Added e1000 driver for 2.6.32.
authorFlorian Pose <fp@igh-essen.com>
Thu, 15 Dec 2011 13:21:32 +0100
changeset 2171 4eff8c9cfbbc
parent 2166 1d5a5303f15c
child 2172 eb925f2b1ce9
Added e1000 driver for 2.6.32.
NEWS
devices/e1000/Makefile.am
devices/e1000/e1000-2.6.32-ethercat.h
devices/e1000/e1000-2.6.32-orig.h
devices/e1000/e1000_ethtool-2.6.32-ethercat.c
devices/e1000/e1000_ethtool-2.6.32-orig.c
devices/e1000/e1000_hw-2.6.32-ethercat.c
devices/e1000/e1000_hw-2.6.32-ethercat.h
devices/e1000/e1000_hw-2.6.32-orig.c
devices/e1000/e1000_hw-2.6.32-orig.h
devices/e1000/e1000_main-2.6.32-ethercat.c
devices/e1000/e1000_main-2.6.32-orig.c
devices/e1000/e1000_osdep-2.6.32-ethercat.h
devices/e1000/e1000_osdep-2.6.32-orig.h
devices/e1000/e1000_param-2.6.32-ethercat.c
devices/e1000/e1000_param-2.6.32-orig.c
--- a/NEWS	Fri Dec 09 10:35:23 2011 +0100
+++ b/NEWS	Thu Dec 15 13:21:32 2011 +0100
@@ -1,6 +1,6 @@
 -------------------------------------------------------------------------------
 
-$Id: NEWS,v 2cefec773772 2011/10/28 15:07:00 fp $
+$Id$
 
 vim: spelllang=en spell
 
@@ -34,7 +34,8 @@
 * Added 8139too driver for kernels 2.6.25 (F. Pose), 2.6.26 (M. Luescher),
   2.6.27, 2.6.28, 2.6.29 (M. Goetze), 2.6.31 (F. Pose), 2.6.34 (Malcolm
   Lewis), 2.6.36 (F. Pose) and 2.6.37 (F. Pose).
-* Added e1000 driver for 2.6.26 (M. Luescher), 2.6.27 and 2.6.28.
+* Added e1000 driver for 2.6.26 (M. Luescher), 2.6.27, 2.6.28, 2.6.29, 2.6.31,
+  2.6.32 and 2.6.33.
 * Added r8169 driver for 2.6.24, 2.6.27, 2.6.28, 2.6.29, 2.6.31 and 2.6.32
   (latter thanks to Robbie K).
 * Debug interfaces are created with the Ethernet addresses of the attached
--- a/devices/e1000/Makefile.am	Fri Dec 09 10:35:23 2011 +0100
+++ b/devices/e1000/Makefile.am	Thu Dec 15 13:21:32 2011 +0100
@@ -20,7 +20,7 @@
 #  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 #
 #  ---
-#  
+#
 #  The license mentioned above concerns the source code only. Using the
 #  EtherCAT technology and brand is only permitted in compliance with the
 #  industrial property and similar rights of Beckhoff Automation GmbH.
@@ -48,6 +48,8 @@
 	e1000-2.6.28-orig.h \
 	e1000-2.6.29-ethercat.h \
 	e1000-2.6.29-orig.h \
+	e1000-2.6.32-ethercat.h \
+	e1000-2.6.32-orig.h \
 	e1000-2.6.33-ethercat.h \
 	e1000-2.6.33-orig.h \
 	e1000_ethtool-2.6.13-ethercat.c \
@@ -68,6 +70,8 @@
 	e1000_ethtool-2.6.28-orig.c \
 	e1000_ethtool-2.6.29-ethercat.c \
 	e1000_ethtool-2.6.29-orig.c \
+	e1000_ethtool-2.6.32-ethercat.c \
+	e1000_ethtool-2.6.32-orig.c \
 	e1000_ethtool-2.6.33-ethercat.c \
 	e1000_ethtool-2.6.33-orig.c \
 	e1000_hw-2.6.13-ethercat.c \
@@ -106,6 +110,10 @@
 	e1000_hw-2.6.29-ethercat.h \
 	e1000_hw-2.6.29-orig.c \
 	e1000_hw-2.6.29-orig.h \
+	e1000_hw-2.6.32-ethercat.c \
+	e1000_hw-2.6.32-ethercat.h \
+	e1000_hw-2.6.32-orig.c \
+	e1000_hw-2.6.32-orig.h \
 	e1000_hw-2.6.33-ethercat.c \
 	e1000_hw-2.6.33-ethercat.h \
 	e1000_hw-2.6.33-orig.c \
@@ -128,6 +136,8 @@
 	e1000_main-2.6.28-orig.c \
 	e1000_main-2.6.29-ethercat.c \
 	e1000_main-2.6.29-orig.c \
+	e1000_main-2.6.32-ethercat.c \
+	e1000_main-2.6.32-orig.c \
 	e1000_main-2.6.33-ethercat.c \
 	e1000_main-2.6.33-orig.c \
 	e1000_osdep-2.6.13-ethercat.h \
@@ -148,6 +158,8 @@
 	e1000_osdep-2.6.28-orig.h \
 	e1000_osdep-2.6.29-ethercat.h \
 	e1000_osdep-2.6.29-orig.h \
+	e1000_osdep-2.6.32-ethercat.h \
+	e1000_osdep-2.6.32-orig.h \
 	e1000_osdep-2.6.33-ethercat.h \
 	e1000_osdep-2.6.33-orig.h \
 	e1000_param-2.6.13-ethercat.c \
@@ -168,6 +180,8 @@
 	e1000_param-2.6.28-orig.c \
 	e1000_param-2.6.29-ethercat.c \
 	e1000_param-2.6.29-orig.c \
+	e1000_param-2.6.32-ethercat.c \
+	e1000_param-2.6.32-orig.c
 	e1000_param-2.6.33-ethercat.c \
 	e1000_param-2.6.33-orig.c
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000-2.6.32-ethercat.h	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,361 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* Linux PRO/1000 Ethernet Driver main header file */
+
+#ifndef _E1000_H_
+#define _E1000_H_
+
+#include <linux/stddef.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <asm/byteorder.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <linux/timer.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/pagemap.h>
+#include <linux/dma-mapping.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <linux/capability.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <net/pkt_sched.h>
+#include <linux/list.h>
+#include <linux/reboot.h>
+#include <net/checksum.h>
+#include <linux/mii.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+#include "../ecdev.h"
+
+
+#define BAR_0		0
+#define BAR_1		1
+#define BAR_5		5
+
+#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\
+	PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+
+struct e1000_adapter;
+
+#include "e1000_hw-2.6.32-ethercat.h"
+
+#ifdef DBG
+#define E1000_DBG(args...) printk(KERN_DEBUG "ec_e1000: " args)
+#else
+#define E1000_DBG(args...)
+#endif
+
+#define E1000_ERR(args...) printk(KERN_ERR "ec_e1000: " args)
+
+#define PFX "ec_e1000: "
+
+#define DPRINTK(nlevel, klevel, fmt, args...)				\
+do {									\
+	if (NETIF_MSG_##nlevel & adapter->msg_enable)			\
+		printk(KERN_##klevel PFX "%s: %s: " fmt,		\
+		       adapter->netdev->name, __func__, ##args);	\
+} while (0)
+
+#define E1000_MAX_INTR 10
+
+/* TX/RX descriptor defines */
+#define E1000_DEFAULT_TXD                  256
+#define E1000_MAX_TXD                      256
+#define E1000_MIN_TXD                       80
+#define E1000_MAX_82544_TXD               4096
+
+#define E1000_DEFAULT_RXD                  256
+#define E1000_MAX_RXD                      256
+#define E1000_MIN_RXD                       80
+#define E1000_MAX_82544_RXD               4096
+
+#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
+#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
+
+/* this is the size past which hardware will drop packets when setting LPE=0 */
+#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
+
+/* Supported Rx Buffer Sizes */
+#define E1000_RXBUFFER_128   128    /* Used for packet split */
+#define E1000_RXBUFFER_256   256    /* Used for packet split */
+#define E1000_RXBUFFER_512   512
+#define E1000_RXBUFFER_1024  1024
+#define E1000_RXBUFFER_2048  2048
+#define E1000_RXBUFFER_4096  4096
+#define E1000_RXBUFFER_8192  8192
+#define E1000_RXBUFFER_16384 16384
+
+/* SmartSpeed delimiters */
+#define E1000_SMARTSPEED_DOWNSHIFT 3
+#define E1000_SMARTSPEED_MAX       15
+
+/* Packet Buffer allocations */
+#define E1000_PBA_BYTES_SHIFT 0xA
+#define E1000_TX_HEAD_ADDR_SHIFT 7
+#define E1000_PBA_TX_MASK 0xFFFF0000
+
+/* Flow Control Watermarks */
+#define E1000_FC_HIGH_DIFF 0x1638  /* High: 5688 bytes below Rx FIFO size */
+#define E1000_FC_LOW_DIFF 0x1640   /* Low:  5696 bytes below Rx FIFO size */
+
+#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */
+
+/* How many Tx Descriptors do we need to call netif_wake_queue ? */
+#define E1000_TX_QUEUE_WAKE	16
+/* How many Rx Buffers do we bundle into one write to the hardware ? */
+#define E1000_RX_BUFFER_WRITE	16	/* Must be power of 2 */
+
+#define AUTO_ALL_MODES            0
+#define E1000_EEPROM_82544_APM    0x0004
+#define E1000_EEPROM_APME         0x0400
+
+#ifndef E1000_MASTER_SLAVE
+/* Switch to override PHY master/slave setting */
+#define E1000_MASTER_SLAVE	e1000_ms_hw_default
+#endif
+
+#define E1000_MNG_VLAN_NONE (-1)
+
+/* wrapper around a pointer to a socket buffer,
+ * so a DMA handle can be stored along with the buffer */
+struct e1000_buffer {
+	struct sk_buff *skb;
+	dma_addr_t dma;
+	struct page *page;
+	unsigned long time_stamp;
+	u16 length;
+	u16 next_to_watch;
+};
+
+struct e1000_tx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+
+	u16 tdh;
+	u16 tdt;
+	bool last_tx_tso;
+};
+
+struct e1000_rx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *rx_skb_top;
+
+	/* cpu for rx queue */
+	int cpu;
+
+	u16 rdh;
+	u16 rdt;
+};
+
+#define E1000_DESC_UNUSED(R)						\
+	((((R)->next_to_clean > (R)->next_to_use)			\
+	  ? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1)
+
+#define E1000_RX_DESC_EXT(R, i)						\
+	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
+#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
+#define E1000_RX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_rx_desc)
+#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
+#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
+
+/* board specific private data structure */
+
+struct e1000_adapter {
+	struct timer_list tx_fifo_stall_timer;
+	struct timer_list watchdog_timer;
+	struct timer_list phy_info_timer;
+	struct vlan_group *vlgrp;
+	u16 mng_vlan_id;
+	u32 bd_number;
+	u32 rx_buffer_len;
+	u32 wol;
+	u32 smartspeed;
+	u32 en_mng_pt;
+	u16 link_speed;
+	u16 link_duplex;
+	spinlock_t stats_lock;
+	unsigned int total_tx_bytes;
+	unsigned int total_tx_packets;
+	unsigned int total_rx_bytes;
+	unsigned int total_rx_packets;
+	/* Interrupt Throttle Rate */
+	u32 itr;
+	u32 itr_setting;
+	u16 tx_itr;
+	u16 rx_itr;
+
+	struct work_struct reset_task;
+	u8 fc_autoneg;
+
+	struct timer_list blink_timer;
+	unsigned long led_status;
+
+	/* TX */
+	struct e1000_tx_ring *tx_ring;      /* One per active queue */
+	unsigned int restart_queue;
+	unsigned long tx_queue_len;
+	u32 txd_cmd;
+	u32 tx_int_delay;
+	u32 tx_abs_int_delay;
+	u32 gotcl;
+	u64 gotcl_old;
+	u64 tpt_old;
+	u64 colc_old;
+	u32 tx_timeout_count;
+	u32 tx_fifo_head;
+	u32 tx_head_addr;
+	u32 tx_fifo_size;
+	u8  tx_timeout_factor;
+	atomic_t tx_fifo_stall;
+	bool pcix_82544;
+	bool detect_tx_hung;
+
+	/* RX */
+	bool (*clean_rx)(struct e1000_adapter *adapter,
+			 struct e1000_rx_ring *rx_ring,
+			 int *work_done, int work_to_do);
+	void (*alloc_rx_buf)(struct e1000_adapter *adapter,
+			     struct e1000_rx_ring *rx_ring,
+			     int cleaned_count);
+	struct e1000_rx_ring *rx_ring;      /* One per active queue */
+	struct napi_struct napi;
+
+	int num_tx_queues;
+	int num_rx_queues;
+
+	u64 hw_csum_err;
+	u64 hw_csum_good;
+	u32 alloc_rx_buff_failed;
+	u32 rx_int_delay;
+	u32 rx_abs_int_delay;
+	bool rx_csum;
+	u32 gorcl;
+	u64 gorcl_old;
+
+	/* OS defined structs */
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+	struct net_device_stats net_stats;
+
+	/* structs defined in e1000_hw.h */
+	struct e1000_hw hw;
+	struct e1000_hw_stats stats;
+	struct e1000_phy_info phy_info;
+	struct e1000_phy_stats phy_stats;
+
+	u32 test_icr;
+	struct e1000_tx_ring test_tx_ring;
+	struct e1000_rx_ring test_rx_ring;
+
+	int msg_enable;
+
+	/* to not mess up cache alignment, always add to the bottom */
+	bool tso_force;
+	bool smart_power_down;	/* phy smart power down */
+	bool quad_port_a;
+	unsigned long flags;
+	u32 eeprom_wol;
+
+	/* for ioport free */
+	int bars;
+	int need_ioport;
+
+	bool discarding;
+
+	ec_device_t *ecdev;
+	unsigned long ec_watchdog_jiffies;
+};
+
+enum e1000_state_t {
+	__E1000_TESTING,
+	__E1000_RESETTING,
+	__E1000_DOWN
+};
+
+extern char e1000_driver_name[];
+extern const char e1000_driver_version[];
+
+extern int e1000_up(struct e1000_adapter *adapter);
+extern void e1000_down(struct e1000_adapter *adapter);
+extern void e1000_reinit_locked(struct e1000_adapter *adapter);
+extern void e1000_reset(struct e1000_adapter *adapter);
+extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_update_stats(struct e1000_adapter *adapter);
+extern void e1000_power_up_phy(struct e1000_adapter *);
+extern void e1000_set_ethtool_ops(struct net_device *netdev);
+extern void e1000_check_options(struct e1000_adapter *adapter);
+
+#endif /* _E1000_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000-2.6.32-orig.h	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,356 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* Linux PRO/1000 Ethernet Driver main header file */
+
+#ifndef _E1000_H_
+#define _E1000_H_
+
+#include <linux/stddef.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <asm/byteorder.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <linux/timer.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/pagemap.h>
+#include <linux/dma-mapping.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <linux/capability.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <net/pkt_sched.h>
+#include <linux/list.h>
+#include <linux/reboot.h>
+#include <net/checksum.h>
+#include <linux/mii.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+
+#define BAR_0		0
+#define BAR_1		1
+#define BAR_5		5
+
+#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\
+	PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+
+struct e1000_adapter;
+
+#include "e1000_hw.h"
+
+#ifdef DBG
+#define E1000_DBG(args...) printk(KERN_DEBUG "e1000: " args)
+#else
+#define E1000_DBG(args...)
+#endif
+
+#define E1000_ERR(args...) printk(KERN_ERR "e1000: " args)
+
+#define PFX "e1000: "
+
+#define DPRINTK(nlevel, klevel, fmt, args...)				\
+do {									\
+	if (NETIF_MSG_##nlevel & adapter->msg_enable)			\
+		printk(KERN_##klevel PFX "%s: %s: " fmt,		\
+		       adapter->netdev->name, __func__, ##args);	\
+} while (0)
+
+#define E1000_MAX_INTR 10
+
+/* TX/RX descriptor defines */
+#define E1000_DEFAULT_TXD                  256
+#define E1000_MAX_TXD                      256
+#define E1000_MIN_TXD                       80
+#define E1000_MAX_82544_TXD               4096
+
+#define E1000_DEFAULT_RXD                  256
+#define E1000_MAX_RXD                      256
+#define E1000_MIN_RXD                       80
+#define E1000_MAX_82544_RXD               4096
+
+#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
+#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
+
+/* this is the size past which hardware will drop packets when setting LPE=0 */
+#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
+
+/* Supported Rx Buffer Sizes */
+#define E1000_RXBUFFER_128   128    /* Used for packet split */
+#define E1000_RXBUFFER_256   256    /* Used for packet split */
+#define E1000_RXBUFFER_512   512
+#define E1000_RXBUFFER_1024  1024
+#define E1000_RXBUFFER_2048  2048
+#define E1000_RXBUFFER_4096  4096
+#define E1000_RXBUFFER_8192  8192
+#define E1000_RXBUFFER_16384 16384
+
+/* SmartSpeed delimiters */
+#define E1000_SMARTSPEED_DOWNSHIFT 3
+#define E1000_SMARTSPEED_MAX       15
+
+/* Packet Buffer allocations */
+#define E1000_PBA_BYTES_SHIFT 0xA
+#define E1000_TX_HEAD_ADDR_SHIFT 7
+#define E1000_PBA_TX_MASK 0xFFFF0000
+
+/* Flow Control Watermarks */
+#define E1000_FC_HIGH_DIFF 0x1638  /* High: 5688 bytes below Rx FIFO size */
+#define E1000_FC_LOW_DIFF 0x1640   /* Low:  5696 bytes below Rx FIFO size */
+
+#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */
+
+/* How many Tx Descriptors do we need to call netif_wake_queue ? */
+#define E1000_TX_QUEUE_WAKE	16
+/* How many Rx Buffers do we bundle into one write to the hardware ? */
+#define E1000_RX_BUFFER_WRITE	16	/* Must be power of 2 */
+
+#define AUTO_ALL_MODES            0
+#define E1000_EEPROM_82544_APM    0x0004
+#define E1000_EEPROM_APME         0x0400
+
+#ifndef E1000_MASTER_SLAVE
+/* Switch to override PHY master/slave setting */
+#define E1000_MASTER_SLAVE	e1000_ms_hw_default
+#endif
+
+#define E1000_MNG_VLAN_NONE (-1)
+
+/* wrapper around a pointer to a socket buffer,
+ * so a DMA handle can be stored along with the buffer */
+struct e1000_buffer {
+	struct sk_buff *skb;
+	dma_addr_t dma;
+	struct page *page;
+	unsigned long time_stamp;
+	u16 length;
+	u16 next_to_watch;
+};
+
+struct e1000_tx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+
+	u16 tdh;
+	u16 tdt;
+	bool last_tx_tso;
+};
+
+struct e1000_rx_ring {
+	/* pointer to the descriptor ring memory */
+	void *desc;
+	/* physical address of the descriptor ring */
+	dma_addr_t dma;
+	/* length of descriptor ring in bytes */
+	unsigned int size;
+	/* number of descriptors in the ring */
+	unsigned int count;
+	/* next descriptor to associate a buffer with */
+	unsigned int next_to_use;
+	/* next descriptor to check for DD status bit */
+	unsigned int next_to_clean;
+	/* array of buffer information structs */
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *rx_skb_top;
+
+	/* cpu for rx queue */
+	int cpu;
+
+	u16 rdh;
+	u16 rdt;
+};
+
+#define E1000_DESC_UNUSED(R)						\
+	((((R)->next_to_clean > (R)->next_to_use)			\
+	  ? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1)
+
+#define E1000_RX_DESC_EXT(R, i)						\
+	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
+#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
+#define E1000_RX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_rx_desc)
+#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
+#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
+
+/* board specific private data structure */
+
+struct e1000_adapter {
+	struct timer_list tx_fifo_stall_timer;
+	struct timer_list watchdog_timer;
+	struct timer_list phy_info_timer;
+	struct vlan_group *vlgrp;
+	u16 mng_vlan_id;
+	u32 bd_number;
+	u32 rx_buffer_len;
+	u32 wol;
+	u32 smartspeed;
+	u32 en_mng_pt;
+	u16 link_speed;
+	u16 link_duplex;
+	spinlock_t stats_lock;
+	unsigned int total_tx_bytes;
+	unsigned int total_tx_packets;
+	unsigned int total_rx_bytes;
+	unsigned int total_rx_packets;
+	/* Interrupt Throttle Rate */
+	u32 itr;
+	u32 itr_setting;
+	u16 tx_itr;
+	u16 rx_itr;
+
+	struct work_struct reset_task;
+	u8 fc_autoneg;
+
+	struct timer_list blink_timer;
+	unsigned long led_status;
+
+	/* TX */
+	struct e1000_tx_ring *tx_ring;      /* One per active queue */
+	unsigned int restart_queue;
+	unsigned long tx_queue_len;
+	u32 txd_cmd;
+	u32 tx_int_delay;
+	u32 tx_abs_int_delay;
+	u32 gotcl;
+	u64 gotcl_old;
+	u64 tpt_old;
+	u64 colc_old;
+	u32 tx_timeout_count;
+	u32 tx_fifo_head;
+	u32 tx_head_addr;
+	u32 tx_fifo_size;
+	u8  tx_timeout_factor;
+	atomic_t tx_fifo_stall;
+	bool pcix_82544;
+	bool detect_tx_hung;
+
+	/* RX */
+	bool (*clean_rx)(struct e1000_adapter *adapter,
+			 struct e1000_rx_ring *rx_ring,
+			 int *work_done, int work_to_do);
+	void (*alloc_rx_buf)(struct e1000_adapter *adapter,
+			     struct e1000_rx_ring *rx_ring,
+			     int cleaned_count);
+	struct e1000_rx_ring *rx_ring;      /* One per active queue */
+	struct napi_struct napi;
+
+	int num_tx_queues;
+	int num_rx_queues;
+
+	u64 hw_csum_err;
+	u64 hw_csum_good;
+	u32 alloc_rx_buff_failed;
+	u32 rx_int_delay;
+	u32 rx_abs_int_delay;
+	bool rx_csum;
+	u32 gorcl;
+	u64 gorcl_old;
+
+	/* OS defined structs */
+	struct net_device *netdev;
+	struct pci_dev *pdev;
+	struct net_device_stats net_stats;
+
+	/* structs defined in e1000_hw.h */
+	struct e1000_hw hw;
+	struct e1000_hw_stats stats;
+	struct e1000_phy_info phy_info;
+	struct e1000_phy_stats phy_stats;
+
+	u32 test_icr;
+	struct e1000_tx_ring test_tx_ring;
+	struct e1000_rx_ring test_rx_ring;
+
+	int msg_enable;
+
+	/* to not mess up cache alignment, always add to the bottom */
+	bool tso_force;
+	bool smart_power_down;	/* phy smart power down */
+	bool quad_port_a;
+	unsigned long flags;
+	u32 eeprom_wol;
+
+	/* for ioport free */
+	int bars;
+	int need_ioport;
+
+	bool discarding;
+};
+
+enum e1000_state_t {
+	__E1000_TESTING,
+	__E1000_RESETTING,
+	__E1000_DOWN
+};
+
+extern char e1000_driver_name[];
+extern const char e1000_driver_version[];
+
+extern int e1000_up(struct e1000_adapter *adapter);
+extern void e1000_down(struct e1000_adapter *adapter);
+extern void e1000_reinit_locked(struct e1000_adapter *adapter);
+extern void e1000_reset(struct e1000_adapter *adapter);
+extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_update_stats(struct e1000_adapter *adapter);
+extern void e1000_power_up_phy(struct e1000_adapter *);
+extern void e1000_set_ethtool_ops(struct net_device *netdev);
+extern void e1000_check_options(struct e1000_adapter *adapter);
+
+#endif /* _E1000_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_ethtool-2.6.32-ethercat.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,1924 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include "e1000-2.6.32-ethercat.h"
+#include <asm/uaccess.h>
+
+struct e1000_stats {
+	char stat_string[ETH_GSTRING_LEN];
+	int sizeof_stat;
+	int stat_offset;
+};
+
+#define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
+		      offsetof(struct e1000_adapter, m)
+static const struct e1000_stats e1000_gstrings_stats[] = {
+	{ "rx_packets", E1000_STAT(stats.gprc) },
+	{ "tx_packets", E1000_STAT(stats.gptc) },
+	{ "rx_bytes", E1000_STAT(stats.gorcl) },
+	{ "tx_bytes", E1000_STAT(stats.gotcl) },
+	{ "rx_broadcast", E1000_STAT(stats.bprc) },
+	{ "tx_broadcast", E1000_STAT(stats.bptc) },
+	{ "rx_multicast", E1000_STAT(stats.mprc) },
+	{ "tx_multicast", E1000_STAT(stats.mptc) },
+	{ "rx_errors", E1000_STAT(stats.rxerrc) },
+	{ "tx_errors", E1000_STAT(stats.txerrc) },
+	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
+	{ "multicast", E1000_STAT(stats.mprc) },
+	{ "collisions", E1000_STAT(stats.colc) },
+	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
+	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
+	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
+	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
+	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
+	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
+	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
+	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
+	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
+	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
+	{ "tx_window_errors", E1000_STAT(stats.latecol) },
+	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
+	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
+	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
+	{ "tx_restart_queue", E1000_STAT(restart_queue) },
+	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
+	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
+	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
+	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
+	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
+	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
+	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
+};
+
+#define E1000_QUEUE_STATS_LEN 0
+#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
+#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Register test  (offline)", "Eeprom test    (offline)",
+	"Interrupt test (offline)", "Loopback test  (offline)",
+	"Link test   (on/offline)"
+};
+#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
+
+static int e1000_get_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->media_type == e1000_media_type_copper) {
+
+		ecmd->supported = (SUPPORTED_10baseT_Half |
+		                   SUPPORTED_10baseT_Full |
+		                   SUPPORTED_100baseT_Half |
+		                   SUPPORTED_100baseT_Full |
+		                   SUPPORTED_1000baseT_Full|
+		                   SUPPORTED_Autoneg |
+		                   SUPPORTED_TP);
+		ecmd->advertising = ADVERTISED_TP;
+
+		if (hw->autoneg == 1) {
+			ecmd->advertising |= ADVERTISED_Autoneg;
+			/* the e1000 autoneg seems to match ethtool nicely */
+			ecmd->advertising |= hw->autoneg_advertised;
+		}
+
+		ecmd->port = PORT_TP;
+		ecmd->phy_address = hw->phy_addr;
+
+		if (hw->mac_type == e1000_82543)
+			ecmd->transceiver = XCVR_EXTERNAL;
+		else
+			ecmd->transceiver = XCVR_INTERNAL;
+
+	} else {
+		ecmd->supported   = (SUPPORTED_1000baseT_Full |
+				     SUPPORTED_FIBRE |
+				     SUPPORTED_Autoneg);
+
+		ecmd->advertising = (ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg);
+
+		ecmd->port = PORT_FIBRE;
+
+		if (hw->mac_type >= e1000_82545)
+			ecmd->transceiver = XCVR_INTERNAL;
+		else
+			ecmd->transceiver = XCVR_EXTERNAL;
+	}
+
+	if (er32(STATUS) & E1000_STATUS_LU) {
+
+		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+		                                   &adapter->link_duplex);
+		ecmd->speed = adapter->link_speed;
+
+		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
+		 *          and HALF_DUPLEX != DUPLEX_HALF */
+
+		if (adapter->link_duplex == FULL_DUPLEX)
+			ecmd->duplex = DUPLEX_FULL;
+		else
+			ecmd->duplex = DUPLEX_HALF;
+	} else {
+		ecmd->speed = -1;
+		ecmd->duplex = -1;
+	}
+
+	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
+			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+	return 0;
+}
+
+static int e1000_set_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (ecmd->autoneg == AUTONEG_ENABLE) {
+		hw->autoneg = 1;
+		if (hw->media_type == e1000_media_type_fiber)
+			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg;
+		else
+			hw->autoneg_advertised = ecmd->advertising |
+			                         ADVERTISED_TP |
+			                         ADVERTISED_Autoneg;
+		ecmd->advertising = hw->autoneg_advertised;
+	} else
+		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
+			clear_bit(__E1000_RESETTING, &adapter->flags);
+			return -EINVAL;
+		}
+
+	/* reset the link */
+
+	if (netif_running(adapter->netdev)) {
+		e1000_down(adapter);
+		e1000_up(adapter);
+	} else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+}
+
+static void e1000_get_pauseparam(struct net_device *netdev,
+				 struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	pause->autoneg =
+		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+	if (hw->fc == E1000_FC_RX_PAUSE)
+		pause->rx_pause = 1;
+	else if (hw->fc == E1000_FC_TX_PAUSE)
+		pause->tx_pause = 1;
+	else if (hw->fc == E1000_FC_FULL) {
+		pause->rx_pause = 1;
+		pause->tx_pause = 1;
+	}
+}
+
+static int e1000_set_pauseparam(struct net_device *netdev,
+				struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 0;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	adapter->fc_autoneg = pause->autoneg;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_FULL;
+	else if (pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_RX_PAUSE;
+	else if (!pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_TX_PAUSE;
+	else if (!pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_NONE;
+
+	hw->original_fc = hw->fc;
+
+	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+		if (netif_running(adapter->netdev)) {
+			e1000_down(adapter);
+			e1000_up(adapter);
+		} else
+			e1000_reset(adapter);
+	} else
+		retval = ((hw->media_type == e1000_media_type_fiber) ?
+			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return retval;
+}
+
+static u32 e1000_get_rx_csum(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->rx_csum;
+}
+
+static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	adapter->rx_csum = data;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	else
+		e1000_reset(adapter);
+	return 0;
+}
+
+static u32 e1000_get_tx_csum(struct net_device *netdev)
+{
+	return (netdev->features & NETIF_F_HW_CSUM) != 0;
+}
+
+static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82543) {
+		if (!data)
+			return -EINVAL;
+		return 0;
+	}
+
+	if (data)
+		netdev->features |= NETIF_F_HW_CSUM;
+	else
+		netdev->features &= ~NETIF_F_HW_CSUM;
+
+	return 0;
+}
+
+static int e1000_set_tso(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if ((hw->mac_type < e1000_82544) ||
+	    (hw->mac_type == e1000_82547))
+		return data ? -EINVAL : 0;
+
+	if (data)
+		netdev->features |= NETIF_F_TSO;
+	else
+		netdev->features &= ~NETIF_F_TSO;
+
+	netdev->features &= ~NETIF_F_TSO6;
+
+	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
+	adapter->tso_force = true;
+	return 0;
+}
+
+static u32 e1000_get_msglevel(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->msg_enable;
+}
+
+static void e1000_set_msglevel(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->msg_enable = data;
+}
+
+static int e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32
+	return E1000_REGS_LEN * sizeof(u32);
+}
+
+static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
+			   void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 *regs_buff = p;
+	u16 phy_data;
+
+	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
+
+	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
+
+	regs_buff[0]  = er32(CTRL);
+	regs_buff[1]  = er32(STATUS);
+
+	regs_buff[2]  = er32(RCTL);
+	regs_buff[3]  = er32(RDLEN);
+	regs_buff[4]  = er32(RDH);
+	regs_buff[5]  = er32(RDT);
+	regs_buff[6]  = er32(RDTR);
+
+	regs_buff[7]  = er32(TCTL);
+	regs_buff[8]  = er32(TDLEN);
+	regs_buff[9]  = er32(TDH);
+	regs_buff[10] = er32(TDT);
+	regs_buff[11] = er32(TIDV);
+
+	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
+	if (hw->phy_type == e1000_phy_igp) {
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_A);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_B);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[14] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_C);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[15] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_D);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[16] = (u32)phy_data; /* cable length */
+		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[18] = (u32)phy_data; /* cable polarity */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_PCS_INIT_REG);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[19] = (u32)phy_data; /* cable polarity */
+		regs_buff[20] = 0; /* polarity correction enabled (always) */
+		regs_buff[22] = 0; /* phy receive errors (unavailable) */
+		regs_buff[23] = regs_buff[18]; /* mdix mode */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+	} else {
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
+		regs_buff[18] = regs_buff[13]; /* cable polarity */
+		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[20] = regs_buff[17]; /* polarity correction */
+		/* phy receive errors */
+		regs_buff[22] = adapter->phy_stats.receive_errors;
+		regs_buff[23] = regs_buff[13]; /* mdix mode */
+	}
+	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
+	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
+	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
+	if (hw->mac_type >= e1000_82540 &&
+	    hw->media_type == e1000_media_type_copper) {
+		regs_buff[26] = er32(MANC);
+	}
+}
+
+static int e1000_get_eeprom_len(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	return hw->eeprom.word_size * 2;
+}
+
+static int e1000_get_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	int first_word, last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EINVAL;
+
+	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+	eeprom_buff = kmalloc(sizeof(u16) *
+			(last_word - first_word + 1), GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	if (hw->eeprom.type == e1000_eeprom_spi)
+		ret_val = e1000_read_eeprom(hw, first_word,
+					    last_word - first_word + 1,
+					    eeprom_buff);
+	else {
+		for (i = 0; i < last_word - first_word + 1; i++) {
+			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
+						    &eeprom_buff[i]);
+			if (ret_val)
+				break;
+		}
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
+			eeprom->len);
+	kfree(eeprom_buff);
+
+	return ret_val;
+}
+
+static int e1000_set_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	void *ptr;
+	int max_len, first_word, last_word, ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EOPNOTSUPP;
+
+	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
+		return -EFAULT;
+
+	max_len = hw->eeprom.word_size * 2;
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	ptr = (void *)eeprom_buff;
+
+	if (eeprom->offset & 1) {
+		/* need read/modify/write of first changed EEPROM word */
+		/* only the second byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, first_word, 1,
+					    &eeprom_buff[0]);
+		ptr++;
+	}
+	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
+		/* need read/modify/write of last changed EEPROM word */
+		/* only the first byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, last_word, 1,
+		                  &eeprom_buff[last_word - first_word]);
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(ptr, bytes, eeprom->len);
+
+	for (i = 0; i < last_word - first_word + 1; i++)
+		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+	ret_val = e1000_write_eeprom(hw, first_word,
+				     last_word - first_word + 1, eeprom_buff);
+
+	/* Update the checksum over the first part of the EEPROM if needed */
+	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
+		e1000_update_eeprom_checksum(hw);
+
+	kfree(eeprom_buff);
+	return ret_val;
+}
+
+static void e1000_get_drvinfo(struct net_device *netdev,
+			      struct ethtool_drvinfo *drvinfo)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	char firmware_version[32];
+
+	strncpy(drvinfo->driver,  e1000_driver_name, 32);
+	strncpy(drvinfo->version, e1000_driver_version, 32);
+
+	sprintf(firmware_version, "N/A");
+	strncpy(drvinfo->fw_version, firmware_version, 32);
+	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+	drvinfo->regdump_len = e1000_get_regs_len(netdev);
+	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void e1000_get_ringparam(struct net_device *netdev,
+				struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	struct e1000_rx_ring *rxdr = adapter->rx_ring;
+
+	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
+		E1000_MAX_82544_RXD;
+	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
+		E1000_MAX_82544_TXD;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rxdr->count;
+	ring->tx_pending = txdr->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e1000_set_ringparam(struct net_device *netdev,
+			       struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr, *tx_old;
+	struct e1000_rx_ring *rxdr, *rx_old;
+	int i, err;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (netif_running(adapter->netdev))
+		e1000_down(adapter);
+
+	tx_old = adapter->tx_ring;
+	rx_old = adapter->rx_ring;
+
+	err = -ENOMEM;
+	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!txdr)
+		goto err_alloc_tx;
+
+	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!rxdr)
+		goto err_alloc_rx;
+
+	adapter->tx_ring = txdr;
+	adapter->rx_ring = rxdr;
+
+	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
+	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_RXD : E1000_MAX_82544_RXD));
+	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
+	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_TXD : E1000_MAX_82544_TXD));
+	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		txdr[i].count = txdr->count;
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		rxdr[i].count = rxdr->count;
+
+	if (netif_running(adapter->netdev)) {
+		/* Try to get new resources before deleting old */
+		err = e1000_setup_all_rx_resources(adapter);
+		if (err)
+			goto err_setup_rx;
+		err = e1000_setup_all_tx_resources(adapter);
+		if (err)
+			goto err_setup_tx;
+
+		/* save the new, restore the old in order to free it,
+		 * then restore the new back again */
+
+		adapter->rx_ring = rx_old;
+		adapter->tx_ring = tx_old;
+		e1000_free_all_rx_resources(adapter);
+		e1000_free_all_tx_resources(adapter);
+		kfree(tx_old);
+		kfree(rx_old);
+		adapter->rx_ring = rxdr;
+		adapter->tx_ring = txdr;
+		err = e1000_up(adapter);
+		if (err)
+			goto err_setup;
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+err_setup_tx:
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	adapter->rx_ring = rx_old;
+	adapter->tx_ring = tx_old;
+	kfree(rxdr);
+err_alloc_rx:
+	kfree(txdr);
+err_alloc_tx:
+	e1000_up(adapter);
+err_setup:
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return err;
+}
+
+static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
+			     u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	static const u32 test[] =
+		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(test); i++) {
+		writel(write & test[i], address);
+		read = readl(address);
+		if (read != (write & test[i] & mask)) {
+			DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
+				"got 0x%08X expected 0x%08X\n",
+				reg, read, (write & test[i] & mask));
+			*data = reg;
+			return true;
+		}
+	}
+	return false;
+}
+
+static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
+			      u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+
+	writel(write & mask, address);
+	read = readl(address);
+	if ((read & mask) != (write & mask)) {
+		DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
+			"got 0x%08X expected 0x%08X\n",
+			reg, (read & mask), (write & mask));
+		*data = reg;
+		return true;
+	}
+	return false;
+}
+
+#define REG_PATTERN_TEST(reg, mask, write)			     \
+	do {							     \
+		if (reg_pattern_test(adapter, data,		     \
+			     (hw->mac_type >= e1000_82543)   \
+			     ? E1000_##reg : E1000_82542_##reg,	     \
+			     mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+#define REG_SET_AND_CHECK(reg, mask, write)			     \
+	do {							     \
+		if (reg_set_and_check(adapter, data,		     \
+			      (hw->mac_type >= e1000_82543)  \
+			      ? E1000_##reg : E1000_82542_##reg,     \
+			      mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
+{
+	u32 value, before, after;
+	u32 i, toggle;
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* The status register is Read Only, so a write should fail.
+	 * Some bits that get toggled are ignored.
+	 */
+
+	/* there are several bits on newer hardware that are r/w */
+	toggle = 0xFFFFF833;
+
+	before = er32(STATUS);
+	value = (er32(STATUS) & toggle);
+	ew32(STATUS, toggle);
+	after = er32(STATUS) & toggle;
+	if (value != after) {
+		DPRINTK(DRV, ERR, "failed STATUS register test got: "
+		        "0x%08X expected: 0x%08X\n", after, value);
+		*data = 1;
+		return 1;
+	}
+	/* restore previous status */
+	ew32(STATUS, before);
+
+	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+
+	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
+	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
+	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
+
+	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
+
+	before = 0x06DFB3FE;
+	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
+	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
+
+	if (hw->mac_type >= e1000_82543) {
+
+		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
+		value = E1000_RAR_ENTRIES;
+		for (i = 0; i < value; i++) {
+			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
+			                 0xFFFFFFFF);
+		}
+
+	} else {
+
+		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
+
+	}
+
+	value = E1000_MC_TBL_SIZE;
+	for (i = 0; i < value; i++)
+		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
+
+	*data = 0;
+	return 0;
+}
+
+static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 temp;
+	u16 checksum = 0;
+	u16 i;
+
+	*data = 0;
+	/* Read and add up the contents of the EEPROM */
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
+			*data = 1;
+			break;
+		}
+		checksum += temp;
+	}
+
+	/* If Checksum is not Correct return error else test passed */
+	if ((checksum != (u16)EEPROM_SUM) && !(*data))
+		*data = 2;
+
+	return *data;
+}
+
+static irqreturn_t e1000_test_intr(int irq, void *data)
+{
+	struct net_device *netdev = (struct net_device *)data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	adapter->test_icr |= er32(ICR);
+
+	return IRQ_HANDLED;
+}
+
+static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct net_device *netdev = adapter->netdev;
+	u32 mask, i = 0;
+	bool shared_int = true;
+	u32 irq = adapter->pdev->irq;
+	struct e1000_hw *hw = &adapter->hw;
+
+	*data = 0;
+
+	/* NOTE: we don't test MSI interrupts here, yet */
+	/* Hook up test interrupt handler just for this test */
+	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
+	                 netdev))
+		shared_int = false;
+	else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
+	         netdev->name, netdev)) {
+		*data = 1;
+		return -1;
+	}
+	DPRINTK(HW, INFO, "testing %s interrupt\n",
+	        (shared_int ? "shared" : "unshared"));
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Test each interrupt */
+	for (; i < 10; i++) {
+
+		/* Interrupt to test */
+		mask = 1 << i;
+
+		if (!shared_int) {
+			/* Disable the interrupt to be reported in
+			 * the cause register and then force the same
+			 * interrupt and see if one gets posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, mask);
+			ew32(ICS, mask);
+			msleep(10);
+
+			if (adapter->test_icr & mask) {
+				*data = 3;
+				break;
+			}
+		}
+
+		/* Enable the interrupt to be reported in
+		 * the cause register and then force the same
+		 * interrupt and see if one gets posted.  If
+		 * an interrupt was not posted to the bus, the
+		 * test failed.
+		 */
+		adapter->test_icr = 0;
+		ew32(IMS, mask);
+		ew32(ICS, mask);
+		msleep(10);
+
+		if (!(adapter->test_icr & mask)) {
+			*data = 4;
+			break;
+		}
+
+		if (!shared_int) {
+			/* Disable the other interrupts to be reported in
+			 * the cause register and then force the other
+			 * interrupts and see if any get posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, ~mask & 0x00007FFF);
+			ew32(ICS, ~mask & 0x00007FFF);
+			msleep(10);
+
+			if (adapter->test_icr) {
+				*data = 5;
+				break;
+			}
+		}
+	}
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Unhook test interrupt handler */
+	free_irq(irq, netdev);
+
+	return *data;
+}
+
+static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i;
+
+	if (txdr->desc && txdr->buffer_info) {
+		for (i = 0; i < txdr->count; i++) {
+			if (txdr->buffer_info[i].dma)
+				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
+						 txdr->buffer_info[i].length,
+						 PCI_DMA_TODEVICE);
+			if (txdr->buffer_info[i].skb)
+				dev_kfree_skb(txdr->buffer_info[i].skb);
+		}
+	}
+
+	if (rxdr->desc && rxdr->buffer_info) {
+		for (i = 0; i < rxdr->count; i++) {
+			if (rxdr->buffer_info[i].dma)
+				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
+						 rxdr->buffer_info[i].length,
+						 PCI_DMA_FROMDEVICE);
+			if (rxdr->buffer_info[i].skb)
+				dev_kfree_skb(rxdr->buffer_info[i].skb);
+		}
+	}
+
+	if (txdr->desc) {
+		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
+		txdr->desc = NULL;
+	}
+	if (rxdr->desc) {
+		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
+		rxdr->desc = NULL;
+	}
+
+	kfree(txdr->buffer_info);
+	txdr->buffer_info = NULL;
+	kfree(rxdr->buffer_info);
+	rxdr->buffer_info = NULL;
+
+	return;
+}
+
+static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	u32 rctl;
+	int i, ret_val;
+
+	/* Setup Tx descriptor ring and Tx buffers */
+
+	if (!txdr->count)
+		txdr->count = E1000_DEFAULT_TXD;
+
+	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!txdr->buffer_info) {
+		ret_val = 1;
+		goto err_nomem;
+	}
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+	if (!txdr->desc) {
+		ret_val = 2;
+		goto err_nomem;
+	}
+	memset(txdr->desc, 0, txdr->size);
+	txdr->next_to_use = txdr->next_to_clean = 0;
+
+	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
+	ew32(TDBAH, ((u64)txdr->dma >> 32));
+	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
+	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+	for (i = 0; i < txdr->count; i++) {
+		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
+		struct sk_buff *skb;
+		unsigned int size = 1024;
+
+		skb = alloc_skb(size, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 3;
+			goto err_nomem;
+		}
+		skb_put(skb, size);
+		txdr->buffer_info[i].skb = skb;
+		txdr->buffer_info[i].length = skb->len;
+		txdr->buffer_info[i].dma =
+			pci_map_single(pdev, skb->data, skb->len,
+				       PCI_DMA_TODEVICE);
+		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
+		tx_desc->lower.data = cpu_to_le32(skb->len);
+		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+						   E1000_TXD_CMD_IFCS |
+						   E1000_TXD_CMD_RPS);
+		tx_desc->upper.data = 0;
+	}
+
+	/* Setup Rx descriptor ring and Rx buffers */
+
+	if (!rxdr->count)
+		rxdr->count = E1000_DEFAULT_RXD;
+
+	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!rxdr->buffer_info) {
+		ret_val = 4;
+		goto err_nomem;
+	}
+
+	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+	if (!rxdr->desc) {
+		ret_val = 5;
+		goto err_nomem;
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+	rxdr->next_to_use = rxdr->next_to_clean = 0;
+
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
+	ew32(RDBAH, ((u64)rxdr->dma >> 32));
+	ew32(RDLEN, rxdr->size);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+	ew32(RCTL, rctl);
+
+	for (i = 0; i < rxdr->count; i++) {
+		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
+		struct sk_buff *skb;
+
+		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 6;
+			goto err_nomem;
+		}
+		skb_reserve(skb, NET_IP_ALIGN);
+		rxdr->buffer_info[i].skb = skb;
+		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
+		rxdr->buffer_info[i].dma =
+			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
+				       PCI_DMA_FROMDEVICE);
+		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
+		memset(skb->data, 0x00, skb->len);
+	}
+
+	return 0;
+
+err_nomem:
+	e1000_free_desc_rings(adapter);
+	return ret_val;
+}
+
+static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_write_phy_reg(hw, 29, 0x001F);
+	e1000_write_phy_reg(hw, 30, 0x8FFC);
+	e1000_write_phy_reg(hw, 29, 0x001A);
+	e1000_write_phy_reg(hw, 30, 0x8FF0);
+}
+
+static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg;
+
+	/* Because we reset the PHY above, we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock.  This
+	 * value defaults back to a 2.5MHz clock when the PHY is reset.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
+	e1000_write_phy_reg(hw,
+		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
+
+	/* In addition, because of the s/w reset above, we need to enable
+	 * CRS on TX.  This must be set for both full and half duplex
+	 * operation.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	e1000_write_phy_reg(hw,
+		M88E1000_PHY_SPEC_CTRL, phy_reg);
+}
+
+static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg;
+	u16 phy_reg;
+
+	/* Setup the Device Control Register for PHY loopback test. */
+
+	ctrl_reg = er32(CTRL);
+	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
+		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
+		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
+		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
+		     E1000_CTRL_FD);		/* Force Duplex to FULL */
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Read the PHY Specific Control Register (0x10) */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+
+	/* Clear Auto-Crossover bits in PHY Specific Control Register
+	 * (bits 6:5).
+	 */
+	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
+	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
+
+	/* Perform software reset on the PHY */
+	e1000_phy_reset(hw);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
+
+	/* Wait for reset to complete. */
+	udelay(500);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_phy_disable_receiver(adapter);
+
+	/* Set the loopback bit in the PHY control register. */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	phy_reg |= MII_CR_LOOPBACK;
+	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+
+	/* Setup TX_CLK and TX_CRS one more time. */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Check Phy Configuration */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	if (phy_reg != 0x4100)
+		 return 9;
+
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	if (phy_reg != 0x0070)
+		return 10;
+
+	e1000_read_phy_reg(hw, 29, &phy_reg);
+	if (phy_reg != 0x001A)
+		return 11;
+
+	return 0;
+}
+
+static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg = 0;
+	u32 stat_reg = 0;
+
+	hw->autoneg = false;
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Auto-MDI/MDIX Off */
+		e1000_write_phy_reg(hw,
+				    M88E1000_PHY_SPEC_CTRL, 0x0808);
+		/* reset to update Auto-MDI/MDIX */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
+		/* autoneg off */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
+	}
+
+	ctrl_reg = er32(CTRL);
+
+	/* force 1000, set loopback */
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
+
+	/* Now set up the MAC to the same speed/duplex as the PHY. */
+	ctrl_reg = er32(CTRL);
+	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			E1000_CTRL_FD);	 /* Force Duplex to FULL */
+
+	if (hw->media_type == e1000_media_type_copper &&
+	   hw->phy_type == e1000_phy_m88)
+		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+	else {
+		/* Set the ILOS bit on the fiber Nic is half
+		 * duplex link is detected. */
+		stat_reg = er32(STATUS);
+		if ((stat_reg & E1000_STATUS_FD) == 0)
+			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+	}
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Disable the receiver on the PHY so when a cable is plugged in, the
+	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+	 */
+	if (hw->phy_type == e1000_phy_m88)
+		e1000_phy_disable_receiver(adapter);
+
+	udelay(500);
+
+	return 0;
+}
+
+static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg = 0;
+	u16 count = 0;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->media_type == e1000_media_type_copper) {
+			/* Attempt to setup Loopback mode on Non-integrated PHY.
+			 * Some PHY registers get corrupted at random, so
+			 * attempt this 10 times.
+			 */
+			while (e1000_nonintegrated_phy_loopback(adapter) &&
+			      count++ < 10);
+			if (count < 11)
+				return 0;
+		}
+		break;
+
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		return e1000_integrated_phy_loopback(adapter);
+		break;
+	default:
+		/* Default PHY loopback work is to read the MII
+		 * control register and assert bit 14 (loopback mode).
+		 */
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		phy_reg |= MII_CR_LOOPBACK;
+		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+		return 0;
+		break;
+	}
+
+	return 8;
+}
+
+static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	if (hw->media_type == e1000_media_type_fiber ||
+	    hw->media_type == e1000_media_type_internal_serdes) {
+		switch (hw->mac_type) {
+		case e1000_82545:
+		case e1000_82546:
+		case e1000_82545_rev_3:
+		case e1000_82546_rev_3:
+			return e1000_set_phy_loopback(adapter);
+			break;
+		default:
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_LBM_TCVR;
+			ew32(RCTL, rctl);
+			return 0;
+		}
+	} else if (hw->media_type == e1000_media_type_copper)
+		return e1000_set_phy_loopback(adapter);
+
+	return 7;
+}
+
+static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	u16 phy_reg;
+
+	rctl = er32(RCTL);
+	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+	ew32(RCTL, rctl);
+
+	switch (hw->mac_type) {
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+	default:
+		hw->autoneg = true;
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		if (phy_reg & MII_CR_LOOPBACK) {
+			phy_reg &= ~MII_CR_LOOPBACK;
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+			e1000_phy_reset(hw);
+		}
+		break;
+	}
+}
+
+static void e1000_create_lbtest_frame(struct sk_buff *skb,
+				      unsigned int frame_size)
+{
+	memset(skb->data, 0xFF, frame_size);
+	frame_size &= ~1;
+	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int e1000_check_lbtest_frame(struct sk_buff *skb,
+				    unsigned int frame_size)
+{
+	frame_size &= ~1;
+	if (*(skb->data + 3) == 0xFF) {
+		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
+			return 0;
+		}
+	}
+	return 13;
+}
+
+static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i, j, k, l, lc, good_cnt, ret_val=0;
+	unsigned long time;
+
+	ew32(RDT, rxdr->count - 1);
+
+	/* Calculate the loop count based on the largest descriptor ring
+	 * The idea is to wrap the largest ring a number of times using 64
+	 * send/receive pairs during each loop
+	 */
+
+	if (rxdr->count <= txdr->count)
+		lc = ((txdr->count / 64) * 2) + 1;
+	else
+		lc = ((rxdr->count / 64) * 2) + 1;
+
+	k = l = 0;
+	for (j = 0; j <= lc; j++) { /* loop count loop */
+		for (i = 0; i < 64; i++) { /* send the packets */
+			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
+					1024);
+			pci_dma_sync_single_for_device(pdev,
+					txdr->buffer_info[k].dma,
+				    	txdr->buffer_info[k].length,
+				    	PCI_DMA_TODEVICE);
+			if (unlikely(++k == txdr->count)) k = 0;
+		}
+		ew32(TDT, k);
+		msleep(200);
+		time = jiffies; /* set the start time for the receive */
+		good_cnt = 0;
+		do { /* receive the sent packets */
+			pci_dma_sync_single_for_cpu(pdev,
+					rxdr->buffer_info[l].dma,
+				    	rxdr->buffer_info[l].length,
+				    	PCI_DMA_FROMDEVICE);
+
+			ret_val = e1000_check_lbtest_frame(
+					rxdr->buffer_info[l].skb,
+				   	1024);
+			if (!ret_val)
+				good_cnt++;
+			if (unlikely(++l == rxdr->count)) l = 0;
+			/* time + 20 msecs (200 msecs on 2.4) is more than
+			 * enough time to complete the receives, if it's
+			 * exceeded, break and error off
+			 */
+		} while (good_cnt < 64 && jiffies < (time + 20));
+		if (good_cnt != 64) {
+			ret_val = 13; /* ret_val is the same as mis-compare */
+			break;
+		}
+		if (jiffies >= (time + 2)) {
+			ret_val = 14; /* error code for time out error */
+			break;
+		}
+	} /* end loop count loop */
+	return ret_val;
+}
+
+static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
+{
+	*data = e1000_setup_desc_rings(adapter);
+	if (*data)
+		goto out;
+	*data = e1000_setup_loopback_test(adapter);
+	if (*data)
+		goto err_loopback;
+	*data = e1000_run_loopback_test(adapter);
+	e1000_loopback_cleanup(adapter);
+
+err_loopback:
+	e1000_free_desc_rings(adapter);
+out:
+	return *data;
+}
+
+static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	*data = 0;
+	if (hw->media_type == e1000_media_type_internal_serdes) {
+		int i = 0;
+		hw->serdes_has_link = false;
+
+		/* On some blade server designs, link establishment
+		 * could take as long as 2-3 minutes */
+		do {
+			e1000_check_for_link(hw);
+			if (hw->serdes_has_link)
+				return *data;
+			msleep(20);
+		} while (i++ < 3750);
+
+		*data = 1;
+	} else {
+		e1000_check_for_link(hw);
+		if (hw->autoneg)  /* if auto_neg is set wait for it */
+			msleep(4000);
+
+		if (!(er32(STATUS) & E1000_STATUS_LU)) {
+			*data = 1;
+		}
+	}
+	return *data;
+}
+
+static int e1000_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E1000_TEST_LEN;
+	case ETH_SS_STATS:
+		return E1000_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e1000_diag_test(struct net_device *netdev,
+			    struct ethtool_test *eth_test, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	bool if_running;
+
+	if (adapter->ecdev)
+		return;
+
+	if_running = netif_running(netdev);
+
+	set_bit(__E1000_TESTING, &adapter->flags);
+	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline tests */
+
+		/* save speed, duplex, autoneg settings */
+		u16 autoneg_advertised = hw->autoneg_advertised;
+		u8 forced_speed_duplex = hw->forced_speed_duplex;
+		u8 autoneg = hw->autoneg;
+
+		DPRINTK(HW, INFO, "offline testing starting\n");
+
+		/* Link test performed before hardware reset so autoneg doesn't
+		 * interfere with test result */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		if (if_running)
+			/* indicate we're in test mode */
+			dev_close(netdev);
+		else
+			e1000_reset(adapter);
+
+		if (e1000_reg_test(adapter, &data[0]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_eeprom_test(adapter, &data[1]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_intr_test(adapter, &data[2]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		/* make sure the phy is powered up */
+		e1000_power_up_phy(adapter);
+		if (e1000_loopback_test(adapter, &data[3]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* restore speed, duplex, autoneg settings */
+		hw->autoneg_advertised = autoneg_advertised;
+		hw->forced_speed_duplex = forced_speed_duplex;
+		hw->autoneg = autoneg;
+
+		e1000_reset(adapter);
+		clear_bit(__E1000_TESTING, &adapter->flags);
+		if (if_running)
+			dev_open(netdev);
+	} else {
+		DPRINTK(HW, INFO, "online testing starting\n");
+		/* Online tests */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* Online tests aren't run; pass by default */
+		data[0] = 0;
+		data[1] = 0;
+		data[2] = 0;
+		data[3] = 0;
+
+		clear_bit(__E1000_TESTING, &adapter->flags);
+	}
+	msleep_interruptible(4 * 1000);
+}
+
+static int e1000_wol_exclusion(struct e1000_adapter *adapter,
+			       struct ethtool_wolinfo *wol)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 1; /* fail by default */
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_PCIE:
+		/* these don't support WoL at all */
+		wol->supported = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events not supported on port B */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* quad port adapters only support WoL on port A */
+		if (!adapter->quad_port_a) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	default:
+		/* dual port cards only support WoL on port A from now on
+		 * unless it was enabled in the eeprom for port B
+		 * so exclude FUNC_1 ports from having WoL enabled */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
+		    !adapter->eeprom_wol) {
+			wol->supported = 0;
+			break;
+		}
+
+		retval = 0;
+	}
+
+	return retval;
+}
+
+static void e1000_get_wol(struct net_device *netdev,
+			  struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	wol->supported = WAKE_UCAST | WAKE_MCAST |
+	                 WAKE_BCAST | WAKE_MAGIC;
+	wol->wolopts = 0;
+
+	/* this function will set ->supported = 0 and return 1 if wol is not
+	 * supported by this hardware */
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return;
+
+	/* apply any specific unsupported masks here */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* KSP3 does not suppport UCAST wake-ups */
+		wol->supported &= ~WAKE_UCAST;
+
+		if (adapter->wol & E1000_WUFC_EX)
+			DPRINTK(DRV, ERR, "Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+		break;
+	default:
+		break;
+	}
+
+	if (adapter->wol & E1000_WUFC_EX)
+		wol->wolopts |= WAKE_UCAST;
+	if (adapter->wol & E1000_WUFC_MC)
+		wol->wolopts |= WAKE_MCAST;
+	if (adapter->wol & E1000_WUFC_BC)
+		wol->wolopts |= WAKE_BCAST;
+	if (adapter->wol & E1000_WUFC_MAG)
+		wol->wolopts |= WAKE_MAGIC;
+
+	return;
+}
+
+static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
+		return -EOPNOTSUPP;
+
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return wol->wolopts ? -EOPNOTSUPP : 0;
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		if (wol->wolopts & WAKE_UCAST) {
+			DPRINTK(DRV, ERR, "Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+			return -EOPNOTSUPP;
+		}
+		break;
+	default:
+		break;
+	}
+
+	/* these settings will always override what we currently have */
+	adapter->wol = 0;
+
+	if (wol->wolopts & WAKE_UCAST)
+		adapter->wol |= E1000_WUFC_EX;
+	if (wol->wolopts & WAKE_MCAST)
+		adapter->wol |= E1000_WUFC_MC;
+	if (wol->wolopts & WAKE_BCAST)
+		adapter->wol |= E1000_WUFC_BC;
+	if (wol->wolopts & WAKE_MAGIC)
+		adapter->wol |= E1000_WUFC_MAG;
+
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL	(HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON		0
+
+static void e1000_led_blink_callback(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+		e1000_led_off(hw);
+	else
+		e1000_led_on(hw);
+
+	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int e1000_phys_id(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (!data)
+		data = INT_MAX;
+
+	if (!adapter->blink_timer.function) {
+		init_timer(&adapter->blink_timer);
+		adapter->blink_timer.function = e1000_led_blink_callback;
+		adapter->blink_timer.data = (unsigned long)adapter;
+	}
+	e1000_setup_led(hw);
+	mod_timer(&adapter->blink_timer, jiffies);
+	msleep_interruptible(data * 1000);
+	del_timer_sync(&adapter->blink_timer);
+
+	e1000_led_off(hw);
+	clear_bit(E1000_LED_ON, &adapter->led_status);
+	e1000_cleanup_led(hw);
+
+	return 0;
+}
+
+static int e1000_get_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->hw.mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if (adapter->itr_setting <= 3)
+		ec->rx_coalesce_usecs = adapter->itr_setting;
+	else
+		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
+
+	return 0;
+}
+
+static int e1000_set_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
+	    ((ec->rx_coalesce_usecs > 3) &&
+	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
+	    (ec->rx_coalesce_usecs == 2))
+		return -EINVAL;
+
+	if (ec->rx_coalesce_usecs <= 3) {
+		adapter->itr = 20000;
+		adapter->itr_setting = ec->rx_coalesce_usecs;
+	} else {
+		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
+		adapter->itr_setting = adapter->itr & ~3;
+	}
+
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+	else
+		ew32(ITR, 0);
+
+	return 0;
+}
+
+static int e1000_nway_reset(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	return 0;
+}
+
+static void e1000_get_ethtool_stats(struct net_device *netdev,
+				    struct ethtool_stats *stats, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int i;
+
+	e1000_update_stats(adapter);
+	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
+		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
+	}
+/*	BUG_ON(i != E1000_STATS_LEN); */
+}
+
+static void e1000_get_strings(struct net_device *netdev, u32 stringset,
+			      u8 *data)
+{
+	u8 *p = data;
+	int i;
+
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e1000_gstrings_test,
+			sizeof(e1000_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+			memcpy(p, e1000_gstrings_stats[i].stat_string,
+			       ETH_GSTRING_LEN);
+			p += ETH_GSTRING_LEN;
+		}
+/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
+		break;
+	}
+}
+
+static const struct ethtool_ops e1000_ethtool_ops = {
+	.get_settings           = e1000_get_settings,
+	.set_settings           = e1000_set_settings,
+	.get_drvinfo            = e1000_get_drvinfo,
+	.get_regs_len           = e1000_get_regs_len,
+	.get_regs               = e1000_get_regs,
+	.get_wol                = e1000_get_wol,
+	.set_wol                = e1000_set_wol,
+	.get_msglevel           = e1000_get_msglevel,
+	.set_msglevel           = e1000_set_msglevel,
+	.nway_reset             = e1000_nway_reset,
+	.get_link               = ethtool_op_get_link,
+	.get_eeprom_len         = e1000_get_eeprom_len,
+	.get_eeprom             = e1000_get_eeprom,
+	.set_eeprom             = e1000_set_eeprom,
+	.get_ringparam          = e1000_get_ringparam,
+	.set_ringparam          = e1000_set_ringparam,
+	.get_pauseparam         = e1000_get_pauseparam,
+	.set_pauseparam         = e1000_set_pauseparam,
+	.get_rx_csum            = e1000_get_rx_csum,
+	.set_rx_csum            = e1000_set_rx_csum,
+	.get_tx_csum            = e1000_get_tx_csum,
+	.set_tx_csum            = e1000_set_tx_csum,
+	.set_sg                 = ethtool_op_set_sg,
+	.set_tso                = e1000_set_tso,
+	.self_test              = e1000_diag_test,
+	.get_strings            = e1000_get_strings,
+	.phys_id                = e1000_phys_id,
+	.get_ethtool_stats      = e1000_get_ethtool_stats,
+	.get_sset_count         = e1000_get_sset_count,
+	.get_coalesce           = e1000_get_coalesce,
+	.set_coalesce           = e1000_set_coalesce,
+};
+
+void e1000_set_ethtool_ops(struct net_device *netdev)
+{
+	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_ethtool-2.6.32-orig.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,1902 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include "e1000.h"
+#include <asm/uaccess.h>
+
+struct e1000_stats {
+	char stat_string[ETH_GSTRING_LEN];
+	int sizeof_stat;
+	int stat_offset;
+};
+
+#define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
+		      offsetof(struct e1000_adapter, m)
+static const struct e1000_stats e1000_gstrings_stats[] = {
+	{ "rx_packets", E1000_STAT(stats.gprc) },
+	{ "tx_packets", E1000_STAT(stats.gptc) },
+	{ "rx_bytes", E1000_STAT(stats.gorcl) },
+	{ "tx_bytes", E1000_STAT(stats.gotcl) },
+	{ "rx_broadcast", E1000_STAT(stats.bprc) },
+	{ "tx_broadcast", E1000_STAT(stats.bptc) },
+	{ "rx_multicast", E1000_STAT(stats.mprc) },
+	{ "tx_multicast", E1000_STAT(stats.mptc) },
+	{ "rx_errors", E1000_STAT(stats.rxerrc) },
+	{ "tx_errors", E1000_STAT(stats.txerrc) },
+	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
+	{ "multicast", E1000_STAT(stats.mprc) },
+	{ "collisions", E1000_STAT(stats.colc) },
+	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
+	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
+	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
+	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
+	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
+	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
+	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
+	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
+	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
+	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
+	{ "tx_window_errors", E1000_STAT(stats.latecol) },
+	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
+	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
+	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
+	{ "tx_restart_queue", E1000_STAT(restart_queue) },
+	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
+	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
+	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
+	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
+	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
+	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
+	{ "tx_smbus", E1000_STAT(stats.mgptc) },
+	{ "rx_smbus", E1000_STAT(stats.mgprc) },
+	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
+};
+
+#define E1000_QUEUE_STATS_LEN 0
+#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
+#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+	"Register test  (offline)", "Eeprom test    (offline)",
+	"Interrupt test (offline)", "Loopback test  (offline)",
+	"Link test   (on/offline)"
+};
+#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
+
+static int e1000_get_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->media_type == e1000_media_type_copper) {
+
+		ecmd->supported = (SUPPORTED_10baseT_Half |
+		                   SUPPORTED_10baseT_Full |
+		                   SUPPORTED_100baseT_Half |
+		                   SUPPORTED_100baseT_Full |
+		                   SUPPORTED_1000baseT_Full|
+		                   SUPPORTED_Autoneg |
+		                   SUPPORTED_TP);
+		ecmd->advertising = ADVERTISED_TP;
+
+		if (hw->autoneg == 1) {
+			ecmd->advertising |= ADVERTISED_Autoneg;
+			/* the e1000 autoneg seems to match ethtool nicely */
+			ecmd->advertising |= hw->autoneg_advertised;
+		}
+
+		ecmd->port = PORT_TP;
+		ecmd->phy_address = hw->phy_addr;
+
+		if (hw->mac_type == e1000_82543)
+			ecmd->transceiver = XCVR_EXTERNAL;
+		else
+			ecmd->transceiver = XCVR_INTERNAL;
+
+	} else {
+		ecmd->supported   = (SUPPORTED_1000baseT_Full |
+				     SUPPORTED_FIBRE |
+				     SUPPORTED_Autoneg);
+
+		ecmd->advertising = (ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg);
+
+		ecmd->port = PORT_FIBRE;
+
+		if (hw->mac_type >= e1000_82545)
+			ecmd->transceiver = XCVR_INTERNAL;
+		else
+			ecmd->transceiver = XCVR_EXTERNAL;
+	}
+
+	if (er32(STATUS) & E1000_STATUS_LU) {
+
+		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+		                                   &adapter->link_duplex);
+		ecmd->speed = adapter->link_speed;
+
+		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
+		 *          and HALF_DUPLEX != DUPLEX_HALF */
+
+		if (adapter->link_duplex == FULL_DUPLEX)
+			ecmd->duplex = DUPLEX_FULL;
+		else
+			ecmd->duplex = DUPLEX_HALF;
+	} else {
+		ecmd->speed = -1;
+		ecmd->duplex = -1;
+	}
+
+	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
+			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+	return 0;
+}
+
+static int e1000_set_settings(struct net_device *netdev,
+			      struct ethtool_cmd *ecmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (ecmd->autoneg == AUTONEG_ENABLE) {
+		hw->autoneg = 1;
+		if (hw->media_type == e1000_media_type_fiber)
+			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
+				     ADVERTISED_FIBRE |
+				     ADVERTISED_Autoneg;
+		else
+			hw->autoneg_advertised = ecmd->advertising |
+			                         ADVERTISED_TP |
+			                         ADVERTISED_Autoneg;
+		ecmd->advertising = hw->autoneg_advertised;
+	} else
+		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
+			clear_bit(__E1000_RESETTING, &adapter->flags);
+			return -EINVAL;
+		}
+
+	/* reset the link */
+
+	if (netif_running(adapter->netdev)) {
+		e1000_down(adapter);
+		e1000_up(adapter);
+	} else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+}
+
+static void e1000_get_pauseparam(struct net_device *netdev,
+				 struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	pause->autoneg =
+		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+	if (hw->fc == E1000_FC_RX_PAUSE)
+		pause->rx_pause = 1;
+	else if (hw->fc == E1000_FC_TX_PAUSE)
+		pause->tx_pause = 1;
+	else if (hw->fc == E1000_FC_FULL) {
+		pause->rx_pause = 1;
+		pause->tx_pause = 1;
+	}
+}
+
+static int e1000_set_pauseparam(struct net_device *netdev,
+				struct ethtool_pauseparam *pause)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 0;
+
+	adapter->fc_autoneg = pause->autoneg;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_FULL;
+	else if (pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_RX_PAUSE;
+	else if (!pause->rx_pause && pause->tx_pause)
+		hw->fc = E1000_FC_TX_PAUSE;
+	else if (!pause->rx_pause && !pause->tx_pause)
+		hw->fc = E1000_FC_NONE;
+
+	hw->original_fc = hw->fc;
+
+	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
+		if (netif_running(adapter->netdev)) {
+			e1000_down(adapter);
+			e1000_up(adapter);
+		} else
+			e1000_reset(adapter);
+	} else
+		retval = ((hw->media_type == e1000_media_type_fiber) ?
+			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return retval;
+}
+
+static u32 e1000_get_rx_csum(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->rx_csum;
+}
+
+static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->rx_csum = data;
+
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	else
+		e1000_reset(adapter);
+	return 0;
+}
+
+static u32 e1000_get_tx_csum(struct net_device *netdev)
+{
+	return (netdev->features & NETIF_F_HW_CSUM) != 0;
+}
+
+static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82543) {
+		if (!data)
+			return -EINVAL;
+		return 0;
+	}
+
+	if (data)
+		netdev->features |= NETIF_F_HW_CSUM;
+	else
+		netdev->features &= ~NETIF_F_HW_CSUM;
+
+	return 0;
+}
+
+static int e1000_set_tso(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if ((hw->mac_type < e1000_82544) ||
+	    (hw->mac_type == e1000_82547))
+		return data ? -EINVAL : 0;
+
+	if (data)
+		netdev->features |= NETIF_F_TSO;
+	else
+		netdev->features &= ~NETIF_F_TSO;
+
+	netdev->features &= ~NETIF_F_TSO6;
+
+	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
+	adapter->tso_force = true;
+	return 0;
+}
+
+static u32 e1000_get_msglevel(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	return adapter->msg_enable;
+}
+
+static void e1000_set_msglevel(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	adapter->msg_enable = data;
+}
+
+static int e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32
+	return E1000_REGS_LEN * sizeof(u32);
+}
+
+static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
+			   void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 *regs_buff = p;
+	u16 phy_data;
+
+	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
+
+	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
+
+	regs_buff[0]  = er32(CTRL);
+	regs_buff[1]  = er32(STATUS);
+
+	regs_buff[2]  = er32(RCTL);
+	regs_buff[3]  = er32(RDLEN);
+	regs_buff[4]  = er32(RDH);
+	regs_buff[5]  = er32(RDT);
+	regs_buff[6]  = er32(RDTR);
+
+	regs_buff[7]  = er32(TCTL);
+	regs_buff[8]  = er32(TDLEN);
+	regs_buff[9]  = er32(TDH);
+	regs_buff[10] = er32(TDT);
+	regs_buff[11] = er32(TIDV);
+
+	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
+	if (hw->phy_type == e1000_phy_igp) {
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_A);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_B);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[14] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_C);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[15] = (u32)phy_data; /* cable length */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_AGC_D);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[16] = (u32)phy_data; /* cable length */
+		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[18] = (u32)phy_data; /* cable polarity */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+				    IGP01E1000_PHY_PCS_INIT_REG);
+		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
+				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+		regs_buff[19] = (u32)phy_data; /* cable polarity */
+		regs_buff[20] = 0; /* polarity correction enabled (always) */
+		regs_buff[22] = 0; /* phy receive errors (unavailable) */
+		regs_buff[23] = regs_buff[18]; /* mdix mode */
+		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+	} else {
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+		regs_buff[13] = (u32)phy_data; /* cable length */
+		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
+		regs_buff[18] = regs_buff[13]; /* cable polarity */
+		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
+		regs_buff[20] = regs_buff[17]; /* polarity correction */
+		/* phy receive errors */
+		regs_buff[22] = adapter->phy_stats.receive_errors;
+		regs_buff[23] = regs_buff[13]; /* mdix mode */
+	}
+	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
+	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
+	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
+	if (hw->mac_type >= e1000_82540 &&
+	    hw->media_type == e1000_media_type_copper) {
+		regs_buff[26] = er32(MANC);
+	}
+}
+
+static int e1000_get_eeprom_len(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	return hw->eeprom.word_size * 2;
+}
+
+static int e1000_get_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	int first_word, last_word;
+	int ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EINVAL;
+
+	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+	eeprom_buff = kmalloc(sizeof(u16) *
+			(last_word - first_word + 1), GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	if (hw->eeprom.type == e1000_eeprom_spi)
+		ret_val = e1000_read_eeprom(hw, first_word,
+					    last_word - first_word + 1,
+					    eeprom_buff);
+	else {
+		for (i = 0; i < last_word - first_word + 1; i++) {
+			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
+						    &eeprom_buff[i]);
+			if (ret_val)
+				break;
+		}
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
+			eeprom->len);
+	kfree(eeprom_buff);
+
+	return ret_val;
+}
+
+static int e1000_set_eeprom(struct net_device *netdev,
+			    struct ethtool_eeprom *eeprom, u8 *bytes)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u16 *eeprom_buff;
+	void *ptr;
+	int max_len, first_word, last_word, ret_val = 0;
+	u16 i;
+
+	if (eeprom->len == 0)
+		return -EOPNOTSUPP;
+
+	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
+		return -EFAULT;
+
+	max_len = hw->eeprom.word_size * 2;
+
+	first_word = eeprom->offset >> 1;
+	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+	if (!eeprom_buff)
+		return -ENOMEM;
+
+	ptr = (void *)eeprom_buff;
+
+	if (eeprom->offset & 1) {
+		/* need read/modify/write of first changed EEPROM word */
+		/* only the second byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, first_word, 1,
+					    &eeprom_buff[0]);
+		ptr++;
+	}
+	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
+		/* need read/modify/write of last changed EEPROM word */
+		/* only the first byte of the word is being modified */
+		ret_val = e1000_read_eeprom(hw, last_word, 1,
+		                  &eeprom_buff[last_word - first_word]);
+	}
+
+	/* Device's eeprom is always little-endian, word addressable */
+	for (i = 0; i < last_word - first_word + 1; i++)
+		le16_to_cpus(&eeprom_buff[i]);
+
+	memcpy(ptr, bytes, eeprom->len);
+
+	for (i = 0; i < last_word - first_word + 1; i++)
+		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+	ret_val = e1000_write_eeprom(hw, first_word,
+				     last_word - first_word + 1, eeprom_buff);
+
+	/* Update the checksum over the first part of the EEPROM if needed */
+	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
+		e1000_update_eeprom_checksum(hw);
+
+	kfree(eeprom_buff);
+	return ret_val;
+}
+
+static void e1000_get_drvinfo(struct net_device *netdev,
+			      struct ethtool_drvinfo *drvinfo)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	char firmware_version[32];
+
+	strncpy(drvinfo->driver,  e1000_driver_name, 32);
+	strncpy(drvinfo->version, e1000_driver_version, 32);
+
+	sprintf(firmware_version, "N/A");
+	strncpy(drvinfo->fw_version, firmware_version, 32);
+	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+	drvinfo->regdump_len = e1000_get_regs_len(netdev);
+	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void e1000_get_ringparam(struct net_device *netdev,
+				struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	struct e1000_rx_ring *rxdr = adapter->rx_ring;
+
+	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
+		E1000_MAX_82544_RXD;
+	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
+		E1000_MAX_82544_TXD;
+	ring->rx_mini_max_pending = 0;
+	ring->rx_jumbo_max_pending = 0;
+	ring->rx_pending = rxdr->count;
+	ring->tx_pending = txdr->count;
+	ring->rx_mini_pending = 0;
+	ring->rx_jumbo_pending = 0;
+}
+
+static int e1000_set_ringparam(struct net_device *netdev,
+			       struct ethtool_ringparam *ring)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_mac_type mac_type = hw->mac_type;
+	struct e1000_tx_ring *txdr, *tx_old;
+	struct e1000_rx_ring *rxdr, *rx_old;
+	int i, err;
+
+	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+		return -EINVAL;
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+
+	if (netif_running(adapter->netdev))
+		e1000_down(adapter);
+
+	tx_old = adapter->tx_ring;
+	rx_old = adapter->rx_ring;
+
+	err = -ENOMEM;
+	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!txdr)
+		goto err_alloc_tx;
+
+	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!rxdr)
+		goto err_alloc_rx;
+
+	adapter->tx_ring = txdr;
+	adapter->rx_ring = rxdr;
+
+	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
+	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_RXD : E1000_MAX_82544_RXD));
+	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
+	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
+		E1000_MAX_TXD : E1000_MAX_82544_TXD));
+	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		txdr[i].count = txdr->count;
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		rxdr[i].count = rxdr->count;
+
+	if (netif_running(adapter->netdev)) {
+		/* Try to get new resources before deleting old */
+		err = e1000_setup_all_rx_resources(adapter);
+		if (err)
+			goto err_setup_rx;
+		err = e1000_setup_all_tx_resources(adapter);
+		if (err)
+			goto err_setup_tx;
+
+		/* save the new, restore the old in order to free it,
+		 * then restore the new back again */
+
+		adapter->rx_ring = rx_old;
+		adapter->tx_ring = tx_old;
+		e1000_free_all_rx_resources(adapter);
+		e1000_free_all_tx_resources(adapter);
+		kfree(tx_old);
+		kfree(rx_old);
+		adapter->rx_ring = rxdr;
+		adapter->tx_ring = txdr;
+		err = e1000_up(adapter);
+		if (err)
+			goto err_setup;
+	}
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return 0;
+err_setup_tx:
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	adapter->rx_ring = rx_old;
+	adapter->tx_ring = tx_old;
+	kfree(rxdr);
+err_alloc_rx:
+	kfree(txdr);
+err_alloc_tx:
+	e1000_up(adapter);
+err_setup:
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+	return err;
+}
+
+static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
+			     u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	static const u32 test[] =
+		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(test); i++) {
+		writel(write & test[i], address);
+		read = readl(address);
+		if (read != (write & test[i] & mask)) {
+			DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
+				"got 0x%08X expected 0x%08X\n",
+				reg, read, (write & test[i] & mask));
+			*data = reg;
+			return true;
+		}
+	}
+	return false;
+}
+
+static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
+			      u32 mask, u32 write)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u8 __iomem *address = hw->hw_addr + reg;
+	u32 read;
+
+	writel(write & mask, address);
+	read = readl(address);
+	if ((read & mask) != (write & mask)) {
+		DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
+			"got 0x%08X expected 0x%08X\n",
+			reg, (read & mask), (write & mask));
+		*data = reg;
+		return true;
+	}
+	return false;
+}
+
+#define REG_PATTERN_TEST(reg, mask, write)			     \
+	do {							     \
+		if (reg_pattern_test(adapter, data,		     \
+			     (hw->mac_type >= e1000_82543)   \
+			     ? E1000_##reg : E1000_82542_##reg,	     \
+			     mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+#define REG_SET_AND_CHECK(reg, mask, write)			     \
+	do {							     \
+		if (reg_set_and_check(adapter, data,		     \
+			      (hw->mac_type >= e1000_82543)  \
+			      ? E1000_##reg : E1000_82542_##reg,     \
+			      mask, write))			     \
+			return 1;				     \
+	} while (0)
+
+static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
+{
+	u32 value, before, after;
+	u32 i, toggle;
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* The status register is Read Only, so a write should fail.
+	 * Some bits that get toggled are ignored.
+	 */
+
+	/* there are several bits on newer hardware that are r/w */
+	toggle = 0xFFFFF833;
+
+	before = er32(STATUS);
+	value = (er32(STATUS) & toggle);
+	ew32(STATUS, toggle);
+	after = er32(STATUS) & toggle;
+	if (value != after) {
+		DPRINTK(DRV, ERR, "failed STATUS register test got: "
+		        "0x%08X expected: 0x%08X\n", after, value);
+		*data = 1;
+		return 1;
+	}
+	/* restore previous status */
+	ew32(STATUS, before);
+
+	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+
+	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
+	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
+	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
+	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
+
+	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
+
+	before = 0x06DFB3FE;
+	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
+	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
+
+	if (hw->mac_type >= e1000_82543) {
+
+		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
+		value = E1000_RAR_ENTRIES;
+		for (i = 0; i < value; i++) {
+			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
+			                 0xFFFFFFFF);
+		}
+
+	} else {
+
+		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
+		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
+		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
+
+	}
+
+	value = E1000_MC_TBL_SIZE;
+	for (i = 0; i < value; i++)
+		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
+
+	*data = 0;
+	return 0;
+}
+
+static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 temp;
+	u16 checksum = 0;
+	u16 i;
+
+	*data = 0;
+	/* Read and add up the contents of the EEPROM */
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
+			*data = 1;
+			break;
+		}
+		checksum += temp;
+	}
+
+	/* If Checksum is not Correct return error else test passed */
+	if ((checksum != (u16)EEPROM_SUM) && !(*data))
+		*data = 2;
+
+	return *data;
+}
+
+static irqreturn_t e1000_test_intr(int irq, void *data)
+{
+	struct net_device *netdev = (struct net_device *)data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	adapter->test_icr |= er32(ICR);
+
+	return IRQ_HANDLED;
+}
+
+static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct net_device *netdev = adapter->netdev;
+	u32 mask, i = 0;
+	bool shared_int = true;
+	u32 irq = adapter->pdev->irq;
+	struct e1000_hw *hw = &adapter->hw;
+
+	*data = 0;
+
+	/* NOTE: we don't test MSI interrupts here, yet */
+	/* Hook up test interrupt handler just for this test */
+	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
+	                 netdev))
+		shared_int = false;
+	else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
+	         netdev->name, netdev)) {
+		*data = 1;
+		return -1;
+	}
+	DPRINTK(HW, INFO, "testing %s interrupt\n",
+	        (shared_int ? "shared" : "unshared"));
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Test each interrupt */
+	for (; i < 10; i++) {
+
+		/* Interrupt to test */
+		mask = 1 << i;
+
+		if (!shared_int) {
+			/* Disable the interrupt to be reported in
+			 * the cause register and then force the same
+			 * interrupt and see if one gets posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, mask);
+			ew32(ICS, mask);
+			msleep(10);
+
+			if (adapter->test_icr & mask) {
+				*data = 3;
+				break;
+			}
+		}
+
+		/* Enable the interrupt to be reported in
+		 * the cause register and then force the same
+		 * interrupt and see if one gets posted.  If
+		 * an interrupt was not posted to the bus, the
+		 * test failed.
+		 */
+		adapter->test_icr = 0;
+		ew32(IMS, mask);
+		ew32(ICS, mask);
+		msleep(10);
+
+		if (!(adapter->test_icr & mask)) {
+			*data = 4;
+			break;
+		}
+
+		if (!shared_int) {
+			/* Disable the other interrupts to be reported in
+			 * the cause register and then force the other
+			 * interrupts and see if any get posted.  If
+			 * an interrupt was posted to the bus, the
+			 * test failed.
+			 */
+			adapter->test_icr = 0;
+			ew32(IMC, ~mask & 0x00007FFF);
+			ew32(ICS, ~mask & 0x00007FFF);
+			msleep(10);
+
+			if (adapter->test_icr) {
+				*data = 5;
+				break;
+			}
+		}
+	}
+
+	/* Disable all the interrupts */
+	ew32(IMC, 0xFFFFFFFF);
+	msleep(10);
+
+	/* Unhook test interrupt handler */
+	free_irq(irq, netdev);
+
+	return *data;
+}
+
+static void e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i;
+
+	if (txdr->desc && txdr->buffer_info) {
+		for (i = 0; i < txdr->count; i++) {
+			if (txdr->buffer_info[i].dma)
+				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
+						 txdr->buffer_info[i].length,
+						 PCI_DMA_TODEVICE);
+			if (txdr->buffer_info[i].skb)
+				dev_kfree_skb(txdr->buffer_info[i].skb);
+		}
+	}
+
+	if (rxdr->desc && rxdr->buffer_info) {
+		for (i = 0; i < rxdr->count; i++) {
+			if (rxdr->buffer_info[i].dma)
+				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
+						 rxdr->buffer_info[i].length,
+						 PCI_DMA_FROMDEVICE);
+			if (rxdr->buffer_info[i].skb)
+				dev_kfree_skb(rxdr->buffer_info[i].skb);
+		}
+	}
+
+	if (txdr->desc) {
+		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
+		txdr->desc = NULL;
+	}
+	if (rxdr->desc) {
+		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
+		rxdr->desc = NULL;
+	}
+
+	kfree(txdr->buffer_info);
+	txdr->buffer_info = NULL;
+	kfree(rxdr->buffer_info);
+	rxdr->buffer_info = NULL;
+
+	return;
+}
+
+static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	u32 rctl;
+	int i, ret_val;
+
+	/* Setup Tx descriptor ring and Tx buffers */
+
+	if (!txdr->count)
+		txdr->count = E1000_DEFAULT_TXD;
+
+	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!txdr->buffer_info) {
+		ret_val = 1;
+		goto err_nomem;
+	}
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+	if (!txdr->desc) {
+		ret_val = 2;
+		goto err_nomem;
+	}
+	memset(txdr->desc, 0, txdr->size);
+	txdr->next_to_use = txdr->next_to_clean = 0;
+
+	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
+	ew32(TDBAH, ((u64)txdr->dma >> 32));
+	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
+	ew32(TDH, 0);
+	ew32(TDT, 0);
+	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
+	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+	for (i = 0; i < txdr->count; i++) {
+		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
+		struct sk_buff *skb;
+		unsigned int size = 1024;
+
+		skb = alloc_skb(size, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 3;
+			goto err_nomem;
+		}
+		skb_put(skb, size);
+		txdr->buffer_info[i].skb = skb;
+		txdr->buffer_info[i].length = skb->len;
+		txdr->buffer_info[i].dma =
+			pci_map_single(pdev, skb->data, skb->len,
+				       PCI_DMA_TODEVICE);
+		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
+		tx_desc->lower.data = cpu_to_le32(skb->len);
+		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+						   E1000_TXD_CMD_IFCS |
+						   E1000_TXD_CMD_RPS);
+		tx_desc->upper.data = 0;
+	}
+
+	/* Setup Rx descriptor ring and Rx buffers */
+
+	if (!rxdr->count)
+		rxdr->count = E1000_DEFAULT_RXD;
+
+	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
+				    GFP_KERNEL);
+	if (!rxdr->buffer_info) {
+		ret_val = 4;
+		goto err_nomem;
+	}
+
+	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+	if (!rxdr->desc) {
+		ret_val = 5;
+		goto err_nomem;
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+	rxdr->next_to_use = rxdr->next_to_clean = 0;
+
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
+	ew32(RDBAH, ((u64)rxdr->dma >> 32));
+	ew32(RDLEN, rxdr->size);
+	ew32(RDH, 0);
+	ew32(RDT, 0);
+	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+	ew32(RCTL, rctl);
+
+	for (i = 0; i < rxdr->count; i++) {
+		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
+		struct sk_buff *skb;
+
+		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
+		if (!skb) {
+			ret_val = 6;
+			goto err_nomem;
+		}
+		skb_reserve(skb, NET_IP_ALIGN);
+		rxdr->buffer_info[i].skb = skb;
+		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
+		rxdr->buffer_info[i].dma =
+			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
+				       PCI_DMA_FROMDEVICE);
+		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
+		memset(skb->data, 0x00, skb->len);
+	}
+
+	return 0;
+
+err_nomem:
+	e1000_free_desc_rings(adapter);
+	return ret_val;
+}
+
+static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_write_phy_reg(hw, 29, 0x001F);
+	e1000_write_phy_reg(hw, 30, 0x8FFC);
+	e1000_write_phy_reg(hw, 29, 0x001A);
+	e1000_write_phy_reg(hw, 30, 0x8FF0);
+}
+
+static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg;
+
+	/* Because we reset the PHY above, we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock.  This
+	 * value defaults back to a 2.5MHz clock when the PHY is reset.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
+	e1000_write_phy_reg(hw,
+		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
+
+	/* In addition, because of the s/w reset above, we need to enable
+	 * CRS on TX.  This must be set for both full and half duplex
+	 * operation.
+	 */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	e1000_write_phy_reg(hw,
+		M88E1000_PHY_SPEC_CTRL, phy_reg);
+}
+
+static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg;
+	u16 phy_reg;
+
+	/* Setup the Device Control Register for PHY loopback test. */
+
+	ctrl_reg = er32(CTRL);
+	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
+		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
+		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
+		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
+		     E1000_CTRL_FD);		/* Force Duplex to FULL */
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Read the PHY Specific Control Register (0x10) */
+	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+
+	/* Clear Auto-Crossover bits in PHY Specific Control Register
+	 * (bits 6:5).
+	 */
+	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
+	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
+
+	/* Perform software reset on the PHY */
+	e1000_phy_reset(hw);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
+
+	/* Wait for reset to complete. */
+	udelay(500);
+
+	/* Have to setup TX_CLK and TX_CRS after software reset */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
+	e1000_phy_disable_receiver(adapter);
+
+	/* Set the loopback bit in the PHY control register. */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	phy_reg |= MII_CR_LOOPBACK;
+	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+
+	/* Setup TX_CLK and TX_CRS one more time. */
+	e1000_phy_reset_clk_and_crs(adapter);
+
+	/* Check Phy Configuration */
+	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+	if (phy_reg != 0x4100)
+		 return 9;
+
+	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+	if (phy_reg != 0x0070)
+		return 10;
+
+	e1000_read_phy_reg(hw, 29, &phy_reg);
+	if (phy_reg != 0x001A)
+		return 11;
+
+	return 0;
+}
+
+static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl_reg = 0;
+	u32 stat_reg = 0;
+
+	hw->autoneg = false;
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Auto-MDI/MDIX Off */
+		e1000_write_phy_reg(hw,
+				    M88E1000_PHY_SPEC_CTRL, 0x0808);
+		/* reset to update Auto-MDI/MDIX */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
+		/* autoneg off */
+		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
+	}
+
+	ctrl_reg = er32(CTRL);
+
+	/* force 1000, set loopback */
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
+
+	/* Now set up the MAC to the same speed/duplex as the PHY. */
+	ctrl_reg = er32(CTRL);
+	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			E1000_CTRL_FD);	 /* Force Duplex to FULL */
+
+	if (hw->media_type == e1000_media_type_copper &&
+	   hw->phy_type == e1000_phy_m88)
+		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+	else {
+		/* Set the ILOS bit on the fiber Nic is half
+		 * duplex link is detected. */
+		stat_reg = er32(STATUS);
+		if ((stat_reg & E1000_STATUS_FD) == 0)
+			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+	}
+
+	ew32(CTRL, ctrl_reg);
+
+	/* Disable the receiver on the PHY so when a cable is plugged in, the
+	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+	 */
+	if (hw->phy_type == e1000_phy_m88)
+		e1000_phy_disable_receiver(adapter);
+
+	udelay(500);
+
+	return 0;
+}
+
+static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_reg = 0;
+	u16 count = 0;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->media_type == e1000_media_type_copper) {
+			/* Attempt to setup Loopback mode on Non-integrated PHY.
+			 * Some PHY registers get corrupted at random, so
+			 * attempt this 10 times.
+			 */
+			while (e1000_nonintegrated_phy_loopback(adapter) &&
+			      count++ < 10);
+			if (count < 11)
+				return 0;
+		}
+		break;
+
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		return e1000_integrated_phy_loopback(adapter);
+		break;
+	default:
+		/* Default PHY loopback work is to read the MII
+		 * control register and assert bit 14 (loopback mode).
+		 */
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		phy_reg |= MII_CR_LOOPBACK;
+		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+		return 0;
+		break;
+	}
+
+	return 8;
+}
+
+static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	if (hw->media_type == e1000_media_type_fiber ||
+	    hw->media_type == e1000_media_type_internal_serdes) {
+		switch (hw->mac_type) {
+		case e1000_82545:
+		case e1000_82546:
+		case e1000_82545_rev_3:
+		case e1000_82546_rev_3:
+			return e1000_set_phy_loopback(adapter);
+			break;
+		default:
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_LBM_TCVR;
+			ew32(RCTL, rctl);
+			return 0;
+		}
+	} else if (hw->media_type == e1000_media_type_copper)
+		return e1000_set_phy_loopback(adapter);
+
+	return 7;
+}
+
+static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+	u16 phy_reg;
+
+	rctl = er32(RCTL);
+	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+	ew32(RCTL, rctl);
+
+	switch (hw->mac_type) {
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+	default:
+		hw->autoneg = true;
+		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
+		if (phy_reg & MII_CR_LOOPBACK) {
+			phy_reg &= ~MII_CR_LOOPBACK;
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
+			e1000_phy_reset(hw);
+		}
+		break;
+	}
+}
+
+static void e1000_create_lbtest_frame(struct sk_buff *skb,
+				      unsigned int frame_size)
+{
+	memset(skb->data, 0xFF, frame_size);
+	frame_size &= ~1;
+	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int e1000_check_lbtest_frame(struct sk_buff *skb,
+				    unsigned int frame_size)
+{
+	frame_size &= ~1;
+	if (*(skb->data + 3) == 0xFF) {
+		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
+			return 0;
+		}
+	}
+	return 13;
+}
+
+static int e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
+	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
+	struct pci_dev *pdev = adapter->pdev;
+	int i, j, k, l, lc, good_cnt, ret_val=0;
+	unsigned long time;
+
+	ew32(RDT, rxdr->count - 1);
+
+	/* Calculate the loop count based on the largest descriptor ring
+	 * The idea is to wrap the largest ring a number of times using 64
+	 * send/receive pairs during each loop
+	 */
+
+	if (rxdr->count <= txdr->count)
+		lc = ((txdr->count / 64) * 2) + 1;
+	else
+		lc = ((rxdr->count / 64) * 2) + 1;
+
+	k = l = 0;
+	for (j = 0; j <= lc; j++) { /* loop count loop */
+		for (i = 0; i < 64; i++) { /* send the packets */
+			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
+					1024);
+			pci_dma_sync_single_for_device(pdev,
+					txdr->buffer_info[k].dma,
+				    	txdr->buffer_info[k].length,
+				    	PCI_DMA_TODEVICE);
+			if (unlikely(++k == txdr->count)) k = 0;
+		}
+		ew32(TDT, k);
+		msleep(200);
+		time = jiffies; /* set the start time for the receive */
+		good_cnt = 0;
+		do { /* receive the sent packets */
+			pci_dma_sync_single_for_cpu(pdev,
+					rxdr->buffer_info[l].dma,
+				    	rxdr->buffer_info[l].length,
+				    	PCI_DMA_FROMDEVICE);
+
+			ret_val = e1000_check_lbtest_frame(
+					rxdr->buffer_info[l].skb,
+				   	1024);
+			if (!ret_val)
+				good_cnt++;
+			if (unlikely(++l == rxdr->count)) l = 0;
+			/* time + 20 msecs (200 msecs on 2.4) is more than
+			 * enough time to complete the receives, if it's
+			 * exceeded, break and error off
+			 */
+		} while (good_cnt < 64 && jiffies < (time + 20));
+		if (good_cnt != 64) {
+			ret_val = 13; /* ret_val is the same as mis-compare */
+			break;
+		}
+		if (jiffies >= (time + 2)) {
+			ret_val = 14; /* error code for time out error */
+			break;
+		}
+	} /* end loop count loop */
+	return ret_val;
+}
+
+static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
+{
+	*data = e1000_setup_desc_rings(adapter);
+	if (*data)
+		goto out;
+	*data = e1000_setup_loopback_test(adapter);
+	if (*data)
+		goto err_loopback;
+	*data = e1000_run_loopback_test(adapter);
+	e1000_loopback_cleanup(adapter);
+
+err_loopback:
+	e1000_free_desc_rings(adapter);
+out:
+	return *data;
+}
+
+static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	*data = 0;
+	if (hw->media_type == e1000_media_type_internal_serdes) {
+		int i = 0;
+		hw->serdes_has_link = false;
+
+		/* On some blade server designs, link establishment
+		 * could take as long as 2-3 minutes */
+		do {
+			e1000_check_for_link(hw);
+			if (hw->serdes_has_link)
+				return *data;
+			msleep(20);
+		} while (i++ < 3750);
+
+		*data = 1;
+	} else {
+		e1000_check_for_link(hw);
+		if (hw->autoneg)  /* if auto_neg is set wait for it */
+			msleep(4000);
+
+		if (!(er32(STATUS) & E1000_STATUS_LU)) {
+			*data = 1;
+		}
+	}
+	return *data;
+}
+
+static int e1000_get_sset_count(struct net_device *netdev, int sset)
+{
+	switch (sset) {
+	case ETH_SS_TEST:
+		return E1000_TEST_LEN;
+	case ETH_SS_STATS:
+		return E1000_STATS_LEN;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static void e1000_diag_test(struct net_device *netdev,
+			    struct ethtool_test *eth_test, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	bool if_running = netif_running(netdev);
+
+	set_bit(__E1000_TESTING, &adapter->flags);
+	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
+		/* Offline tests */
+
+		/* save speed, duplex, autoneg settings */
+		u16 autoneg_advertised = hw->autoneg_advertised;
+		u8 forced_speed_duplex = hw->forced_speed_duplex;
+		u8 autoneg = hw->autoneg;
+
+		DPRINTK(HW, INFO, "offline testing starting\n");
+
+		/* Link test performed before hardware reset so autoneg doesn't
+		 * interfere with test result */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		if (if_running)
+			/* indicate we're in test mode */
+			dev_close(netdev);
+		else
+			e1000_reset(adapter);
+
+		if (e1000_reg_test(adapter, &data[0]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_eeprom_test(adapter, &data[1]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		if (e1000_intr_test(adapter, &data[2]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		e1000_reset(adapter);
+		/* make sure the phy is powered up */
+		e1000_power_up_phy(adapter);
+		if (e1000_loopback_test(adapter, &data[3]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* restore speed, duplex, autoneg settings */
+		hw->autoneg_advertised = autoneg_advertised;
+		hw->forced_speed_duplex = forced_speed_duplex;
+		hw->autoneg = autoneg;
+
+		e1000_reset(adapter);
+		clear_bit(__E1000_TESTING, &adapter->flags);
+		if (if_running)
+			dev_open(netdev);
+	} else {
+		DPRINTK(HW, INFO, "online testing starting\n");
+		/* Online tests */
+		if (e1000_link_test(adapter, &data[4]))
+			eth_test->flags |= ETH_TEST_FL_FAILED;
+
+		/* Online tests aren't run; pass by default */
+		data[0] = 0;
+		data[1] = 0;
+		data[2] = 0;
+		data[3] = 0;
+
+		clear_bit(__E1000_TESTING, &adapter->flags);
+	}
+	msleep_interruptible(4 * 1000);
+}
+
+static int e1000_wol_exclusion(struct e1000_adapter *adapter,
+			       struct ethtool_wolinfo *wol)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	int retval = 1; /* fail by default */
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_PCIE:
+		/* these don't support WoL at all */
+		wol->supported = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events not supported on port B */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* quad port adapters only support WoL on port A */
+		if (!adapter->quad_port_a) {
+			wol->supported = 0;
+			break;
+		}
+		/* return success for non excluded adapter ports */
+		retval = 0;
+		break;
+	default:
+		/* dual port cards only support WoL on port A from now on
+		 * unless it was enabled in the eeprom for port B
+		 * so exclude FUNC_1 ports from having WoL enabled */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
+		    !adapter->eeprom_wol) {
+			wol->supported = 0;
+			break;
+		}
+
+		retval = 0;
+	}
+
+	return retval;
+}
+
+static void e1000_get_wol(struct net_device *netdev,
+			  struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	wol->supported = WAKE_UCAST | WAKE_MCAST |
+	                 WAKE_BCAST | WAKE_MAGIC;
+	wol->wolopts = 0;
+
+	/* this function will set ->supported = 0 and return 1 if wol is not
+	 * supported by this hardware */
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return;
+
+	/* apply any specific unsupported masks here */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* KSP3 does not suppport UCAST wake-ups */
+		wol->supported &= ~WAKE_UCAST;
+
+		if (adapter->wol & E1000_WUFC_EX)
+			DPRINTK(DRV, ERR, "Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+		break;
+	default:
+		break;
+	}
+
+	if (adapter->wol & E1000_WUFC_EX)
+		wol->wolopts |= WAKE_UCAST;
+	if (adapter->wol & E1000_WUFC_MC)
+		wol->wolopts |= WAKE_MCAST;
+	if (adapter->wol & E1000_WUFC_BC)
+		wol->wolopts |= WAKE_BCAST;
+	if (adapter->wol & E1000_WUFC_MAG)
+		wol->wolopts |= WAKE_MAGIC;
+
+	return;
+}
+
+static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
+		return -EOPNOTSUPP;
+
+	if (e1000_wol_exclusion(adapter, wol) ||
+	    !device_can_wakeup(&adapter->pdev->dev))
+		return wol->wolopts ? -EOPNOTSUPP : 0;
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		if (wol->wolopts & WAKE_UCAST) {
+			DPRINTK(DRV, ERR, "Interface does not support "
+		        "directed (unicast) frame wake-up packets\n");
+			return -EOPNOTSUPP;
+		}
+		break;
+	default:
+		break;
+	}
+
+	/* these settings will always override what we currently have */
+	adapter->wol = 0;
+
+	if (wol->wolopts & WAKE_UCAST)
+		adapter->wol |= E1000_WUFC_EX;
+	if (wol->wolopts & WAKE_MCAST)
+		adapter->wol |= E1000_WUFC_MC;
+	if (wol->wolopts & WAKE_BCAST)
+		adapter->wol |= E1000_WUFC_BC;
+	if (wol->wolopts & WAKE_MAGIC)
+		adapter->wol |= E1000_WUFC_MAG;
+
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL	(HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON		0
+
+static void e1000_led_blink_callback(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+		e1000_led_off(hw);
+	else
+		e1000_led_on(hw);
+
+	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int e1000_phys_id(struct net_device *netdev, u32 data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (!data)
+		data = INT_MAX;
+
+	if (!adapter->blink_timer.function) {
+		init_timer(&adapter->blink_timer);
+		adapter->blink_timer.function = e1000_led_blink_callback;
+		adapter->blink_timer.data = (unsigned long)adapter;
+	}
+	e1000_setup_led(hw);
+	mod_timer(&adapter->blink_timer, jiffies);
+	msleep_interruptible(data * 1000);
+	del_timer_sync(&adapter->blink_timer);
+
+	e1000_led_off(hw);
+	clear_bit(E1000_LED_ON, &adapter->led_status);
+	e1000_cleanup_led(hw);
+
+	return 0;
+}
+
+static int e1000_get_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	if (adapter->hw.mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if (adapter->itr_setting <= 3)
+		ec->rx_coalesce_usecs = adapter->itr_setting;
+	else
+		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
+
+	return 0;
+}
+
+static int e1000_set_coalesce(struct net_device *netdev,
+			      struct ethtool_coalesce *ec)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (hw->mac_type < e1000_82545)
+		return -EOPNOTSUPP;
+
+	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
+	    ((ec->rx_coalesce_usecs > 3) &&
+	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
+	    (ec->rx_coalesce_usecs == 2))
+		return -EINVAL;
+
+	if (ec->rx_coalesce_usecs <= 3) {
+		adapter->itr = 20000;
+		adapter->itr_setting = ec->rx_coalesce_usecs;
+	} else {
+		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
+		adapter->itr_setting = adapter->itr & ~3;
+	}
+
+	if (adapter->itr_setting != 0)
+		ew32(ITR, 1000000000 / (adapter->itr * 256));
+	else
+		ew32(ITR, 0);
+
+	return 0;
+}
+
+static int e1000_nway_reset(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	if (netif_running(netdev))
+		e1000_reinit_locked(adapter);
+	return 0;
+}
+
+static void e1000_get_ethtool_stats(struct net_device *netdev,
+				    struct ethtool_stats *stats, u64 *data)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	int i;
+
+	e1000_update_stats(adapter);
+	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
+		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
+	}
+/*	BUG_ON(i != E1000_STATS_LEN); */
+}
+
+static void e1000_get_strings(struct net_device *netdev, u32 stringset,
+			      u8 *data)
+{
+	u8 *p = data;
+	int i;
+
+	switch (stringset) {
+	case ETH_SS_TEST:
+		memcpy(data, *e1000_gstrings_test,
+			sizeof(e1000_gstrings_test));
+		break;
+	case ETH_SS_STATS:
+		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
+			memcpy(p, e1000_gstrings_stats[i].stat_string,
+			       ETH_GSTRING_LEN);
+			p += ETH_GSTRING_LEN;
+		}
+/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
+		break;
+	}
+}
+
+static const struct ethtool_ops e1000_ethtool_ops = {
+	.get_settings           = e1000_get_settings,
+	.set_settings           = e1000_set_settings,
+	.get_drvinfo            = e1000_get_drvinfo,
+	.get_regs_len           = e1000_get_regs_len,
+	.get_regs               = e1000_get_regs,
+	.get_wol                = e1000_get_wol,
+	.set_wol                = e1000_set_wol,
+	.get_msglevel           = e1000_get_msglevel,
+	.set_msglevel           = e1000_set_msglevel,
+	.nway_reset             = e1000_nway_reset,
+	.get_link               = ethtool_op_get_link,
+	.get_eeprom_len         = e1000_get_eeprom_len,
+	.get_eeprom             = e1000_get_eeprom,
+	.set_eeprom             = e1000_set_eeprom,
+	.get_ringparam          = e1000_get_ringparam,
+	.set_ringparam          = e1000_set_ringparam,
+	.get_pauseparam         = e1000_get_pauseparam,
+	.set_pauseparam         = e1000_set_pauseparam,
+	.get_rx_csum            = e1000_get_rx_csum,
+	.set_rx_csum            = e1000_set_rx_csum,
+	.get_tx_csum            = e1000_get_tx_csum,
+	.set_tx_csum            = e1000_set_tx_csum,
+	.set_sg                 = ethtool_op_set_sg,
+	.set_tso                = e1000_set_tso,
+	.self_test              = e1000_diag_test,
+	.get_strings            = e1000_get_strings,
+	.phys_id                = e1000_phys_id,
+	.get_ethtool_stats      = e1000_get_ethtool_stats,
+	.get_sset_count         = e1000_get_sset_count,
+	.get_coalesce           = e1000_get_coalesce,
+	.set_coalesce           = e1000_set_coalesce,
+};
+
+void e1000_set_ethtool_ops(struct net_device *netdev)
+{
+	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.32-ethercat.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,5634 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+ */
+
+/* e1000_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "e1000_hw-2.6.32-ethercat.h"
+
+static s32 e1000_check_downshift(struct e1000_hw *hw);
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity);
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
+static void e1000_clear_vfta(struct e1000_hw *hw);
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
+					      bool link_up);
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length);
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static s32 e1000_id_led_init(struct e1000_hw *hw);
+static void e1000_init_rx_addrs(struct e1000_hw *hw);
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
+static s32 e1000_set_phy_type(struct e1000_hw *hw);
+static void e1000_phy_init_script(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
+				  u16 words, u16 *data);
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data);
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data);
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data);
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed(struct e1000_hw *hw);
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode(struct e1000_hw *hw);
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data);
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data);
+
+/* IGP cable length table */
+static const
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
+	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+	    100,
+	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+	    110, 110,
+	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
+	    120, 120
+};
+
+static DEFINE_SPINLOCK(e1000_eeprom_lock);
+
+/**
+ * e1000_set_phy_type - Set the phy type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_set_phy_type(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_set_phy_type");
+
+	if (hw->mac_type == e1000_undefined)
+		return -E1000_ERR_PHY_TYPE;
+
+	switch (hw->phy_id) {
+	case M88E1000_E_PHY_ID:
+	case M88E1000_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+	case M88E1111_I_PHY_ID:
+		hw->phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID:
+		if (hw->mac_type == e1000_82541 ||
+		    hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			hw->phy_type = e1000_phy_igp;
+			break;
+		}
+	default:
+		/* Should never have loaded on this device */
+		hw->phy_type = e1000_phy_undefined;
+		return -E1000_ERR_PHY_TYPE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+	u32 ret_val;
+	u16 phy_saved_data;
+
+	DEBUGFUNC("e1000_phy_init_script");
+
+	if (hw->phy_init_script) {
+		msleep(20);
+
+		/* Save off the current value of register 0x2F5B to be restored at
+		 * the end of this routine. */
+		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+		/* Disabled the PHY transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+		msleep(20);
+
+		e1000_write_phy_reg(hw, 0x0000, 0x0140);
+		msleep(5);
+
+		switch (hw->mac_type) {
+		case e1000_82541:
+		case e1000_82547:
+			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+			e1000_write_phy_reg(hw, 0x2010, 0x0008);
+			break;
+
+		case e1000_82541_rev_2:
+		case e1000_82547_rev_2:
+			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+			break;
+		default:
+			break;
+		}
+
+		e1000_write_phy_reg(hw, 0x0000, 0x3300);
+		msleep(20);
+
+		/* Now enable the transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (hw->mac_type == e1000_82547) {
+			u16 fused, fine, coarse;
+
+			/* Move to analog registers page */
+			e1000_read_phy_reg(hw,
+					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+					   &fused);
+
+			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+				e1000_read_phy_reg(hw,
+						   IGP01E1000_ANALOG_FUSE_STATUS,
+						   &fused);
+
+				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+				coarse =
+				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+				if (coarse >
+				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+					coarse -=
+					    IGP01E1000_ANALOG_FUSE_COARSE_10;
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+				} else if (coarse ==
+					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+				fused =
+				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+				    (coarse &
+				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_CONTROL,
+						    fused);
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_BYPASS,
+						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+			}
+		}
+	}
+}
+
+/**
+ * e1000_set_mac_type - Set the mac type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_set_mac_type");
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+		switch (hw->revision_id) {
+		case E1000_82542_2_0_REV_ID:
+			hw->mac_type = e1000_82542_rev2_0;
+			break;
+		case E1000_82542_2_1_REV_ID:
+			hw->mac_type = e1000_82542_rev2_1;
+			break;
+		default:
+			/* Invalid 82542 revision ID */
+			return -E1000_ERR_MAC_TYPE;
+		}
+		break;
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		hw->mac_type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		hw->mac_type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		hw->mac_type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		hw->mac_type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		hw->mac_type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		hw->mac_type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		hw->mac_type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		hw->mac_type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		hw->mac_type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		hw->mac_type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		hw->mac_type = e1000_82547_rev_2;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		return -E1000_ERR_MAC_TYPE;
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->asf_firmware_present = true;
+		break;
+	default:
+		break;
+	}
+
+	/* The 82543 chip does not count tx_carrier_errors properly in
+	 * FD mode
+	 */
+	if (hw->mac_type == e1000_82543)
+		hw->bad_tx_carr_stats_fd = true;
+
+	if (hw->mac_type > e1000_82544)
+		hw->has_smbus = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_media_type - Set media type and TBI compatibility.
+ * @hw: Struct containing variables accessed by shared code
+ */
+void e1000_set_media_type(struct e1000_hw *hw)
+{
+	u32 status;
+
+	DEBUGFUNC("e1000_set_media_type");
+
+	if (hw->mac_type != e1000_82543) {
+		/* tbi_compatibility is only valid on 82543 */
+		hw->tbi_compatibility_en = false;
+	}
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		switch (hw->mac_type) {
+		case e1000_82542_rev2_0:
+		case e1000_82542_rev2_1:
+			hw->media_type = e1000_media_type_fiber;
+			break;
+		default:
+			status = er32(STATUS);
+			if (status & E1000_STATUS_TBIMODE) {
+				hw->media_type = e1000_media_type_fiber;
+				/* tbi_compatibility not valid on fiber */
+				hw->tbi_compatibility_en = false;
+			} else {
+				hw->media_type = e1000_media_type_copper;
+			}
+			break;
+		}
+	}
+}
+
+/**
+ * e1000_reset_hw: reset the hardware completely
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ */
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 ctrl_ext;
+	u32 icr;
+	u32 manc;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw");
+
+	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC with
+	 * the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH();
+
+	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+	hw->tbi_compatibility_on = false;
+
+	/* Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msleep(10);
+
+	ctrl = er32(CTRL);
+
+	/* Must reset the PHY before resetting the MAC */
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		msleep(5);
+	}
+
+	/* Issue a global reset to the MAC.  This will reset the chip's
+	 * transmit, receive, DMA, and link units.  It will not effect
+	 * the current PCI configuration.  The global reset bit is self-
+	 * clearing, and should clear within a microsecond.
+	 */
+	DEBUGOUT("Issuing a global reset to MAC\n");
+
+	switch (hw->mac_type) {
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/* These controllers can't ack the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround to issue the reset */
+		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		/* Reset is performed on a shadow of the control register */
+		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
+		break;
+	default:
+		ew32(CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	}
+
+	/* After MAC reset, force reload of EEPROM to restore power-on settings to
+	 * device.  Later controllers reload the EEPROM automatically, so just wait
+	 * for reload to complete.
+	 */
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* Wait for reset to complete */
+		udelay(10);
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		/* Wait for EEPROM reload */
+		msleep(2);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		/* Wait for EEPROM reload */
+		msleep(20);
+		break;
+	default:
+		/* Auto read done will delay 5ms or poll based on mac type */
+		ret_val = e1000_get_auto_rd_done(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	}
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	if (hw->mac_type >= e1000_82540) {
+		manc = er32(MANC);
+		manc &= ~(E1000_MANC_ARP_EN);
+		ew32(MANC, manc);
+	}
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		e1000_phy_init_script(hw);
+
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Clear any pending interrupt events. */
+	icr = er32(ICR);
+
+	/* If MWI was previously enabled, reenable it. */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw: Performs basic configuration of the adapter.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ */
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 i;
+	s32 ret_val;
+	u32 mta_size;
+	u32 ctrl_ext;
+
+	DEBUGFUNC("e1000_init_hw");
+
+	/* Initialize Identification LED */
+	ret_val = e1000_id_led_init(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Initializing Identification LED\n");
+		return ret_val;
+	}
+
+	/* Set the media type and TBI compatibility */
+	e1000_set_media_type(hw);
+
+	/* Disabling VLAN filtering. */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	if (hw->mac_type < e1000_82545_rev_3)
+		ew32(VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		ew32(RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH();
+		msleep(5);
+	}
+
+	/* Setup the receive address. This involves initializing all of the Receive
+	 * Address Registers (RARs 0 - 15).
+	 */
+	e1000_init_rx_addrs(hw);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		ew32(RCTL, 0);
+		E1000_WRITE_FLUSH();
+		msleep(1);
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	mta_size = E1000_MC_TBL_SIZE;
+	for (i = 0; i < mta_size; i++) {
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+		/* use write flush to prevent Memory Write Block (MWB) from
+		 * occurring when accessing our register space */
+		E1000_WRITE_FLUSH();
+	}
+
+	/* Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.  Valid only on
+	 * 82542 and 82543 silicon.
+	 */
+	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+		if (hw->bus_type == e1000_bus_type_pcix
+		    && e1000_pcix_get_mmrbc(hw) > 2048)
+			e1000_pcix_set_mmrbc(hw, 2048);
+		break;
+	}
+
+	/* Call a subroutine to configure the link and setup flow control. */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	if (hw->mac_type > e1000_82544) {
+		ctrl = er32(TXDCTL);
+		ctrl =
+		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB;
+		ew32(TXDCTL, ctrl);
+	}
+
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs(hw);
+
+	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+		ctrl_ext = er32(CTRL_EXT);
+		/* Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot. */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
+ * @hw: Struct containing variables accessed by shared code.
+ */
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
+{
+	u16 eeprom_data;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_adjust_serdes_amplitude");
+
+	if (hw->media_type != e1000_media_type_internal_serdes)
+		return E1000_SUCCESS;
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
+	                            &eeprom_data);
+	if (ret_val) {
+		return ret_val;
+	}
+
+	if (eeprom_data != EEPROM_RESERVED_WORD) {
+		/* Adjust SERDES output amplitude only. */
+		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_link - Configures flow control and link settings.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the appropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ */
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32 ret_val;
+	u16 eeprom_data;
+
+	DEBUGFUNC("e1000_setup_link");
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (hw->fc == E1000_FC_DEFAULT) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+			hw->fc = E1000_FC_NONE;
+		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+			 EEPROM_WORD0F_ASM_DIR)
+			hw->fc = E1000_FC_TX_PAUSE;
+		else
+			hw->fc = E1000_FC_FULL;
+	}
+
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		hw->fc &= (~E1000_FC_TX_PAUSE);
+
+	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+		hw->fc &= (~E1000_FC_RX_PAUSE);
+
+	hw->original_fc = hw->fc;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before e1000_setup_pcs_link()
+	 * or e1000_phy_setup() is called.
+	 */
+	if (hw->mac_type == e1000_82543) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+			    SWDPIO__EXT_SHIFT);
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = (hw->media_type == e1000_media_type_copper) ?
+	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT
+	    ("Initializing the Flow Control address, type and timer regs\n");
+
+	ew32(FCT, FLOW_CONTROL_TYPE);
+	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	ew32(FCTTV, hw->fc_pause_time);
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames in not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+		ew32(FCRTL, 0);
+		ew32(FCRTH, 0);
+	} else {
+		/* We need to set up the Receive Threshold high and low water marks
+		 * as well as (optionally) enabling the transmission of XON frames.
+		 */
+		if (hw->fc_send_xon) {
+			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+			ew32(FCRTH, hw->fc_high_water);
+		} else {
+			ew32(FCRTL, hw->fc_low_water);
+			ew32(FCRTH, hw->fc_high_water);
+		}
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ */
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 status;
+	u32 txcw = 0;
+	u32 i;
+	u32 signal = 0;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link");
+
+	/* On adapters with a MAC newer than 82544, SWDP 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 * If we're on serdes media, adjust the output amplitude to value
+	 * set in the EEPROM.
+	 */
+	ctrl = er32(CTRL);
+	if (hw->media_type == e1000_media_type_fiber)
+		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+	ret_val = e1000_adjust_serdes_amplitude(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Take the link out of reset */
+	ctrl &= ~(E1000_CTRL_LRST);
+
+	/* Adjust VCO speed to improve BER performance */
+	ret_val = e1000_set_vco_speed(hw);
+	if (ret_val)
+		return ret_val;
+
+	e1000_config_collision_dist(hw);
+
+	/* Check for a software override of the flow control settings, and setup
+	 * the device accordingly.  If auto-negotiation is enabled, then software
+	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+	 * auto-negotiation is disabled, then software will have to manually
+	 * configure the two flow control enable bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames, but
+	 *          not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we do
+	 *          not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		/* Flow control is completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case E1000_FC_RX_PAUSE:
+		/* RX Flow control is enabled and TX Flow control is disabled by a
+		 * software over-ride. Since there really isn't a way to advertise
+		 * that we are capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE. Later, we will
+		 *  disable the adapter's ability to send PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case E1000_FC_TX_PAUSE:
+		/* TX Flow control is enabled, and RX Flow control is disabled, by a
+		 * software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case E1000_FC_FULL:
+		/* Flow control (both RX and TX) is enabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the link
+	 * will be in reset, because we previously reset the chip). This will
+	 * restart auto-negotiation.  If auto-negotiation is successful then the
+	 * link-up status bit will be set and the flow control enable bits (RFCE
+	 * and TFCE) will be set according to their negotiated value.
+	 */
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	ew32(TXCW, txcw);
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	hw->txcw = txcw;
+	msleep(1);
+
+	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+	 * indication in the Device Status Register.  Time-out if a link isn't
+	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+	 * less than 500 milliseconds even if the other end is doing it in SW).
+	 * For internal serdes, we just assume a signal is present, then poll.
+	 */
+	if (hw->media_type == e1000_media_type_internal_serdes ||
+	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+		DEBUGOUT("Looking for Link\n");
+		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+			msleep(10);
+			status = er32(STATUS);
+			if (status & E1000_STATUS_LU)
+				break;
+		}
+		if (i == (LINK_UP_TIMEOUT / 10)) {
+			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+			hw->autoneg_failed = 1;
+			/* AutoNeg failed to achieve a link, so we'll call
+			 * e1000_check_for_link. This routine will force the link up if
+			 * we detect a signal. This will allow us to communicate with
+			 * non-autonegotiating link partners.
+			 */
+			ret_val = e1000_check_for_link(hw);
+			if (ret_val) {
+				DEBUGOUT("Error while checking for link\n");
+				return ret_val;
+			}
+			hw->autoneg_failed = 0;
+		} else {
+			hw->autoneg_failed = 0;
+			DEBUGOUT("Valid Link Found\n");
+		}
+	} else {
+		DEBUGOUT("No Signal Detected\n");
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_preconfig - early configuration for copper
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Make sure we have a valid PHY and change PHY mode before link setup.
+ */
+static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_preconfig");
+
+	ctrl = er32(CTRL);
+	/* With 82543, we need to force speed and duplex on the MAC equal to what
+	 * the PHY speed and duplex configuration is. In addition, we need to
+	 * perform a hardware reset on the PHY to take it out of reset.
+	 */
+	if (hw->mac_type > e1000_82543) {
+		ctrl |= E1000_CTRL_SLU;
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		ew32(CTRL, ctrl);
+	} else {
+		ctrl |=
+		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+		ew32(CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Make sure we have a valid PHY */
+	ret_val = e1000_detect_gig_phy(hw);
+	if (ret_val) {
+		DEBUGOUT("Error, did not detect valid phy.\n");
+		return ret_val;
+	}
+	DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+	/* Set PHY to class A mode (if necessary) */
+	ret_val = e1000_set_phy_mode(hw);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82545_rev_3) ||
+	    (hw->mac_type == e1000_82546_rev_3)) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		phy_data |= 0x00000008;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	}
+
+	if (hw->mac_type <= e1000_82543 ||
+	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+	    hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2)
+		hw->phy_reset_disable = false;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+	u32 led_ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_igp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Wait 15ms for MAC to configure PHY from eeprom settings */
+	msleep(15);
+	/* Configure activity LED after PHY reset */
+	led_ctrl = er32(LEDCTL);
+	led_ctrl &= IGP_ACTIVITY_LED_MASK;
+	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	ew32(LEDCTL, led_ctrl);
+
+	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+	if (hw->phy_type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state(hw, false);
+		if (ret_val) {
+			DEBUGOUT("Error Disabling LPLU D3\n");
+			return ret_val;
+		}
+	}
+
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		hw->dsp_config_state = e1000_dsp_config_disabled;
+		/* Force MDI for earlier revs of the IGP PHY */
+		phy_data &=
+		    ~(IGP01E1000_PSCR_AUTO_MDIX |
+		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
+		hw->mdix = 1;
+
+	} else {
+		hw->dsp_config_state = e1000_dsp_config_enabled;
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+		switch (hw->mdix) {
+		case 1:
+			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 2:
+			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 0:
+		default:
+			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+			break;
+		}
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->autoneg) {
+		e1000_ms_type phy_ms_setting = hw->master_slave;
+
+		if (hw->ffe_config_state == e1000_ffe_config_active)
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+
+		if (hw->dsp_config_state == e1000_dsp_config_activated)
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+
+		/* when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default. */
+		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+			/* Set auto Master/Slave resolution process */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~CR_1000T_MS_ENABLE;
+			ret_val =
+			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* load defaults for future use */
+		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+		    ((phy_data & CR_1000T_MS_VALUE) ?
+		     e1000_ms_force_master :
+		     e1000_ms_force_slave) : e1000_ms_auto;
+
+		switch (phy_ms_setting) {
+		case e1000_ms_force_master:
+			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			phy_data |= CR_1000T_MS_ENABLE;
+			phy_data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			phy_data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_mgp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (hw->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (hw->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_revision < M88E1011_I_REV_4) {
+		/* Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((hw->phy_revision == E1000_REVISION_2) &&
+		    (hw->phy_id == M88E1111_I_PHY_ID)) {
+			/* Vidalia Phy, set the downshift counter to 5x */
+			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_autoneg - setup auto-neg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Setup auto-negotiation and flow control advertisements,
+ * and then perform auto-negotiation.
+ */
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_autoneg");
+
+	/* Perform some bounds checking on the hw->autoneg_advertised
+	 * parameter.  If this variable is zero, then set it to the default.
+	 */
+	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	/* If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (hw->autoneg_advertised == 0)
+		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	DEBUGOUT("Restarting Auto-Neg\n");
+
+	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (hw->wait_autoneg_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			DEBUGOUT
+			    ("Error while waiting for autoneg to complete\n");
+			return ret_val;
+		}
+	}
+
+	hw->get_link_status = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_postconfig - post link setup
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Config the MAC and the PHY after link is up.
+ *   1) Set up the MAC to the current PHY speed/duplex
+ *      if we are on 82543.  If we
+ *      are on newer silicon, we only need to configure
+ *      collision distance in the Transmit Control Register.
+ *   2) Set up flow control on the MAC to that established with
+ *      the link partner.
+ *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+ */
+static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	DEBUGFUNC("e1000_copper_link_postconfig");
+
+	if (hw->mac_type >= e1000_82544) {
+		e1000_config_collision_dist(hw);
+	} else {
+		ret_val = e1000_config_mac_to_phy(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring MAC to PHY settings\n");
+			return ret_val;
+		}
+	}
+	ret_val = e1000_config_fc_after_link_up(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Configuring Flow Control\n");
+		return ret_val;
+	}
+
+	/* Config DSP to improve Giga link quality */
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_config_dsp_after_link_change(hw, true);
+		if (ret_val) {
+			DEBUGOUT("Error Configuring DSP after link up\n");
+			return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_copper_link - phy/speed/duplex setting
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Detects which PHY is present and sets up the speed and duplex
+ */
+static s32 e1000_setup_copper_link(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_setup_copper_link");
+
+	/* Check if it is a valid PHY and set PHY mode if necessary. */
+	ret_val = e1000_copper_link_preconfig(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_copper_link_igp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_copper_link_mgp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->autoneg) {
+		/* Setup autoneg and flow control advertisement
+		 * and perform autonegotiation */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* PHY will be set to 10H, 10F, 100H,or 100F
+		 * depending on value from forced_speed_duplex. */
+		DEBUGOUT("Forcing speed and duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
+
+	/* Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	for (i = 0; i < 10; i++) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			/* Config the MAC and PHY after link is up */
+			ret_val = e1000_copper_link_postconfig(hw);
+			if (ret_val)
+				return ret_val;
+
+			DEBUGOUT("Valid link established!!!\n");
+			return E1000_SUCCESS;
+		}
+		udelay(10);
+	}
+
+	DEBUGOUT("Unable to establish link!!!\n");
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_setup_autoneg - phy settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures PHY autoneg and flow control advertisement settings
+ */
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg;
+
+	DEBUGFUNC("e1000_phy_setup_autoneg");
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Read the MII 1000Base-T Control Register (Address 9). */
+	ret_val =
+	    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+	DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+		DEBUGOUT("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+		DEBUGOUT("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+		DEBUGOUT("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+		DEBUGOUT("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+		DEBUGOUT
+		    ("Advertise 1000mb Half duplex requested, request denied!\n");
+	}
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+		DEBUGOUT("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          but we do not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *          in the EEPROM is used.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:	/* 0 */
+		/* Flow control (RX & TX) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_RX_PAUSE:	/* 1 */
+		/* RX Flow control is enabled, and TX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		/* Since there really isn't a way to advertise that we are
+		 * capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 *hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_TX_PAUSE:	/* 2 */
+		/* TX Flow control is enabled, and RX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case E1000_FC_FULL:	/* 3 */
+		/* Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_force_speed_duplex - force link settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
+ */
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 mii_ctrl_reg;
+	u16 mii_status_reg;
+	u16 phy_data;
+	u16 i;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex");
+
+	/* Turn off Flow control if we are forcing speed and duplex. */
+	hw->fc = E1000_FC_NONE;
+
+	DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+	/* Read the Device Control Register. */
+	ctrl = er32(CTRL);
+
+	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(DEVICE_SPEED_MASK);
+
+	/* Clear the Auto Speed Detect Enable bit. */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Read the MII Control Register. */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* We need to disable autoneg in order to force link and duplex. */
+
+	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Are we forcing Full or Half Duplex? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_10_full) {
+		/* We want to force full duplex so we SET the full duplex bits in the
+		 * Device and MII Control Registers.
+		 */
+		ctrl |= E1000_CTRL_FD;
+		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		/* We want to force half duplex so we CLEAR the full duplex bits in
+		 * the Device and MII Control Registers.
+		 */
+		ctrl &= ~E1000_CTRL_FD;
+		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
+
+	/* Are we forcing 100Mbps??? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_100_half) {
+		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+		ctrl |= E1000_CTRL_SPD_100;
+		mii_ctrl_reg |= MII_CR_SPEED_100;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		DEBUGOUT("Forcing 100mb ");
+	} else {
+		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		mii_ctrl_reg |= MII_CR_SPEED_10;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		DEBUGOUT("Forcing 10mb ");
+	}
+
+	e1000_config_collision_dist(hw);
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+
+	if (hw->phy_type == e1000_phy_m88) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+		 * forced whenever speed are duplex are forced.
+		 */
+		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+		/* Need to reset the PHY or these changes will be ignored */
+		mii_ctrl_reg |= MII_CR_RESET;
+
+		/* Disable MDI-X support for 10/100 */
+	} else {
+		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+		 * forced whenever speed or duplex are forced.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Write back the modified PHY MII control register. */
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	/* The wait_autoneg_complete flag may be a little misleading here.
+	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+	 * But we do want to delay for a period while forcing only so we
+	 * don't generate false No Link messages.  So we will wait here
+	 * only if the user has set wait_autoneg_complete to 1, which is
+	 * the default.
+	 */
+	if (hw->wait_autoneg_complete) {
+		/* We will wait for autoneg to complete. */
+		DEBUGOUT("Waiting for forced speed/duplex link.\n");
+		mii_status_reg = 0;
+
+		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+		}
+		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
+			/* We didn't get link.  Reset the DSP and wait again for link. */
+			ret_val = e1000_phy_reset_dsp(hw);
+			if (ret_val) {
+				DEBUGOUT("Error Resetting PHY DSP\n");
+				return ret_val;
+			}
+		}
+		/* This loop will early-out if the link condition has been met.  */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Because we reset the PHY above, we need to re-force TX_CLK in the
+		 * Extended PHY Specific Control Register to 25MHz clock.  This value
+		 * defaults back to a 2.5MHz clock when the PHY is reset.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* In addition, because of the s/w reset above, we need to enable CRS on
+		 * TX.  This must be set for both full and half duplex operation.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
+		    && (!hw->autoneg)
+		    && (hw->forced_speed_duplex == e1000_10_full
+			|| hw->forced_speed_duplex == e1000_10_half)) {
+			ret_val = e1000_polarity_reversal_workaround(hw);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_collision_dist - set collision distance register
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets the collision distance in the Transmit Control register.
+ * Link should have been established previously. Reads the speed and duplex
+ * information from the Device Status register.
+ */
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl, coll_dist;
+
+	DEBUGFUNC("e1000_config_collision_dist");
+
+	if (hw->mac_type < e1000_82543)
+		coll_dist = E1000_COLLISION_DISTANCE_82542;
+	else
+		coll_dist = E1000_COLLISION_DISTANCE;
+
+	tctl = er32(TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= coll_dist << E1000_COLD_SHIFT;
+
+	ew32(TCTL, tctl);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_config_mac_to_phy - sync phy and mac settings
+ * @hw: Struct containing variables accessed by shared code
+ * @mii_reg: data to write to the MII control register
+ *
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
+ * The contents of the PHY register containing the needed information need to
+ * be passed in.
+ */
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_config_mac_to_phy");
+
+	/* 82544 or newer MAC, Auto Speed Detection takes care of
+	 * MAC speed/duplex configuration.*/
+	if (hw->mac_type >= e1000_82544)
+		return E1000_SUCCESS;
+
+	/* Read the Device Control Register and set the bits to Force Speed
+	 * and Duplex.
+	 */
+	ctrl = er32(CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+	/* Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+	else
+		ctrl &= ~E1000_CTRL_FD;
+
+	e1000_config_collision_dist(hw);
+
+	/* Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_force_mac_fc - force flow control settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Forces the MAC's flow control settings.
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ */
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_force_mac_fc");
+
+	/* Get the current configuration of the Device Control Register */
+	ctrl = er32(CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case E1000_FC_RX_PAUSE:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case E1000_FC_TX_PAUSE:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case E1000_FC_FULL:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	/* Disable TX Flow Control for 82542 (rev 2.0) */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		ctrl &= (~E1000_CTRL_TFCE);
+
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_fc_after_link_up - configure flow control after autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures flow control settings after link is established
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automatically set to the negotiated flow control mode.
+ */
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 mii_nway_adv_reg;
+	u16 mii_nway_lp_ability_reg;
+	u16 speed;
+	u16 duplex;
+
+	DEBUGFUNC("e1000_config_fc_after_link_up");
+
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_internal_serdes)
+		&& (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_copper)
+		&& (!hw->autoneg))) {
+		ret_val = e1000_force_mac_fc(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+			/* The AutoNeg process has completed, so we now need to
+			 * read both the Auto Negotiation Advertisement Register
+			 * (Address 4) and the Auto_Negotiation Base Page Ability
+			 * Register (Address 5) to determine how flow control was
+			 * negotiated.
+			 */
+			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+						     &mii_nway_adv_reg);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+						     &mii_nway_lp_ability_reg);
+			if (ret_val)
+				return ret_val;
+
+			/* Two bits in the Auto Negotiation Advertisement Register
+			 * (Address 4) and two bits in the Auto Negotiation Base
+			 * Page Ability Register (Address 5) determine flow control
+			 * for both the PHY and the link partner.  The following
+			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+			 * 1999, describes these PAUSE resolution bits and how flow
+			 * control is determined based upon these settings.
+			 * NOTE:  DC = Don't Care
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			/* Are both PAUSE bits set to 1?  If so, this implies
+			 * Symmetric Flow Control is enabled at both ends.  The
+			 * ASM_DIR bits are irrelevant per the spec.
+			 *
+			 * For Symmetric Flow Control:
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *
+			 */
+			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+				/* Now we need to check if the user selected RX ONLY
+				 * of pause frames.  In this case, we had to advertise
+				 * FULL flow control because we could not advertise RX
+				 * ONLY. Hence, we must now check to see if we need to
+				 * turn OFF  the TRANSMISSION of PAUSE frames.
+				 */
+				if (hw->original_fc == E1000_FC_FULL) {
+					hw->fc = E1000_FC_FULL;
+					DEBUGOUT("Flow Control = FULL.\n");
+				} else {
+					hw->fc = E1000_FC_RX_PAUSE;
+					DEBUGOUT
+					    ("Flow Control = RX PAUSE frames only.\n");
+				}
+			}
+			/* For receiving PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *
+			 */
+			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_TX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = TX PAUSE frames only.\n");
+			}
+			/* For transmitting PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_RX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+			/* Per the IEEE spec, at this point flow control should be
+			 * disabled.  However, we want to consider that we could
+			 * be connected to a legacy switch that doesn't advertise
+			 * desired flow control, but can be forced on the link
+			 * partner.  So if we advertised no flow control, that is
+			 * what we will resolve to.  If we advertised some kind of
+			 * receive capability (Rx Pause Only or Full Flow Control)
+			 * and the link partner advertised none, we will configure
+			 * ourselves to enable Rx Flow Control only.  We can do
+			 * this safely for two reasons:  If the link partner really
+			 * didn't want flow control enabled, and we enable Rx, no
+			 * harm done since we won't be receiving any PAUSE frames
+			 * anyway.  If the intent on the link partner was to have
+			 * flow control enabled, then by us enabling RX only, we
+			 * can at least receive pause frames and process them.
+			 * This is a good idea because in most cases, since we are
+			 * predominantly a server NIC, more times than not we will
+			 * be asked to delay transmission of packets than asking
+			 * our link partner to pause transmission of frames.
+			 */
+			else if ((hw->original_fc == E1000_FC_NONE ||
+				  hw->original_fc == E1000_FC_TX_PAUSE) ||
+				 hw->fc_strict_ieee) {
+				hw->fc = E1000_FC_NONE;
+				DEBUGOUT("Flow Control = NONE.\n");
+			} else {
+				hw->fc = E1000_FC_RX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+
+			/* Now we need to do one last check...  If we auto-
+			 * negotiated to HALF DUPLEX, flow control should not be
+			 * enabled per IEEE 802.3 spec.
+			 */
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+
+			if (duplex == HALF_DUPLEX)
+				hw->fc = E1000_FC_NONE;
+
+			/* Now we call a subroutine to actually force the MAC
+			 * controller to use the correct flow control settings.
+			 */
+			ret_val = e1000_force_mac_fc(hw);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error forcing flow control settings\n");
+				return ret_val;
+			}
+		} else {
+			DEBUGOUT
+			    ("Copper PHY and Auto Neg has not completed.\n");
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (hw->autoneg_failed == 0) {
+			hw->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, hw->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		hw->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		rxcw = er32(RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				hw->serdes_has_link = true;
+				DEBUGOUT("SERDES: Link up - forced.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - force failed.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & er32(TXCW)) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					hw->serdes_has_link = true;
+					DEBUGOUT("SERDES: Link up - autoneg "
+						 "completed successfully.\n");
+				} else {
+					hw->serdes_has_link = false;
+					DEBUGOUT("SERDES: Link down - invalid"
+						 "codewords detected in autoneg.\n");
+				}
+			} else {
+				hw->serdes_has_link = false;
+				DEBUGOUT("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - autoneg failed\n");
+		}
+	}
+
+      out:
+	return ret_val;
+}
+
+/**
+ * e1000_check_for_link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks to see if the link status of the hardware has changed.
+ * Called by any function that needs to check the link status of the adapter.
+ */
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+	u32 rxcw = 0;
+	u32 ctrl;
+	u32 status;
+	u32 rctl;
+	u32 icr;
+	u32 signal = 0;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_for_link");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+
+	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 */
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes)) {
+		rxcw = er32(RXCW);
+
+		if (hw->media_type == e1000_media_type_fiber) {
+			signal =
+			    (hw->mac_type >
+			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+			if (status & E1000_STATUS_LU)
+				hw->get_link_status = false;
+		}
+	}
+
+	/* If we have a copper PHY then we only want to go out to the PHY
+	 * registers to see if Auto-Neg has completed and/or if our link
+	 * status has changed.  The get_link_status flag will be set if we
+	 * receive a Link Status Change interrupt or we have Rx Sequence
+	 * Errors.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+		/* First we want to see if the MII Status Register reports
+		 * link.  If so, then we want to get the current speed/duplex
+		 * of the PHY.
+		 * Read the register twice since the link bit is sticky.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			hw->get_link_status = false;
+			/* Check if there was DownShift, must be checked immediately after
+			 * link-up */
+			e1000_check_downshift(hw);
+
+			/* If we are on 82544 or 82543 silicon and speed/duplex
+			 * are forced to 10H or 10F, then we will implement the polarity
+			 * reversal workaround.  We disable interrupts first, and upon
+			 * returning, place the devices interrupt state to its previous
+			 * value except for the link status change interrupt which will
+			 * happen due to the execution of this workaround.
+			 */
+
+			if ((hw->mac_type == e1000_82544
+			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
+			    && (hw->forced_speed_duplex == e1000_10_full
+				|| hw->forced_speed_duplex == e1000_10_half)) {
+				ew32(IMC, 0xffffffff);
+				ret_val =
+				    e1000_polarity_reversal_workaround(hw);
+				icr = er32(ICR);
+				ew32(ICS, (icr & ~E1000_ICS_LSC));
+				ew32(IMS, IMS_ENABLE_MASK);
+			}
+
+		} else {
+			/* No link detected */
+			e1000_config_dsp_after_link_change(hw, false);
+			return 0;
+		}
+
+		/* If we are forcing speed/duplex, then we simply return since
+		 * we have already determined whether we have link or not.
+		 */
+		if (!hw->autoneg)
+			return -E1000_ERR_CONFIG;
+
+		/* optimize the dsp settings for the igp phy */
+		e1000_config_dsp_after_link_change(hw, true);
+
+		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+		 * have Si on board that is 82544 or newer, Auto
+		 * Speed Detection takes care of MAC speed/duplex
+		 * configuration.  So we only need to configure Collision
+		 * Distance in the MAC.  Otherwise, we need to force
+		 * speed/duplex on the MAC to the current PHY speed/duplex
+		 * settings.
+		 */
+		if (hw->mac_type >= e1000_82544)
+			e1000_config_collision_dist(hw);
+		else {
+			ret_val = e1000_config_mac_to_phy(hw);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error configuring MAC to PHY settings\n");
+				return ret_val;
+			}
+		}
+
+		/* Configure Flow Control now that Auto-Neg has completed. First, we
+		 * need to restore the desired flow control settings because we may
+		 * have had to re-autoneg with a different link partner.
+		 */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			return ret_val;
+		}
+
+		/* At this point we know that we are on copper and we have
+		 * auto-negotiated link.  These are conditions for checking the link
+		 * partner capability register.  We use the link speed to determine if
+		 * TBI compatibility needs to be turned on or off.  If the link is not
+		 * at gigabit speed, then TBI compatibility is not needed.  If we are
+		 * at gigabit speed, we turn on TBI compatibility.
+		 */
+		if (hw->tbi_compatibility_en) {
+			u16 speed, duplex;
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+			if (speed != SPEED_1000) {
+				/* If link speed is not set to gigabit speed, we do not need
+				 * to enable TBI compatibility.
+				 */
+				if (hw->tbi_compatibility_on) {
+					/* If we previously were in the mode, turn it off. */
+					rctl = er32(RCTL);
+					rctl &= ~E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+					hw->tbi_compatibility_on = false;
+				}
+			} else {
+				/* If TBI compatibility is was previously off, turn it on. For
+				 * compatibility with a TBI link partner, we will store bad
+				 * packets. Some frames have an additional byte on the end and
+				 * will look like CRC errors to to the hardware.
+				 */
+				if (!hw->tbi_compatibility_on) {
+					hw->tbi_compatibility_on = true;
+					rctl = er32(RCTL);
+					rctl |= E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+				}
+			}
+		}
+	}
+
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes))
+		e1000_check_for_serdes_link_generic(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex
+ * @hw: Struct containing variables accessed by shared code
+ * @speed: Speed of the connection
+ * @duplex: Duplex setting of the connection
+
+ * Detects the current speed and duplex settings of the hardware.
+ */
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	u32 status;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_get_speed_and_duplex");
+
+	if (hw->mac_type >= e1000_82543) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_SPEED_1000) {
+			*speed = SPEED_1000;
+			DEBUGOUT("1000 Mbs, ");
+		} else if (status & E1000_STATUS_SPEED_100) {
+			*speed = SPEED_100;
+			DEBUGOUT("100 Mbs, ");
+		} else {
+			*speed = SPEED_10;
+			DEBUGOUT("10 Mbs, ");
+		}
+
+		if (status & E1000_STATUS_FD) {
+			*duplex = FULL_DUPLEX;
+			DEBUGOUT("Full Duplex\n");
+		} else {
+			*duplex = HALF_DUPLEX;
+			DEBUGOUT(" Half Duplex\n");
+		}
+	} else {
+		DEBUGOUT("1000 Mbs, Full Duplex\n");
+		*speed = SPEED_1000;
+		*duplex = FULL_DUPLEX;
+	}
+
+	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
+	 * if it is operating at half duplex.  Here we set the duplex settings to
+	 * match the duplex in the link partner's capabilities.
+	 */
+	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+			*duplex = HALF_DUPLEX;
+		else {
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+			if (ret_val)
+				return ret_val;
+			if ((*speed == SPEED_100
+			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+			    || (*speed == SPEED_10
+				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_wait_autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Blocks until autoneg completes or times out (~4.5 seconds)
+ */
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_wait_autoneg");
+	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Auto-Neg
+		 * Complete bit to be set.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+			return E1000_SUCCESS;
+		}
+		msleep(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_raise_mdi_clk - Raises the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Raise the clock input to the Management Data Clock (by setting the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_lower_mdi_clk - Lowers the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Lower the clock input to the Management Data Clock (by clearing the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
+ * @hw: Struct containing variables accessed by shared code
+ * @data: Data to send out to the PHY
+ * @count: Number of bits to shift out
+ *
+ * Bits are shifted out in MSB to LSB order.
+ */
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
+{
+	u32 ctrl;
+	u32 mask;
+
+	/* We need to shift "count" number of bits out to the PHY. So, the value
+	 * in the "data" parameter will be shifted out to the PHY one bit at a
+	 * time. In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
+
+	ctrl = er32(CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+		 * then raising and lowering the Management Data Clock. A "0" is
+		 * shifted out to the PHY by setting the MDIO bit to "0" and then
+		 * raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+		udelay(10);
+
+		e1000_raise_mdi_clk(hw, &ctrl);
+		e1000_lower_mdi_clk(hw, &ctrl);
+
+		mask = mask >> 1;
+	}
+}
+
+/**
+ * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Bits are shifted in in MSB to LSB order.
+ */
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
+
+	/* In order to read a register from the PHY, we need to shift in a total
+	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
+	 * to avoid contention on the MDIO pin when a read operation is performed.
+	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
+	 * by raising the input to the Management Data Clock (setting the MDC bit),
+	 * and then reading the value of the MDIO bit.
+	 */
+	ctrl = er32(CTRL);
+
+	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	/* Raise and Lower the clock before reading in the data. This accounts for
+	 * the turnaround bits. The first clock occurred when we clocked out the
+	 * last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data = data << 1;
+		e1000_raise_mdi_clk(hw, &ctrl);
+		ctrl = er32(CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	return data;
+}
+
+
+/**
+ * e1000_read_phy_reg - read a phy register
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to read
+ *
+ * Reads the value from a PHY register, if the value is on a specific non zero
+ * page, sets the page first.
+ */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
+{
+	u32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	DEBUGFUNC("e1000_read_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, and register address in the MDI
+		 * Control register.  The MAC will take care of interfacing with the
+		 * PHY to retrieve the desired data.
+		 */
+		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_READ));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 64; i++) {
+			udelay(50);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			DEBUGOUT("MDI Read did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+		if (mdic & E1000_MDIC_ERROR) {
+			DEBUGOUT("MDI Error\n");
+			return -E1000_ERR_PHY;
+		}
+		*phy_data = (u16) mdic;
+	} else {
+		/* We must first send a preamble through the MDIO pin to signal the
+		 * beginning of an MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the next few fields that are required for a read
+		 * operation.  We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine five different times. The format of
+		 * a MII read instruction consists of a shift out of 14 bits and is
+		 * defined as follows:
+		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+		 * followed by a shift in of 18 bits.  This first two bits shifted in
+		 * are TurnAround bits used to avoid contention on the MDIO pin when a
+		 * READ operation is performed.  These two bits are thrown away
+		 * followed by a shift in of 16 bits which contains the desired data.
+		 */
+		mdic = ((reg_addr) | (phy_addr << 5) |
+			(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+		e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+		/* Now that we've shifted out the read command to the MII, we need to
+		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+		 * register address.
+		 */
+		*phy_data = e1000_shift_in_mdi_bits(hw);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - write a phy register
+ *
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to write
+ * @data: data to write to the PHY
+
+ * Writes a value to a PHY register
+ */
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
+{
+	u32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					 phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	DEBUGFUNC("e1000_write_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, register address, and data intended
+		 * for the PHY register in the MDI Control register.  The MAC will take
+		 * care of interfacing with the PHY to send the desired data.
+		 */
+		mdic = (((u32) phy_data) |
+			(reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_WRITE));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 641; i++) {
+			udelay(5);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			DEBUGOUT("MDI Write did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+	} else {
+		/* We'll need to use the SW defined pins to shift the write command
+		 * out to the PHY. We first send a preamble to the PHY to signal the
+		 * beginning of the MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the remaining required fields that will indicate a
+		 * write operation. We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine for each field in the command. The
+		 * format of a MII write instruction is as follows:
+		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+		 */
+		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+		mdic <<= 16;
+		mdic |= (u32) phy_data;
+
+		e1000_shift_out_mdi_bits(hw, mdic, 32);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - reset the phy, hardware style
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Returns the PHY to the power-on reset state
+ */
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	u32 ctrl, ctrl_ext;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_hw_reset");
+
+	DEBUGOUT("Resetting Phy...\n");
+
+	if (hw->mac_type > e1000_82543) {
+		/* Read the device control register and assert the E1000_CTRL_PHY_RST
+		 * bit. Then, take it out of reset.
+		 * For e1000 hardware, we delay for 10ms between the assert
+		 * and deassert.
+		 */
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+		E1000_WRITE_FLUSH();
+
+		msleep(10);
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+	} else {
+		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+		 * bit to put the PHY into reset. Then, take it out of reset.
+		 */
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		msleep(10);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+	}
+	udelay(150);
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Wait for FW to finish PHY configuration. */
+	ret_val = e1000_get_phy_cfg_done(hw);
+	if (ret_val != E1000_SUCCESS)
+		return ret_val;
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_reset - reset the phy to commit settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY
+ * Sets bit 15 of the MII Control register
+ */
+s32 e1000_phy_reset(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_phy_reset");
+
+	switch (hw->phy_type) {
+	case e1000_phy_igp:
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= MII_CR_RESET;
+		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		udelay(1);
+		break;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		e1000_phy_init_script(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_detect_gig_phy - check the phy type
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Probes the expected PHY address for known PHY IDs
+ */
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+	s32 phy_init_status, ret_val;
+	u16 phy_id_high, phy_id_low;
+	bool match = false;
+
+	DEBUGFUNC("e1000_detect_gig_phy");
+
+	if (hw->phy_id != 0)
+		return E1000_SUCCESS;
+
+	/* Read the PHY ID Registers to identify which PHY is onboard. */
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id = (u32) (phy_id_high << 16);
+	udelay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
+	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->phy_id == M88E1000_E_PHY_ID)
+			match = true;
+		break;
+	case e1000_82544:
+		if (hw->phy_id == M88E1000_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (hw->phy_id == M88E1011_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (hw->phy_id == IGP01E1000_I_PHY_ID)
+			match = true;
+		break;
+	default:
+		DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+		return -E1000_ERR_CONFIG;
+	}
+	phy_init_status = e1000_set_phy_type(hw);
+
+	if ((match) && (phy_init_status == E1000_SUCCESS)) {
+		DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+		return E1000_SUCCESS;
+	}
+	DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+	return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_phy_reset_dsp - reset DSP
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY's DSP
+ */
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	DEBUGFUNC("e1000_phy_reset_dsp");
+
+	do {
+		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+		if (ret_val)
+			break;
+		ret_val = E1000_SUCCESS;
+	} while (0);
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_igp_get_info - get igp specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for igp PHY only.
+ */
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data, min_length, max_length, average;
+	e1000_rev_polarity polarity;
+
+	DEBUGFUNC("e1000_phy_igp_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	/* IGP01E1000 does not need to support it. */
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+	/* IGP01E1000 always correct polarity reversal */
+	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
+				 IGP01E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+		/* Get cable length */
+		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+		if (ret_val)
+			return ret_val;
+
+		/* Translate to old method */
+		average = (max_length + min_length) / 2;
+
+		if (average <= e1000_igp_cable_length_50)
+			phy_info->cable_length = e1000_cable_length_50;
+		else if (average <= e1000_igp_cable_length_80)
+			phy_info->cable_length = e1000_cable_length_50_80;
+		else if (average <= e1000_igp_cable_length_110)
+			phy_info->cable_length = e1000_cable_length_80_110;
+		else if (average <= e1000_igp_cable_length_140)
+			phy_info->cable_length = e1000_cable_length_110_140;
+		else
+			phy_info->cable_length = e1000_cable_length_140;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_m88_get_info - get m88 specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for m88 PHY only.
+ */
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+	e1000_rev_polarity polarity;
+
+	DEBUGFUNC("e1000_phy_m88_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->extended_10bt_distance =
+	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+	    e1000_10bt_ext_dist_enable_lower :
+	    e1000_10bt_ext_dist_enable_normal;
+
+	phy_info->polarity_correction =
+	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
+				 M88E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		/* Cable Length Estimation and Local/Remote Receiver Information
+		 * are only valid at 1000 Mbps.
+		 */
+		phy_info->cable_length =
+		    (e1000_cable_length) ((phy_data &
+					   M88E1000_PSSR_CABLE_LENGTH) >>
+					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_get_info - request phy info
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers
+ */
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_phy_get_info");
+
+	phy_info->cable_length = e1000_cable_length_undefined;
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+	phy_info->cable_polarity = e1000_rev_polarity_undefined;
+	phy_info->downshift = e1000_downshift_undefined;
+	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+	phy_info->local_rx = e1000_1000t_rx_status_undefined;
+	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+	if (hw->media_type != e1000_media_type_copper) {
+		DEBUGOUT("PHY info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+		DEBUGOUT("PHY info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		return e1000_phy_igp_get_info(hw, phy_info);
+	else
+		return e1000_phy_m88_get_info(hw, phy_info);
+}
+
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_validate_mdi_settings");
+
+	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+		DEBUGOUT("Invalid MDI setting detected\n");
+		hw->mdix = 1;
+		return -E1000_ERR_CONFIG;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_eeprom_params - initialize sw eeprom vars
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.
+ */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd = er32(EECD);
+	s32 ret_val = E1000_SUCCESS;
+	u16 eeprom_size;
+
+	DEBUGFUNC("e1000_init_eeprom_params");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->word_size = 64;
+		eeprom->opcode_bits = 3;
+		eeprom->address_bits = 6;
+		eeprom->delay_usec = 50;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->opcode_bits = 3;
+		eeprom->delay_usec = 50;
+		if (eecd & E1000_EECD_SIZE) {
+			eeprom->word_size = 256;
+			eeprom->address_bits = 8;
+		} else {
+			eeprom->word_size = 64;
+			eeprom->address_bits = 6;
+		}
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (eecd & E1000_EECD_TYPE) {
+			eeprom->type = e1000_eeprom_spi;
+			eeprom->opcode_bits = 8;
+			eeprom->delay_usec = 1;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->page_size = 32;
+				eeprom->address_bits = 16;
+			} else {
+				eeprom->page_size = 8;
+				eeprom->address_bits = 8;
+			}
+		} else {
+			eeprom->type = e1000_eeprom_microwire;
+			eeprom->opcode_bits = 3;
+			eeprom->delay_usec = 50;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->word_size = 256;
+				eeprom->address_bits = 8;
+			} else {
+				eeprom->word_size = 64;
+				eeprom->address_bits = 6;
+			}
+		}
+		break;
+	default:
+		break;
+	}
+
+	if (eeprom->type == e1000_eeprom_spi) {
+		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+		 * 32KB (incremented by powers of 2).
+		 */
+		/* Set to default value for initial eeprom read. */
+		eeprom->word_size = 64;
+		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+		if (ret_val)
+			return ret_val;
+		eeprom_size =
+		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+		/* 256B eeprom size was not supported in earlier hardware, so we
+		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+		 * is never the result used in the shifting logic below. */
+		if (eeprom_size)
+			eeprom_size++;
+
+		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_raise_ee_clk - Raises the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
+	 * wait <delay> microseconds.
+	 */
+	*eecd = *eecd | E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+	 * wait 50 microseconds.
+	 */
+	*eecd = *eecd & ~E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ */
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u32 mask;
+
+	/* We need to shift "count" bits out to the EEPROM. So, value in the
+	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
+	 * In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01 << (count - 1);
+	eecd = er32(EECD);
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~E1000_EECD_DO;
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_DO;
+	}
+	do {
+		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+		 * and then raising and then lowering the clock (the SK bit controls
+		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+		 * by setting "DI" to "0" and then raising and then lowering the clock.
+		 */
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+
+		udelay(eeprom->delay_usec);
+
+		e1000_raise_ee_clk(hw, &eecd);
+		e1000_lower_ee_clk(hw, &eecd);
+
+		mask = mask >> 1;
+
+	} while (mask);
+
+	/* We leave the "DI" bit set to "0" when we leave this routine. */
+	eecd &= ~E1000_EECD_DI;
+	ew32(EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
+ * @hw: Struct containing variables accessed by shared code
+ * @count: number of bits to shift in
+ */
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	/* In order to read a register from the EEPROM, we need to shift 'count'
+	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+	 * input to the EEPROM (setting the SK bit), and then reading the value of
+	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
+	 * always be clear.
+	 */
+
+	eecd = er32(EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data = data << 1;
+		e1000_raise_ee_clk(hw, &eecd);
+
+		eecd = er32(EECD);
+
+		eecd &= ~(E1000_EECD_DI);
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_ee_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ * e1000_acquire_eeprom - Prepares EEPROM for access
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ */
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd, i = 0;
+
+	DEBUGFUNC("e1000_acquire_eeprom");
+
+	eecd = er32(EECD);
+
+	/* Request EEPROM Access */
+	if (hw->mac_type > e1000_82544) {
+		eecd |= E1000_EECD_REQ;
+		ew32(EECD, eecd);
+		eecd = er32(EECD);
+		while ((!(eecd & E1000_EECD_GNT)) &&
+		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+			i++;
+			udelay(5);
+			eecd = er32(EECD);
+		}
+		if (!(eecd & E1000_EECD_GNT)) {
+			eecd &= ~E1000_EECD_REQ;
+			ew32(EECD, eecd);
+			DEBUGOUT("Could not acquire EEPROM grant\n");
+			return -E1000_ERR_EEPROM;
+		}
+	}
+
+	/* Setup EEPROM for Read/Write */
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		ew32(EECD, eecd);
+
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		udelay(1);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_standby_eeprom - Returns EEPROM to a "standby" state
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_standby_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+
+	eecd = er32(EECD);
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock high */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock low */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	}
+}
+
+/**
+ * e1000_release_eeprom - drop chip select
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Terminates a command by inverting the EEPROM's chip select pin
+ */
+static void e1000_release_eeprom(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_release_eeprom");
+
+	eecd = er32(EECD);
+
+	if (hw->eeprom.type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_CS;	/* Pull CS high */
+		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
+
+		ew32(EECD, eecd);
+
+		udelay(hw->eeprom.delay_usec);
+	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
+		/* cleanup eeprom */
+
+		/* CS on Microwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+		ew32(EECD, eecd);
+
+		/* Rising edge of clock */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+
+		/* Falling edge of clock */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+	}
+
+	/* Stop requesting EEPROM access */
+	if (hw->mac_type > e1000_82544) {
+		eecd &= ~E1000_EECD_REQ;
+		ew32(EECD, eecd);
+	}
+}
+
+/**
+ * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+	u16 retry_count = 0;
+	u8 spi_stat_reg;
+
+	DEBUGFUNC("e1000_spi_eeprom_ready");
+
+	/* Read "Status Register" repeatedly until the LSB is cleared.  The
+	 * EEPROM will signal that the command has been completed by clearing
+	 * bit 0 of the internal status register.  If it's not cleared within
+	 * 5 milliseconds, then error out.
+	 */
+	retry_count = 0;
+	do {
+		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+					hw->eeprom.opcode_bits);
+		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
+		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+			break;
+
+		udelay(5);
+		retry_count += 5;
+
+		e1000_standby_eeprom(hw);
+	} while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+	 * only 0-5mSec on 5V devices)
+	 */
+	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+		DEBUGOUT("SPI EEPROM Status error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset of  word in the EEPROM to read
+ * @data: word read from the EEPROM
+ * @words: number of words to read
+ */
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_read_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_read_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		DEBUGOUT2
+		    ("\"words\" parameter out of bounds. Words = %d, size = %d\n",
+		     offset, eeprom->word_size);
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+	 * directly. In this case, we need to acquire the EEPROM so that
+	 * FW or other port software does not interrupt.
+	 */
+	/* Prepare the EEPROM for bit-bang reading */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+	 * acquired the EEPROM at this point, so any returns should release it */
+	if (eeprom->type == e1000_eeprom_spi) {
+		u16 word_in;
+		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw)) {
+			e1000_release_eeprom(hw);
+			return -E1000_ERR_EEPROM;
+		}
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the READ command (opcode + addr)  */
+		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
+					eeprom->address_bits);
+
+		/* Read the data.  The address of the eeprom internally increments with
+		 * each byte (spi) being read, saving on the overhead of eeprom setup
+		 * and tear-down.  The address counter will roll over if reading beyond
+		 * the size of the eeprom, thus allowing the entire memory to be read
+		 * starting from any offset. */
+		for (i = 0; i < words; i++) {
+			word_in = e1000_shift_in_ee_bits(hw, 16);
+			data[i] = (word_in >> 8) | (word_in << 8);
+		}
+	} else if (eeprom->type == e1000_eeprom_microwire) {
+		for (i = 0; i < words; i++) {
+			/* Send the READ command (opcode + addr)  */
+			e1000_shift_out_ee_bits(hw,
+						EEPROM_READ_OPCODE_MICROWIRE,
+						eeprom->opcode_bits);
+			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
+						eeprom->address_bits);
+
+			/* Read the data.  For microwire, each word requires the overhead
+			 * of eeprom setup and tear-down. */
+			data[i] = e1000_shift_in_ee_bits(hw, 16);
+			e1000_standby_eeprom(hw);
+		}
+	}
+
+	/* End this read operation */
+	e1000_release_eeprom(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ */
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	DEBUGFUNC("e1000_validate_eeprom_checksum");
+
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+
+	if (checksum == (u16) EEPROM_SUM)
+		return E1000_SUCCESS;
+	else {
+		DEBUGOUT("EEPROM Checksum Invalid\n");
+		return -E1000_ERR_EEPROM;
+	}
+}
+
+/**
+ * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ */
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	DEBUGFUNC("e1000_update_eeprom_checksum");
+
+	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+	checksum = (u16) EEPROM_SUM - checksum;
+	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+		DEBUGOUT("EEPROM Write Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom - write words to the different EEPROM types.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word to be written to the EEPROM
+ *
+ * If e1000_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ */
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_write_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	s32 status = 0;
+
+	DEBUGFUNC("e1000_write_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		DEBUGOUT("\"words\" parameter out of bounds\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* Prepare the EEPROM for writing  */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		status = e1000_write_eeprom_microwire(hw, offset, words, data);
+	} else {
+		status = e1000_write_eeprom_spi(hw, offset, words, data);
+		msleep(10);
+	}
+
+	/* Done with writing */
+	e1000_release_eeprom(hw);
+
+	return status;
+}
+
+/**
+ * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_eeprom_spi");
+
+	while (widx < words) {
+		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw))
+			return -E1000_ERR_EEPROM;
+
+		e1000_standby_eeprom(hw);
+
+		/*  Send the WRITE ENABLE command (8 bit opcode )  */
+		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+					eeprom->opcode_bits);
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			write_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
+					eeprom->address_bits);
+
+		/* Send the data */
+
+		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_ee_bits(hw, word_out, 16);
+			widx++;
+
+			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+			 * operation, while the smaller eeproms are capable of an 8-byte
+			 * PAGE WRITE operation.  Break the inner loop to pass new address
+			 */
+			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
+				e1000_standby_eeprom(hw);
+				break;
+			}
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_write_eeprom_microwire");
+
+	/* Send the write enable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 11).  It's less work to include
+	 * the 11 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This puts the
+	 * EEPROM into write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	/* Prepare the EEPROM */
+	e1000_standby_eeprom(hw);
+
+	while (words_written < words) {
+		/* Send the Write command (3-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+					eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
+					eeprom->address_bits);
+
+		/* Send the data */
+		e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+		/* Toggle the CS line.  This in effect tells the EEPROM to execute
+		 * the previous command.
+		 */
+		e1000_standby_eeprom(hw);
+
+		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
+		 * signal that the command has been completed by raising the DO signal.
+		 * If DO does not go high in 10 milliseconds, then error out.
+		 */
+		for (i = 0; i < 200; i++) {
+			eecd = er32(EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			udelay(50);
+		}
+		if (i == 200) {
+			DEBUGOUT("EEPROM Write did not complete\n");
+			return -E1000_ERR_EEPROM;
+		}
+
+		/* Recover from write */
+		e1000_standby_eeprom(hw);
+
+		words_written++;
+	}
+
+	/* Send the write disable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 10).  It's less work to include
+	 * the 10 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This takes the
+	 * EEPROM out of write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - read the adapters MAC from eeprom
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ */
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+	u16 offset;
+	u16 eeprom_data, i;
+
+	DEBUGFUNC("e1000_read_mac_addr");
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+		offset = i >> 1;
+		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
+		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			hw->perm_mac_addr[5] ^= 0x01;
+		break;
+	}
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+		hw->mac_addr[i] = hw->perm_mac_addr[i];
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_rx_addrs - Initializes receive address filters.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive address registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ */
+static void e1000_init_rx_addrs(struct e1000_hw *hw)
+{
+	u32 i;
+	u32 rar_num;
+
+	DEBUGFUNC("e1000_init_rx_addrs");
+
+	/* Setup the receive address. */
+	DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	rar_num = E1000_RAR_ENTRIES;
+
+	/* Zero out the other 15 receive addresses. */
+	DEBUGOUT("Clearing RAR[1-15]\n");
+	for (i = 1; i < rar_num; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
+ * @hw: Struct containing variables accessed by shared code
+ * @mc_addr: the multicast address to hash
+ */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value = 0;
+
+	/* The portion of the address that is used for the hash table is
+	 * determined by the mc_filter_type setting.
+	 */
+	switch (hw->mc_filter_type) {
+		/* [0] [1] [2] [3] [4] [5]
+		 * 01  AA  00  12  34  56
+		 * LSB                 MSB
+		 */
+	case 0:
+		/* [47:36] i.e. 0x563 for above example address */
+		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
+		break;
+	case 1:
+		/* [46:35] i.e. 0xAC6 for above example address */
+		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
+		break;
+	case 2:
+		/* [45:34] i.e. 0x5D8 for above example address */
+		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
+		break;
+	case 3:
+		/* [43:32] i.e. 0x634 for above example address */
+		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
+		break;
+	}
+
+	hash_value &= 0xFFF;
+	return hash_value;
+}
+
+/**
+ * e1000_rar_set - Puts an ethernet address into a receive address register.
+ * @hw: Struct containing variables accessed by shared code
+ * @addr: Address to put into receive address register
+ * @index: Receive address register to write
+ */
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+	 * unit hang.
+	 *
+	 * Description:
+	 * If there are any Rx frames queued up or otherwise present in the HW
+	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
+	 * hang.  To work around this issue, we have to disable receives and
+	 * flush out all Rx frames before we enable RSS. To do so, we modify we
+	 * redirect all Rx traffic to manageability and then reset the HW.
+	 * This flushes away Rx frames, and (since the redirections to
+	 * manageability persists across resets) keeps new ones from coming in
+	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
+	 * addresses and undo the re-direction to manageability.
+	 * Now, frames are coming in again, but the MAC won't accept them, so
+	 * far so good.  We now proceed to initialize RSS (if necessary) and
+	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
+	 * on our merry way.
+	 */
+	switch (hw->mac_type) {
+	default:
+		/* Indicate to hardware the Address is Valid. */
+		rar_high |= E1000_RAH_AV;
+		break;
+	}
+
+	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+	E1000_WRITE_FLUSH();
+	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: Offset in VLAN filer table to write
+ * @value: Value to write into VLAN filter table
+ */
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	u32 temp;
+
+	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+		E1000_WRITE_FLUSH();
+	} else {
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_clear_vfta - Clears the VLAN filer table
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/* If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of the
+		 * manageability unit */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+static s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 eeprom_data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	DEBUGFUNC("e1000_id_led_init");
+
+	if (hw->mac_type < e1000_82540) {
+		/* Nothing to do */
+		return E1000_SUCCESS;
+	}
+
+	ledctl = er32(LEDCTL);
+	hw->ledctl_default = ledctl;
+	hw->ledctl_mode1 = hw->ledctl_default;
+	hw->ledctl_mode2 = hw->ledctl_default;
+
+	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+		DEBUGOUT("EEPROM Read Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	if ((eeprom_data == ID_LED_RESERVED_0000) ||
+	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
+		eeprom_data = ID_LED_DEFAULT;
+	}
+
+	for (i = 0; i < 4; i++) {
+		temp = (eeprom_data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_led
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ */
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No setup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn off PHY Smart Power Down (if enabled) */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					     &hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      (u16) (hw->phy_spd_default &
+						     ~IGP01E1000_GMII_SPD));
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			ledctl = er32(LEDCTL);
+			/* Save current LEDCTL settings */
+			hw->ledctl_default = ledctl;
+			/* Turn off LED0 */
+			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+				    E1000_LEDCTL_LED0_BLINK |
+				    E1000_LEDCTL_LED0_MODE_MASK);
+			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+				   E1000_LEDCTL_LED0_MODE_SHIFT);
+			ew32(LEDCTL, ledctl);
+		} else if (hw->media_type == e1000_media_type_copper)
+			ew32(LEDCTL, hw->ledctl_mode1);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No cleanup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn on PHY Smart Power Down (if previously enabled) */
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		/* Restore LEDCTL settings */
+		ew32(LEDCTL, hw->ledctl_default);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turns on the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	DEBUGFUNC("e1000_led_on");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Set SW Defineable Pin 0 to turn on the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn on the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode2);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turns off the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	DEBUGFUNC("e1000_led_off");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Clear SW Defineable Pin 0 to turn off the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn off the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode1);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	temp = er32(CRCERRS);
+	temp = er32(SYMERRS);
+	temp = er32(MPC);
+	temp = er32(SCC);
+	temp = er32(ECOL);
+	temp = er32(MCC);
+	temp = er32(LATECOL);
+	temp = er32(COLC);
+	temp = er32(DC);
+	temp = er32(SEC);
+	temp = er32(RLEC);
+	temp = er32(XONRXC);
+	temp = er32(XONTXC);
+	temp = er32(XOFFRXC);
+	temp = er32(XOFFTXC);
+	temp = er32(FCRUC);
+
+	temp = er32(PRC64);
+	temp = er32(PRC127);
+	temp = er32(PRC255);
+	temp = er32(PRC511);
+	temp = er32(PRC1023);
+	temp = er32(PRC1522);
+
+	temp = er32(GPRC);
+	temp = er32(BPRC);
+	temp = er32(MPRC);
+	temp = er32(GPTC);
+	temp = er32(GORCL);
+	temp = er32(GORCH);
+	temp = er32(GOTCL);
+	temp = er32(GOTCH);
+	temp = er32(RNBC);
+	temp = er32(RUC);
+	temp = er32(RFC);
+	temp = er32(ROC);
+	temp = er32(RJC);
+	temp = er32(TORL);
+	temp = er32(TORH);
+	temp = er32(TOTL);
+	temp = er32(TOTH);
+	temp = er32(TPR);
+	temp = er32(TPT);
+
+	temp = er32(PTC64);
+	temp = er32(PTC127);
+	temp = er32(PTC255);
+	temp = er32(PTC511);
+	temp = er32(PTC1023);
+	temp = er32(PTC1522);
+
+	temp = er32(MPTC);
+	temp = er32(BPTC);
+
+	if (hw->mac_type < e1000_82543)
+		return;
+
+	temp = er32(ALGNERRC);
+	temp = er32(RXERRC);
+	temp = er32(TNCRS);
+	temp = er32(CEXTERR);
+	temp = er32(TSCTC);
+	temp = er32(TSCTFC);
+
+	if (hw->mac_type <= e1000_82544)
+		return;
+
+	temp = er32(MGTPRC);
+	temp = er32(MGTPDC);
+	temp = er32(MGTPTC);
+}
+
+/**
+ * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to true. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ */
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_reset_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if (!hw->ifs_params_forced) {
+			hw->current_ifs_val = 0;
+			hw->ifs_min_val = IFS_MIN;
+			hw->ifs_max_val = IFS_MAX;
+			hw->ifs_step_size = IFS_STEP;
+			hw->ifs_ratio = IFS_RATIO;
+		}
+		hw->in_ifs_mode = false;
+		ew32(AIT, 0);
+	} else {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_update_adaptive - update adaptive IFS
+ * @hw: Struct containing variables accessed by shared code
+ * @tx_packets: Number of transmits since last callback
+ * @total_collisions: Number of collisions since last callback
+ *
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ */
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_update_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
+			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+				hw->in_ifs_mode = true;
+				if (hw->current_ifs_val < hw->ifs_max_val) {
+					if (hw->current_ifs_val == 0)
+						hw->current_ifs_val =
+						    hw->ifs_min_val;
+					else
+						hw->current_ifs_val +=
+						    hw->ifs_step_size;
+					ew32(AIT, hw->current_ifs_val);
+				}
+			}
+		} else {
+			if (hw->in_ifs_mode
+			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+				hw->current_ifs_val = 0;
+				hw->in_ifs_mode = false;
+				ew32(AIT, 0);
+			}
+		}
+	} else {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_tbi_adjust_stats
+ * @hw: Struct containing variables accessed by shared code
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ */
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 *mac_addr)
+{
+	u64 carry_bit;
+
+	/* First adjust the frame length. */
+	frame_len--;
+	/* We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error.    */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received.    */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters             */
+	carry_bit = 0x80000000 & stats->gorcl;
+	stats->gorcl += frame_len;
+	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
+	 * Received Count) was one before the addition,
+	 * AND it is zero after, then we lost the carry out,
+	 * need to add one to Gorch (Good Octets Received Count High).
+	 * This could be simplified if all environments supported
+	 * 64-bit integers.
+	 */
+	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+		stats->gorch++;
+	/* Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	if (frame_len == hw->max_frame_size) {
+		/* In this case, the hardware has overcounted the number of
+		 * oversize frames.
+		 */
+		if (stats->roc > 0)
+			stats->roc--;
+	}
+
+	/* Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
+}
+
+/**
+ * e1000_get_bus_info
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Gets the current PCI bus type, speed, and width of the hardware
+ */
+void e1000_get_bus_info(struct e1000_hw *hw)
+{
+	u32 status;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		hw->bus_type = e1000_bus_type_pci;
+		hw->bus_speed = e1000_bus_speed_unknown;
+		hw->bus_width = e1000_bus_width_unknown;
+		break;
+	default:
+		status = er32(STATUS);
+		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+		    e1000_bus_type_pcix : e1000_bus_type_pci;
+
+		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_120;
+		} else if (hw->bus_type == e1000_bus_type_pci) {
+			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_33;
+		} else {
+			switch (status & E1000_STATUS_PCIX_SPEED) {
+			case E1000_STATUS_PCIX_SPEED_66:
+				hw->bus_speed = e1000_bus_speed_66;
+				break;
+			case E1000_STATUS_PCIX_SPEED_100:
+				hw->bus_speed = e1000_bus_speed_100;
+				break;
+			case E1000_STATUS_PCIX_SPEED_133:
+				hw->bus_speed = e1000_bus_speed_133;
+				break;
+			default:
+				hw->bus_speed = e1000_bus_speed_reserved;
+				break;
+			}
+		}
+		hw->bus_width = (status & E1000_STATUS_BUS64) ?
+		    e1000_bus_width_64 : e1000_bus_width_32;
+		break;
+	}
+}
+
+/**
+ * e1000_write_reg_io
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset to write to
+ * @value: value to write
+ *
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ */
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	unsigned long io_addr = hw->io_base;
+	unsigned long io_data = hw->io_base + 4;
+
+	e1000_io_write(hw, io_addr, offset);
+	e1000_io_write(hw, io_data, value);
+}
+
+/**
+ * e1000_get_cable_length - Estimates the cable length.
+ * @hw: Struct containing variables accessed by shared code
+ * @min_length: The estimated minimum length
+ * @max_length: The estimated maximum length
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * This function always returns a ranged length (minimum & maximum).
+ * So for M88 phy's, this function interprets the one value returned from the
+ * register to the minimum and maximum range.
+ * For IGP phy's, the function calculates the range by the AGC registers.
+ */
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length)
+{
+	s32 ret_val;
+	u16 agc_value = 0;
+	u16 i, phy_data;
+	u16 cable_length;
+
+	DEBUGFUNC("e1000_get_cable_length");
+
+	*min_length = *max_length = 0;
+
+	/* Use old method for Phy older than IGP */
+	if (hw->phy_type == e1000_phy_m88) {
+
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+		/* Convert the enum value to ranged values */
+		switch (cable_length) {
+		case e1000_cable_length_50:
+			*min_length = 0;
+			*max_length = e1000_igp_cable_length_50;
+			break;
+		case e1000_cable_length_50_80:
+			*min_length = e1000_igp_cable_length_50;
+			*max_length = e1000_igp_cable_length_80;
+			break;
+		case e1000_cable_length_80_110:
+			*min_length = e1000_igp_cable_length_80;
+			*max_length = e1000_igp_cable_length_110;
+			break;
+		case e1000_cable_length_110_140:
+			*min_length = e1000_igp_cable_length_110;
+			*max_length = e1000_igp_cable_length_140;
+			break;
+		case e1000_cable_length_140:
+			*min_length = e1000_igp_cable_length_140;
+			*max_length = e1000_igp_cable_length_170;
+			break;
+		default:
+			return -E1000_ERR_PHY;
+			break;
+		}
+	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
+		u16 cur_agc_value;
+		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+		u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+		    { IGP01E1000_PHY_AGC_A,
+			IGP01E1000_PHY_AGC_B,
+			IGP01E1000_PHY_AGC_C,
+			IGP01E1000_PHY_AGC_D
+		};
+		/* Read the AGC registers for all channels */
+		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+			ret_val =
+			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+			/* Value bound check. */
+			if ((cur_agc_value >=
+			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
+			    || (cur_agc_value == 0))
+				return -E1000_ERR_PHY;
+
+			agc_value += cur_agc_value;
+
+			/* Update minimal AGC value. */
+			if (min_agc_value > cur_agc_value)
+				min_agc_value = cur_agc_value;
+		}
+
+		/* Remove the minimal AGC result for length < 50m */
+		if (agc_value <
+		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+			agc_value -= min_agc_value;
+
+			/* Get the average length of the remaining 3 channels */
+			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+		} else {
+			/* Get the average length of all the 4 channels. */
+			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+		}
+
+		/* Set the range of the calculated length. */
+		*min_length = ((e1000_igp_cable_length_table[agc_value] -
+				IGP01E1000_AGC_RANGE) > 0) ?
+		    (e1000_igp_cable_length_table[agc_value] -
+		     IGP01E1000_AGC_RANGE) : 0;
+		*max_length = e1000_igp_cable_length_table[agc_value] +
+		    IGP01E1000_AGC_RANGE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_polarity - Check the cable polarity
+ * @hw: Struct containing variables accessed by shared code
+ * @polarity: output parameter : 0 - Polarity is not reversed
+ *                               1 - Polarity is reversed.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function simply reads the polarity bit in the
+ * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
+ * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
+ * return 0.  If the link speed is 1000 Mbps the polarity status is in the
+ * IGP01E1000_PHY_PCS_INIT_REG.
+ */
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_polarity");
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* return the Polarity bit in the Status register. */
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+	} else if (hw->phy_type == e1000_phy_igp) {
+		/* Read the Status register to check the speed */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+		 * find the polarity status */
+		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+		    IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+			/* Read the GIG initialization PCS register (0x00B4) */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			/* Check the polarity bits */
+			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		} else {
+			/* For 10 Mbps, read the polarity bit in the status register. (for
+			 * 100 Mbps this bit is always 0) */
+			*polarity =
+			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_downshift - Check if Downshift occurred
+ * @hw: Struct containing variables accessed by shared code
+ * @downshift: output parameter : 0 - No Downshift occurred.
+ *                                1 - Downshift occurred.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function reads the Downshift bit in the Phy
+ * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
+ * Link Health register.  In IGP this bit is latched high, so the driver must
+ * read it immediately after link is established.
+ */
+static s32 e1000_check_downshift(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_downshift");
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded =
+		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_dsp_after_link_change
+ * @hw: Struct containing variables accessed by shared code
+ * @link_up: was link up at the time this was called
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ */
+
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
+{
+	s32 ret_val;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	    { IGP01E1000_PHY_AGC_PARAM_A,
+		IGP01E1000_PHY_AGC_PARAM_B,
+		IGP01E1000_PHY_AGC_PARAM_C,
+		IGP01E1000_PHY_AGC_PARAM_D
+	};
+	u16 min_length, max_length;
+
+	DEBUGFUNC("e1000_config_dsp_after_link_change");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	if (link_up) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+
+		if (speed == SPEED_1000) {
+
+			ret_val =
+			    e1000_get_cable_length(hw, &min_length,
+						   &max_length);
+			if (ret_val)
+				return ret_val;
+
+			if ((hw->dsp_config_state == e1000_dsp_config_enabled)
+			    && min_length >= e1000_igp_cable_length_50) {
+
+				for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       dsp_reg_array[i],
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					phy_data &=
+					    ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+					ret_val =
+					    e1000_write_phy_reg(hw,
+								dsp_reg_array
+								[i], phy_data);
+					if (ret_val)
+						return ret_val;
+				}
+				hw->dsp_config_state =
+				    e1000_dsp_config_activated;
+			}
+
+			if ((hw->ffe_config_state == e1000_ffe_config_enabled)
+			    && (min_length < e1000_igp_cable_length_50)) {
+
+				u16 ffe_idle_err_timeout =
+				    FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+				u32 idle_errs = 0;
+
+				/* clear previous idle error counts */
+				ret_val =
+				    e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				for (i = 0; i < ffe_idle_err_timeout; i++) {
+					udelay(1000);
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       PHY_1000T_STATUS,
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					idle_errs +=
+					    (phy_data &
+					     SR_1000T_IDLE_ERROR_CNT);
+					if (idle_errs >
+					    SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
+					{
+						hw->ffe_config_state =
+						    e1000_ffe_config_active;
+
+						ret_val =
+						    e1000_write_phy_reg(hw,
+									IGP01E1000_PHY_DSP_FFE,
+									IGP01E1000_PHY_DSP_FFE_CM_CP);
+						if (ret_val)
+							return ret_val;
+						break;
+					}
+
+					if (idle_errs)
+						ffe_idle_err_timeout =
+						    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+				}
+			}
+		}
+	} else {
+		if (hw->dsp_config_state == e1000_dsp_config_activated) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val =
+				    e1000_read_phy_reg(hw, dsp_reg_array[i],
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val =
+				    e1000_write_phy_reg(hw, dsp_reg_array[i],
+							phy_data);
+				if (ret_val)
+					return ret_val;
+			}
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+		}
+
+		if (hw->ffe_config_state == e1000_ffe_config_active) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+						IGP01E1000_PHY_DSP_FFE_DEFAULT);
+			if (ret_val)
+				return ret_val;
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_phy_mode - Set PHY to class A mode
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ */
+static s32 e1000_set_phy_mode(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 eeprom_data;
+
+	DEBUGFUNC("e1000_set_phy_mode");
+
+	if ((hw->mac_type == e1000_82545_rev_3) &&
+	    (hw->media_type == e1000_media_type_copper)) {
+		ret_val =
+		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
+				      &eeprom_data);
+		if (ret_val) {
+			return ret_val;
+		}
+
+		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+						0x000B);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
+						0x8104);
+			if (ret_val)
+				return ret_val;
+
+			hw->phy_reset_disable = false;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - set d3 link power state
+ * @hw: Struct containing variables accessed by shared code
+ * @active: true to enable lplu false to disable lplu.
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisement
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val;
+	u16 phy_data;
+	DEBUGFUNC("e1000_set_d3_lplu_state");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	/* During driver activity LPLU should not be used or it will attain link
+	 * from the lowest speeds starting from 10Mbps. The capability is used for
+	 * Dx transitions and states */
+	if (hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2) {
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (!active) {
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+		 * Dx states where the power conservation is most important.  During
+		 * driver activity we should enable SmartSpeed, so performance is
+		 * maintained. */
+		if (hw->smart_speed == e1000_smart_speed_on) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		} else if (hw->smart_speed == e1000_smart_speed_off) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
+		   || (hw->autoneg_advertised ==
+		       AUTONEG_ADVERTISE_10_100_ALL)) {
+
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data |= IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* When LPLU is enabled we should disable SmartSpeed */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_vco_speed
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ */
+static s32 e1000_set_vco_speed(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 default_page = 0;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_set_vco_speed");
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	/* Set PHY register 30, page 5, bit 8 to 0 */
+
+	ret_val =
+	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val =
+	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+
+/**
+ * e1000_enable_mng_pass_thru - check for bmc pass through
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Verifies the hardware needs to allow ARPs to be processed by the host
+ * returns: - true/false
+ */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	if (hw->asf_firmware_present) {
+		manc = er32(MANC);
+
+		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+			return false;
+		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+			return true;
+	}
+	return false;
+}
+
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 i;
+
+	/* Polarity reversal workaround for forced 10F/10H links. */
+
+	/* Disable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the NO link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+			break;
+		mdelay(100);
+	}
+
+	/* Recommended delay time after link has been lost */
+	mdelay(1000);
+
+	/* Now we will re-enable th transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be set.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_LINK_STATUS)
+			break;
+		mdelay(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_auto_rd_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Check for EEPROM Auto Read bit done.
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_auto_rd_done");
+	msleep(5);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_cfg_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks if the PHY configuration is done
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_phy_cfg_done");
+	mdelay(10);
+	return E1000_SUCCESS;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.32-ethercat.h	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,3048 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep-2.6.32-ethercat.h"
+
+/* Forward declarations of structures used by the shared code */
+struct e1000_hw;
+struct e1000_hw_stats;
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+	e1000_undefined = 0,
+	e1000_82542_rev2_0,
+	e1000_82542_rev2_1,
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_num_macs
+} e1000_mac_type;
+
+typedef enum {
+	e1000_eeprom_uninitialized = 0,
+	e1000_eeprom_spi,
+	e1000_eeprom_microwire,
+	e1000_eeprom_flash,
+	e1000_eeprom_none,	/* No NVM support */
+	e1000_num_eeprom_types
+} e1000_eeprom_type;
+
+/* Media Types */
+typedef enum {
+	e1000_media_type_copper = 0,
+	e1000_media_type_fiber = 1,
+	e1000_media_type_internal_serdes = 2,
+	e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+	e1000_10_half = 0,
+	e1000_10_full = 1,
+	e1000_100_half = 2,
+	e1000_100_full = 3
+} e1000_speed_duplex_type;
+
+/* Flow Control Settings */
+typedef enum {
+	E1000_FC_NONE = 0,
+	E1000_FC_RX_PAUSE = 1,
+	E1000_FC_TX_PAUSE = 2,
+	E1000_FC_FULL = 3,
+	E1000_FC_DEFAULT = 0xFF
+} e1000_fc_type;
+
+struct e1000_shadow_ram {
+	u16 eeprom_word;
+	bool modified;
+};
+
+/* PCI bus types */
+typedef enum {
+	e1000_bus_type_unknown = 0,
+	e1000_bus_type_pci,
+	e1000_bus_type_pcix,
+	e1000_bus_type_reserved
+} e1000_bus_type;
+
+/* PCI bus speeds */
+typedef enum {
+	e1000_bus_speed_unknown = 0,
+	e1000_bus_speed_33,
+	e1000_bus_speed_66,
+	e1000_bus_speed_100,
+	e1000_bus_speed_120,
+	e1000_bus_speed_133,
+	e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+/* PCI bus widths */
+typedef enum {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+} e1000_bus_width;
+
+/* PHY status info structure and supporting enums */
+typedef enum {
+	e1000_cable_length_50 = 0,
+	e1000_cable_length_50_80,
+	e1000_cable_length_80_110,
+	e1000_cable_length_110_140,
+	e1000_cable_length_140,
+	e1000_cable_length_undefined = 0xFF
+} e1000_cable_length;
+
+typedef enum {
+	e1000_gg_cable_length_60 = 0,
+	e1000_gg_cable_length_60_115 = 1,
+	e1000_gg_cable_length_115_150 = 2,
+	e1000_gg_cable_length_150 = 4
+} e1000_gg_cable_length;
+
+typedef enum {
+	e1000_igp_cable_length_10 = 10,
+	e1000_igp_cable_length_20 = 20,
+	e1000_igp_cable_length_30 = 30,
+	e1000_igp_cable_length_40 = 40,
+	e1000_igp_cable_length_50 = 50,
+	e1000_igp_cable_length_60 = 60,
+	e1000_igp_cable_length_70 = 70,
+	e1000_igp_cable_length_80 = 80,
+	e1000_igp_cable_length_90 = 90,
+	e1000_igp_cable_length_100 = 100,
+	e1000_igp_cable_length_110 = 110,
+	e1000_igp_cable_length_115 = 115,
+	e1000_igp_cable_length_120 = 120,
+	e1000_igp_cable_length_130 = 130,
+	e1000_igp_cable_length_140 = 140,
+	e1000_igp_cable_length_150 = 150,
+	e1000_igp_cable_length_160 = 160,
+	e1000_igp_cable_length_170 = 170,
+	e1000_igp_cable_length_180 = 180
+} e1000_igp_cable_length;
+
+typedef enum {
+	e1000_10bt_ext_dist_enable_normal = 0,
+	e1000_10bt_ext_dist_enable_lower,
+	e1000_10bt_ext_dist_enable_undefined = 0xFF
+} e1000_10bt_ext_dist_enable;
+
+typedef enum {
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+	e1000_downshift_normal = 0,
+	e1000_downshift_activated,
+	e1000_downshift_undefined = 0xFF
+} e1000_downshift;
+
+typedef enum {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+} e1000_smart_speed;
+
+typedef enum {
+	e1000_polarity_reversal_enabled = 0,
+	e1000_polarity_reversal_disabled,
+	e1000_polarity_reversal_undefined = 0xFF
+} e1000_polarity_reversal;
+
+typedef enum {
+	e1000_auto_x_mode_manual_mdi = 0,
+	e1000_auto_x_mode_manual_mdix,
+	e1000_auto_x_mode_auto1,
+	e1000_auto_x_mode_auto2,
+	e1000_auto_x_mode_undefined = 0xFF
+} e1000_auto_x_mode;
+
+typedef enum {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+    e1000_phy_m88 = 0,
+    e1000_phy_igp,
+    e1000_phy_undefined = 0xFF
+} e1000_phy_type;
+
+typedef enum {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+	e1000_ffe_config_enabled = 0,
+	e1000_ffe_config_active,
+	e1000_ffe_config_blocked
+} e1000_ffe_config;
+
+typedef enum {
+	e1000_dsp_config_disabled = 0,
+	e1000_dsp_config_enabled,
+	e1000_dsp_config_activated,
+	e1000_dsp_config_undefined = 0xFF
+} e1000_dsp_config;
+
+struct e1000_phy_info {
+	e1000_cable_length cable_length;
+	e1000_10bt_ext_dist_enable extended_10bt_distance;
+	e1000_rev_polarity cable_polarity;
+	e1000_downshift downshift;
+	e1000_polarity_reversal polarity_correction;
+	e1000_auto_x_mode mdix_mode;
+	e1000_1000t_rx_status local_rx;
+	e1000_1000t_rx_status remote_rx;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_eeprom_info {
+	e1000_eeprom_type type;
+	u16 word_size;
+	u16 opcode_bits;
+	u16 address_bits;
+	u16 delay_usec;
+	u16 page_size;
+};
+
+/* Flex ASF Information */
+#define E1000_HOST_IF_MAX_SIZE  2048
+
+typedef enum {
+	e1000_byte_align = 0,
+	e1000_word_align = 1,
+	e1000_dword_align = 2
+} e1000_align_type;
+
+/* Error Codes */
+#define E1000_SUCCESS      0
+#define E1000_ERR_EEPROM   1
+#define E1000_ERR_PHY      2
+#define E1000_ERR_CONFIG   3
+#define E1000_ERR_PARAM    4
+#define E1000_ERR_MAC_TYPE 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET   9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET   12
+
+#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \
+                                     (((_value) & 0xff00) >> 8))
+
+/* Function prototypes */
+/* Initialization */
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+void e1000_set_media_type(struct e1000_hw *hw);
+
+/* Link Configuration */
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+
+/* PHY */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_reset(struct e1000_hw *hw);
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+
+/* EEPROM Functions */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw);
+
+/* MNG HOST IF functions */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD   64
+#define E1000_HI_MAX_MNG_DATA_LENGTH    0x6F8	/* Host Interface data length */
+
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT  10	/* Time in ms to process MNG command */
+#define E1000_MNG_DHCP_COOKIE_OFFSET    0x6F0	/* Cookie offset */
+#define E1000_MNG_DHCP_COOKIE_LENGTH    0x10	/* Cookie length */
+#define E1000_MNG_IAMT_MODE             0x3
+#define E1000_MNG_ICH_IAMT_MODE         0x2
+#define E1000_IAMT_SIGNATURE            0x544D4149	/* Intel(R) Active Management Technology signature */
+
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1	/* DHCP parsing enabled */
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT    0x2	/* DHCP parsing enabled */
+#define E1000_VFTA_ENTRY_SHIFT                       0x5
+#define E1000_VFTA_ENTRY_MASK                        0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK              0x1F
+
+struct e1000_host_mng_command_header {
+	u8 command_id;
+	u8 checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];	/* Command data can length 0..0x658 */
+};
+#ifdef __BIG_ENDIAN
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u16 vlan_id;
+	u8 reserved0;
+	u8 status;
+	u32 reserved1;
+	u8 checksum;
+	u8 reserved3;
+	u16 reserved2;
+};
+#else
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8 status;
+	u8 reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8 reserved3;
+	u8 checksum;
+};
+#endif
+
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+
+/* Filters (multicast, vlan, receive) */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+void e1000_rar_set(struct e1000_hw *hw, u8 * mc_addr, u32 rar_index);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+
+/* LED functions */
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_blink_led_start(struct e1000_hw *hw);
+
+/* Adaptive IFS Functions */
+
+/* Everything else */
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 * mac_addr);
+void e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc);
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw);
+/* Port I/O is only supported on 82544 and newer */
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value);
+
+#define E1000_READ_REG_IO(a, reg) \
+    e1000_read_reg_io((a), E1000_##reg)
+#define E1000_WRITE_REG_IO(a, reg, val) \
+    e1000_write_reg_io((a), E1000_##reg, val)
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542               0x1000
+#define E1000_DEV_ID_82543GC_FIBER       0x1001
+#define E1000_DEV_ID_82543GC_COPPER      0x1004
+#define E1000_DEV_ID_82544EI_COPPER      0x1008
+#define E1000_DEV_ID_82544EI_FIBER       0x1009
+#define E1000_DEV_ID_82544GC_COPPER      0x100C
+#define E1000_DEV_ID_82544GC_LOM         0x100D
+#define E1000_DEV_ID_82540EM             0x100E
+#define E1000_DEV_ID_82540EM_LOM         0x1015
+#define E1000_DEV_ID_82540EP_LOM         0x1016
+#define E1000_DEV_ID_82540EP             0x1017
+#define E1000_DEV_ID_82540EP_LP          0x101E
+#define E1000_DEV_ID_82545EM_COPPER      0x100F
+#define E1000_DEV_ID_82545EM_FIBER       0x1011
+#define E1000_DEV_ID_82545GM_COPPER      0x1026
+#define E1000_DEV_ID_82545GM_FIBER       0x1027
+#define E1000_DEV_ID_82545GM_SERDES      0x1028
+#define E1000_DEV_ID_82546EB_COPPER      0x1010
+#define E1000_DEV_ID_82546EB_FIBER       0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82541EI             0x1013
+#define E1000_DEV_ID_82541EI_MOBILE      0x1018
+#define E1000_DEV_ID_82541ER_LOM         0x1014
+#define E1000_DEV_ID_82541ER             0x1078
+#define E1000_DEV_ID_82547GI             0x1075
+#define E1000_DEV_ID_82541GI             0x1076
+#define E1000_DEV_ID_82541GI_MOBILE      0x1077
+#define E1000_DEV_ID_82541GI_LF          0x107C
+#define E1000_DEV_ID_82546GB_COPPER      0x1079
+#define E1000_DEV_ID_82546GB_FIBER       0x107A
+#define E1000_DEV_ID_82546GB_SERDES      0x107B
+#define E1000_DEV_ID_82546GB_PCIE        0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82547EI             0x1019
+#define E1000_DEV_ID_82547EI_MOBILE      0x101A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+
+#define NODE_ADDRESS_SIZE 6
+#define ETH_LENGTH_OF_ADDRESS 6
+
+/* MAC decode size is 128K - This is the size of BAR0 */
+#define MAC_DECODE_SIZE (128 * 1024)
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+#define E1000_REVISION_0       0
+#define E1000_REVISION_1       1
+#define E1000_REVISION_2       2
+#define E1000_REVISION_3       3
+
+#define SPEED_10    10
+#define SPEED_100   100
+#define SPEED_1000  1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The sizes (in bytes) of a ethernet packet */
+#define ENET_HEADER_SIZE             14
+#define MINIMUM_ETHERNET_FRAME_SIZE  64	/* With FCS */
+#define ETHERNET_FCS_SIZE            4
+#define MINIMUM_ETHERNET_PACKET_SIZE \
+    (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define CRC_LENGTH                   ETHERNET_FCS_SIZE
+#define MAX_JUMBO_FRAME_SIZE         0x3F00
+
+/* 802.1q VLAN Packet Sizes */
+#define VLAN_TAG_SIZE  4	/* 802.3ac tag (not DMAed) */
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100	/* 802.3ac packet */
+#define ETHERNET_IP_TYPE        0x0800	/* IP packets */
+#define ETHERNET_ARP_TYPE       0x0806	/* Address Resolution Protocol (ARP) */
+
+/* Packet Header defines */
+#define IP_PROTOCOL_TCP    6
+#define IP_PROTOCOL_UDP    0x11
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+    E1000_IMS_RXDMT0 |         \
+    E1000_IMS_RXSEQ)
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   |    \
+    E1000_IMS_TXDW   |    \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ  |    \
+    E1000_IMS_LSC)
+
+/* Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+
+#define MIN_NUMBER_OF_DESCRIPTORS  8
+#define MAX_NUMBER_OF_DESCRIPTORS  0xFFF8
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	__le16 length;		/* Length of data DMAed into data buffer */
+	__le16 csum;		/* Packet checksum */
+	u8 status;		/* Descriptor status */
+	u8 errors;		/* Descriptor Errors */
+	__le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		__le64 buffer_addr;
+		__le64 reserved;
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length;
+			__le16 vlan;	/* VLAN tag */
+		} upper;
+	} wb;			/* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		__le64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length0;	/* length of buffer 0 */
+			__le16 vlan;	/* VLAN tag */
+		} middle;
+		struct {
+			__le16 header_status;
+			__le16 length[3];	/* length of buffers 1-3 */
+		} upper;
+		__le64 reserved;
+	} wb;			/* writeback */
+};
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD       0x01	/* Descriptor Done */
+#define E1000_RXD_STAT_EOP      0x02	/* End of Packet */
+#define E1000_RXD_STAT_IXSM     0x04	/* Ignore checksum */
+#define E1000_RXD_STAT_VP       0x08	/* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS    0x10	/* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS    0x20	/* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS     0x40	/* IP xsum calculated */
+#define E1000_RXD_STAT_PIF      0x80	/* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV    0x200	/* IP identification valid */
+#define E1000_RXD_STAT_UDPV     0x400	/* Valid UDP checksum */
+#define E1000_RXD_STAT_ACK      0x8000	/* ACK Packet indication */
+#define E1000_RXD_ERR_CE        0x01	/* CRC Error */
+#define E1000_RXD_ERR_SE        0x02	/* Symbol Error */
+#define E1000_RXD_ERR_SEQ       0x04	/* Sequence Error */
+#define E1000_RXD_ERR_CXE       0x10	/* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE      0x20	/* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE       0x40	/* IP Checksum Error */
+#define E1000_RXD_ERR_RXE       0x80	/* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF	/* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK  0xE000	/* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK  0x1000	/* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE    0x01000000
+#define E1000_RXDEXT_STATERR_SE    0x02000000
+#define E1000_RXDEXT_STATERR_SEQ   0x04000000
+#define E1000_RXDEXT_STATERR_CXE   0x10000000
+#define E1000_RXDEXT_STATERR_TCPE  0x20000000
+#define E1000_RXDEXT_STATERR_IPE   0x40000000
+#define E1000_RXDEXT_STATERR_RXE   0x80000000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP        0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK  0x000003FF
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |                \
+    E1000_RXD_ERR_SE  |                \
+    E1000_RXD_ERR_SEQ |                \
+    E1000_RXD_ERR_CXE |                \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  |            \
+    E1000_RXDEXT_STATERR_SE  |            \
+    E1000_RXDEXT_STATERR_SEQ |            \
+    E1000_RXDEXT_STATERR_CXE |            \
+    E1000_RXDEXT_STATERR_RXE)
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 cso;	/* Checksum offset */
+			u8 cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 css;	/* Checksum start */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000	/* Data Descriptor */
+#define E1000_TXD_DTYP_C     0x00000000	/* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01	/* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02	/* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000	/* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000	/* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000	/* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000	/* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000	/* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000	/* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000	/* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000	/* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001	/* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002	/* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004	/* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008	/* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000	/* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000	/* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000	/* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004	/* Tx Underrun */
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		__le32 ip_config;
+		struct {
+			u8 ipcss;	/* IP checksum start */
+			u8 ipcso;	/* IP checksum offset */
+			__le16 ipcse;	/* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		__le32 tcp_config;
+		struct {
+			u8 tucss;	/* TCP checksum start */
+			u8 tucso;	/* TCP checksum offset */
+			__le16 tucse;	/* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	__le32 cmd_and_length;	/* */
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 hdr_len;	/* Header length */
+			__le16 mss;	/* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's buffer address */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 typ_len_ext;	/* */
+			u8 cmd;	/* */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 popts;	/* Packet Options */
+			__le16 special;	/* */
+		} fields;
+	} upper;
+};
+
+/* Filters */
+#define E1000_NUM_UNICAST          16	/* Unicast filter entries */
+#define E1000_MC_TBL_SIZE          128	/* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128	/* VLAN Filter Table (4096 bits) */
+
+/* Receive Address Register */
+struct e1000_rar {
+	volatile __le32 low;	/* receive address low */
+	volatile __le32 high;	/* receive address high */
+};
+
+/* Number of entries in the Multicast Table Array (MTA). */
+#define E1000_NUM_MTA_REGISTERS 128
+
+/* IPv4 Address Table Entry */
+struct e1000_ipv4_at_entry {
+	volatile u32 ipv4_addr;	/* IP Address (RW) */
+	volatile u32 reserved;
+};
+
+/* Four wakeup IP addresses are supported */
+#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
+#define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP6AT_SIZE                  1
+
+/* IPv6 Address Table Entry */
+struct e1000_ipv6_at_entry {
+	volatile u8 ipv6_addr[16];
+};
+
+/* Flexible Filter Length Table Entry */
+struct e1000_fflt_entry {
+	volatile u32 length;	/* Flexible Filter Length (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Mask Table Entry */
+struct e1000_ffmt_entry {
+	volatile u32 mask;	/* Flexible Filter Mask (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Value Table Entry */
+struct e1000_ffvt_entry {
+	volatile u32 value;	/* Flexible Filter Value (RW) */
+	volatile u32 reserved;
+};
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+#define E1000_DISABLE_SERDES_LOOPBACK   0x0400
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and  should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL     0x00000	/* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004	/* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS   0x00008	/* Device Status - RO */
+#define E1000_EECD     0x00010	/* EEPROM/Flash Control - RW */
+#define E1000_EERD     0x00014	/* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018	/* Extended Device Control - RW */
+#define E1000_FLA      0x0001C	/* Flash Access - RW */
+#define E1000_MDIC     0x00020	/* MDI Control - RW */
+#define E1000_SCTL     0x00024	/* SerDes Control - RW */
+#define E1000_FEXTNVM  0x00028	/* Future Extended NVM register */
+#define E1000_FCAL     0x00028	/* Flow Control Address Low - RW */
+#define E1000_FCAH     0x0002C	/* Flow Control Address High -RW */
+#define E1000_FCT      0x00030	/* Flow Control Type - RW */
+#define E1000_VET      0x00038	/* VLAN Ether Type - RW */
+#define E1000_ICR      0x000C0	/* Interrupt Cause Read - R/clr */
+#define E1000_ITR      0x000C4	/* Interrupt Throttling Rate - RW */
+#define E1000_ICS      0x000C8	/* Interrupt Cause Set - WO */
+#define E1000_IMS      0x000D0	/* Interrupt Mask Set - RW */
+#define E1000_IMC      0x000D8	/* Interrupt Mask Clear - WO */
+#define E1000_IAM      0x000E0	/* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL     0x00100	/* RX Control - RW */
+#define E1000_RDTR1    0x02820	/* RX Delay Timer (1) - RW */
+#define E1000_RDBAL1   0x02900	/* RX Descriptor Base Address Low (1) - RW */
+#define E1000_RDBAH1   0x02904	/* RX Descriptor Base Address High (1) - RW */
+#define E1000_RDLEN1   0x02908	/* RX Descriptor Length (1) - RW */
+#define E1000_RDH1     0x02910	/* RX Descriptor Head (1) - RW */
+#define E1000_RDT1     0x02918	/* RX Descriptor Tail (1) - RW */
+#define E1000_FCTTV    0x00170	/* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW     0x00178	/* TX Configuration Word - RW */
+#define E1000_RXCW     0x00180	/* RX Configuration Word - RO */
+#define E1000_TCTL     0x00400	/* TX Control - RW */
+#define E1000_TCTL_EXT 0x00404	/* Extended TX Control - RW */
+#define E1000_TIPG     0x00410	/* TX Inter-packet gap -RW */
+#define E1000_TBT      0x00448	/* TX Burst Timer - RW */
+#define E1000_AIT      0x00458	/* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL   0x00E00	/* LED Control - RW */
+#define E1000_EXTCNF_CTRL  0x00F00	/* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE  0x00F08	/* Extended Configuration Size */
+#define E1000_PHY_CTRL     0x00F10	/* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG  0x0001
+#define E1000_PBA      0x01000	/* Packet Buffer Allocation - RW */
+#define E1000_PBS      0x01008	/* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010	/* MNG EEprom Control */
+#define E1000_FLASH_UPDATES 1000
+#define E1000_EEARBC   0x01024	/* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT   0x01028	/* FLASH Timer Register */
+#define E1000_EEWR     0x0102C	/* EEPROM Write Register - RW */
+#define E1000_FLSWCTL  0x01030	/* FLASH control register */
+#define E1000_FLSWDATA 0x01034	/* FLASH data register */
+#define E1000_FLSWCNT  0x01038	/* FLASH Access Counter */
+#define E1000_FLOP     0x0103C	/* FLASH Opcode Register */
+#define E1000_ERT      0x02008	/* Early Rx Threshold - RW */
+#define E1000_FCRTL    0x02160	/* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH    0x02168	/* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL   0x02170	/* Packet Split Receive Control - RW */
+#define E1000_RDBAL    0x02800	/* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH    0x02804	/* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN    0x02808	/* RX Descriptor Length - RW */
+#define E1000_RDH      0x02810	/* RX Descriptor Head - RW */
+#define E1000_RDT      0x02818	/* RX Descriptor Tail - RW */
+#define E1000_RDTR     0x02820	/* RX Delay Timer - RW */
+#define E1000_RDBAL0   E1000_RDBAL	/* RX Desc Base Address Low (0) - RW */
+#define E1000_RDBAH0   E1000_RDBAH	/* RX Desc Base Address High (0) - RW */
+#define E1000_RDLEN0   E1000_RDLEN	/* RX Desc Length (0) - RW */
+#define E1000_RDH0     E1000_RDH	/* RX Desc Head (0) - RW */
+#define E1000_RDT0     E1000_RDT	/* RX Desc Tail (0) - RW */
+#define E1000_RDTR0    E1000_RDTR	/* RX Delay Timer (0) - RW */
+#define E1000_RXDCTL   0x02828	/* RX Descriptor Control queue 0 - RW */
+#define E1000_RXDCTL1  0x02928	/* RX Descriptor Control queue 1 - RW */
+#define E1000_RADV     0x0282C	/* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD    0x02C00	/* RX Small Packet Detect - RW */
+#define E1000_RAID     0x02C08	/* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC   0x03000	/* TX DMA Control - RW */
+#define E1000_KABGTXD  0x03004	/* AFE Band Gap Transmit Ref Data */
+#define E1000_TDFH     0x03410	/* TX Data FIFO Head - RW */
+#define E1000_TDFT     0x03418	/* TX Data FIFO Tail - RW */
+#define E1000_TDFHS    0x03420	/* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS    0x03428	/* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC    0x03430	/* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL    0x03800	/* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH    0x03804	/* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN    0x03808	/* TX Descriptor Length - RW */
+#define E1000_TDH      0x03810	/* TX Descriptor Head - RW */
+#define E1000_TDT      0x03818	/* TX Descripotr Tail - RW */
+#define E1000_TIDV     0x03820	/* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL   0x03828	/* TX Descriptor Control - RW */
+#define E1000_TADV     0x0382C	/* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT    0x03830	/* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0    0x03840	/* TX Arbitration Count (0) */
+#define E1000_TDBAL1   0x03900	/* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1   0x03904	/* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1   0x03908	/* TX Desc Length (1) - RW */
+#define E1000_TDH1     0x03910	/* TX Desc Head (1) - RW */
+#define E1000_TDT1     0x03918	/* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1  0x03928	/* TX Descriptor Control (1) - RW */
+#define E1000_TARC1    0x03940	/* TX Arbitration Count (1) */
+#define E1000_CRCERRS  0x04000	/* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004	/* Alignment Error Count - R/clr */
+#define E1000_SYMERRS  0x04008	/* Symbol Error Count - R/clr */
+#define E1000_RXERRC   0x0400C	/* Receive Error Count - R/clr */
+#define E1000_MPC      0x04010	/* Missed Packet Count - R/clr */
+#define E1000_SCC      0x04014	/* Single Collision Count - R/clr */
+#define E1000_ECOL     0x04018	/* Excessive Collision Count - R/clr */
+#define E1000_MCC      0x0401C	/* Multiple Collision Count - R/clr */
+#define E1000_LATECOL  0x04020	/* Late Collision Count - R/clr */
+#define E1000_COLC     0x04028	/* Collision Count - R/clr */
+#define E1000_DC       0x04030	/* Defer Count - R/clr */
+#define E1000_TNCRS    0x04034	/* TX-No CRS - R/clr */
+#define E1000_SEC      0x04038	/* Sequence Error Count - R/clr */
+#define E1000_CEXTERR  0x0403C	/* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC     0x04040	/* Receive Length Error Count - R/clr */
+#define E1000_XONRXC   0x04048	/* XON RX Count - R/clr */
+#define E1000_XONTXC   0x0404C	/* XON TX Count - R/clr */
+#define E1000_XOFFRXC  0x04050	/* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC  0x04054	/* XOFF TX Count - R/clr */
+#define E1000_FCRUC    0x04058	/* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64    0x0405C	/* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127   0x04060	/* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255   0x04064	/* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511   0x04068	/* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023  0x0406C	/* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522  0x04070	/* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC     0x04074	/* Good Packets RX Count - R/clr */
+#define E1000_BPRC     0x04078	/* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC     0x0407C	/* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC     0x04080	/* Good Packets TX Count - R/clr */
+#define E1000_GORCL    0x04088	/* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH    0x0408C	/* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL    0x04090	/* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH    0x04094	/* Good Octets TX Count High - R/clr */
+#define E1000_RNBC     0x040A0	/* RX No Buffers Count - R/clr */
+#define E1000_RUC      0x040A4	/* RX Undersize Count - R/clr */
+#define E1000_RFC      0x040A8	/* RX Fragment Count - R/clr */
+#define E1000_ROC      0x040AC	/* RX Oversize Count - R/clr */
+#define E1000_RJC      0x040B0	/* RX Jabber Count - R/clr */
+#define E1000_MGTPRC   0x040B4	/* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC   0x040B8	/* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC   0x040BC	/* Management Packets TX Count - R/clr */
+#define E1000_TORL     0x040C0	/* Total Octets RX Low - R/clr */
+#define E1000_TORH     0x040C4	/* Total Octets RX High - R/clr */
+#define E1000_TOTL     0x040C8	/* Total Octets TX Low - R/clr */
+#define E1000_TOTH     0x040CC	/* Total Octets TX High - R/clr */
+#define E1000_TPR      0x040D0	/* Total Packets RX - R/clr */
+#define E1000_TPT      0x040D4	/* Total Packets TX - R/clr */
+#define E1000_PTC64    0x040D8	/* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127   0x040DC	/* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255   0x040E0	/* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511   0x040E4	/* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023  0x040E8	/* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522  0x040EC	/* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC     0x040F0	/* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC     0x040F4	/* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC    0x040F8	/* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC   0x040FC	/* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_IAC      0x04100	/* Interrupt Assertion Count */
+#define E1000_ICRXPTC  0x04104	/* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC  0x04108	/* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC  0x0410C	/* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC  0x04110	/* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC  0x04118	/* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C	/* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120	/* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC   0x04124	/* Interrupt Cause Receiver Overrun Count */
+#define E1000_RXCSUM   0x05000	/* RX Checksum Control - RW */
+#define E1000_RFCTL    0x05008	/* Receive Filter Control */
+#define E1000_MTA      0x05200	/* Multicast Table Array - RW Array */
+#define E1000_RA       0x05400	/* Receive Address - RW Array */
+#define E1000_VFTA     0x05600	/* VLAN Filter Table Array - RW Array */
+#define E1000_WUC      0x05800	/* Wakeup Control - RW */
+#define E1000_WUFC     0x05808	/* Wakeup Filter Control - RW */
+#define E1000_WUS      0x05810	/* Wakeup Status - RO */
+#define E1000_MANC     0x05820	/* Management Control - RW */
+#define E1000_IPAV     0x05838	/* IP Address Valid - RW */
+#define E1000_IP4AT    0x05840	/* IPv4 Address Table - RW Array */
+#define E1000_IP6AT    0x05880	/* IPv6 Address Table - RW Array */
+#define E1000_WUPL     0x05900	/* Wakeup Packet Length - RW */
+#define E1000_WUPM     0x05A00	/* Wakeup Packet Memory - RO A */
+#define E1000_FFLT     0x05F00	/* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF  0x08800	/* Host Interface */
+#define E1000_FFMT     0x09000	/* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT     0x09800	/* Flexible Filter Value Table - RW Array */
+
+#define E1000_KUMCTRLSTA 0x00034	/* MAC-PHY interface - RW */
+#define E1000_MDPHYA     0x0003C	/* PHY address - RW */
+#define E1000_MANC2H     0x05860	/* Managment Control To Host - RW */
+#define E1000_SW_FW_SYNC 0x05B5C	/* Software-Firmware Synchronization - RW */
+
+#define E1000_GCR       0x05B00	/* PCI-Ex Control */
+#define E1000_GSCL_1    0x05B10	/* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2    0x05B14	/* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3    0x05B18	/* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4    0x05B1C	/* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS    0x05B30	/* Function Active and Power State to MNG */
+#define E1000_SWSM      0x05B50	/* SW Semaphore */
+#define E1000_FWSM      0x05B54	/* FW Semaphore */
+#define E1000_FFLT_DBG  0x05F04	/* Debug Register */
+#define E1000_HICR      0x08F00	/* Host Interface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC    0x02C10	/* CPU Vector Register - RW */
+#define E1000_MRQC      0x05818	/* Multiple Receive Control - RW */
+#define E1000_RETA      0x05C00	/* Redirection Table - RW Array */
+#define E1000_RSSRK     0x05C80	/* RSS Random Key - RW Array */
+#define E1000_RSSIM     0x05864	/* RSS Interrupt Mask */
+#define E1000_RSSIR     0x05868	/* RSS Interrupt Request */
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL     E1000_CTRL
+#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
+#define E1000_82542_STATUS   E1000_STATUS
+#define E1000_82542_EECD     E1000_EECD
+#define E1000_82542_EERD     E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_FLA      E1000_FLA
+#define E1000_82542_MDIC     E1000_MDIC
+#define E1000_82542_SCTL     E1000_SCTL
+#define E1000_82542_FEXTNVM  E1000_FEXTNVM
+#define E1000_82542_FCAL     E1000_FCAL
+#define E1000_82542_FCAH     E1000_FCAH
+#define E1000_82542_FCT      E1000_FCT
+#define E1000_82542_VET      E1000_VET
+#define E1000_82542_RA       0x00040
+#define E1000_82542_ICR      E1000_ICR
+#define E1000_82542_ITR      E1000_ITR
+#define E1000_82542_ICS      E1000_ICS
+#define E1000_82542_IMS      E1000_IMS
+#define E1000_82542_IMC      E1000_IMC
+#define E1000_82542_RCTL     E1000_RCTL
+#define E1000_82542_RDTR     0x00108
+#define E1000_82542_RDBAL    0x00110
+#define E1000_82542_RDBAH    0x00114
+#define E1000_82542_RDLEN    0x00118
+#define E1000_82542_RDH      0x00120
+#define E1000_82542_RDT      0x00128
+#define E1000_82542_RDTR0    E1000_82542_RDTR
+#define E1000_82542_RDBAL0   E1000_82542_RDBAL
+#define E1000_82542_RDBAH0   E1000_82542_RDBAH
+#define E1000_82542_RDLEN0   E1000_82542_RDLEN
+#define E1000_82542_RDH0     E1000_82542_RDH
+#define E1000_82542_RDT0     E1000_82542_RDT
+#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8))	/* Split and Replication
+							 * RX Control - RW */
+#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
+#define E1000_82542_RDBAH3   0x02B04	/* RX Desc Base High Queue 3 - RW */
+#define E1000_82542_RDBAL3   0x02B00	/* RX Desc Low Queue 3 - RW */
+#define E1000_82542_RDLEN3   0x02B08	/* RX Desc Length Queue 3 - RW */
+#define E1000_82542_RDH3     0x02B10	/* RX Desc Head Queue 3 - RW */
+#define E1000_82542_RDT3     0x02B18	/* RX Desc Tail Queue 3 - RW */
+#define E1000_82542_RDBAL2   0x02A00	/* RX Desc Base Low Queue 2 - RW */
+#define E1000_82542_RDBAH2   0x02A04	/* RX Desc Base High Queue 2 - RW */
+#define E1000_82542_RDLEN2   0x02A08	/* RX Desc Length Queue 2 - RW */
+#define E1000_82542_RDH2     0x02A10	/* RX Desc Head Queue 2 - RW */
+#define E1000_82542_RDT2     0x02A18	/* RX Desc Tail Queue 2 - RW */
+#define E1000_82542_RDTR1    0x00130
+#define E1000_82542_RDBAL1   0x00138
+#define E1000_82542_RDBAH1   0x0013C
+#define E1000_82542_RDLEN1   0x00140
+#define E1000_82542_RDH1     0x00148
+#define E1000_82542_RDT1     0x00150
+#define E1000_82542_FCRTH    0x00160
+#define E1000_82542_FCRTL    0x00168
+#define E1000_82542_FCTTV    E1000_FCTTV
+#define E1000_82542_TXCW     E1000_TXCW
+#define E1000_82542_RXCW     E1000_RXCW
+#define E1000_82542_MTA      0x00200
+#define E1000_82542_TCTL     E1000_TCTL
+#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
+#define E1000_82542_TIPG     E1000_TIPG
+#define E1000_82542_TDBAL    0x00420
+#define E1000_82542_TDBAH    0x00424
+#define E1000_82542_TDLEN    0x00428
+#define E1000_82542_TDH      0x00430
+#define E1000_82542_TDT      0x00438
+#define E1000_82542_TIDV     0x00440
+#define E1000_82542_TBT      E1000_TBT
+#define E1000_82542_AIT      E1000_AIT
+#define E1000_82542_VFTA     0x00600
+#define E1000_82542_LEDCTL   E1000_LEDCTL
+#define E1000_82542_PBA      E1000_PBA
+#define E1000_82542_PBS      E1000_PBS
+#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
+#define E1000_82542_EEARBC   E1000_EEARBC
+#define E1000_82542_FLASHT   E1000_FLASHT
+#define E1000_82542_EEWR     E1000_EEWR
+#define E1000_82542_FLSWCTL  E1000_FLSWCTL
+#define E1000_82542_FLSWDATA E1000_FLSWDATA
+#define E1000_82542_FLSWCNT  E1000_FLSWCNT
+#define E1000_82542_FLOP     E1000_FLOP
+#define E1000_82542_EXTCNF_CTRL  E1000_EXTCNF_CTRL
+#define E1000_82542_EXTCNF_SIZE  E1000_EXTCNF_SIZE
+#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
+#define E1000_82542_ERT      E1000_ERT
+#define E1000_82542_RXDCTL   E1000_RXDCTL
+#define E1000_82542_RXDCTL1  E1000_RXDCTL1
+#define E1000_82542_RADV     E1000_RADV
+#define E1000_82542_RSRPD    E1000_RSRPD
+#define E1000_82542_TXDMAC   E1000_TXDMAC
+#define E1000_82542_KABGTXD  E1000_KABGTXD
+#define E1000_82542_TDFHS    E1000_TDFHS
+#define E1000_82542_TDFTS    E1000_TDFTS
+#define E1000_82542_TDFPC    E1000_TDFPC
+#define E1000_82542_TXDCTL   E1000_TXDCTL
+#define E1000_82542_TADV     E1000_TADV
+#define E1000_82542_TSPMT    E1000_TSPMT
+#define E1000_82542_CRCERRS  E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS  E1000_SYMERRS
+#define E1000_82542_RXERRC   E1000_RXERRC
+#define E1000_82542_MPC      E1000_MPC
+#define E1000_82542_SCC      E1000_SCC
+#define E1000_82542_ECOL     E1000_ECOL
+#define E1000_82542_MCC      E1000_MCC
+#define E1000_82542_LATECOL  E1000_LATECOL
+#define E1000_82542_COLC     E1000_COLC
+#define E1000_82542_DC       E1000_DC
+#define E1000_82542_TNCRS    E1000_TNCRS
+#define E1000_82542_SEC      E1000_SEC
+#define E1000_82542_CEXTERR  E1000_CEXTERR
+#define E1000_82542_RLEC     E1000_RLEC
+#define E1000_82542_XONRXC   E1000_XONRXC
+#define E1000_82542_XONTXC   E1000_XONTXC
+#define E1000_82542_XOFFRXC  E1000_XOFFRXC
+#define E1000_82542_XOFFTXC  E1000_XOFFTXC
+#define E1000_82542_FCRUC    E1000_FCRUC
+#define E1000_82542_PRC64    E1000_PRC64
+#define E1000_82542_PRC127   E1000_PRC127
+#define E1000_82542_PRC255   E1000_PRC255
+#define E1000_82542_PRC511   E1000_PRC511
+#define E1000_82542_PRC1023  E1000_PRC1023
+#define E1000_82542_PRC1522  E1000_PRC1522
+#define E1000_82542_GPRC     E1000_GPRC
+#define E1000_82542_BPRC     E1000_BPRC
+#define E1000_82542_MPRC     E1000_MPRC
+#define E1000_82542_GPTC     E1000_GPTC
+#define E1000_82542_GORCL    E1000_GORCL
+#define E1000_82542_GORCH    E1000_GORCH
+#define E1000_82542_GOTCL    E1000_GOTCL
+#define E1000_82542_GOTCH    E1000_GOTCH
+#define E1000_82542_RNBC     E1000_RNBC
+#define E1000_82542_RUC      E1000_RUC
+#define E1000_82542_RFC      E1000_RFC
+#define E1000_82542_ROC      E1000_ROC
+#define E1000_82542_RJC      E1000_RJC
+#define E1000_82542_MGTPRC   E1000_MGTPRC
+#define E1000_82542_MGTPDC   E1000_MGTPDC
+#define E1000_82542_MGTPTC   E1000_MGTPTC
+#define E1000_82542_TORL     E1000_TORL
+#define E1000_82542_TORH     E1000_TORH
+#define E1000_82542_TOTL     E1000_TOTL
+#define E1000_82542_TOTH     E1000_TOTH
+#define E1000_82542_TPR      E1000_TPR
+#define E1000_82542_TPT      E1000_TPT
+#define E1000_82542_PTC64    E1000_PTC64
+#define E1000_82542_PTC127   E1000_PTC127
+#define E1000_82542_PTC255   E1000_PTC255
+#define E1000_82542_PTC511   E1000_PTC511
+#define E1000_82542_PTC1023  E1000_PTC1023
+#define E1000_82542_PTC1522  E1000_PTC1522
+#define E1000_82542_MPTC     E1000_MPTC
+#define E1000_82542_BPTC     E1000_BPTC
+#define E1000_82542_TSCTC    E1000_TSCTC
+#define E1000_82542_TSCTFC   E1000_TSCTFC
+#define E1000_82542_RXCSUM   E1000_RXCSUM
+#define E1000_82542_WUC      E1000_WUC
+#define E1000_82542_WUFC     E1000_WUFC
+#define E1000_82542_WUS      E1000_WUS
+#define E1000_82542_MANC     E1000_MANC
+#define E1000_82542_IPAV     E1000_IPAV
+#define E1000_82542_IP4AT    E1000_IP4AT
+#define E1000_82542_IP6AT    E1000_IP6AT
+#define E1000_82542_WUPL     E1000_WUPL
+#define E1000_82542_WUPM     E1000_WUPM
+#define E1000_82542_FFLT     E1000_FFLT
+#define E1000_82542_TDFH     0x08010
+#define E1000_82542_TDFT     0x08018
+#define E1000_82542_FFMT     E1000_FFMT
+#define E1000_82542_FFVT     E1000_FFVT
+#define E1000_82542_HOST_IF  E1000_HOST_IF
+#define E1000_82542_IAM         E1000_IAM
+#define E1000_82542_EEMNGCTL    E1000_EEMNGCTL
+#define E1000_82542_PSRCTL      E1000_PSRCTL
+#define E1000_82542_RAID        E1000_RAID
+#define E1000_82542_TARC0       E1000_TARC0
+#define E1000_82542_TDBAL1      E1000_TDBAL1
+#define E1000_82542_TDBAH1      E1000_TDBAH1
+#define E1000_82542_TDLEN1      E1000_TDLEN1
+#define E1000_82542_TDH1        E1000_TDH1
+#define E1000_82542_TDT1        E1000_TDT1
+#define E1000_82542_TXDCTL1     E1000_TXDCTL1
+#define E1000_82542_TARC1       E1000_TARC1
+#define E1000_82542_RFCTL       E1000_RFCTL
+#define E1000_82542_GCR         E1000_GCR
+#define E1000_82542_GSCL_1      E1000_GSCL_1
+#define E1000_82542_GSCL_2      E1000_GSCL_2
+#define E1000_82542_GSCL_3      E1000_GSCL_3
+#define E1000_82542_GSCL_4      E1000_GSCL_4
+#define E1000_82542_FACTPS      E1000_FACTPS
+#define E1000_82542_SWSM        E1000_SWSM
+#define E1000_82542_FWSM        E1000_FWSM
+#define E1000_82542_FFLT_DBG    E1000_FFLT_DBG
+#define E1000_82542_IAC         E1000_IAC
+#define E1000_82542_ICRXPTC     E1000_ICRXPTC
+#define E1000_82542_ICRXATC     E1000_ICRXATC
+#define E1000_82542_ICTXPTC     E1000_ICTXPTC
+#define E1000_82542_ICTXATC     E1000_ICTXATC
+#define E1000_82542_ICTXQEC     E1000_ICTXQEC
+#define E1000_82542_ICTXQMTC    E1000_ICTXQMTC
+#define E1000_82542_ICRXDMTC    E1000_ICRXDMTC
+#define E1000_82542_ICRXOC      E1000_ICRXOC
+#define E1000_82542_HICR        E1000_HICR
+
+#define E1000_82542_CPUVEC      E1000_CPUVEC
+#define E1000_82542_MRQC        E1000_MRQC
+#define E1000_82542_RETA        E1000_RETA
+#define E1000_82542_RSSRK       E1000_RSSRK
+#define E1000_82542_RSSIM       E1000_RSSIM
+#define E1000_82542_RSSIR       E1000_RSSIR
+#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
+#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 txerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorcl;
+	u64 gorch;
+	u64 gotcl;
+	u64 gotch;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rlerrc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 torl;
+	u64 torh;
+	u64 totl;
+	u64 toth;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+};
+
+/* Structure containing variables used by the shared code (e1000_hw.c) */
+struct e1000_hw {
+	u8 __iomem *hw_addr;
+	u8 __iomem *flash_address;
+	e1000_mac_type mac_type;
+	e1000_phy_type phy_type;
+	u32 phy_init_script;
+	e1000_media_type media_type;
+	void *back;
+	struct e1000_shadow_ram *eeprom_shadow_ram;
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+	e1000_fc_type fc;
+	e1000_bus_speed bus_speed;
+	e1000_bus_width bus_width;
+	e1000_bus_type bus_type;
+	struct e1000_eeprom_info eeprom;
+	e1000_ms_type master_slave;
+	e1000_ms_type original_master_slave;
+	e1000_ffe_config ffe_config_state;
+	u32 asf_firmware_present;
+	u32 eeprom_semaphore_present;
+	unsigned long io_base;
+	u32 phy_id;
+	u32 phy_revision;
+	u32 phy_addr;
+	u32 original_fc;
+	u32 txcw;
+	u32 autoneg_failed;
+	u32 max_frame_size;
+	u32 min_frame_size;
+	u32 mc_filter_type;
+	u32 num_mc_addrs;
+	u32 collision_delta;
+	u32 tx_packet_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	bool tx_pkt_filtering;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+	u16 phy_spd_default;
+	u16 autoneg_advertised;
+	u16 pci_cmd_word;
+	u16 fc_high_water;
+	u16 fc_low_water;
+	u16 fc_pause_time;
+	u16 current_ifs_val;
+	u16 ifs_min_val;
+	u16 ifs_max_val;
+	u16 ifs_step_size;
+	u16 ifs_ratio;
+	u16 device_id;
+	u16 vendor_id;
+	u16 subsystem_id;
+	u16 subsystem_vendor_id;
+	u8 revision_id;
+	u8 autoneg;
+	u8 mdix;
+	u8 forced_speed_duplex;
+	u8 wait_autoneg_complete;
+	u8 dma_fairness;
+	u8 mac_addr[NODE_ADDRESS_SIZE];
+	u8 perm_mac_addr[NODE_ADDRESS_SIZE];
+	bool disable_polarity_correction;
+	bool speed_downgraded;
+	e1000_smart_speed smart_speed;
+	e1000_dsp_config dsp_config_state;
+	bool get_link_status;
+	bool serdes_has_link;
+	bool tbi_compatibility_en;
+	bool tbi_compatibility_on;
+	bool laa_is_present;
+	bool phy_reset_disable;
+	bool initialize_hw_bits_disable;
+	bool fc_send_xon;
+	bool fc_strict_ieee;
+	bool report_tx_early;
+	bool adaptive_ifs;
+	bool ifs_params_forced;
+	bool in_ifs_mode;
+	bool mng_reg_access_disabled;
+	bool leave_av_bit_off;
+	bool bad_tx_carr_stats_fd;
+	bool has_smbus;
+};
+
+#define E1000_EEPROM_SWDPIN0   0x0001	/* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020	/* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA   16	/* Offset to data in EEPROM read/write registers */
+#define E1000_EEPROM_RW_REG_DONE   2	/* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START  1	/* First bit for telling part to start operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2	/* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE    1	/* Flag for polling for write complete */
+#define E1000_EEPROM_POLL_READ     0	/* Flag for polling for read complete */
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD       0x00000001	/* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM      0x00000002	/* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR    0x00000004	/* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004	/*Blocks new Master requests */
+#define E1000_CTRL_LRST     0x00000008	/* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME      0x00000010	/* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE      0x00000020	/* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE     0x00000020	/* Auto-speed detect enable */
+#define E1000_CTRL_SLU      0x00000040	/* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080	/* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300	/* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000	/* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100	/* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200	/* Force 1Gb */
+#define E1000_CTRL_BEM32    0x00000400	/* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD   0x00000800	/* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000	/* Force Duplex */
+#define E1000_CTRL_D_UD_EN  0x00002000	/* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000	/* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000	/* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000	/* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0  0x00040000	/* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000	/* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2  0x00100000	/* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3  0x00200000	/* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0  0x00400000	/* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1  0x00800000	/* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2  0x01000000	/* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3  0x02000000	/* SWDPIN 3 input or output */
+#define E1000_CTRL_RST      0x04000000	/* Global reset */
+#define E1000_CTRL_RFCE     0x08000000	/* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000	/* Transmit flow control enable */
+#define E1000_CTRL_RTE      0x20000000	/* Routing tag enable */
+#define E1000_CTRL_VME      0x40000000	/* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000	/* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000	/* Initiate an interrupt to manageability engine */
+
+/* Device Status */
+#define E1000_STATUS_FD         0x00000001	/* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU         0x00000002	/* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK  0x0000000C	/* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0     0x00000000	/* Function 0 */
+#define E1000_STATUS_FUNC_1     0x00000004	/* Function 1 */
+#define E1000_STATUS_TXOFF      0x00000010	/* transmission paused */
+#define E1000_STATUS_TBIMODE    0x00000020	/* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10   0x00000000	/* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100  0x00000040	/* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080	/* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200	/* Lan Init Completion
+						   by EEPROM/Flash */
+#define E1000_STATUS_ASDV       0x00000300	/* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI    0x00000800	/* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000	/* Status of Master requests. */
+#define E1000_STATUS_MTXCKOK    0x00000400	/* MTX clock running OK */
+#define E1000_STATUS_PCI66      0x00000800	/* In 66Mhz slot */
+#define E1000_STATUS_BUS64      0x00001000	/* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE  0x00002000	/* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000	/* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0  0x00100000	/* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1  0x00200000	/* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2  0x00400000	/* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000	/* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE   0x01000000	/* BMC external code execution disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000	/* RGMII disabled */
+#define E1000_STATUS_FUSE_8       0x04000000
+#define E1000_STATUS_FUSE_9       0x08000000
+#define E1000_STATUS_SERDES0_DIS  0x10000000	/* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS  0x20000000	/* SERDES disabled on port 1 */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66  0x00000000	/* PCI-X bus speed  50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000	/* PCI-X bus speed  66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000	/* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK        0x00000001	/* EEPROM Clock */
+#define E1000_EECD_CS        0x00000002	/* EEPROM Chip Select */
+#define E1000_EECD_DI        0x00000004	/* EEPROM Data In */
+#define E1000_EECD_DO        0x00000008	/* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK  0x00000030
+#define E1000_EECD_FWE_DIS   0x00000010	/* Disable FLASH writes */
+#define E1000_EECD_FWE_EN    0x00000020	/* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ       0x00000040	/* EEPROM Access Request */
+#define E1000_EECD_GNT       0x00000080	/* EEPROM Access Grant */
+#define E1000_EECD_PRES      0x00000100	/* EEPROM Present */
+#define E1000_EECD_SIZE      0x00000200	/* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_ADDR_BITS 0x00000400	/* EEPROM Addressing bits based on type
+					 * (0-small, 1-large) */
+#define E1000_EECD_TYPE      0x00002000	/* EEPROM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_EEPROM_GRANT_ATTEMPTS
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000	/* EEPROM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD          0x00000200	/* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800	/* EEprom Size */
+#define E1000_EECD_SIZE_EX_SHIFT    11
+#define E1000_EECD_NVADDS    0x00018000	/* NVM Address Size */
+#define E1000_EECD_SELSHAD   0x00020000	/* Select Shadow RAM */
+#define E1000_EECD_INITSRAM  0x00040000	/* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD     0x00080000	/* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000	/* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV     0x00200000	/* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL   0x00400000	/* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT      22
+#define E1000_STM_OPCODE     0xDB00
+#define E1000_HICR_FW_RESET  0xC0
+
+#define E1000_SHADOW_RAM_WORDS     2048
+#define E1000_ICH_NVM_SIG_WORD     0x13
+#define E1000_ICH_NVM_SIG_MASK     0xC0
+
+/* EEPROM Read */
+#define E1000_EERD_START      0x00000001	/* Start Read */
+#define E1000_EERD_DONE       0x00000010	/* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK  0x0000FF00	/* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK  0xFFFF0000	/* Read Data */
+
+/* SPI EEPROM Status Register */
+#define EEPROM_STATUS_RDY_SPI  0x01
+#define EEPROM_STATUS_WEN_SPI  0x02
+#define EEPROM_STATUS_BP0_SPI  0x04
+#define EEPROM_STATUS_BP1_SPI  0x08
+#define EEPROM_STATUS_WPEN_SPI 0x80
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN   0x00000001	/* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN   0x00000002	/* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN   0x00000004	/* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN   0x00000008	/* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010	/* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020	/* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040	/* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080	/* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR  0x00000100	/* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR  0x00000200	/* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR  0x00000400	/* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR  0x00000800	/* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK    0x00001000	/* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST    0x00002000	/* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS       0x00004000	/* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000	/* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000	/* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_SERDES  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII   0x00800000
+#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
+#define E1000_CTRL_EXT_DRV_LOAD       0x10000000	/* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME           0x08000000	/* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000	/* Clear Interrupt timers after IMS clear */
+#define E1000_CRTL_EXT_PB_PAREN       0x01000000	/* packet buffer parity error detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN       0x02000000	/* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN    0x40000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK  0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK  0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_INT_EN    0x20000000
+#define E1000_MDIC_ERROR     0x40000000
+
+#define E1000_KUMCTRLSTA_MASK           0x0000FFFF
+#define E1000_KUMCTRLSTA_OFFSET         0x001F0000
+#define E1000_KUMCTRLSTA_OFFSET_SHIFT   16
+#define E1000_KUMCTRLSTA_REN            0x00200000
+
+#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL      0x00000000
+#define E1000_KUMCTRLSTA_OFFSET_CTRL           0x00000001
+#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL       0x00000002
+#define E1000_KUMCTRLSTA_OFFSET_DIAG           0x00000003
+#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS       0x00000004
+#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM      0x00000009
+#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL        0x00000010
+#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES     0x0000001E
+#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES      0x0000001F
+
+/* FIFO Control */
+#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS   0x00000008
+#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
+
+/* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
+#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
+
+/* Half-Duplex Control */
+#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
+#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
+
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
+
+#define E1000_KABGTXD_BGSQLBIAS                0x00050000
+
+#define E1000_PHY_CTRL_SPD_EN                  0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
+#define E1000_PHY_CTRL_B2B_EN                  0x00000080
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT      0
+#define E1000_LEDCTL_LED0_BLINK_RATE      0x0000020
+#define E1000_LEDCTL_LED0_IVRT            0x00000040
+#define E1000_LEDCTL_LED0_BLINK           0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK       0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT      8
+#define E1000_LEDCTL_LED1_BLINK_RATE      0x0002000
+#define E1000_LEDCTL_LED1_IVRT            0x00004000
+#define E1000_LEDCTL_LED1_BLINK           0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK       0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT      16
+#define E1000_LEDCTL_LED2_BLINK_RATE      0x00200000
+#define E1000_LEDCTL_LED2_IVRT            0x00400000
+#define E1000_LEDCTL_LED2_BLINK           0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK       0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT      24
+#define E1000_LEDCTL_LED3_BLINK_RATE      0x20000000
+#define E1000_LEDCTL_LED3_IVRT            0x40000000
+#define E1000_LEDCTL_LED3_BLINK           0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000  0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP       0x2
+#define E1000_LEDCTL_MODE_ACTIVITY      0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10       0x5
+#define E1000_LEDCTL_MODE_LINK_100      0x6
+#define E1000_LEDCTL_MODE_LINK_1000     0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE     0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9
+#define E1000_LEDCTL_MODE_COLLISION     0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED     0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE      0xC
+#define E1000_LEDCTL_MODE_PAUSED        0xD
+#define E1000_LEDCTL_MODE_LED_ON        0xE
+#define E1000_LEDCTL_MODE_LED_OFF       0xF
+
+/* Receive Address */
+#define E1000_RAH_AV  0x80000000	/* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW          0x00000001	/* Transmit desc written back */
+#define E1000_ICR_TXQE          0x00000002	/* Transmit Queue empty */
+#define E1000_ICR_LSC           0x00000004	/* Link Status Change */
+#define E1000_ICR_RXSEQ         0x00000008	/* rx sequence error */
+#define E1000_ICR_RXDMT0        0x00000010	/* rx desc min. threshold (0) */
+#define E1000_ICR_RXO           0x00000040	/* rx overrun */
+#define E1000_ICR_RXT0          0x00000080	/* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC          0x00000200	/* MDIO access complete */
+#define E1000_ICR_RXCFG         0x00000400	/* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0       0x00000800	/* GP Int 0 */
+#define E1000_ICR_GPI_EN1       0x00001000	/* GP Int 1 */
+#define E1000_ICR_GPI_EN2       0x00002000	/* GP Int 2 */
+#define E1000_ICR_GPI_EN3       0x00004000	/* GP Int 3 */
+#define E1000_ICR_TXD_LOW       0x00008000
+#define E1000_ICR_SRPD          0x00010000
+#define E1000_ICR_ACK           0x00020000	/* Receive Ack frame */
+#define E1000_ICR_MNG           0x00040000	/* Manageability event */
+#define E1000_ICR_DOCK          0x00080000	/* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED  0x80000000	/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR  0x00400000	/* host arb read buffer parity error */
+#define E1000_ICR_PB_PAR        0x00800000	/* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_ALL_PARITY    0x03F00000	/* all parity error bits */
+#define E1000_ICR_DSW           0x00000020	/* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT        0x00001000	/* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST         0x00100000	/* ME hardware reset occurs */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_ICS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_ICS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_ICS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_ICS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_ICS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_ICS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_ICS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_ICS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_ICS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_ICS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD      E1000_ICR_SRPD
+#define E1000_ICS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_ICS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_ICS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW       E1000_ICR_DSW
+#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
+#define E1000_ICS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD      E1000_ICR_SRPD
+#define E1000_IMS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW       E1000_ICR_DSW
+#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMC_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMC_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMC_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMC_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMC_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMC_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMC_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMC_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMC_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMC_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMC_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMC_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD      E1000_ICR_SRPD
+#define E1000_IMC_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMC_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMC_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMC_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMC_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMC_DSW       E1000_ICR_DSW
+#define E1000_IMC_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMC_EPRST     E1000_ICR_EPRST
+
+/* Receive Control */
+#define E1000_RCTL_RST            0x00000001	/* Software reset */
+#define E1000_RCTL_EN             0x00000002	/* enable */
+#define E1000_RCTL_SBP            0x00000004	/* store bad packet */
+#define E1000_RCTL_UPE            0x00000008	/* unicast promiscuous enable */
+#define E1000_RCTL_MPE            0x00000010	/* multicast promiscuous enab */
+#define E1000_RCTL_LPE            0x00000020	/* long packet enable */
+#define E1000_RCTL_LBM_NO         0x00000000	/* no loopback mode */
+#define E1000_RCTL_LBM_MAC        0x00000040	/* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP        0x00000080	/* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR       0x000000C0	/* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK      0x00000C00	/* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS        0x00000400	/* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF     0x00000000	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT     0x00000100	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH    0x00000200	/* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT       12	/* multicast offset shift */
+#define E1000_RCTL_MO_0           0x00000000	/* multicast offset 11:0 */
+#define E1000_RCTL_MO_1           0x00001000	/* multicast offset 12:1 */
+#define E1000_RCTL_MO_2           0x00002000	/* multicast offset 13:2 */
+#define E1000_RCTL_MO_3           0x00003000	/* multicast offset 15:4 */
+#define E1000_RCTL_MDR            0x00004000	/* multicast desc ring 0 */
+#define E1000_RCTL_BAM            0x00008000	/* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048        0x00000000	/* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024        0x00010000	/* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512         0x00020000	/* rx buffer size 512 */
+#define E1000_RCTL_SZ_256         0x00030000	/* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384       0x00010000	/* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192        0x00020000	/* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096        0x00030000	/* rx buffer size 4096 */
+#define E1000_RCTL_VFE            0x00040000	/* vlan filter enable */
+#define E1000_RCTL_CFIEN          0x00080000	/* canonical form enable */
+#define E1000_RCTL_CFI            0x00100000	/* canonical form indicator */
+#define E1000_RCTL_DPF            0x00400000	/* discard pause frames */
+#define E1000_RCTL_PMCF           0x00800000	/* pass MAC control frames */
+#define E1000_RCTL_BSEX           0x02000000	/* Buffer size extension */
+#define E1000_RCTL_SECRC          0x04000000	/* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK    0x78000000	/* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT   27	/* Flexible buffer shift */
+
+/* Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE0_MASK) |
+ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE1_MASK) |
+ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE2_MASK) |
+ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *                  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT  7	/* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT  2	/* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT  6	/* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14	/* Shift _left_ 14 */
+
+/* SW_W_SYNC definitions */
+#define E1000_SWFW_EEP_SM     0x0001
+#define E1000_SWFW_PHY0_SM    0x0002
+#define E1000_SWFW_PHY1_SM    0x0004
+#define E1000_SWFW_MAC_CSR_SM 0x0008
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff	/* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB  0x80000000	/* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80	/* descriptor length */
+#define E1000_RDH_RDH   0x0000ffff	/* receive descriptor head */
+#define E1000_RDT_RDT   0x0000ffff	/* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8	/* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000	/* External Flow Control Enable */
+#define E1000_FCRTL_RTL  0x0000FFF8	/* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000	/* Enable XON frame transmission */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS           0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK      0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT     1
+#define E1000_RFCTL_NFSW_DIS            0x00000040
+#define E1000_RFCTL_NFSR_DIS            0x00000080
+#define E1000_RFCTL_NFS_VER_MASK        0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT       8
+#define E1000_RFCTL_IPV6_DIS            0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS       0x00000800
+#define E1000_RFCTL_ACK_DIS             0x00001000
+#define E1000_RFCTL_ACKD_DIS            0x00002000
+#define E1000_RFCTL_IPFRSP_DIS          0x00004000
+#define E1000_RFCTL_EXTEN               0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F	/* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00	/* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000	/* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN    0x01000000	/* RXDCTL Granularity */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F	/* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00	/* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000	/* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN    0x01000000	/* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000	/* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000	/* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000	/* Enable the counting of desc.
+						   still to be processed. */
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD         0x00000020	/* TXCW full duplex */
+#define E1000_TXCW_HD         0x00000040	/* TXCW half duplex */
+#define E1000_TXCW_PAUSE      0x00000080	/* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100	/* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180	/* TXCW pause request mask */
+#define E1000_TXCW_RF         0x00003000	/* TXCW remote fault */
+#define E1000_TXCW_NP         0x00008000	/* TXCW next page */
+#define E1000_TXCW_CW         0x0000ffff	/* TxConfigWord mask */
+#define E1000_TXCW_TXC        0x40000000	/* Transmit Config control */
+#define E1000_TXCW_ANE        0x80000000	/* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW    0x0000ffff	/* RxConfigWord mask */
+#define E1000_RXCW_NC    0x04000000	/* Receive config no carrier */
+#define E1000_RXCW_IV    0x08000000	/* Receive config invalid */
+#define E1000_RXCW_CC    0x10000000	/* Receive config change */
+#define E1000_RXCW_C     0x20000000	/* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000	/* Receive config synch */
+#define E1000_RXCW_ANC   0x80000000	/* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST    0x00000001	/* software reset */
+#define E1000_TCTL_EN     0x00000002	/* enable tx */
+#define E1000_TCTL_BCE    0x00000004	/* busy check enable */
+#define E1000_TCTL_PSP    0x00000008	/* pad short packets */
+#define E1000_TCTL_CT     0x00000ff0	/* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000	/* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000	/* SW Xoff transmission */
+#define E1000_TCTL_PBE    0x00800000	/* Packet Burst Enable */
+#define E1000_TCTL_RTLC   0x01000000	/* Re-transmit on late collision */
+#define E1000_TCTL_NRTU   0x02000000	/* No Re-transmit on underrun */
+#define E1000_TCTL_MULR   0x10000000	/* Multiple request support */
+/* Extended Transmit Control */
+#define E1000_TCTL_EXT_BST_MASK  0x000003FF	/* Backoff Slot Time */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00	/* Gigabit Carry Extend Padding */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF	/* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL     0x00000100	/* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL     0x00000200	/* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL   0x00000400	/* IPv6 checksum offload */
+#define E1000_RXCSUM_IPPCSE    0x00001000	/* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD      0x00002000	/* packet checksum disabled */
+
+/* Multiple Receive Queue Control */
+#define E1000_MRQC_ENABLE_MASK              0x00000003
+#define E1000_MRQC_ENABLE_RSS_2Q            0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT           0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK           0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP       0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4           0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX    0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX        0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6           0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00200000
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME       0x00000001	/* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002	/* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004	/* PME Status */
+#define E1000_WUC_APMPME     0x00000008	/* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM        0x80000000	/* Enable SPM */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001	/* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG  0x00000002	/* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX   0x00000004	/* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC   0x00000008	/* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC   0x00000010	/* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP  0x00000020	/* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO      0x00008000	/* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000	/* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000	/* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000	/* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000	/* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF	/* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16	/* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001	/* Link Status Changed */
+#define E1000_WUS_MAG  0x00000002	/* Magic Packet Received */
+#define E1000_WUS_EX   0x00000004	/* Directed Exact Received */
+#define E1000_WUS_MC   0x00000008	/* Directed Multicast Received */
+#define E1000_WUS_BC   0x00000010	/* Broadcast Received */
+#define E1000_WUS_ARP  0x00000020	/* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000	/* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000	/* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000	/* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000	/* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN      0x00000001	/* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN        0x00000002	/* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE    0x00000004	/* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN       0x00000100	/* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN       0x00000200	/* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN       0x00000400	/* Enable IPv4 */
+#define E1000_MANC_IPV6_EN       0x00000800	/* Enable IPv6 */
+#define E1000_MANC_SNAP_EN       0x00001000	/* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN        0x00002000	/* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN   0x00004000	/* Enable Neighbor Discovery
+						 * Filtering */
+#define E1000_MANC_ARP_RES_EN    0x00008000	/* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET     0x00010000	/* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN    0x00020000	/* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000	/* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL       0x00080000	/* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000	/* Block phy resets */
+#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000	/* Enable MAC address
+							 * filtering */
+#define E1000_MANC_EN_MNG2HOST   0x00200000	/* Enable MNG packets to host
+						 * memory */
+#define E1000_MANC_EN_IP_ADDR_FILTER    0x00400000	/* Enable IP address
+							 * filtering */
+#define E1000_MANC_EN_XSUM_FILTER   0x00800000	/* Enable checksum filtering */
+#define E1000_MANC_BR_EN         0x01000000	/* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ       0x01000000	/* SMBus Request */
+#define E1000_MANC_SMB_GNT       0x02000000	/* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN    0x04000000	/* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN   0x08000000	/* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT  0x10000000	/* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT   0x20000000	/* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT  28	/* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT   29	/* SMBus Clock Out Shift */
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI         0x00000001	/* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI      0x00000002	/* FW Semaphore bit */
+#define E1000_SWSM_WMNG         0x00000004	/* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD     0x00000008	/* Driver Loaded Bit */
+
+/* FW Semaphore Register */
+#define E1000_FWSM_MODE_MASK    0x0000000E	/* FW mode */
+#define E1000_FWSM_MODE_SHIFT            1
+#define E1000_FWSM_FW_VALID     0x00008000	/* FW established a valid mode */
+
+#define E1000_FWSM_RSPCIPHY        0x00000040	/* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW           0x10000000	/* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK     0x60000000	/* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT     29
+#define E1000_FWSM_SKUSEL_EMB      0x0	/* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS     0x1	/* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2	/* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3	/* Perf & Copr GbE SKU */
+
+/* FFLT Debug Register */
+#define E1000_FFLT_DBG_INVC     0x00100000	/* Invalid /C/ code handling */
+
+typedef enum {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_interface_only
+} e1000_mng_mode;
+
+/* Host Interface Control Register */
+#define E1000_HICR_EN           0x00000001	/* Enable Bit - RO */
+#define E1000_HICR_C            0x00000002	/* Driver sets this bit when done
+						 * to put command in RAM */
+#define E1000_HICR_SV           0x00000004	/* Status Validity */
+#define E1000_HICR_FWR          0x00000080	/* FW reset. Set by the Host */
+
+/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
+#define E1000_HI_MAX_DATA_LENGTH         252	/* Host Interface data length */
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH  1792	/* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH  448	/* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT         500	/* Time in ms to process HI command */
+
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;	/* I/F bits for command, status for return */
+	u8 checksum;
+};
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];	/* Command data can length 0..252 */
+};
+
+/* Host SMB register #0 */
+#define E1000_HSMC0R_CLKIN      0x00000001	/* SMB Clock in */
+#define E1000_HSMC0R_DATAIN     0x00000002	/* SMB Data in */
+#define E1000_HSMC0R_DATAOUT    0x00000004	/* SMB Data out */
+#define E1000_HSMC0R_CLKOUT     0x00000008	/* SMB Clock out */
+
+/* Host SMB register #1 */
+#define E1000_HSMC1R_CLKIN      E1000_HSMC0R_CLKIN
+#define E1000_HSMC1R_DATAIN     E1000_HSMC0R_DATAIN
+#define E1000_HSMC1R_DATAOUT    E1000_HSMC0R_DATAOUT
+#define E1000_HSMC1R_CLKOUT     E1000_HSMC0R_CLKOUT
+
+/* FW Status Register */
+#define E1000_FWSTS_FWS_MASK    0x000000FF	/* FW Status */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF	/* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN          4096
+
+/* PCI-Ex registers*/
+
+/* PCI-Ex Control Register */
+#define E1000_GCR_RXD_NO_SNOOP          0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
+#define E1000_GCR_TXD_NO_SNOOP          0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
+
+#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
+                             E1000_GCR_RXDSCW_NO_SNOOP      | \
+                             E1000_GCR_RXDSCR_NO_SNOOP      | \
+                             E1000_GCR_TXD_NO_SNOOP         | \
+                             E1000_GCR_TXDSCW_NO_SNOOP      | \
+                             E1000_GCR_TXDSCR_NO_SNOOP)
+
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+/* Function Active and Power State to MNG */
+#define E1000_FACTPS_FUNC0_POWER_STATE_MASK         0x00000003
+#define E1000_FACTPS_LAN0_VALID                     0x00000004
+#define E1000_FACTPS_FUNC0_AUX_EN                   0x00000008
+#define E1000_FACTPS_FUNC1_POWER_STATE_MASK         0x000000C0
+#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT        6
+#define E1000_FACTPS_LAN1_VALID                     0x00000100
+#define E1000_FACTPS_FUNC1_AUX_EN                   0x00000200
+#define E1000_FACTPS_FUNC2_POWER_STATE_MASK         0x00003000
+#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT        12
+#define E1000_FACTPS_IDE_ENABLE                     0x00004000
+#define E1000_FACTPS_FUNC2_AUX_EN                   0x00008000
+#define E1000_FACTPS_FUNC3_POWER_STATE_MASK         0x000C0000
+#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT        18
+#define E1000_FACTPS_SP_ENABLE                      0x00100000
+#define E1000_FACTPS_FUNC3_AUX_EN                   0x00200000
+#define E1000_FACTPS_FUNC4_POWER_STATE_MASK         0x03000000
+#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT        24
+#define E1000_FACTPS_IPMI_ENABLE                    0x04000000
+#define E1000_FACTPS_FUNC4_AUX_EN                   0x08000000
+#define E1000_FACTPS_MNGCG                          0x20000000
+#define E1000_FACTPS_LAN_FUNC_SEL                   0x40000000
+#define E1000_FACTPS_PM_STATE_CHANGED               0x80000000
+
+/* PCI-Ex Config Space */
+#define PCI_EX_LINK_STATUS           0x12
+#define PCI_EX_LINK_WIDTH_MASK       0x3F0
+#define PCI_EX_LINK_WIDTH_SHIFT      4
+
+/* EEPROM Commands - Microwire */
+#define EEPROM_READ_OPCODE_MICROWIRE  0x6	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5	/* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7	/* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE  0x13	/* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE  0x10	/* EEPROM erase/write disable */
+
+/* EEPROM Commands - SPI */
+#define EEPROM_MAX_RETRY_SPI        5000	/* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI      0x03	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI     0x02	/* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI        0x08	/* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI      0x06	/* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI      0x04	/* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI      0x05	/* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI      0x01	/* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI   0x20	/* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI  0xD8	/* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI  0xDB	/* EEPROM ERASE 256B */
+
+/* EEPROM Size definitions */
+#define EEPROM_WORD_SIZE_SHIFT  6
+#define EEPROM_SIZE_SHIFT       10
+#define EEPROM_SIZE_MASK        0x1C00
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT                 0x0003
+#define EEPROM_ID_LED_SETTINGS        0x0004
+#define EEPROM_VERSION                0x0005
+#define EEPROM_SERDES_AMPLITUDE       0x0006	/* For SERDES output amplitude adjustment. */
+#define EEPROM_PHY_CLASS_WORD         0x0007
+#define EEPROM_INIT_CONTROL1_REG      0x000A
+#define EEPROM_INIT_CONTROL2_REG      0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define EEPROM_INIT_CONTROL3_PORT_B   0x0014
+#define EEPROM_INIT_3GIO_3            0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define EEPROM_INIT_CONTROL3_PORT_A   0x0024
+#define EEPROM_CFG                    0x0012
+#define EEPROM_FLASH_VERSION          0x0032
+#define EEPROM_CHECKSUM_REG           0x003F
+
+#define E1000_EEPROM_CFG_DONE         0x00040000	/* MNG config cycle done */
+#define E1000_EEPROM_CFG_DONE_PORT_1  0x00080000	/* ...for second port */
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \
+                              (ID_LED_OFF1_OFF2 << 8) | \
+                              (ID_LED_DEF1_DEF2 << 4) | \
+                              (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2       0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
+#define EEPROM_SERDES_AMPLITUDE_MASK  0x000F
+
+/* Mask bit for PHY class in Word 7 of the EEPROM */
+#define EEPROM_PHY_CLASS_A   0x8000
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS   0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST   0x0200
+#define EEPROM_WORD0A_FD     0x0400
+#define EEPROM_WORD0A_66MHZ  0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE      0x1000
+#define EEPROM_WORD0F_ASM_DIR    0x2000
+#define EEPROM_WORD0F_ANE        0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+#define EEPROM_WORD0F_LPLU       0x0001
+
+/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
+#define EEPROM_WORD1020_GIGA_DISABLE         0x0010
+#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
+
+/* Mask bits for fields in Word 0x1a of the EEPROM */
+#define EEPROM_WORD1A_ASPM_MASK  0x000C
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1          8
+
+#define EEPROM_RESERVED_WORD          0xFFFF
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD       15
+#define E1000_CT_SHIFT                  4
+/* Collision distance is a 0-based value that applies to
+ * half-duplex-capable hardware only. */
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLLISION_DISTANCE_82542  64
+#define E1000_FDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_COLD_SHIFT                12
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT        10
+#define DEFAULT_82543_TIPG_IPGT_FIBER  9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT  10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define E1000_TIPG_IPGR2_SHIFT  20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START     8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP      190
+#define TX_THRESHOLD_DISABLE   0
+#define TX_THRESHOLD_TIMER_MS  10000
+#define MIN_NUM_XMITS          1000
+#define IFS_MAX                80
+#define IFS_STEP               10
+#define IFS_MIN                40
+#define IFS_RATIO              4
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE  0x00000002
+#define E1000_EXTCNF_CTRL_D_UD_ENABLE       0x00000004
+#define E1000_EXTCNF_CTRL_D_UD_LATENCY      0x00000008
+#define E1000_EXTCNF_CTRL_D_UD_OWNER        0x00000010
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x0FFF0000
+
+#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH    0x000000FF
+#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH   0x0000FF00
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH   0x00FF0000
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE  0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG            0x00000020
+
+/* PBA constants */
+#define E1000_PBA_8K 0x0008	/* 8KB, default Rx allocation */
+#define E1000_PBA_12K 0x000C	/* 12KB, default Rx allocation */
+#define E1000_PBA_16K 0x0010	/* 16KB, default TX allocation */
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030	/* 48KB, default RX allocation */
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE         0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH        (0x8000)	/* 32KB */
+#define FC_DEFAULT_LO_THRESH        (0x4000)	/* 16KB */
+#define FC_DEFAULT_TX_TIMER         (0x100)	/* ~130 us */
+
+/* PCIX Config space */
+#define PCIX_COMMAND_REGISTER    0xE6
+#define PCIX_STATUS_REGISTER_LO  0xE8
+#define PCIX_STATUS_REGISTER_HI  0xEA
+
+#define PCIX_COMMAND_MMRBC_MASK      0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT     0x2
+#define PCIX_STATUS_HI_MMRBC_MASK    0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5
+#define PCIX_STATUS_HI_MMRBC_4K      0x3
+#define PCIX_STATUS_HI_MMRBC_2K      0x2
+
+/* Number of bits required to shift right the "pause" bits from the
+ * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
+ */
+#define PAUSE_SHIFT 5
+
+/* Number of bits required to shift left the "SWDPIO" bits from the
+ * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
+ */
+#define SWDPIO_SHIFT 17
+
+/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
+ * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+/* Number of bits required to shift left the "ILOS" bit from the EEPROM
+ * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
+ */
+#define ILOS_SHIFT  3
+
+#define RECEIVE_BUFFER_ALIGN_SIZE  (256)
+
+/* Number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT             500
+
+/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
+#define AUTO_READ_DONE_TIMEOUT      10
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+
+#define E1000_TX_BUFFER_SIZE ((u32)1514)
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION   0x0F
+
+/* TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ *      adapter = a pointer to struct e1000_hw
+ *      status = the 8 bit status field of the RX descriptor with EOP set
+ *      error = the 8 bit error field of the RX descriptor with EOP set
+ *      length = the sum of all the length fields of the RX descriptors that
+ *               make up the current frame
+ *      last_byte = the last byte of the frame DMAed by the hardware
+ *      max_frame_length = the maximum frame length we want to accept.
+ *      min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ *  ...
+ *  if (TBI_ACCEPT) {
+ *      accept_frame = true;
+ *      e1000_tbi_adjust_stats(adapter, MacAddress);
+ *      frame_length--;
+ *  } else {
+ *      accept_frame = false;
+ *  }
+ *  ...
+ */
+
+#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
+    ((adapter)->tbi_compatibility_on && \
+     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+     ((last_byte) == CARRIER_EXTENSION) && \
+     (((status) & E1000_RXD_STAT_VP) ? \
+          (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
+           ((length) <= ((adapter)->max_frame_size + 1))) : \
+          (((length) > (adapter)->min_frame_size) && \
+           ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL         0x00	/* Control Register */
+#define PHY_STATUS       0x01	/* Status Register */
+#define PHY_ID1          0x02	/* Phy Id Reg (word 1) */
+#define PHY_ID2          0x03	/* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV  0x04	/* Autoneg Advertisement */
+#define PHY_LP_ABILITY   0x05	/* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP  0x06	/* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07	/* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08	/* Link Partner Next Page */
+#define PHY_1000T_CTRL   0x09	/* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A	/* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS   0x0F	/* Extended Status Reg */
+
+#define MAX_PHY_REG_ADDRESS        0x1F	/* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG     0xF	/* Registers equal on all pages */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL     0x10	/* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS   0x11	/* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE        0x12	/* Interrupt Enable Register */
+#define M88E1000_INT_STATUS        0x13	/* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14	/* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR       0x15	/* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL      0x1A	/* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT   0x1D	/* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E	/* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8  0x100	/* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800	/* improved BER performance */
+
+#define IGP01E1000_IEEE_REGS_PAGE  0x0000
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+#define IGP01E1000_IEEE_FORCE_GIGA      0x0140
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10	/* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS 0x11	/* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL   0x12	/* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13	/* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO       0x14	/* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15	/* PHY Channel Quality Register */
+#define IGP02E1000_PHY_POWER_MGMT      0x19
+#define IGP01E1000_PHY_PAGE_SELECT     0x1F	/* PHY Page Select Core Register */
+
+/* IGP01E1000 AGC Registers - stores the cable length values*/
+#define IGP01E1000_PHY_AGC_A        0x1172
+#define IGP01E1000_PHY_AGC_B        0x1272
+#define IGP01E1000_PHY_AGC_C        0x1472
+#define IGP01E1000_PHY_AGC_D        0x1872
+
+/* IGP02E1000 AGC Registers for cable length values */
+#define IGP02E1000_PHY_AGC_A        0x11B1
+#define IGP02E1000_PHY_AGC_B        0x12B1
+#define IGP02E1000_PHY_AGC_C        0x14B1
+#define IGP02E1000_PHY_AGC_D        0x18B1
+
+/* IGP01E1000 DSP Reset Register */
+#define IGP01E1000_PHY_DSP_RESET   0x1F33
+#define IGP01E1000_PHY_DSP_SET     0x1F71
+#define IGP01E1000_PHY_DSP_FFE     0x1F35
+
+#define IGP01E1000_PHY_CHANNEL_NUM    4
+#define IGP02E1000_PHY_CHANNEL_NUM    4
+
+#define IGP01E1000_PHY_AGC_PARAM_A    0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B    0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C    0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D    0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX        0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_ANALOG_TX_STATE      0x2890
+#define IGP01E1000_PHY_ANALOG_CLASS_A       0x2000
+#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE  0x0004
+#define IGP01E1000_PHY_DSP_FFE_CM_CP        0x0069
+
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT      0x002A
+/* IGP01E1000 PCS Initialization register - stores the polarity status when
+ * speed = 1000 Mbps. */
+#define IGP01E1000_PHY_PCS_INIT_REG  0x00B4
+#define IGP01E1000_PHY_PCS_CTRL_REG  0x00B5
+
+#define IGP01E1000_ANALOG_REGS_PAGE  0x20C0
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080	/* Collision test enable */
+#define MII_CR_FULL_DUPLEX      0x0100	/* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200	/* Restart auto negotiation */
+#define MII_CR_ISOLATE          0x0400	/* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN       0x0800	/* Power down */
+#define MII_CR_AUTO_NEG_EN      0x1000	/* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK         0x4000	/* 0 = normal, 1 = loopback */
+#define MII_CR_RESET            0x8000	/* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS     0x0001	/* Extended register capabilities */
+#define MII_SR_JABBER_DETECT     0x0002	/* Jabber Detected */
+#define MII_SR_LINK_STATUS       0x0004	/* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS      0x0008	/* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT      0x0010	/* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE  0x0020	/* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040	/* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS   0x0100	/* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS     0x0200	/* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS     0x0400	/* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS       0x0800	/* 10T   Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS       0x1000	/* 10T   Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS      0x2000	/* 100X  Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS      0x4000	/* 100X  Full Duplex Capable */
+#define MII_SR_100T4_CAPS        0x8000	/* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001	/* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS    0x0020	/* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS    0x0040	/* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS  0x0080	/* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS  0x0100	/* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS     0x0200	/* 100T4 Capable */
+#define NWAY_AR_PAUSE          0x0400	/* Pause operation desired */
+#define NWAY_AR_ASM_DIR        0x0800	/* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT   0x2000	/* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000	/* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS    0x0020	/* LP is 10T   Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS    0x0040	/* LP is 10T   Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS  0x0080	/* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS  0x0100	/* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS     0x0200	/* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE          0x0400	/* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR        0x0800	/* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT   0x2000	/* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE    0x4000	/* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS      0x0001	/* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD          0x0002	/* LP is 10T   Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS    0x0004	/* LP is 10T   Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008	/* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT  0x0010	/* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define NPTX_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define NPTX_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define NPTX_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define LP_RNPR_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define LP_RNPR_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE     0x4000	/* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE      0x0080	/* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS         0x0100	/* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS         0x0200	/* Advertise 1000T FD capability  */
+#define CR_1000T_REPEATER_DTE    0x0400	/* 1=Repeater/switch device port */
+					/* 0=DTE device */
+#define CR_1000T_MS_VALUE        0x0800	/* 1=Configure PHY as Master */
+					/* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE       0x1000	/* 1=Master/Slave manual config value */
+					/* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000	/* Normal Operation */
+#define CR_1000T_TEST_MODE_1     0x2000	/* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2     0x4000	/* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3     0x6000	/* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4     0x8000	/* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT   0x00FF	/* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR   0x0100	/* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS       0x0400	/* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS       0x0800	/* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000	/* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS  0x2000	/* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES    0x4000	/* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT  0x8000	/* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT          12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT           13
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT    5
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20            20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100           100
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000	/* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000	/* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000	/* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000	/* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK   0x0100	/* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0	/* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE  0x0010	/* register 11h bit 4 */
+				      /* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE    0x0001	/* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002	/* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST          0x0004	/* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE    0x0010	/* 1=CLK125 low,
+						 * 0=CLK125 toggling
+						 */
+#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000	/* MDI Crossover Mode bits 6:5 */
+					       /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020	/* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T     0x0040	/* 1000BASE-T: Auto crossover,
+						 *  100BASE-TX/10BASE-T:
+						 *  MDI Mode
+						 */
+#define M88E1000_PSCR_AUTO_X_MODE      0x0060	/* Auto crossover enabled
+						 * all speeds.
+						 */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+					/* 1=Enable Extended 10BASE-T distance
+					 * (Lower 10BASE-T RX Threshold)
+					 * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100
+					/* 1=5-Bit interface in 100BASE-TX
+					 * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200	/* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400	/* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800	/* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT    1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT          5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER             0x0001	/* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY       0x0002	/* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT          0x0020	/* 1=Downshifted */
+#define M88E1000_PSSR_MDIX               0x0040	/* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH       0x0380	/* 0=<50M;1=50-80M;2=80-110M;
+						 * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK               0x0400	/* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800	/* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD          0x1000	/* 1=Page received */
+#define M88E1000_PSSR_DPLX               0x2000	/* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED              0xC000	/* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS              0x0000	/* 00=10Mbs */
+#define M88E1000_PSSR_100MBS             0x4000	/* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS            0x8000	/* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_DOWNSHIFT_SHIFT    5
+#define M88E1000_PSSR_MDIX_SHIFT         6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000	/* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000	/* 1=Lost lock detect enabled.
+						 * Will assert lost lock and bring
+						 * link down if idle not seen
+						 * within 1ms in 1000BASE-T
+						 */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5     0x0060	/* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25      0x0070	/* 25  MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0       0x0000	/* NO  TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
+
+/* IGP01E1000 Specific Port Config Register - R/W */
+#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
+#define IGP01E1000_PSCFR_PRE_EN                0x0020
+#define IGP01E1000_PSCFR_SMART_SPEED           0x0080
+#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK    0x0100
+#define IGP01E1000_PSCFR_DISABLE_JABBER        0x0400
+#define IGP01E1000_PSCFR_DISABLE_TRANSMIT      0x2000
+
+/* IGP01E1000 Specific Port Status Register - R/O */
+#define IGP01E1000_PSSR_AUTONEG_FAILED         0x0001	/* RO LH SC */
+#define IGP01E1000_PSSR_POLARITY_REVERSED      0x0002
+#define IGP01E1000_PSSR_CABLE_LENGTH           0x007C
+#define IGP01E1000_PSSR_FULL_DUPLEX            0x0200
+#define IGP01E1000_PSSR_LINK_UP                0x0400
+#define IGP01E1000_PSSR_MDIX                   0x0800
+#define IGP01E1000_PSSR_SPEED_MASK             0xC000	/* speed bits mask */
+#define IGP01E1000_PSSR_SPEED_10MBPS           0x4000
+#define IGP01E1000_PSSR_SPEED_100MBPS          0x8000
+#define IGP01E1000_PSSR_SPEED_1000MBPS         0xC000
+#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT     0x0002	/* shift right 2 */
+#define IGP01E1000_PSSR_MDIX_SHIFT             0x000B	/* shift right 11 */
+
+/* IGP01E1000 Specific Port Control Register - R/W */
+#define IGP01E1000_PSCR_TP_LOOPBACK            0x0010
+#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR      0x0200
+#define IGP01E1000_PSCR_TEN_CRS_SELECT         0x0400
+#define IGP01E1000_PSCR_FLIP_CHIP              0x0800
+#define IGP01E1000_PSCR_AUTO_MDIX              0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX         0x2000	/* 0-MDI, 1-MDIX */
+
+/* IGP01E1000 Specific Port Link Health Register */
+#define IGP01E1000_PLHR_SS_DOWNGRADE           0x8000
+#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR    0x4000
+#define IGP01E1000_PLHR_MASTER_FAULT           0x2000
+#define IGP01E1000_PLHR_MASTER_RESOLUTION      0x1000
+#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK       0x0800	/* LH */
+#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW   0x0400	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_1             0x0200	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_0             0x0100
+#define IGP01E1000_PLHR_AUTONEG_FAULT          0x0040
+#define IGP01E1000_PLHR_AUTONEG_ACTIVE         0x0010
+#define IGP01E1000_PLHR_VALID_CHANNEL_D        0x0008
+#define IGP01E1000_PLHR_VALID_CHANNEL_C        0x0004
+#define IGP01E1000_PLHR_VALID_CHANNEL_B        0x0002
+#define IGP01E1000_PLHR_VALID_CHANNEL_A        0x0001
+
+/* IGP01E1000 Channel Quality Register */
+#define IGP01E1000_MSE_CHANNEL_D        0x000F
+#define IGP01E1000_MSE_CHANNEL_C        0x00F0
+#define IGP01E1000_MSE_CHANNEL_B        0x0F00
+#define IGP01E1000_MSE_CHANNEL_A        0xF000
+
+#define IGP02E1000_PM_SPD                         0x0001	/* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU                     0x0004	/* Enable LPLU in non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU                     0x0002	/* Enable LPLU in D0a mode */
+
+/* IGP01E1000 DSP reset macros */
+#define DSP_RESET_ENABLE     0x0
+#define DSP_RESET_DISABLE    0x2
+#define E1000_MAX_DSP_RESETS 10
+
+/* IGP01E1000 & IGP02E1000 AGC Registers */
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7	/* Coarse - 13:11, Fine - 10:7 */
+#define IGP02E1000_AGC_LENGTH_SHIFT 9	/* Coarse - 15:13, Fine - 12:9 */
+
+/* IGP02E1000 AGC Register Length 9-bit mask */
+#define IGP02E1000_AGC_LENGTH_MASK  0x7F
+
+/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
+#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
+
+/* The precision error of the cable length is +/- 10 meters */
+#define IGP01E1000_AGC_RANGE    10
+#define IGP02E1000_AGC_RANGE    15
+
+/* IGP01E1000 PCS Initialization register */
+/* bits 3:6 in the PCS registers stores the channels polarity */
+#define IGP01E1000_PHY_POLARITY_MASK    0x0078
+
+/* IGP01E1000 GMII FIFO Register */
+#define IGP01E1000_GMII_FLEX_SPD               0x10	/* Enable flexible speed
+							 * on Link-Up */
+#define IGP01E1000_GMII_SPD                    0x20	/* Enable SPD */
+
+/* IGP01E1000 Analog Register */
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS       0x20D1
+#define IGP01E1000_ANALOG_FUSE_STATUS             0x20D0
+#define IGP01E1000_ANALOG_FUSE_CONTROL            0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS             0x20DE
+
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK            0xF000
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK            0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK          0x0070
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED        0x0100
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL    0x0002
+
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH        0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10            0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1               0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10              0x0500
+
+/* Bit definitions for valid PHY IDs. */
+/* I = Integrated
+ * E = External
+ */
+#define M88_VENDOR         0x0141
+#define M88E1000_E_PHY_ID  0x01410C50
+#define M88E1000_I_PHY_ID  0x01410C30
+#define M88E1011_I_PHY_ID  0x01410C20
+#define IGP01E1000_I_PHY_ID  0x02A80380
+#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
+#define M88E1011_I_REV_4   0x04
+#define M88E1111_I_PHY_ID  0x01410CC0
+#define L1LXT971A_PHY_ID   0x001378E0
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define PHY_PAGE_SHIFT        5
+#define PHY_REG(page, reg)    \
+        (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+
+#define IGP3_PHY_PORT_CTRL           \
+        PHY_REG(769, 17)	/* Port General Configuration */
+#define IGP3_PHY_RATE_ADAPT_CTRL \
+        PHY_REG(769, 25)	/* Rate Adapter Control Register */
+
+#define IGP3_KMRN_FIFO_CTRL_STATS \
+        PHY_REG(770, 16)	/* KMRN FIFO's control/status register */
+#define IGP3_KMRN_POWER_MNG_CTRL \
+        PHY_REG(770, 17)	/* KMRN Power Management Control Register */
+#define IGP3_KMRN_INBAND_CTRL \
+        PHY_REG(770, 18)	/* KMRN Inband Control Register */
+#define IGP3_KMRN_DIAG \
+        PHY_REG(770, 19)	/* KMRN Diagnostic register */
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002	/* RX PCS is not synced */
+#define IGP3_KMRN_ACK_TIMEOUT \
+        PHY_REG(770, 20)	/* KMRN Acknowledge Timeouts register */
+
+#define IGP3_VR_CTRL \
+        PHY_REG(776, 18)	/* Voltage regulator control register */
+#define IGP3_VR_CTRL_MODE_SHUT       0x0200	/* Enter powerdown, shutdown VRs */
+#define IGP3_VR_CTRL_MODE_MASK       0x0300	/* Shutdown VR Mask */
+
+#define IGP3_CAPABILITY \
+        PHY_REG(776, 19)	/* IGP3 Capability Register */
+
+/* Capabilities for SKU Control  */
+#define IGP3_CAP_INITIATE_TEAM       0x0001	/* Able to initiate a team */
+#define IGP3_CAP_WFM                 0x0002	/* Support WoL and PXE */
+#define IGP3_CAP_ASF                 0x0004	/* Support ASF */
+#define IGP3_CAP_LPLU                0x0008	/* Support Low Power Link Up */
+#define IGP3_CAP_DC_AUTO_SPEED       0x0010	/* Support AC/DC Auto Link Speed */
+#define IGP3_CAP_SPD                 0x0020	/* Support Smart Power Down */
+#define IGP3_CAP_MULT_QUEUE          0x0040	/* Support 2 tx & 2 rx queues */
+#define IGP3_CAP_RSS                 0x0080	/* Support RSS */
+#define IGP3_CAP_8021PQ              0x0100	/* Support 802.1Q & 802.1p */
+#define IGP3_CAP_AMT_CB              0x0200	/* Support active manageability and circuit breaker */
+
+#define IGP3_PPC_JORDAN_EN           0x0001
+#define IGP3_PPC_JORDAN_GIGA_SPEED   0x0002
+
+#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS         0x0001
+#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK   0x001E
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA        0x0020
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_100         0x0040
+
+#define IGP3E1000_PHY_MISC_CTRL                0x1B	/* Misc. Ctrl register */
+#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET        0x1000	/* Duplex Manual Set */
+
+#define IGP3_KMRN_EXT_CTRL  PHY_REG(770, 18)
+#define IGP3_KMRN_EC_DIS_INBAND    0x0080
+
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330	/* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10	/* 100BaseTx Extended Status, Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL           0x11	/* 100BaseTx PHY special control register */
+#define IFE_PHY_RCV_FALSE_CARRIER         0x13	/* 100BaseTx Receive False Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT            0x14	/* 100BaseTx Receive Disconnect Counter */
+#define IFE_PHY_RCV_ERROT_FRAME           0x15	/* 100BaseTx Receive Error Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR            0x16	/* Receive Symbol Error Counter */
+#define IFE_PHY_PREM_EOF_ERR              0x17	/* 100BaseTx Receive Premature End Of Frame Error Counter */
+#define IFE_PHY_RCV_EOF_ERR               0x18	/* 10BaseT Receive End Of Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT          0x19	/* 10BaseT Transmit Jabber Detect Counter */
+#define IFE_PHY_EQUALIZER                 0x1A	/* PHY Equalizer Control and Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B	/* PHY special control and LED configuration */
+#define IFE_PHY_MDIX_CONTROL              0x1C	/* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL               0x1D	/* Hardware Integrity Control (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000	/* Default 1 = Disable auto reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN           0x0400	/* Indicates the power state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN            0x0200	/* Indicates the power state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED           0x0100	/* Indicates 10BASE-T polarity */
+#define IFE_PESC_PHY_ADDR_MASK               0x007C	/* Bit 6:2 for sampled PHY address */
+#define IFE_PESC_SPEED                       0x0002	/* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX                      0x0001	/* Auto-negotiation duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100	/* 1 = Dynamic Power Down disabled */
+#define IFE_PSC_FORCE_POLARITY               0x0020	/* 1=Reversed Polarity, 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010	/* 1=Auto Polarity Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001	/* 1=Jabber Disabled, 0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT         5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
+
+#define IFE_PMC_AUTO_MDIX                    0x0080	/* 1=enable MDI/MDI-X feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX                   0x0040	/* 1=force MDIX-X, 0=force MDI */
+#define IFE_PMC_MDIX_STATUS                  0x0020	/* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010	/* Resolution algorithm is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT              6
+#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000	/* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE                   0x8000	/* Enable the HWI feature */
+#define IFE_PHC_ABILITY_CHECK                0x4000	/* 1= Test Passed, 0=failed */
+#define IFE_PHC_TEST_EXEC                    0x2000	/* PHY launch test pulses on the wire */
+#define IFE_PHC_HIGHZ                        0x0200	/* 1 = Open Circuit */
+#define IFE_PHC_LOWZ                         0x0400	/* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600	/* Mask for indication type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK                0x01FF	/* Mask for distance to the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK               0x0000	/* Disable HWI */
+#define IFE_PSCL_PROBE_MODE                  0x0020	/* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF              0x0006	/* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON               0x0007	/* Force LEDs 0 and 2 on */
+
+#define ICH_FLASH_COMMAND_TIMEOUT            5000	/* 5000 uSecs - adjusted */
+#define ICH_FLASH_ERASE_TIMEOUT              3000000	/* Up to 3 seconds - worst case */
+#define ICH_FLASH_CYCLE_REPEAT_COUNT         10	/* 10 cycles */
+#define ICH_FLASH_SEG_SIZE_256               256
+#define ICH_FLASH_SEG_SIZE_4K                4096
+#define ICH_FLASH_SEG_SIZE_64K               65536
+
+#define ICH_CYCLE_READ                       0x0
+#define ICH_CYCLE_RESERVED                   0x1
+#define ICH_CYCLE_WRITE                      0x2
+#define ICH_CYCLE_ERASE                      0x3
+
+#define ICH_FLASH_GFPREG   0x0000
+#define ICH_FLASH_HSFSTS   0x0004
+#define ICH_FLASH_HSFCTL   0x0006
+#define ICH_FLASH_FADDR    0x0008
+#define ICH_FLASH_FDATA0   0x0010
+#define ICH_FLASH_FRACC    0x0050
+#define ICH_FLASH_FREG0    0x0054
+#define ICH_FLASH_FREG1    0x0058
+#define ICH_FLASH_FREG2    0x005C
+#define ICH_FLASH_FREG3    0x0060
+#define ICH_FLASH_FPR0     0x0074
+#define ICH_FLASH_FPR1     0x0078
+#define ICH_FLASH_SSFSTS   0x0090
+#define ICH_FLASH_SSFCTL   0x0092
+#define ICH_FLASH_PREOP    0x0094
+#define ICH_FLASH_OPTYPE   0x0096
+#define ICH_FLASH_OPMENU   0x0098
+
+#define ICH_FLASH_REG_MAPSIZE      0x00A0
+#define ICH_FLASH_SECTOR_SIZE      4096
+#define ICH_GFPREG_BASE_MASK       0x1FFF
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE        0xFFFFFFFF
+#define PHY_SOF             0x01
+#define PHY_OP_READ         0x02
+#define PHY_OP_WRITE        0x01
+#define PHY_TURNAROUND      0x02
+#define PHY_PREAMBLE_SIZE   32
+#define MII_CR_SPEED_1000   0x0040
+#define MII_CR_SPEED_100    0x2000
+#define MII_CR_SPEED_10     0x0000
+#define E1000_PHY_ADDRESS   0x01
+#define PHY_AUTO_NEG_TIME   45	/* 4.5 Seconds */
+#define PHY_FORCE_TIME      20	/* 2.0 Seconds */
+#define PHY_REVISION_MASK   0xFFFFFFF0
+#define DEVICE_SPEED_MASK   0x00000300	/* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK     0x01E0
+#define REG9_SPEED_MASK     0x0300
+#define ADVERTISE_10_HALF   0x0001
+#define ADVERTISE_10_FULL   0x0002
+#define ADVERTISE_100_HALF  0x0004
+#define ADVERTISE_100_FULL  0x0008
+#define ADVERTISE_1000_HALF 0x0010
+#define ADVERTISE_1000_FULL 0x0020
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F	/* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL    0x000F	/* All 10/100 speeds */
+#define AUTONEG_ADVERTISE_10_ALL        0x0003	/* 10Mbps Full & Half speeds */
+
+#endif /* _E1000_HW_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.32-orig.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,5634 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+ */
+
+/* e1000_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "e1000_hw.h"
+
+static s32 e1000_check_downshift(struct e1000_hw *hw);
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity);
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
+static void e1000_clear_vfta(struct e1000_hw *hw);
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
+					      bool link_up);
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length);
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static s32 e1000_id_led_init(struct e1000_hw *hw);
+static void e1000_init_rx_addrs(struct e1000_hw *hw);
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info);
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
+static s32 e1000_set_phy_type(struct e1000_hw *hw);
+static void e1000_phy_init_script(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
+				  u16 words, u16 *data);
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data);
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data);
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data);
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed(struct e1000_hw *hw);
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode(struct e1000_hw *hw);
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data);
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data);
+
+/* IGP cable length table */
+static const
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
+	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+	    100,
+	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+	    110, 110,
+	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
+	    120, 120
+};
+
+static DEFINE_SPINLOCK(e1000_eeprom_lock);
+
+/**
+ * e1000_set_phy_type - Set the phy type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_set_phy_type(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_set_phy_type");
+
+	if (hw->mac_type == e1000_undefined)
+		return -E1000_ERR_PHY_TYPE;
+
+	switch (hw->phy_id) {
+	case M88E1000_E_PHY_ID:
+	case M88E1000_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+	case M88E1111_I_PHY_ID:
+		hw->phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID:
+		if (hw->mac_type == e1000_82541 ||
+		    hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			hw->phy_type = e1000_phy_igp;
+			break;
+		}
+	default:
+		/* Should never have loaded on this device */
+		hw->phy_type = e1000_phy_undefined;
+		return -E1000_ERR_PHY_TYPE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+	u32 ret_val;
+	u16 phy_saved_data;
+
+	DEBUGFUNC("e1000_phy_init_script");
+
+	if (hw->phy_init_script) {
+		msleep(20);
+
+		/* Save off the current value of register 0x2F5B to be restored at
+		 * the end of this routine. */
+		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+		/* Disabled the PHY transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+		msleep(20);
+
+		e1000_write_phy_reg(hw, 0x0000, 0x0140);
+		msleep(5);
+
+		switch (hw->mac_type) {
+		case e1000_82541:
+		case e1000_82547:
+			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+			e1000_write_phy_reg(hw, 0x2010, 0x0008);
+			break;
+
+		case e1000_82541_rev_2:
+		case e1000_82547_rev_2:
+			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+			break;
+		default:
+			break;
+		}
+
+		e1000_write_phy_reg(hw, 0x0000, 0x3300);
+		msleep(20);
+
+		/* Now enable the transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (hw->mac_type == e1000_82547) {
+			u16 fused, fine, coarse;
+
+			/* Move to analog registers page */
+			e1000_read_phy_reg(hw,
+					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+					   &fused);
+
+			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+				e1000_read_phy_reg(hw,
+						   IGP01E1000_ANALOG_FUSE_STATUS,
+						   &fused);
+
+				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+				coarse =
+				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+				if (coarse >
+				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+					coarse -=
+					    IGP01E1000_ANALOG_FUSE_COARSE_10;
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+				} else if (coarse ==
+					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+				fused =
+				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+				    (coarse &
+				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_CONTROL,
+						    fused);
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_BYPASS,
+						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+			}
+		}
+	}
+}
+
+/**
+ * e1000_set_mac_type - Set the mac type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_set_mac_type");
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+		switch (hw->revision_id) {
+		case E1000_82542_2_0_REV_ID:
+			hw->mac_type = e1000_82542_rev2_0;
+			break;
+		case E1000_82542_2_1_REV_ID:
+			hw->mac_type = e1000_82542_rev2_1;
+			break;
+		default:
+			/* Invalid 82542 revision ID */
+			return -E1000_ERR_MAC_TYPE;
+		}
+		break;
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		hw->mac_type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		hw->mac_type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		hw->mac_type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		hw->mac_type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		hw->mac_type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		hw->mac_type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		hw->mac_type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		hw->mac_type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		hw->mac_type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		hw->mac_type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		hw->mac_type = e1000_82547_rev_2;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		return -E1000_ERR_MAC_TYPE;
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->asf_firmware_present = true;
+		break;
+	default:
+		break;
+	}
+
+	/* The 82543 chip does not count tx_carrier_errors properly in
+	 * FD mode
+	 */
+	if (hw->mac_type == e1000_82543)
+		hw->bad_tx_carr_stats_fd = true;
+
+	if (hw->mac_type > e1000_82544)
+		hw->has_smbus = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_media_type - Set media type and TBI compatibility.
+ * @hw: Struct containing variables accessed by shared code
+ */
+void e1000_set_media_type(struct e1000_hw *hw)
+{
+	u32 status;
+
+	DEBUGFUNC("e1000_set_media_type");
+
+	if (hw->mac_type != e1000_82543) {
+		/* tbi_compatibility is only valid on 82543 */
+		hw->tbi_compatibility_en = false;
+	}
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		switch (hw->mac_type) {
+		case e1000_82542_rev2_0:
+		case e1000_82542_rev2_1:
+			hw->media_type = e1000_media_type_fiber;
+			break;
+		default:
+			status = er32(STATUS);
+			if (status & E1000_STATUS_TBIMODE) {
+				hw->media_type = e1000_media_type_fiber;
+				/* tbi_compatibility not valid on fiber */
+				hw->tbi_compatibility_en = false;
+			} else {
+				hw->media_type = e1000_media_type_copper;
+			}
+			break;
+		}
+	}
+}
+
+/**
+ * e1000_reset_hw: reset the hardware completely
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ */
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 ctrl_ext;
+	u32 icr;
+	u32 manc;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw");
+
+	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC with
+	 * the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH();
+
+	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+	hw->tbi_compatibility_on = false;
+
+	/* Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msleep(10);
+
+	ctrl = er32(CTRL);
+
+	/* Must reset the PHY before resetting the MAC */
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		msleep(5);
+	}
+
+	/* Issue a global reset to the MAC.  This will reset the chip's
+	 * transmit, receive, DMA, and link units.  It will not effect
+	 * the current PCI configuration.  The global reset bit is self-
+	 * clearing, and should clear within a microsecond.
+	 */
+	DEBUGOUT("Issuing a global reset to MAC\n");
+
+	switch (hw->mac_type) {
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/* These controllers can't ack the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround to issue the reset */
+		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		/* Reset is performed on a shadow of the control register */
+		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
+		break;
+	default:
+		ew32(CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	}
+
+	/* After MAC reset, force reload of EEPROM to restore power-on settings to
+	 * device.  Later controllers reload the EEPROM automatically, so just wait
+	 * for reload to complete.
+	 */
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* Wait for reset to complete */
+		udelay(10);
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		/* Wait for EEPROM reload */
+		msleep(2);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		/* Wait for EEPROM reload */
+		msleep(20);
+		break;
+	default:
+		/* Auto read done will delay 5ms or poll based on mac type */
+		ret_val = e1000_get_auto_rd_done(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	}
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	if (hw->mac_type >= e1000_82540) {
+		manc = er32(MANC);
+		manc &= ~(E1000_MANC_ARP_EN);
+		ew32(MANC, manc);
+	}
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		e1000_phy_init_script(hw);
+
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Clear any pending interrupt events. */
+	icr = er32(ICR);
+
+	/* If MWI was previously enabled, reenable it. */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw: Performs basic configuration of the adapter.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ */
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 i;
+	s32 ret_val;
+	u32 mta_size;
+	u32 ctrl_ext;
+
+	DEBUGFUNC("e1000_init_hw");
+
+	/* Initialize Identification LED */
+	ret_val = e1000_id_led_init(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Initializing Identification LED\n");
+		return ret_val;
+	}
+
+	/* Set the media type and TBI compatibility */
+	e1000_set_media_type(hw);
+
+	/* Disabling VLAN filtering. */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	if (hw->mac_type < e1000_82545_rev_3)
+		ew32(VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		ew32(RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH();
+		msleep(5);
+	}
+
+	/* Setup the receive address. This involves initializing all of the Receive
+	 * Address Registers (RARs 0 - 15).
+	 */
+	e1000_init_rx_addrs(hw);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		ew32(RCTL, 0);
+		E1000_WRITE_FLUSH();
+		msleep(1);
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	mta_size = E1000_MC_TBL_SIZE;
+	for (i = 0; i < mta_size; i++) {
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+		/* use write flush to prevent Memory Write Block (MWB) from
+		 * occurring when accessing our register space */
+		E1000_WRITE_FLUSH();
+	}
+
+	/* Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.  Valid only on
+	 * 82542 and 82543 silicon.
+	 */
+	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+		if (hw->bus_type == e1000_bus_type_pcix
+		    && e1000_pcix_get_mmrbc(hw) > 2048)
+			e1000_pcix_set_mmrbc(hw, 2048);
+		break;
+	}
+
+	/* Call a subroutine to configure the link and setup flow control. */
+	ret_val = e1000_setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	if (hw->mac_type > e1000_82544) {
+		ctrl = er32(TXDCTL);
+		ctrl =
+		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB;
+		ew32(TXDCTL, ctrl);
+	}
+
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs(hw);
+
+	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+		ctrl_ext = er32(CTRL_EXT);
+		/* Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot. */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
+ * @hw: Struct containing variables accessed by shared code.
+ */
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
+{
+	u16 eeprom_data;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_adjust_serdes_amplitude");
+
+	if (hw->media_type != e1000_media_type_internal_serdes)
+		return E1000_SUCCESS;
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
+	                            &eeprom_data);
+	if (ret_val) {
+		return ret_val;
+	}
+
+	if (eeprom_data != EEPROM_RESERVED_WORD) {
+		/* Adjust SERDES output amplitude only. */
+		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_link - Configures flow control and link settings.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the appropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ */
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32 ret_val;
+	u16 eeprom_data;
+
+	DEBUGFUNC("e1000_setup_link");
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (hw->fc == E1000_FC_DEFAULT) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+			hw->fc = E1000_FC_NONE;
+		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+			 EEPROM_WORD0F_ASM_DIR)
+			hw->fc = E1000_FC_TX_PAUSE;
+		else
+			hw->fc = E1000_FC_FULL;
+	}
+
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		hw->fc &= (~E1000_FC_TX_PAUSE);
+
+	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+		hw->fc &= (~E1000_FC_RX_PAUSE);
+
+	hw->original_fc = hw->fc;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before e1000_setup_pcs_link()
+	 * or e1000_phy_setup() is called.
+	 */
+	if (hw->mac_type == e1000_82543) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+			    SWDPIO__EXT_SHIFT);
+		ew32(CTRL_EXT, ctrl_ext);
+	}
+
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = (hw->media_type == e1000_media_type_copper) ?
+	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT
+	    ("Initializing the Flow Control address, type and timer regs\n");
+
+	ew32(FCT, FLOW_CONTROL_TYPE);
+	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	ew32(FCTTV, hw->fc_pause_time);
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames in not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+		ew32(FCRTL, 0);
+		ew32(FCRTH, 0);
+	} else {
+		/* We need to set up the Receive Threshold high and low water marks
+		 * as well as (optionally) enabling the transmission of XON frames.
+		 */
+		if (hw->fc_send_xon) {
+			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+			ew32(FCRTH, hw->fc_high_water);
+		} else {
+			ew32(FCRTL, hw->fc_low_water);
+			ew32(FCRTH, hw->fc_high_water);
+		}
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ */
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 status;
+	u32 txcw = 0;
+	u32 i;
+	u32 signal = 0;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link");
+
+	/* On adapters with a MAC newer than 82544, SWDP 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 * If we're on serdes media, adjust the output amplitude to value
+	 * set in the EEPROM.
+	 */
+	ctrl = er32(CTRL);
+	if (hw->media_type == e1000_media_type_fiber)
+		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+	ret_val = e1000_adjust_serdes_amplitude(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Take the link out of reset */
+	ctrl &= ~(E1000_CTRL_LRST);
+
+	/* Adjust VCO speed to improve BER performance */
+	ret_val = e1000_set_vco_speed(hw);
+	if (ret_val)
+		return ret_val;
+
+	e1000_config_collision_dist(hw);
+
+	/* Check for a software override of the flow control settings, and setup
+	 * the device accordingly.  If auto-negotiation is enabled, then software
+	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+	 * auto-negotiation is disabled, then software will have to manually
+	 * configure the two flow control enable bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames, but
+	 *          not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we do
+	 *          not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		/* Flow control is completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case E1000_FC_RX_PAUSE:
+		/* RX Flow control is enabled and TX Flow control is disabled by a
+		 * software over-ride. Since there really isn't a way to advertise
+		 * that we are capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE. Later, we will
+		 *  disable the adapter's ability to send PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case E1000_FC_TX_PAUSE:
+		/* TX Flow control is enabled, and RX Flow control is disabled, by a
+		 * software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case E1000_FC_FULL:
+		/* Flow control (both RX and TX) is enabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the link
+	 * will be in reset, because we previously reset the chip). This will
+	 * restart auto-negotiation.  If auto-negotiation is successful then the
+	 * link-up status bit will be set and the flow control enable bits (RFCE
+	 * and TFCE) will be set according to their negotiated value.
+	 */
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	ew32(TXCW, txcw);
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	hw->txcw = txcw;
+	msleep(1);
+
+	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+	 * indication in the Device Status Register.  Time-out if a link isn't
+	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+	 * less than 500 milliseconds even if the other end is doing it in SW).
+	 * For internal serdes, we just assume a signal is present, then poll.
+	 */
+	if (hw->media_type == e1000_media_type_internal_serdes ||
+	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+		DEBUGOUT("Looking for Link\n");
+		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+			msleep(10);
+			status = er32(STATUS);
+			if (status & E1000_STATUS_LU)
+				break;
+		}
+		if (i == (LINK_UP_TIMEOUT / 10)) {
+			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+			hw->autoneg_failed = 1;
+			/* AutoNeg failed to achieve a link, so we'll call
+			 * e1000_check_for_link. This routine will force the link up if
+			 * we detect a signal. This will allow us to communicate with
+			 * non-autonegotiating link partners.
+			 */
+			ret_val = e1000_check_for_link(hw);
+			if (ret_val) {
+				DEBUGOUT("Error while checking for link\n");
+				return ret_val;
+			}
+			hw->autoneg_failed = 0;
+		} else {
+			hw->autoneg_failed = 0;
+			DEBUGOUT("Valid Link Found\n");
+		}
+	} else {
+		DEBUGOUT("No Signal Detected\n");
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_preconfig - early configuration for copper
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Make sure we have a valid PHY and change PHY mode before link setup.
+ */
+static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_preconfig");
+
+	ctrl = er32(CTRL);
+	/* With 82543, we need to force speed and duplex on the MAC equal to what
+	 * the PHY speed and duplex configuration is. In addition, we need to
+	 * perform a hardware reset on the PHY to take it out of reset.
+	 */
+	if (hw->mac_type > e1000_82543) {
+		ctrl |= E1000_CTRL_SLU;
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		ew32(CTRL, ctrl);
+	} else {
+		ctrl |=
+		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+		ew32(CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Make sure we have a valid PHY */
+	ret_val = e1000_detect_gig_phy(hw);
+	if (ret_val) {
+		DEBUGOUT("Error, did not detect valid phy.\n");
+		return ret_val;
+	}
+	DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+	/* Set PHY to class A mode (if necessary) */
+	ret_val = e1000_set_phy_mode(hw);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82545_rev_3) ||
+	    (hw->mac_type == e1000_82546_rev_3)) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		phy_data |= 0x00000008;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	}
+
+	if (hw->mac_type <= e1000_82543 ||
+	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+	    hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2)
+		hw->phy_reset_disable = false;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+	u32 led_ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_igp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Wait 15ms for MAC to configure PHY from eeprom settings */
+	msleep(15);
+	/* Configure activity LED after PHY reset */
+	led_ctrl = er32(LEDCTL);
+	led_ctrl &= IGP_ACTIVITY_LED_MASK;
+	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	ew32(LEDCTL, led_ctrl);
+
+	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+	if (hw->phy_type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state(hw, false);
+		if (ret_val) {
+			DEBUGOUT("Error Disabling LPLU D3\n");
+			return ret_val;
+		}
+	}
+
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		hw->dsp_config_state = e1000_dsp_config_disabled;
+		/* Force MDI for earlier revs of the IGP PHY */
+		phy_data &=
+		    ~(IGP01E1000_PSCR_AUTO_MDIX |
+		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
+		hw->mdix = 1;
+
+	} else {
+		hw->dsp_config_state = e1000_dsp_config_enabled;
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+		switch (hw->mdix) {
+		case 1:
+			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 2:
+			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 0:
+		default:
+			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+			break;
+		}
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->autoneg) {
+		e1000_ms_type phy_ms_setting = hw->master_slave;
+
+		if (hw->ffe_config_state == e1000_ffe_config_active)
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+
+		if (hw->dsp_config_state == e1000_dsp_config_activated)
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+
+		/* when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default. */
+		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+			/* Set auto Master/Slave resolution process */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~CR_1000T_MS_ENABLE;
+			ret_val =
+			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* load defaults for future use */
+		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+		    ((phy_data & CR_1000T_MS_VALUE) ?
+		     e1000_ms_force_master :
+		     e1000_ms_force_slave) : e1000_ms_auto;
+
+		switch (phy_ms_setting) {
+		case e1000_ms_force_master:
+			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			phy_data |= CR_1000T_MS_ENABLE;
+			phy_data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			phy_data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_mgp_setup");
+
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (hw->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (hw->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_revision < M88E1011_I_REV_4) {
+		/* Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((hw->phy_revision == E1000_REVISION_2) &&
+		    (hw->phy_id == M88E1111_I_PHY_ID)) {
+			/* Vidalia Phy, set the downshift counter to 5x */
+			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_autoneg - setup auto-neg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Setup auto-negotiation and flow control advertisements,
+ * and then perform auto-negotiation.
+ */
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_autoneg");
+
+	/* Perform some bounds checking on the hw->autoneg_advertised
+	 * parameter.  If this variable is zero, then set it to the default.
+	 */
+	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	/* If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (hw->autoneg_advertised == 0)
+		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	DEBUGOUT("Restarting Auto-Neg\n");
+
+	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (hw->wait_autoneg_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			DEBUGOUT
+			    ("Error while waiting for autoneg to complete\n");
+			return ret_val;
+		}
+	}
+
+	hw->get_link_status = true;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_postconfig - post link setup
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Config the MAC and the PHY after link is up.
+ *   1) Set up the MAC to the current PHY speed/duplex
+ *      if we are on 82543.  If we
+ *      are on newer silicon, we only need to configure
+ *      collision distance in the Transmit Control Register.
+ *   2) Set up flow control on the MAC to that established with
+ *      the link partner.
+ *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+ */
+static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	DEBUGFUNC("e1000_copper_link_postconfig");
+
+	if (hw->mac_type >= e1000_82544) {
+		e1000_config_collision_dist(hw);
+	} else {
+		ret_val = e1000_config_mac_to_phy(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring MAC to PHY settings\n");
+			return ret_val;
+		}
+	}
+	ret_val = e1000_config_fc_after_link_up(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Configuring Flow Control\n");
+		return ret_val;
+	}
+
+	/* Config DSP to improve Giga link quality */
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_config_dsp_after_link_change(hw, true);
+		if (ret_val) {
+			DEBUGOUT("Error Configuring DSP after link up\n");
+			return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_copper_link - phy/speed/duplex setting
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Detects which PHY is present and sets up the speed and duplex
+ */
+static s32 e1000_setup_copper_link(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_setup_copper_link");
+
+	/* Check if it is a valid PHY and set PHY mode if necessary. */
+	ret_val = e1000_copper_link_preconfig(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_copper_link_igp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_copper_link_mgp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->autoneg) {
+		/* Setup autoneg and flow control advertisement
+		 * and perform autonegotiation */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* PHY will be set to 10H, 10F, 100H,or 100F
+		 * depending on value from forced_speed_duplex. */
+		DEBUGOUT("Forcing speed and duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
+
+	/* Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	for (i = 0; i < 10; i++) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			/* Config the MAC and PHY after link is up */
+			ret_val = e1000_copper_link_postconfig(hw);
+			if (ret_val)
+				return ret_val;
+
+			DEBUGOUT("Valid link established!!!\n");
+			return E1000_SUCCESS;
+		}
+		udelay(10);
+	}
+
+	DEBUGOUT("Unable to establish link!!!\n");
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_setup_autoneg - phy settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures PHY autoneg and flow control advertisement settings
+ */
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg;
+
+	DEBUGFUNC("e1000_phy_setup_autoneg");
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Read the MII 1000Base-T Control Register (Address 9). */
+	ret_val =
+	    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+	DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+		DEBUGOUT("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+		DEBUGOUT("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+		DEBUGOUT("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+		DEBUGOUT("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+		DEBUGOUT
+		    ("Advertise 1000mb Half duplex requested, request denied!\n");
+	}
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+		DEBUGOUT("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          but we do not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *          in the EEPROM is used.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:	/* 0 */
+		/* Flow control (RX & TX) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_RX_PAUSE:	/* 1 */
+		/* RX Flow control is enabled, and TX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		/* Since there really isn't a way to advertise that we are
+		 * capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 *hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_TX_PAUSE:	/* 2 */
+		/* TX Flow control is enabled, and RX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case E1000_FC_FULL:	/* 3 */
+		/* Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_force_speed_duplex - force link settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
+ */
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 mii_ctrl_reg;
+	u16 mii_status_reg;
+	u16 phy_data;
+	u16 i;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex");
+
+	/* Turn off Flow control if we are forcing speed and duplex. */
+	hw->fc = E1000_FC_NONE;
+
+	DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+	/* Read the Device Control Register. */
+	ctrl = er32(CTRL);
+
+	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(DEVICE_SPEED_MASK);
+
+	/* Clear the Auto Speed Detect Enable bit. */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Read the MII Control Register. */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* We need to disable autoneg in order to force link and duplex. */
+
+	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Are we forcing Full or Half Duplex? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_10_full) {
+		/* We want to force full duplex so we SET the full duplex bits in the
+		 * Device and MII Control Registers.
+		 */
+		ctrl |= E1000_CTRL_FD;
+		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		/* We want to force half duplex so we CLEAR the full duplex bits in
+		 * the Device and MII Control Registers.
+		 */
+		ctrl &= ~E1000_CTRL_FD;
+		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
+
+	/* Are we forcing 100Mbps??? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_100_half) {
+		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+		ctrl |= E1000_CTRL_SPD_100;
+		mii_ctrl_reg |= MII_CR_SPEED_100;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		DEBUGOUT("Forcing 100mb ");
+	} else {
+		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		mii_ctrl_reg |= MII_CR_SPEED_10;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		DEBUGOUT("Forcing 10mb ");
+	}
+
+	e1000_config_collision_dist(hw);
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+
+	if (hw->phy_type == e1000_phy_m88) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+		 * forced whenever speed are duplex are forced.
+		 */
+		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+		/* Need to reset the PHY or these changes will be ignored */
+		mii_ctrl_reg |= MII_CR_RESET;
+
+		/* Disable MDI-X support for 10/100 */
+	} else {
+		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+		 * forced whenever speed or duplex are forced.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Write back the modified PHY MII control register. */
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	udelay(1);
+
+	/* The wait_autoneg_complete flag may be a little misleading here.
+	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+	 * But we do want to delay for a period while forcing only so we
+	 * don't generate false No Link messages.  So we will wait here
+	 * only if the user has set wait_autoneg_complete to 1, which is
+	 * the default.
+	 */
+	if (hw->wait_autoneg_complete) {
+		/* We will wait for autoneg to complete. */
+		DEBUGOUT("Waiting for forced speed/duplex link.\n");
+		mii_status_reg = 0;
+
+		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+		}
+		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
+			/* We didn't get link.  Reset the DSP and wait again for link. */
+			ret_val = e1000_phy_reset_dsp(hw);
+			if (ret_val) {
+				DEBUGOUT("Error Resetting PHY DSP\n");
+				return ret_val;
+			}
+		}
+		/* This loop will early-out if the link condition has been met.  */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Because we reset the PHY above, we need to re-force TX_CLK in the
+		 * Extended PHY Specific Control Register to 25MHz clock.  This value
+		 * defaults back to a 2.5MHz clock when the PHY is reset.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* In addition, because of the s/w reset above, we need to enable CRS on
+		 * TX.  This must be set for both full and half duplex operation.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
+		    && (!hw->autoneg)
+		    && (hw->forced_speed_duplex == e1000_10_full
+			|| hw->forced_speed_duplex == e1000_10_half)) {
+			ret_val = e1000_polarity_reversal_workaround(hw);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_collision_dist - set collision distance register
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets the collision distance in the Transmit Control register.
+ * Link should have been established previously. Reads the speed and duplex
+ * information from the Device Status register.
+ */
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl, coll_dist;
+
+	DEBUGFUNC("e1000_config_collision_dist");
+
+	if (hw->mac_type < e1000_82543)
+		coll_dist = E1000_COLLISION_DISTANCE_82542;
+	else
+		coll_dist = E1000_COLLISION_DISTANCE;
+
+	tctl = er32(TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= coll_dist << E1000_COLD_SHIFT;
+
+	ew32(TCTL, tctl);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_config_mac_to_phy - sync phy and mac settings
+ * @hw: Struct containing variables accessed by shared code
+ * @mii_reg: data to write to the MII control register
+ *
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
+ * The contents of the PHY register containing the needed information need to
+ * be passed in.
+ */
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_config_mac_to_phy");
+
+	/* 82544 or newer MAC, Auto Speed Detection takes care of
+	 * MAC speed/duplex configuration.*/
+	if (hw->mac_type >= e1000_82544)
+		return E1000_SUCCESS;
+
+	/* Read the Device Control Register and set the bits to Force Speed
+	 * and Duplex.
+	 */
+	ctrl = er32(CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+	/* Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+	else
+		ctrl &= ~E1000_CTRL_FD;
+
+	e1000_config_collision_dist(hw);
+
+	/* Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_force_mac_fc - force flow control settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Forces the MAC's flow control settings.
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ */
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_force_mac_fc");
+
+	/* Get the current configuration of the Device Control Register */
+	ctrl = er32(CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case E1000_FC_RX_PAUSE:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case E1000_FC_TX_PAUSE:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case E1000_FC_FULL:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	/* Disable TX Flow Control for 82542 (rev 2.0) */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		ctrl &= (~E1000_CTRL_TFCE);
+
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_fc_after_link_up - configure flow control after autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures flow control settings after link is established
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automatically set to the negotiated flow control mode.
+ */
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 mii_nway_adv_reg;
+	u16 mii_nway_lp_ability_reg;
+	u16 speed;
+	u16 duplex;
+
+	DEBUGFUNC("e1000_config_fc_after_link_up");
+
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_internal_serdes)
+		&& (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_copper)
+		&& (!hw->autoneg))) {
+		ret_val = e1000_force_mac_fc(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+			/* The AutoNeg process has completed, so we now need to
+			 * read both the Auto Negotiation Advertisement Register
+			 * (Address 4) and the Auto_Negotiation Base Page Ability
+			 * Register (Address 5) to determine how flow control was
+			 * negotiated.
+			 */
+			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+						     &mii_nway_adv_reg);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+						     &mii_nway_lp_ability_reg);
+			if (ret_val)
+				return ret_val;
+
+			/* Two bits in the Auto Negotiation Advertisement Register
+			 * (Address 4) and two bits in the Auto Negotiation Base
+			 * Page Ability Register (Address 5) determine flow control
+			 * for both the PHY and the link partner.  The following
+			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+			 * 1999, describes these PAUSE resolution bits and how flow
+			 * control is determined based upon these settings.
+			 * NOTE:  DC = Don't Care
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			/* Are both PAUSE bits set to 1?  If so, this implies
+			 * Symmetric Flow Control is enabled at both ends.  The
+			 * ASM_DIR bits are irrelevant per the spec.
+			 *
+			 * For Symmetric Flow Control:
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *
+			 */
+			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+				/* Now we need to check if the user selected RX ONLY
+				 * of pause frames.  In this case, we had to advertise
+				 * FULL flow control because we could not advertise RX
+				 * ONLY. Hence, we must now check to see if we need to
+				 * turn OFF  the TRANSMISSION of PAUSE frames.
+				 */
+				if (hw->original_fc == E1000_FC_FULL) {
+					hw->fc = E1000_FC_FULL;
+					DEBUGOUT("Flow Control = FULL.\n");
+				} else {
+					hw->fc = E1000_FC_RX_PAUSE;
+					DEBUGOUT
+					    ("Flow Control = RX PAUSE frames only.\n");
+				}
+			}
+			/* For receiving PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *
+			 */
+			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_TX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = TX PAUSE frames only.\n");
+			}
+			/* For transmitting PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_RX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+			/* Per the IEEE spec, at this point flow control should be
+			 * disabled.  However, we want to consider that we could
+			 * be connected to a legacy switch that doesn't advertise
+			 * desired flow control, but can be forced on the link
+			 * partner.  So if we advertised no flow control, that is
+			 * what we will resolve to.  If we advertised some kind of
+			 * receive capability (Rx Pause Only or Full Flow Control)
+			 * and the link partner advertised none, we will configure
+			 * ourselves to enable Rx Flow Control only.  We can do
+			 * this safely for two reasons:  If the link partner really
+			 * didn't want flow control enabled, and we enable Rx, no
+			 * harm done since we won't be receiving any PAUSE frames
+			 * anyway.  If the intent on the link partner was to have
+			 * flow control enabled, then by us enabling RX only, we
+			 * can at least receive pause frames and process them.
+			 * This is a good idea because in most cases, since we are
+			 * predominantly a server NIC, more times than not we will
+			 * be asked to delay transmission of packets than asking
+			 * our link partner to pause transmission of frames.
+			 */
+			else if ((hw->original_fc == E1000_FC_NONE ||
+				  hw->original_fc == E1000_FC_TX_PAUSE) ||
+				 hw->fc_strict_ieee) {
+				hw->fc = E1000_FC_NONE;
+				DEBUGOUT("Flow Control = NONE.\n");
+			} else {
+				hw->fc = E1000_FC_RX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+
+			/* Now we need to do one last check...  If we auto-
+			 * negotiated to HALF DUPLEX, flow control should not be
+			 * enabled per IEEE 802.3 spec.
+			 */
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+
+			if (duplex == HALF_DUPLEX)
+				hw->fc = E1000_FC_NONE;
+
+			/* Now we call a subroutine to actually force the MAC
+			 * controller to use the correct flow control settings.
+			 */
+			ret_val = e1000_force_mac_fc(hw);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error forcing flow control settings\n");
+				return ret_val;
+			}
+		} else {
+			DEBUGOUT
+			    ("Copper PHY and Auto Neg has not completed.\n");
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (hw->autoneg_failed == 0) {
+			hw->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, hw->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		hw->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		rxcw = er32(RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				hw->serdes_has_link = true;
+				DEBUGOUT("SERDES: Link up - forced.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - force failed.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & er32(TXCW)) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					hw->serdes_has_link = true;
+					DEBUGOUT("SERDES: Link up - autoneg "
+						 "completed successfully.\n");
+				} else {
+					hw->serdes_has_link = false;
+					DEBUGOUT("SERDES: Link down - invalid"
+						 "codewords detected in autoneg.\n");
+				}
+			} else {
+				hw->serdes_has_link = false;
+				DEBUGOUT("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - autoneg failed\n");
+		}
+	}
+
+      out:
+	return ret_val;
+}
+
+/**
+ * e1000_check_for_link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks to see if the link status of the hardware has changed.
+ * Called by any function that needs to check the link status of the adapter.
+ */
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+	u32 rxcw = 0;
+	u32 ctrl;
+	u32 status;
+	u32 rctl;
+	u32 icr;
+	u32 signal = 0;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_for_link");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+
+	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 */
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes)) {
+		rxcw = er32(RXCW);
+
+		if (hw->media_type == e1000_media_type_fiber) {
+			signal =
+			    (hw->mac_type >
+			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+			if (status & E1000_STATUS_LU)
+				hw->get_link_status = false;
+		}
+	}
+
+	/* If we have a copper PHY then we only want to go out to the PHY
+	 * registers to see if Auto-Neg has completed and/or if our link
+	 * status has changed.  The get_link_status flag will be set if we
+	 * receive a Link Status Change interrupt or we have Rx Sequence
+	 * Errors.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+		/* First we want to see if the MII Status Register reports
+		 * link.  If so, then we want to get the current speed/duplex
+		 * of the PHY.
+		 * Read the register twice since the link bit is sticky.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			hw->get_link_status = false;
+			/* Check if there was DownShift, must be checked immediately after
+			 * link-up */
+			e1000_check_downshift(hw);
+
+			/* If we are on 82544 or 82543 silicon and speed/duplex
+			 * are forced to 10H or 10F, then we will implement the polarity
+			 * reversal workaround.  We disable interrupts first, and upon
+			 * returning, place the devices interrupt state to its previous
+			 * value except for the link status change interrupt which will
+			 * happen due to the execution of this workaround.
+			 */
+
+			if ((hw->mac_type == e1000_82544
+			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
+			    && (hw->forced_speed_duplex == e1000_10_full
+				|| hw->forced_speed_duplex == e1000_10_half)) {
+				ew32(IMC, 0xffffffff);
+				ret_val =
+				    e1000_polarity_reversal_workaround(hw);
+				icr = er32(ICR);
+				ew32(ICS, (icr & ~E1000_ICS_LSC));
+				ew32(IMS, IMS_ENABLE_MASK);
+			}
+
+		} else {
+			/* No link detected */
+			e1000_config_dsp_after_link_change(hw, false);
+			return 0;
+		}
+
+		/* If we are forcing speed/duplex, then we simply return since
+		 * we have already determined whether we have link or not.
+		 */
+		if (!hw->autoneg)
+			return -E1000_ERR_CONFIG;
+
+		/* optimize the dsp settings for the igp phy */
+		e1000_config_dsp_after_link_change(hw, true);
+
+		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+		 * have Si on board that is 82544 or newer, Auto
+		 * Speed Detection takes care of MAC speed/duplex
+		 * configuration.  So we only need to configure Collision
+		 * Distance in the MAC.  Otherwise, we need to force
+		 * speed/duplex on the MAC to the current PHY speed/duplex
+		 * settings.
+		 */
+		if (hw->mac_type >= e1000_82544)
+			e1000_config_collision_dist(hw);
+		else {
+			ret_val = e1000_config_mac_to_phy(hw);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error configuring MAC to PHY settings\n");
+				return ret_val;
+			}
+		}
+
+		/* Configure Flow Control now that Auto-Neg has completed. First, we
+		 * need to restore the desired flow control settings because we may
+		 * have had to re-autoneg with a different link partner.
+		 */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			return ret_val;
+		}
+
+		/* At this point we know that we are on copper and we have
+		 * auto-negotiated link.  These are conditions for checking the link
+		 * partner capability register.  We use the link speed to determine if
+		 * TBI compatibility needs to be turned on or off.  If the link is not
+		 * at gigabit speed, then TBI compatibility is not needed.  If we are
+		 * at gigabit speed, we turn on TBI compatibility.
+		 */
+		if (hw->tbi_compatibility_en) {
+			u16 speed, duplex;
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+			if (speed != SPEED_1000) {
+				/* If link speed is not set to gigabit speed, we do not need
+				 * to enable TBI compatibility.
+				 */
+				if (hw->tbi_compatibility_on) {
+					/* If we previously were in the mode, turn it off. */
+					rctl = er32(RCTL);
+					rctl &= ~E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+					hw->tbi_compatibility_on = false;
+				}
+			} else {
+				/* If TBI compatibility is was previously off, turn it on. For
+				 * compatibility with a TBI link partner, we will store bad
+				 * packets. Some frames have an additional byte on the end and
+				 * will look like CRC errors to to the hardware.
+				 */
+				if (!hw->tbi_compatibility_on) {
+					hw->tbi_compatibility_on = true;
+					rctl = er32(RCTL);
+					rctl |= E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+				}
+			}
+		}
+	}
+
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes))
+		e1000_check_for_serdes_link_generic(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex
+ * @hw: Struct containing variables accessed by shared code
+ * @speed: Speed of the connection
+ * @duplex: Duplex setting of the connection
+
+ * Detects the current speed and duplex settings of the hardware.
+ */
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	u32 status;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_get_speed_and_duplex");
+
+	if (hw->mac_type >= e1000_82543) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_SPEED_1000) {
+			*speed = SPEED_1000;
+			DEBUGOUT("1000 Mbs, ");
+		} else if (status & E1000_STATUS_SPEED_100) {
+			*speed = SPEED_100;
+			DEBUGOUT("100 Mbs, ");
+		} else {
+			*speed = SPEED_10;
+			DEBUGOUT("10 Mbs, ");
+		}
+
+		if (status & E1000_STATUS_FD) {
+			*duplex = FULL_DUPLEX;
+			DEBUGOUT("Full Duplex\n");
+		} else {
+			*duplex = HALF_DUPLEX;
+			DEBUGOUT(" Half Duplex\n");
+		}
+	} else {
+		DEBUGOUT("1000 Mbs, Full Duplex\n");
+		*speed = SPEED_1000;
+		*duplex = FULL_DUPLEX;
+	}
+
+	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
+	 * if it is operating at half duplex.  Here we set the duplex settings to
+	 * match the duplex in the link partner's capabilities.
+	 */
+	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+			*duplex = HALF_DUPLEX;
+		else {
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+			if (ret_val)
+				return ret_val;
+			if ((*speed == SPEED_100
+			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+			    || (*speed == SPEED_10
+				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_wait_autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Blocks until autoneg completes or times out (~4.5 seconds)
+ */
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_wait_autoneg");
+	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Auto-Neg
+		 * Complete bit to be set.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+			return E1000_SUCCESS;
+		}
+		msleep(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_raise_mdi_clk - Raises the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Raise the clock input to the Management Data Clock (by setting the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_lower_mdi_clk - Lowers the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Lower the clock input to the Management Data Clock (by clearing the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
+
+/**
+ * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
+ * @hw: Struct containing variables accessed by shared code
+ * @data: Data to send out to the PHY
+ * @count: Number of bits to shift out
+ *
+ * Bits are shifted out in MSB to LSB order.
+ */
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
+{
+	u32 ctrl;
+	u32 mask;
+
+	/* We need to shift "count" number of bits out to the PHY. So, the value
+	 * in the "data" parameter will be shifted out to the PHY one bit at a
+	 * time. In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
+
+	ctrl = er32(CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+		 * then raising and lowering the Management Data Clock. A "0" is
+		 * shifted out to the PHY by setting the MDIO bit to "0" and then
+		 * raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+		udelay(10);
+
+		e1000_raise_mdi_clk(hw, &ctrl);
+		e1000_lower_mdi_clk(hw, &ctrl);
+
+		mask = mask >> 1;
+	}
+}
+
+/**
+ * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Bits are shifted in in MSB to LSB order.
+ */
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
+
+	/* In order to read a register from the PHY, we need to shift in a total
+	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
+	 * to avoid contention on the MDIO pin when a read operation is performed.
+	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
+	 * by raising the input to the Management Data Clock (setting the MDC bit),
+	 * and then reading the value of the MDIO bit.
+	 */
+	ctrl = er32(CTRL);
+
+	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
+
+	/* Raise and Lower the clock before reading in the data. This accounts for
+	 * the turnaround bits. The first clock occurred when we clocked out the
+	 * last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data = data << 1;
+		e1000_raise_mdi_clk(hw, &ctrl);
+		ctrl = er32(CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	return data;
+}
+
+
+/**
+ * e1000_read_phy_reg - read a phy register
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to read
+ *
+ * Reads the value from a PHY register, if the value is on a specific non zero
+ * page, sets the page first.
+ */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
+{
+	u32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	DEBUGFUNC("e1000_read_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, and register address in the MDI
+		 * Control register.  The MAC will take care of interfacing with the
+		 * PHY to retrieve the desired data.
+		 */
+		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_READ));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 64; i++) {
+			udelay(50);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			DEBUGOUT("MDI Read did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+		if (mdic & E1000_MDIC_ERROR) {
+			DEBUGOUT("MDI Error\n");
+			return -E1000_ERR_PHY;
+		}
+		*phy_data = (u16) mdic;
+	} else {
+		/* We must first send a preamble through the MDIO pin to signal the
+		 * beginning of an MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the next few fields that are required for a read
+		 * operation.  We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine five different times. The format of
+		 * a MII read instruction consists of a shift out of 14 bits and is
+		 * defined as follows:
+		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+		 * followed by a shift in of 18 bits.  This first two bits shifted in
+		 * are TurnAround bits used to avoid contention on the MDIO pin when a
+		 * READ operation is performed.  These two bits are thrown away
+		 * followed by a shift in of 16 bits which contains the desired data.
+		 */
+		mdic = ((reg_addr) | (phy_addr << 5) |
+			(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+		e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+		/* Now that we've shifted out the read command to the MII, we need to
+		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+		 * register address.
+		 */
+		*phy_data = e1000_shift_in_mdi_bits(hw);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - write a phy register
+ *
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to write
+ * @data: data to write to the PHY
+
+ * Writes a value to a PHY register
+ */
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
+{
+	u32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					 phy_data);
+
+	return ret_val;
+}
+
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data)
+{
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	DEBUGFUNC("e1000_write_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, register address, and data intended
+		 * for the PHY register in the MDI Control register.  The MAC will take
+		 * care of interfacing with the PHY to send the desired data.
+		 */
+		mdic = (((u32) phy_data) |
+			(reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_WRITE));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 641; i++) {
+			udelay(5);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			DEBUGOUT("MDI Write did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+	} else {
+		/* We'll need to use the SW defined pins to shift the write command
+		 * out to the PHY. We first send a preamble to the PHY to signal the
+		 * beginning of the MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the remaining required fields that will indicate a
+		 * write operation. We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine for each field in the command. The
+		 * format of a MII write instruction is as follows:
+		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+		 */
+		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+		mdic <<= 16;
+		mdic |= (u32) phy_data;
+
+		e1000_shift_out_mdi_bits(hw, mdic, 32);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - reset the phy, hardware style
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Returns the PHY to the power-on reset state
+ */
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	u32 ctrl, ctrl_ext;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_hw_reset");
+
+	DEBUGOUT("Resetting Phy...\n");
+
+	if (hw->mac_type > e1000_82543) {
+		/* Read the device control register and assert the E1000_CTRL_PHY_RST
+		 * bit. Then, take it out of reset.
+		 * For e1000 hardware, we delay for 10ms between the assert
+		 * and deassert.
+		 */
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+		E1000_WRITE_FLUSH();
+
+		msleep(10);
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+	} else {
+		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+		 * bit to put the PHY into reset. Then, take it out of reset.
+		 */
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		msleep(10);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+	}
+	udelay(150);
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Wait for FW to finish PHY configuration. */
+	ret_val = e1000_get_phy_cfg_done(hw);
+	if (ret_val != E1000_SUCCESS)
+		return ret_val;
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_reset - reset the phy to commit settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY
+ * Sets bit 15 of the MII Control register
+ */
+s32 e1000_phy_reset(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_phy_reset");
+
+	switch (hw->phy_type) {
+	case e1000_phy_igp:
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= MII_CR_RESET;
+		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		udelay(1);
+		break;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		e1000_phy_init_script(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_detect_gig_phy - check the phy type
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Probes the expected PHY address for known PHY IDs
+ */
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+	s32 phy_init_status, ret_val;
+	u16 phy_id_high, phy_id_low;
+	bool match = false;
+
+	DEBUGFUNC("e1000_detect_gig_phy");
+
+	if (hw->phy_id != 0)
+		return E1000_SUCCESS;
+
+	/* Read the PHY ID Registers to identify which PHY is onboard. */
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id = (u32) (phy_id_high << 16);
+	udelay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
+	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->phy_id == M88E1000_E_PHY_ID)
+			match = true;
+		break;
+	case e1000_82544:
+		if (hw->phy_id == M88E1000_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (hw->phy_id == M88E1011_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (hw->phy_id == IGP01E1000_I_PHY_ID)
+			match = true;
+		break;
+	default:
+		DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+		return -E1000_ERR_CONFIG;
+	}
+	phy_init_status = e1000_set_phy_type(hw);
+
+	if ((match) && (phy_init_status == E1000_SUCCESS)) {
+		DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+		return E1000_SUCCESS;
+	}
+	DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+	return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_phy_reset_dsp - reset DSP
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY's DSP
+ */
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	DEBUGFUNC("e1000_phy_reset_dsp");
+
+	do {
+		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+		if (ret_val)
+			break;
+		ret_val = E1000_SUCCESS;
+	} while (0);
+
+	return ret_val;
+}
+
+/**
+ * e1000_phy_igp_get_info - get igp specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for igp PHY only.
+ */
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data, min_length, max_length, average;
+	e1000_rev_polarity polarity;
+
+	DEBUGFUNC("e1000_phy_igp_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	/* IGP01E1000 does not need to support it. */
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+	/* IGP01E1000 always correct polarity reversal */
+	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
+				 IGP01E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+		/* Get cable length */
+		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+		if (ret_val)
+			return ret_val;
+
+		/* Translate to old method */
+		average = (max_length + min_length) / 2;
+
+		if (average <= e1000_igp_cable_length_50)
+			phy_info->cable_length = e1000_cable_length_50;
+		else if (average <= e1000_igp_cable_length_80)
+			phy_info->cable_length = e1000_cable_length_50_80;
+		else if (average <= e1000_igp_cable_length_110)
+			phy_info->cable_length = e1000_cable_length_80_110;
+		else if (average <= e1000_igp_cable_length_140)
+			phy_info->cable_length = e1000_cable_length_110_140;
+		else
+			phy_info->cable_length = e1000_cable_length_140;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_m88_get_info - get m88 specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for m88 PHY only.
+ */
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+	e1000_rev_polarity polarity;
+
+	DEBUGFUNC("e1000_phy_m88_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->extended_10bt_distance =
+	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+	    e1000_10bt_ext_dist_enable_lower :
+	    e1000_10bt_ext_dist_enable_normal;
+
+	phy_info->polarity_correction =
+	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
+				 M88E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		/* Cable Length Estimation and Local/Remote Receiver Information
+		 * are only valid at 1000 Mbps.
+		 */
+		phy_info->cable_length =
+		    (e1000_cable_length) ((phy_data &
+					   M88E1000_PSSR_CABLE_LENGTH) >>
+					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_get_info - request phy info
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers
+ */
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_phy_get_info");
+
+	phy_info->cable_length = e1000_cable_length_undefined;
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+	phy_info->cable_polarity = e1000_rev_polarity_undefined;
+	phy_info->downshift = e1000_downshift_undefined;
+	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+	phy_info->local_rx = e1000_1000t_rx_status_undefined;
+	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+	if (hw->media_type != e1000_media_type_copper) {
+		DEBUGOUT("PHY info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+		DEBUGOUT("PHY info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		return e1000_phy_igp_get_info(hw, phy_info);
+	else
+		return e1000_phy_m88_get_info(hw, phy_info);
+}
+
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_validate_mdi_settings");
+
+	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+		DEBUGOUT("Invalid MDI setting detected\n");
+		hw->mdix = 1;
+		return -E1000_ERR_CONFIG;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_eeprom_params - initialize sw eeprom vars
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.
+ */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd = er32(EECD);
+	s32 ret_val = E1000_SUCCESS;
+	u16 eeprom_size;
+
+	DEBUGFUNC("e1000_init_eeprom_params");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->word_size = 64;
+		eeprom->opcode_bits = 3;
+		eeprom->address_bits = 6;
+		eeprom->delay_usec = 50;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->opcode_bits = 3;
+		eeprom->delay_usec = 50;
+		if (eecd & E1000_EECD_SIZE) {
+			eeprom->word_size = 256;
+			eeprom->address_bits = 8;
+		} else {
+			eeprom->word_size = 64;
+			eeprom->address_bits = 6;
+		}
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (eecd & E1000_EECD_TYPE) {
+			eeprom->type = e1000_eeprom_spi;
+			eeprom->opcode_bits = 8;
+			eeprom->delay_usec = 1;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->page_size = 32;
+				eeprom->address_bits = 16;
+			} else {
+				eeprom->page_size = 8;
+				eeprom->address_bits = 8;
+			}
+		} else {
+			eeprom->type = e1000_eeprom_microwire;
+			eeprom->opcode_bits = 3;
+			eeprom->delay_usec = 50;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->word_size = 256;
+				eeprom->address_bits = 8;
+			} else {
+				eeprom->word_size = 64;
+				eeprom->address_bits = 6;
+			}
+		}
+		break;
+	default:
+		break;
+	}
+
+	if (eeprom->type == e1000_eeprom_spi) {
+		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+		 * 32KB (incremented by powers of 2).
+		 */
+		/* Set to default value for initial eeprom read. */
+		eeprom->word_size = 64;
+		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+		if (ret_val)
+			return ret_val;
+		eeprom_size =
+		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+		/* 256B eeprom size was not supported in earlier hardware, so we
+		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+		 * is never the result used in the shifting logic below. */
+		if (eeprom_size)
+			eeprom_size++;
+
+		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+	}
+	return ret_val;
+}
+
+/**
+ * e1000_raise_ee_clk - Raises the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
+	 * wait <delay> microseconds.
+	 */
+	*eecd = *eecd | E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+	 * wait 50 microseconds.
+	 */
+	*eecd = *eecd & ~E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
+}
+
+/**
+ * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ */
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u32 mask;
+
+	/* We need to shift "count" bits out to the EEPROM. So, value in the
+	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
+	 * In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01 << (count - 1);
+	eecd = er32(EECD);
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~E1000_EECD_DO;
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_DO;
+	}
+	do {
+		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+		 * and then raising and then lowering the clock (the SK bit controls
+		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+		 * by setting "DI" to "0" and then raising and then lowering the clock.
+		 */
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+
+		udelay(eeprom->delay_usec);
+
+		e1000_raise_ee_clk(hw, &eecd);
+		e1000_lower_ee_clk(hw, &eecd);
+
+		mask = mask >> 1;
+
+	} while (mask);
+
+	/* We leave the "DI" bit set to "0" when we leave this routine. */
+	eecd &= ~E1000_EECD_DI;
+	ew32(EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
+ * @hw: Struct containing variables accessed by shared code
+ * @count: number of bits to shift in
+ */
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	/* In order to read a register from the EEPROM, we need to shift 'count'
+	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+	 * input to the EEPROM (setting the SK bit), and then reading the value of
+	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
+	 * always be clear.
+	 */
+
+	eecd = er32(EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data = data << 1;
+		e1000_raise_ee_clk(hw, &eecd);
+
+		eecd = er32(EECD);
+
+		eecd &= ~(E1000_EECD_DI);
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_ee_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ * e1000_acquire_eeprom - Prepares EEPROM for access
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ */
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd, i = 0;
+
+	DEBUGFUNC("e1000_acquire_eeprom");
+
+	eecd = er32(EECD);
+
+	/* Request EEPROM Access */
+	if (hw->mac_type > e1000_82544) {
+		eecd |= E1000_EECD_REQ;
+		ew32(EECD, eecd);
+		eecd = er32(EECD);
+		while ((!(eecd & E1000_EECD_GNT)) &&
+		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+			i++;
+			udelay(5);
+			eecd = er32(EECD);
+		}
+		if (!(eecd & E1000_EECD_GNT)) {
+			eecd &= ~E1000_EECD_REQ;
+			ew32(EECD, eecd);
+			DEBUGOUT("Could not acquire EEPROM grant\n");
+			return -E1000_ERR_EEPROM;
+		}
+	}
+
+	/* Setup EEPROM for Read/Write */
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		ew32(EECD, eecd);
+
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		udelay(1);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_standby_eeprom - Returns EEPROM to a "standby" state
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_standby_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+
+	eecd = er32(EECD);
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock high */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock low */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	}
+}
+
+/**
+ * e1000_release_eeprom - drop chip select
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Terminates a command by inverting the EEPROM's chip select pin
+ */
+static void e1000_release_eeprom(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_release_eeprom");
+
+	eecd = er32(EECD);
+
+	if (hw->eeprom.type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_CS;	/* Pull CS high */
+		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
+
+		ew32(EECD, eecd);
+
+		udelay(hw->eeprom.delay_usec);
+	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
+		/* cleanup eeprom */
+
+		/* CS on Microwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+		ew32(EECD, eecd);
+
+		/* Rising edge of clock */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+
+		/* Falling edge of clock */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+	}
+
+	/* Stop requesting EEPROM access */
+	if (hw->mac_type > e1000_82544) {
+		eecd &= ~E1000_EECD_REQ;
+		ew32(EECD, eecd);
+	}
+}
+
+/**
+ * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+	u16 retry_count = 0;
+	u8 spi_stat_reg;
+
+	DEBUGFUNC("e1000_spi_eeprom_ready");
+
+	/* Read "Status Register" repeatedly until the LSB is cleared.  The
+	 * EEPROM will signal that the command has been completed by clearing
+	 * bit 0 of the internal status register.  If it's not cleared within
+	 * 5 milliseconds, then error out.
+	 */
+	retry_count = 0;
+	do {
+		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+					hw->eeprom.opcode_bits);
+		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
+		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+			break;
+
+		udelay(5);
+		retry_count += 5;
+
+		e1000_standby_eeprom(hw);
+	} while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+	 * only 0-5mSec on 5V devices)
+	 */
+	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+		DEBUGOUT("SPI EEPROM Status error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset of  word in the EEPROM to read
+ * @data: word read from the EEPROM
+ * @words: number of words to read
+ */
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_read_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_read_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		DEBUGOUT2
+		    ("\"words\" parameter out of bounds. Words = %d, size = %d\n",
+		     offset, eeprom->word_size);
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+	 * directly. In this case, we need to acquire the EEPROM so that
+	 * FW or other port software does not interrupt.
+	 */
+	/* Prepare the EEPROM for bit-bang reading */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+	 * acquired the EEPROM at this point, so any returns should release it */
+	if (eeprom->type == e1000_eeprom_spi) {
+		u16 word_in;
+		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw)) {
+			e1000_release_eeprom(hw);
+			return -E1000_ERR_EEPROM;
+		}
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the READ command (opcode + addr)  */
+		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
+					eeprom->address_bits);
+
+		/* Read the data.  The address of the eeprom internally increments with
+		 * each byte (spi) being read, saving on the overhead of eeprom setup
+		 * and tear-down.  The address counter will roll over if reading beyond
+		 * the size of the eeprom, thus allowing the entire memory to be read
+		 * starting from any offset. */
+		for (i = 0; i < words; i++) {
+			word_in = e1000_shift_in_ee_bits(hw, 16);
+			data[i] = (word_in >> 8) | (word_in << 8);
+		}
+	} else if (eeprom->type == e1000_eeprom_microwire) {
+		for (i = 0; i < words; i++) {
+			/* Send the READ command (opcode + addr)  */
+			e1000_shift_out_ee_bits(hw,
+						EEPROM_READ_OPCODE_MICROWIRE,
+						eeprom->opcode_bits);
+			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
+						eeprom->address_bits);
+
+			/* Read the data.  For microwire, each word requires the overhead
+			 * of eeprom setup and tear-down. */
+			data[i] = e1000_shift_in_ee_bits(hw, 16);
+			e1000_standby_eeprom(hw);
+		}
+	}
+
+	/* End this read operation */
+	e1000_release_eeprom(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ */
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	DEBUGFUNC("e1000_validate_eeprom_checksum");
+
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+
+	if (checksum == (u16) EEPROM_SUM)
+		return E1000_SUCCESS;
+	else {
+		DEBUGOUT("EEPROM Checksum Invalid\n");
+		return -E1000_ERR_EEPROM;
+	}
+}
+
+/**
+ * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ */
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	DEBUGFUNC("e1000_update_eeprom_checksum");
+
+	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+	checksum = (u16) EEPROM_SUM - checksum;
+	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+		DEBUGOUT("EEPROM Write Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom - write words to the different EEPROM types.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word to be written to the EEPROM
+ *
+ * If e1000_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ */
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_write_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
+
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	s32 status = 0;
+
+	DEBUGFUNC("e1000_write_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		DEBUGOUT("\"words\" parameter out of bounds\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* Prepare the EEPROM for writing  */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		status = e1000_write_eeprom_microwire(hw, offset, words, data);
+	} else {
+		status = e1000_write_eeprom_spi(hw, offset, words, data);
+		msleep(10);
+	}
+
+	/* Done with writing */
+	e1000_release_eeprom(hw);
+
+	return status;
+}
+
+/**
+ * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_eeprom_spi");
+
+	while (widx < words) {
+		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw))
+			return -E1000_ERR_EEPROM;
+
+		e1000_standby_eeprom(hw);
+
+		/*  Send the WRITE ENABLE command (8 bit opcode )  */
+		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+					eeprom->opcode_bits);
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			write_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
+					eeprom->address_bits);
+
+		/* Send the data */
+
+		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_ee_bits(hw, word_out, 16);
+			widx++;
+
+			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+			 * operation, while the smaller eeproms are capable of an 8-byte
+			 * PAGE WRITE operation.  Break the inner loop to pass new address
+			 */
+			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
+				e1000_standby_eeprom(hw);
+				break;
+			}
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_write_eeprom_microwire");
+
+	/* Send the write enable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 11).  It's less work to include
+	 * the 11 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This puts the
+	 * EEPROM into write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	/* Prepare the EEPROM */
+	e1000_standby_eeprom(hw);
+
+	while (words_written < words) {
+		/* Send the Write command (3-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+					eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
+					eeprom->address_bits);
+
+		/* Send the data */
+		e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+		/* Toggle the CS line.  This in effect tells the EEPROM to execute
+		 * the previous command.
+		 */
+		e1000_standby_eeprom(hw);
+
+		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
+		 * signal that the command has been completed by raising the DO signal.
+		 * If DO does not go high in 10 milliseconds, then error out.
+		 */
+		for (i = 0; i < 200; i++) {
+			eecd = er32(EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			udelay(50);
+		}
+		if (i == 200) {
+			DEBUGOUT("EEPROM Write did not complete\n");
+			return -E1000_ERR_EEPROM;
+		}
+
+		/* Recover from write */
+		e1000_standby_eeprom(hw);
+
+		words_written++;
+	}
+
+	/* Send the write disable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 10).  It's less work to include
+	 * the 10 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This takes the
+	 * EEPROM out of write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - read the adapters MAC from eeprom
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ */
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+	u16 offset;
+	u16 eeprom_data, i;
+
+	DEBUGFUNC("e1000_read_mac_addr");
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+		offset = i >> 1;
+		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
+		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			hw->perm_mac_addr[5] ^= 0x01;
+		break;
+	}
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+		hw->mac_addr[i] = hw->perm_mac_addr[i];
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_rx_addrs - Initializes receive address filters.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive address registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ */
+static void e1000_init_rx_addrs(struct e1000_hw *hw)
+{
+	u32 i;
+	u32 rar_num;
+
+	DEBUGFUNC("e1000_init_rx_addrs");
+
+	/* Setup the receive address. */
+	DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	rar_num = E1000_RAR_ENTRIES;
+
+	/* Zero out the other 15 receive addresses. */
+	DEBUGOUT("Clearing RAR[1-15]\n");
+	for (i = 1; i < rar_num; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
+ * @hw: Struct containing variables accessed by shared code
+ * @mc_addr: the multicast address to hash
+ */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value = 0;
+
+	/* The portion of the address that is used for the hash table is
+	 * determined by the mc_filter_type setting.
+	 */
+	switch (hw->mc_filter_type) {
+		/* [0] [1] [2] [3] [4] [5]
+		 * 01  AA  00  12  34  56
+		 * LSB                 MSB
+		 */
+	case 0:
+		/* [47:36] i.e. 0x563 for above example address */
+		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
+		break;
+	case 1:
+		/* [46:35] i.e. 0xAC6 for above example address */
+		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
+		break;
+	case 2:
+		/* [45:34] i.e. 0x5D8 for above example address */
+		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
+		break;
+	case 3:
+		/* [43:32] i.e. 0x634 for above example address */
+		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
+		break;
+	}
+
+	hash_value &= 0xFFF;
+	return hash_value;
+}
+
+/**
+ * e1000_rar_set - Puts an ethernet address into a receive address register.
+ * @hw: Struct containing variables accessed by shared code
+ * @addr: Address to put into receive address register
+ * @index: Receive address register to write
+ */
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+	 * unit hang.
+	 *
+	 * Description:
+	 * If there are any Rx frames queued up or otherwise present in the HW
+	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
+	 * hang.  To work around this issue, we have to disable receives and
+	 * flush out all Rx frames before we enable RSS. To do so, we modify we
+	 * redirect all Rx traffic to manageability and then reset the HW.
+	 * This flushes away Rx frames, and (since the redirections to
+	 * manageability persists across resets) keeps new ones from coming in
+	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
+	 * addresses and undo the re-direction to manageability.
+	 * Now, frames are coming in again, but the MAC won't accept them, so
+	 * far so good.  We now proceed to initialize RSS (if necessary) and
+	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
+	 * on our merry way.
+	 */
+	switch (hw->mac_type) {
+	default:
+		/* Indicate to hardware the Address is Valid. */
+		rar_high |= E1000_RAH_AV;
+		break;
+	}
+
+	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+	E1000_WRITE_FLUSH();
+	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: Offset in VLAN filer table to write
+ * @value: Value to write into VLAN filter table
+ */
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	u32 temp;
+
+	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+		E1000_WRITE_FLUSH();
+	} else {
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+/**
+ * e1000_clear_vfta - Clears the VLAN filer table
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/* If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of the
+		 * manageability unit */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH();
+	}
+}
+
+static s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 eeprom_data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	DEBUGFUNC("e1000_id_led_init");
+
+	if (hw->mac_type < e1000_82540) {
+		/* Nothing to do */
+		return E1000_SUCCESS;
+	}
+
+	ledctl = er32(LEDCTL);
+	hw->ledctl_default = ledctl;
+	hw->ledctl_mode1 = hw->ledctl_default;
+	hw->ledctl_mode2 = hw->ledctl_default;
+
+	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+		DEBUGOUT("EEPROM Read Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	if ((eeprom_data == ID_LED_RESERVED_0000) ||
+	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
+		eeprom_data = ID_LED_DEFAULT;
+	}
+
+	for (i = 0; i < 4; i++) {
+		temp = (eeprom_data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_led
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ */
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No setup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn off PHY Smart Power Down (if enabled) */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					     &hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      (u16) (hw->phy_spd_default &
+						     ~IGP01E1000_GMII_SPD));
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			ledctl = er32(LEDCTL);
+			/* Save current LEDCTL settings */
+			hw->ledctl_default = ledctl;
+			/* Turn off LED0 */
+			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+				    E1000_LEDCTL_LED0_BLINK |
+				    E1000_LEDCTL_LED0_MODE_MASK);
+			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+				   E1000_LEDCTL_LED0_MODE_SHIFT);
+			ew32(LEDCTL, ledctl);
+		} else if (hw->media_type == e1000_media_type_copper)
+			ew32(LEDCTL, hw->ledctl_mode1);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No cleanup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn on PHY Smart Power Down (if previously enabled) */
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		/* Restore LEDCTL settings */
+		ew32(LEDCTL, hw->ledctl_default);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turns on the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	DEBUGFUNC("e1000_led_on");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Set SW Defineable Pin 0 to turn on the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn on the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode2);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turns off the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	DEBUGFUNC("e1000_led_off");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Clear SW Defineable Pin 0 to turn off the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn off the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode1);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	temp = er32(CRCERRS);
+	temp = er32(SYMERRS);
+	temp = er32(MPC);
+	temp = er32(SCC);
+	temp = er32(ECOL);
+	temp = er32(MCC);
+	temp = er32(LATECOL);
+	temp = er32(COLC);
+	temp = er32(DC);
+	temp = er32(SEC);
+	temp = er32(RLEC);
+	temp = er32(XONRXC);
+	temp = er32(XONTXC);
+	temp = er32(XOFFRXC);
+	temp = er32(XOFFTXC);
+	temp = er32(FCRUC);
+
+	temp = er32(PRC64);
+	temp = er32(PRC127);
+	temp = er32(PRC255);
+	temp = er32(PRC511);
+	temp = er32(PRC1023);
+	temp = er32(PRC1522);
+
+	temp = er32(GPRC);
+	temp = er32(BPRC);
+	temp = er32(MPRC);
+	temp = er32(GPTC);
+	temp = er32(GORCL);
+	temp = er32(GORCH);
+	temp = er32(GOTCL);
+	temp = er32(GOTCH);
+	temp = er32(RNBC);
+	temp = er32(RUC);
+	temp = er32(RFC);
+	temp = er32(ROC);
+	temp = er32(RJC);
+	temp = er32(TORL);
+	temp = er32(TORH);
+	temp = er32(TOTL);
+	temp = er32(TOTH);
+	temp = er32(TPR);
+	temp = er32(TPT);
+
+	temp = er32(PTC64);
+	temp = er32(PTC127);
+	temp = er32(PTC255);
+	temp = er32(PTC511);
+	temp = er32(PTC1023);
+	temp = er32(PTC1522);
+
+	temp = er32(MPTC);
+	temp = er32(BPTC);
+
+	if (hw->mac_type < e1000_82543)
+		return;
+
+	temp = er32(ALGNERRC);
+	temp = er32(RXERRC);
+	temp = er32(TNCRS);
+	temp = er32(CEXTERR);
+	temp = er32(TSCTC);
+	temp = er32(TSCTFC);
+
+	if (hw->mac_type <= e1000_82544)
+		return;
+
+	temp = er32(MGTPRC);
+	temp = er32(MGTPDC);
+	temp = er32(MGTPTC);
+}
+
+/**
+ * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to true. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ */
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_reset_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if (!hw->ifs_params_forced) {
+			hw->current_ifs_val = 0;
+			hw->ifs_min_val = IFS_MIN;
+			hw->ifs_max_val = IFS_MAX;
+			hw->ifs_step_size = IFS_STEP;
+			hw->ifs_ratio = IFS_RATIO;
+		}
+		hw->in_ifs_mode = false;
+		ew32(AIT, 0);
+	} else {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_update_adaptive - update adaptive IFS
+ * @hw: Struct containing variables accessed by shared code
+ * @tx_packets: Number of transmits since last callback
+ * @total_collisions: Number of collisions since last callback
+ *
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ */
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_update_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
+			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+				hw->in_ifs_mode = true;
+				if (hw->current_ifs_val < hw->ifs_max_val) {
+					if (hw->current_ifs_val == 0)
+						hw->current_ifs_val =
+						    hw->ifs_min_val;
+					else
+						hw->current_ifs_val +=
+						    hw->ifs_step_size;
+					ew32(AIT, hw->current_ifs_val);
+				}
+			}
+		} else {
+			if (hw->in_ifs_mode
+			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+				hw->current_ifs_val = 0;
+				hw->in_ifs_mode = false;
+				ew32(AIT, 0);
+			}
+		}
+	} else {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+	}
+}
+
+/**
+ * e1000_tbi_adjust_stats
+ * @hw: Struct containing variables accessed by shared code
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ */
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 *mac_addr)
+{
+	u64 carry_bit;
+
+	/* First adjust the frame length. */
+	frame_len--;
+	/* We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error.    */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received.    */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters             */
+	carry_bit = 0x80000000 & stats->gorcl;
+	stats->gorcl += frame_len;
+	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
+	 * Received Count) was one before the addition,
+	 * AND it is zero after, then we lost the carry out,
+	 * need to add one to Gorch (Good Octets Received Count High).
+	 * This could be simplified if all environments supported
+	 * 64-bit integers.
+	 */
+	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+		stats->gorch++;
+	/* Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	if (frame_len == hw->max_frame_size) {
+		/* In this case, the hardware has overcounted the number of
+		 * oversize frames.
+		 */
+		if (stats->roc > 0)
+			stats->roc--;
+	}
+
+	/* Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
+}
+
+/**
+ * e1000_get_bus_info
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Gets the current PCI bus type, speed, and width of the hardware
+ */
+void e1000_get_bus_info(struct e1000_hw *hw)
+{
+	u32 status;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		hw->bus_type = e1000_bus_type_pci;
+		hw->bus_speed = e1000_bus_speed_unknown;
+		hw->bus_width = e1000_bus_width_unknown;
+		break;
+	default:
+		status = er32(STATUS);
+		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+		    e1000_bus_type_pcix : e1000_bus_type_pci;
+
+		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_120;
+		} else if (hw->bus_type == e1000_bus_type_pci) {
+			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_33;
+		} else {
+			switch (status & E1000_STATUS_PCIX_SPEED) {
+			case E1000_STATUS_PCIX_SPEED_66:
+				hw->bus_speed = e1000_bus_speed_66;
+				break;
+			case E1000_STATUS_PCIX_SPEED_100:
+				hw->bus_speed = e1000_bus_speed_100;
+				break;
+			case E1000_STATUS_PCIX_SPEED_133:
+				hw->bus_speed = e1000_bus_speed_133;
+				break;
+			default:
+				hw->bus_speed = e1000_bus_speed_reserved;
+				break;
+			}
+		}
+		hw->bus_width = (status & E1000_STATUS_BUS64) ?
+		    e1000_bus_width_64 : e1000_bus_width_32;
+		break;
+	}
+}
+
+/**
+ * e1000_write_reg_io
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset to write to
+ * @value: value to write
+ *
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ */
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	unsigned long io_addr = hw->io_base;
+	unsigned long io_data = hw->io_base + 4;
+
+	e1000_io_write(hw, io_addr, offset);
+	e1000_io_write(hw, io_data, value);
+}
+
+/**
+ * e1000_get_cable_length - Estimates the cable length.
+ * @hw: Struct containing variables accessed by shared code
+ * @min_length: The estimated minimum length
+ * @max_length: The estimated maximum length
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * This function always returns a ranged length (minimum & maximum).
+ * So for M88 phy's, this function interprets the one value returned from the
+ * register to the minimum and maximum range.
+ * For IGP phy's, the function calculates the range by the AGC registers.
+ */
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length)
+{
+	s32 ret_val;
+	u16 agc_value = 0;
+	u16 i, phy_data;
+	u16 cable_length;
+
+	DEBUGFUNC("e1000_get_cable_length");
+
+	*min_length = *max_length = 0;
+
+	/* Use old method for Phy older than IGP */
+	if (hw->phy_type == e1000_phy_m88) {
+
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+		/* Convert the enum value to ranged values */
+		switch (cable_length) {
+		case e1000_cable_length_50:
+			*min_length = 0;
+			*max_length = e1000_igp_cable_length_50;
+			break;
+		case e1000_cable_length_50_80:
+			*min_length = e1000_igp_cable_length_50;
+			*max_length = e1000_igp_cable_length_80;
+			break;
+		case e1000_cable_length_80_110:
+			*min_length = e1000_igp_cable_length_80;
+			*max_length = e1000_igp_cable_length_110;
+			break;
+		case e1000_cable_length_110_140:
+			*min_length = e1000_igp_cable_length_110;
+			*max_length = e1000_igp_cable_length_140;
+			break;
+		case e1000_cable_length_140:
+			*min_length = e1000_igp_cable_length_140;
+			*max_length = e1000_igp_cable_length_170;
+			break;
+		default:
+			return -E1000_ERR_PHY;
+			break;
+		}
+	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
+		u16 cur_agc_value;
+		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+		u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+		    { IGP01E1000_PHY_AGC_A,
+			IGP01E1000_PHY_AGC_B,
+			IGP01E1000_PHY_AGC_C,
+			IGP01E1000_PHY_AGC_D
+		};
+		/* Read the AGC registers for all channels */
+		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+			ret_val =
+			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+			/* Value bound check. */
+			if ((cur_agc_value >=
+			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
+			    || (cur_agc_value == 0))
+				return -E1000_ERR_PHY;
+
+			agc_value += cur_agc_value;
+
+			/* Update minimal AGC value. */
+			if (min_agc_value > cur_agc_value)
+				min_agc_value = cur_agc_value;
+		}
+
+		/* Remove the minimal AGC result for length < 50m */
+		if (agc_value <
+		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+			agc_value -= min_agc_value;
+
+			/* Get the average length of the remaining 3 channels */
+			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+		} else {
+			/* Get the average length of all the 4 channels. */
+			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+		}
+
+		/* Set the range of the calculated length. */
+		*min_length = ((e1000_igp_cable_length_table[agc_value] -
+				IGP01E1000_AGC_RANGE) > 0) ?
+		    (e1000_igp_cable_length_table[agc_value] -
+		     IGP01E1000_AGC_RANGE) : 0;
+		*max_length = e1000_igp_cable_length_table[agc_value] +
+		    IGP01E1000_AGC_RANGE;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_polarity - Check the cable polarity
+ * @hw: Struct containing variables accessed by shared code
+ * @polarity: output parameter : 0 - Polarity is not reversed
+ *                               1 - Polarity is reversed.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function simply reads the polarity bit in the
+ * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
+ * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
+ * return 0.  If the link speed is 1000 Mbps the polarity status is in the
+ * IGP01E1000_PHY_PCS_INIT_REG.
+ */
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_polarity");
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* return the Polarity bit in the Status register. */
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+	} else if (hw->phy_type == e1000_phy_igp) {
+		/* Read the Status register to check the speed */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+		 * find the polarity status */
+		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+		    IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+			/* Read the GIG initialization PCS register (0x00B4) */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			/* Check the polarity bits */
+			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		} else {
+			/* For 10 Mbps, read the polarity bit in the status register. (for
+			 * 100 Mbps this bit is always 0) */
+			*polarity =
+			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_downshift - Check if Downshift occurred
+ * @hw: Struct containing variables accessed by shared code
+ * @downshift: output parameter : 0 - No Downshift occurred.
+ *                                1 - Downshift occurred.
+ *
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
+ *
+ * For phy's older than IGP, this function reads the Downshift bit in the Phy
+ * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
+ * Link Health register.  In IGP this bit is latched high, so the driver must
+ * read it immediately after link is established.
+ */
+static s32 e1000_check_downshift(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_downshift");
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded =
+		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_dsp_after_link_change
+ * @hw: Struct containing variables accessed by shared code
+ * @link_up: was link up at the time this was called
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ */
+
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
+{
+	s32 ret_val;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	    { IGP01E1000_PHY_AGC_PARAM_A,
+		IGP01E1000_PHY_AGC_PARAM_B,
+		IGP01E1000_PHY_AGC_PARAM_C,
+		IGP01E1000_PHY_AGC_PARAM_D
+	};
+	u16 min_length, max_length;
+
+	DEBUGFUNC("e1000_config_dsp_after_link_change");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	if (link_up) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+
+		if (speed == SPEED_1000) {
+
+			ret_val =
+			    e1000_get_cable_length(hw, &min_length,
+						   &max_length);
+			if (ret_val)
+				return ret_val;
+
+			if ((hw->dsp_config_state == e1000_dsp_config_enabled)
+			    && min_length >= e1000_igp_cable_length_50) {
+
+				for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       dsp_reg_array[i],
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					phy_data &=
+					    ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+					ret_val =
+					    e1000_write_phy_reg(hw,
+								dsp_reg_array
+								[i], phy_data);
+					if (ret_val)
+						return ret_val;
+				}
+				hw->dsp_config_state =
+				    e1000_dsp_config_activated;
+			}
+
+			if ((hw->ffe_config_state == e1000_ffe_config_enabled)
+			    && (min_length < e1000_igp_cable_length_50)) {
+
+				u16 ffe_idle_err_timeout =
+				    FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+				u32 idle_errs = 0;
+
+				/* clear previous idle error counts */
+				ret_val =
+				    e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				for (i = 0; i < ffe_idle_err_timeout; i++) {
+					udelay(1000);
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       PHY_1000T_STATUS,
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					idle_errs +=
+					    (phy_data &
+					     SR_1000T_IDLE_ERROR_CNT);
+					if (idle_errs >
+					    SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
+					{
+						hw->ffe_config_state =
+						    e1000_ffe_config_active;
+
+						ret_val =
+						    e1000_write_phy_reg(hw,
+									IGP01E1000_PHY_DSP_FFE,
+									IGP01E1000_PHY_DSP_FFE_CM_CP);
+						if (ret_val)
+							return ret_val;
+						break;
+					}
+
+					if (idle_errs)
+						ffe_idle_err_timeout =
+						    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+				}
+			}
+		}
+	} else {
+		if (hw->dsp_config_state == e1000_dsp_config_activated) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val =
+				    e1000_read_phy_reg(hw, dsp_reg_array[i],
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val =
+				    e1000_write_phy_reg(hw, dsp_reg_array[i],
+							phy_data);
+				if (ret_val)
+					return ret_val;
+			}
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+		}
+
+		if (hw->ffe_config_state == e1000_ffe_config_active) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+						IGP01E1000_PHY_DSP_FFE_DEFAULT);
+			if (ret_val)
+				return ret_val;
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_phy_mode - Set PHY to class A mode
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ */
+static s32 e1000_set_phy_mode(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 eeprom_data;
+
+	DEBUGFUNC("e1000_set_phy_mode");
+
+	if ((hw->mac_type == e1000_82545_rev_3) &&
+	    (hw->media_type == e1000_media_type_copper)) {
+		ret_val =
+		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
+				      &eeprom_data);
+		if (ret_val) {
+			return ret_val;
+		}
+
+		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+						0x000B);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
+						0x8104);
+			if (ret_val)
+				return ret_val;
+
+			hw->phy_reset_disable = false;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - set d3 link power state
+ * @hw: Struct containing variables accessed by shared code
+ * @active: true to enable lplu false to disable lplu.
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisement
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val;
+	u16 phy_data;
+	DEBUGFUNC("e1000_set_d3_lplu_state");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	/* During driver activity LPLU should not be used or it will attain link
+	 * from the lowest speeds starting from 10Mbps. The capability is used for
+	 * Dx transitions and states */
+	if (hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2) {
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (!active) {
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+		 * Dx states where the power conservation is most important.  During
+		 * driver activity we should enable SmartSpeed, so performance is
+		 * maintained. */
+		if (hw->smart_speed == e1000_smart_speed_on) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		} else if (hw->smart_speed == e1000_smart_speed_off) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
+		   || (hw->autoneg_advertised ==
+		       AUTONEG_ADVERTISE_10_100_ALL)) {
+
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data |= IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* When LPLU is enabled we should disable SmartSpeed */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_vco_speed
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ */
+static s32 e1000_set_vco_speed(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 default_page = 0;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_set_vco_speed");
+
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	/* Set PHY register 30, page 5, bit 8 to 0 */
+
+	ret_val =
+	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val =
+	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+
+/**
+ * e1000_enable_mng_pass_thru - check for bmc pass through
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Verifies the hardware needs to allow ARPs to be processed by the host
+ * returns: - true/false
+ */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	if (hw->asf_firmware_present) {
+		manc = er32(MANC);
+
+		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+			return false;
+		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+			return true;
+	}
+	return false;
+}
+
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 i;
+
+	/* Polarity reversal workaround for forced 10F/10H links. */
+
+	/* Disable the transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the NO link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+			break;
+		mdelay(100);
+	}
+
+	/* Recommended delay time after link has been lost */
+	mdelay(1000);
+
+	/* Now we will re-enable th transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be set.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_LINK_STATUS)
+			break;
+		mdelay(100);
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_auto_rd_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Check for EEPROM Auto Read bit done.
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_auto_rd_done");
+	msleep(5);
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_cfg_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks if the PHY configuration is done
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_phy_cfg_done");
+	mdelay(10);
+	return E1000_SUCCESS;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_hw-2.6.32-orig.h	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,3048 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+
+/* Forward declarations of structures used by the shared code */
+struct e1000_hw;
+struct e1000_hw_stats;
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+	e1000_undefined = 0,
+	e1000_82542_rev2_0,
+	e1000_82542_rev2_1,
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_num_macs
+} e1000_mac_type;
+
+typedef enum {
+	e1000_eeprom_uninitialized = 0,
+	e1000_eeprom_spi,
+	e1000_eeprom_microwire,
+	e1000_eeprom_flash,
+	e1000_eeprom_none,	/* No NVM support */
+	e1000_num_eeprom_types
+} e1000_eeprom_type;
+
+/* Media Types */
+typedef enum {
+	e1000_media_type_copper = 0,
+	e1000_media_type_fiber = 1,
+	e1000_media_type_internal_serdes = 2,
+	e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+	e1000_10_half = 0,
+	e1000_10_full = 1,
+	e1000_100_half = 2,
+	e1000_100_full = 3
+} e1000_speed_duplex_type;
+
+/* Flow Control Settings */
+typedef enum {
+	E1000_FC_NONE = 0,
+	E1000_FC_RX_PAUSE = 1,
+	E1000_FC_TX_PAUSE = 2,
+	E1000_FC_FULL = 3,
+	E1000_FC_DEFAULT = 0xFF
+} e1000_fc_type;
+
+struct e1000_shadow_ram {
+	u16 eeprom_word;
+	bool modified;
+};
+
+/* PCI bus types */
+typedef enum {
+	e1000_bus_type_unknown = 0,
+	e1000_bus_type_pci,
+	e1000_bus_type_pcix,
+	e1000_bus_type_reserved
+} e1000_bus_type;
+
+/* PCI bus speeds */
+typedef enum {
+	e1000_bus_speed_unknown = 0,
+	e1000_bus_speed_33,
+	e1000_bus_speed_66,
+	e1000_bus_speed_100,
+	e1000_bus_speed_120,
+	e1000_bus_speed_133,
+	e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+/* PCI bus widths */
+typedef enum {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+} e1000_bus_width;
+
+/* PHY status info structure and supporting enums */
+typedef enum {
+	e1000_cable_length_50 = 0,
+	e1000_cable_length_50_80,
+	e1000_cable_length_80_110,
+	e1000_cable_length_110_140,
+	e1000_cable_length_140,
+	e1000_cable_length_undefined = 0xFF
+} e1000_cable_length;
+
+typedef enum {
+	e1000_gg_cable_length_60 = 0,
+	e1000_gg_cable_length_60_115 = 1,
+	e1000_gg_cable_length_115_150 = 2,
+	e1000_gg_cable_length_150 = 4
+} e1000_gg_cable_length;
+
+typedef enum {
+	e1000_igp_cable_length_10 = 10,
+	e1000_igp_cable_length_20 = 20,
+	e1000_igp_cable_length_30 = 30,
+	e1000_igp_cable_length_40 = 40,
+	e1000_igp_cable_length_50 = 50,
+	e1000_igp_cable_length_60 = 60,
+	e1000_igp_cable_length_70 = 70,
+	e1000_igp_cable_length_80 = 80,
+	e1000_igp_cable_length_90 = 90,
+	e1000_igp_cable_length_100 = 100,
+	e1000_igp_cable_length_110 = 110,
+	e1000_igp_cable_length_115 = 115,
+	e1000_igp_cable_length_120 = 120,
+	e1000_igp_cable_length_130 = 130,
+	e1000_igp_cable_length_140 = 140,
+	e1000_igp_cable_length_150 = 150,
+	e1000_igp_cable_length_160 = 160,
+	e1000_igp_cable_length_170 = 170,
+	e1000_igp_cable_length_180 = 180
+} e1000_igp_cable_length;
+
+typedef enum {
+	e1000_10bt_ext_dist_enable_normal = 0,
+	e1000_10bt_ext_dist_enable_lower,
+	e1000_10bt_ext_dist_enable_undefined = 0xFF
+} e1000_10bt_ext_dist_enable;
+
+typedef enum {
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+	e1000_downshift_normal = 0,
+	e1000_downshift_activated,
+	e1000_downshift_undefined = 0xFF
+} e1000_downshift;
+
+typedef enum {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+} e1000_smart_speed;
+
+typedef enum {
+	e1000_polarity_reversal_enabled = 0,
+	e1000_polarity_reversal_disabled,
+	e1000_polarity_reversal_undefined = 0xFF
+} e1000_polarity_reversal;
+
+typedef enum {
+	e1000_auto_x_mode_manual_mdi = 0,
+	e1000_auto_x_mode_manual_mdix,
+	e1000_auto_x_mode_auto1,
+	e1000_auto_x_mode_auto2,
+	e1000_auto_x_mode_undefined = 0xFF
+} e1000_auto_x_mode;
+
+typedef enum {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+    e1000_phy_m88 = 0,
+    e1000_phy_igp,
+    e1000_phy_undefined = 0xFF
+} e1000_phy_type;
+
+typedef enum {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+	e1000_ffe_config_enabled = 0,
+	e1000_ffe_config_active,
+	e1000_ffe_config_blocked
+} e1000_ffe_config;
+
+typedef enum {
+	e1000_dsp_config_disabled = 0,
+	e1000_dsp_config_enabled,
+	e1000_dsp_config_activated,
+	e1000_dsp_config_undefined = 0xFF
+} e1000_dsp_config;
+
+struct e1000_phy_info {
+	e1000_cable_length cable_length;
+	e1000_10bt_ext_dist_enable extended_10bt_distance;
+	e1000_rev_polarity cable_polarity;
+	e1000_downshift downshift;
+	e1000_polarity_reversal polarity_correction;
+	e1000_auto_x_mode mdix_mode;
+	e1000_1000t_rx_status local_rx;
+	e1000_1000t_rx_status remote_rx;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_eeprom_info {
+	e1000_eeprom_type type;
+	u16 word_size;
+	u16 opcode_bits;
+	u16 address_bits;
+	u16 delay_usec;
+	u16 page_size;
+};
+
+/* Flex ASF Information */
+#define E1000_HOST_IF_MAX_SIZE  2048
+
+typedef enum {
+	e1000_byte_align = 0,
+	e1000_word_align = 1,
+	e1000_dword_align = 2
+} e1000_align_type;
+
+/* Error Codes */
+#define E1000_SUCCESS      0
+#define E1000_ERR_EEPROM   1
+#define E1000_ERR_PHY      2
+#define E1000_ERR_CONFIG   3
+#define E1000_ERR_PARAM    4
+#define E1000_ERR_MAC_TYPE 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET   9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET   12
+
+#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \
+                                     (((_value) & 0xff00) >> 8))
+
+/* Function prototypes */
+/* Initialization */
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+void e1000_set_media_type(struct e1000_hw *hw);
+
+/* Link Configuration */
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+
+/* PHY */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_reset(struct e1000_hw *hw);
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+
+/* EEPROM Functions */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw);
+
+/* MNG HOST IF functions */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD   64
+#define E1000_HI_MAX_MNG_DATA_LENGTH    0x6F8	/* Host Interface data length */
+
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT  10	/* Time in ms to process MNG command */
+#define E1000_MNG_DHCP_COOKIE_OFFSET    0x6F0	/* Cookie offset */
+#define E1000_MNG_DHCP_COOKIE_LENGTH    0x10	/* Cookie length */
+#define E1000_MNG_IAMT_MODE             0x3
+#define E1000_MNG_ICH_IAMT_MODE         0x2
+#define E1000_IAMT_SIGNATURE            0x544D4149	/* Intel(R) Active Management Technology signature */
+
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1	/* DHCP parsing enabled */
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT    0x2	/* DHCP parsing enabled */
+#define E1000_VFTA_ENTRY_SHIFT                       0x5
+#define E1000_VFTA_ENTRY_MASK                        0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK              0x1F
+
+struct e1000_host_mng_command_header {
+	u8 command_id;
+	u8 checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];	/* Command data can length 0..0x658 */
+};
+#ifdef __BIG_ENDIAN
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u16 vlan_id;
+	u8 reserved0;
+	u8 status;
+	u32 reserved1;
+	u8 checksum;
+	u8 reserved3;
+	u16 reserved2;
+};
+#else
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8 status;
+	u8 reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8 reserved3;
+	u8 checksum;
+};
+#endif
+
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw);
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+
+/* Filters (multicast, vlan, receive) */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+void e1000_rar_set(struct e1000_hw *hw, u8 * mc_addr, u32 rar_index);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+
+/* LED functions */
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_blink_led_start(struct e1000_hw *hw);
+
+/* Adaptive IFS Functions */
+
+/* Everything else */
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 * mac_addr);
+void e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc);
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw);
+/* Port I/O is only supported on 82544 and newer */
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value);
+
+#define E1000_READ_REG_IO(a, reg) \
+    e1000_read_reg_io((a), E1000_##reg)
+#define E1000_WRITE_REG_IO(a, reg, val) \
+    e1000_write_reg_io((a), E1000_##reg, val)
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542               0x1000
+#define E1000_DEV_ID_82543GC_FIBER       0x1001
+#define E1000_DEV_ID_82543GC_COPPER      0x1004
+#define E1000_DEV_ID_82544EI_COPPER      0x1008
+#define E1000_DEV_ID_82544EI_FIBER       0x1009
+#define E1000_DEV_ID_82544GC_COPPER      0x100C
+#define E1000_DEV_ID_82544GC_LOM         0x100D
+#define E1000_DEV_ID_82540EM             0x100E
+#define E1000_DEV_ID_82540EM_LOM         0x1015
+#define E1000_DEV_ID_82540EP_LOM         0x1016
+#define E1000_DEV_ID_82540EP             0x1017
+#define E1000_DEV_ID_82540EP_LP          0x101E
+#define E1000_DEV_ID_82545EM_COPPER      0x100F
+#define E1000_DEV_ID_82545EM_FIBER       0x1011
+#define E1000_DEV_ID_82545GM_COPPER      0x1026
+#define E1000_DEV_ID_82545GM_FIBER       0x1027
+#define E1000_DEV_ID_82545GM_SERDES      0x1028
+#define E1000_DEV_ID_82546EB_COPPER      0x1010
+#define E1000_DEV_ID_82546EB_FIBER       0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82541EI             0x1013
+#define E1000_DEV_ID_82541EI_MOBILE      0x1018
+#define E1000_DEV_ID_82541ER_LOM         0x1014
+#define E1000_DEV_ID_82541ER             0x1078
+#define E1000_DEV_ID_82547GI             0x1075
+#define E1000_DEV_ID_82541GI             0x1076
+#define E1000_DEV_ID_82541GI_MOBILE      0x1077
+#define E1000_DEV_ID_82541GI_LF          0x107C
+#define E1000_DEV_ID_82546GB_COPPER      0x1079
+#define E1000_DEV_ID_82546GB_FIBER       0x107A
+#define E1000_DEV_ID_82546GB_SERDES      0x107B
+#define E1000_DEV_ID_82546GB_PCIE        0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82547EI             0x1019
+#define E1000_DEV_ID_82547EI_MOBILE      0x101A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+
+#define NODE_ADDRESS_SIZE 6
+#define ETH_LENGTH_OF_ADDRESS 6
+
+/* MAC decode size is 128K - This is the size of BAR0 */
+#define MAC_DECODE_SIZE (128 * 1024)
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+#define E1000_REVISION_0       0
+#define E1000_REVISION_1       1
+#define E1000_REVISION_2       2
+#define E1000_REVISION_3       3
+
+#define SPEED_10    10
+#define SPEED_100   100
+#define SPEED_1000  1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The sizes (in bytes) of a ethernet packet */
+#define ENET_HEADER_SIZE             14
+#define MINIMUM_ETHERNET_FRAME_SIZE  64	/* With FCS */
+#define ETHERNET_FCS_SIZE            4
+#define MINIMUM_ETHERNET_PACKET_SIZE \
+    (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define CRC_LENGTH                   ETHERNET_FCS_SIZE
+#define MAX_JUMBO_FRAME_SIZE         0x3F00
+
+/* 802.1q VLAN Packet Sizes */
+#define VLAN_TAG_SIZE  4	/* 802.3ac tag (not DMAed) */
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100	/* 802.3ac packet */
+#define ETHERNET_IP_TYPE        0x0800	/* IP packets */
+#define ETHERNET_ARP_TYPE       0x0806	/* Address Resolution Protocol (ARP) */
+
+/* Packet Header defines */
+#define IP_PROTOCOL_TCP    6
+#define IP_PROTOCOL_UDP    0x11
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+    E1000_IMS_RXDMT0 |         \
+    E1000_IMS_RXSEQ)
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+    E1000_IMS_RXT0   |    \
+    E1000_IMS_TXDW   |    \
+    E1000_IMS_RXDMT0 |    \
+    E1000_IMS_RXSEQ  |    \
+    E1000_IMS_LSC)
+
+/* Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+
+#define MIN_NUMBER_OF_DESCRIPTORS  8
+#define MAX_NUMBER_OF_DESCRIPTORS  0xFFF8
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	__le16 length;		/* Length of data DMAed into data buffer */
+	__le16 csum;		/* Packet checksum */
+	u8 status;		/* Descriptor status */
+	u8 errors;		/* Descriptor Errors */
+	__le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		__le64 buffer_addr;
+		__le64 reserved;
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length;
+			__le16 vlan;	/* VLAN tag */
+		} upper;
+	} wb;			/* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		__le64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			__le32 mrq;	/* Multiple Rx Queues */
+			union {
+				__le32 rss;	/* RSS Hash */
+				struct {
+					__le16 ip_id;	/* IP id */
+					__le16 csum;	/* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;	/* ext status/error */
+			__le16 length0;	/* length of buffer 0 */
+			__le16 vlan;	/* VLAN tag */
+		} middle;
+		struct {
+			__le16 header_status;
+			__le16 length[3];	/* length of buffers 1-3 */
+		} upper;
+		__le64 reserved;
+	} wb;			/* writeback */
+};
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD       0x01	/* Descriptor Done */
+#define E1000_RXD_STAT_EOP      0x02	/* End of Packet */
+#define E1000_RXD_STAT_IXSM     0x04	/* Ignore checksum */
+#define E1000_RXD_STAT_VP       0x08	/* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS    0x10	/* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS    0x20	/* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS     0x40	/* IP xsum calculated */
+#define E1000_RXD_STAT_PIF      0x80	/* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV    0x200	/* IP identification valid */
+#define E1000_RXD_STAT_UDPV     0x400	/* Valid UDP checksum */
+#define E1000_RXD_STAT_ACK      0x8000	/* ACK Packet indication */
+#define E1000_RXD_ERR_CE        0x01	/* CRC Error */
+#define E1000_RXD_ERR_SE        0x02	/* Symbol Error */
+#define E1000_RXD_ERR_SEQ       0x04	/* Sequence Error */
+#define E1000_RXD_ERR_CXE       0x10	/* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE      0x20	/* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE       0x40	/* IP Checksum Error */
+#define E1000_RXD_ERR_RXE       0x80	/* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF	/* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK  0xE000	/* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK  0x1000	/* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE    0x01000000
+#define E1000_RXDEXT_STATERR_SE    0x02000000
+#define E1000_RXDEXT_STATERR_SEQ   0x04000000
+#define E1000_RXDEXT_STATERR_CXE   0x10000000
+#define E1000_RXDEXT_STATERR_TCPE  0x20000000
+#define E1000_RXDEXT_STATERR_IPE   0x40000000
+#define E1000_RXDEXT_STATERR_RXE   0x80000000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP        0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK  0x000003FF
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |                \
+    E1000_RXD_ERR_SE  |                \
+    E1000_RXD_ERR_SEQ |                \
+    E1000_RXD_ERR_CXE |                \
+    E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+    E1000_RXDEXT_STATERR_CE  |            \
+    E1000_RXDEXT_STATERR_SE  |            \
+    E1000_RXDEXT_STATERR_SEQ |            \
+    E1000_RXDEXT_STATERR_CXE |            \
+    E1000_RXDEXT_STATERR_RXE)
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's data buffer */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 cso;	/* Checksum offset */
+			u8 cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 css;	/* Checksum start */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000	/* Data Descriptor */
+#define E1000_TXD_DTYP_C     0x00000000	/* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01	/* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02	/* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000	/* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000	/* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000	/* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000	/* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000	/* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000	/* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000	/* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000	/* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001	/* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002	/* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004	/* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008	/* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000	/* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000	/* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000	/* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004	/* Tx Underrun */
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		__le32 ip_config;
+		struct {
+			u8 ipcss;	/* IP checksum start */
+			u8 ipcso;	/* IP checksum offset */
+			__le16 ipcse;	/* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		__le32 tcp_config;
+		struct {
+			u8 tucss;	/* TCP checksum start */
+			u8 tucso;	/* TCP checksum offset */
+			__le16 tucse;	/* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	__le32 cmd_and_length;	/* */
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 hdr_len;	/* Header length */
+			__le16 mss;	/* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	__le64 buffer_addr;	/* Address of the descriptor's buffer address */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;	/* Data buffer length */
+			u8 typ_len_ext;	/* */
+			u8 cmd;	/* */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;	/* Descriptor status */
+			u8 popts;	/* Packet Options */
+			__le16 special;	/* */
+		} fields;
+	} upper;
+};
+
+/* Filters */
+#define E1000_NUM_UNICAST          16	/* Unicast filter entries */
+#define E1000_MC_TBL_SIZE          128	/* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128	/* VLAN Filter Table (4096 bits) */
+
+/* Receive Address Register */
+struct e1000_rar {
+	volatile __le32 low;	/* receive address low */
+	volatile __le32 high;	/* receive address high */
+};
+
+/* Number of entries in the Multicast Table Array (MTA). */
+#define E1000_NUM_MTA_REGISTERS 128
+
+/* IPv4 Address Table Entry */
+struct e1000_ipv4_at_entry {
+	volatile u32 ipv4_addr;	/* IP Address (RW) */
+	volatile u32 reserved;
+};
+
+/* Four wakeup IP addresses are supported */
+#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
+#define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP6AT_SIZE                  1
+
+/* IPv6 Address Table Entry */
+struct e1000_ipv6_at_entry {
+	volatile u8 ipv6_addr[16];
+};
+
+/* Flexible Filter Length Table Entry */
+struct e1000_fflt_entry {
+	volatile u32 length;	/* Flexible Filter Length (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Mask Table Entry */
+struct e1000_ffmt_entry {
+	volatile u32 mask;	/* Flexible Filter Mask (RW) */
+	volatile u32 reserved;
+};
+
+/* Flexible Filter Value Table Entry */
+struct e1000_ffvt_entry {
+	volatile u32 value;	/* Flexible Filter Value (RW) */
+	volatile u32 reserved;
+};
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+#define E1000_DISABLE_SERDES_LOOPBACK   0x0400
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and  should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL     0x00000	/* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004	/* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS   0x00008	/* Device Status - RO */
+#define E1000_EECD     0x00010	/* EEPROM/Flash Control - RW */
+#define E1000_EERD     0x00014	/* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018	/* Extended Device Control - RW */
+#define E1000_FLA      0x0001C	/* Flash Access - RW */
+#define E1000_MDIC     0x00020	/* MDI Control - RW */
+#define E1000_SCTL     0x00024	/* SerDes Control - RW */
+#define E1000_FEXTNVM  0x00028	/* Future Extended NVM register */
+#define E1000_FCAL     0x00028	/* Flow Control Address Low - RW */
+#define E1000_FCAH     0x0002C	/* Flow Control Address High -RW */
+#define E1000_FCT      0x00030	/* Flow Control Type - RW */
+#define E1000_VET      0x00038	/* VLAN Ether Type - RW */
+#define E1000_ICR      0x000C0	/* Interrupt Cause Read - R/clr */
+#define E1000_ITR      0x000C4	/* Interrupt Throttling Rate - RW */
+#define E1000_ICS      0x000C8	/* Interrupt Cause Set - WO */
+#define E1000_IMS      0x000D0	/* Interrupt Mask Set - RW */
+#define E1000_IMC      0x000D8	/* Interrupt Mask Clear - WO */
+#define E1000_IAM      0x000E0	/* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL     0x00100	/* RX Control - RW */
+#define E1000_RDTR1    0x02820	/* RX Delay Timer (1) - RW */
+#define E1000_RDBAL1   0x02900	/* RX Descriptor Base Address Low (1) - RW */
+#define E1000_RDBAH1   0x02904	/* RX Descriptor Base Address High (1) - RW */
+#define E1000_RDLEN1   0x02908	/* RX Descriptor Length (1) - RW */
+#define E1000_RDH1     0x02910	/* RX Descriptor Head (1) - RW */
+#define E1000_RDT1     0x02918	/* RX Descriptor Tail (1) - RW */
+#define E1000_FCTTV    0x00170	/* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW     0x00178	/* TX Configuration Word - RW */
+#define E1000_RXCW     0x00180	/* RX Configuration Word - RO */
+#define E1000_TCTL     0x00400	/* TX Control - RW */
+#define E1000_TCTL_EXT 0x00404	/* Extended TX Control - RW */
+#define E1000_TIPG     0x00410	/* TX Inter-packet gap -RW */
+#define E1000_TBT      0x00448	/* TX Burst Timer - RW */
+#define E1000_AIT      0x00458	/* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL   0x00E00	/* LED Control - RW */
+#define E1000_EXTCNF_CTRL  0x00F00	/* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE  0x00F08	/* Extended Configuration Size */
+#define E1000_PHY_CTRL     0x00F10	/* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG  0x0001
+#define E1000_PBA      0x01000	/* Packet Buffer Allocation - RW */
+#define E1000_PBS      0x01008	/* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010	/* MNG EEprom Control */
+#define E1000_FLASH_UPDATES 1000
+#define E1000_EEARBC   0x01024	/* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT   0x01028	/* FLASH Timer Register */
+#define E1000_EEWR     0x0102C	/* EEPROM Write Register - RW */
+#define E1000_FLSWCTL  0x01030	/* FLASH control register */
+#define E1000_FLSWDATA 0x01034	/* FLASH data register */
+#define E1000_FLSWCNT  0x01038	/* FLASH Access Counter */
+#define E1000_FLOP     0x0103C	/* FLASH Opcode Register */
+#define E1000_ERT      0x02008	/* Early Rx Threshold - RW */
+#define E1000_FCRTL    0x02160	/* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH    0x02168	/* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL   0x02170	/* Packet Split Receive Control - RW */
+#define E1000_RDBAL    0x02800	/* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH    0x02804	/* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN    0x02808	/* RX Descriptor Length - RW */
+#define E1000_RDH      0x02810	/* RX Descriptor Head - RW */
+#define E1000_RDT      0x02818	/* RX Descriptor Tail - RW */
+#define E1000_RDTR     0x02820	/* RX Delay Timer - RW */
+#define E1000_RDBAL0   E1000_RDBAL	/* RX Desc Base Address Low (0) - RW */
+#define E1000_RDBAH0   E1000_RDBAH	/* RX Desc Base Address High (0) - RW */
+#define E1000_RDLEN0   E1000_RDLEN	/* RX Desc Length (0) - RW */
+#define E1000_RDH0     E1000_RDH	/* RX Desc Head (0) - RW */
+#define E1000_RDT0     E1000_RDT	/* RX Desc Tail (0) - RW */
+#define E1000_RDTR0    E1000_RDTR	/* RX Delay Timer (0) - RW */
+#define E1000_RXDCTL   0x02828	/* RX Descriptor Control queue 0 - RW */
+#define E1000_RXDCTL1  0x02928	/* RX Descriptor Control queue 1 - RW */
+#define E1000_RADV     0x0282C	/* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD    0x02C00	/* RX Small Packet Detect - RW */
+#define E1000_RAID     0x02C08	/* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC   0x03000	/* TX DMA Control - RW */
+#define E1000_KABGTXD  0x03004	/* AFE Band Gap Transmit Ref Data */
+#define E1000_TDFH     0x03410	/* TX Data FIFO Head - RW */
+#define E1000_TDFT     0x03418	/* TX Data FIFO Tail - RW */
+#define E1000_TDFHS    0x03420	/* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS    0x03428	/* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC    0x03430	/* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL    0x03800	/* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH    0x03804	/* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN    0x03808	/* TX Descriptor Length - RW */
+#define E1000_TDH      0x03810	/* TX Descriptor Head - RW */
+#define E1000_TDT      0x03818	/* TX Descripotr Tail - RW */
+#define E1000_TIDV     0x03820	/* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL   0x03828	/* TX Descriptor Control - RW */
+#define E1000_TADV     0x0382C	/* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT    0x03830	/* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0    0x03840	/* TX Arbitration Count (0) */
+#define E1000_TDBAL1   0x03900	/* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1   0x03904	/* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1   0x03908	/* TX Desc Length (1) - RW */
+#define E1000_TDH1     0x03910	/* TX Desc Head (1) - RW */
+#define E1000_TDT1     0x03918	/* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1  0x03928	/* TX Descriptor Control (1) - RW */
+#define E1000_TARC1    0x03940	/* TX Arbitration Count (1) */
+#define E1000_CRCERRS  0x04000	/* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004	/* Alignment Error Count - R/clr */
+#define E1000_SYMERRS  0x04008	/* Symbol Error Count - R/clr */
+#define E1000_RXERRC   0x0400C	/* Receive Error Count - R/clr */
+#define E1000_MPC      0x04010	/* Missed Packet Count - R/clr */
+#define E1000_SCC      0x04014	/* Single Collision Count - R/clr */
+#define E1000_ECOL     0x04018	/* Excessive Collision Count - R/clr */
+#define E1000_MCC      0x0401C	/* Multiple Collision Count - R/clr */
+#define E1000_LATECOL  0x04020	/* Late Collision Count - R/clr */
+#define E1000_COLC     0x04028	/* Collision Count - R/clr */
+#define E1000_DC       0x04030	/* Defer Count - R/clr */
+#define E1000_TNCRS    0x04034	/* TX-No CRS - R/clr */
+#define E1000_SEC      0x04038	/* Sequence Error Count - R/clr */
+#define E1000_CEXTERR  0x0403C	/* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC     0x04040	/* Receive Length Error Count - R/clr */
+#define E1000_XONRXC   0x04048	/* XON RX Count - R/clr */
+#define E1000_XONTXC   0x0404C	/* XON TX Count - R/clr */
+#define E1000_XOFFRXC  0x04050	/* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC  0x04054	/* XOFF TX Count - R/clr */
+#define E1000_FCRUC    0x04058	/* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64    0x0405C	/* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127   0x04060	/* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255   0x04064	/* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511   0x04068	/* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023  0x0406C	/* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522  0x04070	/* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC     0x04074	/* Good Packets RX Count - R/clr */
+#define E1000_BPRC     0x04078	/* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC     0x0407C	/* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC     0x04080	/* Good Packets TX Count - R/clr */
+#define E1000_GORCL    0x04088	/* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH    0x0408C	/* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL    0x04090	/* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH    0x04094	/* Good Octets TX Count High - R/clr */
+#define E1000_RNBC     0x040A0	/* RX No Buffers Count - R/clr */
+#define E1000_RUC      0x040A4	/* RX Undersize Count - R/clr */
+#define E1000_RFC      0x040A8	/* RX Fragment Count - R/clr */
+#define E1000_ROC      0x040AC	/* RX Oversize Count - R/clr */
+#define E1000_RJC      0x040B0	/* RX Jabber Count - R/clr */
+#define E1000_MGTPRC   0x040B4	/* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC   0x040B8	/* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC   0x040BC	/* Management Packets TX Count - R/clr */
+#define E1000_TORL     0x040C0	/* Total Octets RX Low - R/clr */
+#define E1000_TORH     0x040C4	/* Total Octets RX High - R/clr */
+#define E1000_TOTL     0x040C8	/* Total Octets TX Low - R/clr */
+#define E1000_TOTH     0x040CC	/* Total Octets TX High - R/clr */
+#define E1000_TPR      0x040D0	/* Total Packets RX - R/clr */
+#define E1000_TPT      0x040D4	/* Total Packets TX - R/clr */
+#define E1000_PTC64    0x040D8	/* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127   0x040DC	/* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255   0x040E0	/* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511   0x040E4	/* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023  0x040E8	/* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522  0x040EC	/* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC     0x040F0	/* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC     0x040F4	/* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC    0x040F8	/* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC   0x040FC	/* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_IAC      0x04100	/* Interrupt Assertion Count */
+#define E1000_ICRXPTC  0x04104	/* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC  0x04108	/* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC  0x0410C	/* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC  0x04110	/* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC  0x04118	/* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C	/* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120	/* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC   0x04124	/* Interrupt Cause Receiver Overrun Count */
+#define E1000_RXCSUM   0x05000	/* RX Checksum Control - RW */
+#define E1000_RFCTL    0x05008	/* Receive Filter Control */
+#define E1000_MTA      0x05200	/* Multicast Table Array - RW Array */
+#define E1000_RA       0x05400	/* Receive Address - RW Array */
+#define E1000_VFTA     0x05600	/* VLAN Filter Table Array - RW Array */
+#define E1000_WUC      0x05800	/* Wakeup Control - RW */
+#define E1000_WUFC     0x05808	/* Wakeup Filter Control - RW */
+#define E1000_WUS      0x05810	/* Wakeup Status - RO */
+#define E1000_MANC     0x05820	/* Management Control - RW */
+#define E1000_IPAV     0x05838	/* IP Address Valid - RW */
+#define E1000_IP4AT    0x05840	/* IPv4 Address Table - RW Array */
+#define E1000_IP6AT    0x05880	/* IPv6 Address Table - RW Array */
+#define E1000_WUPL     0x05900	/* Wakeup Packet Length - RW */
+#define E1000_WUPM     0x05A00	/* Wakeup Packet Memory - RO A */
+#define E1000_FFLT     0x05F00	/* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF  0x08800	/* Host Interface */
+#define E1000_FFMT     0x09000	/* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT     0x09800	/* Flexible Filter Value Table - RW Array */
+
+#define E1000_KUMCTRLSTA 0x00034	/* MAC-PHY interface - RW */
+#define E1000_MDPHYA     0x0003C	/* PHY address - RW */
+#define E1000_MANC2H     0x05860	/* Managment Control To Host - RW */
+#define E1000_SW_FW_SYNC 0x05B5C	/* Software-Firmware Synchronization - RW */
+
+#define E1000_GCR       0x05B00	/* PCI-Ex Control */
+#define E1000_GSCL_1    0x05B10	/* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2    0x05B14	/* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3    0x05B18	/* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4    0x05B1C	/* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS    0x05B30	/* Function Active and Power State to MNG */
+#define E1000_SWSM      0x05B50	/* SW Semaphore */
+#define E1000_FWSM      0x05B54	/* FW Semaphore */
+#define E1000_FFLT_DBG  0x05F04	/* Debug Register */
+#define E1000_HICR      0x08F00	/* Host Interface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC    0x02C10	/* CPU Vector Register - RW */
+#define E1000_MRQC      0x05818	/* Multiple Receive Control - RW */
+#define E1000_RETA      0x05C00	/* Redirection Table - RW Array */
+#define E1000_RSSRK     0x05C80	/* RSS Random Key - RW Array */
+#define E1000_RSSIM     0x05864	/* RSS Interrupt Mask */
+#define E1000_RSSIR     0x05868	/* RSS Interrupt Request */
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL     E1000_CTRL
+#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
+#define E1000_82542_STATUS   E1000_STATUS
+#define E1000_82542_EECD     E1000_EECD
+#define E1000_82542_EERD     E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_FLA      E1000_FLA
+#define E1000_82542_MDIC     E1000_MDIC
+#define E1000_82542_SCTL     E1000_SCTL
+#define E1000_82542_FEXTNVM  E1000_FEXTNVM
+#define E1000_82542_FCAL     E1000_FCAL
+#define E1000_82542_FCAH     E1000_FCAH
+#define E1000_82542_FCT      E1000_FCT
+#define E1000_82542_VET      E1000_VET
+#define E1000_82542_RA       0x00040
+#define E1000_82542_ICR      E1000_ICR
+#define E1000_82542_ITR      E1000_ITR
+#define E1000_82542_ICS      E1000_ICS
+#define E1000_82542_IMS      E1000_IMS
+#define E1000_82542_IMC      E1000_IMC
+#define E1000_82542_RCTL     E1000_RCTL
+#define E1000_82542_RDTR     0x00108
+#define E1000_82542_RDBAL    0x00110
+#define E1000_82542_RDBAH    0x00114
+#define E1000_82542_RDLEN    0x00118
+#define E1000_82542_RDH      0x00120
+#define E1000_82542_RDT      0x00128
+#define E1000_82542_RDTR0    E1000_82542_RDTR
+#define E1000_82542_RDBAL0   E1000_82542_RDBAL
+#define E1000_82542_RDBAH0   E1000_82542_RDBAH
+#define E1000_82542_RDLEN0   E1000_82542_RDLEN
+#define E1000_82542_RDH0     E1000_82542_RDH
+#define E1000_82542_RDT0     E1000_82542_RDT
+#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8))	/* Split and Replication
+							 * RX Control - RW */
+#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
+#define E1000_82542_RDBAH3   0x02B04	/* RX Desc Base High Queue 3 - RW */
+#define E1000_82542_RDBAL3   0x02B00	/* RX Desc Low Queue 3 - RW */
+#define E1000_82542_RDLEN3   0x02B08	/* RX Desc Length Queue 3 - RW */
+#define E1000_82542_RDH3     0x02B10	/* RX Desc Head Queue 3 - RW */
+#define E1000_82542_RDT3     0x02B18	/* RX Desc Tail Queue 3 - RW */
+#define E1000_82542_RDBAL2   0x02A00	/* RX Desc Base Low Queue 2 - RW */
+#define E1000_82542_RDBAH2   0x02A04	/* RX Desc Base High Queue 2 - RW */
+#define E1000_82542_RDLEN2   0x02A08	/* RX Desc Length Queue 2 - RW */
+#define E1000_82542_RDH2     0x02A10	/* RX Desc Head Queue 2 - RW */
+#define E1000_82542_RDT2     0x02A18	/* RX Desc Tail Queue 2 - RW */
+#define E1000_82542_RDTR1    0x00130
+#define E1000_82542_RDBAL1   0x00138
+#define E1000_82542_RDBAH1   0x0013C
+#define E1000_82542_RDLEN1   0x00140
+#define E1000_82542_RDH1     0x00148
+#define E1000_82542_RDT1     0x00150
+#define E1000_82542_FCRTH    0x00160
+#define E1000_82542_FCRTL    0x00168
+#define E1000_82542_FCTTV    E1000_FCTTV
+#define E1000_82542_TXCW     E1000_TXCW
+#define E1000_82542_RXCW     E1000_RXCW
+#define E1000_82542_MTA      0x00200
+#define E1000_82542_TCTL     E1000_TCTL
+#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
+#define E1000_82542_TIPG     E1000_TIPG
+#define E1000_82542_TDBAL    0x00420
+#define E1000_82542_TDBAH    0x00424
+#define E1000_82542_TDLEN    0x00428
+#define E1000_82542_TDH      0x00430
+#define E1000_82542_TDT      0x00438
+#define E1000_82542_TIDV     0x00440
+#define E1000_82542_TBT      E1000_TBT
+#define E1000_82542_AIT      E1000_AIT
+#define E1000_82542_VFTA     0x00600
+#define E1000_82542_LEDCTL   E1000_LEDCTL
+#define E1000_82542_PBA      E1000_PBA
+#define E1000_82542_PBS      E1000_PBS
+#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
+#define E1000_82542_EEARBC   E1000_EEARBC
+#define E1000_82542_FLASHT   E1000_FLASHT
+#define E1000_82542_EEWR     E1000_EEWR
+#define E1000_82542_FLSWCTL  E1000_FLSWCTL
+#define E1000_82542_FLSWDATA E1000_FLSWDATA
+#define E1000_82542_FLSWCNT  E1000_FLSWCNT
+#define E1000_82542_FLOP     E1000_FLOP
+#define E1000_82542_EXTCNF_CTRL  E1000_EXTCNF_CTRL
+#define E1000_82542_EXTCNF_SIZE  E1000_EXTCNF_SIZE
+#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
+#define E1000_82542_ERT      E1000_ERT
+#define E1000_82542_RXDCTL   E1000_RXDCTL
+#define E1000_82542_RXDCTL1  E1000_RXDCTL1
+#define E1000_82542_RADV     E1000_RADV
+#define E1000_82542_RSRPD    E1000_RSRPD
+#define E1000_82542_TXDMAC   E1000_TXDMAC
+#define E1000_82542_KABGTXD  E1000_KABGTXD
+#define E1000_82542_TDFHS    E1000_TDFHS
+#define E1000_82542_TDFTS    E1000_TDFTS
+#define E1000_82542_TDFPC    E1000_TDFPC
+#define E1000_82542_TXDCTL   E1000_TXDCTL
+#define E1000_82542_TADV     E1000_TADV
+#define E1000_82542_TSPMT    E1000_TSPMT
+#define E1000_82542_CRCERRS  E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS  E1000_SYMERRS
+#define E1000_82542_RXERRC   E1000_RXERRC
+#define E1000_82542_MPC      E1000_MPC
+#define E1000_82542_SCC      E1000_SCC
+#define E1000_82542_ECOL     E1000_ECOL
+#define E1000_82542_MCC      E1000_MCC
+#define E1000_82542_LATECOL  E1000_LATECOL
+#define E1000_82542_COLC     E1000_COLC
+#define E1000_82542_DC       E1000_DC
+#define E1000_82542_TNCRS    E1000_TNCRS
+#define E1000_82542_SEC      E1000_SEC
+#define E1000_82542_CEXTERR  E1000_CEXTERR
+#define E1000_82542_RLEC     E1000_RLEC
+#define E1000_82542_XONRXC   E1000_XONRXC
+#define E1000_82542_XONTXC   E1000_XONTXC
+#define E1000_82542_XOFFRXC  E1000_XOFFRXC
+#define E1000_82542_XOFFTXC  E1000_XOFFTXC
+#define E1000_82542_FCRUC    E1000_FCRUC
+#define E1000_82542_PRC64    E1000_PRC64
+#define E1000_82542_PRC127   E1000_PRC127
+#define E1000_82542_PRC255   E1000_PRC255
+#define E1000_82542_PRC511   E1000_PRC511
+#define E1000_82542_PRC1023  E1000_PRC1023
+#define E1000_82542_PRC1522  E1000_PRC1522
+#define E1000_82542_GPRC     E1000_GPRC
+#define E1000_82542_BPRC     E1000_BPRC
+#define E1000_82542_MPRC     E1000_MPRC
+#define E1000_82542_GPTC     E1000_GPTC
+#define E1000_82542_GORCL    E1000_GORCL
+#define E1000_82542_GORCH    E1000_GORCH
+#define E1000_82542_GOTCL    E1000_GOTCL
+#define E1000_82542_GOTCH    E1000_GOTCH
+#define E1000_82542_RNBC     E1000_RNBC
+#define E1000_82542_RUC      E1000_RUC
+#define E1000_82542_RFC      E1000_RFC
+#define E1000_82542_ROC      E1000_ROC
+#define E1000_82542_RJC      E1000_RJC
+#define E1000_82542_MGTPRC   E1000_MGTPRC
+#define E1000_82542_MGTPDC   E1000_MGTPDC
+#define E1000_82542_MGTPTC   E1000_MGTPTC
+#define E1000_82542_TORL     E1000_TORL
+#define E1000_82542_TORH     E1000_TORH
+#define E1000_82542_TOTL     E1000_TOTL
+#define E1000_82542_TOTH     E1000_TOTH
+#define E1000_82542_TPR      E1000_TPR
+#define E1000_82542_TPT      E1000_TPT
+#define E1000_82542_PTC64    E1000_PTC64
+#define E1000_82542_PTC127   E1000_PTC127
+#define E1000_82542_PTC255   E1000_PTC255
+#define E1000_82542_PTC511   E1000_PTC511
+#define E1000_82542_PTC1023  E1000_PTC1023
+#define E1000_82542_PTC1522  E1000_PTC1522
+#define E1000_82542_MPTC     E1000_MPTC
+#define E1000_82542_BPTC     E1000_BPTC
+#define E1000_82542_TSCTC    E1000_TSCTC
+#define E1000_82542_TSCTFC   E1000_TSCTFC
+#define E1000_82542_RXCSUM   E1000_RXCSUM
+#define E1000_82542_WUC      E1000_WUC
+#define E1000_82542_WUFC     E1000_WUFC
+#define E1000_82542_WUS      E1000_WUS
+#define E1000_82542_MANC     E1000_MANC
+#define E1000_82542_IPAV     E1000_IPAV
+#define E1000_82542_IP4AT    E1000_IP4AT
+#define E1000_82542_IP6AT    E1000_IP6AT
+#define E1000_82542_WUPL     E1000_WUPL
+#define E1000_82542_WUPM     E1000_WUPM
+#define E1000_82542_FFLT     E1000_FFLT
+#define E1000_82542_TDFH     0x08010
+#define E1000_82542_TDFT     0x08018
+#define E1000_82542_FFMT     E1000_FFMT
+#define E1000_82542_FFVT     E1000_FFVT
+#define E1000_82542_HOST_IF  E1000_HOST_IF
+#define E1000_82542_IAM         E1000_IAM
+#define E1000_82542_EEMNGCTL    E1000_EEMNGCTL
+#define E1000_82542_PSRCTL      E1000_PSRCTL
+#define E1000_82542_RAID        E1000_RAID
+#define E1000_82542_TARC0       E1000_TARC0
+#define E1000_82542_TDBAL1      E1000_TDBAL1
+#define E1000_82542_TDBAH1      E1000_TDBAH1
+#define E1000_82542_TDLEN1      E1000_TDLEN1
+#define E1000_82542_TDH1        E1000_TDH1
+#define E1000_82542_TDT1        E1000_TDT1
+#define E1000_82542_TXDCTL1     E1000_TXDCTL1
+#define E1000_82542_TARC1       E1000_TARC1
+#define E1000_82542_RFCTL       E1000_RFCTL
+#define E1000_82542_GCR         E1000_GCR
+#define E1000_82542_GSCL_1      E1000_GSCL_1
+#define E1000_82542_GSCL_2      E1000_GSCL_2
+#define E1000_82542_GSCL_3      E1000_GSCL_3
+#define E1000_82542_GSCL_4      E1000_GSCL_4
+#define E1000_82542_FACTPS      E1000_FACTPS
+#define E1000_82542_SWSM        E1000_SWSM
+#define E1000_82542_FWSM        E1000_FWSM
+#define E1000_82542_FFLT_DBG    E1000_FFLT_DBG
+#define E1000_82542_IAC         E1000_IAC
+#define E1000_82542_ICRXPTC     E1000_ICRXPTC
+#define E1000_82542_ICRXATC     E1000_ICRXATC
+#define E1000_82542_ICTXPTC     E1000_ICTXPTC
+#define E1000_82542_ICTXATC     E1000_ICTXATC
+#define E1000_82542_ICTXQEC     E1000_ICTXQEC
+#define E1000_82542_ICTXQMTC    E1000_ICTXQMTC
+#define E1000_82542_ICRXDMTC    E1000_ICRXDMTC
+#define E1000_82542_ICRXOC      E1000_ICRXOC
+#define E1000_82542_HICR        E1000_HICR
+
+#define E1000_82542_CPUVEC      E1000_CPUVEC
+#define E1000_82542_MRQC        E1000_MRQC
+#define E1000_82542_RETA        E1000_RETA
+#define E1000_82542_RSSRK       E1000_RSSRK
+#define E1000_82542_RSSIM       E1000_RSSIM
+#define E1000_82542_RSSIR       E1000_RSSIR
+#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
+#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 txerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorcl;
+	u64 gorch;
+	u64 gotcl;
+	u64 gotch;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rlerrc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 torl;
+	u64 torh;
+	u64 totl;
+	u64 toth;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+};
+
+/* Structure containing variables used by the shared code (e1000_hw.c) */
+struct e1000_hw {
+	u8 __iomem *hw_addr;
+	u8 __iomem *flash_address;
+	e1000_mac_type mac_type;
+	e1000_phy_type phy_type;
+	u32 phy_init_script;
+	e1000_media_type media_type;
+	void *back;
+	struct e1000_shadow_ram *eeprom_shadow_ram;
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+	e1000_fc_type fc;
+	e1000_bus_speed bus_speed;
+	e1000_bus_width bus_width;
+	e1000_bus_type bus_type;
+	struct e1000_eeprom_info eeprom;
+	e1000_ms_type master_slave;
+	e1000_ms_type original_master_slave;
+	e1000_ffe_config ffe_config_state;
+	u32 asf_firmware_present;
+	u32 eeprom_semaphore_present;
+	unsigned long io_base;
+	u32 phy_id;
+	u32 phy_revision;
+	u32 phy_addr;
+	u32 original_fc;
+	u32 txcw;
+	u32 autoneg_failed;
+	u32 max_frame_size;
+	u32 min_frame_size;
+	u32 mc_filter_type;
+	u32 num_mc_addrs;
+	u32 collision_delta;
+	u32 tx_packet_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	bool tx_pkt_filtering;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+	u16 phy_spd_default;
+	u16 autoneg_advertised;
+	u16 pci_cmd_word;
+	u16 fc_high_water;
+	u16 fc_low_water;
+	u16 fc_pause_time;
+	u16 current_ifs_val;
+	u16 ifs_min_val;
+	u16 ifs_max_val;
+	u16 ifs_step_size;
+	u16 ifs_ratio;
+	u16 device_id;
+	u16 vendor_id;
+	u16 subsystem_id;
+	u16 subsystem_vendor_id;
+	u8 revision_id;
+	u8 autoneg;
+	u8 mdix;
+	u8 forced_speed_duplex;
+	u8 wait_autoneg_complete;
+	u8 dma_fairness;
+	u8 mac_addr[NODE_ADDRESS_SIZE];
+	u8 perm_mac_addr[NODE_ADDRESS_SIZE];
+	bool disable_polarity_correction;
+	bool speed_downgraded;
+	e1000_smart_speed smart_speed;
+	e1000_dsp_config dsp_config_state;
+	bool get_link_status;
+	bool serdes_has_link;
+	bool tbi_compatibility_en;
+	bool tbi_compatibility_on;
+	bool laa_is_present;
+	bool phy_reset_disable;
+	bool initialize_hw_bits_disable;
+	bool fc_send_xon;
+	bool fc_strict_ieee;
+	bool report_tx_early;
+	bool adaptive_ifs;
+	bool ifs_params_forced;
+	bool in_ifs_mode;
+	bool mng_reg_access_disabled;
+	bool leave_av_bit_off;
+	bool bad_tx_carr_stats_fd;
+	bool has_smbus;
+};
+
+#define E1000_EEPROM_SWDPIN0   0x0001	/* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020	/* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA   16	/* Offset to data in EEPROM read/write registers */
+#define E1000_EEPROM_RW_REG_DONE   2	/* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START  1	/* First bit for telling part to start operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2	/* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE    1	/* Flag for polling for write complete */
+#define E1000_EEPROM_POLL_READ     0	/* Flag for polling for read complete */
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD       0x00000001	/* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM      0x00000002	/* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR    0x00000004	/* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004	/*Blocks new Master requests */
+#define E1000_CTRL_LRST     0x00000008	/* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME      0x00000010	/* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE      0x00000020	/* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE     0x00000020	/* Auto-speed detect enable */
+#define E1000_CTRL_SLU      0x00000040	/* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080	/* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300	/* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000	/* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100	/* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200	/* Force 1Gb */
+#define E1000_CTRL_BEM32    0x00000400	/* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD   0x00000800	/* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000	/* Force Duplex */
+#define E1000_CTRL_D_UD_EN  0x00002000	/* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000	/* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000	/* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000	/* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0  0x00040000	/* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000	/* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2  0x00100000	/* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3  0x00200000	/* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0  0x00400000	/* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1  0x00800000	/* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2  0x01000000	/* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3  0x02000000	/* SWDPIN 3 input or output */
+#define E1000_CTRL_RST      0x04000000	/* Global reset */
+#define E1000_CTRL_RFCE     0x08000000	/* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000	/* Transmit flow control enable */
+#define E1000_CTRL_RTE      0x20000000	/* Routing tag enable */
+#define E1000_CTRL_VME      0x40000000	/* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000	/* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000	/* Initiate an interrupt to manageability engine */
+
+/* Device Status */
+#define E1000_STATUS_FD         0x00000001	/* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU         0x00000002	/* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK  0x0000000C	/* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0     0x00000000	/* Function 0 */
+#define E1000_STATUS_FUNC_1     0x00000004	/* Function 1 */
+#define E1000_STATUS_TXOFF      0x00000010	/* transmission paused */
+#define E1000_STATUS_TBIMODE    0x00000020	/* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10   0x00000000	/* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100  0x00000040	/* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080	/* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200	/* Lan Init Completion
+						   by EEPROM/Flash */
+#define E1000_STATUS_ASDV       0x00000300	/* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI    0x00000800	/* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000	/* Status of Master requests. */
+#define E1000_STATUS_MTXCKOK    0x00000400	/* MTX clock running OK */
+#define E1000_STATUS_PCI66      0x00000800	/* In 66Mhz slot */
+#define E1000_STATUS_BUS64      0x00001000	/* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE  0x00002000	/* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000	/* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0  0x00100000	/* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1  0x00200000	/* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2  0x00400000	/* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000	/* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE   0x01000000	/* BMC external code execution disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000	/* RGMII disabled */
+#define E1000_STATUS_FUSE_8       0x04000000
+#define E1000_STATUS_FUSE_9       0x08000000
+#define E1000_STATUS_SERDES0_DIS  0x10000000	/* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS  0x20000000	/* SERDES disabled on port 1 */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66  0x00000000	/* PCI-X bus speed  50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000	/* PCI-X bus speed  66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000	/* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK        0x00000001	/* EEPROM Clock */
+#define E1000_EECD_CS        0x00000002	/* EEPROM Chip Select */
+#define E1000_EECD_DI        0x00000004	/* EEPROM Data In */
+#define E1000_EECD_DO        0x00000008	/* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK  0x00000030
+#define E1000_EECD_FWE_DIS   0x00000010	/* Disable FLASH writes */
+#define E1000_EECD_FWE_EN    0x00000020	/* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ       0x00000040	/* EEPROM Access Request */
+#define E1000_EECD_GNT       0x00000080	/* EEPROM Access Grant */
+#define E1000_EECD_PRES      0x00000100	/* EEPROM Present */
+#define E1000_EECD_SIZE      0x00000200	/* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_ADDR_BITS 0x00000400	/* EEPROM Addressing bits based on type
+					 * (0-small, 1-large) */
+#define E1000_EECD_TYPE      0x00002000	/* EEPROM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_EEPROM_GRANT_ATTEMPTS
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000	/* EEPROM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD          0x00000200	/* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800	/* EEprom Size */
+#define E1000_EECD_SIZE_EX_SHIFT    11
+#define E1000_EECD_NVADDS    0x00018000	/* NVM Address Size */
+#define E1000_EECD_SELSHAD   0x00020000	/* Select Shadow RAM */
+#define E1000_EECD_INITSRAM  0x00040000	/* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD     0x00080000	/* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000	/* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV     0x00200000	/* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL   0x00400000	/* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT      22
+#define E1000_STM_OPCODE     0xDB00
+#define E1000_HICR_FW_RESET  0xC0
+
+#define E1000_SHADOW_RAM_WORDS     2048
+#define E1000_ICH_NVM_SIG_WORD     0x13
+#define E1000_ICH_NVM_SIG_MASK     0xC0
+
+/* EEPROM Read */
+#define E1000_EERD_START      0x00000001	/* Start Read */
+#define E1000_EERD_DONE       0x00000010	/* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK  0x0000FF00	/* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK  0xFFFF0000	/* Read Data */
+
+/* SPI EEPROM Status Register */
+#define EEPROM_STATUS_RDY_SPI  0x01
+#define EEPROM_STATUS_WEN_SPI  0x02
+#define EEPROM_STATUS_BP0_SPI  0x04
+#define EEPROM_STATUS_BP1_SPI  0x08
+#define EEPROM_STATUS_WPEN_SPI 0x80
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN   0x00000001	/* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN   0x00000002	/* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN   0x00000004	/* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN   0x00000008	/* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010	/* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020	/* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040	/* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080	/* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR  0x00000100	/* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR  0x00000200	/* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR  0x00000400	/* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR  0x00000800	/* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK    0x00001000	/* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST    0x00002000	/* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS       0x00004000	/* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000	/* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000	/* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_SERDES  0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII   0x00800000
+#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
+#define E1000_CTRL_EXT_DRV_LOAD       0x10000000	/* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME           0x08000000	/* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000	/* Clear Interrupt timers after IMS clear */
+#define E1000_CRTL_EXT_PB_PAREN       0x01000000	/* packet buffer parity error detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN       0x02000000	/* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN    0x40000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK  0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK  0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_INT_EN    0x20000000
+#define E1000_MDIC_ERROR     0x40000000
+
+#define E1000_KUMCTRLSTA_MASK           0x0000FFFF
+#define E1000_KUMCTRLSTA_OFFSET         0x001F0000
+#define E1000_KUMCTRLSTA_OFFSET_SHIFT   16
+#define E1000_KUMCTRLSTA_REN            0x00200000
+
+#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL      0x00000000
+#define E1000_KUMCTRLSTA_OFFSET_CTRL           0x00000001
+#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL       0x00000002
+#define E1000_KUMCTRLSTA_OFFSET_DIAG           0x00000003
+#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS       0x00000004
+#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM      0x00000009
+#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL        0x00000010
+#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES     0x0000001E
+#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES      0x0000001F
+
+/* FIFO Control */
+#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS   0x00000008
+#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
+
+/* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
+#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
+
+/* Half-Duplex Control */
+#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
+#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
+
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
+
+#define E1000_KABGTXD_BGSQLBIAS                0x00050000
+
+#define E1000_PHY_CTRL_SPD_EN                  0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
+#define E1000_PHY_CTRL_B2B_EN                  0x00000080
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT      0
+#define E1000_LEDCTL_LED0_BLINK_RATE      0x0000020
+#define E1000_LEDCTL_LED0_IVRT            0x00000040
+#define E1000_LEDCTL_LED0_BLINK           0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK       0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT      8
+#define E1000_LEDCTL_LED1_BLINK_RATE      0x0002000
+#define E1000_LEDCTL_LED1_IVRT            0x00004000
+#define E1000_LEDCTL_LED1_BLINK           0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK       0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT      16
+#define E1000_LEDCTL_LED2_BLINK_RATE      0x00200000
+#define E1000_LEDCTL_LED2_IVRT            0x00400000
+#define E1000_LEDCTL_LED2_BLINK           0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK       0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT      24
+#define E1000_LEDCTL_LED3_BLINK_RATE      0x20000000
+#define E1000_LEDCTL_LED3_IVRT            0x40000000
+#define E1000_LEDCTL_LED3_BLINK           0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000  0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP       0x2
+#define E1000_LEDCTL_MODE_ACTIVITY      0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10       0x5
+#define E1000_LEDCTL_MODE_LINK_100      0x6
+#define E1000_LEDCTL_MODE_LINK_1000     0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE     0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9
+#define E1000_LEDCTL_MODE_COLLISION     0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED     0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE      0xC
+#define E1000_LEDCTL_MODE_PAUSED        0xD
+#define E1000_LEDCTL_MODE_LED_ON        0xE
+#define E1000_LEDCTL_MODE_LED_OFF       0xF
+
+/* Receive Address */
+#define E1000_RAH_AV  0x80000000	/* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW          0x00000001	/* Transmit desc written back */
+#define E1000_ICR_TXQE          0x00000002	/* Transmit Queue empty */
+#define E1000_ICR_LSC           0x00000004	/* Link Status Change */
+#define E1000_ICR_RXSEQ         0x00000008	/* rx sequence error */
+#define E1000_ICR_RXDMT0        0x00000010	/* rx desc min. threshold (0) */
+#define E1000_ICR_RXO           0x00000040	/* rx overrun */
+#define E1000_ICR_RXT0          0x00000080	/* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC          0x00000200	/* MDIO access complete */
+#define E1000_ICR_RXCFG         0x00000400	/* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0       0x00000800	/* GP Int 0 */
+#define E1000_ICR_GPI_EN1       0x00001000	/* GP Int 1 */
+#define E1000_ICR_GPI_EN2       0x00002000	/* GP Int 2 */
+#define E1000_ICR_GPI_EN3       0x00004000	/* GP Int 3 */
+#define E1000_ICR_TXD_LOW       0x00008000
+#define E1000_ICR_SRPD          0x00010000
+#define E1000_ICR_ACK           0x00020000	/* Receive Ack frame */
+#define E1000_ICR_MNG           0x00040000	/* Manageability event */
+#define E1000_ICR_DOCK          0x00080000	/* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED  0x80000000	/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR  0x00400000	/* host arb read buffer parity error */
+#define E1000_ICR_PB_PAR        0x00800000	/* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_ALL_PARITY    0x03F00000	/* all parity error bits */
+#define E1000_ICR_DSW           0x00000020	/* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT        0x00001000	/* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST         0x00100000	/* ME hardware reset occurs */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_ICS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_ICS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_ICS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_ICS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_ICS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_ICS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_ICS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_ICS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_ICS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_ICS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_ICS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_ICS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD      E1000_ICR_SRPD
+#define E1000_ICS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_ICS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_ICS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW       E1000_ICR_DSW
+#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
+#define E1000_ICS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMS_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMS_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMS_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMS_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMS_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMS_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMS_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMS_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMS_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMS_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMS_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMS_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD      E1000_ICR_SRPD
+#define E1000_IMS_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMS_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMS_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW       E1000_ICR_DSW
+#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMS_EPRST     E1000_ICR_EPRST
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW      E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMC_TXQE      E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMC_LSC       E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMC_RXSEQ     E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMC_RXDMT0    E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMC_RXO       E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMC_RXT0      E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMC_MDAC      E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMC_RXCFG     E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0   E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMC_GPI_EN1   E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMC_GPI_EN2   E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMC_GPI_EN3   E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMC_TXD_LOW   E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD      E1000_ICR_SRPD
+#define E1000_IMC_ACK       E1000_ICR_ACK	/* Receive Ack frame */
+#define E1000_IMC_MNG       E1000_ICR_MNG	/* Manageability event */
+#define E1000_IMC_DOCK      E1000_ICR_DOCK	/* Dock/Undock */
+#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0	/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0	/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMC_HOST_ARB_PAR  E1000_ICR_HOST_ARB_PAR	/* host arb read buffer parity error */
+#define E1000_IMC_PB_PAR        E1000_ICR_PB_PAR	/* packet buffer parity error */
+#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1	/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1	/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMC_DSW       E1000_ICR_DSW
+#define E1000_IMC_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMC_EPRST     E1000_ICR_EPRST
+
+/* Receive Control */
+#define E1000_RCTL_RST            0x00000001	/* Software reset */
+#define E1000_RCTL_EN             0x00000002	/* enable */
+#define E1000_RCTL_SBP            0x00000004	/* store bad packet */
+#define E1000_RCTL_UPE            0x00000008	/* unicast promiscuous enable */
+#define E1000_RCTL_MPE            0x00000010	/* multicast promiscuous enab */
+#define E1000_RCTL_LPE            0x00000020	/* long packet enable */
+#define E1000_RCTL_LBM_NO         0x00000000	/* no loopback mode */
+#define E1000_RCTL_LBM_MAC        0x00000040	/* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP        0x00000080	/* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR       0x000000C0	/* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK      0x00000C00	/* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS        0x00000400	/* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF     0x00000000	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT     0x00000100	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH    0x00000200	/* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT       12	/* multicast offset shift */
+#define E1000_RCTL_MO_0           0x00000000	/* multicast offset 11:0 */
+#define E1000_RCTL_MO_1           0x00001000	/* multicast offset 12:1 */
+#define E1000_RCTL_MO_2           0x00002000	/* multicast offset 13:2 */
+#define E1000_RCTL_MO_3           0x00003000	/* multicast offset 15:4 */
+#define E1000_RCTL_MDR            0x00004000	/* multicast desc ring 0 */
+#define E1000_RCTL_BAM            0x00008000	/* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048        0x00000000	/* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024        0x00010000	/* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512         0x00020000	/* rx buffer size 512 */
+#define E1000_RCTL_SZ_256         0x00030000	/* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384       0x00010000	/* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192        0x00020000	/* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096        0x00030000	/* rx buffer size 4096 */
+#define E1000_RCTL_VFE            0x00040000	/* vlan filter enable */
+#define E1000_RCTL_CFIEN          0x00080000	/* canonical form enable */
+#define E1000_RCTL_CFI            0x00100000	/* canonical form indicator */
+#define E1000_RCTL_DPF            0x00400000	/* discard pause frames */
+#define E1000_RCTL_PMCF           0x00800000	/* pass MAC control frames */
+#define E1000_RCTL_BSEX           0x02000000	/* Buffer size extension */
+#define E1000_RCTL_SECRC          0x04000000	/* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK    0x78000000	/* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT   27	/* Flexible buffer shift */
+
+/* Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE0_MASK) |
+ *                ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE1_MASK) |
+ *                ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *                  E1000_PSRCTL_BSIZE2_MASK) |
+ *                ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *                  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK   0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK   0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK   0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK   0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT  7	/* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT  2	/* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT  6	/* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14	/* Shift _left_ 14 */
+
+/* SW_W_SYNC definitions */
+#define E1000_SWFW_EEP_SM     0x0001
+#define E1000_SWFW_PHY0_SM    0x0002
+#define E1000_SWFW_PHY1_SM    0x0004
+#define E1000_SWFW_MAC_CSR_SM 0x0008
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff	/* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB  0x80000000	/* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80	/* descriptor length */
+#define E1000_RDH_RDH   0x0000ffff	/* receive descriptor head */
+#define E1000_RDT_RDT   0x0000ffff	/* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8	/* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000	/* External Flow Control Enable */
+#define E1000_FCRTL_RTL  0x0000FFF8	/* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000	/* Enable XON frame transmission */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS           0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK      0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT     1
+#define E1000_RFCTL_NFSW_DIS            0x00000040
+#define E1000_RFCTL_NFSR_DIS            0x00000080
+#define E1000_RFCTL_NFS_VER_MASK        0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT       8
+#define E1000_RFCTL_IPV6_DIS            0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS       0x00000800
+#define E1000_RFCTL_ACK_DIS             0x00001000
+#define E1000_RFCTL_ACKD_DIS            0x00002000
+#define E1000_RFCTL_IPFRSP_DIS          0x00004000
+#define E1000_RFCTL_EXTEN               0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS         0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS    0x00020000
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F	/* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00	/* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000	/* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN    0x01000000	/* RXDCTL Granularity */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F	/* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00	/* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000	/* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN    0x01000000	/* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000	/* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000	/* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000	/* Enable the counting of desc.
+						   still to be processed. */
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD         0x00000020	/* TXCW full duplex */
+#define E1000_TXCW_HD         0x00000040	/* TXCW half duplex */
+#define E1000_TXCW_PAUSE      0x00000080	/* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100	/* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180	/* TXCW pause request mask */
+#define E1000_TXCW_RF         0x00003000	/* TXCW remote fault */
+#define E1000_TXCW_NP         0x00008000	/* TXCW next page */
+#define E1000_TXCW_CW         0x0000ffff	/* TxConfigWord mask */
+#define E1000_TXCW_TXC        0x40000000	/* Transmit Config control */
+#define E1000_TXCW_ANE        0x80000000	/* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW    0x0000ffff	/* RxConfigWord mask */
+#define E1000_RXCW_NC    0x04000000	/* Receive config no carrier */
+#define E1000_RXCW_IV    0x08000000	/* Receive config invalid */
+#define E1000_RXCW_CC    0x10000000	/* Receive config change */
+#define E1000_RXCW_C     0x20000000	/* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000	/* Receive config synch */
+#define E1000_RXCW_ANC   0x80000000	/* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST    0x00000001	/* software reset */
+#define E1000_TCTL_EN     0x00000002	/* enable tx */
+#define E1000_TCTL_BCE    0x00000004	/* busy check enable */
+#define E1000_TCTL_PSP    0x00000008	/* pad short packets */
+#define E1000_TCTL_CT     0x00000ff0	/* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000	/* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000	/* SW Xoff transmission */
+#define E1000_TCTL_PBE    0x00800000	/* Packet Burst Enable */
+#define E1000_TCTL_RTLC   0x01000000	/* Re-transmit on late collision */
+#define E1000_TCTL_NRTU   0x02000000	/* No Re-transmit on underrun */
+#define E1000_TCTL_MULR   0x10000000	/* Multiple request support */
+/* Extended Transmit Control */
+#define E1000_TCTL_EXT_BST_MASK  0x000003FF	/* Backoff Slot Time */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00	/* Gigabit Carry Extend Padding */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF	/* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL     0x00000100	/* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL     0x00000200	/* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL   0x00000400	/* IPv6 checksum offload */
+#define E1000_RXCSUM_IPPCSE    0x00001000	/* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD      0x00002000	/* packet checksum disabled */
+
+/* Multiple Receive Queue Control */
+#define E1000_MRQC_ENABLE_MASK              0x00000003
+#define E1000_MRQC_ENABLE_RSS_2Q            0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT           0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK           0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP       0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4           0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX    0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX        0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6           0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00200000
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME       0x00000001	/* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002	/* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004	/* PME Status */
+#define E1000_WUC_APMPME     0x00000008	/* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM        0x80000000	/* Enable SPM */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001	/* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG  0x00000002	/* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX   0x00000004	/* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC   0x00000008	/* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC   0x00000010	/* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP  0x00000020	/* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO      0x00008000	/* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000	/* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000	/* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000	/* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000	/* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF	/* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16	/* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001	/* Link Status Changed */
+#define E1000_WUS_MAG  0x00000002	/* Magic Packet Received */
+#define E1000_WUS_EX   0x00000004	/* Directed Exact Received */
+#define E1000_WUS_MC   0x00000008	/* Directed Multicast Received */
+#define E1000_WUS_BC   0x00000010	/* Broadcast Received */
+#define E1000_WUS_ARP  0x00000020	/* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000	/* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000	/* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000	/* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000	/* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN      0x00000001	/* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN        0x00000002	/* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE    0x00000004	/* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN       0x00000100	/* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN       0x00000200	/* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN       0x00000400	/* Enable IPv4 */
+#define E1000_MANC_IPV6_EN       0x00000800	/* Enable IPv6 */
+#define E1000_MANC_SNAP_EN       0x00001000	/* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN        0x00002000	/* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN   0x00004000	/* Enable Neighbor Discovery
+						 * Filtering */
+#define E1000_MANC_ARP_RES_EN    0x00008000	/* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET     0x00010000	/* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN    0x00020000	/* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000	/* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL       0x00080000	/* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000	/* Block phy resets */
+#define E1000_MANC_EN_MAC_ADDR_FILTER   0x00100000	/* Enable MAC address
+							 * filtering */
+#define E1000_MANC_EN_MNG2HOST   0x00200000	/* Enable MNG packets to host
+						 * memory */
+#define E1000_MANC_EN_IP_ADDR_FILTER    0x00400000	/* Enable IP address
+							 * filtering */
+#define E1000_MANC_EN_XSUM_FILTER   0x00800000	/* Enable checksum filtering */
+#define E1000_MANC_BR_EN         0x01000000	/* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ       0x01000000	/* SMBus Request */
+#define E1000_MANC_SMB_GNT       0x02000000	/* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN    0x04000000	/* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN   0x08000000	/* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT  0x10000000	/* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT   0x20000000	/* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT  28	/* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT   29	/* SMBus Clock Out Shift */
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI         0x00000001	/* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI      0x00000002	/* FW Semaphore bit */
+#define E1000_SWSM_WMNG         0x00000004	/* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD     0x00000008	/* Driver Loaded Bit */
+
+/* FW Semaphore Register */
+#define E1000_FWSM_MODE_MASK    0x0000000E	/* FW mode */
+#define E1000_FWSM_MODE_SHIFT            1
+#define E1000_FWSM_FW_VALID     0x00008000	/* FW established a valid mode */
+
+#define E1000_FWSM_RSPCIPHY        0x00000040	/* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW           0x10000000	/* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK     0x60000000	/* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT     29
+#define E1000_FWSM_SKUSEL_EMB      0x0	/* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS     0x1	/* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2	/* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3	/* Perf & Copr GbE SKU */
+
+/* FFLT Debug Register */
+#define E1000_FFLT_DBG_INVC     0x00100000	/* Invalid /C/ code handling */
+
+typedef enum {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_interface_only
+} e1000_mng_mode;
+
+/* Host Interface Control Register */
+#define E1000_HICR_EN           0x00000001	/* Enable Bit - RO */
+#define E1000_HICR_C            0x00000002	/* Driver sets this bit when done
+						 * to put command in RAM */
+#define E1000_HICR_SV           0x00000004	/* Status Validity */
+#define E1000_HICR_FWR          0x00000080	/* FW reset. Set by the Host */
+
+/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
+#define E1000_HI_MAX_DATA_LENGTH         252	/* Host Interface data length */
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH  1792	/* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH  448	/* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT         500	/* Time in ms to process HI command */
+
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;	/* I/F bits for command, status for return */
+	u8 checksum;
+};
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;	/* Command Head/Command Result Head has 4 bytes */
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];	/* Command data can length 0..252 */
+};
+
+/* Host SMB register #0 */
+#define E1000_HSMC0R_CLKIN      0x00000001	/* SMB Clock in */
+#define E1000_HSMC0R_DATAIN     0x00000002	/* SMB Data in */
+#define E1000_HSMC0R_DATAOUT    0x00000004	/* SMB Data out */
+#define E1000_HSMC0R_CLKOUT     0x00000008	/* SMB Clock out */
+
+/* Host SMB register #1 */
+#define E1000_HSMC1R_CLKIN      E1000_HSMC0R_CLKIN
+#define E1000_HSMC1R_DATAIN     E1000_HSMC0R_DATAIN
+#define E1000_HSMC1R_DATAOUT    E1000_HSMC0R_DATAOUT
+#define E1000_HSMC1R_CLKOUT     E1000_HSMC0R_CLKOUT
+
+/* FW Status Register */
+#define E1000_FWSTS_FWS_MASK    0x000000FF	/* FW Status */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF	/* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN          4096
+
+/* PCI-Ex registers*/
+
+/* PCI-Ex Control Register */
+#define E1000_GCR_RXD_NO_SNOOP          0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP       0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP       0x00000004
+#define E1000_GCR_TXD_NO_SNOOP          0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP       0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP       0x00000020
+
+#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP         | \
+                             E1000_GCR_RXDSCW_NO_SNOOP      | \
+                             E1000_GCR_RXDSCR_NO_SNOOP      | \
+                             E1000_GCR_TXD_NO_SNOOP         | \
+                             E1000_GCR_TXDSCW_NO_SNOOP      | \
+                             E1000_GCR_TXDSCR_NO_SNOOP)
+
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+/* Function Active and Power State to MNG */
+#define E1000_FACTPS_FUNC0_POWER_STATE_MASK         0x00000003
+#define E1000_FACTPS_LAN0_VALID                     0x00000004
+#define E1000_FACTPS_FUNC0_AUX_EN                   0x00000008
+#define E1000_FACTPS_FUNC1_POWER_STATE_MASK         0x000000C0
+#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT        6
+#define E1000_FACTPS_LAN1_VALID                     0x00000100
+#define E1000_FACTPS_FUNC1_AUX_EN                   0x00000200
+#define E1000_FACTPS_FUNC2_POWER_STATE_MASK         0x00003000
+#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT        12
+#define E1000_FACTPS_IDE_ENABLE                     0x00004000
+#define E1000_FACTPS_FUNC2_AUX_EN                   0x00008000
+#define E1000_FACTPS_FUNC3_POWER_STATE_MASK         0x000C0000
+#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT        18
+#define E1000_FACTPS_SP_ENABLE                      0x00100000
+#define E1000_FACTPS_FUNC3_AUX_EN                   0x00200000
+#define E1000_FACTPS_FUNC4_POWER_STATE_MASK         0x03000000
+#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT        24
+#define E1000_FACTPS_IPMI_ENABLE                    0x04000000
+#define E1000_FACTPS_FUNC4_AUX_EN                   0x08000000
+#define E1000_FACTPS_MNGCG                          0x20000000
+#define E1000_FACTPS_LAN_FUNC_SEL                   0x40000000
+#define E1000_FACTPS_PM_STATE_CHANGED               0x80000000
+
+/* PCI-Ex Config Space */
+#define PCI_EX_LINK_STATUS           0x12
+#define PCI_EX_LINK_WIDTH_MASK       0x3F0
+#define PCI_EX_LINK_WIDTH_SHIFT      4
+
+/* EEPROM Commands - Microwire */
+#define EEPROM_READ_OPCODE_MICROWIRE  0x6	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5	/* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7	/* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE  0x13	/* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE  0x10	/* EEPROM erase/write disable */
+
+/* EEPROM Commands - SPI */
+#define EEPROM_MAX_RETRY_SPI        5000	/* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI      0x03	/* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI     0x02	/* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI        0x08	/* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI      0x06	/* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI      0x04	/* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI      0x05	/* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI      0x01	/* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI   0x20	/* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI  0xD8	/* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI  0xDB	/* EEPROM ERASE 256B */
+
+/* EEPROM Size definitions */
+#define EEPROM_WORD_SIZE_SHIFT  6
+#define EEPROM_SIZE_SHIFT       10
+#define EEPROM_SIZE_MASK        0x1C00
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT                 0x0003
+#define EEPROM_ID_LED_SETTINGS        0x0004
+#define EEPROM_VERSION                0x0005
+#define EEPROM_SERDES_AMPLITUDE       0x0006	/* For SERDES output amplitude adjustment. */
+#define EEPROM_PHY_CLASS_WORD         0x0007
+#define EEPROM_INIT_CONTROL1_REG      0x000A
+#define EEPROM_INIT_CONTROL2_REG      0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define EEPROM_INIT_CONTROL3_PORT_B   0x0014
+#define EEPROM_INIT_3GIO_3            0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define EEPROM_INIT_CONTROL3_PORT_A   0x0024
+#define EEPROM_CFG                    0x0012
+#define EEPROM_FLASH_VERSION          0x0032
+#define EEPROM_CHECKSUM_REG           0x003F
+
+#define E1000_EEPROM_CFG_DONE         0x00040000	/* MNG config cycle done */
+#define E1000_EEPROM_CFG_DONE_PORT_1  0x00080000	/* ...for second port */
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \
+                              (ID_LED_OFF1_OFF2 << 8) | \
+                              (ID_LED_DEF1_DEF2 << 4) | \
+                              (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2       0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
+#define EEPROM_SERDES_AMPLITUDE_MASK  0x000F
+
+/* Mask bit for PHY class in Word 7 of the EEPROM */
+#define EEPROM_PHY_CLASS_A   0x8000
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS   0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST   0x0200
+#define EEPROM_WORD0A_FD     0x0400
+#define EEPROM_WORD0A_66MHZ  0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE      0x1000
+#define EEPROM_WORD0F_ASM_DIR    0x2000
+#define EEPROM_WORD0F_ANE        0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+#define EEPROM_WORD0F_LPLU       0x0001
+
+/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
+#define EEPROM_WORD1020_GIGA_DISABLE         0x0010
+#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
+
+/* Mask bits for fields in Word 0x1a of the EEPROM */
+#define EEPROM_WORD1A_ASPM_MASK  0x000C
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1          8
+
+#define EEPROM_RESERVED_WORD          0xFFFF
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD       15
+#define E1000_CT_SHIFT                  4
+/* Collision distance is a 0-based value that applies to
+ * half-duplex-capable hardware only. */
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLLISION_DISTANCE_82542  64
+#define E1000_FDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE
+#define E1000_COLD_SHIFT                12
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT        10
+#define DEFAULT_82543_TIPG_IPGT_FIBER  9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT  10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define E1000_TIPG_IPGR2_SHIFT  20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START     8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP      190
+#define TX_THRESHOLD_DISABLE   0
+#define TX_THRESHOLD_TIMER_MS  10000
+#define MIN_NUM_XMITS          1000
+#define IFS_MAX                80
+#define IFS_STEP               10
+#define IFS_MIN                40
+#define IFS_RATIO              4
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE  0x00000002
+#define E1000_EXTCNF_CTRL_D_UD_ENABLE       0x00000004
+#define E1000_EXTCNF_CTRL_D_UD_LATENCY      0x00000008
+#define E1000_EXTCNF_CTRL_D_UD_OWNER        0x00000010
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x0FFF0000
+
+#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH    0x000000FF
+#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH   0x0000FF00
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH   0x00FF0000
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE  0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG            0x00000020
+
+/* PBA constants */
+#define E1000_PBA_8K 0x0008	/* 8KB, default Rx allocation */
+#define E1000_PBA_12K 0x000C	/* 12KB, default Rx allocation */
+#define E1000_PBA_16K 0x0010	/* 16KB, default TX allocation */
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030	/* 48KB, default RX allocation */
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE         0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH        (0x8000)	/* 32KB */
+#define FC_DEFAULT_LO_THRESH        (0x4000)	/* 16KB */
+#define FC_DEFAULT_TX_TIMER         (0x100)	/* ~130 us */
+
+/* PCIX Config space */
+#define PCIX_COMMAND_REGISTER    0xE6
+#define PCIX_STATUS_REGISTER_LO  0xE8
+#define PCIX_STATUS_REGISTER_HI  0xEA
+
+#define PCIX_COMMAND_MMRBC_MASK      0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT     0x2
+#define PCIX_STATUS_HI_MMRBC_MASK    0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5
+#define PCIX_STATUS_HI_MMRBC_4K      0x3
+#define PCIX_STATUS_HI_MMRBC_2K      0x2
+
+/* Number of bits required to shift right the "pause" bits from the
+ * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
+ */
+#define PAUSE_SHIFT 5
+
+/* Number of bits required to shift left the "SWDPIO" bits from the
+ * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
+ */
+#define SWDPIO_SHIFT 17
+
+/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
+ * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+/* Number of bits required to shift left the "ILOS" bit from the EEPROM
+ * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
+ */
+#define ILOS_SHIFT  3
+
+#define RECEIVE_BUFFER_ALIGN_SIZE  (256)
+
+/* Number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT             500
+
+/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
+#define AUTO_READ_DONE_TIMEOUT      10
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+
+#define E1000_TX_BUFFER_SIZE ((u32)1514)
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION   0x0F
+
+/* TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ *      adapter = a pointer to struct e1000_hw
+ *      status = the 8 bit status field of the RX descriptor with EOP set
+ *      error = the 8 bit error field of the RX descriptor with EOP set
+ *      length = the sum of all the length fields of the RX descriptors that
+ *               make up the current frame
+ *      last_byte = the last byte of the frame DMAed by the hardware
+ *      max_frame_length = the maximum frame length we want to accept.
+ *      min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ *  ...
+ *  if (TBI_ACCEPT) {
+ *      accept_frame = true;
+ *      e1000_tbi_adjust_stats(adapter, MacAddress);
+ *      frame_length--;
+ *  } else {
+ *      accept_frame = false;
+ *  }
+ *  ...
+ */
+
+#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
+    ((adapter)->tbi_compatibility_on && \
+     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+     ((last_byte) == CARRIER_EXTENSION) && \
+     (((status) & E1000_RXD_STAT_VP) ? \
+          (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
+           ((length) <= ((adapter)->max_frame_size + 1))) : \
+          (((length) > (adapter)->min_frame_size) && \
+           ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL         0x00	/* Control Register */
+#define PHY_STATUS       0x01	/* Status Register */
+#define PHY_ID1          0x02	/* Phy Id Reg (word 1) */
+#define PHY_ID2          0x03	/* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV  0x04	/* Autoneg Advertisement */
+#define PHY_LP_ABILITY   0x05	/* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP  0x06	/* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07	/* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08	/* Link Partner Next Page */
+#define PHY_1000T_CTRL   0x09	/* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A	/* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS   0x0F	/* Extended Status Reg */
+
+#define MAX_PHY_REG_ADDRESS        0x1F	/* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG     0xF	/* Registers equal on all pages */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL     0x10	/* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS   0x11	/* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE        0x12	/* Interrupt Enable Register */
+#define M88E1000_INT_STATUS        0x13	/* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14	/* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR       0x15	/* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL      0x1A	/* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT   0x1D	/* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E	/* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8  0x100	/* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800	/* improved BER performance */
+
+#define IGP01E1000_IEEE_REGS_PAGE  0x0000
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+#define IGP01E1000_IEEE_FORCE_GIGA      0x0140
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10	/* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS 0x11	/* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL   0x12	/* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13	/* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO       0x14	/* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15	/* PHY Channel Quality Register */
+#define IGP02E1000_PHY_POWER_MGMT      0x19
+#define IGP01E1000_PHY_PAGE_SELECT     0x1F	/* PHY Page Select Core Register */
+
+/* IGP01E1000 AGC Registers - stores the cable length values*/
+#define IGP01E1000_PHY_AGC_A        0x1172
+#define IGP01E1000_PHY_AGC_B        0x1272
+#define IGP01E1000_PHY_AGC_C        0x1472
+#define IGP01E1000_PHY_AGC_D        0x1872
+
+/* IGP02E1000 AGC Registers for cable length values */
+#define IGP02E1000_PHY_AGC_A        0x11B1
+#define IGP02E1000_PHY_AGC_B        0x12B1
+#define IGP02E1000_PHY_AGC_C        0x14B1
+#define IGP02E1000_PHY_AGC_D        0x18B1
+
+/* IGP01E1000 DSP Reset Register */
+#define IGP01E1000_PHY_DSP_RESET   0x1F33
+#define IGP01E1000_PHY_DSP_SET     0x1F71
+#define IGP01E1000_PHY_DSP_FFE     0x1F35
+
+#define IGP01E1000_PHY_CHANNEL_NUM    4
+#define IGP02E1000_PHY_CHANNEL_NUM    4
+
+#define IGP01E1000_PHY_AGC_PARAM_A    0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B    0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C    0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D    0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX        0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_ANALOG_TX_STATE      0x2890
+#define IGP01E1000_PHY_ANALOG_CLASS_A       0x2000
+#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE  0x0004
+#define IGP01E1000_PHY_DSP_FFE_CM_CP        0x0069
+
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT      0x002A
+/* IGP01E1000 PCS Initialization register - stores the polarity status when
+ * speed = 1000 Mbps. */
+#define IGP01E1000_PHY_PCS_INIT_REG  0x00B4
+#define IGP01E1000_PHY_PCS_CTRL_REG  0x00B5
+
+#define IGP01E1000_ANALOG_REGS_PAGE  0x20C0
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080	/* Collision test enable */
+#define MII_CR_FULL_DUPLEX      0x0100	/* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200	/* Restart auto negotiation */
+#define MII_CR_ISOLATE          0x0400	/* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN       0x0800	/* Power down */
+#define MII_CR_AUTO_NEG_EN      0x1000	/* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK         0x4000	/* 0 = normal, 1 = loopback */
+#define MII_CR_RESET            0x8000	/* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS     0x0001	/* Extended register capabilities */
+#define MII_SR_JABBER_DETECT     0x0002	/* Jabber Detected */
+#define MII_SR_LINK_STATUS       0x0004	/* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS      0x0008	/* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT      0x0010	/* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE  0x0020	/* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040	/* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS   0x0100	/* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS     0x0200	/* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS     0x0400	/* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS       0x0800	/* 10T   Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS       0x1000	/* 10T   Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS      0x2000	/* 100X  Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS      0x4000	/* 100X  Full Duplex Capable */
+#define MII_SR_100T4_CAPS        0x8000	/* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001	/* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS    0x0020	/* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS    0x0040	/* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS  0x0080	/* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS  0x0100	/* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS     0x0200	/* 100T4 Capable */
+#define NWAY_AR_PAUSE          0x0400	/* Pause operation desired */
+#define NWAY_AR_ASM_DIR        0x0800	/* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT   0x2000	/* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000	/* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS    0x0020	/* LP is 10T   Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS    0x0040	/* LP is 10T   Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS  0x0080	/* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS  0x0100	/* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS     0x0200	/* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE          0x0400	/* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR        0x0800	/* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT   0x2000	/* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE    0x4000	/* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE      0x8000	/* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS      0x0001	/* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD          0x0002	/* LP is 10T   Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS    0x0004	/* LP is 10T   Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008	/* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT  0x0010	/* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define NPTX_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define NPTX_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define NPTX_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE         0x0800	/* Toggles between exchanges
+					 * of different NP
+					 */
+#define LP_RNPR_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg
+					 * 0 = cannot comply with msg
+					 */
+#define LP_RNPR_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE     0x4000	/* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE      0x8000	/* 1 = addition NP will follow
+					 * 0 = sending last NP
+					 */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE      0x0080	/* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS         0x0100	/* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS         0x0200	/* Advertise 1000T FD capability  */
+#define CR_1000T_REPEATER_DTE    0x0400	/* 1=Repeater/switch device port */
+					/* 0=DTE device */
+#define CR_1000T_MS_VALUE        0x0800	/* 1=Configure PHY as Master */
+					/* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE       0x1000	/* 1=Master/Slave manual config value */
+					/* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000	/* Normal Operation */
+#define CR_1000T_TEST_MODE_1     0x2000	/* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2     0x4000	/* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3     0x6000	/* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4     0x8000	/* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT   0x00FF	/* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR   0x0100	/* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS       0x0400	/* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS       0x0800	/* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000	/* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS  0x2000	/* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES    0x4000	/* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT  0x8000	/* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT          12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT           13
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT    5
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20            20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100           100
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000	/* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000	/* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000	/* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000	/* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK   0x0100	/* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0	/* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE  0x0010	/* register 11h bit 4 */
+				      /* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE    0x0001	/* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002	/* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST          0x0004	/* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE    0x0010	/* 1=CLK125 low,
+						 * 0=CLK125 toggling
+						 */
+#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000	/* MDI Crossover Mode bits 6:5 */
+					       /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020	/* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T     0x0040	/* 1000BASE-T: Auto crossover,
+						 *  100BASE-TX/10BASE-T:
+						 *  MDI Mode
+						 */
+#define M88E1000_PSCR_AUTO_X_MODE      0x0060	/* Auto crossover enabled
+						 * all speeds.
+						 */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+					/* 1=Enable Extended 10BASE-T distance
+					 * (Lower 10BASE-T RX Threshold)
+					 * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100
+					/* 1=5-Bit interface in 100BASE-TX
+					 * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200	/* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400	/* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800	/* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT    1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT          5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER             0x0001	/* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY       0x0002	/* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT          0x0020	/* 1=Downshifted */
+#define M88E1000_PSSR_MDIX               0x0040	/* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH       0x0380	/* 0=<50M;1=50-80M;2=80-110M;
+						 * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK               0x0400	/* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800	/* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD          0x1000	/* 1=Page received */
+#define M88E1000_PSSR_DPLX               0x2000	/* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED              0xC000	/* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS              0x0000	/* 00=10Mbs */
+#define M88E1000_PSSR_100MBS             0x4000	/* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS            0x8000	/* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_DOWNSHIFT_SHIFT    5
+#define M88E1000_PSSR_MDIX_SHIFT         6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000	/* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000	/* 1=Lost lock detect enabled.
+						 * Will assert lost lock and bring
+						 * link down if idle not seen
+						 * within 1ms in 1000BASE-T
+						 */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5     0x0060	/* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25      0x0070	/* 25  MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0       0x0000	/* NO  TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
+
+/* IGP01E1000 Specific Port Config Register - R/W */
+#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
+#define IGP01E1000_PSCFR_PRE_EN                0x0020
+#define IGP01E1000_PSCFR_SMART_SPEED           0x0080
+#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK    0x0100
+#define IGP01E1000_PSCFR_DISABLE_JABBER        0x0400
+#define IGP01E1000_PSCFR_DISABLE_TRANSMIT      0x2000
+
+/* IGP01E1000 Specific Port Status Register - R/O */
+#define IGP01E1000_PSSR_AUTONEG_FAILED         0x0001	/* RO LH SC */
+#define IGP01E1000_PSSR_POLARITY_REVERSED      0x0002
+#define IGP01E1000_PSSR_CABLE_LENGTH           0x007C
+#define IGP01E1000_PSSR_FULL_DUPLEX            0x0200
+#define IGP01E1000_PSSR_LINK_UP                0x0400
+#define IGP01E1000_PSSR_MDIX                   0x0800
+#define IGP01E1000_PSSR_SPEED_MASK             0xC000	/* speed bits mask */
+#define IGP01E1000_PSSR_SPEED_10MBPS           0x4000
+#define IGP01E1000_PSSR_SPEED_100MBPS          0x8000
+#define IGP01E1000_PSSR_SPEED_1000MBPS         0xC000
+#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT     0x0002	/* shift right 2 */
+#define IGP01E1000_PSSR_MDIX_SHIFT             0x000B	/* shift right 11 */
+
+/* IGP01E1000 Specific Port Control Register - R/W */
+#define IGP01E1000_PSCR_TP_LOOPBACK            0x0010
+#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR      0x0200
+#define IGP01E1000_PSCR_TEN_CRS_SELECT         0x0400
+#define IGP01E1000_PSCR_FLIP_CHIP              0x0800
+#define IGP01E1000_PSCR_AUTO_MDIX              0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX         0x2000	/* 0-MDI, 1-MDIX */
+
+/* IGP01E1000 Specific Port Link Health Register */
+#define IGP01E1000_PLHR_SS_DOWNGRADE           0x8000
+#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR    0x4000
+#define IGP01E1000_PLHR_MASTER_FAULT           0x2000
+#define IGP01E1000_PLHR_MASTER_RESOLUTION      0x1000
+#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK       0x0800	/* LH */
+#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW   0x0400	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_1             0x0200	/* LH */
+#define IGP01E1000_PLHR_DATA_ERR_0             0x0100
+#define IGP01E1000_PLHR_AUTONEG_FAULT          0x0040
+#define IGP01E1000_PLHR_AUTONEG_ACTIVE         0x0010
+#define IGP01E1000_PLHR_VALID_CHANNEL_D        0x0008
+#define IGP01E1000_PLHR_VALID_CHANNEL_C        0x0004
+#define IGP01E1000_PLHR_VALID_CHANNEL_B        0x0002
+#define IGP01E1000_PLHR_VALID_CHANNEL_A        0x0001
+
+/* IGP01E1000 Channel Quality Register */
+#define IGP01E1000_MSE_CHANNEL_D        0x000F
+#define IGP01E1000_MSE_CHANNEL_C        0x00F0
+#define IGP01E1000_MSE_CHANNEL_B        0x0F00
+#define IGP01E1000_MSE_CHANNEL_A        0xF000
+
+#define IGP02E1000_PM_SPD                         0x0001	/* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU                     0x0004	/* Enable LPLU in non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU                     0x0002	/* Enable LPLU in D0a mode */
+
+/* IGP01E1000 DSP reset macros */
+#define DSP_RESET_ENABLE     0x0
+#define DSP_RESET_DISABLE    0x2
+#define E1000_MAX_DSP_RESETS 10
+
+/* IGP01E1000 & IGP02E1000 AGC Registers */
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7	/* Coarse - 13:11, Fine - 10:7 */
+#define IGP02E1000_AGC_LENGTH_SHIFT 9	/* Coarse - 15:13, Fine - 12:9 */
+
+/* IGP02E1000 AGC Register Length 9-bit mask */
+#define IGP02E1000_AGC_LENGTH_MASK  0x7F
+
+/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
+#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
+
+/* The precision error of the cable length is +/- 10 meters */
+#define IGP01E1000_AGC_RANGE    10
+#define IGP02E1000_AGC_RANGE    15
+
+/* IGP01E1000 PCS Initialization register */
+/* bits 3:6 in the PCS registers stores the channels polarity */
+#define IGP01E1000_PHY_POLARITY_MASK    0x0078
+
+/* IGP01E1000 GMII FIFO Register */
+#define IGP01E1000_GMII_FLEX_SPD               0x10	/* Enable flexible speed
+							 * on Link-Up */
+#define IGP01E1000_GMII_SPD                    0x20	/* Enable SPD */
+
+/* IGP01E1000 Analog Register */
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS       0x20D1
+#define IGP01E1000_ANALOG_FUSE_STATUS             0x20D0
+#define IGP01E1000_ANALOG_FUSE_CONTROL            0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS             0x20DE
+
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK            0xF000
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK            0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK          0x0070
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED        0x0100
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL    0x0002
+
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH        0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10            0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1               0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10              0x0500
+
+/* Bit definitions for valid PHY IDs. */
+/* I = Integrated
+ * E = External
+ */
+#define M88_VENDOR         0x0141
+#define M88E1000_E_PHY_ID  0x01410C50
+#define M88E1000_I_PHY_ID  0x01410C30
+#define M88E1011_I_PHY_ID  0x01410C20
+#define IGP01E1000_I_PHY_ID  0x02A80380
+#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
+#define M88E1011_I_REV_4   0x04
+#define M88E1111_I_PHY_ID  0x01410CC0
+#define L1LXT971A_PHY_ID   0x001378E0
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define PHY_PAGE_SHIFT        5
+#define PHY_REG(page, reg)    \
+        (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+
+#define IGP3_PHY_PORT_CTRL           \
+        PHY_REG(769, 17)	/* Port General Configuration */
+#define IGP3_PHY_RATE_ADAPT_CTRL \
+        PHY_REG(769, 25)	/* Rate Adapter Control Register */
+
+#define IGP3_KMRN_FIFO_CTRL_STATS \
+        PHY_REG(770, 16)	/* KMRN FIFO's control/status register */
+#define IGP3_KMRN_POWER_MNG_CTRL \
+        PHY_REG(770, 17)	/* KMRN Power Management Control Register */
+#define IGP3_KMRN_INBAND_CTRL \
+        PHY_REG(770, 18)	/* KMRN Inband Control Register */
+#define IGP3_KMRN_DIAG \
+        PHY_REG(770, 19)	/* KMRN Diagnostic register */
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002	/* RX PCS is not synced */
+#define IGP3_KMRN_ACK_TIMEOUT \
+        PHY_REG(770, 20)	/* KMRN Acknowledge Timeouts register */
+
+#define IGP3_VR_CTRL \
+        PHY_REG(776, 18)	/* Voltage regulator control register */
+#define IGP3_VR_CTRL_MODE_SHUT       0x0200	/* Enter powerdown, shutdown VRs */
+#define IGP3_VR_CTRL_MODE_MASK       0x0300	/* Shutdown VR Mask */
+
+#define IGP3_CAPABILITY \
+        PHY_REG(776, 19)	/* IGP3 Capability Register */
+
+/* Capabilities for SKU Control  */
+#define IGP3_CAP_INITIATE_TEAM       0x0001	/* Able to initiate a team */
+#define IGP3_CAP_WFM                 0x0002	/* Support WoL and PXE */
+#define IGP3_CAP_ASF                 0x0004	/* Support ASF */
+#define IGP3_CAP_LPLU                0x0008	/* Support Low Power Link Up */
+#define IGP3_CAP_DC_AUTO_SPEED       0x0010	/* Support AC/DC Auto Link Speed */
+#define IGP3_CAP_SPD                 0x0020	/* Support Smart Power Down */
+#define IGP3_CAP_MULT_QUEUE          0x0040	/* Support 2 tx & 2 rx queues */
+#define IGP3_CAP_RSS                 0x0080	/* Support RSS */
+#define IGP3_CAP_8021PQ              0x0100	/* Support 802.1Q & 802.1p */
+#define IGP3_CAP_AMT_CB              0x0200	/* Support active manageability and circuit breaker */
+
+#define IGP3_PPC_JORDAN_EN           0x0001
+#define IGP3_PPC_JORDAN_GIGA_SPEED   0x0002
+
+#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS         0x0001
+#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK   0x001E
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA        0x0020
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_100         0x0040
+
+#define IGP3E1000_PHY_MISC_CTRL                0x1B	/* Misc. Ctrl register */
+#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET        0x1000	/* Duplex Manual Set */
+
+#define IGP3_KMRN_EXT_CTRL  PHY_REG(770, 18)
+#define IGP3_KMRN_EC_DIS_INBAND    0x0080
+
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330	/* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10	/* 100BaseTx Extended Status, Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL           0x11	/* 100BaseTx PHY special control register */
+#define IFE_PHY_RCV_FALSE_CARRIER         0x13	/* 100BaseTx Receive False Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT            0x14	/* 100BaseTx Receive Disconnect Counter */
+#define IFE_PHY_RCV_ERROT_FRAME           0x15	/* 100BaseTx Receive Error Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR            0x16	/* Receive Symbol Error Counter */
+#define IFE_PHY_PREM_EOF_ERR              0x17	/* 100BaseTx Receive Premature End Of Frame Error Counter */
+#define IFE_PHY_RCV_EOF_ERR               0x18	/* 10BaseT Receive End Of Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT          0x19	/* 10BaseT Transmit Jabber Detect Counter */
+#define IFE_PHY_EQUALIZER                 0x1A	/* PHY Equalizer Control and Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B	/* PHY special control and LED configuration */
+#define IFE_PHY_MDIX_CONTROL              0x1C	/* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL               0x1D	/* Hardware Integrity Control (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000	/* Default 1 = Disable auto reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN           0x0400	/* Indicates the power state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN            0x0200	/* Indicates the power state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED           0x0100	/* Indicates 10BASE-T polarity */
+#define IFE_PESC_PHY_ADDR_MASK               0x007C	/* Bit 6:2 for sampled PHY address */
+#define IFE_PESC_SPEED                       0x0002	/* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX                      0x0001	/* Auto-negotiation duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100	/* 1 = Dynamic Power Down disabled */
+#define IFE_PSC_FORCE_POLARITY               0x0020	/* 1=Reversed Polarity, 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010	/* 1=Auto Polarity Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001	/* 1=Jabber Disabled, 0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT         5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
+
+#define IFE_PMC_AUTO_MDIX                    0x0080	/* 1=enable MDI/MDI-X feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX                   0x0040	/* 1=force MDIX-X, 0=force MDI */
+#define IFE_PMC_MDIX_STATUS                  0x0020	/* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010	/* Resolution algorithm is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT              6
+#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000	/* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE                   0x8000	/* Enable the HWI feature */
+#define IFE_PHC_ABILITY_CHECK                0x4000	/* 1= Test Passed, 0=failed */
+#define IFE_PHC_TEST_EXEC                    0x2000	/* PHY launch test pulses on the wire */
+#define IFE_PHC_HIGHZ                        0x0200	/* 1 = Open Circuit */
+#define IFE_PHC_LOWZ                         0x0400	/* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600	/* Mask for indication type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK                0x01FF	/* Mask for distance to the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK               0x0000	/* Disable HWI */
+#define IFE_PSCL_PROBE_MODE                  0x0020	/* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF              0x0006	/* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON               0x0007	/* Force LEDs 0 and 2 on */
+
+#define ICH_FLASH_COMMAND_TIMEOUT            5000	/* 5000 uSecs - adjusted */
+#define ICH_FLASH_ERASE_TIMEOUT              3000000	/* Up to 3 seconds - worst case */
+#define ICH_FLASH_CYCLE_REPEAT_COUNT         10	/* 10 cycles */
+#define ICH_FLASH_SEG_SIZE_256               256
+#define ICH_FLASH_SEG_SIZE_4K                4096
+#define ICH_FLASH_SEG_SIZE_64K               65536
+
+#define ICH_CYCLE_READ                       0x0
+#define ICH_CYCLE_RESERVED                   0x1
+#define ICH_CYCLE_WRITE                      0x2
+#define ICH_CYCLE_ERASE                      0x3
+
+#define ICH_FLASH_GFPREG   0x0000
+#define ICH_FLASH_HSFSTS   0x0004
+#define ICH_FLASH_HSFCTL   0x0006
+#define ICH_FLASH_FADDR    0x0008
+#define ICH_FLASH_FDATA0   0x0010
+#define ICH_FLASH_FRACC    0x0050
+#define ICH_FLASH_FREG0    0x0054
+#define ICH_FLASH_FREG1    0x0058
+#define ICH_FLASH_FREG2    0x005C
+#define ICH_FLASH_FREG3    0x0060
+#define ICH_FLASH_FPR0     0x0074
+#define ICH_FLASH_FPR1     0x0078
+#define ICH_FLASH_SSFSTS   0x0090
+#define ICH_FLASH_SSFCTL   0x0092
+#define ICH_FLASH_PREOP    0x0094
+#define ICH_FLASH_OPTYPE   0x0096
+#define ICH_FLASH_OPMENU   0x0098
+
+#define ICH_FLASH_REG_MAPSIZE      0x00A0
+#define ICH_FLASH_SECTOR_SIZE      4096
+#define ICH_GFPREG_BASE_MASK       0x1FFF
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE        0xFFFFFFFF
+#define PHY_SOF             0x01
+#define PHY_OP_READ         0x02
+#define PHY_OP_WRITE        0x01
+#define PHY_TURNAROUND      0x02
+#define PHY_PREAMBLE_SIZE   32
+#define MII_CR_SPEED_1000   0x0040
+#define MII_CR_SPEED_100    0x2000
+#define MII_CR_SPEED_10     0x0000
+#define E1000_PHY_ADDRESS   0x01
+#define PHY_AUTO_NEG_TIME   45	/* 4.5 Seconds */
+#define PHY_FORCE_TIME      20	/* 2.0 Seconds */
+#define PHY_REVISION_MASK   0xFFFFFFF0
+#define DEVICE_SPEED_MASK   0x00000300	/* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK     0x01E0
+#define REG9_SPEED_MASK     0x0300
+#define ADVERTISE_10_HALF   0x0001
+#define ADVERTISE_10_FULL   0x0002
+#define ADVERTISE_100_HALF  0x0004
+#define ADVERTISE_100_FULL  0x0008
+#define ADVERTISE_1000_HALF 0x0010
+#define ADVERTISE_1000_FULL 0x0020
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F	/* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL    0x000F	/* All 10/100 speeds */
+#define AUTONEG_ADVERTISE_10_ALL        0x0003	/* 10Mbps Full & Half speeds */
+
+#endif /* _E1000_HW_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_main-2.6.32-ethercat.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,4869 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+  vim: noexpandtab
+
+*******************************************************************************/
+
+#include "e1000-2.6.32-ethercat.h"
+#include <net/ip6_checksum.h>
+
+char e1000_driver_name[] = "ec_e1000";
+static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
+#define DRV_VERSION "7.3.21-k5-NAPI"
+const char e1000_driver_version[] = DRV_VERSION;
+static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
+
+/* e1000_pci_tbl - PCI Device ID Table
+ *
+ * Last entry must be all 0s
+ *
+ * Macro expands to...
+ *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+ */
+static struct pci_device_id e1000_pci_tbl[] = {
+	INTEL_E1000_ETHERNET_DEVICE(0x1000),
+	INTEL_E1000_ETHERNET_DEVICE(0x1001),
+	INTEL_E1000_ETHERNET_DEVICE(0x1004),
+	INTEL_E1000_ETHERNET_DEVICE(0x1008),
+	INTEL_E1000_ETHERNET_DEVICE(0x1009),
+	INTEL_E1000_ETHERNET_DEVICE(0x100C),
+	INTEL_E1000_ETHERNET_DEVICE(0x100D),
+	INTEL_E1000_ETHERNET_DEVICE(0x100E),
+	INTEL_E1000_ETHERNET_DEVICE(0x100F),
+	INTEL_E1000_ETHERNET_DEVICE(0x1010),
+	INTEL_E1000_ETHERNET_DEVICE(0x1011),
+	INTEL_E1000_ETHERNET_DEVICE(0x1012),
+	INTEL_E1000_ETHERNET_DEVICE(0x1013),
+	INTEL_E1000_ETHERNET_DEVICE(0x1014),
+	INTEL_E1000_ETHERNET_DEVICE(0x1015),
+	INTEL_E1000_ETHERNET_DEVICE(0x1016),
+	INTEL_E1000_ETHERNET_DEVICE(0x1017),
+	INTEL_E1000_ETHERNET_DEVICE(0x1018),
+	INTEL_E1000_ETHERNET_DEVICE(0x1019),
+	INTEL_E1000_ETHERNET_DEVICE(0x101A),
+	INTEL_E1000_ETHERNET_DEVICE(0x101D),
+	INTEL_E1000_ETHERNET_DEVICE(0x101E),
+	INTEL_E1000_ETHERNET_DEVICE(0x1026),
+	INTEL_E1000_ETHERNET_DEVICE(0x1027),
+	INTEL_E1000_ETHERNET_DEVICE(0x1028),
+	INTEL_E1000_ETHERNET_DEVICE(0x1075),
+	INTEL_E1000_ETHERNET_DEVICE(0x1076),
+	INTEL_E1000_ETHERNET_DEVICE(0x1077),
+	INTEL_E1000_ETHERNET_DEVICE(0x1078),
+	INTEL_E1000_ETHERNET_DEVICE(0x1079),
+	INTEL_E1000_ETHERNET_DEVICE(0x107A),
+	INTEL_E1000_ETHERNET_DEVICE(0x107B),
+	INTEL_E1000_ETHERNET_DEVICE(0x107C),
+	INTEL_E1000_ETHERNET_DEVICE(0x108A),
+	INTEL_E1000_ETHERNET_DEVICE(0x1099),
+	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
+	/* required last entry */
+	{0,}
+};
+
+// do not auto-load driver
+// MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+int e1000_up(struct e1000_adapter *adapter);
+void e1000_down(struct e1000_adapter *adapter);
+void e1000_reinit_locked(struct e1000_adapter *adapter);
+void e1000_reset(struct e1000_adapter *adapter);
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *txdr);
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rxdr);
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *tx_ring);
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring);
+void e1000_update_stats(struct e1000_adapter *adapter);
+
+static int e1000_init_module(void);
+static void e1000_exit_module(void);
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
+static void __devexit e1000_remove(struct pci_dev *pdev);
+static int e1000_alloc_queues(struct e1000_adapter *adapter);
+static int e1000_sw_init(struct e1000_adapter *adapter);
+static int e1000_open(struct net_device *netdev);
+static int e1000_close(struct net_device *netdev);
+static void e1000_configure_tx(struct e1000_adapter *adapter);
+static void e1000_configure_rx(struct e1000_adapter *adapter);
+static void e1000_setup_rctl(struct e1000_adapter *adapter);
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+                                struct e1000_tx_ring *tx_ring);
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+                                struct e1000_rx_ring *rx_ring);
+static void e1000_set_rx_mode(struct net_device *netdev);
+static void e1000_update_phy_info(unsigned long data);
+static void e1000_watchdog(unsigned long data);
+static void e1000_82547_tx_fifo_stall(unsigned long data);
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev);
+static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
+static int e1000_set_mac(struct net_device *netdev, void *p);
+void ec_poll(struct net_device *);
+static irqreturn_t e1000_intr(int irq, void *data);
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring);
+static int e1000_clean(struct napi_struct *napi, int budget);
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do);
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do);
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count);
+static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+					 struct e1000_rx_ring *rx_ring,
+					 int cleaned_count);
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd);
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
+static void e1000_tx_timeout(struct net_device *dev);
+static void e1000_reset_task(struct work_struct *work);
+static void e1000_smartspeed(struct e1000_adapter *adapter);
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+                                       struct sk_buff *skb);
+
+static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
+static void e1000_restore_vlan(struct e1000_adapter *adapter);
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
+static int e1000_resume(struct pci_dev *pdev);
+#endif
+static void e1000_shutdown(struct pci_dev *pdev);
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/* for netdump / net console */
+static void e1000_netpoll (struct net_device *netdev);
+#endif
+
+#define COPYBREAK_DEFAULT 256
+static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
+module_param(copybreak, uint, 0644);
+MODULE_PARM_DESC(copybreak,
+	"Maximum size of packet that is copied to a new buffer on receive");
+
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+                     pci_channel_state_t state);
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
+static void e1000_io_resume(struct pci_dev *pdev);
+
+static struct pci_error_handlers e1000_err_handler = {
+	.error_detected = e1000_io_error_detected,
+	.slot_reset = e1000_io_slot_reset,
+	.resume = e1000_io_resume,
+};
+
+static struct pci_driver e1000_driver = {
+	.name     = e1000_driver_name,
+	.id_table = e1000_pci_tbl,
+	.probe    = e1000_probe,
+	.remove   = __devexit_p(e1000_remove),
+#ifdef CONFIG_PM
+	/* Power Managment Hooks */
+	.suspend  = e1000_suspend,
+	.resume   = e1000_resume,
+#endif
+	.shutdown = e1000_shutdown,
+	.err_handler = &e1000_err_handler
+};
+
+MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>");
+MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+
+static int __init e1000_init_module(void)
+{
+	int ret;
+	printk(KERN_INFO "%s - version %s\n",
+	       e1000_driver_string, e1000_driver_version);
+
+	printk(KERN_INFO "%s\n", e1000_copyright);
+
+	ret = pci_register_driver(&e1000_driver);
+	if (copybreak != COPYBREAK_DEFAULT) {
+		if (copybreak == 0)
+			printk(KERN_INFO "e1000: copybreak disabled\n");
+		else
+			printk(KERN_INFO "e1000: copybreak enabled for "
+			       "packets <= %u bytes\n", copybreak);
+	}
+	return ret;
+}
+
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+
+static void __exit e1000_exit_module(void)
+{
+	pci_unregister_driver(&e1000_driver);
+}
+
+module_exit(e1000_exit_module);
+
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	irq_handler_t handler = e1000_intr;
+	int irq_flags = IRQF_SHARED;
+	int err;
+
+	if (adapter->ecdev)
+		return 0;
+
+	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
+	                  netdev);
+	if (err) {
+		DPRINTK(PROBE, ERR,
+		        "Unable to allocate interrupt Error: %d\n", err);
+	}
+
+	return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	if (adapter->ecdev)
+		return;
+
+	free_irq(adapter->pdev->irq, netdev);
+}
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_disable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return;
+
+	ew32(IMC, ~0);
+	E1000_WRITE_FLUSH();
+	synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_enable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->ecdev)
+		return;
+
+	ew32(IMS, IMS_ENABLE_MASK);
+	E1000_WRITE_FLUSH();
+}
+
+static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u16 vid = hw->mng_cookie.vlan_id;
+	u16 old_vid = adapter->mng_vlan_id;
+	if (adapter->vlgrp) {
+		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
+			if (hw->mng_cookie.status &
+				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
+				e1000_vlan_rx_add_vid(netdev, vid);
+				adapter->mng_vlan_id = vid;
+			} else
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+
+			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
+					(vid != old_vid) &&
+			    !vlan_group_get_device(adapter->vlgrp, old_vid))
+				e1000_vlan_rx_kill_vid(netdev, old_vid);
+		} else
+			adapter->mng_vlan_id = vid;
+	}
+}
+
+static void e1000_init_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+		ew32(MANC, manc);
+	}
+}
+
+static void e1000_release_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* re-enable hardware interception of ARP */
+		manc |= E1000_MANC_ARP_EN;
+
+		ew32(MANC, manc);
+	}
+}
+
+/**
+ * e1000_configure - configure the hardware for RX and TX
+ * @adapter = private board structure
+ **/
+static void e1000_configure(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int i;
+
+	e1000_set_rx_mode(netdev);
+
+	e1000_restore_vlan(adapter);
+	e1000_init_manageability(adapter);
+
+	e1000_configure_tx(adapter);
+	e1000_setup_rctl(adapter);
+	e1000_configure_rx(adapter);
+	/* call E1000_DESC_UNUSED which always leaves
+	 * at least 1 descriptor unused to make sure
+	 * next_to_use != next_to_clean */
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
+		if (adapter->ecdev) {
+			/* fill rx ring completely! */
+			adapter->alloc_rx_buf(adapter, ring, ring->count);
+		} else {
+            /* this one leaves the last ring element unallocated! */
+			adapter->alloc_rx_buf(adapter, ring,
+					E1000_DESC_UNUSED(ring));
+		}
+	}
+
+	adapter->tx_queue_len = netdev->tx_queue_len;
+}
+
+int e1000_up(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* hardware has been reset, we need to reload some things */
+	e1000_configure(adapter);
+
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	if (!adapter->ecdev) {
+		napi_enable(&adapter->napi);
+
+		e1000_irq_enable(adapter);
+
+		netif_wake_queue(adapter->netdev);
+
+		/* fire a link change interrupt to start the watchdog */
+		ew32(ICS, E1000_ICS_LSC);
+	}
+	return 0;
+}
+
+/**
+ * e1000_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000_reset ***
+ *
+ **/
+
+void e1000_power_up_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 mii_reg = 0;
+
+	/* Just clear the power down bit to wake the phy back up */
+	if (hw->media_type == e1000_media_type_copper) {
+		/* according to the manual, the phy will retain its
+		 * settings across a power-down/up cycle */
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg &= ~MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+	}
+}
+
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Power down the PHY so no link is implied when interface is down *
+	 * The PHY cannot be powered down if any of the following is true *
+	 * (a) WoL is enabled
+	 * (b) AMT is active
+	 * (c) SoL/IDER session is active */
+	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
+	   hw->media_type == e1000_media_type_copper) {
+		u16 mii_reg = 0;
+
+		switch (hw->mac_type) {
+		case e1000_82540:
+		case e1000_82545:
+		case e1000_82545_rev_3:
+		case e1000_82546:
+		case e1000_82546_rev_3:
+		case e1000_82541:
+		case e1000_82541_rev_2:
+		case e1000_82547:
+		case e1000_82547_rev_2:
+			if (er32(MANC) & E1000_MANC_SMBUS_EN)
+				goto out;
+			break;
+		default:
+			goto out;
+		}
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg |= MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+		mdelay(1);
+	}
+out:
+	return;
+}
+
+void e1000_down(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl, tctl;
+
+	/* signal that we're down so the interrupt handler does not
+	 * reschedule our watchdog timer */
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	/* disable receives in the hardware */	
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+
+	if (!adapter->ecdev) {
+		/* flush and sleep below */
+		netif_tx_disable(netdev);
+	}
+
+	/* disable transmits in the hardware */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_EN;
+	ew32(TCTL, tctl);
+	/* flush both disables and wait for them to finish */
+	E1000_WRITE_FLUSH();
+	msleep(10);
+
+	if (!adapter->ecdev) {
+		napi_disable(&adapter->napi);
+
+		e1000_irq_disable(adapter);
+
+		del_timer_sync(&adapter->tx_fifo_stall_timer);
+		del_timer_sync(&adapter->watchdog_timer);
+		del_timer_sync(&adapter->phy_info_timer);
+	}
+
+	netdev->tx_queue_len = adapter->tx_queue_len;
+	adapter->link_speed = 0;
+	adapter->link_duplex = 0;
+	if (!adapter->ecdev) {
+		netif_carrier_off(netdev);
+	}
+
+	e1000_reset(adapter);
+	e1000_clean_all_tx_rings(adapter);
+	e1000_clean_all_rx_rings(adapter);
+}
+
+void e1000_reinit_locked(struct e1000_adapter *adapter)
+{
+	WARN_ON(in_interrupt());
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	e1000_down(adapter);
+	e1000_up(adapter);
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+}
+
+void e1000_reset(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
+	bool legacy_pba_adjust = false;
+	u16 hwm;
+
+	/* Repartition Pba for greater than 9k mtu
+	 * To take effect CTRL.RST is required.
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_30K;
+		break;
+	case e1000_undefined:
+	case e1000_num_macs:
+		break;
+	}
+
+	if (legacy_pba_adjust) {
+		if (hw->max_frame_size > E1000_RXBUFFER_8192)
+			pba -= 8; /* allocate more FIFO for Tx */
+
+		if (hw->mac_type == e1000_82547) {
+			adapter->tx_fifo_head = 0;
+			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
+			adapter->tx_fifo_size =
+				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+		}
+	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
+		/* adjust PBA for jumbo frames */
+		ew32(PBA, pba);
+
+		/* To maintain wire speed transmits, the Tx FIFO should be
+		 * large enough to accommodate two full transmit packets,
+		 * rounded up to the next 1KB and expressed in KB.  Likewise,
+		 * the Rx FIFO should be large enough to accommodate at least
+		 * one full receive packet and is similarly rounded up and
+		 * expressed in KB. */
+		pba = er32(PBA);
+		/* upper 16 bits has Tx packet buffer allocation size in KB */
+		tx_space = pba >> 16;
+		/* lower 16 bits has Rx packet buffer allocation size in KB */
+		pba &= 0xffff;
+		/*
+		 * the tx fifo also stores 16 bytes of information about the tx
+		 * but don't include ethernet FCS because hardware appends it
+		 */
+		min_tx_space = (hw->max_frame_size +
+		                sizeof(struct e1000_tx_desc) -
+		                ETH_FCS_LEN) * 2;
+		min_tx_space = ALIGN(min_tx_space, 1024);
+		min_tx_space >>= 10;
+		/* software strips receive CRC, so leave room for it */
+		min_rx_space = hw->max_frame_size;
+		min_rx_space = ALIGN(min_rx_space, 1024);
+		min_rx_space >>= 10;
+
+		/* If current Tx allocation is less than the min Tx FIFO size,
+		 * and the min Tx FIFO size is less than the current Rx FIFO
+		 * allocation, take space away from current Rx allocation */
+		if (tx_space < min_tx_space &&
+		    ((min_tx_space - tx_space) < pba)) {
+			pba = pba - (min_tx_space - tx_space);
+
+			/* PCI/PCIx hardware has PBA alignment constraints */
+			switch (hw->mac_type) {
+			case e1000_82545 ... e1000_82546_rev_3:
+				pba &= ~(E1000_PBA_8K - 1);
+				break;
+			default:
+				break;
+			}
+
+			/* if short on rx space, rx wins and must trump tx
+			 * adjustment or use Early Receive if available */
+			if (pba < min_rx_space)
+				pba = min_rx_space;
+		}
+	}
+
+	ew32(PBA, pba);
+
+	/*
+	 * flow control settings:
+	 * The high water mark must be low enough to fit one full frame
+	 * (or the size used for early receive) above it in the Rx FIFO.
+	 * Set it to the lower of:
+	 * - 90% of the Rx FIFO size, and
+	 * - the full Rx FIFO size minus the early receive size (for parts
+	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
+	 * - the full Rx FIFO size minus one full frame
+	 */
+	hwm = min(((pba << 10) * 9 / 10),
+		  ((pba << 10) - hw->max_frame_size));
+
+	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
+	hw->fc_low_water = hw->fc_high_water - 8;
+	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
+	hw->fc_send_xon = 1;
+	hw->fc = hw->original_fc;
+
+	/* Allow time for pending master requests to run */
+	e1000_reset_hw(hw);
+	if (hw->mac_type >= e1000_82544)
+		ew32(WUC, 0);
+
+	if (e1000_init_hw(hw))
+		DPRINTK(PROBE, ERR, "Hardware Error\n");
+	e1000_update_mng_vlan(adapter);
+
+	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
+	if (hw->mac_type >= e1000_82544 &&
+	    hw->autoneg == 1 &&
+	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+		u32 ctrl = er32(CTRL);
+		/* clear phy power management bit if we are in gig only mode,
+		 * which if enabled will attempt negotiation to 100Mb, which
+		 * can cause a loss of link at power off or driver unload */
+		ctrl &= ~E1000_CTRL_SWDPIN3;
+		ew32(CTRL, ctrl);
+	}
+
+	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
+
+	e1000_reset_adaptive(hw);
+	e1000_phy_get_info(hw, &adapter->phy_info);
+
+	e1000_release_manageability(adapter);
+}
+
+/**
+ *  Dump the eeprom for users having checksum issues
+ **/
+static void e1000_dump_eeprom(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct ethtool_eeprom eeprom;
+	const struct ethtool_ops *ops = netdev->ethtool_ops;
+	u8 *data;
+	int i;
+	u16 csum_old, csum_new = 0;
+
+	eeprom.len = ops->get_eeprom_len(netdev);
+	eeprom.offset = 0;
+
+	data = kmalloc(eeprom.len, GFP_KERNEL);
+	if (!data) {
+		printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
+		       " data\n");
+		return;
+	}
+
+	ops->get_eeprom(netdev, &eeprom, data);
+
+	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
+		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
+	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
+		csum_new += data[i] + (data[i + 1] << 8);
+	csum_new = EEPROM_SUM - csum_new;
+
+	printk(KERN_ERR "/*********************/\n");
+	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
+	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
+
+	printk(KERN_ERR "Offset    Values\n");
+	printk(KERN_ERR "========  ======\n");
+	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
+
+	printk(KERN_ERR "Include this output when contacting your support "
+	       "provider.\n");
+	printk(KERN_ERR "This is not a software error! Something bad "
+	       "happened to your hardware or\n");
+	printk(KERN_ERR "EEPROM image. Ignoring this "
+	       "problem could result in further problems,\n");
+	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
+	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
+	       "which is invalid\n");
+	printk(KERN_ERR "and requires you to set the proper MAC "
+	       "address manually before continuing\n");
+	printk(KERN_ERR "to enable this network device.\n");
+	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
+	       "to your hardware vendor\n");
+	printk(KERN_ERR "or Intel Customer Support.\n");
+	printk(KERN_ERR "/*********************/\n");
+
+	kfree(data);
+}
+
+/**
+ * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
+ * @pdev: PCI device information struct
+ *
+ * Return true if an adapter needs ioport resources
+ **/
+static int e1000_is_need_ioport(struct pci_dev *pdev)
+{
+	switch (pdev->device) {
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541ER_LOM:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		return true;
+	default:
+		return false;
+	}
+}
+
+static const struct net_device_ops e1000_netdev_ops = {
+	.ndo_open		= e1000_open,
+	.ndo_stop		= e1000_close,
+	.ndo_start_xmit		= e1000_xmit_frame,
+	.ndo_get_stats		= e1000_get_stats,
+	.ndo_set_rx_mode	= e1000_set_rx_mode,
+	.ndo_set_mac_address	= e1000_set_mac,
+	.ndo_tx_timeout 	= e1000_tx_timeout,
+	.ndo_change_mtu		= e1000_change_mtu,
+	.ndo_do_ioctl		= e1000_ioctl,
+	.ndo_validate_addr	= eth_validate_addr,
+
+	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
+	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
+	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e1000_netpoll,
+#endif
+};
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+static int __devinit e1000_probe(struct pci_dev *pdev,
+				 const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct e1000_adapter *adapter;
+	struct e1000_hw *hw;
+
+	static int cards_found = 0;
+	static int global_quad_port_a = 0; /* global ksp3 port a indication */
+	int i, err, pci_using_dac;
+	u16 eeprom_data = 0;
+	u16 eeprom_apme_mask = E1000_EEPROM_APME;
+	int bars, need_ioport;
+
+	/* do not allocate ioport bars when not needed */
+	need_ioport = e1000_is_need_ioport(pdev);
+	if (need_ioport) {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
+		err = pci_enable_device(pdev);
+	} else {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM);
+		err = pci_enable_device_mem(pdev);
+	}
+	if (err)
+		return err;
+
+	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
+	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
+		pci_using_dac = 1;
+	} else {
+		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+		if (err) {
+			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
+			if (err) {
+				E1000_ERR("No usable DMA configuration, "
+					  "aborting\n");
+				goto err_dma;
+			}
+		}
+		pci_using_dac = 0;
+	}
+
+	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
+	if (err)
+		goto err_pci_reg;
+
+	pci_set_master(pdev);
+
+	err = -ENOMEM;
+	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+	if (!netdev)
+		goto err_alloc_etherdev;
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	pci_set_drvdata(pdev, netdev);
+	adapter = netdev_priv(netdev);
+	adapter->netdev = netdev;
+	adapter->pdev = pdev;
+	adapter->msg_enable = (1 << debug) - 1;
+	adapter->bars = bars;
+	adapter->need_ioport = need_ioport;
+
+	hw = &adapter->hw;
+	hw->back = adapter;
+
+	err = -EIO;
+	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
+	if (!hw->hw_addr)
+		goto err_ioremap;
+
+	if (adapter->need_ioport) {
+		for (i = BAR_1; i <= BAR_5; i++) {
+			if (pci_resource_len(pdev, i) == 0)
+				continue;
+			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
+				hw->io_base = pci_resource_start(pdev, i);
+				break;
+			}
+		}
+	}
+
+	netdev->netdev_ops = &e1000_netdev_ops;
+	e1000_set_ethtool_ops(netdev);
+	netdev->watchdog_timeo = 5 * HZ;
+	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
+
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	adapter->bd_number = cards_found;
+
+	/* setup the private structure */
+
+	err = e1000_sw_init(adapter);
+	if (err)
+		goto err_sw_init;
+
+	err = -EIO;
+
+	if (hw->mac_type >= e1000_82543) {
+		netdev->features = NETIF_F_SG |
+				   NETIF_F_HW_CSUM |
+				   NETIF_F_HW_VLAN_TX |
+				   NETIF_F_HW_VLAN_RX |
+				   NETIF_F_HW_VLAN_FILTER;
+	}
+
+	if ((hw->mac_type >= e1000_82544) &&
+	   (hw->mac_type != e1000_82547))
+		netdev->features |= NETIF_F_TSO;
+
+	if (pci_using_dac)
+		netdev->features |= NETIF_F_HIGHDMA;
+
+	netdev->vlan_features |= NETIF_F_TSO;
+	netdev->vlan_features |= NETIF_F_HW_CSUM;
+	netdev->vlan_features |= NETIF_F_SG;
+
+	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
+
+	/* initialize eeprom parameters */
+	if (e1000_init_eeprom_params(hw)) {
+		E1000_ERR("EEPROM initialization failed\n");
+		goto err_eeprom;
+	}
+
+	/* before reading the EEPROM, reset the controller to
+	 * put the device in a known good starting state */
+
+	e1000_reset_hw(hw);
+
+	/* make sure the EEPROM is good */
+	if (e1000_validate_eeprom_checksum(hw) < 0) {
+		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
+		e1000_dump_eeprom(adapter);
+		/*
+		 * set MAC address to all zeroes to invalidate and temporary
+		 * disable this device for the user. This blocks regular
+		 * traffic while still permitting ethtool ioctls from reaching
+		 * the hardware as well as allowing the user to run the
+		 * interface after manually setting a hw addr using
+		 * `ip set address`
+		 */
+		memset(hw->mac_addr, 0, netdev->addr_len);
+	} else {
+		/* copy the MAC address out of the EEPROM */
+		if (e1000_read_mac_addr(hw))
+			DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
+	}
+	/* don't block initalization here due to bad MAC address */
+	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
+	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
+
+	if (!is_valid_ether_addr(netdev->perm_addr))
+		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
+
+	e1000_get_bus_info(hw);
+
+	init_timer(&adapter->tx_fifo_stall_timer);
+	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
+	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
+
+	init_timer(&adapter->watchdog_timer);
+	adapter->watchdog_timer.function = &e1000_watchdog;
+	adapter->watchdog_timer.data = (unsigned long) adapter;
+
+	init_timer(&adapter->phy_info_timer);
+	adapter->phy_info_timer.function = &e1000_update_phy_info;
+	adapter->phy_info_timer.data = (unsigned long)adapter;
+
+	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+
+	e1000_check_options(adapter);
+
+	/* Initial Wake on LAN setting
+	 * If APM wake is enabled in the EEPROM,
+	 * enable the ACPI Magic Packet filter
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		break;
+	case e1000_82544:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+		eeprom_apme_mask = E1000_EEPROM_82544_APM;
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1){
+			e1000_read_eeprom(hw,
+				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+			break;
+		}
+		/* Fall Through */
+	default:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+		break;
+	}
+	if (eeprom_data & eeprom_apme_mask)
+		adapter->eeprom_wol |= E1000_WUFC_MAG;
+
+	/* now that we have the eeprom settings, apply the special cases
+	 * where the eeprom may be wrong or the board simply won't support
+	 * wake on lan on a particular port */
+	switch (pdev->device) {
+	case E1000_DEV_ID_82546GB_PCIE:
+		adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events only supported on port A for dual fiber
+		 * regardless of eeprom setting */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* if quad port adapter, disable WoL on all but port A */
+		if (global_quad_port_a != 0)
+			adapter->eeprom_wol = 0;
+		else
+			adapter->quad_port_a = 1;
+		/* Reset for multiple quad port adapters */
+		if (++global_quad_port_a == 4)
+			global_quad_port_a = 0;
+		break;
+	}
+
+	/* initialize the wol settings based on the eeprom settings */
+	adapter->wol = adapter->eeprom_wol;
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	/* print bus type/speed/width info */
+	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
+		((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
+		((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
+		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
+		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
+		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
+		((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
+
+	printk("%pM\n", netdev->dev_addr);
+
+	/* reset the hardware with the new settings */
+	e1000_reset(adapter);
+
+	// offer device to EtherCAT master module
+	adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE);
+	if (adapter->ecdev) {
+		if (ecdev_open(adapter->ecdev)) {
+			ecdev_withdraw(adapter->ecdev);
+			goto err_register;
+		}
+	} else {
+		strcpy(netdev->name, "eth%d");
+		err = register_netdev(netdev);
+		if (err)
+			goto err_register;
+
+		/* carrier off reporting is important to ethtool even BEFORE open */
+		netif_carrier_off(netdev);
+	}
+
+	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
+
+	cards_found++;
+	return 0;
+
+err_register:
+err_eeprom:
+	e1000_phy_hw_reset(hw);
+
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+err_sw_init:
+	iounmap(hw->hw_addr);
+err_ioremap:
+	free_netdev(netdev);
+err_alloc_etherdev:
+	pci_release_selected_regions(pdev, bars);
+err_pci_reg:
+err_dma:
+	pci_disable_device(pdev);
+	return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device.  The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+
+static void __devexit e1000_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	if (!adapter->ecdev) {
+		del_timer_sync(&adapter->tx_fifo_stall_timer);
+		del_timer_sync(&adapter->watchdog_timer);
+		del_timer_sync(&adapter->phy_info_timer);
+	}
+
+	cancel_work_sync(&adapter->reset_task);
+
+	e1000_release_manageability(adapter);
+
+	if (adapter->ecdev) {
+		ecdev_close(adapter->ecdev);
+		ecdev_withdraw(adapter->ecdev);
+	} else {
+		unregister_netdev(netdev);
+	}
+
+	e1000_phy_hw_reset(hw);
+
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+
+	iounmap(hw->hw_addr);
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	pci_release_selected_regions(pdev, adapter->bars);
+
+	free_netdev(netdev);
+
+	pci_disable_device(pdev);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+
+	/* PCI config space info */
+
+	hw->vendor_id = pdev->vendor;
+	hw->device_id = pdev->device;
+	hw->subsystem_vendor_id = pdev->subsystem_vendor;
+	hw->subsystem_id = pdev->subsystem_device;
+	hw->revision_id = pdev->revision;
+
+	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+	hw->max_frame_size = netdev->mtu +
+			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
+
+	/* identify the MAC */
+
+	if (e1000_set_mac_type(hw)) {
+		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
+		return -EIO;
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->phy_init_script = 1;
+		break;
+	}
+
+	e1000_set_media_type(hw);
+
+	hw->wait_autoneg_complete = false;
+	hw->tbi_compatibility_en = true;
+	hw->adaptive_ifs = true;
+
+	/* Copper options */
+
+	if (hw->media_type == e1000_media_type_copper) {
+		hw->mdix = AUTO_ALL_MODES;
+		hw->disable_polarity_correction = false;
+		hw->master_slave = E1000_MASTER_SLAVE;
+	}
+
+	adapter->num_tx_queues = 1;
+	adapter->num_rx_queues = 1;
+
+	if (e1000_alloc_queues(adapter)) {
+		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
+		return -ENOMEM;
+	}
+
+	/* Explicitly disable IRQ since the NIC can be in any state. */
+	e1000_irq_disable(adapter);
+
+	spin_lock_init(&adapter->stats_lock);
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_alloc_queues - Allocate memory for all rings
+ * @adapter: board private structure to initialize
+ *
+ * We allocate one ring per queue at run-time since we don't know the
+ * number of queues at compile-time.
+ **/
+
+static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
+{
+	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
+	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!adapter->tx_ring)
+		return -ENOMEM;
+
+	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
+	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!adapter->rx_ring) {
+		kfree(adapter->tx_ring);
+		return -ENOMEM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP).  At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+
+static int e1000_open(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	/* disallow open during test */
+	if (test_bit(__E1000_TESTING, &adapter->flags))
+		return -EBUSY;
+
+	netif_carrier_off(netdev);
+
+	/* allocate transmit descriptors */
+	err = e1000_setup_all_tx_resources(adapter);
+	if (err)
+		goto err_setup_tx;
+
+	/* allocate receive descriptors */
+	err = e1000_setup_all_rx_resources(adapter);
+	if (err)
+		goto err_setup_rx;
+
+	e1000_power_up_phy(adapter);
+
+	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
+		e1000_update_mng_vlan(adapter);
+	}
+
+	/* before we allocate an interrupt, we must be ready to handle it.
+	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
+	 * as soon as we call pci_request_irq, so we have to setup our
+	 * clean_rx handler before we do so.  */
+	e1000_configure(adapter);
+
+	err = e1000_request_irq(adapter);
+	if (err)
+		goto err_req_irq;
+
+	/* From here on the code is the same as e1000_up() */
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_start_queue(netdev);
+
+	/* fire a link status change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+
+	return E1000_SUCCESS;
+
+err_req_irq:
+	e1000_power_down_phy(adapter);
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	e1000_free_all_tx_resources(adapter);
+err_setup_tx:
+	e1000_reset(adapter);
+
+	return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS.  The hardware is still under the drivers control, but
+ * needs to be disabled.  A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+
+static int e1000_close(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+	e1000_down(adapter);
+	e1000_power_down_phy(adapter);
+	e1000_free_irq(adapter);
+
+	e1000_free_all_tx_resources(adapter);
+	e1000_free_all_rx_resources(adapter);
+
+	/* kill manageability vlan ID if supported, but not if a vlan with
+	 * the same ID is registered on the host OS (let 8021q kill it) */
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	     !(adapter->vlgrp &&
+	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
+		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+	}
+
+	return 0;
+}
+
+/**
+ * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
+ * @adapter: address of board private structure
+ * @start: address of beginning of memory
+ * @len: length of memory
+ **/
+static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
+				  unsigned long len)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	unsigned long begin = (unsigned long)start;
+	unsigned long end = begin + len;
+
+	/* First rev 82545 and 82546 need to not allow any memory
+	 * write location to cross 64k boundary due to errata 23 */
+	if (hw->mac_type == e1000_82545 ||
+	    hw->mac_type == e1000_82546) {
+		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
+	}
+
+	return true;
+}
+
+/**
+ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ * @txdr:    tx descriptor ring (for a specific queue) to setup
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *txdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size;
+
+	size = sizeof(struct e1000_buffer) * txdr->count;
+	txdr->buffer_info = vmalloc(size);
+	if (!txdr->buffer_info) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the transmit descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(txdr->buffer_info, 0, size);
+
+	/* round up to nearest 4K */
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+
+	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+	if (!txdr->desc) {
+setup_tx_desc_die:
+		vfree(txdr->buffer_info);
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the transmit descriptor ring\n");
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+		void *olddesc = txdr->desc;
+		dma_addr_t olddma = txdr->dma;
+		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
+				     "at %p\n", txdr->size, txdr->desc);
+		/* Try again, without freeing the previous */
+		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+		/* Failed allocation, critical failure */
+		if (!txdr->desc) {
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+			goto setup_tx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+			/* give up */
+			pci_free_consistent(pdev, txdr->size, txdr->desc,
+					    txdr->dma);
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate aligned memory "
+				"for the transmit descriptor ring\n");
+			vfree(txdr->buffer_info);
+			return -ENOMEM;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+		}
+	}
+	memset(txdr->desc, 0, txdr->size);
+
+	txdr->next_to_use = 0;
+	txdr->next_to_clean = 0;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_tx_queues; i++) {
+		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
+		if (err) {
+			DPRINTK(PROBE, ERR,
+				"Allocation for Tx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_tx_resources(adapter,
+							&adapter->tx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_tx(struct e1000_adapter *adapter)
+{
+	u64 tdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tdlen, tctl, tipg;
+	u32 ipgr1, ipgr2;
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+
+	switch (adapter->num_tx_queues) {
+	case 1:
+	default:
+		tdba = adapter->tx_ring[0].dma;
+		tdlen = adapter->tx_ring[0].count *
+			sizeof(struct e1000_tx_desc);
+		ew32(TDLEN, tdlen);
+		ew32(TDBAH, (tdba >> 32));
+		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
+		ew32(TDT, 0);
+		ew32(TDH, 0);
+		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
+		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
+		break;
+	}
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	if ((hw->media_type == e1000_media_type_fiber ||
+	     hw->media_type == e1000_media_type_internal_serdes))
+		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+	else
+		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		tipg = DEFAULT_82542_TIPG_IPGT;
+		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+		break;
+	default:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+		break;
+	}
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	ew32(TIPG, tipg);
+
+	/* Set the Tx Interrupt Delay register */
+
+	ew32(TIDV, adapter->tx_int_delay);
+	if (hw->mac_type >= e1000_82540)
+		ew32(TADV, adapter->tx_abs_int_delay);
+
+	/* Program the Transmit Control Register */
+
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
+		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	e1000_config_collision_dist(hw);
+
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* only set IDE if we are delaying interrupts using the timers */
+	if (adapter->tx_int_delay)
+		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+	if (hw->mac_type < e1000_82543)
+		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
+	else
+		adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+	/* Cache if we're 82544 running in PCI-X because we'll
+	 * need this to apply a workaround later in the send path. */
+	if (hw->mac_type == e1000_82544 &&
+	    hw->bus_type == e1000_bus_type_pcix)
+		adapter->pcix_82544 = 1;
+
+	ew32(TCTL, tctl);
+
+}
+
+/**
+ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ * @rxdr:    rx descriptor ring (for a specific queue) to setup
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rxdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size, desc_len;
+
+	size = sizeof(struct e1000_buffer) * rxdr->count;
+	rxdr->buffer_info = vmalloc(size);
+	if (!rxdr->buffer_info) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the receive descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(rxdr->buffer_info, 0, size);
+
+	desc_len = sizeof(struct e1000_rx_desc);
+
+	/* Round up to nearest 4K */
+
+	rxdr->size = rxdr->count * desc_len;
+	rxdr->size = ALIGN(rxdr->size, 4096);
+
+	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+
+	if (!rxdr->desc) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the receive descriptor ring\n");
+setup_rx_desc_die:
+		vfree(rxdr->buffer_info);
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+		void *olddesc = rxdr->desc;
+		dma_addr_t olddma = rxdr->dma;
+		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
+				     "at %p\n", rxdr->size, rxdr->desc);
+		/* Try again, without freeing the previous */
+		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+		/* Failed allocation, critical failure */
+		if (!rxdr->desc) {
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate memory "
+				"for the receive descriptor ring\n");
+			goto setup_rx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+			/* give up */
+			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
+					    rxdr->dma);
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate aligned memory "
+				"for the receive descriptor ring\n");
+			goto setup_rx_desc_die;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+		}
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+
+	rxdr->next_to_clean = 0;
+	rxdr->next_to_use = 0;
+	rxdr->rx_skb_top = NULL;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
+		if (err) {
+			DPRINTK(PROBE, ERR,
+				"Allocation for Rx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_rx_resources(adapter,
+							&adapter->rx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control registers
+ * @adapter: Board private structure
+ **/
+static void e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	if (hw->tbi_compatibility_on == 1)
+		rctl |= E1000_RCTL_SBP;
+	else
+		rctl &= ~E1000_RCTL_SBP;
+
+	if (adapter->netdev->mtu <= ETH_DATA_LEN)
+		rctl &= ~E1000_RCTL_LPE;
+	else
+		rctl |= E1000_RCTL_LPE;
+
+	/* Setup buffer sizes */
+	rctl &= ~E1000_RCTL_SZ_4096;
+	rctl |= E1000_RCTL_BSEX;
+	switch (adapter->rx_buffer_len) {
+		case E1000_RXBUFFER_2048:
+		default:
+			rctl |= E1000_RCTL_SZ_2048;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_4096:
+			rctl |= E1000_RCTL_SZ_4096;
+			break;
+		case E1000_RXBUFFER_8192:
+			rctl |= E1000_RCTL_SZ_8192;
+			break;
+		case E1000_RXBUFFER_16384:
+			rctl |= E1000_RCTL_SZ_16384;
+			break;
+	}
+
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_rx(struct e1000_adapter *adapter)
+{
+	u64 rdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rdlen, rctl, rxcsum;
+
+	if (adapter->netdev->mtu > ETH_DATA_LEN) {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
+	} else {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+	}
+
+	/* disable receives while setting up the descriptors */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+
+	/* set the Receive Delay Timer Register */
+	ew32(RDTR, adapter->rx_int_delay);
+
+	if (hw->mac_type >= e1000_82540) {
+		ew32(RADV, adapter->rx_abs_int_delay);
+		if (adapter->itr_setting != 0)
+			ew32(ITR, 1000000000 / (adapter->itr * 256));
+	}
+
+	/* Setup the HW Rx Head and Tail Descriptor Pointers and
+	 * the Base and Length of the Rx Descriptor Ring */
+	switch (adapter->num_rx_queues) {
+	case 1:
+	default:
+		rdba = adapter->rx_ring[0].dma;
+		ew32(RDLEN, rdlen);
+		ew32(RDBAH, (rdba >> 32));
+		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
+		ew32(RDT, 0);
+		ew32(RDH, 0);
+		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
+		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
+		break;
+	}
+
+	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
+	if (hw->mac_type >= e1000_82543) {
+		rxcsum = er32(RXCSUM);
+		if (adapter->rx_csum)
+			rxcsum |= E1000_RXCSUM_TUOFL;
+		else
+			/* don't need to clear IPPCSE as it defaults to 0 */
+			rxcsum &= ~E1000_RXCSUM_TUOFL;
+		ew32(RXCSUM, rxcsum);
+	}
+
+	/* Enable Receives */
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_free_tx_resources - Free Tx Resources per Queue
+ * @adapter: board private structure
+ * @tx_ring: Tx descriptor ring for a specific queue
+ *
+ * Free all transmit software resources
+ **/
+
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *tx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_tx_ring(adapter, tx_ring);
+
+	vfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+
+	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
+
+	tx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_tx_resources - Free Tx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
+}
+
+static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
+					     struct e1000_buffer *buffer_info)
+{
+	if (adapter->ecdev)
+		return;
+
+	buffer_info->dma = 0;
+	if (buffer_info->skb) {
+		skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
+		              DMA_TO_DEVICE);
+		dev_kfree_skb_any(buffer_info->skb);
+		buffer_info->skb = NULL;
+	}
+	buffer_info->time_stamp = 0;
+	/* buffer_info must be completely set up in the transmit path */
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ * @tx_ring: ring to be cleaned
+ **/
+
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+				struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Tx ring sk_buffs */
+
+	for (i = 0; i < tx_ring->count; i++) {
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+	}
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	memset(tx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+
+	memset(tx_ring->desc, 0, tx_ring->size);
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+	tx_ring->last_tx_tso = 0;
+
+	writel(0, hw->hw_addr + tx_ring->tdh);
+	writel(0, hw->hw_addr + tx_ring->tdt);
+}
+
+/**
+ * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
+}
+
+/**
+ * e1000_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ * @rx_ring: ring to clean the resources from
+ *
+ * Free all receive software resources
+ **/
+
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_rx_ring(adapter, rx_ring);
+
+	vfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+
+	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
+
+	rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_rx_resources - Free Rx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers per Queue
+ * @adapter: board private structure
+ * @rx_ring: ring to free buffers from
+ **/
+
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+				struct e1000_rx_ring *rx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Rx ring sk_buffs */
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		if (buffer_info->dma &&
+		    adapter->clean_rx == e1000_clean_rx_irq) {
+			pci_unmap_single(pdev, buffer_info->dma,
+			                 buffer_info->length,
+			                 PCI_DMA_FROMDEVICE);
+		} else if (buffer_info->dma &&
+		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
+			pci_unmap_page(pdev, buffer_info->dma,
+			               buffer_info->length,
+			               PCI_DMA_FROMDEVICE);
+		}
+
+		buffer_info->dma = 0;
+		if (buffer_info->page) {
+			put_page(buffer_info->page);
+			buffer_info->page = NULL;
+		}
+		if (buffer_info->skb) {
+			dev_kfree_skb(buffer_info->skb);
+			buffer_info->skb = NULL;
+		}
+	}
+
+	/* there also may be some cached data from a chained receive */
+	if (rx_ring->rx_skb_top) {
+		dev_kfree_skb(rx_ring->rx_skb_top);
+		rx_ring->rx_skb_top = NULL;
+	}
+
+	size = sizeof(struct e1000_buffer) * rx_ring->count;
+	memset(rx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+	memset(rx_ring->desc, 0, rx_ring->size);
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+
+	writel(0, hw->hw_addr + rx_ring->rdh);
+	writel(0, hw->hw_addr + rx_ring->rdt);
+}
+
+/**
+ * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
+}
+
+/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
+ * and memory write and invalidate disabled for certain operations
+ */
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	e1000_pci_clear_mwi(hw);
+
+	rctl = er32(RCTL);
+	rctl |= E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (!adapter->ecdev && netif_running(netdev))
+		e1000_clean_all_rx_rings(adapter);
+}
+
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+	rctl &= ~E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+		e1000_pci_set_mwi(hw);
+
+	if (!adapter->netdev && netif_running(netdev)) {
+		/* No need to loop, because 82542 supports only 1 queue */
+		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
+		e1000_configure_rx(adapter);
+		if (adapter->ecdev) { 
+			/* fill rx ring completely! */
+			adapter->alloc_rx_buf(adapter, ring, ring->count);
+		} else {
+            /* this one leaves the last ring element unallocated! */
+			adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
+		}
+
+	}
+}
+
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_set_mac(struct net_device *netdev, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	return 0;
+}
+
+/**
+ * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_rx_mode entry point is called whenever the unicast or multicast
+ * address lists or the network interface flags are updated. This routine is
+ * responsible for configuring the hardware for proper unicast, multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+
+static void e1000_set_rx_mode(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct netdev_hw_addr *ha;
+	bool use_uc = false;
+	struct dev_addr_list *mc_ptr;
+	u32 rctl;
+	u32 hash_value;
+	int i, rar_entries = E1000_RAR_ENTRIES;
+	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
+	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
+
+	if (!mcarray) {
+		DPRINTK(PROBE, ERR, "memory allocation failed\n");
+		return;
+	}
+
+	/* Check for Promiscuous and All Multicast modes */
+
+	rctl = er32(RCTL);
+
+	if (netdev->flags & IFF_PROMISC) {
+		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		rctl &= ~E1000_RCTL_VFE;
+	} else {
+		if (netdev->flags & IFF_ALLMULTI)
+			rctl |= E1000_RCTL_MPE;
+		else
+			rctl &= ~E1000_RCTL_MPE;
+		/* Enable VLAN filter if there is a VLAN */
+		if (adapter->vlgrp)
+			rctl |= E1000_RCTL_VFE;
+	}
+
+	if (netdev->uc.count > rar_entries - 1) {
+		rctl |= E1000_RCTL_UPE;
+	} else if (!(netdev->flags & IFF_PROMISC)) {
+		rctl &= ~E1000_RCTL_UPE;
+		use_uc = true;
+	}
+
+	ew32(RCTL, rctl);
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	/* load the first 14 addresses into the exact filters 1-14. Unicast
+	 * addresses take precedence to avoid disabling unicast filtering
+	 * when possible.
+	 *
+	 * RAR 0 is used for the station MAC adddress
+	 * if there are not 14 addresses, go ahead and clear the filters
+	 */
+	i = 1;
+	if (use_uc)
+		list_for_each_entry(ha, &netdev->uc.list, list) {
+			if (i == rar_entries)
+				break;
+			e1000_rar_set(hw, ha->addr, i++);
+		}
+
+	WARN_ON(i == rar_entries);
+
+	mc_ptr = netdev->mc_list;
+
+	for (; i < rar_entries; i++) {
+		if (mc_ptr) {
+			e1000_rar_set(hw, mc_ptr->da_addr, i);
+			mc_ptr = mc_ptr->next;
+		} else {
+			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
+			E1000_WRITE_FLUSH();
+			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
+			E1000_WRITE_FLUSH();
+		}
+	}
+
+	/* load any remaining addresses into the hash table */
+
+	for (; mc_ptr; mc_ptr = mc_ptr->next) {
+		u32 hash_reg, hash_bit, mta;
+		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
+		hash_reg = (hash_value >> 5) & 0x7F;
+		hash_bit = hash_value & 0x1F;
+		mta = (1 << hash_bit);
+		mcarray[hash_reg] |= mta;
+	}
+
+	/* write the hash table completely, write from bottom to avoid
+	 * both stupid write combining chipsets, and flushing each write */
+	for (i = mta_reg_count - 1; i >= 0 ; i--) {
+		/*
+		 * If we are on an 82544 has an errata where writing odd
+		 * offsets overwrites the previous even offset, but writing
+		 * backwards over the range solves the issue by always
+		 * writing the odd offset first
+		 */
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
+	}
+	E1000_WRITE_FLUSH();
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	kfree(mcarray);
+}
+
+/* Need to wait a few seconds after link up to get diagnostic information from
+ * the phy */
+
+static void e1000_update_phy_info(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_phy_get_info(hw, &adapter->phy_info);
+}
+
+/**
+ * e1000_82547_tx_fifo_stall - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+
+static void e1000_82547_tx_fifo_stall(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 tctl;
+
+	if (atomic_read(&adapter->tx_fifo_stall)) {
+		if ((er32(TDT) == er32(TDH)) &&
+		   (er32(TDFT) == er32(TDFH)) &&
+		   (er32(TDFTS) == er32(TDFHS))) {
+			tctl = er32(TCTL);
+			ew32(TCTL, tctl & ~E1000_TCTL_EN);
+			ew32(TDFT, adapter->tx_head_addr);
+			ew32(TDFH, adapter->tx_head_addr);
+			ew32(TDFTS, adapter->tx_head_addr);
+			ew32(TDFHS, adapter->tx_head_addr);
+			ew32(TCTL, tctl);
+			E1000_WRITE_FLUSH();
+
+			adapter->tx_fifo_head = 0;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+			if (!adapter->ecdev) netif_wake_queue(netdev);
+		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
+			if (!adapter->ecdev) 
+				mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+		}
+	}
+}
+
+static bool e1000_has_link(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	bool link_active = false;
+
+	/* get_link_status is set on LSC (link status) interrupt or
+	 * rx sequence error interrupt.  get_link_status will stay
+	 * false until the e1000_check_for_link establishes link
+	 * for copper adapters ONLY
+	 */
+	switch (hw->media_type) {
+	case e1000_media_type_copper:
+		if (hw->get_link_status) {
+			e1000_check_for_link(hw);
+			link_active = !hw->get_link_status;
+		} else {
+			link_active = true;
+		}
+		break;
+	case e1000_media_type_fiber:
+		e1000_check_for_link(hw);
+		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
+		break;
+	case e1000_media_type_internal_serdes:
+		e1000_check_for_link(hw);
+		link_active = hw->serdes_has_link;
+		break;
+	default:
+		break;
+	}
+
+	return link_active;
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void e1000_watchdog(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	u32 link, tctl;
+
+	link = e1000_has_link(adapter);
+	if (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)
+		goto link_up;
+
+	if (link) {
+		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
+				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
+			u32 ctrl;
+			bool txb2b = true;
+			/* update snapshot of PHY registers on LSC */
+			e1000_get_speed_and_duplex(hw,
+			                           &adapter->link_speed,
+			                           &adapter->link_duplex);
+
+			ctrl = er32(CTRL);
+			printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
+			       "Flow Control: %s\n",
+			       netdev->name,
+			       adapter->link_speed,
+			       adapter->link_duplex == FULL_DUPLEX ?
+			        "Full Duplex" : "Half Duplex",
+			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
+			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
+			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
+			        E1000_CTRL_TFCE) ? "TX" : "None" )));
+
+			/* tweak tx_queue_len according to speed/duplex
+			 * and adjust the timeout factor */
+			netdev->tx_queue_len = adapter->tx_queue_len;
+			adapter->tx_timeout_factor = 1;
+			switch (adapter->link_speed) {
+			case SPEED_10:
+				txb2b = false;
+				netdev->tx_queue_len = 10;
+				adapter->tx_timeout_factor = 16;
+				break;
+			case SPEED_100:
+				txb2b = false;
+				netdev->tx_queue_len = 100;
+				/* maybe add some timeout factor ? */
+				break;
+			}
+
+			/* enable transmits in the hardware */
+			tctl = er32(TCTL);
+			tctl |= E1000_TCTL_EN;
+			ew32(TCTL, tctl);
+
+			if (adapter->ecdev) {
+				ecdev_set_link(adapter->ecdev, 1);
+			} else {
+				netif_carrier_on(netdev);
+				if (!test_bit(__E1000_DOWN, &adapter->flags))
+					mod_timer(&adapter->phy_info_timer,
+					          round_jiffies(jiffies + 2 * HZ));
+			}
+			adapter->smartspeed = 0;
+		}
+	} else {
+		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
+				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
+			adapter->link_speed = 0;
+			adapter->link_duplex = 0;
+			printk(KERN_INFO "e1000: %s NIC Link is Down\n",
+			       netdev->name);
+			if (adapter->ecdev) {
+				ecdev_set_link(adapter->ecdev, 0);
+			} else {
+				netif_carrier_off(netdev);
+
+				if (!test_bit(__E1000_DOWN, &adapter->flags))
+					mod_timer(&adapter->phy_info_timer,
+					          round_jiffies(jiffies + 2 * HZ));
+			}
+		}
+
+		e1000_smartspeed(adapter);
+	}
+
+link_up:
+	e1000_update_stats(adapter);
+
+	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+	adapter->tpt_old = adapter->stats.tpt;
+	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
+	adapter->colc_old = adapter->stats.colc;
+
+	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
+	adapter->gorcl_old = adapter->stats.gorcl;
+	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
+	adapter->gotcl_old = adapter->stats.gotcl;
+
+	e1000_update_adaptive(hw);
+
+	if (!adapter->ecdev && !netif_carrier_ok(netdev)) {
+		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
+			/* We've lost link, so the controller stops DMA,
+			 * but we've got queued Tx work that's never going
+			 * to get done, so reset controller to flush Tx.
+			 * (Do the reset outside of interrupt context). */
+			adapter->tx_timeout_count++;
+			schedule_work(&adapter->reset_task);
+			/* return immediately since reset is imminent */
+			return;
+		}
+	}
+
+	/* Cause software interrupt to ensure rx ring is cleaned */
+	ew32(ICS, E1000_ICS_RXDMT0);
+
+	/* Force detection of hung controller every watchdog period */
+	if (!adapter->ecdev) adapter->detect_tx_hung = true;
+
+	/* Reset the timer */
+	if (!adapter->ecdev) {
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer,
+			          round_jiffies(jiffies + 2 * HZ));
+	}
+}
+
+enum latency_range {
+	lowest_latency = 0,
+	low_latency = 1,
+	bulk_latency = 2,
+	latency_invalid = 255
+};
+
+/**
+ * e1000_update_itr - update the dynamic ITR value based on statistics
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ *
+ *      Stores a new ITR value based on packets and byte
+ *      counts during the last interrupt.  The advantage of per interrupt
+ *      computation is faster updates and more accurate ITR for the current
+ *      traffic pattern.  Constants in this function were computed
+ *      based on theoretical maximum wire speed and thresholds were set based
+ *      on testing data as well as attempting to minimize response time
+ *      while increasing bulk throughput.
+ *      this functionality is controlled by the InterruptThrottleRate module
+ *      parameter (see e1000_param.c)
+ **/
+static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
+				     u16 itr_setting, int packets, int bytes)
+{
+	unsigned int retval = itr_setting;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		goto update_itr_done;
+
+	if (packets == 0)
+		goto update_itr_done;
+
+	switch (itr_setting) {
+	case lowest_latency:
+		/* jumbo frames get bulk treatment*/
+		if (bytes/packets > 8000)
+			retval = bulk_latency;
+		else if ((packets < 5) && (bytes > 512))
+			retval = low_latency;
+		break;
+	case low_latency:  /* 50 usec aka 20000 ints/s */
+		if (bytes > 10000) {
+			/* jumbo frames need bulk latency setting */
+			if (bytes/packets > 8000)
+				retval = bulk_latency;
+			else if ((packets < 10) || ((bytes/packets) > 1200))
+				retval = bulk_latency;
+			else if ((packets > 35))
+				retval = lowest_latency;
+		} else if (bytes/packets > 2000)
+			retval = bulk_latency;
+		else if (packets <= 2 && bytes < 512)
+			retval = lowest_latency;
+		break;
+	case bulk_latency: /* 250 usec aka 4000 ints/s */
+		if (bytes > 25000) {
+			if (packets > 35)
+				retval = low_latency;
+		} else if (bytes < 6000) {
+			retval = low_latency;
+		}
+		break;
+	}
+
+update_itr_done:
+	return retval;
+}
+
+static void e1000_set_itr(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 current_itr;
+	u32 new_itr = adapter->itr;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		return;
+
+	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
+	if (unlikely(adapter->link_speed != SPEED_1000)) {
+		current_itr = 0;
+		new_itr = 4000;
+		goto set_itr_now;
+	}
+
+	adapter->tx_itr = e1000_update_itr(adapter,
+	                            adapter->tx_itr,
+	                            adapter->total_tx_packets,
+	                            adapter->total_tx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
+		adapter->tx_itr = low_latency;
+
+	adapter->rx_itr = e1000_update_itr(adapter,
+	                            adapter->rx_itr,
+	                            adapter->total_rx_packets,
+	                            adapter->total_rx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
+		adapter->rx_itr = low_latency;
+
+	current_itr = max(adapter->rx_itr, adapter->tx_itr);
+
+	switch (current_itr) {
+	/* counts and packets in update_itr are dependent on these numbers */
+	case lowest_latency:
+		new_itr = 70000;
+		break;
+	case low_latency:
+		new_itr = 20000; /* aka hwitr = ~200 */
+		break;
+	case bulk_latency:
+		new_itr = 4000;
+		break;
+	default:
+		break;
+	}
+
+set_itr_now:
+	if (new_itr != adapter->itr) {
+		/* this attempts to bias the interrupt rate towards Bulk
+		 * by adding intermediate steps when interrupt rate is
+		 * increasing */
+		new_itr = new_itr > adapter->itr ?
+		             min(adapter->itr + (new_itr >> 2), new_itr) :
+		             new_itr;
+		adapter->itr = new_itr;
+		ew32(ITR, 1000000000 / (new_itr * 256));
+	}
+
+	return;
+}
+
+#define E1000_TX_FLAGS_CSUM		0x00000001
+#define E1000_TX_FLAGS_VLAN		0x00000002
+#define E1000_TX_FLAGS_TSO		0x00000004
+#define E1000_TX_FLAGS_IPV4		0x00000008
+#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT	16
+
+static int e1000_tso(struct e1000_adapter *adapter,
+		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u32 cmd_length = 0;
+	u16 ipcse = 0, tucse, mss;
+	u8 ipcss, ipcso, tucss, tucso, hdr_len;
+	int err;
+
+	if (skb_is_gso(skb)) {
+		if (skb_header_cloned(skb)) {
+			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+			if (err)
+				return err;
+		}
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		mss = skb_shinfo(skb)->gso_size;
+		if (skb->protocol == htons(ETH_P_IP)) {
+			struct iphdr *iph = ip_hdr(skb);
+			iph->tot_len = 0;
+			iph->check = 0;
+			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+								 iph->daddr, 0,
+								 IPPROTO_TCP,
+								 0);
+			cmd_length = E1000_TXD_CMD_IP;
+			ipcse = skb_transport_offset(skb) - 1;
+		} else if (skb->protocol == htons(ETH_P_IPV6)) {
+			ipv6_hdr(skb)->payload_len = 0;
+			tcp_hdr(skb)->check =
+				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+						 &ipv6_hdr(skb)->daddr,
+						 0, IPPROTO_TCP, 0);
+			ipcse = 0;
+		}
+		ipcss = skb_network_offset(skb);
+		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
+		tucss = skb_transport_offset(skb);
+		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
+		tucse = 0;
+
+		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
+
+		i = tx_ring->next_to_use;
+		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+		buffer_info = &tx_ring->buffer_info[i];
+
+		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
+		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
+		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
+		context_desc->upper_setup.tcp_fields.tucss = tucss;
+		context_desc->upper_setup.tcp_fields.tucso = tucso;
+		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
+		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+
+		if (++i == tx_ring->count) i = 0;
+		tx_ring->next_to_use = i;
+
+		return true;
+	}
+	return false;
+}
+
+static bool e1000_tx_csum(struct e1000_adapter *adapter,
+			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u8 css;
+	u32 cmd_len = E1000_TXD_CMD_DEXT;
+
+	if (skb->ip_summed != CHECKSUM_PARTIAL)
+		return false;
+
+	switch (skb->protocol) {
+	case cpu_to_be16(ETH_P_IP):
+		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	case cpu_to_be16(ETH_P_IPV6):
+		/* XXX not handling all IPV6 headers */
+		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	default:
+		if (unlikely(net_ratelimit()))
+			DPRINTK(DRV, WARNING,
+			        "checksum_partial proto=%x!\n", skb->protocol);
+		break;
+	}
+
+	css = skb_transport_offset(skb);
+
+	i = tx_ring->next_to_use;
+	buffer_info = &tx_ring->buffer_info[i];
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+
+	context_desc->lower_setup.ip_config = 0;
+	context_desc->upper_setup.tcp_fields.tucss = css;
+	context_desc->upper_setup.tcp_fields.tucso =
+		css + skb->csum_offset;
+	context_desc->upper_setup.tcp_fields.tucse = 0;
+	context_desc->tcp_seg_setup.data = 0;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	if (unlikely(++i == tx_ring->count)) i = 0;
+	tx_ring->next_to_use = i;
+
+	return true;
+}
+
+#define E1000_MAX_TXD_PWR	12
+#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
+
+static int e1000_tx_map(struct e1000_adapter *adapter,
+			struct e1000_tx_ring *tx_ring,
+			struct sk_buff *skb, unsigned int first,
+			unsigned int max_per_txd, unsigned int nr_frags,
+			unsigned int mss)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned int len = skb_headlen(skb);
+	unsigned int offset, size, count = 0, i;
+	unsigned int f;
+	dma_addr_t *map;
+
+	i = tx_ring->next_to_use;
+
+	if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
+		dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
+		return 0;
+	}
+
+	map = skb_shinfo(skb)->dma_maps;
+	offset = 0;
+
+	while (len) {
+		buffer_info = &tx_ring->buffer_info[i];
+		size = min(len, max_per_txd);
+		/* Workaround for Controller erratum --
+		 * descriptor for non-tso packet in a linear SKB that follows a
+		 * tso gets written back prematurely before the data is fully
+		 * DMA'd to the controller */
+		if (!skb->data_len && tx_ring->last_tx_tso &&
+		    !skb_is_gso(skb)) {
+			tx_ring->last_tx_tso = 0;
+			size -= 4;
+		}
+
+		/* Workaround for premature desc write-backs
+		 * in TSO mode.  Append 4-byte sentinel desc */
+		if (unlikely(mss && !nr_frags && size == len && size > 8))
+			size -= 4;
+		/* work-around for errata 10 and it applies
+		 * to all controllers in PCI-X mode
+		 * The fix is to make sure that the first descriptor of a
+		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
+		 */
+		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+		                (size > 2015) && count == 0))
+		        size = 2015;
+
+		/* Workaround for potential 82544 hang in PCI-X.  Avoid
+		 * terminating buffers within evenly-aligned dwords. */
+		if (unlikely(adapter->pcix_82544 &&
+		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
+		   size > 4))
+			size -= 4;
+
+		buffer_info->length = size;
+		/* set time_stamp *before* dma to help avoid a possible race */
+		buffer_info->time_stamp = jiffies;
+		buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
+		buffer_info->next_to_watch = i;
+
+		len -= size;
+		offset += size;
+		count++;
+		if (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+		}
+	}
+
+	for (f = 0; f < nr_frags; f++) {
+		struct skb_frag_struct *frag;
+
+		frag = &skb_shinfo(skb)->frags[f];
+		len = frag->size;
+		offset = 0;
+
+		while (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+
+			buffer_info = &tx_ring->buffer_info[i];
+			size = min(len, max_per_txd);
+			/* Workaround for premature desc write-backs
+			 * in TSO mode.  Append 4-byte sentinel desc */
+			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
+				size -= 4;
+			/* Workaround for potential 82544 hang in PCI-X.
+			 * Avoid terminating buffers within evenly-aligned
+			 * dwords. */
+			if (unlikely(adapter->pcix_82544 &&
+			    !((unsigned long)(page_to_phys(frag->page) + offset
+			                      + size - 1) & 4) &&
+			    size > 4))
+				size -= 4;
+
+			buffer_info->length = size;
+			buffer_info->time_stamp = jiffies;
+			buffer_info->dma = map[f] + offset;
+			buffer_info->next_to_watch = i;
+
+			len -= size;
+			offset += size;
+			count++;
+		}
+	}
+
+	tx_ring->buffer_info[i].skb = skb;
+	tx_ring->buffer_info[first].next_to_watch = i;
+
+	return count;
+}
+
+static void e1000_tx_queue(struct e1000_adapter *adapter,
+			   struct e1000_tx_ring *tx_ring, int tx_flags,
+			   int count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_desc *tx_desc = NULL;
+	struct e1000_buffer *buffer_info;
+	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+	unsigned int i;
+
+	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+		             E1000_TXD_CMD_TSE;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
+			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+	}
+
+	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+	}
+
+	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
+		txd_lower |= E1000_TXD_CMD_VLE;
+		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+	}
+
+	i = tx_ring->next_to_use;
+
+	while (count--) {
+		buffer_info = &tx_ring->buffer_info[i];
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+		tx_desc->lower.data =
+			cpu_to_le32(txd_lower | buffer_info->length);
+		tx_desc->upper.data = cpu_to_le32(txd_upper);
+		if (unlikely(++i == tx_ring->count)) i = 0;
+	}
+
+	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+	/* Force memory writes to complete before letting h/w
+	 * know there are new descriptors to fetch.  (Only
+	 * applicable for weak-ordered memory model archs,
+	 * such as IA-64). */
+	wmb();
+
+	tx_ring->next_to_use = i;
+	writel(i, hw->hw_addr + tx_ring->tdt);
+	/* we need this if more than one processor can write to our tail
+	 * at a time, it syncronizes IO on IA64/Altix systems */
+	mmiowb();
+}
+
+/**
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary by notifying the stack to resend
+ * the packet at a later time.  This gives the Tx FIFO an opportunity to
+ * flush all packets.  When that occurs, we reset the Tx FIFO pointers
+ * to the beginning of the Tx FIFO.
+ **/
+
+#define E1000_FIFO_HDR			0x10
+#define E1000_82547_PAD_LEN		0x3E0
+
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+				       struct sk_buff *skb)
+{
+	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
+	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
+
+	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
+
+	if (adapter->link_duplex != HALF_DUPLEX)
+		goto no_fifo_stall_required;
+
+	if (atomic_read(&adapter->tx_fifo_stall))
+		return 1;
+
+	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
+		atomic_set(&adapter->tx_fifo_stall, 1);
+		return 1;
+	}
+
+no_fifo_stall_required:
+	adapter->tx_fifo_head += skb_fifo_len;
+	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
+		adapter->tx_fifo_head -= adapter->tx_fifo_size;
+	return 0;
+}
+
+static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+
+	netif_stop_queue(netdev);
+	/* Herbert's original patch had:
+	 *  smp_mb__after_netif_stop_queue();
+	 * but since that doesn't exist yet, just open code it. */
+	smp_mb();
+
+	/* We need to check again in a case another CPU has just
+	 * made room available. */
+	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
+		return -EBUSY;
+
+	/* A reprieve! */
+	netif_start_queue(netdev);
+	++adapter->restart_queue;
+	return 0;
+}
+
+static int e1000_maybe_stop_tx(struct net_device *netdev,
+                               struct e1000_tx_ring *tx_ring, int size)
+{
+	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
+		return 0;
+	return __e1000_maybe_stop_tx(netdev, size);
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *tx_ring;
+	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
+	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+	unsigned int tx_flags = 0;
+	unsigned int len = skb->len - skb->data_len;
+	unsigned int nr_frags = 0;
+	unsigned int mss = 0;
+	int count = 0;
+	int tso;
+	unsigned int f;
+
+	/* This goes back to the question of how to logically map a tx queue
+	 * to a flow.  Right now, performance is impacted slightly negatively
+	 * if using multiple tx queues.  If the stack breaks away from a
+	 * single qdisc implementation, we can look at this again. */
+	tx_ring = adapter->tx_ring;
+
+	if (unlikely(skb->len <= 0)) {
+		if (!adapter->ecdev)
+			dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	mss = skb_shinfo(skb)->gso_size;
+	/* The controller does a simple calculation to
+	 * make sure there is enough room in the FIFO before
+	 * initiating the DMA for each buffer.  The calc is:
+	 * 4 = ceil(buffer len/mss).  To make sure we don't
+	 * overrun the FIFO, adjust the max buffer len if mss
+	 * drops. */
+	if (mss) {
+		u8 hdr_len;
+		max_per_txd = min(mss << 2, max_per_txd);
+		max_txd_pwr = fls(max_per_txd) - 1;
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		if (skb->data_len && hdr_len == len) {
+			switch (hw->mac_type) {
+				unsigned int pull_size;
+			case e1000_82544:
+				/* Make sure we have room to chop off 4 bytes,
+				 * and that the end alignment will work out to
+				 * this hardware's requirements
+				 * NOTE: this is a TSO only workaround
+				 * if end byte alignment not correct move us
+				 * into the next dword */
+				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
+					break;
+				/* fall through */
+				pull_size = min((unsigned int)4, skb->data_len);
+				if (!__pskb_pull_tail(skb, pull_size)) {
+					DPRINTK(DRV, ERR,
+						"__pskb_pull_tail failed.\n");
+					dev_kfree_skb_any(skb);
+					return NETDEV_TX_OK;
+				}
+				len = skb->len - skb->data_len;
+				break;
+			default:
+				/* do nothing */
+				break;
+			}
+		}
+	}
+
+	/* reserve a descriptor for the offload context */
+	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
+		count++;
+	count++;
+
+	/* Controller Erratum workaround */
+	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
+		count++;
+
+	count += TXD_USE_COUNT(len, max_txd_pwr);
+
+	if (adapter->pcix_82544)
+		count++;
+
+	/* work-around for errata 10 and it applies to all controllers
+	 * in PCI-X mode, so add one more descriptor to the count
+	 */
+	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+			(len > 2015)))
+		count++;
+
+	nr_frags = skb_shinfo(skb)->nr_frags;
+	for (f = 0; f < nr_frags; f++)
+		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+				       max_txd_pwr);
+	if (adapter->pcix_82544)
+		count += nr_frags;
+
+	/* need: count + 2 desc gap to keep tail from touching
+	 * head, otherwise try next time */
+	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
+		return NETDEV_TX_BUSY;
+
+	if (unlikely(hw->mac_type == e1000_82547)) {
+		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
+			if (!adapter->ecdev) {
+				netif_stop_queue(netdev);
+				if (!test_bit(__E1000_DOWN, &adapter->flags))
+					mod_timer(&adapter->tx_fifo_stall_timer,
+					          jiffies + 1);
+			}
+			return NETDEV_TX_BUSY;
+		}
+	}
+
+	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
+		tx_flags |= E1000_TX_FLAGS_VLAN;
+		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+	}
+
+	first = tx_ring->next_to_use;
+
+	tso = e1000_tso(adapter, tx_ring, skb);
+	if (tso < 0) {
+		if (!adapter->ecdev) {
+			dev_kfree_skb_any(skb);
+		}
+		return NETDEV_TX_OK;
+	}
+
+	if (likely(tso)) {
+		if (likely(hw->mac_type != e1000_82544))
+			tx_ring->last_tx_tso = 1;
+		tx_flags |= E1000_TX_FLAGS_TSO;
+	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
+		tx_flags |= E1000_TX_FLAGS_CSUM;
+
+	if (likely(skb->protocol == htons(ETH_P_IP)))
+		tx_flags |= E1000_TX_FLAGS_IPV4;
+
+	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
+	                     nr_frags, mss);
+
+	if (count) {
+		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
+		if (!adapter->ecdev) {
+			/* Make sure there is space in the ring for the next send. */
+			e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
+		}
+
+	} else {
+		if (!adapter->ecdev) dev_kfree_skb_any(skb);
+		tx_ring->buffer_info[first].time_stamp = 0;
+		tx_ring->next_to_use = first;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+
+static void e1000_tx_timeout(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Do the reset outside of interrupt context */
+	adapter->tx_timeout_count++;
+	schedule_work(&adapter->reset_task);
+}
+
+static void e1000_reset_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter =
+		container_of(work, struct e1000_adapter, reset_task);
+
+	e1000_reinit_locked(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+
+static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* only return the current stats */
+	return &adapter->net_stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
+	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
+		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
+		return -EINVAL;
+	}
+
+	/* Adapter-specific max frame size limits. */
+	switch (hw->mac_type) {
+	case e1000_undefined ... e1000_82542_rev2_1:
+		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
+			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
+			return -EINVAL;
+		}
+		break;
+	default:
+		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
+		break;
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	/* e1000_down has a dependency on max_frame_size */
+	hw->max_frame_size = max_frame;
+	if (netif_running(netdev))
+		e1000_down(adapter);
+
+	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+	 * means we reserve 2 more, this pushes us to allocate from the next
+	 * larger slab size.
+	 * i.e. RXBUFFER_2048 --> size-4096 slab
+	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
+	 *  fragmented skbs */
+
+	if (max_frame <= E1000_RXBUFFER_2048)
+		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+	else
+#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
+		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
+		adapter->rx_buffer_len = PAGE_SIZE;
+#endif
+
+	/* adjust allocation if LPE protects us, and we aren't using SBP */
+	if (!hw->tbi_compatibility_on &&
+	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
+	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
+		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+
+	printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
+	       netdev->name, netdev->mtu, new_mtu);
+	netdev->mtu = new_mtu;
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+	else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+
+void e1000_update_stats(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long flags = 0;
+	u16 phy_tmp;
+
+#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
+
+	/*
+	 * Prevent stats update while adapter is being reset, or if the pci
+	 * connection is down.
+	 */
+	if (adapter->link_speed == 0)
+		return;
+	if (pci_channel_offline(pdev))
+		return;
+
+	if (!adapter->ecdev)
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+
+	/* these counters are modified from e1000_tbi_adjust_stats,
+	 * called from the interrupt context, so they must only
+	 * be written while holding adapter->stats_lock
+	 */
+
+	adapter->stats.crcerrs += er32(CRCERRS);
+	adapter->stats.gprc += er32(GPRC);
+	adapter->stats.gorcl += er32(GORCL);
+	adapter->stats.gorch += er32(GORCH);
+	adapter->stats.bprc += er32(BPRC);
+	adapter->stats.mprc += er32(MPRC);
+	adapter->stats.roc += er32(ROC);
+
+	adapter->stats.prc64 += er32(PRC64);
+	adapter->stats.prc127 += er32(PRC127);
+	adapter->stats.prc255 += er32(PRC255);
+	adapter->stats.prc511 += er32(PRC511);
+	adapter->stats.prc1023 += er32(PRC1023);
+	adapter->stats.prc1522 += er32(PRC1522);
+
+	adapter->stats.symerrs += er32(SYMERRS);
+	adapter->stats.mpc += er32(MPC);
+	adapter->stats.scc += er32(SCC);
+	adapter->stats.ecol += er32(ECOL);
+	adapter->stats.mcc += er32(MCC);
+	adapter->stats.latecol += er32(LATECOL);
+	adapter->stats.dc += er32(DC);
+	adapter->stats.sec += er32(SEC);
+	adapter->stats.rlec += er32(RLEC);
+	adapter->stats.xonrxc += er32(XONRXC);
+	adapter->stats.xontxc += er32(XONTXC);
+	adapter->stats.xoffrxc += er32(XOFFRXC);
+	adapter->stats.xofftxc += er32(XOFFTXC);
+	adapter->stats.fcruc += er32(FCRUC);
+	adapter->stats.gptc += er32(GPTC);
+	adapter->stats.gotcl += er32(GOTCL);
+	adapter->stats.gotch += er32(GOTCH);
+	adapter->stats.rnbc += er32(RNBC);
+	adapter->stats.ruc += er32(RUC);
+	adapter->stats.rfc += er32(RFC);
+	adapter->stats.rjc += er32(RJC);
+	adapter->stats.torl += er32(TORL);
+	adapter->stats.torh += er32(TORH);
+	adapter->stats.totl += er32(TOTL);
+	adapter->stats.toth += er32(TOTH);
+	adapter->stats.tpr += er32(TPR);
+
+	adapter->stats.ptc64 += er32(PTC64);
+	adapter->stats.ptc127 += er32(PTC127);
+	adapter->stats.ptc255 += er32(PTC255);
+	adapter->stats.ptc511 += er32(PTC511);
+	adapter->stats.ptc1023 += er32(PTC1023);
+	adapter->stats.ptc1522 += er32(PTC1522);
+
+	adapter->stats.mptc += er32(MPTC);
+	adapter->stats.bptc += er32(BPTC);
+
+	/* used for adaptive IFS */
+
+	hw->tx_packet_delta = er32(TPT);
+	adapter->stats.tpt += hw->tx_packet_delta;
+	hw->collision_delta = er32(COLC);
+	adapter->stats.colc += hw->collision_delta;
+
+	if (hw->mac_type >= e1000_82543) {
+		adapter->stats.algnerrc += er32(ALGNERRC);
+		adapter->stats.rxerrc += er32(RXERRC);
+		adapter->stats.tncrs += er32(TNCRS);
+		adapter->stats.cexterr += er32(CEXTERR);
+		adapter->stats.tsctc += er32(TSCTC);
+		adapter->stats.tsctfc += er32(TSCTFC);
+	}
+
+	/* Fill out the OS statistics structure */
+	adapter->net_stats.multicast = adapter->stats.mprc;
+	adapter->net_stats.collisions = adapter->stats.colc;
+
+	/* Rx Errors */
+
+	/* RLEC on some newer hardware can be incorrect so build
+	* our own version based on RUC and ROC */
+	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
+		adapter->stats.crcerrs + adapter->stats.algnerrc +
+		adapter->stats.ruc + adapter->stats.roc +
+		adapter->stats.cexterr;
+	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
+	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
+	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
+	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
+	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
+
+	/* Tx Errors */
+	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
+	adapter->net_stats.tx_errors = adapter->stats.txerrc;
+	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
+	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
+	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
+	if (hw->bad_tx_carr_stats_fd &&
+	    adapter->link_duplex == FULL_DUPLEX) {
+		adapter->net_stats.tx_carrier_errors = 0;
+		adapter->stats.tncrs = 0;
+	}
+
+	/* Tx Dropped needs to be maintained elsewhere */
+
+	/* Phy Stats */
+	if (hw->media_type == e1000_media_type_copper) {
+		if ((adapter->link_speed == SPEED_1000) &&
+		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
+			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
+			adapter->phy_stats.idle_errors += phy_tmp;
+		}
+
+		if ((hw->mac_type <= e1000_82546) &&
+		   (hw->phy_type == e1000_phy_m88) &&
+		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
+			adapter->phy_stats.receive_errors += phy_tmp;
+	}
+
+	/* Management Stats */
+	if (hw->has_smbus) {
+		adapter->stats.mgptc += er32(MGTPTC);
+		adapter->stats.mgprc += er32(MGTPRC);
+		adapter->stats.mgpdc += er32(MGTPDC);
+	}
+
+	if (!adapter->ecdev)
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+}
+
+void ec_poll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
+		e1000_watchdog((unsigned long) adapter);
+		adapter->ec_watchdog_jiffies = jiffies;
+	}
+
+	e1000_intr(0, netdev);
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+
+static irqreturn_t e1000_intr(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
+		return IRQ_NONE;  /* Not our interrupt */
+
+    if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
+		hw->get_link_status = 1;
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	if (adapter->ecdev) {
+		int i, ec_work_done = 0;
+		for (i = 0; i < E1000_MAX_INTR; i++) {
+			if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring,
+							&ec_work_done, 100) &&
+						!e1000_clean_tx_irq(adapter, adapter->tx_ring))) {
+				break;
+			}
+		}
+	} else {
+		/* disable interrupts, without the synchronize_irq bit */
+		ew32(IMC, ~0);
+		E1000_WRITE_FLUSH();
+
+		if (likely(napi_schedule_prep(&adapter->napi))) {
+			adapter->total_tx_bytes = 0;
+			adapter->total_tx_packets = 0;
+			adapter->total_rx_bytes = 0;
+			adapter->total_rx_packets = 0;
+			__napi_schedule(&adapter->napi);
+		} else {
+			/* this really should not happen! if it does it is basically a
+			 * bug, but not a hard error, so enable ints and continue */
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				e1000_irq_enable(adapter);
+		}
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @adapter: board private structure
+ * EtherCAT: never called
+ **/
+static int e1000_clean(struct napi_struct *napi, int budget)
+{
+	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
+	int tx_clean_complete = 0, work_done = 0;
+
+	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
+
+	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
+
+	if (!tx_clean_complete)
+		work_done = budget;
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		if (likely(adapter->itr_setting & 3))
+			e1000_set_itr(adapter);
+		napi_complete(napi);
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			e1000_irq_enable(adapter);
+	}
+
+	return work_done;
+}
+
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ **/
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_desc *tx_desc, *eop_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i, eop;
+	unsigned int count = 0;
+	unsigned int total_tx_bytes=0, total_tx_packets=0;
+
+	i = tx_ring->next_to_clean;
+	eop = tx_ring->buffer_info[i].next_to_watch;
+	eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
+	       (count < tx_ring->count)) {
+		bool cleaned = false;
+		for ( ; !cleaned; count++) {
+			tx_desc = E1000_TX_DESC(*tx_ring, i);
+			buffer_info = &tx_ring->buffer_info[i];
+			cleaned = (i == eop);
+
+			if (cleaned) {
+				struct sk_buff *skb = buffer_info->skb;
+				unsigned int segs, bytecount;
+				segs = skb_shinfo(skb)->gso_segs ?: 1;
+				/* multiply data chunks by size of headers */
+				bytecount = ((segs - 1) * skb_headlen(skb)) +
+				            skb->len;
+				total_tx_packets += segs;
+				total_tx_bytes += bytecount;
+			}
+			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+			tx_desc->upper.data = 0;
+
+			if (unlikely(++i == tx_ring->count)) i = 0;
+		}
+
+		eop = tx_ring->buffer_info[i].next_to_watch;
+		eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	}
+
+	tx_ring->next_to_clean = i;
+
+#define TX_WAKE_THRESHOLD 32
+	if (!adapter->ecdev && unlikely(count && netif_carrier_ok(netdev) &&
+		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
+		/* Make sure that anybody stopping the queue after this
+		 * sees the new next_to_clean.
+		 */
+		smp_mb();
+
+		if (netif_queue_stopped(netdev) &&
+		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
+			netif_wake_queue(netdev);
+			++adapter->restart_queue;
+		}
+	}
+
+	if (!adapter->ecdev && adapter->detect_tx_hung) {
+		/* Detect a transmit hang in hardware, this serializes the
+		 * check with the clearing of time_stamp and movement of i */
+		adapter->detect_tx_hung = false;
+		if (tx_ring->buffer_info[eop].time_stamp &&
+		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
+		               (adapter->tx_timeout_factor * HZ))
+		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
+
+			/* detected Tx unit hang */
+			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
+					"  Tx Queue             <%lu>\n"
+					"  TDH                  <%x>\n"
+					"  TDT                  <%x>\n"
+					"  next_to_use          <%x>\n"
+					"  next_to_clean        <%x>\n"
+					"buffer_info[next_to_clean]\n"
+					"  time_stamp           <%lx>\n"
+					"  next_to_watch        <%x>\n"
+					"  jiffies              <%lx>\n"
+					"  next_to_watch.status <%x>\n",
+				(unsigned long)((tx_ring - adapter->tx_ring) /
+					sizeof(struct e1000_tx_ring)),
+				readl(hw->hw_addr + tx_ring->tdh),
+				readl(hw->hw_addr + tx_ring->tdt),
+				tx_ring->next_to_use,
+				tx_ring->next_to_clean,
+				tx_ring->buffer_info[eop].time_stamp,
+				eop,
+				jiffies,
+				eop_desc->upper.fields.status);
+			netif_stop_queue(netdev);
+		}
+	}
+	adapter->total_tx_bytes += total_tx_bytes;
+	adapter->total_tx_packets += total_tx_packets;
+	adapter->net_stats.tx_bytes += total_tx_bytes;
+	adapter->net_stats.tx_packets += total_tx_packets;
+	return (count < tx_ring->count);
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter:     board private structure
+ * @status_err:  receive descriptor status and error fields
+ * @csum:        receive descriptor csum field
+ * @sk_buff:     socket buffer with received data
+ **/
+
+static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
+			      u32 csum, struct sk_buff *skb)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 status = (u16)status_err;
+	u8 errors = (u8)(status_err >> 24);
+	skb->ip_summed = CHECKSUM_NONE;
+
+	/* 82543 or newer only */
+	if (unlikely(hw->mac_type < e1000_82543)) return;
+	/* Ignore Checksum bit is set */
+	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
+	/* TCP/UDP checksum error bit is set */
+	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
+		/* let the stack verify checksum errors */
+		adapter->hw_csum_err++;
+		return;
+	}
+	/* TCP/UDP Checksum has not been calculated */
+	if (!(status & E1000_RXD_STAT_TCPCS))
+		return;
+
+	/* It must be a TCP or UDP packet with a valid checksum */
+	if (likely(status & E1000_RXD_STAT_TCPCS)) {
+		/* TCP checksum is good */
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	}
+	adapter->hw_csum_good++;
+}
+
+/**
+ * e1000_consume_page - helper function
+ **/
+static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
+                               u16 length)
+{
+	bi->page = NULL;
+	skb->len += length;
+	skb->data_len += length;
+	skb->truesize += length;
+}
+
+/**
+ * e1000_receive_skb - helper function to handle rx indications
+ * @adapter: board private structure
+ * @status: descriptor status field as written by hardware
+ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
+ * @skb: pointer to sk_buff to be indicated to stack
+ */
+static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
+			      __le16 vlan, struct sk_buff *skb)
+{
+	if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
+		vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
+		                         le16_to_cpu(vlan) &
+		                         E1000_RXD_SPC_VLAN_MASK);
+	} else {
+		netif_receive_skb(skb);
+	}
+}
+
+/**
+ * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ */
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long irq_flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		if (!adapter->ecdev) buffer_info->skb = NULL;
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
+		               PCI_DMA_FROMDEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/* errors is only valid for DD + EOP descriptors */
+		if (!adapter->ecdev &&
+		    unlikely((status & E1000_RXD_STAT_EOP) &&
+		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock,
+				                  irq_flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       irq_flags);
+				length--;
+			} else {
+				/* recycle both page and skb */
+				buffer_info->skb = skb;
+				/* an error means any chain goes out the window
+				 * too */
+				if (rx_ring->rx_skb_top)
+					dev_kfree_skb(rx_ring->rx_skb_top);
+				rx_ring->rx_skb_top = NULL;
+				goto next_desc;
+			}
+		}
+
+#define rxtop rx_ring->rx_skb_top
+		if (!(status & E1000_RXD_STAT_EOP)) {
+			/* this descriptor is only the beginning (or middle) */
+			if (!rxtop) {
+				/* this is the beginning of a chain */
+				rxtop = skb;
+				skb_fill_page_desc(rxtop, 0, buffer_info->page,
+				                   0, length);
+			} else {
+				/* this is the middle of a chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the skb, only consumed the page */
+				buffer_info->skb = skb;
+			}
+			e1000_consume_page(buffer_info, rxtop, length);
+			goto next_desc;
+		} else {
+			if (rxtop) {
+				/* end of the chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the current skb, we only consumed the
+				 * page */
+				buffer_info->skb = skb;
+				skb = rxtop;
+				rxtop = NULL;
+				e1000_consume_page(buffer_info, skb, length);
+			} else {
+				/* no chain, got EOP, this buf is the packet
+				 * copybreak to save the put_page/alloc_page */
+				if (length <= copybreak &&
+				    skb_tailroom(skb) >= length) {
+					u8 *vaddr;
+					vaddr = kmap_atomic(buffer_info->page,
+					                    KM_SKB_DATA_SOFTIRQ);
+					memcpy(skb_tail_pointer(skb), vaddr, length);
+					kunmap_atomic(vaddr,
+					              KM_SKB_DATA_SOFTIRQ);
+					/* re-use the page, so don't erase
+					 * buffer_info->page */
+					skb_put(skb, length);
+				} else {
+					skb_fill_page_desc(skb, 0,
+					                   buffer_info->page, 0,
+				                           length);
+					e1000_consume_page(buffer_info, skb,
+					                   length);
+				}
+			}
+		}
+
+		/* Receive Checksum Offload XXX recompute due to CRC strip? */
+		e1000_rx_checksum(adapter,
+		                  (u32)(status) |
+		                  ((u32)(rx_desc->errors) << 24),
+		                  le16_to_cpu(rx_desc->csum), skb);
+
+		pskb_trim(skb, skb->len - 4);
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		/* eth type trans needs skb->data to point to something */
+		if (!pskb_may_pull(skb, ETH_HLEN)) {
+			DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
+			if (!adapter->ecdev) dev_kfree_skb(skb);
+			goto next_desc;
+		}
+
+		if (adapter->ecdev) {
+			ecdev_receive(adapter->ecdev, skb->data, length);
+
+			// No need to detect link status as
+			// long as frames are received: Reset watchdog.
+			adapter->ec_watchdog_jiffies = jiffies;
+		} else {
+			skb->protocol = eth_type_trans(skb, netdev);
+			e1000_receive_skb(adapter, status, rx_desc->special, skb);
+		}
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ */
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		if (!adapter->ecdev) buffer_info->skb = NULL;
+
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
+		                 PCI_DMA_FROMDEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+		/* !EOP means multiple descriptors were used to store a single
+		 * packet, if thats the case we need to toss it.  In fact, we
+		 * to toss every packet with the EOP bit clear and the next
+		 * frame that _does_ have the EOP bit set, as it is by
+		 * definition only a frame fragment
+		 */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
+			adapter->discarding = true;
+
+		if (adapter->discarding) {
+			/* All receives must fit into a single buffer */
+			E1000_DBG("%s: Receive packet consumed multiple"
+				  " buffers\n", netdev->name);
+			/* recycle */
+			buffer_info->skb = skb;
+			if (status & E1000_RXD_STAT_EOP)
+				adapter->discarding = false;
+			goto next_desc;
+		}
+
+		if (!adapter->ecdev &&
+		    unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock, flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       flags);
+				length--;
+			} else {
+				/* recycle */
+				buffer_info->skb = skb;
+				goto next_desc;
+			}
+		}
+
+		/* adjust length to remove Ethernet CRC, this must be
+		 * done after the TBI_ACCEPT workaround above */
+		length -= 4;
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += length;
+		total_rx_packets++;
+
+		/* code added for copybreak, this should improve
+		 * performance for small packets with large amounts
+		 * of reassembly being done in the stack */
+		if (!adapter->ecdev && length < copybreak) {
+			struct sk_buff *new_skb =
+			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
+			if (new_skb) {
+				skb_reserve(new_skb, NET_IP_ALIGN);
+				skb_copy_to_linear_data_offset(new_skb,
+							       -NET_IP_ALIGN,
+							       (skb->data -
+							        NET_IP_ALIGN),
+							       (length +
+							        NET_IP_ALIGN));
+				/* save the skb in buffer_info as good */
+				buffer_info->skb = skb;
+				skb = new_skb;
+			}
+			/* else just continue with the old one */
+		}
+		/* end copybreak code */
+		skb_put(skb, length);
+
+		/* Receive Checksum Offload */
+		e1000_rx_checksum(adapter,
+				  (u32)(status) |
+				  ((u32)(rx_desc->errors) << 24),
+				  le16_to_cpu(rx_desc->csum), skb);
+
+		if (adapter->ecdev) {
+			ecdev_receive(adapter->ecdev, skb->data, length);
+
+			// No need to detect link status as
+			// long as frames are received: Reset watchdog.
+			adapter->ec_watchdog_jiffies = jiffies;
+		} else {
+			skb->protocol = eth_type_trans(skb, netdev);
+			e1000_receive_skb(adapter, status, rx_desc->special, skb);
+		}
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
+ * @adapter: address of board private structure
+ * @rx_ring: pointer to receive ring structure
+ * @cleaned_count: number of buffers to allocate this pass
+ **/
+
+static void
+e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring, int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = 256 -
+	                     16 /*for skb_reserve */ -
+	                     NET_IP_ALIGN;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto check_page;
+		}
+
+		skb = netdev_alloc_skb(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
+					     "at %p\n", bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				break; /* while (cleaned_count--) */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		/* Make buffer alignment 2 beyond a 16 byte boundary
+		 * this will result in a 16 byte aligned IP header after
+		 * the 14 byte MAC header is removed
+		 */
+		skb_reserve(skb, NET_IP_ALIGN);
+
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+check_page:
+		/* allocate a new page if necessary */
+		if (!buffer_info->page) {
+			buffer_info->page = alloc_page(GFP_ATOMIC);
+			if (unlikely(!buffer_info->page)) {
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+		}
+
+		if (!buffer_info->dma)
+			buffer_info->dma = pci_map_page(pdev,
+			                                buffer_info->page, 0,
+			                                buffer_info->length,
+			                                PCI_DMA_FROMDEVICE);
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
+ * @adapter: address of board private structure
+ **/
+
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto map_skb;
+		}
+
+		skb = netdev_alloc_skb(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
+					     "at %p\n", bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break; /* while !buffer_info->skb */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		/* Make buffer alignment 2 beyond a 16 byte boundary
+		 * this will result in a 16 byte aligned IP header after
+		 * the 14 byte MAC header is removed
+		 */
+		skb_reserve(skb, NET_IP_ALIGN);
+
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+map_skb:
+		buffer_info->dma = pci_map_single(pdev,
+						  skb->data,
+						  buffer_info->length,
+						  PCI_DMA_FROMDEVICE);
+
+		/*
+		 * XXX if it was allocated cleanly it will never map to a
+		 * boundary crossing
+		 */
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter,
+					(void *)(unsigned long)buffer_info->dma,
+					adapter->rx_buffer_len)) {
+			DPRINTK(RX_ERR, ERR,
+				"dma align check failed: %u bytes at %p\n",
+				adapter->rx_buffer_len,
+				(void *)(unsigned long)buffer_info->dma);
+			if (!adapter->ecdev) {
+				dev_kfree_skb(skb);
+				buffer_info->skb = NULL;
+			}
+
+			pci_unmap_single(pdev, buffer_info->dma,
+					 adapter->rx_buffer_len,
+					 PCI_DMA_FROMDEVICE);
+			buffer_info->dma = 0;
+
+			adapter->alloc_rx_buff_failed++;
+			break; /* while !buffer_info->skb */
+		}
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, hw->hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
+ * @adapter:
+ **/
+
+static void e1000_smartspeed(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_status;
+	u16 phy_ctrl;
+
+	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
+	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
+		return;
+
+	if (adapter->smartspeed == 0) {
+		/* If Master/Slave config fault is asserted twice,
+		 * we assume back-to-back */
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		if (phy_ctrl & CR_1000T_MS_ENABLE) {
+			phy_ctrl &= ~CR_1000T_MS_ENABLE;
+			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+					    phy_ctrl);
+			adapter->smartspeed++;
+			if (!e1000_phy_setup_autoneg(hw) &&
+			   !e1000_read_phy_reg(hw, PHY_CTRL,
+				   	       &phy_ctrl)) {
+				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+					     MII_CR_RESTART_AUTO_NEG);
+				e1000_write_phy_reg(hw, PHY_CTRL,
+						    phy_ctrl);
+			}
+		}
+		return;
+	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
+		/* If still no link, perhaps using 2/3 pair cable */
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		phy_ctrl |= CR_1000T_MS_ENABLE;
+		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
+		if (!e1000_phy_setup_autoneg(hw) &&
+		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
+			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+				     MII_CR_RESTART_AUTO_NEG);
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
+		}
+	}
+	/* Restart process after E1000_SMARTSPEED_MAX iterations */
+	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
+		adapter->smartspeed = 0;
+}
+
+/**
+ * e1000_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+	case SIOCSMIIREG:
+		return e1000_mii_ioctl(netdev, ifr, cmd);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+/**
+ * e1000_mii_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct mii_ioctl_data *data = if_mii(ifr);
+	int retval;
+	u16 mii_reg;
+	u16 spddplx;
+	unsigned long flags;
+
+	if (hw->media_type != e1000_media_type_copper)
+		return -EOPNOTSUPP;
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = hw->phy_addr;
+		break;
+	case SIOCGMIIREG:
+		if (adapter->ecdev) return -EPERM;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
+				   &data->val_out)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		break;
+	case SIOCSMIIREG:
+		if (adapter->ecdev) return -EPERM;
+		if (data->reg_num & ~(0x1F))
+			return -EFAULT;
+		mii_reg = data->val_in;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_write_phy_reg(hw, data->reg_num,
+					mii_reg)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		if (hw->media_type == e1000_media_type_copper) {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (mii_reg & MII_CR_AUTO_NEG_EN) {
+					hw->autoneg = 1;
+					hw->autoneg_advertised = 0x2F;
+				} else {
+					if (mii_reg & 0x40)
+						spddplx = SPEED_1000;
+					else if (mii_reg & 0x2000)
+						spddplx = SPEED_100;
+					else
+						spddplx = SPEED_10;
+					spddplx += (mii_reg & 0x100)
+						   ? DUPLEX_FULL :
+						   DUPLEX_HALF;
+					retval = e1000_set_spd_dplx(adapter,
+								    spddplx);
+					if (retval)
+						return retval;
+				}
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			case M88E1000_PHY_SPEC_CTRL:
+			case M88E1000_EXT_PHY_SPEC_CTRL:
+				if (e1000_phy_reset(hw))
+					return -EIO;
+				break;
+			}
+		} else {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			}
+		}
+		break;
+	default:
+		return -EOPNOTSUPP;
+	}
+	return E1000_SUCCESS;
+}
+
+void e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	int ret_val = pci_set_mwi(adapter->pdev);
+
+	if (ret_val)
+		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
+}
+
+void e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+
+	pci_clear_mwi(adapter->pdev);
+}
+
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	return pcix_get_mmrbc(adapter->pdev);
+}
+
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
+{
+	struct e1000_adapter *adapter = hw->back;
+	pcix_set_mmrbc(adapter->pdev, mmrbc);
+}
+
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
+{
+	outl(value, port);
+}
+
+static void e1000_vlan_rx_register(struct net_device *netdev,
+				   struct vlan_group *grp)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, rctl;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	adapter->vlgrp = grp;
+
+	if (grp) {
+		/* enable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* enable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_CFIEN;
+		if (!(netdev->flags & IFF_PROMISC))
+			rctl |= E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+		e1000_update_mng_vlan(adapter);
+	} else {
+		/* disable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* disable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+
+		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
+			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+		}
+	}
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+}
+
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if ((hw->mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	    (vid == adapter->mng_vlan_id))
+		return;
+	/* add VID to filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta |= (1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	vlan_group_set_device(adapter->vlgrp, vid, NULL);
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+
+	/* remove VID from filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta &= ~(1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+	if (adapter->vlgrp) {
+		u16 vid;
+		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+			if (!vlan_group_get_device(adapter->vlgrp, vid))
+				continue;
+			e1000_vlan_rx_add_vid(adapter->netdev, vid);
+		}
+	}
+}
+
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	hw->autoneg = 0;
+
+	/* Fiber NICs only allow 1000 gbps Full duplex */
+	if ((hw->media_type == e1000_media_type_fiber) &&
+		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
+		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+
+	switch (spddplx) {
+	case SPEED_10 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_10_half;
+		break;
+	case SPEED_10 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_10_full;
+		break;
+	case SPEED_100 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_100_half;
+		break;
+	case SPEED_100 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_100_full;
+		break;
+	case SPEED_1000 + DUPLEX_FULL:
+		hw->autoneg = 1;
+		hw->autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_HALF: /* not supported */
+	default:
+		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, ctrl_ext, rctl, status;
+	u32 wufc = adapter->wol;
+#ifdef CONFIG_PM
+	int retval = 0;
+#endif
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev)) {
+		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+		e1000_down(adapter);
+	}
+
+#ifdef CONFIG_PM
+	retval = pci_save_state(pdev);
+	if (retval)
+		return retval;
+#endif
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU)
+		wufc &= ~E1000_WUFC_LNKC;
+
+	if (wufc) {
+		e1000_setup_rctl(adapter);
+		e1000_set_rx_mode(netdev);
+
+		/* turn on all-multi mode if wake on multicast is enabled */
+		if (wufc & E1000_WUFC_MC) {
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_MPE;
+			ew32(RCTL, rctl);
+		}
+
+		if (hw->mac_type >= e1000_82540) {
+			ctrl = er32(CTRL);
+			/* advertise wake from D3Cold */
+			#define E1000_CTRL_ADVD3WUC 0x00100000
+			/* phy power management enable */
+			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+			ctrl |= E1000_CTRL_ADVD3WUC |
+				E1000_CTRL_EN_PHY_PWR_MGMT;
+			ew32(CTRL, ctrl);
+		}
+
+		if (hw->media_type == e1000_media_type_fiber ||
+		    hw->media_type == e1000_media_type_internal_serdes) {
+			/* keep the laser running in D3 */
+			ctrl_ext = er32(CTRL_EXT);
+			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
+			ew32(CTRL_EXT, ctrl_ext);
+		}
+
+		ew32(WUC, E1000_WUC_PME_EN);
+		ew32(WUFC, wufc);
+	} else {
+		ew32(WUC, 0);
+		ew32(WUFC, 0);
+	}
+
+	e1000_release_manageability(adapter);
+
+	*enable_wake = !!wufc;
+
+	/* make sure adapter isn't asleep if manageability is enabled */
+	if (adapter->en_mng_pt)
+		*enable_wake = true;
+
+	if (netif_running(netdev))
+		e1000_free_irq(adapter);
+
+	pci_disable_device(pdev);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	int retval;
+	bool wake;
+
+	retval = __e1000_shutdown(pdev, &wake);
+	if (retval)
+		return retval;
+
+	if (wake) {
+		pci_prepare_to_sleep(pdev);
+	} else {
+		pci_wake_from_d3(pdev, false);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+
+	return 0;
+}
+
+static int e1000_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 err;
+
+	if (adapter->ecdev)
+		return -EBUSY;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
+		return err;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	if (netif_running(netdev)) {
+		err = e1000_request_irq(adapter);
+		if (err)
+			return err;
+	}
+
+	e1000_power_up_phy(adapter);
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+
+	if (!adapter->ecdev) netif_device_attach(netdev);
+
+	return 0;
+}
+#endif
+
+static void e1000_shutdown(struct pci_dev *pdev)
+{
+	bool wake;
+
+	__e1000_shutdown(pdev, &wake);
+
+	if (system_state == SYSTEM_POWER_OFF) {
+		pci_wake_from_d3(pdev, wake);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void e1000_netpoll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	disable_irq(adapter->pdev->irq);
+	e1000_intr(adapter->pdev->irq, netdev);
+	enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/**
+ * e1000_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+						pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e1000_down(adapter);
+	pci_disable_device(pdev);
+
+	/* Request a slot slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e1000_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot. Implementation
+ * resembles the first-half of the e1000_resume routine.
+ */
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * e1000_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells us that
+ * its OK to resume normal operation. Implementation resembles the
+ * second-half of the e1000_resume routine.
+ */
+static void e1000_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev)) {
+		if (e1000_up(adapter)) {
+			printk("e1000: can't bring device back up after reset\n");
+			return;
+		}
+	}
+
+	netif_device_attach(netdev);
+}
+
+/* e1000_main.c */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_main-2.6.32-orig.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,4739 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+#include <net/ip6_checksum.h>
+
+char e1000_driver_name[] = "e1000";
+static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
+#define DRV_VERSION "7.3.21-k5-NAPI"
+const char e1000_driver_version[] = DRV_VERSION;
+static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
+
+/* e1000_pci_tbl - PCI Device ID Table
+ *
+ * Last entry must be all 0s
+ *
+ * Macro expands to...
+ *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+ */
+static struct pci_device_id e1000_pci_tbl[] = {
+	INTEL_E1000_ETHERNET_DEVICE(0x1000),
+	INTEL_E1000_ETHERNET_DEVICE(0x1001),
+	INTEL_E1000_ETHERNET_DEVICE(0x1004),
+	INTEL_E1000_ETHERNET_DEVICE(0x1008),
+	INTEL_E1000_ETHERNET_DEVICE(0x1009),
+	INTEL_E1000_ETHERNET_DEVICE(0x100C),
+	INTEL_E1000_ETHERNET_DEVICE(0x100D),
+	INTEL_E1000_ETHERNET_DEVICE(0x100E),
+	INTEL_E1000_ETHERNET_DEVICE(0x100F),
+	INTEL_E1000_ETHERNET_DEVICE(0x1010),
+	INTEL_E1000_ETHERNET_DEVICE(0x1011),
+	INTEL_E1000_ETHERNET_DEVICE(0x1012),
+	INTEL_E1000_ETHERNET_DEVICE(0x1013),
+	INTEL_E1000_ETHERNET_DEVICE(0x1014),
+	INTEL_E1000_ETHERNET_DEVICE(0x1015),
+	INTEL_E1000_ETHERNET_DEVICE(0x1016),
+	INTEL_E1000_ETHERNET_DEVICE(0x1017),
+	INTEL_E1000_ETHERNET_DEVICE(0x1018),
+	INTEL_E1000_ETHERNET_DEVICE(0x1019),
+	INTEL_E1000_ETHERNET_DEVICE(0x101A),
+	INTEL_E1000_ETHERNET_DEVICE(0x101D),
+	INTEL_E1000_ETHERNET_DEVICE(0x101E),
+	INTEL_E1000_ETHERNET_DEVICE(0x1026),
+	INTEL_E1000_ETHERNET_DEVICE(0x1027),
+	INTEL_E1000_ETHERNET_DEVICE(0x1028),
+	INTEL_E1000_ETHERNET_DEVICE(0x1075),
+	INTEL_E1000_ETHERNET_DEVICE(0x1076),
+	INTEL_E1000_ETHERNET_DEVICE(0x1077),
+	INTEL_E1000_ETHERNET_DEVICE(0x1078),
+	INTEL_E1000_ETHERNET_DEVICE(0x1079),
+	INTEL_E1000_ETHERNET_DEVICE(0x107A),
+	INTEL_E1000_ETHERNET_DEVICE(0x107B),
+	INTEL_E1000_ETHERNET_DEVICE(0x107C),
+	INTEL_E1000_ETHERNET_DEVICE(0x108A),
+	INTEL_E1000_ETHERNET_DEVICE(0x1099),
+	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
+	/* required last entry */
+	{0,}
+};
+
+MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+int e1000_up(struct e1000_adapter *adapter);
+void e1000_down(struct e1000_adapter *adapter);
+void e1000_reinit_locked(struct e1000_adapter *adapter);
+void e1000_reset(struct e1000_adapter *adapter);
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *txdr);
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rxdr);
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+                             struct e1000_tx_ring *tx_ring);
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring);
+void e1000_update_stats(struct e1000_adapter *adapter);
+
+static int e1000_init_module(void);
+static void e1000_exit_module(void);
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
+static void __devexit e1000_remove(struct pci_dev *pdev);
+static int e1000_alloc_queues(struct e1000_adapter *adapter);
+static int e1000_sw_init(struct e1000_adapter *adapter);
+static int e1000_open(struct net_device *netdev);
+static int e1000_close(struct net_device *netdev);
+static void e1000_configure_tx(struct e1000_adapter *adapter);
+static void e1000_configure_rx(struct e1000_adapter *adapter);
+static void e1000_setup_rctl(struct e1000_adapter *adapter);
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+                                struct e1000_tx_ring *tx_ring);
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+                                struct e1000_rx_ring *rx_ring);
+static void e1000_set_rx_mode(struct net_device *netdev);
+static void e1000_update_phy_info(unsigned long data);
+static void e1000_watchdog(unsigned long data);
+static void e1000_82547_tx_fifo_stall(unsigned long data);
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev);
+static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
+static int e1000_set_mac(struct net_device *netdev, void *p);
+static irqreturn_t e1000_intr(int irq, void *data);
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring);
+static int e1000_clean(struct napi_struct *napi, int budget);
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do);
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do);
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count);
+static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+					 struct e1000_rx_ring *rx_ring,
+					 int cleaned_count);
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd);
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
+static void e1000_tx_timeout(struct net_device *dev);
+static void e1000_reset_task(struct work_struct *work);
+static void e1000_smartspeed(struct e1000_adapter *adapter);
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+                                       struct sk_buff *skb);
+
+static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
+static void e1000_restore_vlan(struct e1000_adapter *adapter);
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
+static int e1000_resume(struct pci_dev *pdev);
+#endif
+static void e1000_shutdown(struct pci_dev *pdev);
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/* for netdump / net console */
+static void e1000_netpoll (struct net_device *netdev);
+#endif
+
+#define COPYBREAK_DEFAULT 256
+static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
+module_param(copybreak, uint, 0644);
+MODULE_PARM_DESC(copybreak,
+	"Maximum size of packet that is copied to a new buffer on receive");
+
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+                     pci_channel_state_t state);
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
+static void e1000_io_resume(struct pci_dev *pdev);
+
+static struct pci_error_handlers e1000_err_handler = {
+	.error_detected = e1000_io_error_detected,
+	.slot_reset = e1000_io_slot_reset,
+	.resume = e1000_io_resume,
+};
+
+static struct pci_driver e1000_driver = {
+	.name     = e1000_driver_name,
+	.id_table = e1000_pci_tbl,
+	.probe    = e1000_probe,
+	.remove   = __devexit_p(e1000_remove),
+#ifdef CONFIG_PM
+	/* Power Managment Hooks */
+	.suspend  = e1000_suspend,
+	.resume   = e1000_resume,
+#endif
+	.shutdown = e1000_shutdown,
+	.err_handler = &e1000_err_handler
+};
+
+MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
+MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+
+static int __init e1000_init_module(void)
+{
+	int ret;
+	printk(KERN_INFO "%s - version %s\n",
+	       e1000_driver_string, e1000_driver_version);
+
+	printk(KERN_INFO "%s\n", e1000_copyright);
+
+	ret = pci_register_driver(&e1000_driver);
+	if (copybreak != COPYBREAK_DEFAULT) {
+		if (copybreak == 0)
+			printk(KERN_INFO "e1000: copybreak disabled\n");
+		else
+			printk(KERN_INFO "e1000: copybreak enabled for "
+			       "packets <= %u bytes\n", copybreak);
+	}
+	return ret;
+}
+
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+
+static void __exit e1000_exit_module(void)
+{
+	pci_unregister_driver(&e1000_driver);
+}
+
+module_exit(e1000_exit_module);
+
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	irq_handler_t handler = e1000_intr;
+	int irq_flags = IRQF_SHARED;
+	int err;
+
+	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
+	                  netdev);
+	if (err) {
+		DPRINTK(PROBE, ERR,
+		        "Unable to allocate interrupt Error: %d\n", err);
+	}
+
+	return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+
+	free_irq(adapter->pdev->irq, netdev);
+}
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_disable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	ew32(IMC, ~0);
+	E1000_WRITE_FLUSH();
+	synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ * @adapter: board private structure
+ **/
+
+static void e1000_irq_enable(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	ew32(IMS, IMS_ENABLE_MASK);
+	E1000_WRITE_FLUSH();
+}
+
+static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u16 vid = hw->mng_cookie.vlan_id;
+	u16 old_vid = adapter->mng_vlan_id;
+	if (adapter->vlgrp) {
+		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
+			if (hw->mng_cookie.status &
+				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
+				e1000_vlan_rx_add_vid(netdev, vid);
+				adapter->mng_vlan_id = vid;
+			} else
+				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+
+			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
+					(vid != old_vid) &&
+			    !vlan_group_get_device(adapter->vlgrp, old_vid))
+				e1000_vlan_rx_kill_vid(netdev, old_vid);
+		} else
+			adapter->mng_vlan_id = vid;
+	}
+}
+
+static void e1000_init_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+		ew32(MANC, manc);
+	}
+}
+
+static void e1000_release_manageability(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (adapter->en_mng_pt) {
+		u32 manc = er32(MANC);
+
+		/* re-enable hardware interception of ARP */
+		manc |= E1000_MANC_ARP_EN;
+
+		ew32(MANC, manc);
+	}
+}
+
+/**
+ * e1000_configure - configure the hardware for RX and TX
+ * @adapter = private board structure
+ **/
+static void e1000_configure(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	int i;
+
+	e1000_set_rx_mode(netdev);
+
+	e1000_restore_vlan(adapter);
+	e1000_init_manageability(adapter);
+
+	e1000_configure_tx(adapter);
+	e1000_setup_rctl(adapter);
+	e1000_configure_rx(adapter);
+	/* call E1000_DESC_UNUSED which always leaves
+	 * at least 1 descriptor unused to make sure
+	 * next_to_use != next_to_clean */
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
+		adapter->alloc_rx_buf(adapter, ring,
+		                      E1000_DESC_UNUSED(ring));
+	}
+
+	adapter->tx_queue_len = netdev->tx_queue_len;
+}
+
+int e1000_up(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* hardware has been reset, we need to reload some things */
+	e1000_configure(adapter);
+
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_wake_queue(adapter->netdev);
+
+	/* fire a link change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+	return 0;
+}
+
+/**
+ * e1000_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000_reset ***
+ *
+ **/
+
+void e1000_power_up_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 mii_reg = 0;
+
+	/* Just clear the power down bit to wake the phy back up */
+	if (hw->media_type == e1000_media_type_copper) {
+		/* according to the manual, the phy will retain its
+		 * settings across a power-down/up cycle */
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg &= ~MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+	}
+}
+
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	/* Power down the PHY so no link is implied when interface is down *
+	 * The PHY cannot be powered down if any of the following is true *
+	 * (a) WoL is enabled
+	 * (b) AMT is active
+	 * (c) SoL/IDER session is active */
+	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
+	   hw->media_type == e1000_media_type_copper) {
+		u16 mii_reg = 0;
+
+		switch (hw->mac_type) {
+		case e1000_82540:
+		case e1000_82545:
+		case e1000_82545_rev_3:
+		case e1000_82546:
+		case e1000_82546_rev_3:
+		case e1000_82541:
+		case e1000_82541_rev_2:
+		case e1000_82547:
+		case e1000_82547_rev_2:
+			if (er32(MANC) & E1000_MANC_SMBUS_EN)
+				goto out;
+			break;
+		default:
+			goto out;
+		}
+		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
+		mii_reg |= MII_CR_POWER_DOWN;
+		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
+		mdelay(1);
+	}
+out:
+	return;
+}
+
+void e1000_down(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl, tctl;
+
+	/* signal that we're down so the interrupt handler does not
+	 * reschedule our watchdog timer */
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	/* disable receives in the hardware */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+	/* flush and sleep below */
+
+	netif_tx_disable(netdev);
+
+	/* disable transmits in the hardware */
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_EN;
+	ew32(TCTL, tctl);
+	/* flush both disables and wait for them to finish */
+	E1000_WRITE_FLUSH();
+	msleep(10);
+
+	napi_disable(&adapter->napi);
+
+	e1000_irq_disable(adapter);
+
+	del_timer_sync(&adapter->tx_fifo_stall_timer);
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	netdev->tx_queue_len = adapter->tx_queue_len;
+	adapter->link_speed = 0;
+	adapter->link_duplex = 0;
+	netif_carrier_off(netdev);
+
+	e1000_reset(adapter);
+	e1000_clean_all_tx_rings(adapter);
+	e1000_clean_all_rx_rings(adapter);
+}
+
+void e1000_reinit_locked(struct e1000_adapter *adapter)
+{
+	WARN_ON(in_interrupt());
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	e1000_down(adapter);
+	e1000_up(adapter);
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+}
+
+void e1000_reset(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
+	bool legacy_pba_adjust = false;
+	u16 hwm;
+
+	/* Repartition Pba for greater than 9k mtu
+	 * To take effect CTRL.RST is required.
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		pba = E1000_PBA_48K;
+		break;
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		legacy_pba_adjust = true;
+		pba = E1000_PBA_30K;
+		break;
+	case e1000_undefined:
+	case e1000_num_macs:
+		break;
+	}
+
+	if (legacy_pba_adjust) {
+		if (hw->max_frame_size > E1000_RXBUFFER_8192)
+			pba -= 8; /* allocate more FIFO for Tx */
+
+		if (hw->mac_type == e1000_82547) {
+			adapter->tx_fifo_head = 0;
+			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
+			adapter->tx_fifo_size =
+				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+		}
+	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
+		/* adjust PBA for jumbo frames */
+		ew32(PBA, pba);
+
+		/* To maintain wire speed transmits, the Tx FIFO should be
+		 * large enough to accommodate two full transmit packets,
+		 * rounded up to the next 1KB and expressed in KB.  Likewise,
+		 * the Rx FIFO should be large enough to accommodate at least
+		 * one full receive packet and is similarly rounded up and
+		 * expressed in KB. */
+		pba = er32(PBA);
+		/* upper 16 bits has Tx packet buffer allocation size in KB */
+		tx_space = pba >> 16;
+		/* lower 16 bits has Rx packet buffer allocation size in KB */
+		pba &= 0xffff;
+		/*
+		 * the tx fifo also stores 16 bytes of information about the tx
+		 * but don't include ethernet FCS because hardware appends it
+		 */
+		min_tx_space = (hw->max_frame_size +
+		                sizeof(struct e1000_tx_desc) -
+		                ETH_FCS_LEN) * 2;
+		min_tx_space = ALIGN(min_tx_space, 1024);
+		min_tx_space >>= 10;
+		/* software strips receive CRC, so leave room for it */
+		min_rx_space = hw->max_frame_size;
+		min_rx_space = ALIGN(min_rx_space, 1024);
+		min_rx_space >>= 10;
+
+		/* If current Tx allocation is less than the min Tx FIFO size,
+		 * and the min Tx FIFO size is less than the current Rx FIFO
+		 * allocation, take space away from current Rx allocation */
+		if (tx_space < min_tx_space &&
+		    ((min_tx_space - tx_space) < pba)) {
+			pba = pba - (min_tx_space - tx_space);
+
+			/* PCI/PCIx hardware has PBA alignment constraints */
+			switch (hw->mac_type) {
+			case e1000_82545 ... e1000_82546_rev_3:
+				pba &= ~(E1000_PBA_8K - 1);
+				break;
+			default:
+				break;
+			}
+
+			/* if short on rx space, rx wins and must trump tx
+			 * adjustment or use Early Receive if available */
+			if (pba < min_rx_space)
+				pba = min_rx_space;
+		}
+	}
+
+	ew32(PBA, pba);
+
+	/*
+	 * flow control settings:
+	 * The high water mark must be low enough to fit one full frame
+	 * (or the size used for early receive) above it in the Rx FIFO.
+	 * Set it to the lower of:
+	 * - 90% of the Rx FIFO size, and
+	 * - the full Rx FIFO size minus the early receive size (for parts
+	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
+	 * - the full Rx FIFO size minus one full frame
+	 */
+	hwm = min(((pba << 10) * 9 / 10),
+		  ((pba << 10) - hw->max_frame_size));
+
+	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
+	hw->fc_low_water = hw->fc_high_water - 8;
+	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
+	hw->fc_send_xon = 1;
+	hw->fc = hw->original_fc;
+
+	/* Allow time for pending master requests to run */
+	e1000_reset_hw(hw);
+	if (hw->mac_type >= e1000_82544)
+		ew32(WUC, 0);
+
+	if (e1000_init_hw(hw))
+		DPRINTK(PROBE, ERR, "Hardware Error\n");
+	e1000_update_mng_vlan(adapter);
+
+	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
+	if (hw->mac_type >= e1000_82544 &&
+	    hw->autoneg == 1 &&
+	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+		u32 ctrl = er32(CTRL);
+		/* clear phy power management bit if we are in gig only mode,
+		 * which if enabled will attempt negotiation to 100Mb, which
+		 * can cause a loss of link at power off or driver unload */
+		ctrl &= ~E1000_CTRL_SWDPIN3;
+		ew32(CTRL, ctrl);
+	}
+
+	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
+
+	e1000_reset_adaptive(hw);
+	e1000_phy_get_info(hw, &adapter->phy_info);
+
+	e1000_release_manageability(adapter);
+}
+
+/**
+ *  Dump the eeprom for users having checksum issues
+ **/
+static void e1000_dump_eeprom(struct e1000_adapter *adapter)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct ethtool_eeprom eeprom;
+	const struct ethtool_ops *ops = netdev->ethtool_ops;
+	u8 *data;
+	int i;
+	u16 csum_old, csum_new = 0;
+
+	eeprom.len = ops->get_eeprom_len(netdev);
+	eeprom.offset = 0;
+
+	data = kmalloc(eeprom.len, GFP_KERNEL);
+	if (!data) {
+		printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
+		       " data\n");
+		return;
+	}
+
+	ops->get_eeprom(netdev, &eeprom, data);
+
+	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
+		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
+	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
+		csum_new += data[i] + (data[i + 1] << 8);
+	csum_new = EEPROM_SUM - csum_new;
+
+	printk(KERN_ERR "/*********************/\n");
+	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
+	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
+
+	printk(KERN_ERR "Offset    Values\n");
+	printk(KERN_ERR "========  ======\n");
+	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
+
+	printk(KERN_ERR "Include this output when contacting your support "
+	       "provider.\n");
+	printk(KERN_ERR "This is not a software error! Something bad "
+	       "happened to your hardware or\n");
+	printk(KERN_ERR "EEPROM image. Ignoring this "
+	       "problem could result in further problems,\n");
+	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
+	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
+	       "which is invalid\n");
+	printk(KERN_ERR "and requires you to set the proper MAC "
+	       "address manually before continuing\n");
+	printk(KERN_ERR "to enable this network device.\n");
+	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
+	       "to your hardware vendor\n");
+	printk(KERN_ERR "or Intel Customer Support.\n");
+	printk(KERN_ERR "/*********************/\n");
+
+	kfree(data);
+}
+
+/**
+ * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
+ * @pdev: PCI device information struct
+ *
+ * Return true if an adapter needs ioport resources
+ **/
+static int e1000_is_need_ioport(struct pci_dev *pdev)
+{
+	switch (pdev->device) {
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541ER_LOM:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		return true;
+	default:
+		return false;
+	}
+}
+
+static const struct net_device_ops e1000_netdev_ops = {
+	.ndo_open		= e1000_open,
+	.ndo_stop		= e1000_close,
+	.ndo_start_xmit		= e1000_xmit_frame,
+	.ndo_get_stats		= e1000_get_stats,
+	.ndo_set_rx_mode	= e1000_set_rx_mode,
+	.ndo_set_mac_address	= e1000_set_mac,
+	.ndo_tx_timeout 	= e1000_tx_timeout,
+	.ndo_change_mtu		= e1000_change_mtu,
+	.ndo_do_ioctl		= e1000_ioctl,
+	.ndo_validate_addr	= eth_validate_addr,
+
+	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
+	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
+	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	.ndo_poll_controller	= e1000_netpoll,
+#endif
+};
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+static int __devinit e1000_probe(struct pci_dev *pdev,
+				 const struct pci_device_id *ent)
+{
+	struct net_device *netdev;
+	struct e1000_adapter *adapter;
+	struct e1000_hw *hw;
+
+	static int cards_found = 0;
+	static int global_quad_port_a = 0; /* global ksp3 port a indication */
+	int i, err, pci_using_dac;
+	u16 eeprom_data = 0;
+	u16 eeprom_apme_mask = E1000_EEPROM_APME;
+	int bars, need_ioport;
+
+	/* do not allocate ioport bars when not needed */
+	need_ioport = e1000_is_need_ioport(pdev);
+	if (need_ioport) {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
+		err = pci_enable_device(pdev);
+	} else {
+		bars = pci_select_bars(pdev, IORESOURCE_MEM);
+		err = pci_enable_device_mem(pdev);
+	}
+	if (err)
+		return err;
+
+	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
+	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
+		pci_using_dac = 1;
+	} else {
+		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+		if (err) {
+			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
+			if (err) {
+				E1000_ERR("No usable DMA configuration, "
+					  "aborting\n");
+				goto err_dma;
+			}
+		}
+		pci_using_dac = 0;
+	}
+
+	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
+	if (err)
+		goto err_pci_reg;
+
+	pci_set_master(pdev);
+
+	err = -ENOMEM;
+	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+	if (!netdev)
+		goto err_alloc_etherdev;
+
+	SET_NETDEV_DEV(netdev, &pdev->dev);
+
+	pci_set_drvdata(pdev, netdev);
+	adapter = netdev_priv(netdev);
+	adapter->netdev = netdev;
+	adapter->pdev = pdev;
+	adapter->msg_enable = (1 << debug) - 1;
+	adapter->bars = bars;
+	adapter->need_ioport = need_ioport;
+
+	hw = &adapter->hw;
+	hw->back = adapter;
+
+	err = -EIO;
+	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
+	if (!hw->hw_addr)
+		goto err_ioremap;
+
+	if (adapter->need_ioport) {
+		for (i = BAR_1; i <= BAR_5; i++) {
+			if (pci_resource_len(pdev, i) == 0)
+				continue;
+			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
+				hw->io_base = pci_resource_start(pdev, i);
+				break;
+			}
+		}
+	}
+
+	netdev->netdev_ops = &e1000_netdev_ops;
+	e1000_set_ethtool_ops(netdev);
+	netdev->watchdog_timeo = 5 * HZ;
+	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
+
+	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
+
+	adapter->bd_number = cards_found;
+
+	/* setup the private structure */
+
+	err = e1000_sw_init(adapter);
+	if (err)
+		goto err_sw_init;
+
+	err = -EIO;
+
+	if (hw->mac_type >= e1000_82543) {
+		netdev->features = NETIF_F_SG |
+				   NETIF_F_HW_CSUM |
+				   NETIF_F_HW_VLAN_TX |
+				   NETIF_F_HW_VLAN_RX |
+				   NETIF_F_HW_VLAN_FILTER;
+	}
+
+	if ((hw->mac_type >= e1000_82544) &&
+	   (hw->mac_type != e1000_82547))
+		netdev->features |= NETIF_F_TSO;
+
+	if (pci_using_dac)
+		netdev->features |= NETIF_F_HIGHDMA;
+
+	netdev->vlan_features |= NETIF_F_TSO;
+	netdev->vlan_features |= NETIF_F_HW_CSUM;
+	netdev->vlan_features |= NETIF_F_SG;
+
+	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
+
+	/* initialize eeprom parameters */
+	if (e1000_init_eeprom_params(hw)) {
+		E1000_ERR("EEPROM initialization failed\n");
+		goto err_eeprom;
+	}
+
+	/* before reading the EEPROM, reset the controller to
+	 * put the device in a known good starting state */
+
+	e1000_reset_hw(hw);
+
+	/* make sure the EEPROM is good */
+	if (e1000_validate_eeprom_checksum(hw) < 0) {
+		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
+		e1000_dump_eeprom(adapter);
+		/*
+		 * set MAC address to all zeroes to invalidate and temporary
+		 * disable this device for the user. This blocks regular
+		 * traffic while still permitting ethtool ioctls from reaching
+		 * the hardware as well as allowing the user to run the
+		 * interface after manually setting a hw addr using
+		 * `ip set address`
+		 */
+		memset(hw->mac_addr, 0, netdev->addr_len);
+	} else {
+		/* copy the MAC address out of the EEPROM */
+		if (e1000_read_mac_addr(hw))
+			DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
+	}
+	/* don't block initalization here due to bad MAC address */
+	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
+	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
+
+	if (!is_valid_ether_addr(netdev->perm_addr))
+		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
+
+	e1000_get_bus_info(hw);
+
+	init_timer(&adapter->tx_fifo_stall_timer);
+	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
+	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
+
+	init_timer(&adapter->watchdog_timer);
+	adapter->watchdog_timer.function = &e1000_watchdog;
+	adapter->watchdog_timer.data = (unsigned long) adapter;
+
+	init_timer(&adapter->phy_info_timer);
+	adapter->phy_info_timer.function = &e1000_update_phy_info;
+	adapter->phy_info_timer.data = (unsigned long)adapter;
+
+	INIT_WORK(&adapter->reset_task, e1000_reset_task);
+
+	e1000_check_options(adapter);
+
+	/* Initial Wake on LAN setting
+	 * If APM wake is enabled in the EEPROM,
+	 * enable the ACPI Magic Packet filter
+	 */
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		break;
+	case e1000_82544:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+		eeprom_apme_mask = E1000_EEPROM_82544_APM;
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1){
+			e1000_read_eeprom(hw,
+				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+			break;
+		}
+		/* Fall Through */
+	default:
+		e1000_read_eeprom(hw,
+			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+		break;
+	}
+	if (eeprom_data & eeprom_apme_mask)
+		adapter->eeprom_wol |= E1000_WUFC_MAG;
+
+	/* now that we have the eeprom settings, apply the special cases
+	 * where the eeprom may be wrong or the board simply won't support
+	 * wake on lan on a particular port */
+	switch (pdev->device) {
+	case E1000_DEV_ID_82546GB_PCIE:
+		adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		/* Wake events only supported on port A for dual fiber
+		 * regardless of eeprom setting */
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			adapter->eeprom_wol = 0;
+		break;
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		/* if quad port adapter, disable WoL on all but port A */
+		if (global_quad_port_a != 0)
+			adapter->eeprom_wol = 0;
+		else
+			adapter->quad_port_a = 1;
+		/* Reset for multiple quad port adapters */
+		if (++global_quad_port_a == 4)
+			global_quad_port_a = 0;
+		break;
+	}
+
+	/* initialize the wol settings based on the eeprom settings */
+	adapter->wol = adapter->eeprom_wol;
+	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
+
+	/* print bus type/speed/width info */
+	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
+		((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
+		((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
+		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
+		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
+		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
+		((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
+
+	printk("%pM\n", netdev->dev_addr);
+
+	/* reset the hardware with the new settings */
+	e1000_reset(adapter);
+
+	strcpy(netdev->name, "eth%d");
+	err = register_netdev(netdev);
+	if (err)
+		goto err_register;
+
+	/* carrier off reporting is important to ethtool even BEFORE open */
+	netif_carrier_off(netdev);
+
+	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
+
+	cards_found++;
+	return 0;
+
+err_register:
+err_eeprom:
+	e1000_phy_hw_reset(hw);
+
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+err_sw_init:
+	iounmap(hw->hw_addr);
+err_ioremap:
+	free_netdev(netdev);
+err_alloc_etherdev:
+	pci_release_selected_regions(pdev, bars);
+err_pci_reg:
+err_dma:
+	pci_disable_device(pdev);
+	return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device.  The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+
+static void __devexit e1000_remove(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+	del_timer_sync(&adapter->tx_fifo_stall_timer);
+	del_timer_sync(&adapter->watchdog_timer);
+	del_timer_sync(&adapter->phy_info_timer);
+
+	cancel_work_sync(&adapter->reset_task);
+
+	e1000_release_manageability(adapter);
+
+	unregister_netdev(netdev);
+
+	e1000_phy_hw_reset(hw);
+
+	kfree(adapter->tx_ring);
+	kfree(adapter->rx_ring);
+
+	iounmap(hw->hw_addr);
+	if (hw->flash_address)
+		iounmap(hw->flash_address);
+	pci_release_selected_regions(pdev, adapter->bars);
+
+	free_netdev(netdev);
+
+	pci_disable_device(pdev);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+
+	/* PCI config space info */
+
+	hw->vendor_id = pdev->vendor;
+	hw->device_id = pdev->device;
+	hw->subsystem_vendor_id = pdev->subsystem_vendor;
+	hw->subsystem_id = pdev->subsystem_device;
+	hw->revision_id = pdev->revision;
+
+	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+	hw->max_frame_size = netdev->mtu +
+			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
+
+	/* identify the MAC */
+
+	if (e1000_set_mac_type(hw)) {
+		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
+		return -EIO;
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->phy_init_script = 1;
+		break;
+	}
+
+	e1000_set_media_type(hw);
+
+	hw->wait_autoneg_complete = false;
+	hw->tbi_compatibility_en = true;
+	hw->adaptive_ifs = true;
+
+	/* Copper options */
+
+	if (hw->media_type == e1000_media_type_copper) {
+		hw->mdix = AUTO_ALL_MODES;
+		hw->disable_polarity_correction = false;
+		hw->master_slave = E1000_MASTER_SLAVE;
+	}
+
+	adapter->num_tx_queues = 1;
+	adapter->num_rx_queues = 1;
+
+	if (e1000_alloc_queues(adapter)) {
+		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
+		return -ENOMEM;
+	}
+
+	/* Explicitly disable IRQ since the NIC can be in any state. */
+	e1000_irq_disable(adapter);
+
+	spin_lock_init(&adapter->stats_lock);
+
+	set_bit(__E1000_DOWN, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_alloc_queues - Allocate memory for all rings
+ * @adapter: board private structure to initialize
+ *
+ * We allocate one ring per queue at run-time since we don't know the
+ * number of queues at compile-time.
+ **/
+
+static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
+{
+	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
+	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
+	if (!adapter->tx_ring)
+		return -ENOMEM;
+
+	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
+	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
+	if (!adapter->rx_ring) {
+		kfree(adapter->tx_ring);
+		return -ENOMEM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP).  At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+
+static int e1000_open(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	/* disallow open during test */
+	if (test_bit(__E1000_TESTING, &adapter->flags))
+		return -EBUSY;
+
+	netif_carrier_off(netdev);
+
+	/* allocate transmit descriptors */
+	err = e1000_setup_all_tx_resources(adapter);
+	if (err)
+		goto err_setup_tx;
+
+	/* allocate receive descriptors */
+	err = e1000_setup_all_rx_resources(adapter);
+	if (err)
+		goto err_setup_rx;
+
+	e1000_power_up_phy(adapter);
+
+	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
+		e1000_update_mng_vlan(adapter);
+	}
+
+	/* before we allocate an interrupt, we must be ready to handle it.
+	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
+	 * as soon as we call pci_request_irq, so we have to setup our
+	 * clean_rx handler before we do so.  */
+	e1000_configure(adapter);
+
+	err = e1000_request_irq(adapter);
+	if (err)
+		goto err_req_irq;
+
+	/* From here on the code is the same as e1000_up() */
+	clear_bit(__E1000_DOWN, &adapter->flags);
+
+	napi_enable(&adapter->napi);
+
+	e1000_irq_enable(adapter);
+
+	netif_start_queue(netdev);
+
+	/* fire a link status change interrupt to start the watchdog */
+	ew32(ICS, E1000_ICS_LSC);
+
+	return E1000_SUCCESS;
+
+err_req_irq:
+	e1000_power_down_phy(adapter);
+	e1000_free_all_rx_resources(adapter);
+err_setup_rx:
+	e1000_free_all_tx_resources(adapter);
+err_setup_tx:
+	e1000_reset(adapter);
+
+	return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS.  The hardware is still under the drivers control, but
+ * needs to be disabled.  A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+
+static int e1000_close(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+
+	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+	e1000_down(adapter);
+	e1000_power_down_phy(adapter);
+	e1000_free_irq(adapter);
+
+	e1000_free_all_tx_resources(adapter);
+	e1000_free_all_rx_resources(adapter);
+
+	/* kill manageability vlan ID if supported, but not if a vlan with
+	 * the same ID is registered on the host OS (let 8021q kill it) */
+	if ((hw->mng_cookie.status &
+			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	     !(adapter->vlgrp &&
+	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
+		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+	}
+
+	return 0;
+}
+
+/**
+ * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
+ * @adapter: address of board private structure
+ * @start: address of beginning of memory
+ * @len: length of memory
+ **/
+static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
+				  unsigned long len)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	unsigned long begin = (unsigned long)start;
+	unsigned long end = begin + len;
+
+	/* First rev 82545 and 82546 need to not allow any memory
+	 * write location to cross 64k boundary due to errata 23 */
+	if (hw->mac_type == e1000_82545 ||
+	    hw->mac_type == e1000_82546) {
+		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
+	}
+
+	return true;
+}
+
+/**
+ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ * @txdr:    tx descriptor ring (for a specific queue) to setup
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *txdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size;
+
+	size = sizeof(struct e1000_buffer) * txdr->count;
+	txdr->buffer_info = vmalloc(size);
+	if (!txdr->buffer_info) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the transmit descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(txdr->buffer_info, 0, size);
+
+	/* round up to nearest 4K */
+
+	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+	txdr->size = ALIGN(txdr->size, 4096);
+
+	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+	if (!txdr->desc) {
+setup_tx_desc_die:
+		vfree(txdr->buffer_info);
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the transmit descriptor ring\n");
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+		void *olddesc = txdr->desc;
+		dma_addr_t olddma = txdr->dma;
+		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
+				     "at %p\n", txdr->size, txdr->desc);
+		/* Try again, without freeing the previous */
+		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+		/* Failed allocation, critical failure */
+		if (!txdr->desc) {
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+			goto setup_tx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+			/* give up */
+			pci_free_consistent(pdev, txdr->size, txdr->desc,
+					    txdr->dma);
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate aligned memory "
+				"for the transmit descriptor ring\n");
+			vfree(txdr->buffer_info);
+			return -ENOMEM;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+		}
+	}
+	memset(txdr->desc, 0, txdr->size);
+
+	txdr->next_to_use = 0;
+	txdr->next_to_clean = 0;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_tx_queues; i++) {
+		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
+		if (err) {
+			DPRINTK(PROBE, ERR,
+				"Allocation for Tx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_tx_resources(adapter,
+							&adapter->tx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_tx(struct e1000_adapter *adapter)
+{
+	u64 tdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 tdlen, tctl, tipg;
+	u32 ipgr1, ipgr2;
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+
+	switch (adapter->num_tx_queues) {
+	case 1:
+	default:
+		tdba = adapter->tx_ring[0].dma;
+		tdlen = adapter->tx_ring[0].count *
+			sizeof(struct e1000_tx_desc);
+		ew32(TDLEN, tdlen);
+		ew32(TDBAH, (tdba >> 32));
+		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
+		ew32(TDT, 0);
+		ew32(TDH, 0);
+		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
+		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
+		break;
+	}
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	if ((hw->media_type == e1000_media_type_fiber ||
+	     hw->media_type == e1000_media_type_internal_serdes))
+		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+	else
+		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		tipg = DEFAULT_82542_TIPG_IPGT;
+		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+		break;
+	default:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+		break;
+	}
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	ew32(TIPG, tipg);
+
+	/* Set the Tx Interrupt Delay register */
+
+	ew32(TIDV, adapter->tx_int_delay);
+	if (hw->mac_type >= e1000_82540)
+		ew32(TADV, adapter->tx_abs_int_delay);
+
+	/* Program the Transmit Control Register */
+
+	tctl = er32(TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
+		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	e1000_config_collision_dist(hw);
+
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* only set IDE if we are delaying interrupts using the timers */
+	if (adapter->tx_int_delay)
+		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+	if (hw->mac_type < e1000_82543)
+		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
+	else
+		adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+	/* Cache if we're 82544 running in PCI-X because we'll
+	 * need this to apply a workaround later in the send path. */
+	if (hw->mac_type == e1000_82544 &&
+	    hw->bus_type == e1000_bus_type_pcix)
+		adapter->pcix_82544 = 1;
+
+	ew32(TCTL, tctl);
+
+}
+
+/**
+ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ * @rxdr:    rx descriptor ring (for a specific queue) to setup
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rxdr)
+{
+	struct pci_dev *pdev = adapter->pdev;
+	int size, desc_len;
+
+	size = sizeof(struct e1000_buffer) * rxdr->count;
+	rxdr->buffer_info = vmalloc(size);
+	if (!rxdr->buffer_info) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the receive descriptor ring\n");
+		return -ENOMEM;
+	}
+	memset(rxdr->buffer_info, 0, size);
+
+	desc_len = sizeof(struct e1000_rx_desc);
+
+	/* Round up to nearest 4K */
+
+	rxdr->size = rxdr->count * desc_len;
+	rxdr->size = ALIGN(rxdr->size, 4096);
+
+	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+
+	if (!rxdr->desc) {
+		DPRINTK(PROBE, ERR,
+		"Unable to allocate memory for the receive descriptor ring\n");
+setup_rx_desc_die:
+		vfree(rxdr->buffer_info);
+		return -ENOMEM;
+	}
+
+	/* Fix for errata 23, can't cross 64kB boundary */
+	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+		void *olddesc = rxdr->desc;
+		dma_addr_t olddma = rxdr->dma;
+		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
+				     "at %p\n", rxdr->size, rxdr->desc);
+		/* Try again, without freeing the previous */
+		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+		/* Failed allocation, critical failure */
+		if (!rxdr->desc) {
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate memory "
+				"for the receive descriptor ring\n");
+			goto setup_rx_desc_die;
+		}
+
+		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+			/* give up */
+			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
+					    rxdr->dma);
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+			DPRINTK(PROBE, ERR,
+				"Unable to allocate aligned memory "
+				"for the receive descriptor ring\n");
+			goto setup_rx_desc_die;
+		} else {
+			/* Free old allocation, new allocation was successful */
+			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+		}
+	}
+	memset(rxdr->desc, 0, rxdr->size);
+
+	rxdr->next_to_clean = 0;
+	rxdr->next_to_use = 0;
+	rxdr->rx_skb_top = NULL;
+
+	return 0;
+}
+
+/**
+ * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
+ * 				  (Descriptors) for all queues
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i, err = 0;
+
+	for (i = 0; i < adapter->num_rx_queues; i++) {
+		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
+		if (err) {
+			DPRINTK(PROBE, ERR,
+				"Allocation for Rx Queue %u failed\n", i);
+			for (i-- ; i >= 0; i--)
+				e1000_free_rx_resources(adapter,
+							&adapter->rx_ring[i]);
+			break;
+		}
+	}
+
+	return err;
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control registers
+ * @adapter: Board private structure
+ **/
+static void e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	if (hw->tbi_compatibility_on == 1)
+		rctl |= E1000_RCTL_SBP;
+	else
+		rctl &= ~E1000_RCTL_SBP;
+
+	if (adapter->netdev->mtu <= ETH_DATA_LEN)
+		rctl &= ~E1000_RCTL_LPE;
+	else
+		rctl |= E1000_RCTL_LPE;
+
+	/* Setup buffer sizes */
+	rctl &= ~E1000_RCTL_SZ_4096;
+	rctl |= E1000_RCTL_BSEX;
+	switch (adapter->rx_buffer_len) {
+		case E1000_RXBUFFER_2048:
+		default:
+			rctl |= E1000_RCTL_SZ_2048;
+			rctl &= ~E1000_RCTL_BSEX;
+			break;
+		case E1000_RXBUFFER_4096:
+			rctl |= E1000_RCTL_SZ_4096;
+			break;
+		case E1000_RXBUFFER_8192:
+			rctl |= E1000_RCTL_SZ_8192;
+			break;
+		case E1000_RXBUFFER_16384:
+			rctl |= E1000_RCTL_SZ_16384;
+			break;
+	}
+
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_rx(struct e1000_adapter *adapter)
+{
+	u64 rdba;
+	struct e1000_hw *hw = &adapter->hw;
+	u32 rdlen, rctl, rxcsum;
+
+	if (adapter->netdev->mtu > ETH_DATA_LEN) {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
+	} else {
+		rdlen = adapter->rx_ring[0].count *
+		        sizeof(struct e1000_rx_desc);
+		adapter->clean_rx = e1000_clean_rx_irq;
+		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+	}
+
+	/* disable receives while setting up the descriptors */
+	rctl = er32(RCTL);
+	ew32(RCTL, rctl & ~E1000_RCTL_EN);
+
+	/* set the Receive Delay Timer Register */
+	ew32(RDTR, adapter->rx_int_delay);
+
+	if (hw->mac_type >= e1000_82540) {
+		ew32(RADV, adapter->rx_abs_int_delay);
+		if (adapter->itr_setting != 0)
+			ew32(ITR, 1000000000 / (adapter->itr * 256));
+	}
+
+	/* Setup the HW Rx Head and Tail Descriptor Pointers and
+	 * the Base and Length of the Rx Descriptor Ring */
+	switch (adapter->num_rx_queues) {
+	case 1:
+	default:
+		rdba = adapter->rx_ring[0].dma;
+		ew32(RDLEN, rdlen);
+		ew32(RDBAH, (rdba >> 32));
+		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
+		ew32(RDT, 0);
+		ew32(RDH, 0);
+		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
+		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
+		break;
+	}
+
+	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
+	if (hw->mac_type >= e1000_82543) {
+		rxcsum = er32(RXCSUM);
+		if (adapter->rx_csum)
+			rxcsum |= E1000_RXCSUM_TUOFL;
+		else
+			/* don't need to clear IPPCSE as it defaults to 0 */
+			rxcsum &= ~E1000_RXCSUM_TUOFL;
+		ew32(RXCSUM, rxcsum);
+	}
+
+	/* Enable Receives */
+	ew32(RCTL, rctl);
+}
+
+/**
+ * e1000_free_tx_resources - Free Tx Resources per Queue
+ * @adapter: board private structure
+ * @tx_ring: Tx descriptor ring for a specific queue
+ *
+ * Free all transmit software resources
+ **/
+
+static void e1000_free_tx_resources(struct e1000_adapter *adapter,
+				    struct e1000_tx_ring *tx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_tx_ring(adapter, tx_ring);
+
+	vfree(tx_ring->buffer_info);
+	tx_ring->buffer_info = NULL;
+
+	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
+
+	tx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_tx_resources - Free Tx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+
+void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
+}
+
+static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
+					     struct e1000_buffer *buffer_info)
+{
+	buffer_info->dma = 0;
+	if (buffer_info->skb) {
+		skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
+		              DMA_TO_DEVICE);
+		dev_kfree_skb_any(buffer_info->skb);
+		buffer_info->skb = NULL;
+	}
+	buffer_info->time_stamp = 0;
+	/* buffer_info must be completely set up in the transmit path */
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ * @tx_ring: ring to be cleaned
+ **/
+
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
+				struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Tx ring sk_buffs */
+
+	for (i = 0; i < tx_ring->count; i++) {
+		buffer_info = &tx_ring->buffer_info[i];
+		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+	}
+
+	size = sizeof(struct e1000_buffer) * tx_ring->count;
+	memset(tx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+
+	memset(tx_ring->desc, 0, tx_ring->size);
+
+	tx_ring->next_to_use = 0;
+	tx_ring->next_to_clean = 0;
+	tx_ring->last_tx_tso = 0;
+
+	writel(0, hw->hw_addr + tx_ring->tdh);
+	writel(0, hw->hw_addr + tx_ring->tdt);
+}
+
+/**
+ * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_tx_queues; i++)
+		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
+}
+
+/**
+ * e1000_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ * @rx_ring: ring to clean the resources from
+ *
+ * Free all receive software resources
+ **/
+
+static void e1000_free_rx_resources(struct e1000_adapter *adapter,
+				    struct e1000_rx_ring *rx_ring)
+{
+	struct pci_dev *pdev = adapter->pdev;
+
+	e1000_clean_rx_ring(adapter, rx_ring);
+
+	vfree(rx_ring->buffer_info);
+	rx_ring->buffer_info = NULL;
+
+	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
+
+	rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_free_all_rx_resources - Free Rx Resources for All Queues
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers per Queue
+ * @adapter: board private structure
+ * @rx_ring: ring to free buffers from
+ **/
+
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
+				struct e1000_rx_ring *rx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long size;
+	unsigned int i;
+
+	/* Free all the Rx ring sk_buffs */
+	for (i = 0; i < rx_ring->count; i++) {
+		buffer_info = &rx_ring->buffer_info[i];
+		if (buffer_info->dma &&
+		    adapter->clean_rx == e1000_clean_rx_irq) {
+			pci_unmap_single(pdev, buffer_info->dma,
+			                 buffer_info->length,
+			                 PCI_DMA_FROMDEVICE);
+		} else if (buffer_info->dma &&
+		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
+			pci_unmap_page(pdev, buffer_info->dma,
+			               buffer_info->length,
+			               PCI_DMA_FROMDEVICE);
+		}
+
+		buffer_info->dma = 0;
+		if (buffer_info->page) {
+			put_page(buffer_info->page);
+			buffer_info->page = NULL;
+		}
+		if (buffer_info->skb) {
+			dev_kfree_skb(buffer_info->skb);
+			buffer_info->skb = NULL;
+		}
+	}
+
+	/* there also may be some cached data from a chained receive */
+	if (rx_ring->rx_skb_top) {
+		dev_kfree_skb(rx_ring->rx_skb_top);
+		rx_ring->rx_skb_top = NULL;
+	}
+
+	size = sizeof(struct e1000_buffer) * rx_ring->count;
+	memset(rx_ring->buffer_info, 0, size);
+
+	/* Zero out the descriptor ring */
+	memset(rx_ring->desc, 0, rx_ring->size);
+
+	rx_ring->next_to_clean = 0;
+	rx_ring->next_to_use = 0;
+
+	writel(0, hw->hw_addr + rx_ring->rdh);
+	writel(0, hw->hw_addr + rx_ring->rdt);
+}
+
+/**
+ * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
+ * @adapter: board private structure
+ **/
+
+static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
+{
+	int i;
+
+	for (i = 0; i < adapter->num_rx_queues; i++)
+		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
+}
+
+/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
+ * and memory write and invalidate disabled for certain operations
+ */
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	e1000_pci_clear_mwi(hw);
+
+	rctl = er32(RCTL);
+	rctl |= E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (netif_running(netdev))
+		e1000_clean_all_rx_rings(adapter);
+}
+
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 rctl;
+
+	rctl = er32(RCTL);
+	rctl &= ~E1000_RCTL_RST;
+	ew32(RCTL, rctl);
+	E1000_WRITE_FLUSH();
+	mdelay(5);
+
+	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+		e1000_pci_set_mwi(hw);
+
+	if (netif_running(netdev)) {
+		/* No need to loop, because 82542 supports only 1 queue */
+		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
+		e1000_configure_rx(adapter);
+		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
+	}
+}
+
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_set_mac(struct net_device *netdev, void *p)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct sockaddr *addr = p;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	return 0;
+}
+
+/**
+ * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_rx_mode entry point is called whenever the unicast or multicast
+ * address lists or the network interface flags are updated. This routine is
+ * responsible for configuring the hardware for proper unicast, multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+
+static void e1000_set_rx_mode(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct netdev_hw_addr *ha;
+	bool use_uc = false;
+	struct dev_addr_list *mc_ptr;
+	u32 rctl;
+	u32 hash_value;
+	int i, rar_entries = E1000_RAR_ENTRIES;
+	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
+	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
+
+	if (!mcarray) {
+		DPRINTK(PROBE, ERR, "memory allocation failed\n");
+		return;
+	}
+
+	/* Check for Promiscuous and All Multicast modes */
+
+	rctl = er32(RCTL);
+
+	if (netdev->flags & IFF_PROMISC) {
+		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		rctl &= ~E1000_RCTL_VFE;
+	} else {
+		if (netdev->flags & IFF_ALLMULTI)
+			rctl |= E1000_RCTL_MPE;
+		else
+			rctl &= ~E1000_RCTL_MPE;
+		/* Enable VLAN filter if there is a VLAN */
+		if (adapter->vlgrp)
+			rctl |= E1000_RCTL_VFE;
+	}
+
+	if (netdev->uc.count > rar_entries - 1) {
+		rctl |= E1000_RCTL_UPE;
+	} else if (!(netdev->flags & IFF_PROMISC)) {
+		rctl &= ~E1000_RCTL_UPE;
+		use_uc = true;
+	}
+
+	ew32(RCTL, rctl);
+
+	/* 82542 2.0 needs to be in reset to write receive address registers */
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_enter_82542_rst(adapter);
+
+	/* load the first 14 addresses into the exact filters 1-14. Unicast
+	 * addresses take precedence to avoid disabling unicast filtering
+	 * when possible.
+	 *
+	 * RAR 0 is used for the station MAC adddress
+	 * if there are not 14 addresses, go ahead and clear the filters
+	 */
+	i = 1;
+	if (use_uc)
+		list_for_each_entry(ha, &netdev->uc.list, list) {
+			if (i == rar_entries)
+				break;
+			e1000_rar_set(hw, ha->addr, i++);
+		}
+
+	WARN_ON(i == rar_entries);
+
+	mc_ptr = netdev->mc_list;
+
+	for (; i < rar_entries; i++) {
+		if (mc_ptr) {
+			e1000_rar_set(hw, mc_ptr->da_addr, i);
+			mc_ptr = mc_ptr->next;
+		} else {
+			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
+			E1000_WRITE_FLUSH();
+			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
+			E1000_WRITE_FLUSH();
+		}
+	}
+
+	/* load any remaining addresses into the hash table */
+
+	for (; mc_ptr; mc_ptr = mc_ptr->next) {
+		u32 hash_reg, hash_bit, mta;
+		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
+		hash_reg = (hash_value >> 5) & 0x7F;
+		hash_bit = hash_value & 0x1F;
+		mta = (1 << hash_bit);
+		mcarray[hash_reg] |= mta;
+	}
+
+	/* write the hash table completely, write from bottom to avoid
+	 * both stupid write combining chipsets, and flushing each write */
+	for (i = mta_reg_count - 1; i >= 0 ; i--) {
+		/*
+		 * If we are on an 82544 has an errata where writing odd
+		 * offsets overwrites the previous even offset, but writing
+		 * backwards over the range solves the issue by always
+		 * writing the odd offset first
+		 */
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
+	}
+	E1000_WRITE_FLUSH();
+
+	if (hw->mac_type == e1000_82542_rev2_0)
+		e1000_leave_82542_rst(adapter);
+
+	kfree(mcarray);
+}
+
+/* Need to wait a few seconds after link up to get diagnostic information from
+ * the phy */
+
+static void e1000_update_phy_info(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	e1000_phy_get_info(hw, &adapter->phy_info);
+}
+
+/**
+ * e1000_82547_tx_fifo_stall - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+
+static void e1000_82547_tx_fifo_stall(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	u32 tctl;
+
+	if (atomic_read(&adapter->tx_fifo_stall)) {
+		if ((er32(TDT) == er32(TDH)) &&
+		   (er32(TDFT) == er32(TDFH)) &&
+		   (er32(TDFTS) == er32(TDFHS))) {
+			tctl = er32(TCTL);
+			ew32(TCTL, tctl & ~E1000_TCTL_EN);
+			ew32(TDFT, adapter->tx_head_addr);
+			ew32(TDFH, adapter->tx_head_addr);
+			ew32(TDFTS, adapter->tx_head_addr);
+			ew32(TDFHS, adapter->tx_head_addr);
+			ew32(TCTL, tctl);
+			E1000_WRITE_FLUSH();
+
+			adapter->tx_fifo_head = 0;
+			atomic_set(&adapter->tx_fifo_stall, 0);
+			netif_wake_queue(netdev);
+		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
+			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+		}
+	}
+}
+
+static bool e1000_has_link(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	bool link_active = false;
+
+	/* get_link_status is set on LSC (link status) interrupt or
+	 * rx sequence error interrupt.  get_link_status will stay
+	 * false until the e1000_check_for_link establishes link
+	 * for copper adapters ONLY
+	 */
+	switch (hw->media_type) {
+	case e1000_media_type_copper:
+		if (hw->get_link_status) {
+			e1000_check_for_link(hw);
+			link_active = !hw->get_link_status;
+		} else {
+			link_active = true;
+		}
+		break;
+	case e1000_media_type_fiber:
+		e1000_check_for_link(hw);
+		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
+		break;
+	case e1000_media_type_internal_serdes:
+		e1000_check_for_link(hw);
+		link_active = hw->serdes_has_link;
+		break;
+	default:
+		break;
+	}
+
+	return link_active;
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void e1000_watchdog(unsigned long data)
+{
+	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_ring *txdr = adapter->tx_ring;
+	u32 link, tctl;
+
+	link = e1000_has_link(adapter);
+	if ((netif_carrier_ok(netdev)) && link)
+		goto link_up;
+
+	if (link) {
+		if (!netif_carrier_ok(netdev)) {
+			u32 ctrl;
+			bool txb2b = true;
+			/* update snapshot of PHY registers on LSC */
+			e1000_get_speed_and_duplex(hw,
+			                           &adapter->link_speed,
+			                           &adapter->link_duplex);
+
+			ctrl = er32(CTRL);
+			printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
+			       "Flow Control: %s\n",
+			       netdev->name,
+			       adapter->link_speed,
+			       adapter->link_duplex == FULL_DUPLEX ?
+			        "Full Duplex" : "Half Duplex",
+			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
+			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
+			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
+			        E1000_CTRL_TFCE) ? "TX" : "None" )));
+
+			/* tweak tx_queue_len according to speed/duplex
+			 * and adjust the timeout factor */
+			netdev->tx_queue_len = adapter->tx_queue_len;
+			adapter->tx_timeout_factor = 1;
+			switch (adapter->link_speed) {
+			case SPEED_10:
+				txb2b = false;
+				netdev->tx_queue_len = 10;
+				adapter->tx_timeout_factor = 16;
+				break;
+			case SPEED_100:
+				txb2b = false;
+				netdev->tx_queue_len = 100;
+				/* maybe add some timeout factor ? */
+				break;
+			}
+
+			/* enable transmits in the hardware */
+			tctl = er32(TCTL);
+			tctl |= E1000_TCTL_EN;
+			ew32(TCTL, tctl);
+
+			netif_carrier_on(netdev);
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				mod_timer(&adapter->phy_info_timer,
+				          round_jiffies(jiffies + 2 * HZ));
+			adapter->smartspeed = 0;
+		}
+	} else {
+		if (netif_carrier_ok(netdev)) {
+			adapter->link_speed = 0;
+			adapter->link_duplex = 0;
+			printk(KERN_INFO "e1000: %s NIC Link is Down\n",
+			       netdev->name);
+			netif_carrier_off(netdev);
+
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				mod_timer(&adapter->phy_info_timer,
+				          round_jiffies(jiffies + 2 * HZ));
+		}
+
+		e1000_smartspeed(adapter);
+	}
+
+link_up:
+	e1000_update_stats(adapter);
+
+	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+	adapter->tpt_old = adapter->stats.tpt;
+	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
+	adapter->colc_old = adapter->stats.colc;
+
+	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
+	adapter->gorcl_old = adapter->stats.gorcl;
+	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
+	adapter->gotcl_old = adapter->stats.gotcl;
+
+	e1000_update_adaptive(hw);
+
+	if (!netif_carrier_ok(netdev)) {
+		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
+			/* We've lost link, so the controller stops DMA,
+			 * but we've got queued Tx work that's never going
+			 * to get done, so reset controller to flush Tx.
+			 * (Do the reset outside of interrupt context). */
+			adapter->tx_timeout_count++;
+			schedule_work(&adapter->reset_task);
+			/* return immediately since reset is imminent */
+			return;
+		}
+	}
+
+	/* Cause software interrupt to ensure rx ring is cleaned */
+	ew32(ICS, E1000_ICS_RXDMT0);
+
+	/* Force detection of hung controller every watchdog period */
+	adapter->detect_tx_hung = true;
+
+	/* Reset the timer */
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		mod_timer(&adapter->watchdog_timer,
+		          round_jiffies(jiffies + 2 * HZ));
+}
+
+enum latency_range {
+	lowest_latency = 0,
+	low_latency = 1,
+	bulk_latency = 2,
+	latency_invalid = 255
+};
+
+/**
+ * e1000_update_itr - update the dynamic ITR value based on statistics
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ *
+ *      Stores a new ITR value based on packets and byte
+ *      counts during the last interrupt.  The advantage of per interrupt
+ *      computation is faster updates and more accurate ITR for the current
+ *      traffic pattern.  Constants in this function were computed
+ *      based on theoretical maximum wire speed and thresholds were set based
+ *      on testing data as well as attempting to minimize response time
+ *      while increasing bulk throughput.
+ *      this functionality is controlled by the InterruptThrottleRate module
+ *      parameter (see e1000_param.c)
+ **/
+static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
+				     u16 itr_setting, int packets, int bytes)
+{
+	unsigned int retval = itr_setting;
+	struct e1000_hw *hw = &adapter->hw;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		goto update_itr_done;
+
+	if (packets == 0)
+		goto update_itr_done;
+
+	switch (itr_setting) {
+	case lowest_latency:
+		/* jumbo frames get bulk treatment*/
+		if (bytes/packets > 8000)
+			retval = bulk_latency;
+		else if ((packets < 5) && (bytes > 512))
+			retval = low_latency;
+		break;
+	case low_latency:  /* 50 usec aka 20000 ints/s */
+		if (bytes > 10000) {
+			/* jumbo frames need bulk latency setting */
+			if (bytes/packets > 8000)
+				retval = bulk_latency;
+			else if ((packets < 10) || ((bytes/packets) > 1200))
+				retval = bulk_latency;
+			else if ((packets > 35))
+				retval = lowest_latency;
+		} else if (bytes/packets > 2000)
+			retval = bulk_latency;
+		else if (packets <= 2 && bytes < 512)
+			retval = lowest_latency;
+		break;
+	case bulk_latency: /* 250 usec aka 4000 ints/s */
+		if (bytes > 25000) {
+			if (packets > 35)
+				retval = low_latency;
+		} else if (bytes < 6000) {
+			retval = low_latency;
+		}
+		break;
+	}
+
+update_itr_done:
+	return retval;
+}
+
+static void e1000_set_itr(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 current_itr;
+	u32 new_itr = adapter->itr;
+
+	if (unlikely(hw->mac_type < e1000_82540))
+		return;
+
+	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
+	if (unlikely(adapter->link_speed != SPEED_1000)) {
+		current_itr = 0;
+		new_itr = 4000;
+		goto set_itr_now;
+	}
+
+	adapter->tx_itr = e1000_update_itr(adapter,
+	                            adapter->tx_itr,
+	                            adapter->total_tx_packets,
+	                            adapter->total_tx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
+		adapter->tx_itr = low_latency;
+
+	adapter->rx_itr = e1000_update_itr(adapter,
+	                            adapter->rx_itr,
+	                            adapter->total_rx_packets,
+	                            adapter->total_rx_bytes);
+	/* conservative mode (itr 3) eliminates the lowest_latency setting */
+	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
+		adapter->rx_itr = low_latency;
+
+	current_itr = max(adapter->rx_itr, adapter->tx_itr);
+
+	switch (current_itr) {
+	/* counts and packets in update_itr are dependent on these numbers */
+	case lowest_latency:
+		new_itr = 70000;
+		break;
+	case low_latency:
+		new_itr = 20000; /* aka hwitr = ~200 */
+		break;
+	case bulk_latency:
+		new_itr = 4000;
+		break;
+	default:
+		break;
+	}
+
+set_itr_now:
+	if (new_itr != adapter->itr) {
+		/* this attempts to bias the interrupt rate towards Bulk
+		 * by adding intermediate steps when interrupt rate is
+		 * increasing */
+		new_itr = new_itr > adapter->itr ?
+		             min(adapter->itr + (new_itr >> 2), new_itr) :
+		             new_itr;
+		adapter->itr = new_itr;
+		ew32(ITR, 1000000000 / (new_itr * 256));
+	}
+
+	return;
+}
+
+#define E1000_TX_FLAGS_CSUM		0x00000001
+#define E1000_TX_FLAGS_VLAN		0x00000002
+#define E1000_TX_FLAGS_TSO		0x00000004
+#define E1000_TX_FLAGS_IPV4		0x00000008
+#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT	16
+
+static int e1000_tso(struct e1000_adapter *adapter,
+		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u32 cmd_length = 0;
+	u16 ipcse = 0, tucse, mss;
+	u8 ipcss, ipcso, tucss, tucso, hdr_len;
+	int err;
+
+	if (skb_is_gso(skb)) {
+		if (skb_header_cloned(skb)) {
+			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+			if (err)
+				return err;
+		}
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		mss = skb_shinfo(skb)->gso_size;
+		if (skb->protocol == htons(ETH_P_IP)) {
+			struct iphdr *iph = ip_hdr(skb);
+			iph->tot_len = 0;
+			iph->check = 0;
+			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+								 iph->daddr, 0,
+								 IPPROTO_TCP,
+								 0);
+			cmd_length = E1000_TXD_CMD_IP;
+			ipcse = skb_transport_offset(skb) - 1;
+		} else if (skb->protocol == htons(ETH_P_IPV6)) {
+			ipv6_hdr(skb)->payload_len = 0;
+			tcp_hdr(skb)->check =
+				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+						 &ipv6_hdr(skb)->daddr,
+						 0, IPPROTO_TCP, 0);
+			ipcse = 0;
+		}
+		ipcss = skb_network_offset(skb);
+		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
+		tucss = skb_transport_offset(skb);
+		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
+		tucse = 0;
+
+		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
+
+		i = tx_ring->next_to_use;
+		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+		buffer_info = &tx_ring->buffer_info[i];
+
+		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
+		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
+		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
+		context_desc->upper_setup.tcp_fields.tucss = tucss;
+		context_desc->upper_setup.tcp_fields.tucso = tucso;
+		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
+		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+		buffer_info->time_stamp = jiffies;
+		buffer_info->next_to_watch = i;
+
+		if (++i == tx_ring->count) i = 0;
+		tx_ring->next_to_use = i;
+
+		return true;
+	}
+	return false;
+}
+
+static bool e1000_tx_csum(struct e1000_adapter *adapter,
+			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
+{
+	struct e1000_context_desc *context_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i;
+	u8 css;
+	u32 cmd_len = E1000_TXD_CMD_DEXT;
+
+	if (skb->ip_summed != CHECKSUM_PARTIAL)
+		return false;
+
+	switch (skb->protocol) {
+	case cpu_to_be16(ETH_P_IP):
+		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	case cpu_to_be16(ETH_P_IPV6):
+		/* XXX not handling all IPV6 headers */
+		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
+			cmd_len |= E1000_TXD_CMD_TCP;
+		break;
+	default:
+		if (unlikely(net_ratelimit()))
+			DPRINTK(DRV, WARNING,
+			        "checksum_partial proto=%x!\n", skb->protocol);
+		break;
+	}
+
+	css = skb_transport_offset(skb);
+
+	i = tx_ring->next_to_use;
+	buffer_info = &tx_ring->buffer_info[i];
+	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
+
+	context_desc->lower_setup.ip_config = 0;
+	context_desc->upper_setup.tcp_fields.tucss = css;
+	context_desc->upper_setup.tcp_fields.tucso =
+		css + skb->csum_offset;
+	context_desc->upper_setup.tcp_fields.tucse = 0;
+	context_desc->tcp_seg_setup.data = 0;
+	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
+
+	buffer_info->time_stamp = jiffies;
+	buffer_info->next_to_watch = i;
+
+	if (unlikely(++i == tx_ring->count)) i = 0;
+	tx_ring->next_to_use = i;
+
+	return true;
+}
+
+#define E1000_MAX_TXD_PWR	12
+#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
+
+static int e1000_tx_map(struct e1000_adapter *adapter,
+			struct e1000_tx_ring *tx_ring,
+			struct sk_buff *skb, unsigned int first,
+			unsigned int max_per_txd, unsigned int nr_frags,
+			unsigned int mss)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_buffer *buffer_info;
+	unsigned int len = skb_headlen(skb);
+	unsigned int offset, size, count = 0, i;
+	unsigned int f;
+	dma_addr_t *map;
+
+	i = tx_ring->next_to_use;
+
+	if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
+		dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
+		return 0;
+	}
+
+	map = skb_shinfo(skb)->dma_maps;
+	offset = 0;
+
+	while (len) {
+		buffer_info = &tx_ring->buffer_info[i];
+		size = min(len, max_per_txd);
+		/* Workaround for Controller erratum --
+		 * descriptor for non-tso packet in a linear SKB that follows a
+		 * tso gets written back prematurely before the data is fully
+		 * DMA'd to the controller */
+		if (!skb->data_len && tx_ring->last_tx_tso &&
+		    !skb_is_gso(skb)) {
+			tx_ring->last_tx_tso = 0;
+			size -= 4;
+		}
+
+		/* Workaround for premature desc write-backs
+		 * in TSO mode.  Append 4-byte sentinel desc */
+		if (unlikely(mss && !nr_frags && size == len && size > 8))
+			size -= 4;
+		/* work-around for errata 10 and it applies
+		 * to all controllers in PCI-X mode
+		 * The fix is to make sure that the first descriptor of a
+		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
+		 */
+		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+		                (size > 2015) && count == 0))
+		        size = 2015;
+
+		/* Workaround for potential 82544 hang in PCI-X.  Avoid
+		 * terminating buffers within evenly-aligned dwords. */
+		if (unlikely(adapter->pcix_82544 &&
+		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
+		   size > 4))
+			size -= 4;
+
+		buffer_info->length = size;
+		/* set time_stamp *before* dma to help avoid a possible race */
+		buffer_info->time_stamp = jiffies;
+		buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
+		buffer_info->next_to_watch = i;
+
+		len -= size;
+		offset += size;
+		count++;
+		if (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+		}
+	}
+
+	for (f = 0; f < nr_frags; f++) {
+		struct skb_frag_struct *frag;
+
+		frag = &skb_shinfo(skb)->frags[f];
+		len = frag->size;
+		offset = 0;
+
+		while (len) {
+			i++;
+			if (unlikely(i == tx_ring->count))
+				i = 0;
+
+			buffer_info = &tx_ring->buffer_info[i];
+			size = min(len, max_per_txd);
+			/* Workaround for premature desc write-backs
+			 * in TSO mode.  Append 4-byte sentinel desc */
+			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
+				size -= 4;
+			/* Workaround for potential 82544 hang in PCI-X.
+			 * Avoid terminating buffers within evenly-aligned
+			 * dwords. */
+			if (unlikely(adapter->pcix_82544 &&
+			    !((unsigned long)(page_to_phys(frag->page) + offset
+			                      + size - 1) & 4) &&
+			    size > 4))
+				size -= 4;
+
+			buffer_info->length = size;
+			buffer_info->time_stamp = jiffies;
+			buffer_info->dma = map[f] + offset;
+			buffer_info->next_to_watch = i;
+
+			len -= size;
+			offset += size;
+			count++;
+		}
+	}
+
+	tx_ring->buffer_info[i].skb = skb;
+	tx_ring->buffer_info[first].next_to_watch = i;
+
+	return count;
+}
+
+static void e1000_tx_queue(struct e1000_adapter *adapter,
+			   struct e1000_tx_ring *tx_ring, int tx_flags,
+			   int count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_desc *tx_desc = NULL;
+	struct e1000_buffer *buffer_info;
+	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+	unsigned int i;
+
+	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+		             E1000_TXD_CMD_TSE;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
+			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+	}
+
+	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
+		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+	}
+
+	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
+		txd_lower |= E1000_TXD_CMD_VLE;
+		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+	}
+
+	i = tx_ring->next_to_use;
+
+	while (count--) {
+		buffer_info = &tx_ring->buffer_info[i];
+		tx_desc = E1000_TX_DESC(*tx_ring, i);
+		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+		tx_desc->lower.data =
+			cpu_to_le32(txd_lower | buffer_info->length);
+		tx_desc->upper.data = cpu_to_le32(txd_upper);
+		if (unlikely(++i == tx_ring->count)) i = 0;
+	}
+
+	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+	/* Force memory writes to complete before letting h/w
+	 * know there are new descriptors to fetch.  (Only
+	 * applicable for weak-ordered memory model archs,
+	 * such as IA-64). */
+	wmb();
+
+	tx_ring->next_to_use = i;
+	writel(i, hw->hw_addr + tx_ring->tdt);
+	/* we need this if more than one processor can write to our tail
+	 * at a time, it syncronizes IO on IA64/Altix systems */
+	mmiowb();
+}
+
+/**
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary by notifying the stack to resend
+ * the packet at a later time.  This gives the Tx FIFO an opportunity to
+ * flush all packets.  When that occurs, we reset the Tx FIFO pointers
+ * to the beginning of the Tx FIFO.
+ **/
+
+#define E1000_FIFO_HDR			0x10
+#define E1000_82547_PAD_LEN		0x3E0
+
+static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+				       struct sk_buff *skb)
+{
+	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
+	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
+
+	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
+
+	if (adapter->link_duplex != HALF_DUPLEX)
+		goto no_fifo_stall_required;
+
+	if (atomic_read(&adapter->tx_fifo_stall))
+		return 1;
+
+	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
+		atomic_set(&adapter->tx_fifo_stall, 1);
+		return 1;
+	}
+
+no_fifo_stall_required:
+	adapter->tx_fifo_head += skb_fifo_len;
+	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
+		adapter->tx_fifo_head -= adapter->tx_fifo_size;
+	return 0;
+}
+
+static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+
+	netif_stop_queue(netdev);
+	/* Herbert's original patch had:
+	 *  smp_mb__after_netif_stop_queue();
+	 * but since that doesn't exist yet, just open code it. */
+	smp_mb();
+
+	/* We need to check again in a case another CPU has just
+	 * made room available. */
+	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
+		return -EBUSY;
+
+	/* A reprieve! */
+	netif_start_queue(netdev);
+	++adapter->restart_queue;
+	return 0;
+}
+
+static int e1000_maybe_stop_tx(struct net_device *netdev,
+                               struct e1000_tx_ring *tx_ring, int size)
+{
+	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
+		return 0;
+	return __e1000_maybe_stop_tx(netdev, size);
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
+				    struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct e1000_tx_ring *tx_ring;
+	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
+	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+	unsigned int tx_flags = 0;
+	unsigned int len = skb->len - skb->data_len;
+	unsigned int nr_frags;
+	unsigned int mss;
+	int count = 0;
+	int tso;
+	unsigned int f;
+
+	/* This goes back to the question of how to logically map a tx queue
+	 * to a flow.  Right now, performance is impacted slightly negatively
+	 * if using multiple tx queues.  If the stack breaks away from a
+	 * single qdisc implementation, we can look at this again. */
+	tx_ring = adapter->tx_ring;
+
+	if (unlikely(skb->len <= 0)) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	mss = skb_shinfo(skb)->gso_size;
+	/* The controller does a simple calculation to
+	 * make sure there is enough room in the FIFO before
+	 * initiating the DMA for each buffer.  The calc is:
+	 * 4 = ceil(buffer len/mss).  To make sure we don't
+	 * overrun the FIFO, adjust the max buffer len if mss
+	 * drops. */
+	if (mss) {
+		u8 hdr_len;
+		max_per_txd = min(mss << 2, max_per_txd);
+		max_txd_pwr = fls(max_per_txd) - 1;
+
+		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
+		if (skb->data_len && hdr_len == len) {
+			switch (hw->mac_type) {
+				unsigned int pull_size;
+			case e1000_82544:
+				/* Make sure we have room to chop off 4 bytes,
+				 * and that the end alignment will work out to
+				 * this hardware's requirements
+				 * NOTE: this is a TSO only workaround
+				 * if end byte alignment not correct move us
+				 * into the next dword */
+				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
+					break;
+				/* fall through */
+				pull_size = min((unsigned int)4, skb->data_len);
+				if (!__pskb_pull_tail(skb, pull_size)) {
+					DPRINTK(DRV, ERR,
+						"__pskb_pull_tail failed.\n");
+					dev_kfree_skb_any(skb);
+					return NETDEV_TX_OK;
+				}
+				len = skb->len - skb->data_len;
+				break;
+			default:
+				/* do nothing */
+				break;
+			}
+		}
+	}
+
+	/* reserve a descriptor for the offload context */
+	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
+		count++;
+	count++;
+
+	/* Controller Erratum workaround */
+	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
+		count++;
+
+	count += TXD_USE_COUNT(len, max_txd_pwr);
+
+	if (adapter->pcix_82544)
+		count++;
+
+	/* work-around for errata 10 and it applies to all controllers
+	 * in PCI-X mode, so add one more descriptor to the count
+	 */
+	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
+			(len > 2015)))
+		count++;
+
+	nr_frags = skb_shinfo(skb)->nr_frags;
+	for (f = 0; f < nr_frags; f++)
+		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+				       max_txd_pwr);
+	if (adapter->pcix_82544)
+		count += nr_frags;
+
+	/* need: count + 2 desc gap to keep tail from touching
+	 * head, otherwise try next time */
+	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
+		return NETDEV_TX_BUSY;
+
+	if (unlikely(hw->mac_type == e1000_82547)) {
+		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
+			netif_stop_queue(netdev);
+			if (!test_bit(__E1000_DOWN, &adapter->flags))
+				mod_timer(&adapter->tx_fifo_stall_timer,
+				          jiffies + 1);
+			return NETDEV_TX_BUSY;
+		}
+	}
+
+	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
+		tx_flags |= E1000_TX_FLAGS_VLAN;
+		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+	}
+
+	first = tx_ring->next_to_use;
+
+	tso = e1000_tso(adapter, tx_ring, skb);
+	if (tso < 0) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	}
+
+	if (likely(tso)) {
+		if (likely(hw->mac_type != e1000_82544))
+			tx_ring->last_tx_tso = 1;
+		tx_flags |= E1000_TX_FLAGS_TSO;
+	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
+		tx_flags |= E1000_TX_FLAGS_CSUM;
+
+	if (likely(skb->protocol == htons(ETH_P_IP)))
+		tx_flags |= E1000_TX_FLAGS_IPV4;
+
+	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
+	                     nr_frags, mss);
+
+	if (count) {
+		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
+		/* Make sure there is space in the ring for the next send. */
+		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
+
+	} else {
+		dev_kfree_skb_any(skb);
+		tx_ring->buffer_info[first].time_stamp = 0;
+		tx_ring->next_to_use = first;
+	}
+
+	return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+
+static void e1000_tx_timeout(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* Do the reset outside of interrupt context */
+	adapter->tx_timeout_count++;
+	schedule_work(&adapter->reset_task);
+}
+
+static void e1000_reset_task(struct work_struct *work)
+{
+	struct e1000_adapter *adapter =
+		container_of(work, struct e1000_adapter, reset_task);
+
+	e1000_reinit_locked(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+
+static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	/* only return the current stats */
+	return &adapter->net_stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+
+	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
+	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
+		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
+		return -EINVAL;
+	}
+
+	/* Adapter-specific max frame size limits. */
+	switch (hw->mac_type) {
+	case e1000_undefined ... e1000_82542_rev2_1:
+		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
+			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
+			return -EINVAL;
+		}
+		break;
+	default:
+		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
+		break;
+	}
+
+	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+		msleep(1);
+	/* e1000_down has a dependency on max_frame_size */
+	hw->max_frame_size = max_frame;
+	if (netif_running(netdev))
+		e1000_down(adapter);
+
+	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
+	 * means we reserve 2 more, this pushes us to allocate from the next
+	 * larger slab size.
+	 * i.e. RXBUFFER_2048 --> size-4096 slab
+	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
+	 *  fragmented skbs */
+
+	if (max_frame <= E1000_RXBUFFER_2048)
+		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+	else
+#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
+		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
+		adapter->rx_buffer_len = PAGE_SIZE;
+#endif
+
+	/* adjust allocation if LPE protects us, and we aren't using SBP */
+	if (!hw->tbi_compatibility_on &&
+	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
+	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
+		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+
+	printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
+	       netdev->name, netdev->mtu, new_mtu);
+	netdev->mtu = new_mtu;
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+	else
+		e1000_reset(adapter);
+
+	clear_bit(__E1000_RESETTING, &adapter->flags);
+
+	return 0;
+}
+
+/**
+ * e1000_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+
+void e1000_update_stats(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct pci_dev *pdev = adapter->pdev;
+	unsigned long flags;
+	u16 phy_tmp;
+
+#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
+
+	/*
+	 * Prevent stats update while adapter is being reset, or if the pci
+	 * connection is down.
+	 */
+	if (adapter->link_speed == 0)
+		return;
+	if (pci_channel_offline(pdev))
+		return;
+
+	spin_lock_irqsave(&adapter->stats_lock, flags);
+
+	/* these counters are modified from e1000_tbi_adjust_stats,
+	 * called from the interrupt context, so they must only
+	 * be written while holding adapter->stats_lock
+	 */
+
+	adapter->stats.crcerrs += er32(CRCERRS);
+	adapter->stats.gprc += er32(GPRC);
+	adapter->stats.gorcl += er32(GORCL);
+	adapter->stats.gorch += er32(GORCH);
+	adapter->stats.bprc += er32(BPRC);
+	adapter->stats.mprc += er32(MPRC);
+	adapter->stats.roc += er32(ROC);
+
+	adapter->stats.prc64 += er32(PRC64);
+	adapter->stats.prc127 += er32(PRC127);
+	adapter->stats.prc255 += er32(PRC255);
+	adapter->stats.prc511 += er32(PRC511);
+	adapter->stats.prc1023 += er32(PRC1023);
+	adapter->stats.prc1522 += er32(PRC1522);
+
+	adapter->stats.symerrs += er32(SYMERRS);
+	adapter->stats.mpc += er32(MPC);
+	adapter->stats.scc += er32(SCC);
+	adapter->stats.ecol += er32(ECOL);
+	adapter->stats.mcc += er32(MCC);
+	adapter->stats.latecol += er32(LATECOL);
+	adapter->stats.dc += er32(DC);
+	adapter->stats.sec += er32(SEC);
+	adapter->stats.rlec += er32(RLEC);
+	adapter->stats.xonrxc += er32(XONRXC);
+	adapter->stats.xontxc += er32(XONTXC);
+	adapter->stats.xoffrxc += er32(XOFFRXC);
+	adapter->stats.xofftxc += er32(XOFFTXC);
+	adapter->stats.fcruc += er32(FCRUC);
+	adapter->stats.gptc += er32(GPTC);
+	adapter->stats.gotcl += er32(GOTCL);
+	adapter->stats.gotch += er32(GOTCH);
+	adapter->stats.rnbc += er32(RNBC);
+	adapter->stats.ruc += er32(RUC);
+	adapter->stats.rfc += er32(RFC);
+	adapter->stats.rjc += er32(RJC);
+	adapter->stats.torl += er32(TORL);
+	adapter->stats.torh += er32(TORH);
+	adapter->stats.totl += er32(TOTL);
+	adapter->stats.toth += er32(TOTH);
+	adapter->stats.tpr += er32(TPR);
+
+	adapter->stats.ptc64 += er32(PTC64);
+	adapter->stats.ptc127 += er32(PTC127);
+	adapter->stats.ptc255 += er32(PTC255);
+	adapter->stats.ptc511 += er32(PTC511);
+	adapter->stats.ptc1023 += er32(PTC1023);
+	adapter->stats.ptc1522 += er32(PTC1522);
+
+	adapter->stats.mptc += er32(MPTC);
+	adapter->stats.bptc += er32(BPTC);
+
+	/* used for adaptive IFS */
+
+	hw->tx_packet_delta = er32(TPT);
+	adapter->stats.tpt += hw->tx_packet_delta;
+	hw->collision_delta = er32(COLC);
+	adapter->stats.colc += hw->collision_delta;
+
+	if (hw->mac_type >= e1000_82543) {
+		adapter->stats.algnerrc += er32(ALGNERRC);
+		adapter->stats.rxerrc += er32(RXERRC);
+		adapter->stats.tncrs += er32(TNCRS);
+		adapter->stats.cexterr += er32(CEXTERR);
+		adapter->stats.tsctc += er32(TSCTC);
+		adapter->stats.tsctfc += er32(TSCTFC);
+	}
+
+	/* Fill out the OS statistics structure */
+	adapter->net_stats.multicast = adapter->stats.mprc;
+	adapter->net_stats.collisions = adapter->stats.colc;
+
+	/* Rx Errors */
+
+	/* RLEC on some newer hardware can be incorrect so build
+	* our own version based on RUC and ROC */
+	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
+		adapter->stats.crcerrs + adapter->stats.algnerrc +
+		adapter->stats.ruc + adapter->stats.roc +
+		adapter->stats.cexterr;
+	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
+	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
+	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
+	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
+	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
+
+	/* Tx Errors */
+	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
+	adapter->net_stats.tx_errors = adapter->stats.txerrc;
+	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
+	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
+	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
+	if (hw->bad_tx_carr_stats_fd &&
+	    adapter->link_duplex == FULL_DUPLEX) {
+		adapter->net_stats.tx_carrier_errors = 0;
+		adapter->stats.tncrs = 0;
+	}
+
+	/* Tx Dropped needs to be maintained elsewhere */
+
+	/* Phy Stats */
+	if (hw->media_type == e1000_media_type_copper) {
+		if ((adapter->link_speed == SPEED_1000) &&
+		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
+			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
+			adapter->phy_stats.idle_errors += phy_tmp;
+		}
+
+		if ((hw->mac_type <= e1000_82546) &&
+		   (hw->phy_type == e1000_phy_m88) &&
+		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
+			adapter->phy_stats.receive_errors += phy_tmp;
+	}
+
+	/* Management Stats */
+	if (hw->has_smbus) {
+		adapter->stats.mgptc += er32(MGTPTC);
+		adapter->stats.mgprc += er32(MGTPRC);
+		adapter->stats.mgpdc += er32(MGTPDC);
+	}
+
+	spin_unlock_irqrestore(&adapter->stats_lock, flags);
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ **/
+
+static irqreturn_t e1000_intr(int irq, void *data)
+{
+	struct net_device *netdev = data;
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 icr = er32(ICR);
+
+	if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
+		return IRQ_NONE;  /* Not our interrupt */
+
+	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
+		hw->get_link_status = 1;
+		/* guard against interrupt when we're going down */
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			mod_timer(&adapter->watchdog_timer, jiffies + 1);
+	}
+
+	/* disable interrupts, without the synchronize_irq bit */
+	ew32(IMC, ~0);
+	E1000_WRITE_FLUSH();
+
+	if (likely(napi_schedule_prep(&adapter->napi))) {
+		adapter->total_tx_bytes = 0;
+		adapter->total_tx_packets = 0;
+		adapter->total_rx_bytes = 0;
+		adapter->total_rx_packets = 0;
+		__napi_schedule(&adapter->napi);
+	} else {
+		/* this really should not happen! if it does it is basically a
+		 * bug, but not a hard error, so enable ints and continue */
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			e1000_irq_enable(adapter);
+	}
+
+	return IRQ_HANDLED;
+}
+
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @adapter: board private structure
+ **/
+static int e1000_clean(struct napi_struct *napi, int budget)
+{
+	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
+	int tx_clean_complete = 0, work_done = 0;
+
+	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
+
+	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
+
+	if (!tx_clean_complete)
+		work_done = budget;
+
+	/* If budget not fully consumed, exit the polling mode */
+	if (work_done < budget) {
+		if (likely(adapter->itr_setting & 3))
+			e1000_set_itr(adapter);
+		napi_complete(napi);
+		if (!test_bit(__E1000_DOWN, &adapter->flags))
+			e1000_irq_enable(adapter);
+	}
+
+	return work_done;
+}
+
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ **/
+static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
+			       struct e1000_tx_ring *tx_ring)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct e1000_tx_desc *tx_desc, *eop_desc;
+	struct e1000_buffer *buffer_info;
+	unsigned int i, eop;
+	unsigned int count = 0;
+	unsigned int total_tx_bytes=0, total_tx_packets=0;
+
+	i = tx_ring->next_to_clean;
+	eop = tx_ring->buffer_info[i].next_to_watch;
+	eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
+	       (count < tx_ring->count)) {
+		bool cleaned = false;
+		for ( ; !cleaned; count++) {
+			tx_desc = E1000_TX_DESC(*tx_ring, i);
+			buffer_info = &tx_ring->buffer_info[i];
+			cleaned = (i == eop);
+
+			if (cleaned) {
+				struct sk_buff *skb = buffer_info->skb;
+				unsigned int segs, bytecount;
+				segs = skb_shinfo(skb)->gso_segs ?: 1;
+				/* multiply data chunks by size of headers */
+				bytecount = ((segs - 1) * skb_headlen(skb)) +
+				            skb->len;
+				total_tx_packets += segs;
+				total_tx_bytes += bytecount;
+			}
+			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+			tx_desc->upper.data = 0;
+
+			if (unlikely(++i == tx_ring->count)) i = 0;
+		}
+
+		eop = tx_ring->buffer_info[i].next_to_watch;
+		eop_desc = E1000_TX_DESC(*tx_ring, eop);
+	}
+
+	tx_ring->next_to_clean = i;
+
+#define TX_WAKE_THRESHOLD 32
+	if (unlikely(count && netif_carrier_ok(netdev) &&
+		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
+		/* Make sure that anybody stopping the queue after this
+		 * sees the new next_to_clean.
+		 */
+		smp_mb();
+
+		if (netif_queue_stopped(netdev) &&
+		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
+			netif_wake_queue(netdev);
+			++adapter->restart_queue;
+		}
+	}
+
+	if (adapter->detect_tx_hung) {
+		/* Detect a transmit hang in hardware, this serializes the
+		 * check with the clearing of time_stamp and movement of i */
+		adapter->detect_tx_hung = false;
+		if (tx_ring->buffer_info[eop].time_stamp &&
+		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
+		               (adapter->tx_timeout_factor * HZ))
+		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
+
+			/* detected Tx unit hang */
+			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
+					"  Tx Queue             <%lu>\n"
+					"  TDH                  <%x>\n"
+					"  TDT                  <%x>\n"
+					"  next_to_use          <%x>\n"
+					"  next_to_clean        <%x>\n"
+					"buffer_info[next_to_clean]\n"
+					"  time_stamp           <%lx>\n"
+					"  next_to_watch        <%x>\n"
+					"  jiffies              <%lx>\n"
+					"  next_to_watch.status <%x>\n",
+				(unsigned long)((tx_ring - adapter->tx_ring) /
+					sizeof(struct e1000_tx_ring)),
+				readl(hw->hw_addr + tx_ring->tdh),
+				readl(hw->hw_addr + tx_ring->tdt),
+				tx_ring->next_to_use,
+				tx_ring->next_to_clean,
+				tx_ring->buffer_info[eop].time_stamp,
+				eop,
+				jiffies,
+				eop_desc->upper.fields.status);
+			netif_stop_queue(netdev);
+		}
+	}
+	adapter->total_tx_bytes += total_tx_bytes;
+	adapter->total_tx_packets += total_tx_packets;
+	adapter->net_stats.tx_bytes += total_tx_bytes;
+	adapter->net_stats.tx_packets += total_tx_packets;
+	return (count < tx_ring->count);
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter:     board private structure
+ * @status_err:  receive descriptor status and error fields
+ * @csum:        receive descriptor csum field
+ * @sk_buff:     socket buffer with received data
+ **/
+
+static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
+			      u32 csum, struct sk_buff *skb)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 status = (u16)status_err;
+	u8 errors = (u8)(status_err >> 24);
+	skb->ip_summed = CHECKSUM_NONE;
+
+	/* 82543 or newer only */
+	if (unlikely(hw->mac_type < e1000_82543)) return;
+	/* Ignore Checksum bit is set */
+	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
+	/* TCP/UDP checksum error bit is set */
+	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
+		/* let the stack verify checksum errors */
+		adapter->hw_csum_err++;
+		return;
+	}
+	/* TCP/UDP Checksum has not been calculated */
+	if (!(status & E1000_RXD_STAT_TCPCS))
+		return;
+
+	/* It must be a TCP or UDP packet with a valid checksum */
+	if (likely(status & E1000_RXD_STAT_TCPCS)) {
+		/* TCP checksum is good */
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	}
+	adapter->hw_csum_good++;
+}
+
+/**
+ * e1000_consume_page - helper function
+ **/
+static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
+                               u16 length)
+{
+	bi->page = NULL;
+	skb->len += length;
+	skb->data_len += length;
+	skb->truesize += length;
+}
+
+/**
+ * e1000_receive_skb - helper function to handle rx indications
+ * @adapter: board private structure
+ * @status: descriptor status field as written by hardware
+ * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
+ * @skb: pointer to sk_buff to be indicated to stack
+ */
+static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
+			      __le16 vlan, struct sk_buff *skb)
+{
+	if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
+		vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
+		                         le16_to_cpu(vlan) &
+		                         E1000_RXD_SPC_VLAN_MASK);
+	} else {
+		netif_receive_skb(skb);
+	}
+}
+
+/**
+ * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ */
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+				     struct e1000_rx_ring *rx_ring,
+				     int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long irq_flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		buffer_info->skb = NULL;
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
+		               PCI_DMA_FROMDEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+
+		/* errors is only valid for DD + EOP descriptors */
+		if (unlikely((status & E1000_RXD_STAT_EOP) &&
+		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock,
+				                  irq_flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       irq_flags);
+				length--;
+			} else {
+				/* recycle both page and skb */
+				buffer_info->skb = skb;
+				/* an error means any chain goes out the window
+				 * too */
+				if (rx_ring->rx_skb_top)
+					dev_kfree_skb(rx_ring->rx_skb_top);
+				rx_ring->rx_skb_top = NULL;
+				goto next_desc;
+			}
+		}
+
+#define rxtop rx_ring->rx_skb_top
+		if (!(status & E1000_RXD_STAT_EOP)) {
+			/* this descriptor is only the beginning (or middle) */
+			if (!rxtop) {
+				/* this is the beginning of a chain */
+				rxtop = skb;
+				skb_fill_page_desc(rxtop, 0, buffer_info->page,
+				                   0, length);
+			} else {
+				/* this is the middle of a chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the skb, only consumed the page */
+				buffer_info->skb = skb;
+			}
+			e1000_consume_page(buffer_info, rxtop, length);
+			goto next_desc;
+		} else {
+			if (rxtop) {
+				/* end of the chain */
+				skb_fill_page_desc(rxtop,
+				    skb_shinfo(rxtop)->nr_frags,
+				    buffer_info->page, 0, length);
+				/* re-use the current skb, we only consumed the
+				 * page */
+				buffer_info->skb = skb;
+				skb = rxtop;
+				rxtop = NULL;
+				e1000_consume_page(buffer_info, skb, length);
+			} else {
+				/* no chain, got EOP, this buf is the packet
+				 * copybreak to save the put_page/alloc_page */
+				if (length <= copybreak &&
+				    skb_tailroom(skb) >= length) {
+					u8 *vaddr;
+					vaddr = kmap_atomic(buffer_info->page,
+					                    KM_SKB_DATA_SOFTIRQ);
+					memcpy(skb_tail_pointer(skb), vaddr, length);
+					kunmap_atomic(vaddr,
+					              KM_SKB_DATA_SOFTIRQ);
+					/* re-use the page, so don't erase
+					 * buffer_info->page */
+					skb_put(skb, length);
+				} else {
+					skb_fill_page_desc(skb, 0,
+					                   buffer_info->page, 0,
+				                           length);
+					e1000_consume_page(buffer_info, skb,
+					                   length);
+				}
+			}
+		}
+
+		/* Receive Checksum Offload XXX recompute due to CRC strip? */
+		e1000_rx_checksum(adapter,
+		                  (u32)(status) |
+		                  ((u32)(rx_desc->errors) << 24),
+		                  le16_to_cpu(rx_desc->csum), skb);
+
+		pskb_trim(skb, skb->len - 4);
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += skb->len;
+		total_rx_packets++;
+
+		/* eth type trans needs skb->data to point to something */
+		if (!pskb_may_pull(skb, ETH_HLEN)) {
+			DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
+			dev_kfree_skb(skb);
+			goto next_desc;
+		}
+
+		skb->protocol = eth_type_trans(skb, netdev);
+
+		e1000_receive_skb(adapter, status, rx_desc->special, skb);
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ * @rx_ring: ring to clean
+ * @work_done: amount of napi work completed this call
+ * @work_to_do: max amount of work allowed for this call to do
+ */
+static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
+			       struct e1000_rx_ring *rx_ring,
+			       int *work_done, int work_to_do)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc, *next_rxd;
+	struct e1000_buffer *buffer_info, *next_buffer;
+	unsigned long flags;
+	u32 length;
+	unsigned int i;
+	int cleaned_count = 0;
+	bool cleaned = false;
+	unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+	i = rx_ring->next_to_clean;
+	rx_desc = E1000_RX_DESC(*rx_ring, i);
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (rx_desc->status & E1000_RXD_STAT_DD) {
+		struct sk_buff *skb;
+		u8 status;
+
+		if (*work_done >= work_to_do)
+			break;
+		(*work_done)++;
+
+		status = rx_desc->status;
+		skb = buffer_info->skb;
+		buffer_info->skb = NULL;
+
+		prefetch(skb->data - NET_IP_ALIGN);
+
+		if (++i == rx_ring->count) i = 0;
+		next_rxd = E1000_RX_DESC(*rx_ring, i);
+		prefetch(next_rxd);
+
+		next_buffer = &rx_ring->buffer_info[i];
+
+		cleaned = true;
+		cleaned_count++;
+		pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
+		                 PCI_DMA_FROMDEVICE);
+		buffer_info->dma = 0;
+
+		length = le16_to_cpu(rx_desc->length);
+		/* !EOP means multiple descriptors were used to store a single
+		 * packet, if thats the case we need to toss it.  In fact, we
+		 * to toss every packet with the EOP bit clear and the next
+		 * frame that _does_ have the EOP bit set, as it is by
+		 * definition only a frame fragment
+		 */
+		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
+			adapter->discarding = true;
+
+		if (adapter->discarding) {
+			/* All receives must fit into a single buffer */
+			E1000_DBG("%s: Receive packet consumed multiple"
+				  " buffers\n", netdev->name);
+			/* recycle */
+			buffer_info->skb = skb;
+			if (status & E1000_RXD_STAT_EOP)
+				adapter->discarding = false;
+			goto next_desc;
+		}
+
+		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
+			u8 last_byte = *(skb->data + length - 1);
+			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
+				       last_byte)) {
+				spin_lock_irqsave(&adapter->stats_lock, flags);
+				e1000_tbi_adjust_stats(hw, &adapter->stats,
+				                       length, skb->data);
+				spin_unlock_irqrestore(&adapter->stats_lock,
+				                       flags);
+				length--;
+			} else {
+				/* recycle */
+				buffer_info->skb = skb;
+				goto next_desc;
+			}
+		}
+
+		/* adjust length to remove Ethernet CRC, this must be
+		 * done after the TBI_ACCEPT workaround above */
+		length -= 4;
+
+		/* probably a little skewed due to removing CRC */
+		total_rx_bytes += length;
+		total_rx_packets++;
+
+		/* code added for copybreak, this should improve
+		 * performance for small packets with large amounts
+		 * of reassembly being done in the stack */
+		if (length < copybreak) {
+			struct sk_buff *new_skb =
+			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
+			if (new_skb) {
+				skb_reserve(new_skb, NET_IP_ALIGN);
+				skb_copy_to_linear_data_offset(new_skb,
+							       -NET_IP_ALIGN,
+							       (skb->data -
+							        NET_IP_ALIGN),
+							       (length +
+							        NET_IP_ALIGN));
+				/* save the skb in buffer_info as good */
+				buffer_info->skb = skb;
+				skb = new_skb;
+			}
+			/* else just continue with the old one */
+		}
+		/* end copybreak code */
+		skb_put(skb, length);
+
+		/* Receive Checksum Offload */
+		e1000_rx_checksum(adapter,
+				  (u32)(status) |
+				  ((u32)(rx_desc->errors) << 24),
+				  le16_to_cpu(rx_desc->csum), skb);
+
+		skb->protocol = eth_type_trans(skb, netdev);
+
+		e1000_receive_skb(adapter, status, rx_desc->special, skb);
+
+next_desc:
+		rx_desc->status = 0;
+
+		/* return some buffers to hardware, one at a time is too slow */
+		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+			cleaned_count = 0;
+		}
+
+		/* use prefetched values */
+		rx_desc = next_rxd;
+		buffer_info = next_buffer;
+	}
+	rx_ring->next_to_clean = i;
+
+	cleaned_count = E1000_DESC_UNUSED(rx_ring);
+	if (cleaned_count)
+		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
+
+	adapter->total_rx_packets += total_rx_packets;
+	adapter->total_rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_bytes += total_rx_bytes;
+	adapter->net_stats.rx_packets += total_rx_packets;
+	return cleaned;
+}
+
+/**
+ * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
+ * @adapter: address of board private structure
+ * @rx_ring: pointer to receive ring structure
+ * @cleaned_count: number of buffers to allocate this pass
+ **/
+
+static void
+e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+                             struct e1000_rx_ring *rx_ring, int cleaned_count)
+{
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = 256 -
+	                     16 /*for skb_reserve */ -
+	                     NET_IP_ALIGN;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto check_page;
+		}
+
+		skb = netdev_alloc_skb(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
+					     "at %p\n", bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				break; /* while (cleaned_count--) */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		/* Make buffer alignment 2 beyond a 16 byte boundary
+		 * this will result in a 16 byte aligned IP header after
+		 * the 14 byte MAC header is removed
+		 */
+		skb_reserve(skb, NET_IP_ALIGN);
+
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+check_page:
+		/* allocate a new page if necessary */
+		if (!buffer_info->page) {
+			buffer_info->page = alloc_page(GFP_ATOMIC);
+			if (unlikely(!buffer_info->page)) {
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+		}
+
+		if (!buffer_info->dma)
+			buffer_info->dma = pci_map_page(pdev,
+			                                buffer_info->page, 0,
+			                                buffer_info->length,
+			                                PCI_DMA_FROMDEVICE);
+
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
+ * @adapter: address of board private structure
+ **/
+
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
+				   struct e1000_rx_ring *rx_ring,
+				   int cleaned_count)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	struct net_device *netdev = adapter->netdev;
+	struct pci_dev *pdev = adapter->pdev;
+	struct e1000_rx_desc *rx_desc;
+	struct e1000_buffer *buffer_info;
+	struct sk_buff *skb;
+	unsigned int i;
+	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
+
+	i = rx_ring->next_to_use;
+	buffer_info = &rx_ring->buffer_info[i];
+
+	while (cleaned_count--) {
+		skb = buffer_info->skb;
+		if (skb) {
+			skb_trim(skb, 0);
+			goto map_skb;
+		}
+
+		skb = netdev_alloc_skb(netdev, bufsz);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			adapter->alloc_rx_buff_failed++;
+			break;
+		}
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+			struct sk_buff *oldskb = skb;
+			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
+					     "at %p\n", bufsz, skb->data);
+			/* Try again, without freeing the previous */
+			skb = netdev_alloc_skb(netdev, bufsz);
+			/* Failed allocation, critical failure */
+			if (!skb) {
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break;
+			}
+
+			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+				/* give up */
+				dev_kfree_skb(skb);
+				dev_kfree_skb(oldskb);
+				adapter->alloc_rx_buff_failed++;
+				break; /* while !buffer_info->skb */
+			}
+
+			/* Use new allocation */
+			dev_kfree_skb(oldskb);
+		}
+		/* Make buffer alignment 2 beyond a 16 byte boundary
+		 * this will result in a 16 byte aligned IP header after
+		 * the 14 byte MAC header is removed
+		 */
+		skb_reserve(skb, NET_IP_ALIGN);
+
+		buffer_info->skb = skb;
+		buffer_info->length = adapter->rx_buffer_len;
+map_skb:
+		buffer_info->dma = pci_map_single(pdev,
+						  skb->data,
+						  buffer_info->length,
+						  PCI_DMA_FROMDEVICE);
+
+		/*
+		 * XXX if it was allocated cleanly it will never map to a
+		 * boundary crossing
+		 */
+
+		/* Fix for errata 23, can't cross 64kB boundary */
+		if (!e1000_check_64k_bound(adapter,
+					(void *)(unsigned long)buffer_info->dma,
+					adapter->rx_buffer_len)) {
+			DPRINTK(RX_ERR, ERR,
+				"dma align check failed: %u bytes at %p\n",
+				adapter->rx_buffer_len,
+				(void *)(unsigned long)buffer_info->dma);
+			dev_kfree_skb(skb);
+			buffer_info->skb = NULL;
+
+			pci_unmap_single(pdev, buffer_info->dma,
+					 adapter->rx_buffer_len,
+					 PCI_DMA_FROMDEVICE);
+			buffer_info->dma = 0;
+
+			adapter->alloc_rx_buff_failed++;
+			break; /* while !buffer_info->skb */
+		}
+		rx_desc = E1000_RX_DESC(*rx_ring, i);
+		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+		if (unlikely(++i == rx_ring->count))
+			i = 0;
+		buffer_info = &rx_ring->buffer_info[i];
+	}
+
+	if (likely(rx_ring->next_to_use != i)) {
+		rx_ring->next_to_use = i;
+		if (unlikely(i-- == 0))
+			i = (rx_ring->count - 1);
+
+		/* Force memory writes to complete before letting h/w
+		 * know there are new descriptors to fetch.  (Only
+		 * applicable for weak-ordered memory model archs,
+		 * such as IA-64). */
+		wmb();
+		writel(i, hw->hw_addr + rx_ring->rdt);
+	}
+}
+
+/**
+ * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
+ * @adapter:
+ **/
+
+static void e1000_smartspeed(struct e1000_adapter *adapter)
+{
+	struct e1000_hw *hw = &adapter->hw;
+	u16 phy_status;
+	u16 phy_ctrl;
+
+	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
+	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
+		return;
+
+	if (adapter->smartspeed == 0) {
+		/* If Master/Slave config fault is asserted twice,
+		 * we assume back-to-back */
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
+		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		if (phy_ctrl & CR_1000T_MS_ENABLE) {
+			phy_ctrl &= ~CR_1000T_MS_ENABLE;
+			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+					    phy_ctrl);
+			adapter->smartspeed++;
+			if (!e1000_phy_setup_autoneg(hw) &&
+			   !e1000_read_phy_reg(hw, PHY_CTRL,
+				   	       &phy_ctrl)) {
+				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+					     MII_CR_RESTART_AUTO_NEG);
+				e1000_write_phy_reg(hw, PHY_CTRL,
+						    phy_ctrl);
+			}
+		}
+		return;
+	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
+		/* If still no link, perhaps using 2/3 pair cable */
+		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
+		phy_ctrl |= CR_1000T_MS_ENABLE;
+		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
+		if (!e1000_phy_setup_autoneg(hw) &&
+		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
+			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+				     MII_CR_RESTART_AUTO_NEG);
+			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
+		}
+	}
+	/* Restart process after E1000_SMARTSPEED_MAX iterations */
+	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
+		adapter->smartspeed = 0;
+}
+
+/**
+ * e1000_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+	case SIOCSMIIREG:
+		return e1000_mii_ioctl(netdev, ifr, cmd);
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+/**
+ * e1000_mii_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+			   int cmd)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	struct mii_ioctl_data *data = if_mii(ifr);
+	int retval;
+	u16 mii_reg;
+	u16 spddplx;
+	unsigned long flags;
+
+	if (hw->media_type != e1000_media_type_copper)
+		return -EOPNOTSUPP;
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+		data->phy_id = hw->phy_addr;
+		break;
+	case SIOCGMIIREG:
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
+				   &data->val_out)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		break;
+	case SIOCSMIIREG:
+		if (data->reg_num & ~(0x1F))
+			return -EFAULT;
+		mii_reg = data->val_in;
+		spin_lock_irqsave(&adapter->stats_lock, flags);
+		if (e1000_write_phy_reg(hw, data->reg_num,
+					mii_reg)) {
+			spin_unlock_irqrestore(&adapter->stats_lock, flags);
+			return -EIO;
+		}
+		spin_unlock_irqrestore(&adapter->stats_lock, flags);
+		if (hw->media_type == e1000_media_type_copper) {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (mii_reg & MII_CR_AUTO_NEG_EN) {
+					hw->autoneg = 1;
+					hw->autoneg_advertised = 0x2F;
+				} else {
+					if (mii_reg & 0x40)
+						spddplx = SPEED_1000;
+					else if (mii_reg & 0x2000)
+						spddplx = SPEED_100;
+					else
+						spddplx = SPEED_10;
+					spddplx += (mii_reg & 0x100)
+						   ? DUPLEX_FULL :
+						   DUPLEX_HALF;
+					retval = e1000_set_spd_dplx(adapter,
+								    spddplx);
+					if (retval)
+						return retval;
+				}
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			case M88E1000_PHY_SPEC_CTRL:
+			case M88E1000_EXT_PHY_SPEC_CTRL:
+				if (e1000_phy_reset(hw))
+					return -EIO;
+				break;
+			}
+		} else {
+			switch (data->reg_num) {
+			case PHY_CTRL:
+				if (mii_reg & MII_CR_POWER_DOWN)
+					break;
+				if (netif_running(adapter->netdev))
+					e1000_reinit_locked(adapter);
+				else
+					e1000_reset(adapter);
+				break;
+			}
+		}
+		break;
+	default:
+		return -EOPNOTSUPP;
+	}
+	return E1000_SUCCESS;
+}
+
+void e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	int ret_val = pci_set_mwi(adapter->pdev);
+
+	if (ret_val)
+		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
+}
+
+void e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+
+	pci_clear_mwi(adapter->pdev);
+}
+
+int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
+{
+	struct e1000_adapter *adapter = hw->back;
+	return pcix_get_mmrbc(adapter->pdev);
+}
+
+void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
+{
+	struct e1000_adapter *adapter = hw->back;
+	pcix_set_mmrbc(adapter->pdev, mmrbc);
+}
+
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
+{
+	outl(value, port);
+}
+
+static void e1000_vlan_rx_register(struct net_device *netdev,
+				   struct vlan_group *grp)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, rctl;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	adapter->vlgrp = grp;
+
+	if (grp) {
+		/* enable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl |= E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* enable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_CFIEN;
+		if (!(netdev->flags & IFF_PROMISC))
+			rctl |= E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+		e1000_update_mng_vlan(adapter);
+	} else {
+		/* disable VLAN tag insert/strip */
+		ctrl = er32(CTRL);
+		ctrl &= ~E1000_CTRL_VME;
+		ew32(CTRL, ctrl);
+
+		/* disable VLAN receive filtering */
+		rctl = er32(RCTL);
+		rctl &= ~E1000_RCTL_VFE;
+		ew32(RCTL, rctl);
+
+		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
+			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+		}
+	}
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+}
+
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if ((hw->mng_cookie.status &
+	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+	    (vid == adapter->mng_vlan_id))
+		return;
+	/* add VID to filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta |= (1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 vfta, index;
+
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_disable(adapter);
+	vlan_group_set_device(adapter->vlgrp, vid, NULL);
+	if (!test_bit(__E1000_DOWN, &adapter->flags))
+		e1000_irq_enable(adapter);
+
+	/* remove VID from filter table */
+	index = (vid >> 5) & 0x7F;
+	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
+	vfta &= ~(1 << (vid & 0x1F));
+	e1000_write_vfta(hw, index, vfta);
+}
+
+static void e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+	if (adapter->vlgrp) {
+		u16 vid;
+		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+			if (!vlan_group_get_device(adapter->vlgrp, vid))
+				continue;
+			e1000_vlan_rx_add_vid(adapter->netdev, vid);
+		}
+	}
+}
+
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
+{
+	struct e1000_hw *hw = &adapter->hw;
+
+	hw->autoneg = 0;
+
+	/* Fiber NICs only allow 1000 gbps Full duplex */
+	if ((hw->media_type == e1000_media_type_fiber) &&
+		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
+		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+
+	switch (spddplx) {
+	case SPEED_10 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_10_half;
+		break;
+	case SPEED_10 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_10_full;
+		break;
+	case SPEED_100 + DUPLEX_HALF:
+		hw->forced_speed_duplex = e1000_100_half;
+		break;
+	case SPEED_100 + DUPLEX_FULL:
+		hw->forced_speed_duplex = e1000_100_full;
+		break;
+	case SPEED_1000 + DUPLEX_FULL:
+		hw->autoneg = 1;
+		hw->autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	case SPEED_1000 + DUPLEX_HALF: /* not supported */
+	default:
+		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
+		return -EINVAL;
+	}
+	return 0;
+}
+
+static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 ctrl, ctrl_ext, rctl, status;
+	u32 wufc = adapter->wol;
+#ifdef CONFIG_PM
+	int retval = 0;
+#endif
+
+	netif_device_detach(netdev);
+
+	if (netif_running(netdev)) {
+		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
+		e1000_down(adapter);
+	}
+
+#ifdef CONFIG_PM
+	retval = pci_save_state(pdev);
+	if (retval)
+		return retval;
+#endif
+
+	status = er32(STATUS);
+	if (status & E1000_STATUS_LU)
+		wufc &= ~E1000_WUFC_LNKC;
+
+	if (wufc) {
+		e1000_setup_rctl(adapter);
+		e1000_set_rx_mode(netdev);
+
+		/* turn on all-multi mode if wake on multicast is enabled */
+		if (wufc & E1000_WUFC_MC) {
+			rctl = er32(RCTL);
+			rctl |= E1000_RCTL_MPE;
+			ew32(RCTL, rctl);
+		}
+
+		if (hw->mac_type >= e1000_82540) {
+			ctrl = er32(CTRL);
+			/* advertise wake from D3Cold */
+			#define E1000_CTRL_ADVD3WUC 0x00100000
+			/* phy power management enable */
+			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+			ctrl |= E1000_CTRL_ADVD3WUC |
+				E1000_CTRL_EN_PHY_PWR_MGMT;
+			ew32(CTRL, ctrl);
+		}
+
+		if (hw->media_type == e1000_media_type_fiber ||
+		    hw->media_type == e1000_media_type_internal_serdes) {
+			/* keep the laser running in D3 */
+			ctrl_ext = er32(CTRL_EXT);
+			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
+			ew32(CTRL_EXT, ctrl_ext);
+		}
+
+		ew32(WUC, E1000_WUC_PME_EN);
+		ew32(WUFC, wufc);
+	} else {
+		ew32(WUC, 0);
+		ew32(WUFC, 0);
+	}
+
+	e1000_release_manageability(adapter);
+
+	*enable_wake = !!wufc;
+
+	/* make sure adapter isn't asleep if manageability is enabled */
+	if (adapter->en_mng_pt)
+		*enable_wake = true;
+
+	if (netif_running(netdev))
+		e1000_free_irq(adapter);
+
+	pci_disable_device(pdev);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	int retval;
+	bool wake;
+
+	retval = __e1000_shutdown(pdev, &wake);
+	if (retval)
+		return retval;
+
+	if (wake) {
+		pci_prepare_to_sleep(pdev);
+	} else {
+		pci_wake_from_d3(pdev, false);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+
+	return 0;
+}
+
+static int e1000_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	u32 err;
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
+		return err;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	if (netif_running(netdev)) {
+		err = e1000_request_irq(adapter);
+		if (err)
+			return err;
+	}
+
+	e1000_power_up_phy(adapter);
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev))
+		e1000_up(adapter);
+
+	netif_device_attach(netdev);
+
+	return 0;
+}
+#endif
+
+static void e1000_shutdown(struct pci_dev *pdev)
+{
+	bool wake;
+
+	__e1000_shutdown(pdev, &wake);
+
+	if (system_state == SYSTEM_POWER_OFF) {
+		pci_wake_from_d3(pdev, wake);
+		pci_set_power_state(pdev, PCI_D3hot);
+	}
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void e1000_netpoll(struct net_device *netdev)
+{
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	disable_irq(adapter->pdev->irq);
+	e1000_intr(adapter->pdev->irq, netdev);
+	enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/**
+ * e1000_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
+						pci_channel_state_t state)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	netif_device_detach(netdev);
+
+	if (state == pci_channel_io_perm_failure)
+		return PCI_ERS_RESULT_DISCONNECT;
+
+	if (netif_running(netdev))
+		e1000_down(adapter);
+	pci_disable_device(pdev);
+
+	/* Request a slot slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * e1000_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot. Implementation
+ * resembles the first-half of the e1000_resume routine.
+ */
+static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+	struct e1000_hw *hw = &adapter->hw;
+	int err;
+
+	if (adapter->need_ioport)
+		err = pci_enable_device(pdev);
+	else
+		err = pci_enable_device_mem(pdev);
+	if (err) {
+		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	e1000_reset(adapter);
+	ew32(WUS, ~0);
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * e1000_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells us that
+ * its OK to resume normal operation. Implementation resembles the
+ * second-half of the e1000_resume routine.
+ */
+static void e1000_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *netdev = pci_get_drvdata(pdev);
+	struct e1000_adapter *adapter = netdev_priv(netdev);
+
+	e1000_init_manageability(adapter);
+
+	if (netif_running(netdev)) {
+		if (e1000_up(adapter)) {
+			printk("e1000: can't bring device back up after reset\n");
+			return;
+		}
+	}
+
+	netif_device_attach(netdev);
+}
+
+/* e1000_main.c */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_osdep-2.6.32-ethercat.h	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,113 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* glue for the OS independent part of e1000
+ * includes register access macros
+ */
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+
+#ifdef DBG
+#define DEBUGOUT(S)		printk(KERN_DEBUG S "\n")
+#define DEBUGOUT1(S, A...)	printk(KERN_DEBUG S "\n", A)
+#else
+#define DEBUGOUT(S)
+#define DEBUGOUT1(S, A...)
+#endif
+
+#define DEBUGFUNC(F) DEBUGOUT(F "\n")
+#define DEBUGOUT2 DEBUGOUT1
+#define DEBUGOUT3 DEBUGOUT2
+#define DEBUGOUT7 DEBUGOUT3
+
+
+#define er32(reg)							\
+	(readl(hw->hw_addr + ((hw->mac_type >= e1000_82543)		\
+			       ? E1000_##reg : E1000_82542_##reg)))
+
+#define ew32(reg, value)						\
+	(writel((value), (hw->hw_addr + ((hw->mac_type >= e1000_82543)	\
+					 ? E1000_##reg : E1000_82542_##reg))))
+
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
+    writel((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2))))
+
+#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
+    readl((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2)))
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \
+    writew((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1))))
+
+#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \
+    readw((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1)))
+
+#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \
+    writeb((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset))))
+
+#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \
+    readb((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset)))
+
+#define E1000_WRITE_FLUSH() er32(STATUS)
+
+#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \
+    writel((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG(a, reg) ( \
+    readl((a)->flash_address + reg))
+
+#define E1000_WRITE_ICH_FLASH_REG16(a, reg, value) ( \
+    writew((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG16(a, reg) ( \
+    readw((a)->flash_address + reg))
+
+#endif /* _E1000_OSDEP_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_osdep-2.6.32-orig.h	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,113 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* glue for the OS independent part of e1000
+ * includes register access macros
+ */
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+
+#ifdef DBG
+#define DEBUGOUT(S)		printk(KERN_DEBUG S "\n")
+#define DEBUGOUT1(S, A...)	printk(KERN_DEBUG S "\n", A)
+#else
+#define DEBUGOUT(S)
+#define DEBUGOUT1(S, A...)
+#endif
+
+#define DEBUGFUNC(F) DEBUGOUT(F "\n")
+#define DEBUGOUT2 DEBUGOUT1
+#define DEBUGOUT3 DEBUGOUT2
+#define DEBUGOUT7 DEBUGOUT3
+
+
+#define er32(reg)							\
+	(readl(hw->hw_addr + ((hw->mac_type >= e1000_82543)		\
+			       ? E1000_##reg : E1000_82542_##reg)))
+
+#define ew32(reg, value)						\
+	(writel((value), (hw->hw_addr + ((hw->mac_type >= e1000_82543)	\
+					 ? E1000_##reg : E1000_82542_##reg))))
+
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
+    writel((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2))))
+
+#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
+    readl((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 2)))
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \
+    writew((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1))))
+
+#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \
+    readw((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        ((offset) << 1)))
+
+#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \
+    writeb((value), ((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset))))
+
+#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \
+    readb((a)->hw_addr + \
+        (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+        (offset)))
+
+#define E1000_WRITE_FLUSH() er32(STATUS)
+
+#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \
+    writel((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG(a, reg) ( \
+    readl((a)->flash_address + reg))
+
+#define E1000_WRITE_ICH_FLASH_REG16(a, reg, value) ( \
+    writew((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH_FLASH_REG16(a, reg) ( \
+    readw((a)->flash_address + reg))
+
+#endif /* _E1000_OSDEP_H_ */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_param-2.6.32-ethercat.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,770 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000-2.6.32-ethercat.h"
+
+/* This is the only thing that needs to be changed to adjust the
+ * maximum number of ports that the driver can manage.
+ */
+
+#define E1000_MAX_NIC 32
+
+#define OPTION_UNSET   -1
+#define OPTION_DISABLED 0
+#define OPTION_ENABLED  1
+
+/* All parameters are treated the same, as an integer array of values.
+ * This macro just reduces the need to repeat the same declaration code
+ * over and over (plus this helps to avoid typo bugs).
+ */
+
+#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+#define E1000_PARAM(X, desc) \
+	static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
+	static unsigned int num_##X; \
+	module_param_array_named(X, X, int, &num_##X, 0); \
+	MODULE_PARM_DESC(X, desc);
+
+/* Transmit Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(TxDescriptors, "Number of transmit descriptors");
+
+/* Receive Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(RxDescriptors, "Number of receive descriptors");
+
+/* User Specified Speed Override
+ *
+ * Valid Range: 0, 10, 100, 1000
+ *  - 0    - auto-negotiate at all supported speeds
+ *  - 10   - only link at 10 Mbps
+ *  - 100  - only link at 100 Mbps
+ *  - 1000 - only link at 1000 Mbps
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Speed, "Speed setting");
+
+/* User Specified Duplex Override
+ *
+ * Valid Range: 0-2
+ *  - 0 - auto-negotiate for duplex
+ *  - 1 - only link at half duplex
+ *  - 2 - only link at full duplex
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Duplex, "Duplex setting");
+
+/* Auto-negotiation Advertisement Override
+ *
+ * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber)
+ *
+ * The AutoNeg value is a bit mask describing which speed and duplex
+ * combinations should be advertised during auto-negotiation.
+ * The supported speed and duplex modes are listed below
+ *
+ * Bit           7     6     5      4      3     2     1      0
+ * Speed (Mbps)  N/A   N/A   1000   N/A    100   100   10     10
+ * Duplex                    Full          Full  Half  Full   Half
+ *
+ * Default Value: 0x2F (copper); 0x20 (fiber)
+ */
+E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting");
+#define AUTONEG_ADV_DEFAULT  0x2F
+#define AUTONEG_ADV_MASK     0x2F
+
+/* User Specified Flow Control Override
+ *
+ * Valid Range: 0-3
+ *  - 0 - No Flow Control
+ *  - 1 - Rx only, respond to PAUSE frames but do not generate them
+ *  - 2 - Tx only, generate PAUSE frames but ignore them on receive
+ *  - 3 - Full Flow Control Support
+ *
+ * Default Value: Read flow control settings from the EEPROM
+ */
+E1000_PARAM(FlowControl, "Flow Control setting");
+#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
+
+/* XsumRX - Receive Checksum Offload Enable/Disable
+ *
+ * Valid Range: 0, 1
+ *  - 0 - disables all checksum offload
+ *  - 1 - enables receive IP/TCP/UDP checksum offload
+ *        on 82543 and newer -based NICs
+ *
+ * Default Value: 1
+ */
+E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
+
+/* Transmit Interrupt Delay in units of 1.024 microseconds
+ *  Tx interrupt delay needs to typically be set to something non zero
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
+#define DEFAULT_TIDV                   8
+#define MAX_TXDELAY               0xFFFF
+#define MIN_TXDELAY                    0
+
+/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
+#define DEFAULT_TADV                  32
+#define MAX_TXABSDELAY            0xFFFF
+#define MIN_TXABSDELAY                 0
+
+/* Receive Interrupt Delay in units of 1.024 microseconds
+ *   hardware will likely hang if you set this to anything but zero.
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
+#define DEFAULT_RDTR                   0
+#define MAX_RXDELAY               0xFFFF
+#define MIN_RXDELAY                    0
+
+/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
+#define DEFAULT_RADV                   8
+#define MAX_RXABSDELAY            0xFFFF
+#define MIN_RXABSDELAY                 0
+
+/* Interrupt Throttle Rate (interrupts/sec)
+ *
+ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
+ */
+E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
+#define DEFAULT_ITR                    3
+#define MAX_ITR                   100000
+#define MIN_ITR                      100
+
+/* Enable Smart Power Down of the PHY
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 0 (disabled)
+ */
+E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
+
+/* Enable Kumeran Lock Loss workaround
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
+
+struct e1000_option {
+	enum { enable_option, range_option, list_option } type;
+	const char *name;
+	const char *err;
+	int def;
+	union {
+		struct { /* range_option info */
+			int min;
+			int max;
+		} r;
+		struct { /* list_option info */
+			int nr;
+			const struct e1000_opt_list { int i; char *str; } *p;
+		} l;
+	} arg;
+};
+
+static int __devinit e1000_validate_option(unsigned int *value,
+					   const struct e1000_option *opt,
+					   struct e1000_adapter *adapter)
+{
+	if (*value == OPTION_UNSET) {
+		*value = opt->def;
+		return 0;
+	}
+
+	switch (opt->type) {
+	case enable_option:
+		switch (*value) {
+		case OPTION_ENABLED:
+			DPRINTK(PROBE, INFO, "%s Enabled\n", opt->name);
+			return 0;
+		case OPTION_DISABLED:
+			DPRINTK(PROBE, INFO, "%s Disabled\n", opt->name);
+			return 0;
+		}
+		break;
+	case range_option:
+		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
+			DPRINTK(PROBE, INFO,
+					"%s set to %i\n", opt->name, *value);
+			return 0;
+		}
+		break;
+	case list_option: {
+		int i;
+		const struct e1000_opt_list *ent;
+
+		for (i = 0; i < opt->arg.l.nr; i++) {
+			ent = &opt->arg.l.p[i];
+			if (*value == ent->i) {
+				if (ent->str[0] != '\0')
+					DPRINTK(PROBE, INFO, "%s\n", ent->str);
+				return 0;
+			}
+		}
+	}
+		break;
+	default:
+		BUG();
+	}
+
+	DPRINTK(PROBE, INFO, "Invalid %s value specified (%i) %s\n",
+	       opt->name, *value, opt->err);
+	*value = opt->def;
+	return -1;
+}
+
+static void e1000_check_fiber_options(struct e1000_adapter *adapter);
+static void e1000_check_copper_options(struct e1000_adapter *adapter);
+
+/**
+ * e1000_check_options - Range Checking for Command Line Parameters
+ * @adapter: board private structure
+ *
+ * This routine checks all command line parameters for valid user
+ * input.  If an invalid value is given, or if no user specified
+ * value exists, a default value is used.  The final value is stored
+ * in a variable in the adapter structure.
+ **/
+
+void __devinit e1000_check_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	int bd = adapter->bd_number;
+
+	if (bd >= E1000_MAX_NIC) {
+		DPRINTK(PROBE, NOTICE,
+		       "Warning: no configuration for board #%i\n", bd);
+		DPRINTK(PROBE, NOTICE, "Using defaults for all values\n");
+	}
+
+	{ /* Transmit Descriptor Count */
+		struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_TXD),
+			.def  = E1000_DEFAULT_TXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_TXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD
+				}}
+		};
+
+		if (num_TxDescriptors > bd) {
+			tx_ring->count = TxDescriptors[bd];
+			e1000_validate_option(&tx_ring->count, &opt, adapter);
+			tx_ring->count = ALIGN(tx_ring->count,
+						REQ_TX_DESCRIPTOR_MULTIPLE);
+		} else {
+			tx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_tx_queues; i++)
+			tx_ring[i].count = tx_ring->count;
+	}
+	{ /* Receive Descriptor Count */
+		struct e1000_rx_ring *rx_ring = adapter->rx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_RXD),
+			.def  = E1000_DEFAULT_RXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_RXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD
+			}}
+		};
+
+		if (num_RxDescriptors > bd) {
+			rx_ring->count = RxDescriptors[bd];
+			e1000_validate_option(&rx_ring->count, &opt, adapter);
+			rx_ring->count = ALIGN(rx_ring->count,
+						REQ_RX_DESCRIPTOR_MULTIPLE);
+		} else {
+			rx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_rx_queues; i++)
+			rx_ring[i].count = rx_ring->count;
+	}
+	{ /* Checksum Offload Enable/Disable */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "Checksum Offload",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_XsumRX > bd) {
+			unsigned int rx_csum = XsumRX[bd];
+			e1000_validate_option(&rx_csum, &opt, adapter);
+			adapter->rx_csum = rx_csum;
+		} else {
+			adapter->rx_csum = opt.def;
+		}
+	}
+	{ /* Flow Control */
+
+		struct e1000_opt_list fc_list[] =
+			{{ E1000_FC_NONE,    "Flow Control Disabled" },
+			 { E1000_FC_RX_PAUSE,"Flow Control Receive Only" },
+			 { E1000_FC_TX_PAUSE,"Flow Control Transmit Only" },
+			 { E1000_FC_FULL,    "Flow Control Enabled" },
+			 { E1000_FC_DEFAULT, "Flow Control Hardware Default" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Flow Control",
+			.err  = "reading default settings from EEPROM",
+			.def  = E1000_FC_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(fc_list),
+					 .p = fc_list }}
+		};
+
+		if (num_FlowControl > bd) {
+			unsigned int fc = FlowControl[bd];
+			e1000_validate_option(&fc, &opt, adapter);
+			adapter->hw.fc = adapter->hw.original_fc = fc;
+		} else {
+			adapter->hw.fc = adapter->hw.original_fc = opt.def;
+		}
+	}
+	{ /* Transmit Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TIDV),
+			.def  = DEFAULT_TIDV,
+			.arg  = { .r = { .min = MIN_TXDELAY,
+					 .max = MAX_TXDELAY }}
+		};
+
+		if (num_TxIntDelay > bd) {
+			adapter->tx_int_delay = TxIntDelay[bd];
+			e1000_validate_option(&adapter->tx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_int_delay = opt.def;
+		}
+	}
+	{ /* Transmit Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TADV),
+			.def  = DEFAULT_TADV,
+			.arg  = { .r = { .min = MIN_TXABSDELAY,
+					 .max = MAX_TXABSDELAY }}
+		};
+
+		if (num_TxAbsIntDelay > bd) {
+			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RDTR),
+			.def  = DEFAULT_RDTR,
+			.arg  = { .r = { .min = MIN_RXDELAY,
+					 .max = MAX_RXDELAY }}
+		};
+
+		if (num_RxIntDelay > bd) {
+			adapter->rx_int_delay = RxIntDelay[bd];
+			e1000_validate_option(&adapter->rx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RADV),
+			.def  = DEFAULT_RADV,
+			.arg  = { .r = { .min = MIN_RXABSDELAY,
+					 .max = MAX_RXABSDELAY }}
+		};
+
+		if (num_RxAbsIntDelay > bd) {
+			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Interrupt Throttling Rate */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Interrupt Throttling Rate (ints/sec)",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_ITR),
+			.def  = DEFAULT_ITR,
+			.arg  = { .r = { .min = MIN_ITR,
+					 .max = MAX_ITR }}
+		};
+
+		if (num_InterruptThrottleRate > bd) {
+			adapter->itr = InterruptThrottleRate[bd];
+			switch (adapter->itr) {
+			case 0:
+				DPRINTK(PROBE, INFO, "%s turned off\n",
+				        opt.name);
+				break;
+			case 1:
+				DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
+					opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 3:
+				DPRINTK(PROBE, INFO,
+				        "%s set to dynamic conservative mode\n",
+					opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			default:
+				e1000_validate_option(&adapter->itr, &opt,
+				        adapter);
+				/* save the setting, because the dynamic bits change itr */
+				/* clear the lower two bits because they are
+				 * used as control */
+				adapter->itr_setting = adapter->itr & ~3;
+				break;
+			}
+		} else {
+			adapter->itr_setting = opt.def;
+			adapter->itr = 20000;
+		}
+	}
+	{ /* Smart Power Down */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "PHY Smart Power Down",
+			.err  = "defaulting to Disabled",
+			.def  = OPTION_DISABLED
+		};
+
+		if (num_SmartPowerDownEnable > bd) {
+			unsigned int spd = SmartPowerDownEnable[bd];
+			e1000_validate_option(&spd, &opt, adapter);
+			adapter->smart_power_down = spd;
+		} else {
+			adapter->smart_power_down = opt.def;
+		}
+	}
+
+	switch (adapter->hw.media_type) {
+	case e1000_media_type_fiber:
+	case e1000_media_type_internal_serdes:
+		e1000_check_fiber_options(adapter);
+		break;
+	case e1000_media_type_copper:
+		e1000_check_copper_options(adapter);
+		break;
+	default:
+		BUG();
+	}
+}
+
+/**
+ * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on fiber adapters
+ **/
+
+static void __devinit e1000_check_fiber_options(struct e1000_adapter *adapter)
+{
+	int bd = adapter->bd_number;
+	if (num_Speed > bd) {
+		DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, "
+		       "parameter ignored\n");
+	}
+
+	if (num_Duplex > bd) {
+		DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, "
+		       "parameter ignored\n");
+	}
+
+	if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
+		DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
+				 "not valid for fiber adapters, "
+				 "parameter ignored\n");
+	}
+}
+
+/**
+ * e1000_check_copper_options - Range Checking for Link Options, Copper Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on copper adapters
+ **/
+
+static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	unsigned int speed, dplx, an;
+	int bd = adapter->bd_number;
+
+	{ /* Speed */
+		static const struct e1000_opt_list speed_list[] = {
+			{          0, "" },
+			{   SPEED_10, "" },
+			{  SPEED_100, "" },
+			{ SPEED_1000, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Speed",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(speed_list),
+					 .p = speed_list }}
+		};
+
+		if (num_Speed > bd) {
+			speed = Speed[bd];
+			e1000_validate_option(&speed, &opt, adapter);
+		} else {
+			speed = opt.def;
+		}
+	}
+	{ /* Duplex */
+		static const struct e1000_opt_list dplx_list[] = {
+			{           0, "" },
+			{ HALF_DUPLEX, "" },
+			{ FULL_DUPLEX, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Duplex",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(dplx_list),
+					 .p = dplx_list }}
+		};
+
+		if (num_Duplex > bd) {
+			dplx = Duplex[bd];
+			e1000_validate_option(&dplx, &opt, adapter);
+		} else {
+			dplx = opt.def;
+		}
+	}
+
+	if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
+		DPRINTK(PROBE, INFO,
+		       "AutoNeg specified along with Speed or Duplex, "
+		       "parameter ignored\n");
+		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+	} else { /* Autoneg */
+		static const struct e1000_opt_list an_list[] =
+			#define AA "AutoNeg advertising "
+			{{ 0x01, AA "10/HD" },
+			 { 0x02, AA "10/FD" },
+			 { 0x03, AA "10/FD, 10/HD" },
+			 { 0x04, AA "100/HD" },
+			 { 0x05, AA "100/HD, 10/HD" },
+			 { 0x06, AA "100/HD, 10/FD" },
+			 { 0x07, AA "100/HD, 10/FD, 10/HD" },
+			 { 0x08, AA "100/FD" },
+			 { 0x09, AA "100/FD, 10/HD" },
+			 { 0x0a, AA "100/FD, 10/FD" },
+			 { 0x0b, AA "100/FD, 10/FD, 10/HD" },
+			 { 0x0c, AA "100/FD, 100/HD" },
+			 { 0x0d, AA "100/FD, 100/HD, 10/HD" },
+			 { 0x0e, AA "100/FD, 100/HD, 10/FD" },
+			 { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x20, AA "1000/FD" },
+			 { 0x21, AA "1000/FD, 10/HD" },
+			 { 0x22, AA "1000/FD, 10/FD" },
+			 { 0x23, AA "1000/FD, 10/FD, 10/HD" },
+			 { 0x24, AA "1000/FD, 100/HD" },
+			 { 0x25, AA "1000/FD, 100/HD, 10/HD" },
+			 { 0x26, AA "1000/FD, 100/HD, 10/FD" },
+			 { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x28, AA "1000/FD, 100/FD" },
+			 { 0x29, AA "1000/FD, 100/FD, 10/HD" },
+			 { 0x2a, AA "1000/FD, 100/FD, 10/FD" },
+			 { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" },
+			 { 0x2c, AA "1000/FD, 100/FD, 100/HD" },
+			 { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" },
+			 { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" },
+			 { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "AutoNeg",
+			.err  = "parameter ignored",
+			.def  = AUTONEG_ADV_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(an_list),
+					 .p = an_list }}
+		};
+
+		if (num_AutoNeg > bd) {
+			an = AutoNeg[bd];
+			e1000_validate_option(&an, &opt, adapter);
+		} else {
+			an = opt.def;
+		}
+		adapter->hw.autoneg_advertised = an;
+	}
+
+	switch (speed + dplx) {
+	case 0:
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		if ((num_Speed > bd) && (speed != 0 || dplx != 0))
+			DPRINTK(PROBE, INFO,
+			       "Speed and duplex autonegotiation enabled\n");
+		break;
+	case HALF_DUPLEX:
+		DPRINTK(PROBE, INFO, "Half Duplex specified without Speed\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+			"Half Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_100_HALF;
+		break;
+	case FULL_DUPLEX:
+		DPRINTK(PROBE, INFO, "Full Duplex specified without Speed\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+			"Full Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_FULL |
+		                                 ADVERTISE_100_FULL |
+		                                 ADVERTISE_1000_FULL;
+		break;
+	case SPEED_10:
+		DPRINTK(PROBE, INFO, "10 Mbps Speed specified "
+			"without Duplex\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at 10 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_10_FULL;
+		break;
+	case SPEED_10 + HALF_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_10 + FULL_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100:
+		DPRINTK(PROBE, INFO, "100 Mbps Speed specified "
+			"without Duplex\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+			"100 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_100_HALF |
+		                                 ADVERTISE_100_FULL;
+		break;
+	case SPEED_100 + HALF_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100 + FULL_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_1000:
+		DPRINTK(PROBE, INFO, "1000 Mbps Speed specified without "
+			"Duplex\n");
+		goto full_duplex_only;
+	case SPEED_1000 + HALF_DUPLEX:
+		DPRINTK(PROBE, INFO,
+			"Half Duplex is not supported at 1000 Mbps\n");
+		/* fall through */
+	case SPEED_1000 + FULL_DUPLEX:
+full_duplex_only:
+		DPRINTK(PROBE, INFO,
+		       "Using Autonegotiation at 1000 Mbps Full Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	default:
+		BUG();
+	}
+
+	/* Speed, AutoNeg and MDI/MDI-X must all play nice */
+	if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) {
+		DPRINTK(PROBE, INFO,
+			"Speed, AutoNeg and MDI-X specifications are "
+			"incompatible. Setting MDI-X to a compatible value.\n");
+	}
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/e1000/e1000_param-2.6.32-orig.c	Thu Dec 15 13:21:32 2011 +0100
@@ -0,0 +1,770 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2006 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+
+/* This is the only thing that needs to be changed to adjust the
+ * maximum number of ports that the driver can manage.
+ */
+
+#define E1000_MAX_NIC 32
+
+#define OPTION_UNSET   -1
+#define OPTION_DISABLED 0
+#define OPTION_ENABLED  1
+
+/* All parameters are treated the same, as an integer array of values.
+ * This macro just reduces the need to repeat the same declaration code
+ * over and over (plus this helps to avoid typo bugs).
+ */
+
+#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+#define E1000_PARAM(X, desc) \
+	static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
+	static unsigned int num_##X; \
+	module_param_array_named(X, X, int, &num_##X, 0); \
+	MODULE_PARM_DESC(X, desc);
+
+/* Transmit Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(TxDescriptors, "Number of transmit descriptors");
+
+/* Receive Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+E1000_PARAM(RxDescriptors, "Number of receive descriptors");
+
+/* User Specified Speed Override
+ *
+ * Valid Range: 0, 10, 100, 1000
+ *  - 0    - auto-negotiate at all supported speeds
+ *  - 10   - only link at 10 Mbps
+ *  - 100  - only link at 100 Mbps
+ *  - 1000 - only link at 1000 Mbps
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Speed, "Speed setting");
+
+/* User Specified Duplex Override
+ *
+ * Valid Range: 0-2
+ *  - 0 - auto-negotiate for duplex
+ *  - 1 - only link at half duplex
+ *  - 2 - only link at full duplex
+ *
+ * Default Value: 0
+ */
+E1000_PARAM(Duplex, "Duplex setting");
+
+/* Auto-negotiation Advertisement Override
+ *
+ * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber)
+ *
+ * The AutoNeg value is a bit mask describing which speed and duplex
+ * combinations should be advertised during auto-negotiation.
+ * The supported speed and duplex modes are listed below
+ *
+ * Bit           7     6     5      4      3     2     1      0
+ * Speed (Mbps)  N/A   N/A   1000   N/A    100   100   10     10
+ * Duplex                    Full          Full  Half  Full   Half
+ *
+ * Default Value: 0x2F (copper); 0x20 (fiber)
+ */
+E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting");
+#define AUTONEG_ADV_DEFAULT  0x2F
+#define AUTONEG_ADV_MASK     0x2F
+
+/* User Specified Flow Control Override
+ *
+ * Valid Range: 0-3
+ *  - 0 - No Flow Control
+ *  - 1 - Rx only, respond to PAUSE frames but do not generate them
+ *  - 2 - Tx only, generate PAUSE frames but ignore them on receive
+ *  - 3 - Full Flow Control Support
+ *
+ * Default Value: Read flow control settings from the EEPROM
+ */
+E1000_PARAM(FlowControl, "Flow Control setting");
+#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
+
+/* XsumRX - Receive Checksum Offload Enable/Disable
+ *
+ * Valid Range: 0, 1
+ *  - 0 - disables all checksum offload
+ *  - 1 - enables receive IP/TCP/UDP checksum offload
+ *        on 82543 and newer -based NICs
+ *
+ * Default Value: 1
+ */
+E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
+
+/* Transmit Interrupt Delay in units of 1.024 microseconds
+ *  Tx interrupt delay needs to typically be set to something non zero
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
+#define DEFAULT_TIDV                   8
+#define MAX_TXDELAY               0xFFFF
+#define MIN_TXDELAY                    0
+
+/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
+#define DEFAULT_TADV                  32
+#define MAX_TXABSDELAY            0xFFFF
+#define MIN_TXABSDELAY                 0
+
+/* Receive Interrupt Delay in units of 1.024 microseconds
+ *   hardware will likely hang if you set this to anything but zero.
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
+#define DEFAULT_RDTR                   0
+#define MAX_RXDELAY               0xFFFF
+#define MIN_RXDELAY                    0
+
+/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ */
+E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
+#define DEFAULT_RADV                   8
+#define MAX_RXABSDELAY            0xFFFF
+#define MIN_RXABSDELAY                 0
+
+/* Interrupt Throttle Rate (interrupts/sec)
+ *
+ * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
+ */
+E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
+#define DEFAULT_ITR                    3
+#define MAX_ITR                   100000
+#define MIN_ITR                      100
+
+/* Enable Smart Power Down of the PHY
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 0 (disabled)
+ */
+E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
+
+/* Enable Kumeran Lock Loss workaround
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
+
+struct e1000_option {
+	enum { enable_option, range_option, list_option } type;
+	const char *name;
+	const char *err;
+	int def;
+	union {
+		struct { /* range_option info */
+			int min;
+			int max;
+		} r;
+		struct { /* list_option info */
+			int nr;
+			const struct e1000_opt_list { int i; char *str; } *p;
+		} l;
+	} arg;
+};
+
+static int __devinit e1000_validate_option(unsigned int *value,
+					   const struct e1000_option *opt,
+					   struct e1000_adapter *adapter)
+{
+	if (*value == OPTION_UNSET) {
+		*value = opt->def;
+		return 0;
+	}
+
+	switch (opt->type) {
+	case enable_option:
+		switch (*value) {
+		case OPTION_ENABLED:
+			DPRINTK(PROBE, INFO, "%s Enabled\n", opt->name);
+			return 0;
+		case OPTION_DISABLED:
+			DPRINTK(PROBE, INFO, "%s Disabled\n", opt->name);
+			return 0;
+		}
+		break;
+	case range_option:
+		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
+			DPRINTK(PROBE, INFO,
+					"%s set to %i\n", opt->name, *value);
+			return 0;
+		}
+		break;
+	case list_option: {
+		int i;
+		const struct e1000_opt_list *ent;
+
+		for (i = 0; i < opt->arg.l.nr; i++) {
+			ent = &opt->arg.l.p[i];
+			if (*value == ent->i) {
+				if (ent->str[0] != '\0')
+					DPRINTK(PROBE, INFO, "%s\n", ent->str);
+				return 0;
+			}
+		}
+	}
+		break;
+	default:
+		BUG();
+	}
+
+	DPRINTK(PROBE, INFO, "Invalid %s value specified (%i) %s\n",
+	       opt->name, *value, opt->err);
+	*value = opt->def;
+	return -1;
+}
+
+static void e1000_check_fiber_options(struct e1000_adapter *adapter);
+static void e1000_check_copper_options(struct e1000_adapter *adapter);
+
+/**
+ * e1000_check_options - Range Checking for Command Line Parameters
+ * @adapter: board private structure
+ *
+ * This routine checks all command line parameters for valid user
+ * input.  If an invalid value is given, or if no user specified
+ * value exists, a default value is used.  The final value is stored
+ * in a variable in the adapter structure.
+ **/
+
+void __devinit e1000_check_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	int bd = adapter->bd_number;
+
+	if (bd >= E1000_MAX_NIC) {
+		DPRINTK(PROBE, NOTICE,
+		       "Warning: no configuration for board #%i\n", bd);
+		DPRINTK(PROBE, NOTICE, "Using defaults for all values\n");
+	}
+
+	{ /* Transmit Descriptor Count */
+		struct e1000_tx_ring *tx_ring = adapter->tx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_TXD),
+			.def  = E1000_DEFAULT_TXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_TXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD
+				}}
+		};
+
+		if (num_TxDescriptors > bd) {
+			tx_ring->count = TxDescriptors[bd];
+			e1000_validate_option(&tx_ring->count, &opt, adapter);
+			tx_ring->count = ALIGN(tx_ring->count,
+						REQ_TX_DESCRIPTOR_MULTIPLE);
+		} else {
+			tx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_tx_queues; i++)
+			tx_ring[i].count = tx_ring->count;
+	}
+	{ /* Receive Descriptor Count */
+		struct e1000_rx_ring *rx_ring = adapter->rx_ring;
+		int i;
+		e1000_mac_type mac_type = adapter->hw.mac_type;
+
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Descriptors",
+			.err  = "using default of "
+				__MODULE_STRING(E1000_DEFAULT_RXD),
+			.def  = E1000_DEFAULT_RXD,
+			.arg  = { .r = {
+				.min = E1000_MIN_RXD,
+				.max = mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD
+			}}
+		};
+
+		if (num_RxDescriptors > bd) {
+			rx_ring->count = RxDescriptors[bd];
+			e1000_validate_option(&rx_ring->count, &opt, adapter);
+			rx_ring->count = ALIGN(rx_ring->count,
+						REQ_RX_DESCRIPTOR_MULTIPLE);
+		} else {
+			rx_ring->count = opt.def;
+		}
+		for (i = 0; i < adapter->num_rx_queues; i++)
+			rx_ring[i].count = rx_ring->count;
+	}
+	{ /* Checksum Offload Enable/Disable */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "Checksum Offload",
+			.err  = "defaulting to Enabled",
+			.def  = OPTION_ENABLED
+		};
+
+		if (num_XsumRX > bd) {
+			unsigned int rx_csum = XsumRX[bd];
+			e1000_validate_option(&rx_csum, &opt, adapter);
+			adapter->rx_csum = rx_csum;
+		} else {
+			adapter->rx_csum = opt.def;
+		}
+	}
+	{ /* Flow Control */
+
+		struct e1000_opt_list fc_list[] =
+			{{ E1000_FC_NONE,    "Flow Control Disabled" },
+			 { E1000_FC_RX_PAUSE,"Flow Control Receive Only" },
+			 { E1000_FC_TX_PAUSE,"Flow Control Transmit Only" },
+			 { E1000_FC_FULL,    "Flow Control Enabled" },
+			 { E1000_FC_DEFAULT, "Flow Control Hardware Default" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Flow Control",
+			.err  = "reading default settings from EEPROM",
+			.def  = E1000_FC_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(fc_list),
+					 .p = fc_list }}
+		};
+
+		if (num_FlowControl > bd) {
+			unsigned int fc = FlowControl[bd];
+			e1000_validate_option(&fc, &opt, adapter);
+			adapter->hw.fc = adapter->hw.original_fc = fc;
+		} else {
+			adapter->hw.fc = adapter->hw.original_fc = opt.def;
+		}
+	}
+	{ /* Transmit Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TIDV),
+			.def  = DEFAULT_TIDV,
+			.arg  = { .r = { .min = MIN_TXDELAY,
+					 .max = MAX_TXDELAY }}
+		};
+
+		if (num_TxIntDelay > bd) {
+			adapter->tx_int_delay = TxIntDelay[bd];
+			e1000_validate_option(&adapter->tx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_int_delay = opt.def;
+		}
+	}
+	{ /* Transmit Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Transmit Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_TADV),
+			.def  = DEFAULT_TADV,
+			.arg  = { .r = { .min = MIN_TXABSDELAY,
+					 .max = MAX_TXABSDELAY }}
+		};
+
+		if (num_TxAbsIntDelay > bd) {
+			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->tx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RDTR),
+			.def  = DEFAULT_RDTR,
+			.arg  = { .r = { .min = MIN_RXDELAY,
+					 .max = MAX_RXDELAY }}
+		};
+
+		if (num_RxIntDelay > bd) {
+			adapter->rx_int_delay = RxIntDelay[bd];
+			e1000_validate_option(&adapter->rx_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_int_delay = opt.def;
+		}
+	}
+	{ /* Receive Absolute Interrupt Delay */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Receive Absolute Interrupt Delay",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_RADV),
+			.def  = DEFAULT_RADV,
+			.arg  = { .r = { .min = MIN_RXABSDELAY,
+					 .max = MAX_RXABSDELAY }}
+		};
+
+		if (num_RxAbsIntDelay > bd) {
+			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+			                      adapter);
+		} else {
+			adapter->rx_abs_int_delay = opt.def;
+		}
+	}
+	{ /* Interrupt Throttling Rate */
+		opt = (struct e1000_option) {
+			.type = range_option,
+			.name = "Interrupt Throttling Rate (ints/sec)",
+			.err  = "using default of " __MODULE_STRING(DEFAULT_ITR),
+			.def  = DEFAULT_ITR,
+			.arg  = { .r = { .min = MIN_ITR,
+					 .max = MAX_ITR }}
+		};
+
+		if (num_InterruptThrottleRate > bd) {
+			adapter->itr = InterruptThrottleRate[bd];
+			switch (adapter->itr) {
+			case 0:
+				DPRINTK(PROBE, INFO, "%s turned off\n",
+				        opt.name);
+				break;
+			case 1:
+				DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
+					opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			case 3:
+				DPRINTK(PROBE, INFO,
+				        "%s set to dynamic conservative mode\n",
+					opt.name);
+				adapter->itr_setting = adapter->itr;
+				adapter->itr = 20000;
+				break;
+			default:
+				e1000_validate_option(&adapter->itr, &opt,
+				        adapter);
+				/* save the setting, because the dynamic bits change itr */
+				/* clear the lower two bits because they are
+				 * used as control */
+				adapter->itr_setting = adapter->itr & ~3;
+				break;
+			}
+		} else {
+			adapter->itr_setting = opt.def;
+			adapter->itr = 20000;
+		}
+	}
+	{ /* Smart Power Down */
+		opt = (struct e1000_option) {
+			.type = enable_option,
+			.name = "PHY Smart Power Down",
+			.err  = "defaulting to Disabled",
+			.def  = OPTION_DISABLED
+		};
+
+		if (num_SmartPowerDownEnable > bd) {
+			unsigned int spd = SmartPowerDownEnable[bd];
+			e1000_validate_option(&spd, &opt, adapter);
+			adapter->smart_power_down = spd;
+		} else {
+			adapter->smart_power_down = opt.def;
+		}
+	}
+
+	switch (adapter->hw.media_type) {
+	case e1000_media_type_fiber:
+	case e1000_media_type_internal_serdes:
+		e1000_check_fiber_options(adapter);
+		break;
+	case e1000_media_type_copper:
+		e1000_check_copper_options(adapter);
+		break;
+	default:
+		BUG();
+	}
+}
+
+/**
+ * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on fiber adapters
+ **/
+
+static void __devinit e1000_check_fiber_options(struct e1000_adapter *adapter)
+{
+	int bd = adapter->bd_number;
+	if (num_Speed > bd) {
+		DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, "
+		       "parameter ignored\n");
+	}
+
+	if (num_Duplex > bd) {
+		DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, "
+		       "parameter ignored\n");
+	}
+
+	if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
+		DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
+				 "not valid for fiber adapters, "
+				 "parameter ignored\n");
+	}
+}
+
+/**
+ * e1000_check_copper_options - Range Checking for Link Options, Copper Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on copper adapters
+ **/
+
+static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter)
+{
+	struct e1000_option opt;
+	unsigned int speed, dplx, an;
+	int bd = adapter->bd_number;
+
+	{ /* Speed */
+		static const struct e1000_opt_list speed_list[] = {
+			{          0, "" },
+			{   SPEED_10, "" },
+			{  SPEED_100, "" },
+			{ SPEED_1000, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Speed",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(speed_list),
+					 .p = speed_list }}
+		};
+
+		if (num_Speed > bd) {
+			speed = Speed[bd];
+			e1000_validate_option(&speed, &opt, adapter);
+		} else {
+			speed = opt.def;
+		}
+	}
+	{ /* Duplex */
+		static const struct e1000_opt_list dplx_list[] = {
+			{           0, "" },
+			{ HALF_DUPLEX, "" },
+			{ FULL_DUPLEX, "" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "Duplex",
+			.err  = "parameter ignored",
+			.def  = 0,
+			.arg  = { .l = { .nr = ARRAY_SIZE(dplx_list),
+					 .p = dplx_list }}
+		};
+
+		if (num_Duplex > bd) {
+			dplx = Duplex[bd];
+			e1000_validate_option(&dplx, &opt, adapter);
+		} else {
+			dplx = opt.def;
+		}
+	}
+
+	if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
+		DPRINTK(PROBE, INFO,
+		       "AutoNeg specified along with Speed or Duplex, "
+		       "parameter ignored\n");
+		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+	} else { /* Autoneg */
+		static const struct e1000_opt_list an_list[] =
+			#define AA "AutoNeg advertising "
+			{{ 0x01, AA "10/HD" },
+			 { 0x02, AA "10/FD" },
+			 { 0x03, AA "10/FD, 10/HD" },
+			 { 0x04, AA "100/HD" },
+			 { 0x05, AA "100/HD, 10/HD" },
+			 { 0x06, AA "100/HD, 10/FD" },
+			 { 0x07, AA "100/HD, 10/FD, 10/HD" },
+			 { 0x08, AA "100/FD" },
+			 { 0x09, AA "100/FD, 10/HD" },
+			 { 0x0a, AA "100/FD, 10/FD" },
+			 { 0x0b, AA "100/FD, 10/FD, 10/HD" },
+			 { 0x0c, AA "100/FD, 100/HD" },
+			 { 0x0d, AA "100/FD, 100/HD, 10/HD" },
+			 { 0x0e, AA "100/FD, 100/HD, 10/FD" },
+			 { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x20, AA "1000/FD" },
+			 { 0x21, AA "1000/FD, 10/HD" },
+			 { 0x22, AA "1000/FD, 10/FD" },
+			 { 0x23, AA "1000/FD, 10/FD, 10/HD" },
+			 { 0x24, AA "1000/FD, 100/HD" },
+			 { 0x25, AA "1000/FD, 100/HD, 10/HD" },
+			 { 0x26, AA "1000/FD, 100/HD, 10/FD" },
+			 { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" },
+			 { 0x28, AA "1000/FD, 100/FD" },
+			 { 0x29, AA "1000/FD, 100/FD, 10/HD" },
+			 { 0x2a, AA "1000/FD, 100/FD, 10/FD" },
+			 { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" },
+			 { 0x2c, AA "1000/FD, 100/FD, 100/HD" },
+			 { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" },
+			 { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" },
+			 { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }};
+
+		opt = (struct e1000_option) {
+			.type = list_option,
+			.name = "AutoNeg",
+			.err  = "parameter ignored",
+			.def  = AUTONEG_ADV_DEFAULT,
+			.arg  = { .l = { .nr = ARRAY_SIZE(an_list),
+					 .p = an_list }}
+		};
+
+		if (num_AutoNeg > bd) {
+			an = AutoNeg[bd];
+			e1000_validate_option(&an, &opt, adapter);
+		} else {
+			an = opt.def;
+		}
+		adapter->hw.autoneg_advertised = an;
+	}
+
+	switch (speed + dplx) {
+	case 0:
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		if ((num_Speed > bd) && (speed != 0 || dplx != 0))
+			DPRINTK(PROBE, INFO,
+			       "Speed and duplex autonegotiation enabled\n");
+		break;
+	case HALF_DUPLEX:
+		DPRINTK(PROBE, INFO, "Half Duplex specified without Speed\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+			"Half Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_100_HALF;
+		break;
+	case FULL_DUPLEX:
+		DPRINTK(PROBE, INFO, "Full Duplex specified without Speed\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+			"Full Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_FULL |
+		                                 ADVERTISE_100_FULL |
+		                                 ADVERTISE_1000_FULL;
+		break;
+	case SPEED_10:
+		DPRINTK(PROBE, INFO, "10 Mbps Speed specified "
+			"without Duplex\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at 10 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+		                                 ADVERTISE_10_FULL;
+		break;
+	case SPEED_10 + HALF_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_10 + FULL_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_10_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100:
+		DPRINTK(PROBE, INFO, "100 Mbps Speed specified "
+			"without Duplex\n");
+		DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+			"100 Mbps only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_100_HALF |
+		                                 ADVERTISE_100_FULL;
+		break;
+	case SPEED_100 + HALF_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Half Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_half;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_100 + FULL_DUPLEX:
+		DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Full Duplex\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 0;
+		adapter->hw.forced_speed_duplex = e1000_100_full;
+		adapter->hw.autoneg_advertised = 0;
+		break;
+	case SPEED_1000:
+		DPRINTK(PROBE, INFO, "1000 Mbps Speed specified without "
+			"Duplex\n");
+		goto full_duplex_only;
+	case SPEED_1000 + HALF_DUPLEX:
+		DPRINTK(PROBE, INFO,
+			"Half Duplex is not supported at 1000 Mbps\n");
+		/* fall through */
+	case SPEED_1000 + FULL_DUPLEX:
+full_duplex_only:
+		DPRINTK(PROBE, INFO,
+		       "Using Autonegotiation at 1000 Mbps Full Duplex only\n");
+		adapter->hw.autoneg = adapter->fc_autoneg = 1;
+		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+		break;
+	default:
+		BUG();
+	}
+
+	/* Speed, AutoNeg and MDI/MDI-X must all play nice */
+	if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) {
+		DPRINTK(PROBE, INFO,
+			"Speed, AutoNeg and MDI-X specifications are "
+			"incompatible. Setting MDI-X to a compatible value.\n");
+	}
+}
+