SVGHMI: detachable and discardable elements sets, Reworked geometric intersection, toward more accurate page content detection.
Moved page's widget/element dependency crawling functions so that it is possible to compute a global detachable and discardable elements sets.
Reworked geometric intersection detection logic to distinguish ovelapping and inclusion.
Goal is to include englobing and overlapping graphical elements, but not groups (would then include everything around...). Intermediate commit, to be continued.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# This file is part of Beremiz, a Integrated Development Environment for
# programming IEC 61131-3 automates supporting plcopen standard and CanFestival.
#
# Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
#
# See COPYING file for copyrights details.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from __future__ import absolute_import
from __future__ import division
import wx
from future.builtins import round
from six.moves import xrange
from graphics.GraphicCommons import *
from graphics.DebugDataConsumer import DebugDataConsumer
from plcopen.structures import *
# -------------------------------------------------------------------------------
# Ladder Diagram PowerRail
# -------------------------------------------------------------------------------
class LD_PowerRail(Graphic_Element):
"""
Class that implements the graphic representation of a power rail
"""
# Create a new power rail
def __init__(self, parent, type, id=None, connectors=1):
Graphic_Element.__init__(self, parent)
self.Type = None
self.Connectors = []
self.RealConnectors = None
self.Id = id
self.Extensions = [LD_LINE_SIZE // 2, LD_LINE_SIZE // 2]
self.SetType(type, connectors)
def Flush(self):
for connector in self.Connectors:
connector.Flush()
self.Connectors = []
# Make a clone of this LD_PowerRail
def Clone(self, parent, id=None, pos=None):
powerrail = LD_PowerRail(parent, self.Type, id)
powerrail.SetSize(self.Size[0], self.Size[1])
if pos is not None:
powerrail.SetPosition(pos.x, pos.y)
else:
powerrail.SetPosition(self.Pos.x, self.Pos.y)
powerrail.Connectors = []
for connector in self.Connectors:
powerrail.Connectors.append(connector.Clone(powerrail))
return powerrail
def GetConnectorTranslation(self, element):
return dict(zip([connector for connector in self.Connectors],
[connector for connector in element.Connectors]))
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
for connector in self.Connectors:
rect = rect.Union(connector.GetRedrawRect(movex, movey))
if movex != 0 or movey != 0:
for connector in self.Connectors:
if connector.IsConnected():
rect = rect.Union(connector.GetConnectedRedrawRect(movex, movey))
return rect
# Forbids to change the power rail size
def SetSize(self, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.SetSize(self, width, height)
else:
Graphic_Element.SetSize(self, LD_POWERRAIL_WIDTH, height)
self.RefreshConnectors()
# Forbids to select a power rail
def HitTest(self, pt, connectors=True):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
return Graphic_Element.HitTest(self, pt, connectors) or self.TestConnector(pt, exclude=False) is not None
return False
# Forbids to select a power rail
def IsInSelection(self, rect):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
return Graphic_Element.IsInSelection(self, rect)
return False
# Deletes this power rail by calling the appropriate method
def Delete(self):
self.Parent.DeletePowerRail(self)
# Unconnect all connectors
def Clean(self):
for connector in self.Connectors:
connector.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Refresh the power rail bounding box
def RefreshBoundingBox(self):
self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
# Refresh the power rail size
def RefreshSize(self):
self.Size = wx.Size(LD_POWERRAIL_WIDTH, max(LD_LINE_SIZE * len(self.Connectors), self.Size[1]))
self.RefreshBoundingBox()
# Returns the block minimum size
def GetMinSize(self, default=False):
height = (LD_LINE_SIZE * (len(self.Connectors) - 1)
if default else 0)
return LD_POWERRAIL_WIDTH, height + self.Extensions[0] + self.Extensions[1]
# Add a connector or a blank to this power rail at the last place
def AddConnector(self):
self.InsertConnector(len(self.Connectors))
# Add a connector or a blank to this power rail at the place given
def InsertConnector(self, idx):
if self.Type == LEFTRAIL:
connector = Connector(self, "", "BOOL", wx.Point(self.Size[0], 0), EAST)
elif self.Type == RIGHTRAIL:
connector = Connector(self, "", "BOOL", wx.Point(0, 0), WEST)
self.Connectors.insert(idx, connector)
self.RefreshSize()
self.RefreshConnectors()
# Moves the divergence connector given
def MoveConnector(self, connector, movey):
position = connector.GetRelPosition()
connector.SetPosition(wx.Point(position.x, position.y + movey))
miny = self.Size[1]
maxy = 0
for connect in self.Connectors:
connect_pos = connect.GetRelPosition()
miny = min(miny, connect_pos.y - self.Extensions[0])
maxy = max(maxy, connect_pos.y - self.Extensions[0])
min_pos = self.Pos.y + miny
self.Pos.y = min(min_pos, self.Pos.y)
if min_pos == self.Pos.y:
for connect in self.Connectors:
connect_pos = connect.GetRelPosition()
connect.SetPosition(wx.Point(connect_pos.x, connect_pos.y - miny))
self.Connectors.sort(lambda x, y: cmp(x.Pos.y, y.Pos.y))
maxy = 0
for connect in self.Connectors:
connect_pos = connect.GetRelPosition()
maxy = max(maxy, connect_pos.y)
self.Size[1] = max(maxy + self.Extensions[1], self.Size[1])
connector.MoveConnected()
self.RefreshBoundingBox()
# Returns the index in connectors list for the connector given
def GetConnectorIndex(self, connector):
if connector in self.Connectors:
return self.Connectors.index(connector)
return None
# Delete the connector or blank from connectors list at the index given
def DeleteConnector(self, idx):
self.Connectors.pop(idx)
self.RefreshConnectors()
self.RefreshSize()
# Refresh the positions of the power rail connectors
def RefreshConnectors(self):
scaling = self.Parent.GetScaling()
height = self.Size[1] - self.Extensions[0] - self.Extensions[1]
interval = height / max(len(self.Connectors) - 1, 1)
for i, connector in enumerate(self.Connectors):
if self.RealConnectors:
position = self.Extensions[0] + int(round(self.RealConnectors[i] * height))
else:
position = self.Extensions[0] + int(round(i * interval))
if scaling is not None:
position = round((self.Pos.y + position) / scaling[1]) * scaling[1] - self.Pos.y
if self.Type == LEFTRAIL:
connector.SetPosition(wx.Point(self.Size[0], position))
elif self.Type == RIGHTRAIL:
connector.SetPosition(wx.Point(0, position))
self.RefreshConnected()
# Refresh the position of wires connected to power rail
def RefreshConnected(self, exclude=None):
for connector in self.Connectors:
connector.MoveConnected(exclude)
# Returns the power rail connector that starts with the point given if it exists
def GetConnector(self, position, name=None):
# if a name is given
if name is not None:
# Test each connector if it exists
for connector in self.Connectors:
if name == connector.GetName():
return connector
return self.FindNearestConnector(position, [connector for connector in self.Connectors if connector is not None])
# Returns all the power rail connectors
def GetConnectors(self):
connectors = [connector for connector in self.Connectors if connector]
if self.Type == LEFTRAIL:
return {"inputs": [], "outputs": connectors}
else:
return {"inputs": connectors, "outputs": []}
# Test if point given is on one of the power rail connectors
def TestConnector(self, pt, direction=None, exclude=True):
for connector in self.Connectors:
if connector.TestPoint(pt, direction, exclude):
return connector
return None
# Returns the power rail type
def SetType(self, type, connectors):
if type != self.Type or len(self.Connectors) != connectors:
# Create a connector or a blank according to 'connectors' and add it in
# the connectors list
self.Type = type
self.Clean()
self.Connectors = []
for dummy in xrange(connectors):
self.AddConnector()
self.RefreshSize()
# Returns the power rail type
def GetType(self):
return self.Type
# Method called when a LeftDown event have been generated
def OnLeftDown(self, event, dc, scaling):
self.RealConnectors = []
height = self.Size[1] - self.Extensions[0] - self.Extensions[1]
if height > 0:
for connector in self.Connectors:
position = connector.GetRelPosition()
self.RealConnectors.append(max(0., min((position.y - self.Extensions[0]) / height, 1.)))
elif len(self.Connectors) > 1:
self.RealConnectors = map(lambda x: x * 1 / (len(self.Connectors) - 1), xrange(len(self.Connectors)))
else:
self.RealConnectors = [0.5]
Graphic_Element.OnLeftDown(self, event, dc, scaling)
# Method called when a LeftUp event have been generated
def OnLeftUp(self, event, dc, scaling):
Graphic_Element.OnLeftUp(self, event, dc, scaling)
self.RealConnectors = None
# Method called when a LeftDown event have been generated
def OnRightDown(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
# Test if a connector have been handled
connector = self.TestConnector(pos, exclude=False)
if connector:
self.Handle = (HANDLE_CONNECTOR, connector)
wx.CallAfter(self.Parent.SetCurrentCursor, 1)
self.Selected = False
# Initializes the last position
self.oldPos = GetScaledEventPosition(event, dc, scaling)
else:
Graphic_Element.OnRightDown(self, event, dc, scaling)
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the powerrail properties
self.Parent.EditPowerRailContent(self)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
handle_type, handle = self.Handle
if handle_type == HANDLE_CONNECTOR and self.Dragging and self.oldPos:
wires = handle.GetWires()
if len(wires) == 1:
if handle == wires[0][0].StartConnected:
block = wires[0][0].EndConnected.GetParentBlock()
else:
block = wires[0][0].StartConnected.GetParentBlock()
block.RefreshModel(False)
Graphic_Element.OnRightUp(self, event, dc, scaling)
else:
self.Parent.PopupDefaultMenu()
def Resize(self, x, y, width, height):
self.Move(x, y)
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
self.SetSize(width, height)
else:
self.SetSize(LD_POWERRAIL_WIDTH, height)
# Refreshes the powerrail state according to move defined and handle selected
def ProcessDragging(self, movex, movey, event, scaling):
handle_type, handle = self.Handle
# A connector has been handled
if handle_type == HANDLE_CONNECTOR:
movey = max(-self.BoundingBox.y, movey)
if scaling is not None:
position = handle.GetRelPosition()
movey = round((self.Pos.y + position.y + movey) / scaling[1]) * scaling[1] - self.Pos.y - position.y
self.MoveConnector(handle, movey)
return 0, movey
elif self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling)
return 0, 0
# Refreshes the power rail model
def RefreshModel(self, move=True):
self.Parent.RefreshPowerRailModel(self)
# If power rail has moved and power rail is of type LEFT, refresh the model
# of wires connected to connectors
if move and self.Type == LEFTRAIL:
for connector in self.Connectors:
connector.RefreshWires()
# Draws power rail
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
dc.SetPen(MiterPen(wx.BLACK))
dc.SetBrush(wx.BLACK_BRUSH)
# Draw a rectangle with the power rail size
if self.Type == LEFTRAIL:
dc.DrawRectangle(self.Pos.x + self.Size[0] - LD_POWERRAIL_WIDTH, self.Pos.y, LD_POWERRAIL_WIDTH + 1, self.Size[1] + 1)
else:
dc.DrawRectangle(self.Pos.x, self.Pos.y, LD_POWERRAIL_WIDTH + 1, self.Size[1] + 1)
# Draw connectors
for connector in self.Connectors:
connector.Draw(dc)
# -------------------------------------------------------------------------------
# Ladder Diagram Contact
# -------------------------------------------------------------------------------
class LD_Contact(Graphic_Element, DebugDataConsumer):
"""
Class that implements the graphic representation of a contact
"""
# Create a new contact
def __init__(self, parent, type, name, id=None):
Graphic_Element.__init__(self, parent)
DebugDataConsumer.__init__(self)
self.Type = type
self.Name = name
self.Id = id
self.Size = wx.Size(LD_ELEMENT_SIZE[0], LD_ELEMENT_SIZE[1])
self.Highlights = {}
# Create an input and output connector
self.Input = Connector(self, "", "BOOL", wx.Point(0, self.Size[1] // 2 + 1), WEST)
self.Output = Connector(self, "", "BOOL", wx.Point(self.Size[0], self.Size[1] // 2 + 1), EAST)
self.PreviousValue = False
self.PreviousSpreading = False
self.RefreshNameSize()
self.RefreshTypeSize()
def Flush(self):
if self.Input is not None:
self.Input.Flush()
self.Input = None
if self.Output is not None:
self.Output.Flush()
self.Output = None
def SetForced(self, forced):
if self.Forced != forced:
self.Forced = forced
if self.Visible:
self.Parent.ElementNeedRefresh(self)
def SetValue(self, value):
if self.Type == CONTACT_RISING:
refresh = self.Value and not self.PreviousValue
elif self.Type == CONTACT_FALLING:
refresh = not self.Value and self.PreviousValue
else:
refresh = False
self.PreviousValue = self.Value
self.Value = value
if self.Value != self.PreviousValue or refresh:
if self.Visible:
self.Parent.ElementNeedRefresh(self)
self.SpreadCurrent()
def SpreadCurrent(self):
if self.Parent.Debug:
if self.Value is None:
self.Value = False
spreading = self.Input.ReceivingCurrent()
if self.Type == CONTACT_NORMAL:
spreading &= self.Value
elif self.Type == CONTACT_REVERSE:
spreading &= not self.Value
elif self.Type == CONTACT_RISING:
spreading &= self.Value and not self.PreviousValue
elif self.Type == CONTACT_FALLING:
spreading &= not self.Value and self.PreviousValue
else:
spreading = False
if spreading and not self.PreviousSpreading:
self.Output.SpreadCurrent(True)
elif not spreading and self.PreviousSpreading:
self.Output.SpreadCurrent(False)
self.PreviousSpreading = spreading
# Make a clone of this LD_Contact
def Clone(self, parent, id=None, pos=None):
contact = LD_Contact(parent, self.Type, self.Name, id)
contact.SetSize(self.Size[0], self.Size[1])
if pos is not None:
contact.SetPosition(pos.x, pos.y)
else:
contact.SetPosition(self.Pos.x, self.Pos.y)
contact.Input = self.Input.Clone(contact)
contact.Output = self.Output.Clone(contact)
return contact
def GetConnectorTranslation(self, element):
return {self.Input: element.Input, self.Output: element.Output}
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
rect = rect.Union(self.Input.GetRedrawRect(movex, movey))
rect = rect.Union(self.Output.GetRedrawRect(movex, movey))
if movex != 0 or movey != 0:
if self.Input.IsConnected():
rect = rect.Union(self.Input.GetConnectedRedrawRect(movex, movey))
if self.Output.IsConnected():
rect = rect.Union(self.Output.GetConnectedRedrawRect(movex, movey))
return rect
def ProcessDragging(self, movex, movey, event, scaling):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
movex = movey = 0
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling, height_fac=2)
# Forbids to change the contact size
def SetSize(self, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.SetSize(self, width, height)
self.RefreshConnectors()
# Delete this contact by calling the appropriate method
def Delete(self):
self.Parent.DeleteContact(self)
# Unconnect input and output
def Clean(self):
self.Input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
self.Output.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Refresh the size of text for name
def RefreshNameSize(self):
if self.Name != "":
self.NameSize = self.Parent.GetTextExtent(self.Name)
else:
self.NameSize = 0, 0
# Refresh the size of text for type
def RefreshTypeSize(self):
typetext = ""
if self.Type == CONTACT_REVERSE:
typetext = "/"
elif self.Type == CONTACT_RISING:
typetext = "P"
elif self.Type == CONTACT_FALLING:
typetext = "N"
if typetext != "":
self.TypeSize = self.Parent.GetTextExtent(typetext)
else:
self.TypeSize = 0, 0
# Refresh the contact bounding box
def RefreshBoundingBox(self):
# Calculate the size of the name outside the contact
text_width, text_height = self.Parent.GetTextExtent(self.Name)
# Calculate the bounding box size
if self.Name != "":
bbx_x = self.Pos.x - max(0, (text_width - self.Size[0]) // 2)
bbx_width = max(self.Size[0], text_width)
bbx_y = self.Pos.y - (text_height + 2)
bbx_height = self.Size[1] + (text_height + 2)
else:
bbx_x = self.Pos.x
bbx_width = self.Size[0]
bbx_y = self.Pos.y
bbx_height = self.Size[1]
self.BoundingBox = wx.Rect(bbx_x, bbx_y, bbx_width + 1, bbx_height + 1)
# Returns the block minimum size
def GetMinSize(self):
return LD_ELEMENT_SIZE
# Refresh the position of wire connected to contact
def RefreshConnected(self, exclude=None):
self.Input.MoveConnected(exclude)
self.Output.MoveConnected(exclude)
# Returns the contact connector that starts with the point given if it exists
def GetConnector(self, position, name=None):
# if a name is given
if name is not None:
# Test input and output connector
# if name == self.Input.GetName():
# return self.Input
if name == self.Output.GetName():
return self.Output
return self.FindNearestConnector(position, [self.Input, self.Output])
# Returns input and output contact connectors
def GetConnectors(self):
return {"inputs": [self.Input], "outputs": [self.Output]}
# Test if point given is on contact input or output connector
def TestConnector(self, pt, direction=None, exclude=True):
# Test input connector
if self.Input.TestPoint(pt, direction, exclude):
return self.Input
# Test output connector
if self.Output.TestPoint(pt, direction, exclude):
return self.Output
return None
# Refresh the positions of the block connectors
def RefreshConnectors(self):
scaling = self.Parent.GetScaling()
position = self.Size[1] // 2 + 1
if scaling is not None:
position = round((self.Pos.y + position) / scaling[1]) * scaling[1] - self.Pos.y
self.Input.SetPosition(wx.Point(0, position))
self.Output.SetPosition(wx.Point(self.Size[0], position))
self.RefreshConnected()
# Changes the contact name
def SetName(self, name):
self.Name = name
self.RefreshNameSize()
# Returns the contact name
def GetName(self):
return self.Name
# Changes the contact type
def SetType(self, type):
self.Type = type
self.RefreshTypeSize()
# Returns the contact type
def GetType(self):
return self.Type
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the contact properties
self.Parent.EditContactContent(self)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
# Popup the default menu
self.Parent.PopupDefaultMenu()
# Refreshes the contact model
def RefreshModel(self, move=True):
self.Parent.RefreshContactModel(self)
# If contact has moved, refresh the model of wires connected to output
if move:
self.Output.RefreshWires()
# Draws the highlightment of this element if it is highlighted
def DrawHighlightment(self, dc):
scalex, scaley = dc.GetUserScale()
dc.SetUserScale(1, 1)
dc.SetPen(MiterPen(HIGHLIGHTCOLOR))
dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
dc.SetLogicalFunction(wx.AND)
# Draw two rectangles for representing the contact
left_left = (self.Pos.x - 1) * scalex - 2
right_left = (self.Pos.x + self.Size[0] - 2) * scalex - 2
top = (self.Pos.y - 1) * scaley - 2
width = 4 * scalex + 5
height = (self.Size[1] + 3) * scaley + 5
dc.DrawRectangle(left_left, top, width, height)
dc.DrawRectangle(right_left, top, width, height)
dc.SetLogicalFunction(wx.COPY)
dc.SetUserScale(scalex, scaley)
# Adds an highlight to the connection
def AddHighlight(self, infos, start, end, highlight_type):
highlights = self.Highlights.setdefault(infos[0], [])
if infos[0] == "reference":
if start[0] == 0 and end[0] == 0:
AddHighlight(highlights, (start, end, highlight_type))
else:
AddHighlight(highlights, ((0, 0), (0, 1), highlight_type))
# Removes an highlight from the connection
def RemoveHighlight(self, infos, start, end, highlight_type):
highlights = self.Highlights.get(infos[0], [])
if RemoveHighlight(highlights, (start, end, highlight_type)) and len(highlights) == 0:
self.Highlights.pop(infos[0])
# Removes all the highlights of one particular type from the connection
def ClearHighlight(self, highlight_type=None):
if highlight_type is None:
self.Highlights = {}
else:
highlight_items = self.Highlights.items()
for name, highlights in highlight_items:
highlights = ClearHighlights(highlights, highlight_type)
if len(highlights) == 0:
self.Highlights.pop(name)
# Draws contact
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
if self.Value is not None:
if self.Type == CONTACT_NORMAL and self.Value or \
self.Type == CONTACT_REVERSE and not self.Value or \
self.Type == CONTACT_RISING and self.Value and not self.PreviousValue or \
self.Type == CONTACT_RISING and not self.Value and self.PreviousValue:
if self.Forced:
dc.SetPen(MiterPen(wx.CYAN))
else:
dc.SetPen(MiterPen(wx.GREEN))
elif self.Forced:
dc.SetPen(MiterPen(wx.BLUE))
else:
dc.SetPen(MiterPen(wx.BLACK))
else:
dc.SetPen(MiterPen(wx.BLACK))
dc.SetBrush(wx.BLACK_BRUSH)
# Compiling contact type modifier symbol
typetext = ""
if self.Type == CONTACT_REVERSE:
typetext = "/"
elif self.Type == CONTACT_RISING:
typetext = "P"
elif self.Type == CONTACT_FALLING:
typetext = "N"
if getattr(dc, "printing", False):
name_size = dc.GetTextExtent(self.Name)
if typetext != "":
type_size = dc.GetTextExtent(typetext)
else:
name_size = self.NameSize
if typetext != "":
type_size = self.TypeSize
# Draw two rectangles for representing the contact
dc.DrawRectangle(self.Pos.x, self.Pos.y, 2, self.Size[1] + 1)
dc.DrawRectangle(self.Pos.x + self.Size[0] - 1, self.Pos.y, 2, self.Size[1] + 1)
# Draw contact name
name_pos = (self.Pos.x + (self.Size[0] - name_size[0]) // 2,
self.Pos.y - (name_size[1] + 2))
dc.DrawText(self.Name, name_pos[0], name_pos[1])
# Draw the modifier symbol in the middle of contact
if typetext != "":
type_pos = (self.Pos.x + (self.Size[0] - type_size[0]) // 2 + 1,
self.Pos.y + (self.Size[1] - type_size[1]) // 2)
dc.DrawText(typetext, type_pos[0], type_pos[1])
# Draw input and output connectors
self.Input.Draw(dc)
self.Output.Draw(dc)
if not getattr(dc, "printing", False):
for name, highlights in self.Highlights.iteritems():
if name == "reference":
DrawHighlightedText(dc, self.Name, highlights, name_pos[0], name_pos[1])
elif typetext != "":
DrawHighlightedText(dc, typetext, highlights, type_pos[0], type_pos[1])
# -------------------------------------------------------------------------------
# Ladder Diagram Coil
# -------------------------------------------------------------------------------
class LD_Coil(Graphic_Element):
"""
Class that implements the graphic representation of a coil
"""
# Create a new coil
def __init__(self, parent, type, name, id=None):
Graphic_Element.__init__(self, parent)
self.Type = type
self.Name = name
self.Id = id
self.Size = wx.Size(LD_ELEMENT_SIZE[0], LD_ELEMENT_SIZE[1])
self.Highlights = {}
# Create an input and output connector
self.Input = Connector(self, "", "BOOL", wx.Point(0, self.Size[1] // 2 + 1), WEST)
self.Output = Connector(self, "", "BOOL", wx.Point(self.Size[0], self.Size[1] // 2 + 1), EAST)
self.Value = None
self.PreviousValue = False
self.RefreshNameSize()
self.RefreshTypeSize()
def Flush(self):
if self.Input is not None:
self.Input.Flush()
self.Input = None
if self.Output is not None:
self.Output.Flush()
self.Output = None
def SpreadCurrent(self):
if self.Parent.Debug:
self.PreviousValue = self.Value
self.Value = self.Input.ReceivingCurrent()
if self.Value and not self.PreviousValue:
self.Output.SpreadCurrent(True)
elif not self.Value and self.PreviousValue:
self.Output.SpreadCurrent(False)
if self.Value != self.PreviousValue and self.Visible:
self.Parent.ElementNeedRefresh(self)
# Make a clone of this LD_Coil
def Clone(self, parent, id=None, pos=None):
coil = LD_Coil(parent, self.Type, self.Name, id)
coil.SetSize(self.Size[0], self.Size[1])
if pos is not None:
coil.SetPosition(pos.x, pos.y)
else:
coil.SetPosition(self.Pos.x, self.Pos.y)
coil.Input = self.Input.Clone(coil)
coil.Output = self.Output.Clone(coil)
return coil
def GetConnectorTranslation(self, element):
return {self.Input: element.Input, self.Output: element.Output}
# Returns the RedrawRect
def GetRedrawRect(self, movex=0, movey=0):
rect = Graphic_Element.GetRedrawRect(self, movex, movey)
rect = rect.Union(self.Input.GetRedrawRect(movex, movey))
rect = rect.Union(self.Output.GetRedrawRect(movex, movey))
if movex != 0 or movey != 0:
if self.Input.IsConnected():
rect = rect.Union(self.Input.GetConnectedRedrawRect(movex, movey))
if self.Output.IsConnected():
rect = rect.Union(self.Output.GetConnectedRedrawRect(movex, movey))
return rect
def ProcessDragging(self, movex, movey, event, scaling):
if self.Parent.GetDrawingMode() != FREEDRAWING_MODE:
movex = movey = 0
return Graphic_Element.ProcessDragging(self, movex, movey, event, scaling, height_fac=2)
# Forbids to change the Coil size
def SetSize(self, width, height):
if self.Parent.GetDrawingMode() == FREEDRAWING_MODE:
Graphic_Element.SetSize(self, width, height)
self.RefreshConnectors()
# Delete this coil by calling the appropriate method
def Delete(self):
self.Parent.DeleteCoil(self)
# Unconnect input and output
def Clean(self):
self.Input.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
self.Output.UnConnect(delete=self.Parent.GetDrawingMode() == FREEDRAWING_MODE)
# Refresh the size of text for name
def RefreshNameSize(self):
if self.Name != "":
self.NameSize = self.Parent.GetTextExtent(self.Name)
else:
self.NameSize = 0, 0
# Refresh the size of text for type
def RefreshTypeSize(self):
typetext = ""
if self.Type == COIL_REVERSE:
typetext = "/"
elif self.Type == COIL_SET:
typetext = "S"
elif self.Type == COIL_RESET:
typetext = "R"
elif self.Type == COIL_RISING:
typetext = "P"
elif self.Type == COIL_FALLING:
typetext = "N"
if typetext != "":
self.TypeSize = self.Parent.GetTextExtent(typetext)
else:
self.TypeSize = 0, 0
# Refresh the coil bounding box
def RefreshBoundingBox(self):
# Calculate the size of the name outside the coil
text_width, text_height = self.Parent.GetTextExtent(self.Name)
# Calculate the bounding box size
if self.Name != "":
bbx_x = self.Pos.x - max(0, (text_width - self.Size[0]) // 2)
bbx_width = max(self.Size[0], text_width)
bbx_y = self.Pos.y - (text_height + 2)
bbx_height = self.Size[1] + (text_height + 2)
else:
bbx_x = self.Pos.x
bbx_width = self.Size[0]
bbx_y = self.Pos.y
bbx_height = self.Size[1]
self.BoundingBox = wx.Rect(bbx_x, bbx_y, bbx_width + 1, bbx_height + 1)
# Returns the block minimum size
def GetMinSize(self):
return LD_ELEMENT_SIZE
# Refresh the position of wire connected to coil
def RefreshConnected(self, exclude=None):
self.Input.MoveConnected(exclude)
self.Output.MoveConnected(exclude)
# Returns the coil connector that starts with the point given if it exists
def GetConnector(self, position, name=None):
# if a name is given
if name is not None:
# Test input and output connector
# if self.Input and name == self.Input.GetName():
# return self.Input
if self.Output and name == self.Output.GetName():
return self.Output
return self.FindNearestConnector(position, [self.Input, self.Output])
# Returns input and output coil connectors
def GetConnectors(self):
return {"inputs": [self.Input], "outputs": [self.Output]}
# Test if point given is on coil input or output connector
def TestConnector(self, pt, direction=None, exclude=True):
# Test input connector
if self.Input.TestPoint(pt, direction, exclude):
return self.Input
# Test output connector
if self.Output.TestPoint(pt, direction, exclude):
return self.Output
return None
# Refresh the positions of the block connectors
def RefreshConnectors(self):
scaling = self.Parent.GetScaling()
position = self.Size[1] // 2 + 1
if scaling is not None:
position = round((self.Pos.y + position) / scaling[1]) * scaling[1] - self.Pos.y
self.Input.SetPosition(wx.Point(0, position))
self.Output.SetPosition(wx.Point(self.Size[0], position))
self.RefreshConnected()
# Changes the coil name
def SetName(self, name):
self.Name = name
self.RefreshNameSize()
# Returns the coil name
def GetName(self):
return self.Name
# Changes the coil type
def SetType(self, type):
self.Type = type
self.RefreshTypeSize()
# Returns the coil type
def GetType(self):
return self.Type
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the coil properties
self.Parent.EditCoilContent(self)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
# Popup the default menu
self.Parent.PopupDefaultMenu()
# Refreshes the coil model
def RefreshModel(self, move=True):
self.Parent.RefreshCoilModel(self)
# If coil has moved, refresh the model of wires connected to output
if move:
self.Output.RefreshWires()
# Draws the highlightment of this element if it is highlighted
def DrawHighlightment(self, dc):
scalex, scaley = dc.GetUserScale()
dc.SetUserScale(1, 1)
dc.SetPen(MiterPen(HIGHLIGHTCOLOR, (3 * scalex + 5), wx.SOLID))
dc.SetBrush(wx.TRANSPARENT_BRUSH)
dc.SetLogicalFunction(wx.AND)
# Draw a two circle arcs for representing the coil
dc.DrawEllipticArc(round(self.Pos.x * scalex),
round((self.Pos.y - int(self.Size[1] * (sqrt(2) - 1.) / 2.) + 1) * scaley),
round(self.Size[0] * scalex),
round((int(self.Size[1] * sqrt(2)) - 1) * scaley),
135, 225)
dc.DrawEllipticArc(round(self.Pos.x * scalex),
round((self.Pos.y - int(self.Size[1] * (sqrt(2) - 1.) / 2.) + 1) * scaley),
round(self.Size[0] * scalex),
round((int(self.Size[1] * sqrt(2)) - 1) * scaley),
-45, 45)
dc.SetLogicalFunction(wx.COPY)
dc.SetUserScale(scalex, scaley)
# Adds an highlight to the connection
def AddHighlight(self, infos, start, end, highlight_type):
highlights = self.Highlights.setdefault(infos[0], [])
if infos[0] == "reference":
if start[0] == 0 and end[0] == 0:
AddHighlight(highlights, (start, end, highlight_type))
else:
AddHighlight(highlights, ((0, 0), (0, 1), highlight_type))
# Removes an highlight from the connection
def RemoveHighlight(self, infos, start, end, highlight_type):
highlights = self.Highlights.get(infos[0], [])
if RemoveHighlight(highlights, (start, end, highlight_type)) and len(highlights) == 0:
self.Highlights.pop(infos[0])
# Removes all the highlights of one particular type from the connection
def ClearHighlight(self, highlight_type=None):
if highlight_type is None:
self.Highlights = {}
else:
highlight_items = self.Highlights.items()
for name, highlights in highlight_items:
highlights = ClearHighlights(highlights, highlight_type)
if len(highlights) == 0:
self.Highlights.pop(name)
# Draws coil
def Draw(self, dc):
Graphic_Element.Draw(self, dc)
if self.Value is not None and self.Value:
dc.SetPen(MiterPen(wx.GREEN, 2, wx.SOLID))
else:
dc.SetPen(MiterPen(wx.BLACK, 2, wx.SOLID))
dc.SetBrush(wx.TRANSPARENT_BRUSH)
# Compiling coil type modifier symbol
typetext = ""
if self.Type == COIL_REVERSE:
typetext = "/"
elif self.Type == COIL_SET:
typetext = "S"
elif self.Type == COIL_RESET:
typetext = "R"
elif self.Type == COIL_RISING:
typetext = "P"
elif self.Type == COIL_FALLING:
typetext = "N"
if getattr(dc, "printing", False) and not isinstance(dc, wx.PostScriptDC):
# Draw an clipped ellipse for representing the coil
clipping_box = dc.GetClippingBox()
dc.SetClippingRegion(self.Pos.x - 1, self.Pos.y, self.Size[0] + 2, self.Size[1] + 1)
dc.DrawEllipse(self.Pos.x, self.Pos.y - int(self.Size[1] * (sqrt(2) - 1.) / 2.) + 1, self.Size[0], int(self.Size[1] * sqrt(2)) - 1)
dc.DestroyClippingRegion()
if clipping_box != (0, 0, 0, 0):
dc.SetClippingRegion(*clipping_box)
name_size = dc.GetTextExtent(self.Name)
if typetext != "":
type_size = dc.GetTextExtent(typetext)
else:
# Draw a two ellipse arcs for representing the coil
dc.DrawEllipticArc(self.Pos.x, self.Pos.y - int(self.Size[1] * (sqrt(2) - 1.) / 2.) + 1, self.Size[0], int(self.Size[1] * sqrt(2)) - 1, 135, 225)
dc.DrawEllipticArc(self.Pos.x, self.Pos.y - int(self.Size[1] * (sqrt(2) - 1.) / 2.) + 1, self.Size[0], int(self.Size[1] * sqrt(2)) - 1, -45, 45)
# Draw a point to avoid hole in left arc
if not getattr(dc, "printing", False):
if self.Value is not None and self.Value:
dc.SetPen(MiterPen(wx.GREEN))
else:
dc.SetPen(MiterPen(wx.BLACK))
dc.DrawPoint(self.Pos.x + 1, self.Pos.y + self.Size[1] // 2 + 1)
name_size = self.NameSize
if typetext != "":
type_size = self.TypeSize
# Draw coil name
name_pos = (self.Pos.x + (self.Size[0] - name_size[0]) // 2,
self.Pos.y - (name_size[1] + 2))
dc.DrawText(self.Name, name_pos[0], name_pos[1])
# Draw the modifier symbol in the middle of coil
if typetext != "":
type_pos = (self.Pos.x + (self.Size[0] - type_size[0]) // 2 + 1,
self.Pos.y + (self.Size[1] - type_size[1]) // 2)
dc.DrawText(typetext, type_pos[0], type_pos[1])
# Draw input and output connectors
self.Input.Draw(dc)
self.Output.Draw(dc)
if not getattr(dc, "printing", False):
for name, highlights in self.Highlights.iteritems():
if name == "reference":
DrawHighlightedText(dc, self.Name, highlights, name_pos[0], name_pos[1])
elif typetext != "":
DrawHighlightedText(dc, typetext, highlights, type_pos[0], type_pos[1])