py_ext: rework logic CSV reader FB output refresh logic.
Saving with CSV write FB now triggers CSV read FBs to refresh outputs immediately.
/*
Template C code used to produce target Ethercat C code
Copyright (C) 2011-2014: Laurent BESSARD, Edouard TISSERANT
Distributed under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
See COPYING file for copyrights details.
*/
#include <rtdm/rtdm.h>
#include <native/task.h>
#include <native/timer.h>
#include "ecrt.h"
#include "beremiz.h"
#include "iec_types_all.h"
// declaration of interface variables
%(located_variables_declaration)s
// process data
uint8_t *domain1_pd = NULL;
%(used_pdo_entry_offset_variables_declaration)s
const static ec_pdo_entry_reg_t domain1_regs[] = {
%(used_pdo_entry_configuration)s
{}
};
// Distributed Clock variables;
%(dc_variable)s
unsigned long long comp_period_ns = 500000ULL;
int comp_count = 1;
int comp_count_max;
#define DC_FILTER_CNT 1024
// EtherCAT slave-time-based DC Synchronization variables.
static uint64_t dc_start_time_ns = 0LL;
static uint64_t dc_time_ns = 0;
static uint8_t dc_started = 0;
static int32_t dc_diff_ns = 0;
static int32_t prev_dc_diff_ns = 0;
static int64_t dc_diff_total_ns = 0LL;
static int64_t dc_delta_total_ns = 0LL;
static int dc_filter_idx = 0;
static int64_t dc_adjust_ns;
static int64_t system_time_base = 0LL;
static uint64_t dc_first_app_time = 0LL;
unsigned long long frame_period_ns = 0ULL;
int debug_count = 0;
int slave_dc_used = 0;
void dc_init(void);
uint64_t system_time_ns(void);
RTIME system2count(uint64_t time);
void sync_distributed_clocks(void);
void update_master_clock(void);
RTIME calculate_sleeptime(uint64_t wakeup_time);
uint64_t calculate_first(void);
/*****************************************************************************/
%(pdos_configuration_declaration)s
long long wait_period_ns = 100000LL;
// EtherCAT
static ec_master_t *master = NULL;
static ec_domain_t *domain1 = NULL;
static int first_sent=0;
%(slaves_declaration)s
#define SLOGF(level, format, args...)\
{\
char sbuf[256];\
int slen = snprintf(sbuf , sizeof(sbuf) , format , ##args);\
LogMessage(level, sbuf, slen);\
}
/* EtherCAT plugin functions */
int __init_%(location)s(int argc,char **argv)
{
uint32_t abort_code;
size_t result_size;
abort_code = 0;
result_size = 0;
master = ecrt_request_master(%(master_number)d);
if (!master) {
SLOGF(LOG_CRITICAL, "EtherCAT master request failed!");
return -1;
}
if(!(domain1 = ecrt_master_create_domain(master))){
SLOGF(LOG_CRITICAL, "EtherCAT Domain Creation failed!");
goto ecat_failed;
}
// slaves PDO configuration
%(slaves_configuration)s
if (ecrt_domain_reg_pdo_entry_list(domain1, domain1_regs)) {
SLOGF(LOG_CRITICAL, "EtherCAT PDO registration failed!");
goto ecat_failed;
}
ecrt_master_set_send_interval(master, common_ticktime__);
// slaves initialization
/*
%(slaves_initialization)s
*/
// configure DC SYNC0/1 Signal
%(config_dc)s
// select reference clock
#if DC_ENABLE
{
int ret;
ret = ecrt_master_select_reference_clock(master, slave0);
if (ret <0) {
fprintf(stderr, "Failed to select reference clock : %%s\n",
strerror(-ret));
return ret;
}
}
#endif
// extracting default value for not mapped entry in output PDOs
/*
%(slaves_output_pdos_default_values_extraction)s
*/
#if DC_ENABLE
dc_init();
#endif
if (ecrt_master_activate(master)){
SLOGF(LOG_CRITICAL, "EtherCAT Master activation failed");
goto ecat_failed;
}
if (!(domain1_pd = ecrt_domain_data(domain1))) {
SLOGF(LOG_CRITICAL, "Failed to map EtherCAT process data");
goto ecat_failed;
}
SLOGF(LOG_INFO, "Master %(master_number)d activated.");
first_sent = 0;
return 0;
ecat_failed:
ecrt_release_master(master);
return -1;
}
void __cleanup_%(location)s(void)
{
//release master
ecrt_release_master(master);
first_sent = 0;
}
void __retrieve_%(location)s(void)
{
// receive ethercat
if(first_sent){
ecrt_master_receive(master);
ecrt_domain_process(domain1);
%(retrieve_variables)s
}
}
/*
static RTIME _last_occur=0;
static RTIME _last_publish=0;
RTIME _current_lag=0;
RTIME _max_jitter=0;
static inline RTIME max(RTIME a,RTIME b){return a>b?a:b;}
*/
void __publish_%(location)s(void)
{
%(publish_variables)s
ecrt_domain_queue(domain1);
{
/*
RTIME current_time = rt_timer_read();
// Limit spining max 1/5 of common_ticktime
RTIME maxdeadline = current_time + (common_ticktime__ / 5);
RTIME deadline = _last_occur ?
_last_occur + common_ticktime__ :
current_time + _max_jitter;
if(deadline > maxdeadline) deadline = maxdeadline;
_current_lag = deadline - current_time;
if(_last_publish != 0){
RTIME period = current_time - _last_publish;
if(period > common_ticktime__ )
_max_jitter = max(_max_jitter, period - common_ticktime__);
else
_max_jitter = max(_max_jitter, common_ticktime__ - period);
}
_last_publish = current_time;
_last_occur = current_time;
while(current_time < deadline) {
_last_occur = current_time; //Drift backward by default
current_time = rt_timer_read();
}
if( _max_jitter * 10 < common_ticktime__ && _current_lag < _max_jitter){
//Consuming security margin ?
_last_occur = current_time; //Drift forward
}
*/
}
#if DC_ENABLE
if (comp_count == 0)
sync_distributed_clocks();
#endif
ecrt_master_send(master);
first_sent = 1;
#if DC_ENABLE
if (comp_count == 0)
update_master_clock();
comp_count++;
if (comp_count == comp_count_max)
comp_count = 0;
#endif
}
/* Test Function For Parameter (SDO) Set */
/*
void GetSDOData(void){
uint32_t abort_code, test_value;
size_t result_size;
uint8_t value[4];
abort_code = 0;
result_size = 0;
test_value = 0;
if (ecrt_master_sdo_upload(master, 0, 0x1000, 0x0, (uint8_t *)value, 4, &result_size, &abort_code)) {
SLOGF(LOG_CRITICAL, "EtherCAT failed to get SDO Value");
}
test_value = EC_READ_S32((uint8_t *)value);
SLOGF(LOG_INFO, "SDO Value %%d", test_value);
}
*/
int GetMasterData(void){
master = ecrt_open_master(0);
if (!master) {
SLOGF(LOG_CRITICAL, "EtherCAT master request failed!");
return -1;
}
return 0;
}
void ReleaseMasterData(void){
ecrt_release_master(master);
}
uint32_t GetSDOData(uint16_t slave_pos, uint16_t idx, uint8_t subidx, int size){
uint32_t abort_code, return_value;
size_t result_size;
uint8_t value[size];
abort_code = 0;
result_size = 0;
if (ecrt_master_sdo_upload(master, slave_pos, idx, subidx, (uint8_t *)value, size, &result_size, &abort_code)) {
SLOGF(LOG_CRITICAL, "EtherCAT failed to get SDO Value %%d %%d", idx, subidx);
}
return_value = EC_READ_S32((uint8_t *)value);
//SLOGF(LOG_INFO, "SDO Value %%d", return_value);
return return_value;
}
/*****************************************************************************/
void dc_init(void)
{
slave_dc_used = 1;
frame_period_ns = common_ticktime__;
if (frame_period_ns <= comp_period_ns) {
comp_count_max = comp_period_ns / frame_period_ns;
comp_count = 0;
} else {
comp_count_max = 1;
comp_count = 0;
}
/* Set the initial master time */
dc_start_time_ns = system_time_ns();
dc_time_ns = dc_start_time_ns;
/* by woonggy */
dc_first_app_time = dc_start_time_ns;
/*
* Attention : The initial application time is also used for phase
* calculation for the SYNC0/1 interrupts. Please be sure to call it at
* the correct phase to the realtime cycle.
*/
ecrt_master_application_time(master, dc_start_time_ns);
}
/****************************************************************************/
/*
* Get the time in ns for the current cpu, adjusted by system_time_base.
*
* \attention Rather than calling rt_timer_read() directly, all application
* time calls should use this method instead.
*
* \ret The time in ns.
*/
uint64_t system_time_ns(void)
{
RTIME time = rt_timer_read(); // wkk
if (unlikely(system_time_base > (SRTIME) time)) {
fprintf(stderr, "%%s() error: system_time_base greater than"
" system time (system_time_base: %%ld, time: %%llu\n",
__func__, system_time_base, time);
return time;
}
else {
return time - system_time_base;
}
}
/****************************************************************************/
// Convert system time to Xenomai time in counts (via the system_time_base).
RTIME system2count(uint64_t time)
{
RTIME ret;
if ((system_time_base < 0) &&
((uint64_t) (-system_time_base) > time)) {
fprintf(stderr, "%%s() error: system_time_base less than"
" system time (system_time_base: %%I64d, time: %%ld\n",
__func__, system_time_base, time);
ret = time;
}
else {
ret = time + system_time_base;
}
return (RTIME) rt_timer_ns2ticks(ret); // wkk
}
/*****************************************************************************/
// Synchronise the distributed clocks
void sync_distributed_clocks(void)
{
uint32_t ref_time = 0;
RTIME prev_app_time = dc_time_ns;
// get reference clock time to synchronize master cycle
if(!ecrt_master_reference_clock_time(master, &ref_time)) {
dc_diff_ns = (uint32_t) prev_app_time - ref_time;
}
// call to sync slaves to ref slave
ecrt_master_sync_slave_clocks(master);
// set master time in nano-seconds
dc_time_ns = system_time_ns();
ecrt_master_application_time(master, dc_time_ns);
}
/*****************************************************************************/
/*
* Return the sign of a number
* ie -1 for -ve value, 0 for 0, +1 for +ve value
* \ret val the sign of the value
*/
#define sign(val) \
({ typeof (val) _val = (val); \
((_val > 0) - (_val < 0)); })
/*****************************************************************************/
/*
* Update the master time based on ref slaves time diff
* called after the ethercat frame is sent to avoid time jitter in
* sync_distributed_clocks()
*/
void update_master_clock(void)
{
// calc drift (via un-normalised time diff)
int32_t delta = dc_diff_ns - prev_dc_diff_ns;
prev_dc_diff_ns = dc_diff_ns;
// normalise the time diff
dc_diff_ns = dc_diff_ns >= 0 ?
((dc_diff_ns + (int32_t)(frame_period_ns / 2)) %%
(int32_t)frame_period_ns) - (frame_period_ns / 2) :
((dc_diff_ns - (int32_t)(frame_period_ns / 2)) %%
(int32_t)frame_period_ns) - (frame_period_ns / 2) ;
// only update if primary master
if (dc_started) {
// add to totals
dc_diff_total_ns += dc_diff_ns;
dc_delta_total_ns += delta;
dc_filter_idx++;
if (dc_filter_idx >= DC_FILTER_CNT) {
dc_adjust_ns += dc_delta_total_ns >= 0 ?
((dc_delta_total_ns + (DC_FILTER_CNT / 2)) / DC_FILTER_CNT) :
((dc_delta_total_ns - (DC_FILTER_CNT / 2)) / DC_FILTER_CNT) ;
// and add adjustment for general diff (to pull in drift)
dc_adjust_ns += sign(dc_diff_total_ns / DC_FILTER_CNT);
// limit crazy numbers (0.1%% of std cycle time)
if (dc_adjust_ns < -1000) {
dc_adjust_ns = -1000;
}
if (dc_adjust_ns > 1000) {
dc_adjust_ns = 1000;
}
// reset
dc_diff_total_ns = 0LL;
dc_delta_total_ns = 0LL;
dc_filter_idx = 0;
}
// add cycles adjustment to time base (including a spot adjustment)
system_time_base += dc_adjust_ns + sign(dc_diff_ns);
}
else {
dc_started = (dc_diff_ns != 0);
if (dc_started) {
#if DC_ENABLE && DEBUG_MODE
// output first diff
fprintf(stderr, "First master diff: %%d\n", dc_diff_ns);
#endif
// record the time of this initial cycle
dc_start_time_ns = dc_time_ns;
}
}
}
/*****************************************************************************/
/*
* Calculate the sleeptime
*/
RTIME calculate_sleeptime(uint64_t wakeup_time)
{
RTIME wakeup_count = system2count (wakeup_time);
RTIME current_count = rt_timer_read();
if ((wakeup_count < current_count) || (wakeup_count > current_count + (50 * frame_period_ns))) {
fprintf(stderr, "%%s(): unexpected wake time! wc = %%lld\tcc = %%lld\n", __func__, wakeup_count, current_count);
}
return wakeup_count;
}
/*****************************************************************************/
/*
* Calculate the sleeptime
*/
uint64_t calculate_first(void)
{
uint64_t dc_remainder = 0LL;
uint64_t dc_phase_set_time = 0LL;
dc_phase_set_time = system_time_ns()+ frame_period_ns * 10;
dc_remainder = (dc_phase_set_time - dc_first_app_time) %% frame_period_ns;
return dc_phase_set_time + frame_period_ns - dc_remainder;
}
/*****************************************************************************/