IDE: allow structures to be located.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# This file is part of Beremiz, a Integrated Development Environment for
# programming IEC 61131-3 automates supporting plcopen standard and CanFestival.
#
# Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
#
# See COPYING file for copyrights details.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from functools import cmp_to_key
from operator import eq
import wx
from graphics.GraphicCommons import *
from graphics.DebugDataConsumer import DebugDataConsumer
from plcopen.structures import *
def GetWireSize(block):
if isinstance(block, SFC_Step):
return SFC_WIRE_MIN_SIZE + block.GetActionExtraLineNumber() * SFC_ACTION_MIN_SIZE[1]
else:
return SFC_WIRE_MIN_SIZE
# -------------------------------------------------------------------------------
# Sequencial Function Chart Step
# -------------------------------------------------------------------------------
class SFC_Step(Graphic_Element, DebugDataConsumer):
"""
Class that implements the graphic representation of a step
"""
# Create a new step
def __init__(self, parent, name, initial=False, id=None):
Graphic_Element.__init__(self, parent)
DebugDataConsumer.__init__(self)
self.SetName(name)
self.Initial = initial
self.Id = id
self.Highlights = []
self.Size = wx.Size(SFC_STEP_DEFAULT_SIZE[0], SFC_STEP_DEFAULT_SIZE[1])
# Create an input and output connector
if not self.Initial:
self.Input = Connector(self, "", None, wx.Point(self.Size[0] // 2, 0), NORTH)
else:
self.Input = None
self.Output = None
self.Action = None
self.PreviousValue = None
self.PreviousSpreading = False
def Flush(self):
if self.Input is not None:
self.Input.Flush()
self.Input = None
if self.Output is not None:
self.Output.Flush()
self.Output = None
if self.Action is not None:
self.Action.Flush()
self.Action = None
def SetForced(self, forced):
if self.Forced != forced:
self.Forced = forced
if self.Visible:
self.Parent.ElementNeedRefresh(self)
def SetValue(self, value):
self.PreviousValue = self.Value
self.Value = value
if self.Value != self.PreviousValue:
if self.Visible:
self.Parent.ElementNeedRefresh(self)
self.SpreadCurrent()
def SpreadCurrent(self):
if self.Parent.Debug:
spreading = self.Value
if spreading and not self.PreviousSpreading:
if self.Output is not None:
self.Output.SpreadCurrent(True)
if self.Action is not None:
self.Action.SpreadCurrent(True)
elif not spreading and self.PreviousSpreading:
if self.Output is not None:
self.Output.SpreadCurrent(False)
if self.Action is not None:
self.Action.SpreadCurrent(False)
self.PreviousSpreading = spreading
# Make a clone of this SFC_Step
def Clone(self, parent, id=None, name="Step", pos=None):
step = SFC_Step(parent, name, self.Initial, id)
step.SetSize(self.Size[0], self.Size[1])
if pos is not None:
step.SetPosition(pos.x, pos.y)
else:
step.SetPosition(self.Pos.x, self.Pos.y)
if self.Input:
step.Input = self.Input.Clone(step)
if self.Output:
step.Output = self.Output.Clone(step)
if self.Action:
step.Action = self.Action.Clone(step)
return step
def GetConnectorTranslation(self, element):
connectors = {}
if self.Input is not None:
connectors[self.Input] = element.Input
if self.Output is not None:
connectors[self.Output] = element.Output
if self.Action is not None:
connectors[self.Action] = element.Action
return connectors
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
if self.Input:
rect = rect.Union(self.Input.GetRedrawRect(movex, movey))
if self.Output:
rect = rect.Union(self.Output.GetRedrawRect(movex, movey))
if self.Action:
rect = rect.Union(self.Action.GetRedrawRect(movex, movey))
if movex != 0 or movey != 0:
if self.Input and self.Input.IsConnected():
rect = rect.Union(self.Input.GetConnectedRedrawRect(movex, movey))
if self.Output and self.Output.IsConnected():
rect = rect.Union(self.Output.GetConnectedRedrawRect(movex, movey))
if self.Action and self.Action.IsConnected():
rect = rect.Union(self.Action.GetConnectedRedrawRect(movex, movey))
return rect
# Delete this step by calling the appropriate method
def Delete(self):
self.Parent.DeleteStep(self)
# Unconnect input and output
def Clean(self):
if self.Input:
self.Input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
if self.Output:
self.Output.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
if self.Action:
self.Action.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Refresh the size of text for name
def RefreshNameSize(self):
self.NameSize = self.Parent.GetTextExtent(self.Name)
# Add output connector to step
def AddInput(self):
if not self.Input:
self.Input = Connector(self, "", None, wx.Point(self.Size[0] // 2, 0), NORTH)
self.RefreshBoundingBox()
# Remove output connector from step
def RemoveInput(self):
if self.Input:
self.Input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
self.Input = None
self.RefreshBoundingBox()
# Add output connector to step
def AddOutput(self):
if not self.Output:
self.Output = Connector(self, "", None, wx.Point(self.Size[0] // 2, self.Size[1]), SOUTH, onlyone=True)
self.RefreshBoundingBox()
# Remove output connector from step
def RemoveOutput(self):
if self.Output:
self.Output.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
self.Output = None
self.RefreshBoundingBox()
# Add action connector to step
def AddAction(self):
if not self.Action:
self.Action = Connector(self, "", None, wx.Point(self.Size[0], self.Size[1] // 2), EAST, onlyone=True)
self.RefreshBoundingBox()
# Remove action connector from step
def RemoveAction(self):
if self.Action:
self.Action.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
self.Action = None
self.RefreshBoundingBox()
# Refresh the step bounding box
def RefreshBoundingBox(self):
# TODO: check and remove dead coded
#
# Calculate the bounding box size
# if self.Action:
# bbx_width = self.Size[0] + CONNECTOR_SIZE
# else:
# bbx_width = self.Size[0]
# if self.Initial:
# bbx_y = self.Pos.y
# bbx_height = self.Size[1]
# if self.Output:
# bbx_height += CONNECTOR_SIZE
# else:
# bbx_y = self.Pos.y - CONNECTOR_SIZE
# bbx_height = self.Size[1] + CONNECTOR_SIZE
# if self.Output:
# bbx_height += CONNECTOR_SIZE
# self.BoundingBox = wx.Rect(self.Pos.x, bbx_y, bbx_width + 1, bbx_height + 1)
self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
# Refresh the positions of the step connectors
def RefreshConnectors(self):
scaling = self.Parent.GetScaling()
horizontal_pos = self.Size[0] // 2
vertical_pos = self.Size[1] // 2
if scaling is not None:
horizontal_pos = round((self.Pos.x + horizontal_pos) / scaling[0]) * scaling[0] - self.Pos.x
vertical_pos = round((self.Pos.y + vertical_pos) / scaling[1]) * scaling[1] - self.Pos.y
# Update input position if it exists
if self.Input:
self.Input.SetPosition(wx.Point(horizontal_pos, 0))
# Update output position
if self.Output:
self.Output.SetPosition(wx.Point(horizontal_pos, self.Size[1]))
# Update action position if it exists
if self.Action:
self.Action.SetPosition(wx.Point(self.Size[0], vertical_pos))
self.RefreshConnected()
# Refresh the position of wires connected to step
def RefreshConnected(self, exclude=None):
if self.Input:
self.Input.MoveConnected(exclude)
if self.Output:
self.Output.MoveConnected(exclude)
if self.Action:
self.Action.MoveConnected(exclude)
# Returns the step connector that starts with the point given if it exists
def GetConnector(self, position, name=None):
# if a name is given
if name is not None:
# Test input, output and action connector if they exists
# if self.Input and name == self.Input.GetName():
# return self.Input
if self.Output and name == self.Output.GetName():
return self.Output
if self.Action and name == self.Action.GetName():
return self.Action
connectors = []
# Test input connector if it exists
if self.Input:
connectors.append(self.Input)
# Test output connector if it exists
if self.Output:
connectors.append(self.Output)
# Test action connector if it exists
if self.Action:
connectors.append(self.Action)
return self.FindNearestConnector(position, connectors)
# Returns action step connector
def GetActionConnector(self):
return self.Action
# Returns input and output step connectors
def GetConnectors(self):
connectors = {"inputs": [], "outputs": []}
if self.Input:
connectors["inputs"].append(self.Input)
if self.Output:
connectors["outputs"].append(self.Output)
return connectors
# Test if point given is on step input or output connector
def TestConnector(self, pt, direction=None, exclude=True):
# Test input connector if it exists
if self.Input and self.Input.TestPoint(pt, direction, exclude):
return self.Input
# Test output connector
if self.Output and self.Output.TestPoint(pt, direction, exclude):
return self.Output
# Test action connector
if self.Action and self.Action.TestPoint(pt, direction, exclude):
return self.Action
return None
# Changes the step name
def SetName(self, name):
self.Name = name
self.RefreshNameSize()
# Returns the step name
def GetName(self):
return self.Name
# Returns the step initial property
def GetInitial(self):
return self.Initial
# Returns the connector connected to input
def GetPreviousConnector(self):
if self.Input:
wires = self.Input.GetWires()
if len(wires) == 1:
return wires[0][0].GetOtherConnected(self.Input)
return None
# Returns the connector connected to output
def GetNextConnector(self):
if self.Output:
wires = self.Output.GetWires()
if len(wires) == 1:
return wires[0][0].GetOtherConnected(self.Output)
return None
# Returns the connector connected to action
def GetActionConnected(self):
if self.Action:
wires = self.Action.GetWires()
if len(wires) == 1:
return wires[0][0].GetOtherConnected(self.Action)
return None
# Returns the number of action line
def GetActionExtraLineNumber(self):
if self.Action:
wires = self.Action.GetWires()
if len(wires) != 1:
return 0
action_block = wires[0][0].GetOtherConnected(self.Action).GetParentBlock()
return max(0, action_block.GetLineNumber() - 1)
return 0
# Returns the step minimum size
def GetMinSize(self):
text_width, text_height = self.Parent.GetTextExtent(self.Name)
if self.Initial:
return text_width + 14, text_height + 14
else:
return text_width + 10, text_height + 10
# Updates the step size
def UpdateSize(self, width, height):
diffx = self.Size.GetWidth() // 2 - width // 2
diffy = height - self.Size.GetHeight()
self.Move(diffx, 0)
Graphic_Element.SetSize(self, width, height)
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
self.RefreshConnected()
else:
self.RefreshOutputPosition((0, diffy))
# Align input element with this step
def RefreshInputPosition(self):
if self.Input:
current_pos = self.Input.GetPosition(False)
input = self.GetPreviousConnector()
if input:
input_pos = input.GetPosition(False)
diffx = current_pos.x - input_pos.x
input_block = input.GetParentBlock()
if isinstance(input_block, SFC_Divergence):
input_block.MoveConnector(input, diffx)
else:
if isinstance(input_block, SFC_Step):
input_block.MoveActionBlock((diffx, 0))
input_block.Move(diffx, 0)
input_block.RefreshInputPosition()
# Align output element with this step
def RefreshOutputPosition(self, move=None):
if self.Output:
wires = self.Output.GetWires()
if len(wires) != 1:
return
current_pos = self.Output.GetPosition(False)
output = wires[0][0].GetOtherConnected(self.Output)
output_pos = output.GetPosition(False)
diffx = current_pos.x - output_pos.x
output_block = output.GetParentBlock()
wire_size = SFC_WIRE_MIN_SIZE + self.GetActionExtraLineNumber() * SFC_ACTION_MIN_SIZE[1]
diffy = wire_size - output_pos.y + current_pos.y
if diffy != 0:
if isinstance(output_block, SFC_Step):
output_block.MoveActionBlock((diffx, diffy))
wires[0][0].SetPoints([wx.Point(current_pos.x, current_pos.y + wire_size),
wx.Point(current_pos.x, current_pos.y)])
if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
output_block.Move(diffx, diffy, self.Parent.Wires)
output_block.RefreshOutputPosition((diffx, diffy))
else:
output_block.RefreshPosition()
elif move:
if isinstance(output_block, SFC_Step):
output_block.MoveActionBlock(move)
wires[0][0].Move(move[0], move[1], True)
if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
output_block.Move(move[0], move[1], self.Parent.Wires)
output_block.RefreshOutputPosition(move)
else:
output_block.RefreshPosition()
elif isinstance(output_block, SFC_Divergence):
output_block.MoveConnector(output, diffx)
else:
if isinstance(output_block, SFC_Step):
output_block.MoveActionBlock((diffx, 0))
output_block.Move(diffx, 0)
output_block.RefreshOutputPosition()
# Refresh action element with this step
def MoveActionBlock(self, move):
if self.Action:
wires = self.Action.GetWires()
if len(wires) != 1:
return
action_block = wires[0][0].GetOtherConnected(self.Action).GetParentBlock()
action_block.Move(move[0], move[1], self.Parent.Wires)
wires[0][0].Move(move[0], move[1], True)
# Resize the divergence from position and size given
def Resize(self, x, y, width, height):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
self.UpdateSize(width, height)
else:
Graphic_Element.Resize(self, x, y, width, height)
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the step properties
self.Parent.EditStepContent(self)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
# Popup the menu with special items for a step
self.Parent.PopupDefaultMenu()
# Refreshes the step state according to move defined and handle selected
def ProcessDragging(self, movex, movey, event, scaling):
handle_type, _handle = self.Handle
if handle_type == HANDLE_MOVE:
movex = max(-self.BoundingBox.x, movex)
movey = max(-self.BoundingBox.y, movey)
if scaling is not None:
movex = round((self.Pos.x + movex) / scaling[0]) * scaling[0] - self.Pos.x
movey = round((self.Pos.y + movey) / scaling[1]) * scaling[1] - self.Pos.y
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
self.Move(movex, movey)
self.RefreshConnected()
return movex, movey
elif self.Initial:
self.MoveActionBlock((movex, movey))
self.Move(movex, movey, self.Parent.Wires)
self.RefreshOutputPosition((movex, movey))
return movex, movey
else:
self.MoveActionBlock((movex, 0))
self.Move(movex, 0)
self.RefreshInputPosition()
self.RefreshOutputPosition()
return movex, 0
else:
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
# Refresh input element model
def RefreshInputModel(self):
if self.Input:
input = self.GetPreviousConnector()
if input:
input_block = input.GetParentBlock()
input_block.RefreshModel(False)
if not isinstance(input_block, SFC_Divergence):
input_block.RefreshInputModel()
# Refresh output element model
def RefreshOutputModel(self, move=False):
if self.Output:
output = self.GetNextConnector()
if output:
output_block = output.GetParentBlock()
output_block.RefreshModel(False)
if not isinstance(output_block, SFC_Divergence) or move:
output_block.RefreshOutputModel(move)
# Refreshes the step model
def RefreshModel(self, move=True):
self.Parent.RefreshStepModel(self)
if self.Action:
action = self.GetActionConnected()
if action:
action_block = action.GetParentBlock()
action_block.RefreshModel(False)
# If step has moved, refresh the model of wires connected to output
if move:
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
self.RefreshInputModel()
self.RefreshOutputModel(self.Initial)
elif self.Output:
self.Output.RefreshWires()
# Adds an highlight to the connection
def AddHighlight(self, infos, start, end, highlight_type):
if infos[0] == "name" and start[0] == 0 and end[0] == 0:
AddHighlight(self.Highlights, (start, end, highlight_type))
# Removes an highlight from the connection
def RemoveHighlight(self, infos, start, end, highlight_type):
if infos[0] == "name":
RemoveHighlight(self.Highlights, (start, end, highlight_type))
# Removes all the highlights of one particular type from the connection
def ClearHighlight(self, highlight_type=None):
ClearHighlights(self.Highlights, highlight_type)
# Draws step
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
if self.Value:
if self.Forced:
dc.SetPen(MiterPen(wx.CYAN))
else:
dc.SetPen(MiterPen(wx.GREEN))
elif self.Forced:
dc.SetPen(MiterPen(wx.BLUE))
else:
dc.SetPen(MiterPen(wx.BLACK))
dc.SetBrush(wx.WHITE_BRUSH)
if getattr(dc, "printing", False):
name_size = dc.GetTextExtent(self.Name)
else:
name_size = self.NameSize
# Draw two rectangles for representing the step
dc.DrawRectangle(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
if self.Initial:
dc.DrawRectangle(self.Pos.x + 2, self.Pos.y + 2, self.Size[0] - 3, self.Size[1] - 3)
# Draw step name
name_pos = (self.Pos.x + (self.Size[0] - name_size[0]) // 2,
self.Pos.y + (self.Size[1] - name_size[1]) // 2)
dc.DrawText(self.Name, name_pos[0], name_pos[1])
# Draw input and output connectors
if self.Input:
self.Input.Draw(dc)
if self.Output:
self.Output.Draw(dc)
if self.Action:
self.Action.Draw(dc)
if not getattr(dc, "printing", False):
DrawHighlightedText(dc, self.Name, self.Highlights, name_pos[0], name_pos[1])
# -------------------------------------------------------------------------------
# Sequencial Function Chart Transition
# -------------------------------------------------------------------------------
class SFC_Transition(Graphic_Element, DebugDataConsumer):
"""
Class that implements the graphic representation of a transition
"""
# Create a new transition
def __init__(self, parent, type="reference", condition=None, priority=0, id=None):
Graphic_Element.__init__(self, parent)
DebugDataConsumer.__init__(self)
self.Type = None
self.Id = id
self.Priority = 0
self.Size = wx.Size(SFC_TRANSITION_SIZE[0], SFC_TRANSITION_SIZE[1])
# Create an input and output connector
self.Input = Connector(self, "", None, wx.Point(self.Size[0] // 2, 0), NORTH, onlyone=True)
self.Output = Connector(self, "", None, wx.Point(self.Size[0] // 2, self.Size[1]), SOUTH, onlyone=True)
self.SetType(type, condition)
self.SetPriority(priority)
self.Highlights = {}
self.PreviousValue = None
self.PreviousSpreading = False
def Flush(self):
if self.Input is not None:
self.Input.Flush()
self.Input = None
if self.Output is not None:
self.Output.Flush()
self.Output = None
if self.Type == "connection" and self.Condition is not None:
self.Condition.Flush()
self.Condition = None
def SetForced(self, forced):
if self.Forced != forced:
self.Forced = forced
if self.Visible:
self.Parent.ElementNeedRefresh(self)
def SetValue(self, value):
self.PreviousValue = self.Value
self.Value = value
if self.Value != self.PreviousValue:
if self.Visible:
self.Parent.ElementNeedRefresh(self)
self.SpreadCurrent()
def SpreadCurrent(self):
if self.Parent.Debug:
if self.Value is None:
self.Value = False
spreading = self.Input.ReceivingCurrent() & self.Value
if spreading and not self.PreviousSpreading:
self.Output.SpreadCurrent(True)
elif not spreading and self.PreviousSpreading:
self.Output.SpreadCurrent(False)
self.PreviousSpreading = spreading
# Make a clone of this SFC_Transition
def Clone(self, parent, id=None, pos=None):
transition = SFC_Transition(parent, self.Type, self.Condition, self.Priority, id)
transition.SetSize(self.Size[0], self.Size[1])
if pos is not None:
transition.SetPosition(pos.x, pos.y)
else:
transition.SetPosition(self.Pos.x, self.Pos.y)
transition.Input = self.Input.Clone(transition)
transition.Output = self.Output.Clone(transition)
if self.Type == "connection":
transition.Condition = self.Condition.Clone(transition)
return transition
def GetConnectorTranslation(self, element):
connectors = {self.Input: element.Input, self.Output: element.Output}
if self.Type == "connection" and self.Condition is not None:
connectors[self.Condition] = element.Condition
return connectors
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
if self.Input:
rect = rect.Union(self.Input.GetRedrawRect(movex, movey))
if self.Output:
rect = rect.Union(self.Output.GetRedrawRect(movex, movey))
if movex != 0 or movey != 0:
if self.Input.IsConnected():
rect = rect.Union(self.Input.GetConnectedRedrawRect(movex, movey))
if self.Output.IsConnected():
rect = rect.Union(self.Output.GetConnectedRedrawRect(movex, movey))
if self.Type == "connection" and self.Condition.IsConnected():
rect = rect.Union(self.Condition.GetConnectedRedrawRect(movex, movey))
return rect
# Forbids to change the transition size
def SetSize(self, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.SetSize(self, width, height)
# Forbids to resize the transition
def Resize(self, x, y, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.Resize(self, x, y, width, height)
# Refresh the size of text for name
def RefreshConditionSize(self):
if self.Type != "connection":
if self.Condition != "":
self.ConditionSize = self.Parent.GetTextExtent(self.Condition)
else:
self.ConditionSize = self.Parent.GetTextExtent("Transition")
# Refresh the size of text for name
def RefreshPrioritySize(self):
if self.Priority != "":
self.PrioritySize = self.Parent.GetTextExtent(str(self.Priority))
else:
self.PrioritySize = None
# Delete this transition by calling the appropriate method
def Delete(self):
self.Parent.DeleteTransition(self)
# Unconnect input and output
def Clean(self):
self.Input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
self.Output.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
if self.Type == "connection":
self.Condition.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Returns if the point given is in the bounding box
def HitTest(self, pt, connectors=True):
if self.Type != "connection":
# Calculate the bounding box of the condition outside the transition
text_width, text_height = self.ConditionSize
text_bbx = wx.Rect(self.Pos.x + self.Size[0] + 5,
self.Pos.y + (self.Size[1] - text_height) // 2,
text_width,
text_height)
test_text = text_bbx.Contains(pt.x, pt.y)
else:
test_text = False
return test_text or Graphic_Element.HitTest(self, pt, connectors)
# Refresh the transition bounding box
def RefreshBoundingBox(self):
bbx_x, bbx_y, bbx_width, bbx_height = self.Pos.x, self.Pos.y, self.Size[0], self.Size[1]
if self.Priority != 0:
bbx_y = self.Pos.y - self.PrioritySize[1] - 2
bbx_width = max(self.Size[0], self.PrioritySize[0])
bbx_height = self.Size[1] + self.PrioritySize[1] + 2
if self.Type == "connection":
bbx_x = self.Pos.x - CONNECTOR_SIZE
bbx_width = bbx_width + CONNECTOR_SIZE
else:
text_width, text_height = self.ConditionSize
# Calculate the bounding box size
bbx_width = max(bbx_width, self.Size[0] + 5 + text_width)
bbx_y = min(bbx_y, self.Pos.y - max(0, (text_height - self.Size[1]) // 2))
bbx_height = max(bbx_height, self.Pos.y - bbx_y + (self.Size[1] + text_height) // 2)
self.BoundingBox = wx.Rect(bbx_x, bbx_y, bbx_width + 1, bbx_height + 1)
# Returns the connector connected to input
def GetPreviousConnector(self):
wires = self.Input.GetWires()
if len(wires) == 1:
return wires[0][0].GetOtherConnected(self.Input)
return None
# Returns the connector connected to output
def GetNextConnector(self):
wires = self.Output.GetWires()
if len(wires) == 1:
return wires[0][0].GetOtherConnected(self.Output)
return None
# Refresh the positions of the transition connectors
def RefreshConnectors(self):
scaling = self.Parent.GetScaling()
horizontal_pos = self.Size[0] // 2
vertical_pos = self.Size[1] // 2
if scaling is not None:
horizontal_pos = round((self.Pos.x + horizontal_pos) / scaling[0]) * scaling[0] - self.Pos.x
vertical_pos = round((self.Pos.y + vertical_pos) / scaling[1]) * scaling[1] - self.Pos.y
# Update input position
self.Input.SetPosition(wx.Point(horizontal_pos, 0))
# Update output position
self.Output.SetPosition(wx.Point(horizontal_pos, self.Size[1]))
if self.Type == "connection":
self.Condition.SetPosition(wx.Point(0, vertical_pos))
self.RefreshConnected()
# Refresh the position of the wires connected to transition
def RefreshConnected(self, exclude=None):
self.Input.MoveConnected(exclude)
self.Output.MoveConnected(exclude)
if self.Type == "connection":
self.Condition.MoveConnected(exclude)
# Returns the transition connector that starts with the point given if it exists
def GetConnector(self, position, name=None):
# if a name is given
if name is not None:
# Test input and output connector
# if name == self.Input.GetName():
# return self.Input
if name == self.Output.GetName():
return self.Output
if self.Type == "connection" and name == self.Condition.GetName():
return self.Condition
connectors = [self.Input, self.Output]
if self.Type == "connection":
connectors.append(self.Condition)
return self.FindNearestConnector(position, connectors)
# Returns the transition condition connector
def GetConditionConnector(self):
if self.Type == "connection":
return self.Condition
return None
# Returns input and output transition connectors
def GetConnectors(self):
return {"inputs": [self.Input], "outputs": [self.Output]}
# Test if point given is on transition input or output connector
def TestConnector(self, pt, direction=None, exclude=True):
# Test input connector
if self.Input.TestPoint(pt, direction, exclude):
return self.Input
# Test output connector
if self.Output.TestPoint(pt, direction, exclude):
return self.Output
# Test condition connector
if self.Type == "connection" and self.Condition.TestPoint(pt, direction, exclude):
return self.Condition
return None
# Changes the transition type
def SetType(self, type, condition=None):
if self.Type != type:
if self.Type == "connection":
self.Condition.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
self.Type = type
if type == "connection":
self.Condition = Connector(self, "", "BOOL", wx.Point(0, self.Size[1] // 2), WEST)
else:
if condition is None:
condition = ""
self.Condition = condition
self.RefreshConditionSize()
elif self.Type != "connection":
if condition is None:
condition = ""
self.Condition = condition
self.RefreshConditionSize()
self.RefreshBoundingBox()
# Returns the transition type
def GetType(self):
return self.Type
# Changes the transition priority
def SetPriority(self, priority):
self.Priority = priority
self.RefreshPrioritySize()
self.RefreshBoundingBox()
# Returns the transition type
def GetPriority(self):
return self.Priority
# Returns the transition condition
def GetCondition(self):
if self.Type != "connection":
return self.Condition
return None
# Returns the transition minimum size
def GetMinSize(self):
return SFC_TRANSITION_SIZE
# Align input element with this step
def RefreshInputPosition(self):
current_pos = self.Input.GetPosition(False)
input = self.GetPreviousConnector()
if input:
input_pos = input.GetPosition(False)
diffx = current_pos.x - input_pos.x
input_block = input.GetParentBlock()
if isinstance(input_block, SFC_Divergence):
input_block.MoveConnector(input, diffx)
else:
if isinstance(input_block, SFC_Step):
input_block.MoveActionBlock((diffx, 0))
input_block.Move(diffx, 0)
input_block.RefreshInputPosition()
# Align output element with this step
def RefreshOutputPosition(self, move=None):
wires = self.Output.GetWires()
if len(wires) != 1:
return
current_pos = self.Output.GetPosition(False)
output = wires[0][0].GetOtherConnected(self.Output)
output_pos = output.GetPosition(False)
diffx = current_pos.x - output_pos.x
output_block = output.GetParentBlock()
if move:
if isinstance(output_block, SFC_Step):
output_block.MoveActionBlock(move)
wires[0][0].Move(move[0], move[1], True)
if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
output_block.Move(move[0], move[1], self.Parent.Wires)
output_block.RefreshOutputPosition(move)
else:
output_block.RefreshPosition()
elif isinstance(output_block, SFC_Divergence):
output_block.MoveConnector(output, diffx)
else:
if isinstance(output_block, SFC_Step):
output_block.MoveActionBlock((diffx, 0))
output_block.Move(diffx, 0)
output_block.RefreshOutputPosition()
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the transition properties
self.Parent.EditTransitionContent(self)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
# Popup the menu with special items for a step
self.Parent.PopupDefaultMenu()
# Refreshes the transition state according to move defined and handle selected
def ProcessDragging(self, movex, movey, event, scaling):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
movex = max(-self.BoundingBox.x, movex)
if scaling is not None:
movex = round((self.Pos.x + movex) / scaling[0]) * scaling[0] - self.Pos.x
self.Move(movex, 0)
self.RefreshInputPosition()
self.RefreshOutputPosition()
return movex, 0
else:
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling, width_fac=2, height_fac=2)
# Refresh input element model
def RefreshInputModel(self):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
input = self.GetPreviousConnector()
if input:
input_block = input.GetParentBlock()
input_block.RefreshModel(False)
if not isinstance(input_block, SFC_Divergence):
input_block.RefreshInputModel()
# Refresh output element model
def RefreshOutputModel(self, move=False):
output = self.GetNextConnector()
if output:
output_block = output.GetParentBlock()
output_block.RefreshModel(False)
if not isinstance(output_block, SFC_Divergence) or move:
output_block.RefreshOutputModel(move)
# Refreshes the transition model
def RefreshModel(self, move=True):
self.Parent.RefreshTransitionModel(self)
# If transition has moved, refresh the model of wires connected to output
if move:
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
self.RefreshInputModel()
self.RefreshOutputModel()
else:
self.Output.RefreshWires()
# Adds an highlight to the block
def AddHighlight(self, infos, start, end, highlight_type):
if infos[0] in ["reference", "inline", "priority"] and start[0] == 0 and end[0] == 0:
highlights = self.Highlights.setdefault(infos[0], [])
AddHighlight(highlights, (start, end, highlight_type))
# Removes an highlight from the block
def RemoveHighlight(self, infos, start, end, highlight_type):
if infos[0] in ["reference", "inline", "priority"]:
highlights = self.Highlights.get(infos[0], [])
if RemoveHighlight(highlights, (start, end, highlight_type)) and len(highlights) == 0:
self.Highlights.pop(infos[0])
# Removes all the highlights of one particular type from the block
def ClearHighlight(self, highlight_type=None):
if highlight_type is None:
self.Highlights = {}
else:
highlight_items = list(self.Highlights.items())
for name, highlights in highlight_items:
highlights = ClearHighlights(highlights, highlight_type)
if len(highlights) == 0:
self.Highlights.pop(name)
# Draws transition
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
if self.Value:
if self.Forced:
dc.SetPen(MiterPen(wx.CYAN))
dc.SetBrush(wx.CYAN_BRUSH)
else:
dc.SetPen(MiterPen(wx.GREEN))
dc.SetBrush(wx.GREEN_BRUSH)
elif self.Forced:
dc.SetPen(MiterPen(wx.BLUE))
dc.SetBrush(wx.BLUE_BRUSH)
else:
dc.SetPen(MiterPen(wx.BLACK))
dc.SetBrush(wx.BLACK_BRUSH)
if getattr(dc, "printing", False):
if self.Type != "connection":
condition_size = dc.GetTextExtent(self.Condition)
if self.Priority != 0:
priority_size = dc.GetTextExtent(str(self.Priority))
else:
if self.Type != "connection":
condition_size = self.ConditionSize
if self.Priority != 0:
priority_size = self.PrioritySize
# Draw plain rectangle for representing the transition
dc.DrawRectangle(self.Pos.x,
self.Pos.y + (self.Size[1] - SFC_TRANSITION_SIZE[1]) // 2,
self.Size[0] + 1,
SFC_TRANSITION_SIZE[1] + 1)
vertical_line_x = self.Input.GetPosition()[0]
dc.DrawLine(vertical_line_x, self.Pos.y, vertical_line_x, self.Pos.y + self.Size[1] + 1)
# Draw transition condition
if self.Type != "connection":
if self.Condition != "":
condition = self.Condition
else:
condition = "Transition"
condition_pos = (self.Pos.x + self.Size[0] + 5,
self.Pos.y + (self.Size[1] - condition_size[1]) // 2)
dc.DrawText(condition, condition_pos[0], condition_pos[1])
# Draw priority number
if self.Priority != 0:
priority_pos = (self.Pos.x, self.Pos.y - priority_size[1] - 2)
dc.DrawText(str(self.Priority), priority_pos[0], priority_pos[1])
# Draw input and output connectors
self.Input.Draw(dc)
self.Output.Draw(dc)
if self.Type == "connection":
self.Condition.Draw(dc)
if not getattr(dc, "printing", False):
for name, highlights in self.Highlights.items():
if name == "priority":
DrawHighlightedText(dc, str(self.Priority), highlights, priority_pos[0], priority_pos[1])
else:
DrawHighlightedText(dc, condition, highlights, condition_pos[0], condition_pos[1])
# -------------------------------------------------------------------------------
# Sequencial Function Chart Divergence and Convergence
# -------------------------------------------------------------------------------
class SFC_Divergence(Graphic_Element):
"""
Class that implements the graphic representation of a divergence or convergence,
selection or simultaneous
"""
# Create a new divergence
def __init__(self, parent, type, number=2, id=None):
Graphic_Element.__init__(self, parent)
self.Type = type
self.Id = id
self.RealConnectors = None
number = max(2, number)
self.Size = wx.Size((number - 1) * SFC_DEFAULT_SEQUENCE_INTERVAL, self.GetMinSize()[1])
# Create an input and output connector
if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
self.Inputs = [Connector(self, "", None, wx.Point(self.Size[0] // 2, 0), NORTH, onlyone=True)]
self.Outputs = []
for i in range(number):
self.Outputs.append(Connector(self, "", None, wx.Point(i * SFC_DEFAULT_SEQUENCE_INTERVAL, self.Size[1]), SOUTH, onlyone=True))
elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
self.Inputs = []
for i in range(number):
self.Inputs.append(Connector(self, "", None, wx.Point(i * SFC_DEFAULT_SEQUENCE_INTERVAL, 0), NORTH, onlyone=True))
self.Outputs = [Connector(self, "", None, wx.Point(self.Size[0] // 2, self.Size[1]), SOUTH, onlyone=True)]
self.Value = None
self.PreviousValue = None
def Flush(self):
for input in self.Inputs:
input.Flush()
self.Inputs = []
for output in self.Outputs:
output.Flush()
self.Outputs = []
def SpreadCurrent(self):
if self.Parent.Debug:
self.PreviousValue = self.Value
if self.Type == SELECTION_CONVERGENCE:
self.Value = False
for input in self.Inputs:
self.Value |= input.ReceivingCurrent()
elif self.Type == SIMULTANEOUS_CONVERGENCE:
self.Value = True
for input in self.Inputs:
self.Value &= input.ReceivingCurrent()
elif self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
self.Value = self.Inputs[0].ReceivingCurrent()
else:
self.Value = False
if self.Value and not self.PreviousValue:
if self.Visible:
self.Parent.ElementNeedRefresh(self)
for output in self.Outputs:
output.SpreadCurrent(True)
elif not self.Value and self.PreviousValue:
if self.Visible:
self.Parent.ElementNeedRefresh(self)
for output in self.Outputs:
output.SpreadCurrent(False)
# Make a clone of this SFC_Divergence
def Clone(self, parent, id=None, pos=None):
divergence = SFC_Divergence(parent, self.Type, max(len(self.Inputs), len(self.Outputs)), id)
divergence.SetSize(self.Size[0], self.Size[1])
if pos is not None:
divergence.SetPosition(pos.x, pos.y)
else:
divergence.SetPosition(self.Pos.x, self.Pos.y)
divergence.Inputs = [input.Clone(divergence) for input in self.Inputs]
divergence.Outputs = [output.Clone(divergence) for output in self.Outputs]
return divergence
def GetConnectorTranslation(self, element):
return dict(list(zip(self.Inputs + self.Outputs, element.Inputs + element.Outputs)))
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
if movex != 0 or movey != 0:
for input in self.Inputs:
if input.IsConnected():
rect = rect.Union(input.GetConnectedRedrawRect(movex, movey))
for output in self.Outputs:
if output.IsConnected():
rect = rect.Union(output.GetConnectedRedrawRect(movex, movey))
return rect
# Forbids to resize the divergence
def Resize(self, x, y, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.Resize(self, x, 0, width, self.GetMinSize()[1])
# Delete this divergence by calling the appropriate method
def Delete(self):
self.Parent.DeleteDivergence(self)
# Returns the divergence type
def GetType(self):
return self.Type
# Unconnect input and output
def Clean(self):
for input in self.Inputs:
input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
for output in self.Outputs:
output.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Add a branch to the divergence
def AddBranch(self):
if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
maxx = 0
for output in self.Outputs:
pos = output.GetRelPosition()
maxx = max(maxx, pos.x)
connector = Connector(self, "", None, wx.Point(maxx + SFC_DEFAULT_SEQUENCE_INTERVAL, self.Size[1]), SOUTH, onlyone=True)
self.Outputs.append(connector)
self.MoveConnector(connector, 0)
elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
maxx = 0
for input in self.Inputs:
pos = input.GetRelPosition()
maxx = max(maxx, pos.x)
connector = Connector(self, "", None, wx.Point(maxx + SFC_DEFAULT_SEQUENCE_INTERVAL, 0), NORTH, onlyone=True)
self.Inputs.append(connector)
self.MoveConnector(connector, SFC_DEFAULT_SEQUENCE_INTERVAL)
# Remove a branch from the divergence
def RemoveBranch(self, connector):
if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
if connector in self.Outputs and len(self.Outputs) > 2:
self.Outputs.remove(connector)
self.MoveConnector(self.Outputs[0], 0)
elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
if connector in self.Inputs and len(self.Inputs) > 2:
self.Inputs.remove(connector)
self.MoveConnector(self.Inputs[0], 0)
# Remove the handled branch from the divergence
def RemoveHandledBranch(self):
handle_type, handle = self.Handle
if handle_type == HANDLE_CONNECTOR:
handle.UnConnect(delete=True)
self.RemoveBranch(handle)
# Return the number of branches for the divergence
def GetBranchNumber(self):
if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
return len(self.Outputs)
elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
return len(self.Inputs)
# Returns if the point given is in the bounding box
def HitTest(self, pt, connectors=True):
return self.BoundingBox.Contains(pt.x, pt.y) or self.TestConnector(pt, exclude=False) is not None
# Refresh the divergence bounding box
def RefreshBoundingBox(self):
if self.Type in [SELECTION_DIVERGENCE, SELECTION_CONVERGENCE]:
self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y,
self.Size[0] + 1, self.Size[1] + 1)
elif self.Type in [SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE]:
self.BoundingBox = wx.Rect(
self.Pos.x - SFC_SIMULTANEOUS_SEQUENCE_EXTRA, self.Pos.y,
self.Size[0] + 2 * SFC_SIMULTANEOUS_SEQUENCE_EXTRA + 1, self.Size[1] + 1)
# Refresh the position of wires connected to divergence
def RefreshConnected(self, exclude=None):
for input in self.Inputs:
input.MoveConnected(exclude)
for output in self.Outputs:
output.MoveConnected(exclude)
# Moves the divergence connector given
def MoveConnector(self, connector, movex):
position = connector.GetRelPosition()
connector.SetPosition(wx.Point(position.x + movex, position.y))
minx = self.Size[0]
maxx = 0
for input in self.Inputs:
input_pos = input.GetRelPosition()
minx = min(minx, input_pos.x)
maxx = max(maxx, input_pos.x)
for output in self.Outputs:
output_pos = output.GetRelPosition()
minx = min(minx, output_pos.x)
maxx = max(maxx, output_pos.x)
if minx != 0:
for input in self.Inputs:
input_pos = input.GetRelPosition()
input.SetPosition(wx.Point(input_pos.x - minx, input_pos.y))
for output in self.Outputs:
output_pos = output.GetRelPosition()
output.SetPosition(wx.Point(output_pos.x - minx, output_pos.y))
self.Inputs.sort(key=cmp_to_key(lambda x, y: eq(x.Pos.y, y.Pos.y)))
self.Outputs.sort(key=cmp_to_key(lambda x, y: eq(x.Pos.y, y.Pos.y)))
self.Pos.x += minx
self.Size[0] = maxx - minx
connector.MoveConnected()
self.RefreshBoundingBox()
# Returns the divergence connector that starts with the point given if it exists
def GetConnector(self, position, name=None):
# if a name is given
if name is not None:
# Test each input and output connector
# for input in self.Inputs:
# if name == input.GetName():
# return input
for output in self.Outputs:
if name == output.GetName():
return output
return self.FindNearestConnector(position, self.Inputs + self.Outputs)
# Returns input and output divergence connectors
def GetConnectors(self):
return {"inputs": self.Inputs, "outputs": self.Outputs}
# Test if point given is on divergence input or output connector
def TestConnector(self, pt, direction=None, exclude=True):
# Test input connector
for input in self.Inputs:
if input.TestPoint(pt, direction, exclude):
return input
# Test output connector
for output in self.Outputs:
if output.TestPoint(pt, direction, exclude):
return output
return None
# Changes the divergence size
def SetSize(self, width, height):
height = self.GetMinSize()[1]
for i, input in enumerate(self.Inputs):
position = input.GetRelPosition()
if self.RealConnectors:
input.SetPosition(wx.Point(int(round(self.RealConnectors["Inputs"][i] * width)), 0))
else:
input.SetPosition(wx.Point(int(round(position.x*width / self.Size[0])), 0))
input.MoveConnected()
for i, output in enumerate(self.Outputs):
position = output.GetRelPosition()
if self.RealConnectors:
output.SetPosition(wx.Point(int(round(self.RealConnectors["Outputs"][i] * width)), height))
else:
output.SetPosition(wx.Point(int(round(position.x*width / self.Size[0])), height))
output.MoveConnected()
self.Size = wx.Size(width, height)
self.RefreshBoundingBox()
# Returns the divergence minimum size
def GetMinSize(self, default=False):
width = 0
if default:
if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
width = (len(self.Outputs) - 1) * SFC_DEFAULT_SEQUENCE_INTERVAL
elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
width = (len(self.Inputs) - 1) * SFC_DEFAULT_SEQUENCE_INTERVAL
if self.Type in [SELECTION_DIVERGENCE, SELECTION_CONVERGENCE]:
return width, 1
elif self.Type in [SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE]:
return width, 3
return 0, 0
# Refresh the position of the block connected to connector
def RefreshConnectedPosition(self, connector):
wires = connector.GetWires()
if len(wires) != 1:
return
current_pos = connector.GetPosition(False)
next = wires[0][0].GetOtherConnected(connector)
next_pos = next.GetPosition(False)
diffx = current_pos.x - next_pos.x
next_block = next.GetParentBlock()
if isinstance(next_block, SFC_Divergence):
next_block.MoveConnector(next, diffx)
else:
next_block.Move(diffx, 0)
if connector in self.Inputs:
next_block.RefreshInputPosition()
else:
next_block.RefreshOutputPosition()
# Refresh the position of this divergence
def RefreshPosition(self):
y = 0
for input in self.Inputs:
wires = input.GetWires()
if len(wires) != 1:
return
previous = wires[0][0].GetOtherConnected(input)
previous_pos = previous.GetPosition(False)
y = max(y, previous_pos.y + GetWireSize(previous.GetParentBlock()))
diffy = y - self.Pos.y
if diffy != 0:
self.Move(0, diffy, self.Parent.Wires)
self.RefreshOutputPosition((0, diffy))
for input in self.Inputs:
input.MoveConnected()
# Align output element with this divergence
def RefreshOutputPosition(self, move=None):
if move:
for output_connector in self.Outputs:
wires = output_connector.GetWires()
if len(wires) != 1:
return
output = wires[0][0].GetOtherConnected(self.Output)
output_block = output.GetParentBlock()
if isinstance(output_block, SFC_Step):
output_block.MoveActionBlock(move)
wires[0][0].Move(move[0], move[1], True)
if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
output_block.Move(move[0], move[1], self.Parent.Wires)
output_block.RefreshOutputPosition(move)
# Method called when a LeftDown event have been generated
def OnLeftDown(self, event, dc, scaling):
self.RealConnectors = {"Inputs": [], "Outputs": []}
for input in self.Inputs:
position = input.GetRelPosition()
self.RealConnectors["Inputs"].append(position.x / self.Size[0])
for output in self.Outputs:
position = output.GetRelPosition()
self.RealConnectors["Outputs"].append(position.x / self.Size[0])
Graphic_Element.OnLeftDown(self, event, dc, scaling)
# Method called when a LeftUp event have been generated
def OnLeftUp(self, event, dc, scaling):
Graphic_Element.OnLeftUp(self, event, dc, scaling)
self.RealConnectors = None
# Method called when a RightDown event have been generated
def OnRightDown(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
# Test if a connector have been handled
connector = self.TestConnector(pos, exclude=False)
if connector:
self.Handle = (HANDLE_CONNECTOR, connector)
wx.CallAfter(self.Parent.SetCurrentCursor, 1)
self.Selected = False
# Initializes the last position
self.oldPos = GetScaledEventPosition(event, dc, scaling)
else:
Graphic_Element.OnRightDown(self, event, dc, scaling)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
handle_type, handle = self.Handle
if handle_type == HANDLE_CONNECTOR and self.Dragging and self.oldPos:
wires = handle.GetWires()
if len(wires) == 1:
block = wires[0][0].GetOtherConnected(handle).GetParentBlock()
block.RefreshModel(False)
if not isinstance(block, SFC_Divergence):
if handle in self.Inputs:
block.RefreshInputModel()
else:
block.RefreshOutputModel()
Graphic_Element.OnRightUp(self, event, dc, scaling)
else:
# Popup the menu with special items for a block and a connector if one is handled
connector = self.TestConnector(pos, exclude=False)
if connector:
self.Handle = (HANDLE_CONNECTOR, connector)
self.Parent.PopupDivergenceMenu(True)
else:
# Popup the divergence menu without delete branch
self.Parent.PopupDivergenceMenu(False)
# Refreshes the divergence state according to move defined and handle selected
def ProcessDragging(self, movex, movey, event, scaling):
handle_type, handle = self.Handle
# A connector has been handled
if handle_type == HANDLE_CONNECTOR:
movex = max(-self.BoundingBox.x, movex)
if scaling is not None:
movex = round((self.Pos.x + movex) / scaling[0]) * scaling[0] - self.Pos.x
self.MoveConnector(handle, movex)
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
self.RefreshConnectedPosition(handle)
return movex, 0
elif self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
return 0, 0
# Refresh output element model
def RefreshOutputModel(self, move=False):
if move and self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
for output in self.Outputs:
wires = output.GetWires()
if len(wires) != 1:
return
output_block = wires[0][0].GetOtherConnected(output).GetParentBlock()
output_block.RefreshModel(False)
if not isinstance(output_block, SFC_Divergence) or move:
output_block.RefreshOutputModel(move)
# Refreshes the divergence model
def RefreshModel(self, move=True):
self.Parent.RefreshDivergenceModel(self)
# If divergence has moved, refresh the model of wires connected to outputs
if move:
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
self.RefreshOutputModel()
else:
for output in self.Outputs:
output.RefreshWires()
# Draws the highlightment of this element if it is highlighted
def DrawHighlightment(self, dc):
scalex, scaley = dc.GetUserScale()
dc.SetUserScale(1, 1)
dc.SetPen(MiterPen(HIGHLIGHTCOLOR))
dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
dc.SetLogicalFunction(wx.AND)
# Draw two rectangles for representing the contact
posx = self.Pos.x
width = self.Size[0]
if self.Type in [SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE]:
posx -= SFC_SIMULTANEOUS_SEQUENCE_EXTRA
width += SFC_SIMULTANEOUS_SEQUENCE_EXTRA * 2
dc.DrawRectangle(int(round((posx - 1) * scalex)) - 2,
int(round((self.Pos.y - 1) * scaley)) - 2,
int(round((width + 3) * scalex)) + 5,
int(round((self.Size.height + 3) * scaley)) + 5)
dc.SetLogicalFunction(wx.COPY)
dc.SetUserScale(scalex, scaley)
# Draws divergence
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
if self.Value:
dc.SetPen(MiterPen(wx.GREEN))
dc.SetBrush(wx.GREEN_BRUSH)
else:
dc.SetPen(MiterPen(wx.BLACK))
dc.SetBrush(wx.BLACK_BRUSH)
# Draw plain rectangle for representing the divergence
if self.Type in [SELECTION_DIVERGENCE, SELECTION_CONVERGENCE]:
dc.DrawRectangle(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
elif self.Type in [SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE]:
dc.DrawLine(self.Pos.x - SFC_SIMULTANEOUS_SEQUENCE_EXTRA, self.Pos.y,
self.Pos.x + self.Size[0] + SFC_SIMULTANEOUS_SEQUENCE_EXTRA + 1, self.Pos.y)
dc.DrawLine(self.Pos.x - SFC_SIMULTANEOUS_SEQUENCE_EXTRA, self.Pos.y + self.Size[1],
self.Pos.x + self.Size[0] + SFC_SIMULTANEOUS_SEQUENCE_EXTRA + 1, self.Pos.y + self.Size[1])
# Draw inputs and outputs connectors
for input in self.Inputs:
input.Draw(dc)
for output in self.Outputs:
output.Draw(dc)
# -------------------------------------------------------------------------------
# Sequencial Function Chart Jump to Step
# -------------------------------------------------------------------------------
class SFC_Jump(Graphic_Element):
"""
Class that implements the graphic representation of a jump to step
"""
# Create a new jump
def __init__(self, parent, target, id=None):
Graphic_Element.__init__(self, parent)
self.SetTarget(target)
self.Id = id
self.Size = wx.Size(SFC_JUMP_SIZE[0], SFC_JUMP_SIZE[1])
self.Highlights = []
# Create an input and output connector
self.Input = Connector(self, "", None, wx.Point(self.Size[0] // 2, 0), NORTH, onlyone=True)
self.Value = None
self.PreviousValue = None
def Flush(self):
if self.Input is not None:
self.Input.Flush()
self.Input = None
def SpreadCurrent(self):
if self.Parent.Debug:
self.PreviousValue = self.Value
self.Value = self.Input.ReceivingCurrent()
if self.Value != self.PreviousValue and self.Visible:
self.Parent.ElementNeedRefresh(self)
# Make a clone of this SFC_Jump
def Clone(self, parent, id=None, pos=None):
jump = SFC_Jump(parent, self.Target, id)
jump.SetSize(self.Size[0], self.Size[1])
if pos is not None:
jump.SetPosition(pos.x, pos.y)
else:
jump.SetPosition(self.Pos.x, self.Pos.y)
jump.Input = self.Input.Clone(jump)
return jump
def GetConnectorTranslation(self, element):
return {self.Input: element.Input}
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
if self.Input:
rect = rect.Union(self.Input.GetRedrawRect(movex, movey))
if movex != 0 or movey != 0:
if self.Input.IsConnected():
rect = rect.Union(self.Input.GetConnectedRedrawRect(movex, movey))
return rect
# Forbids to change the jump size
def SetSize(self, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.SetSize(self, width, height)
# Forbids to resize jump
def Resize(self, x, y, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.Resize(self, x, y, width, height)
# Delete this jump by calling the appropriate method
def Delete(self):
self.Parent.DeleteJump(self)
# Unconnect input
def Clean(self):
self.Input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Refresh the size of text for target
def RefreshTargetSize(self):
self.TargetSize = self.Parent.GetTextExtent(self.Target)
# Returns if the point given is in the bounding box
def HitTest(self, pt, connectors=True):
# Calculate the bounding box of the condition outside the transition
text_width, text_height = self.TargetSize
text_bbx = wx.Rect(self.Pos.x + self.Size[0] + 2,
self.Pos.y + (self.Size[1] - text_height) // 2,
text_width,
text_height)
return text_bbx.Contains(pt.x, pt.y) or Graphic_Element.HitTest(self, pt, connectors)
# Refresh the jump bounding box
def RefreshBoundingBox(self):
text_width, _text_height = self.Parent.GetTextExtent(self.Target)
# Calculate the bounding box size
bbx_width = self.Size[0] + 2 + text_width
self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y - CONNECTOR_SIZE,
bbx_width + 1, self.Size[1] + CONNECTOR_SIZE + 1)
# Returns the connector connected to input
def GetPreviousConnector(self):
wires = self.Input.GetWires()
if len(wires) == 1:
return wires[0][0].GetOtherConnected(self.Input)
return None
# Refresh the element connectors position
def RefreshConnectors(self):
scaling = self.Parent.GetScaling()
horizontal_pos = self.Size[0] // 2
if scaling is not None:
horizontal_pos = round((self.Pos.x + horizontal_pos) / scaling[0]) * scaling[0] - self.Pos.x
self.Input.SetPosition(wx.Point(horizontal_pos, 0))
self.RefreshConnected()
# Refresh the position of wires connected to jump
def RefreshConnected(self, exclude=None):
if self.Input:
self.Input.MoveConnected(exclude)
# Returns input jump connector
def GetConnector(self, position=None, name=None):
return self.Input
# Returns all the jump connectors
def GetConnectors(self):
return {"inputs": [self.Input], "outputs": []}
# Test if point given is on jump input connector
def TestConnector(self, pt, direction=None, exclude=True):
# Test input connector
if self.Input and self.Input.TestPoint(pt, direction, exclude):
return self.Input
return None
# Changes the jump target
def SetTarget(self, target):
self.Target = target
self.RefreshTargetSize()
self.RefreshBoundingBox()
# Returns the jump target
def GetTarget(self):
return self.Target
# Returns the jump minimum size
def GetMinSize(self):
return SFC_JUMP_SIZE
# Align input element with this jump
def RefreshInputPosition(self):
if self.Input:
current_pos = self.Input.GetPosition(False)
input = self.GetPreviousConnector()
if input:
input_pos = input.GetPosition(False)
diffx = current_pos.x - input_pos.x
input_block = input.GetParentBlock()
if isinstance(input_block, SFC_Divergence):
input_block.MoveConnector(input, diffx)
else:
if isinstance(input_block, SFC_Step):
input_block.MoveActionBlock((diffx, 0))
input_block.Move(diffx, 0)
input_block.RefreshInputPosition()
# Can't align output element, because there is no output
def RefreshOutputPosition(self, move=None):
pass
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the jump properties
self.Parent.EditJumpContent(self)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
# Popup the default menu
self.Parent.PopupDefaultMenu()
# Refreshes the jump state according to move defined and handle selected
def ProcessDragging(self, movex, movey, event, scaling):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
movex = max(-self.BoundingBox.x, movex)
if scaling is not None:
movex = round((self.Pos.x + movex) / scaling[0]) * scaling[0] - self.Pos.x
self.Move(movex, 0)
self.RefreshInputPosition()
return movex, 0
else:
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling, width_fac=2)
# Refresh input element model
def RefreshInputModel(self):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
input = self.GetPreviousConnector()
if input:
input_block = input.GetParentBlock()
input_block.RefreshModel(False)
if not isinstance(input_block, SFC_Divergence):
input_block.RefreshInputModel()
# Refresh output element model
def RefreshOutputModel(self, move=False):
pass
# Refreshes the jump model
def RefreshModel(self, move=True):
self.Parent.RefreshJumpModel(self)
if move:
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
self.RefreshInputModel()
# Adds an highlight to the variable
def AddHighlight(self, infos, start, end, highlight_type):
if infos[0] == "target" and start[0] == 0 and end[0] == 0:
AddHighlight(self.Highlights, (start, end, highlight_type))
# Removes an highlight from the variable
def RemoveHighlight(self, infos, start, end, highlight_type):
if infos[0] == "target":
RemoveHighlight(self.Highlights, (start, end, highlight_type))
# Removes all the highlights of one particular type from the variable
def ClearHighlight(self, highlight_type=None):
ClearHighlights(self.Highlights, highlight_type)
# Draws the highlightment of this element if it is highlighted
def DrawHighlightment(self, dc):
scalex, scaley = dc.GetUserScale()
dc.SetUserScale(1, 1)
dc.SetPen(MiterPen(HIGHLIGHTCOLOR))
dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
dc.SetLogicalFunction(wx.AND)
points = [wx.Point(int(round((self.Pos.x - 2) * scalex)) - 3,
int(round((self.Pos.y - 2) * scaley)) - 2),
wx.Point(int(round((self.Pos.x + self.Size[0] + 2) * scalex)) + 4,
int(round((self.Pos.y - 2) * scaley)) - 2),
wx.Point(int(round((self.Pos.x + self.Size[0] / 2) * scalex)),
int(round((self.Pos.y + self.Size[1] + 3) * scaley)) + 4)]
dc.DrawPolygon(points)
dc.SetLogicalFunction(wx.COPY)
dc.SetUserScale(scalex, scaley)
# Draws divergence
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
if self.Value:
dc.SetPen(MiterPen(wx.GREEN))
dc.SetBrush(wx.GREEN_BRUSH)
else:
dc.SetPen(MiterPen(wx.BLACK))
dc.SetBrush(wx.BLACK_BRUSH)
if getattr(dc, "printing", False):
target_size = dc.GetTextExtent(self.Target)
else:
target_size = self.TargetSize
# Draw plain rectangle for representing the divergence
dc.DrawLine(self.Pos.x + self.Size[0] // 2, self.Pos.y, self.Pos.x + self.Size[0] // 2, self.Pos.y + self.Size[1])
points = [wx.Point(self.Pos.x, self.Pos.y),
wx.Point(self.Pos.x + self.Size[0] // 2, self.Pos.y + self.Size[1] // 3),
wx.Point(self.Pos.x + self.Size[0], self.Pos.y),
wx.Point(self.Pos.x + self.Size[0] // 2, self.Pos.y + self.Size[1])]
dc.DrawPolygon(points)
target_pos = (self.Pos.x + self.Size[0] + 2,
self.Pos.y + (self.Size[1] - target_size[1]) // 2)
dc.DrawText(self.Target, target_pos[0], target_pos[1])
# Draw input connector
if self.Input:
self.Input.Draw(dc)
if not getattr(dc, "printing", False):
DrawHighlightedText(dc, self.Target, self.Highlights, target_pos[0], target_pos[1])
# -------------------------------------------------------------------------------
# Sequencial Function Chart Action Block
# -------------------------------------------------------------------------------
class SFC_ActionBlock(Graphic_Element):
"""
Class that implements the graphic representation of an action block
"""
# Create a new action block
def __init__(self, parent, actions=None, id=None):
Graphic_Element.__init__(self, parent)
self.Id = id
self.Size = wx.Size(SFC_ACTION_MIN_SIZE[0], SFC_ACTION_MIN_SIZE[1])
self.MinSize = wx.Size(SFC_ACTION_MIN_SIZE[0], SFC_ACTION_MIN_SIZE[1])
self.Highlights = {}
# Create an input and output connector
self.Input = Connector(self, "", None, wx.Point(0, SFC_ACTION_MIN_SIZE[1] // 2), WEST, onlyone=True)
self.SetActions(actions)
self.Value = None
self.PreviousValue = None
def Flush(self):
if self.Input is not None:
self.Input.Flush()
self.Input = None
def SpreadCurrent(self):
if self.Parent.Debug:
self.PreviousValue = self.Value
self.Value = self.Input.ReceivingCurrent()
if self.Value != self.PreviousValue and self.Visible:
self.Parent.ElementNeedRefresh(self)
# Make a clone of this SFC_ActionBlock
def Clone(self, parent, id=None, pos=None):
actions = [action.copy() for action in self.Actions]
action_block = SFC_ActionBlock(parent, actions, id)
action_block.SetSize(self.Size[0], self.Size[1])
if pos is not None:
action_block.SetPosition(pos.x, pos.y)
else:
action_block.SetPosition(self.Pos.x, self.Pos.y)
action_block.Input = self.Input.Clone(action_block)
return action_block
def GetConnectorTranslation(self, element):
return {self.Input: element.Input}
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
if self.Input:
rect = rect.Union(self.Input.GetRedrawRect(movex, movey))
if movex != 0 or movey != 0:
if self.Input.IsConnected():
rect = rect.Union(self.Input.GetConnectedRedrawRect(movex, movey))
return rect
# Returns the number of action lines
def GetLineNumber(self):
return len(self.Actions)
def GetLineSize(self):
if len(self.Actions) > 0:
return self.Size[1] // len(self.Actions)
else:
return SFC_ACTION_MIN_SIZE[1]
# Forbids to resize the action block
def Resize(self, x, y, width, height):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
if x == 0:
self.SetSize(width, self.Size[1])
else:
Graphic_Element.Resize(self, x, y, width, height)
# Delete this action block by calling the appropriate method
def Delete(self):
self.Parent.DeleteActionBlock(self)
# Unconnect input and output
def Clean(self):
self.Input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Refresh the action block bounding box
def RefreshBoundingBox(self):
self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
# Refresh the position of wires connected to action block
def RefreshConnected(self, exclude=None):
self.Input.MoveConnected(exclude)
# Returns input action block connector
def GetConnector(self, position=None, name=None):
return self.Input
# Returns all the action block connectors
def GetConnectors(self):
return {"inputs": [self.Input], "outputs": []}
# Test if point given is on action block input connector
def TestConnector(self, pt, direction=None, exclude=True):
# Test input connector
if self.Input.TestPoint(pt, direction, exclude):
return self.Input
return None
# Refresh the element connectors position
def RefreshConnectors(self):
scaling = self.Parent.GetScaling()
vertical_pos = SFC_ACTION_MIN_SIZE[1] // 2
if scaling is not None:
vertical_pos = round((self.Pos.y + vertical_pos) / scaling[1]) * scaling[1] - self.Pos.y
self.Input.SetPosition(wx.Point(0, vertical_pos))
self.RefreshConnected()
# Changes the action block actions
def SetActions(self, actions=None):
actions = [] if actions is None else actions
self.Actions = actions
self.ColSize = [0, 0, 0]
min_height = 0
for action in self.Actions:
width, height = self.Parent.GetTextExtent(
action.qualifier if action.qualifier != "" else "N")
self.ColSize[0] = max(self.ColSize[0], width + 10)
row_height = height
if action.duration != "":
width, height = self.Parent.GetTextExtent(action.duration)
row_height = max(row_height, height)
self.ColSize[0] = max(self.ColSize[0], width + 10)
width, height = self.Parent.GetTextExtent(action.value)
row_height = max(row_height, height)
self.ColSize[1] = max(self.ColSize[1], width + 10)
if action.indicator != "":
width, height = self.Parent.GetTextExtent(action.indicator)
row_height = max(row_height, height)
self.ColSize[2] = max(self.ColSize[2], width + 10)
min_height += row_height + 5
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
self.Size = wx.Size(self.ColSize[0] + self.ColSize[1] + self.ColSize[2], max(min_height, SFC_ACTION_MIN_SIZE[1], self.Size[1]))
self.MinSize = max(self.ColSize[0] + self.ColSize[1] + self.ColSize[2],
SFC_ACTION_MIN_SIZE[0]), max(SFC_ACTION_MIN_SIZE[1], min_height)
self.RefreshBoundingBox()
else:
self.Size = wx.Size(max(self.ColSize[0] + self.ColSize[1] + self.ColSize[2],
SFC_ACTION_MIN_SIZE[0]),
len(self.Actions) * SFC_ACTION_MIN_SIZE[1])
self.MinSize = max(self.ColSize[0] + self.ColSize[1] + self.ColSize[2],
SFC_ACTION_MIN_SIZE[0]), len(self.Actions) * SFC_ACTION_MIN_SIZE[1]
self.RefreshBoundingBox()
if self.Input is not None:
wires = self.Input.GetWires()
if len(wires) == 1:
input_block = wires[0][0].GetOtherConnected(self.Input).GetParentBlock()
input_block.RefreshOutputPosition()
input_block.RefreshOutputModel(True)
# Returns the action block actions
def GetActions(self):
return self.Actions
# Returns the action block minimum size
def GetMinSize(self):
return self.MinSize
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the action block properties
self.Parent.EditActionBlockContent(self)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
# Popup the default menu
self.Parent.PopupDefaultMenu()
# Refreshes the action block state according to move defined and handle selected
def ProcessDragging(self, movex, movey, event, scaling):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
handle_type, _handle = self.Handle
if handle_type == HANDLE_MOVE:
movex = max(-self.BoundingBox.x, movex)
if scaling is not None:
movex = round((self.Pos.x + movex) / scaling[0]) * scaling[0] - self.Pos.x
wires = self.Input.GetWires()
if len(wires) == 1:
input_pos = wires[0][0].GetOtherConnected(self.Input).GetPosition(False)
if self.Pos.x - input_pos.x + movex >= SFC_WIRE_MIN_SIZE:
self.Move(movex, 0)
return movex, 0
return 0, 0
else:
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
else:
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
# Refreshes the action block model
def RefreshModel(self, move=True):
self.Parent.RefreshActionBlockModel(self)
# Adds an highlight to the variable
def AddHighlight(self, infos, start, end, highlight_type):
if infos[0] == "action" and infos[1] < len(self.Actions):
action_highlights = self.Highlights.setdefault(infos[1], {})
attribute_highlights = action_highlights.setdefault(infos[2], [])
AddHighlight(attribute_highlights, (start, end, highlight_type))
# Removes an highlight from the block
def RemoveHighlight(self, infos, start, end, highlight_type):
if infos[0] == "action" and infos[1] < len(self.Actions):
action_highlights = self.Highlights.get(infos[1], {})
attribute_highlights = action_highlights.setdefault(infos[2], [])
if RemoveHighlight(attribute_highlights, (start, end, highlight_type)) and len(attribute_highlights) == 0:
action_highlights.pop(infos[2])
if len(action_highlights) == 0:
self.Highlights.pop(infos[1])
# Removes all the highlights of one particular type from the block
def ClearHighlight(self, highlight_type=None):
if highlight_type is None:
self.Highlights = {}
else:
highlight_items = list(self.Highlights.items())
for number, action_highlights in highlight_items:
action_highlight_items = list(action_highlights.items())
for name, attribute_highlights in action_highlight_items:
attribute_highlights = ClearHighlights(attribute_highlights, highlight_type)
if len(attribute_highlights) == 0:
action_highlights.pop(name)
if len(action_highlights) == 0:
self.Highlights.pop(number)
# Draws divergence
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
if self.Value:
dc.SetPen(MiterPen(wx.GREEN))
else:
dc.SetPen(MiterPen(wx.BLACK))
dc.SetBrush(wx.WHITE_BRUSH)
colsize = [self.ColSize[0], self.Size[0] - self.ColSize[0] - self.ColSize[2], self.ColSize[2]]
# Draw plain rectangle for representing the action block
dc.DrawRectangle(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
dc.DrawLine(self.Pos.x + colsize[0], self.Pos.y,
self.Pos.x + colsize[0], self.Pos.y + self.Size[1])
dc.DrawLine(self.Pos.x + colsize[0] + colsize[1], self.Pos.y,
self.Pos.x + colsize[0] + colsize[1], self.Pos.y + self.Size[1])
line_size = self.GetLineSize()
for i, action in enumerate(self.Actions):
if i != 0:
dc.DrawLine(self.Pos.x, self.Pos.y + i * line_size,
self.Pos.x + self.Size[0], self.Pos.y + i * line_size)
qualifier_size = dc.GetTextExtent(action.qualifier)
if action.duration != "":
qualifier_pos = (self.Pos.x + (colsize[0] - qualifier_size[0]) // 2,
self.Pos.y + i * line_size + line_size // 2 - qualifier_size[1])
duration_size = dc.GetTextExtent(action.duration)
duration_pos = (self.Pos.x + (colsize[0] - duration_size[0]) // 2,
self.Pos.y + i * line_size + line_size // 2)
dc.DrawText(action.duration, duration_pos[0], duration_pos[1])
else:
qualifier_pos = (self.Pos.x + (colsize[0] - qualifier_size[0]) // 2,
self.Pos.y + i * line_size + (line_size - qualifier_size[1]) // 2)
dc.DrawText(action.qualifier, qualifier_pos[0], qualifier_pos[1])
content_size = dc.GetTextExtent(action.value)
content_pos = (self.Pos.x + colsize[0] + (colsize[1] - content_size[0]) // 2,
self.Pos.y + i * line_size + (line_size - content_size[1]) // 2)
dc.DrawText(action.value, content_pos[0], content_pos[1])
if action.indicator != "":
indicator_size = dc.GetTextExtent(action.indicator)
indicator_pos = (self.Pos.x + colsize[0] + colsize[1] + (colsize[2] - indicator_size[0]) // 2,
self.Pos.y + i * line_size + (line_size - indicator_size[1]) // 2)
dc.DrawText(action.indicator, indicator_pos[0], indicator_pos[1])
if not getattr(dc, "printing", False):
action_highlights = self.Highlights.get(i, {})
for name, attribute_highlights in action_highlights.items():
if name == "qualifier":
DrawHighlightedText(dc, action.qualifier, attribute_highlights, qualifier_pos[0], qualifier_pos[1])
elif name == "duration":
DrawHighlightedText(dc, action.duration, attribute_highlights, duration_pos[0], duration_pos[1])
elif name in ["reference", "inline"]:
DrawHighlightedText(dc, action.value, attribute_highlights, content_pos[0], content_pos[1])
elif name == "indicator":
DrawHighlightedText(dc, action.indicator, attribute_highlights, indicator_pos[0], indicator_pos[1])
# Draw input connector
self.Input.Draw(dc)