
|
|
1673 |
break;
|
|
1674 |
}
|
|
1675 |
|
|
1676 |
if (adapter->wol & E1000_WUFC_EX)
|
|
1677 |
wol->wolopts |= WAKE_UCAST;
|
|
1678 |
if (adapter->wol & E1000_WUFC_MC)
|
|
1679 |
wol->wolopts |= WAKE_MCAST;
|
|
1680 |
if (adapter->wol & E1000_WUFC_BC)
|
|
1681 |
wol->wolopts |= WAKE_BCAST;
|
|
1682 |
if (adapter->wol & E1000_WUFC_MAG)
|
|
1683 |
wol->wolopts |= WAKE_MAGIC;
|
|
1684 |
|
|
1685 |
return;
|
|
1686 |
}
|
|
1687 |
|
|
1688 |
static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
1689 |
{
|
|
1690 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1691 |
struct e1000_hw *hw = &adapter->hw;
|
|
1692 |
|
|
1693 |
if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
|
|
1694 |
return -EOPNOTSUPP;
|
|
1695 |
|
|
1696 |
if (e1000_wol_exclusion(adapter, wol) ||
|
|
1697 |
!device_can_wakeup(&adapter->pdev->dev))
|
|
1698 |
return wol->wolopts ? -EOPNOTSUPP : 0;
|
|
1699 |
|
|
1700 |
switch (hw->device_id) {
|
|
1701 |
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
|
|
1702 |
if (wol->wolopts & WAKE_UCAST) {
|
|
1703 |
DPRINTK(DRV, ERR, "Interface does not support "
|
|
1704 |
"directed (unicast) frame wake-up packets\n");
|
|
1705 |
return -EOPNOTSUPP;
|
|
1706 |
}
|
|
1707 |
break;
|
|
1708 |
default:
|
|
1709 |
break;
|
|
1710 |
}
|
|
1711 |
|
|
1712 |
/* these settings will always override what we currently have */
|
|
1713 |
adapter->wol = 0;
|
|
1714 |
|
|
1715 |
if (wol->wolopts & WAKE_UCAST)
|
|
1716 |
adapter->wol |= E1000_WUFC_EX;
|
|
1717 |
if (wol->wolopts & WAKE_MCAST)
|
|
1718 |
adapter->wol |= E1000_WUFC_MC;
|
|
1719 |
if (wol->wolopts & WAKE_BCAST)
|
|
1720 |
adapter->wol |= E1000_WUFC_BC;
|
|
1721 |
if (wol->wolopts & WAKE_MAGIC)
|
|
1722 |
adapter->wol |= E1000_WUFC_MAG;
|
|
1723 |
|
|
1724 |
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
|
|
1725 |
|
|
1726 |
return 0;
|
|
1727 |
}
|
|
1728 |
|
|
1729 |
/* toggle LED 4 times per second = 2 "blinks" per second */
|
|
1730 |
#define E1000_ID_INTERVAL (HZ/4)
|
|
1731 |
|
|
1732 |
/* bit defines for adapter->led_status */
|
|
1733 |
#define E1000_LED_ON 0
|
|
1734 |
|
|
1735 |
static void e1000_led_blink_callback(unsigned long data)
|
|
1736 |
{
|
|
1737 |
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
1738 |
struct e1000_hw *hw = &adapter->hw;
|
|
1739 |
|
|
1740 |
if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
|
|
1741 |
e1000_led_off(hw);
|
|
1742 |
else
|
|
1743 |
e1000_led_on(hw);
|
|
1744 |
|
|
1745 |
mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
|
|
1746 |
}
|
|
1747 |
|
|
1748 |
static int e1000_phys_id(struct net_device *netdev, u32 data)
|
|
1749 |
{
|
|
1750 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1751 |
struct e1000_hw *hw = &adapter->hw;
|
|
1752 |
|
|
1753 |
if (!data)
|
|
1754 |
data = INT_MAX;
|
|
1755 |
|
|
1756 |
if (!adapter->blink_timer.function) {
|
|
1757 |
init_timer(&adapter->blink_timer);
|
|
1758 |
adapter->blink_timer.function = e1000_led_blink_callback;
|
|
1759 |
adapter->blink_timer.data = (unsigned long)adapter;
|
|
1760 |
}
|
|
1761 |
e1000_setup_led(hw);
|
|
1762 |
mod_timer(&adapter->blink_timer, jiffies);
|
|
1763 |
msleep_interruptible(data * 1000);
|
|
1764 |
del_timer_sync(&adapter->blink_timer);
|
|
1765 |
|
|
1766 |
e1000_led_off(hw);
|
|
1767 |
clear_bit(E1000_LED_ON, &adapter->led_status);
|
|
1768 |
e1000_cleanup_led(hw);
|
|
1769 |
|
|
1770 |
return 0;
|
|
1771 |
}
|
|
1772 |
|
|
1773 |
static int e1000_get_coalesce(struct net_device *netdev,
|
|
1774 |
struct ethtool_coalesce *ec)
|
|
1775 |
{
|
|
1776 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1777 |
|
|
1778 |
if (adapter->hw.mac_type < e1000_82545)
|
|
1779 |
return -EOPNOTSUPP;
|
|
1780 |
|
|
1781 |
if (adapter->itr_setting <= 3)
|
|
1782 |
ec->rx_coalesce_usecs = adapter->itr_setting;
|
|
1783 |
else
|
|
1784 |
ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
|
|
1785 |
|
|
1786 |
return 0;
|
|
1787 |
}
|
|
1788 |
|
|
1789 |
static int e1000_set_coalesce(struct net_device *netdev,
|
|
1790 |
struct ethtool_coalesce *ec)
|
|
1791 |
{
|
|
1792 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1793 |
struct e1000_hw *hw = &adapter->hw;
|
|
1794 |
|
|
1795 |
if (hw->mac_type < e1000_82545)
|
|
1796 |
return -EOPNOTSUPP;
|
|
1797 |
|
|
1798 |
if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
|
|
1799 |
((ec->rx_coalesce_usecs > 3) &&
|
|
1800 |
(ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
|
|
1801 |
(ec->rx_coalesce_usecs == 2))
|
|
1802 |
return -EINVAL;
|
|
1803 |
|
|
1804 |
if (ec->rx_coalesce_usecs <= 3) {
|
|
1805 |
adapter->itr = 20000;
|
|
1806 |
adapter->itr_setting = ec->rx_coalesce_usecs;
|
|
1807 |
} else {
|
|
1808 |
adapter->itr = (1000000 / ec->rx_coalesce_usecs);
|
|
1809 |
adapter->itr_setting = adapter->itr & ~3;
|
|
1810 |
}
|
|
1811 |
|
|
1812 |
if (adapter->itr_setting != 0)
|
|
1813 |
ew32(ITR, 1000000000 / (adapter->itr * 256));
|
|
1814 |
else
|
|
1815 |
ew32(ITR, 0);
|
|
1816 |
|
|
1817 |
return 0;
|
|
1818 |
}
|
|
1819 |
|
|
1820 |
static int e1000_nway_reset(struct net_device *netdev)
|
|
1821 |
{
|
|
1822 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1823 |
if (netif_running(netdev))
|
|
1824 |
e1000_reinit_locked(adapter);
|
|
1825 |
return 0;
|
|
1826 |
}
|
|
1827 |
|
|
1828 |
static void e1000_get_ethtool_stats(struct net_device *netdev,
|
|
1829 |
struct ethtool_stats *stats, u64 *data)
|
|
1830 |
{
|
|
1831 |
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
1832 |
int i;
|
|
1833 |
|
|
1834 |
e1000_update_stats(adapter);
|
|
1835 |
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
|
|
1836 |
char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
|
|
1837 |
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
|
|
1838 |
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
|
|
1839 |
}
|
|
1840 |
/* BUG_ON(i != E1000_STATS_LEN); */
|
|
1841 |
}
|
|
1842 |
|
|
1843 |
static void e1000_get_strings(struct net_device *netdev, u32 stringset,
|
|
1844 |
u8 *data)
|
|
1845 |
{
|
|
1846 |
u8 *p = data;
|
|
1847 |
int i;
|
|
1848 |
|
|
1849 |
switch (stringset) {
|
|
1850 |
case ETH_SS_TEST:
|
|
1851 |
memcpy(data, *e1000_gstrings_test,
|
|
1852 |
sizeof(e1000_gstrings_test));
|
|
1853 |
break;
|
|
1854 |
case ETH_SS_STATS:
|
|
1855 |
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
|
|
1856 |
memcpy(p, e1000_gstrings_stats[i].stat_string,
|
|
1857 |
ETH_GSTRING_LEN);
|
|
1858 |
p += ETH_GSTRING_LEN;
|
|
1859 |
}
|
|
1860 |
/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
|
|
1861 |
break;
|
|
1862 |
}
|
|
1863 |
}
|
|
1864 |
|
|
1865 |
static const struct ethtool_ops e1000_ethtool_ops = {
|
|
1866 |
.get_settings = e1000_get_settings,
|
|
1867 |
.set_settings = e1000_set_settings,
|
|
1868 |
.get_drvinfo = e1000_get_drvinfo,
|
|
1869 |
.get_regs_len = e1000_get_regs_len,
|
|
1870 |
.get_regs = e1000_get_regs,
|
|
1871 |
.get_wol = e1000_get_wol,
|
|
1872 |
.set_wol = e1000_set_wol,
|
|
1873 |
.get_msglevel = e1000_get_msglevel,
|
|
1874 |
.set_msglevel = e1000_set_msglevel,
|
|
1875 |
.nway_reset = e1000_nway_reset,
|
|
1876 |
.get_link = ethtool_op_get_link,
|
|
1877 |
.get_eeprom_len = e1000_get_eeprom_len,
|
|
1878 |
.get_eeprom = e1000_get_eeprom,
|
|
1879 |
.set_eeprom = e1000_set_eeprom,
|
|
1880 |
.get_ringparam = e1000_get_ringparam,
|
|
1881 |
.set_ringparam = e1000_set_ringparam,
|
|
1882 |
.get_pauseparam = e1000_get_pauseparam,
|
|
1883 |
.set_pauseparam = e1000_set_pauseparam,
|
|
1884 |
.get_rx_csum = e1000_get_rx_csum,
|
|
1885 |
.set_rx_csum = e1000_set_rx_csum,
|
|
1886 |
.get_tx_csum = e1000_get_tx_csum,
|
|
1887 |
.set_tx_csum = e1000_set_tx_csum,
|
|
1888 |
.set_sg = ethtool_op_set_sg,
|
|
1889 |
.set_tso = e1000_set_tso,
|
|
1890 |
.self_test = e1000_diag_test,
|
|
1891 |
.get_strings = e1000_get_strings,
|
|
1892 |
.phys_id = e1000_phys_id,
|
|
1893 |
.get_ethtool_stats = e1000_get_ethtool_stats,
|
|
1894 |
.get_sset_count = e1000_get_sset_count,
|
|
1895 |
.get_coalesce = e1000_get_coalesce,
|
|
1896 |
.set_coalesce = e1000_set_coalesce,
|
|
1897 |
};
|
|
1898 |
|
|
1899 |
void e1000_set_ethtool_ops(struct net_device *netdev)
|
|
1900 |
{
|
|
1901 |
SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
|
|
1902 |
}
|