Added support for optimizing debug, preventing to filling buffers with only the last value for debug data consumers that only show the current state
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
#based on the plcopen standard.
#
#Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
#
#See COPYING file for copyrights details.
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
#General Public License for more details.
#
#You should have received a copy of the GNU General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
import string, os, sys, re
from plcopen import LoadProject
from collections import OrderedDict
LANGUAGES = ["IL","ST","FBD","LD","SFC"]
LOCATIONDATATYPES = {"X" : ["BOOL"],
"B" : ["SINT", "USINT", "BYTE", "STRING"],
"W" : ["INT", "UINT", "WORD", "WSTRING"],
"D" : ["DINT", "UDINT", "REAL", "DWORD"],
"L" : ["LINT", "ULINT", "LREAL", "LWORD"]}
_ = lambda x:x
#-------------------------------------------------------------------------------
# Function Block Types definitions
#-------------------------------------------------------------------------------
ScriptDirectory = os.path.split(os.path.realpath(__file__))[0]
StdBlockLibrary, error = LoadProject(
os.path.join(ScriptDirectory, "Standard_Function_Blocks.xml"))
AddnlBlockLibrary, error = LoadProject(
os.path.join(ScriptDirectory, "Additional_Function_Blocks.xml"))
StdBlockComments = {
"SR": _("SR bistable\nThe SR bistable is a latch where the Set dominates."),
"RS": _("RS bistable\nThe RS bistable is a latch where the Reset dominates."),
"SEMA": _("Semaphore\nThe semaphore provides a mechanism to allow software elements mutually exclusive access to certain ressources."),
"R_TRIG": _("Rising edge detector\nThe output produces a single pulse when a rising edge is detected."),
"F_TRIG": _("Falling edge detector\nThe output produces a single pulse when a falling edge is detected."),
"CTU": _("Up-counter\nThe up-counter can be used to signal when a count has reached a maximum value."),
"CTD": _("Down-counter\nThe down-counter can be used to signal when a count has reached zero, on counting down from a preset value."),
"CTUD": _("Up-down counter\nThe up-down counter has two inputs CU and CD. It can be used to both count up on one input and down on the other."),
"TP": _("Pulse timer\nThe pulse timer can be used to generate output pulses of a given time duration."),
"TON": _("On-delay timer\nThe on-delay timer can be used to delay setting an output true, for fixed period after an input becomes true."),
"TOF": _("Off-delay timer\nThe off-delay timer can be used to delay setting an output false, for fixed period after input goes false."),
"RTC": _("Real time clock\nThe real time clock has many uses including time stamping, setting dates and times of day in batch reports, in alarm messages and so on."),
"INTEGRAL": _("Integral\nThe integral function block integrates the value of input XIN over time."),
"DERIVATIVE": _("Derivative\nThe derivative function block produces an output XOUT proportional to the rate of change of the input XIN."),
"PID": _("PID\nThe PID (proportional, Integral, Derivative) function block provides the classical three term controller for closed loop control."),
"RAMP": _("Ramp\nThe RAMP function block is modelled on example given in the standard."),
"HYSTERESIS": _("Hysteresis\nThe hysteresis function block provides a hysteresis boolean output driven by the difference of two floating point (REAL) inputs XIN1 and XIN2."),
}
for block_type in ["CTU", "CTD", "CTUD"]:
for return_type in ["DINT", "LINT", "UDINT", "ULINT"]:
StdBlockComments["%s_%s" % (block_type, return_type)] = StdBlockComments[block_type]
def GetBlockInfos(pou):
infos = pou.getblockInfos()
infos["comment"] = StdBlockComments[infos["name"]]
infos["inputs"] = [
(var_name, var_type, "rising")
if var_name in ["CU", "CD"]
else (var_name, var_type, var_modifier)
for var_name, var_type, var_modifier in infos["inputs"]]
return infos
"""
Ordored list of common Function Blocks defined in the IEC 61131-3
Each block have this attributes:
- "name" : The block name
- "type" : The block type. It can be "function", "functionBlock" or "program"
- "extensible" : Boolean that define if the block is extensible
- "inputs" : List of the block inputs
- "outputs" : List of the block outputs
- "comment" : Comment that will be displayed in the block popup
- "generate" : Method that generator will call for generating ST block code
Inputs and outputs are a tuple of characteristics that are in order:
- The name
- The data type
- The default modifier which can be "none", "negated", "rising" or "falling"
"""
StdBlckLst = [{"name" : _("Standard function blocks"), "list":
[GetBlockInfos(pou) for pou in StdBlockLibrary.getpous()]},
{"name" : _("Additional function blocks"), "list":
[GetBlockInfos(pou) for pou in AddnlBlockLibrary.getpous()]},
]
#-------------------------------------------------------------------------------
# Data Types definitions
#-------------------------------------------------------------------------------
"""
Ordored list of common data types defined in the IEC 61131-3
Each type is associated to his direct parent type. It defines then a hierarchy
between type that permits to make a comparison of two types
"""
TypeHierarchy_list = [
("ANY", None),
("ANY_DERIVED", "ANY"),
("ANY_ELEMENTARY", "ANY"),
("ANY_MAGNITUDE", "ANY_ELEMENTARY"),
("ANY_BIT", "ANY_ELEMENTARY"),
("ANY_NBIT", "ANY_BIT"),
("ANY_STRING", "ANY_ELEMENTARY"),
("ANY_DATE", "ANY_ELEMENTARY"),
("ANY_NUM", "ANY_MAGNITUDE"),
("ANY_REAL", "ANY_NUM"),
("ANY_INT", "ANY_NUM"),
("ANY_SINT", "ANY_INT"),
("ANY_UINT", "ANY_INT"),
("BOOL", "ANY_BIT"),
("SINT", "ANY_SINT"),
("INT", "ANY_SINT"),
("DINT", "ANY_SINT"),
("LINT", "ANY_SINT"),
("USINT", "ANY_UINT"),
("UINT", "ANY_UINT"),
("UDINT", "ANY_UINT"),
("ULINT", "ANY_UINT"),
("REAL", "ANY_REAL"),
("LREAL", "ANY_REAL"),
("TIME", "ANY_MAGNITUDE"),
("DATE", "ANY_DATE"),
("TOD", "ANY_DATE"),
("DT", "ANY_DATE"),
("STRING", "ANY_STRING"),
("BYTE", "ANY_NBIT"),
("WORD", "ANY_NBIT"),
("DWORD", "ANY_NBIT"),
("LWORD", "ANY_NBIT")
#("WSTRING", "ANY_STRING") # TODO
]
TypeHierarchy = dict(TypeHierarchy_list)
"""
returns true if the given data type is the same that "reference" meta-type or one of its types.
"""
def IsOfType(type, reference):
if reference is None:
return True
elif type == reference:
return True
else:
parent_type = TypeHierarchy[type]
if parent_type is not None:
return IsOfType(parent_type, reference)
return False
"""
returns list of all types that correspont to the ANY* meta type
"""
def GetSubTypes(type):
return [typename for typename, parenttype in TypeHierarchy.items() if not typename.startswith("ANY") and IsOfType(typename, type)]
DataTypeRange_list = [
("SINT", (-2**7, 2**7 - 1)),
("INT", (-2**15, 2**15 - 1)),
("DINT", (-2**31, 2**31 - 1)),
("LINT", (-2**31, 2**31 - 1)),
("USINT", (0, 2**8 - 1)),
("UINT", (0, 2**16 - 1)),
("UDINT", (0, 2**31 - 1)),
("ULINT", (0, 2**31 - 1))
]
DataTypeRange = dict(DataTypeRange_list)
#-------------------------------------------------------------------------------
# Test identifier
#-------------------------------------------------------------------------------
IDENTIFIER_MODEL = re.compile(
"(?:%(letter)s|_(?:%(letter)s|%(digit)s))(?:_?(?:%(letter)s|%(digit)s))*$" %
{"letter": "[a-zA-Z]", "digit": "[0-9]"})
# Test if identifier is valid
def TestIdentifier(identifier):
return IDENTIFIER_MODEL.match(identifier) is not None
#-------------------------------------------------------------------------------
# Standard functions list generation
#-------------------------------------------------------------------------------
"""
take a .csv file and translate it it a "csv_table"
"""
def csv_file_to_table(file):
return [ map(string.strip,line.split(';')) for line in file.xreadlines()]
"""
seek into the csv table to a section ( section_name match 1st field )
return the matching row without first field
"""
def find_section(section_name, table):
fields = [None]
while(fields[0] != section_name):
fields = table.pop(0)
return fields[1:]
"""
extract the standard functions standard parameter names and types...
return a { ParameterName: Type, ...}
"""
def get_standard_funtions_input_variables(table):
variables = find_section("Standard_functions_variables_types", table)
standard_funtions_input_variables = {}
fields = [True,True]
while(fields[1]):
fields = table.pop(0)
variable_from_csv = dict([(champ, val) for champ, val in zip(variables, fields[1:]) if champ!=''])
standard_funtions_input_variables[variable_from_csv['name']] = variable_from_csv['type']
return standard_funtions_input_variables
"""
translate .csv file input declaration into PLCOpenEditor interessting values
in : "(ANY_NUM, ANY_NUM)" and { ParameterName: Type, ...}
return [("IN1","ANY_NUM","none"),("IN2","ANY_NUM","none")]
"""
def csv_input_translate(str_decl, variables, base):
decl = str_decl.replace('(','').replace(')','').replace(' ','').split(',')
params = []
len_of_not_predifined_variable = len([True for param_type in decl if param_type not in variables])
for param_type in decl:
if param_type in variables.keys():
param_name = param_type
param_type = variables[param_type]
elif len_of_not_predifined_variable > 1:
param_name = "IN%d"%base
base += 1
else:
param_name = "IN"
params.append((param_name, param_type, "none"))
return params
ANY_TO_ANY_LIST=[
# simple type conv are let as C cast
(("ANY_INT","ANY_BIT"),("ANY_NUM","ANY_BIT"), ("return_type", "__move_", "IN_type")),
(("ANY_REAL",),("ANY_REAL",), ("return_type", "__move_", "IN_type")),
# REAL_TO_INT
(("ANY_REAL",),("ANY_SINT",), ("return_type", "__real_to_sint", None)),
(("ANY_REAL",),("ANY_UINT",), ("return_type", "__real_to_uint", None)),
(("ANY_REAL",),("ANY_BIT",), ("return_type", "__real_to_bit", None)),
# TO_TIME
(("ANY_INT","ANY_BIT"),("ANY_DATE","TIME"), ("return_type", "__int_to_time", None)),
(("ANY_REAL",),("ANY_DATE","TIME"), ("return_type", "__real_to_time", None)),
(("ANY_STRING",), ("ANY_DATE","TIME"), ("return_type", "__string_to_time", None)),
# FROM_TIME
(("ANY_DATE","TIME"), ("ANY_REAL",), ("return_type", "__time_to_real", None)),
(("ANY_DATE","TIME"), ("ANY_INT","ANY_NBIT"), ("return_type", "__time_to_int", None)),
(("TIME",), ("ANY_STRING",), ("return_type", "__time_to_string", None)),
(("DATE",), ("ANY_STRING",), ("return_type", "__date_to_string", None)),
(("TOD",), ("ANY_STRING",), ("return_type", "__tod_to_string", None)),
(("DT",), ("ANY_STRING",), ("return_type", "__dt_to_string", None)),
# TO_STRING
(("BOOL",), ("ANY_STRING",), ("return_type", "__bool_to_string", None)),
(("ANY_BIT",), ("ANY_STRING",), ("return_type", "__bit_to_string", None)),
(("ANY_REAL",), ("ANY_STRING",), ("return_type", "__real_to_string", None)),
(("ANY_SINT",), ("ANY_STRING",), ("return_type", "__sint_to_string", None)),
(("ANY_UINT",), ("ANY_STRING",), ("return_type", "__uint_to_string", None)),
# FROM_STRING
(("ANY_STRING",), ("BOOL",), ("return_type", "__string_to_bool", None)),
(("ANY_STRING",), ("ANY_BIT",), ("return_type", "__string_to_bit", None)),
(("ANY_STRING",), ("ANY_SINT",), ("return_type", "__string_to_sint", None)),
(("ANY_STRING",), ("ANY_UINT",), ("return_type", "__string_to_uint", None)),
(("ANY_STRING",), ("ANY_REAL",), ("return_type", "__string_to_real", None))]
BCD_TO_ANY_LIST=[
(("BYTE",),("USINT",), ("return_type", "__bcd_to_uint", None)),
(("WORD",),("UINT",), ("return_type", "__bcd_to_uint", None)),
(("DWORD",),("UDINT",), ("return_type", "__bcd_to_uint", None)),
(("LWORD",),("ULINT",), ("return_type", "__bcd_to_uint", None))]
ANY_TO_BCD_LIST=[
(("USINT",),("BYTE",), ("return_type", "__uint_to_bcd", None)),
(("UINT",),("WORD",), ("return_type", "__uint_to_bcd", None)),
(("UDINT",),("DWORD",), ("return_type", "__uint_to_bcd", None)),
(("ULINT",),("LWORD",), ("return_type", "__uint_to_bcd", None))]
def ANY_TO_ANY_FORMAT_GEN(any_to_any_list, fdecl):
for (InTypes, OutTypes, Format) in any_to_any_list:
outs = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["outputs"][0][1],testtype), OutTypes))
inps = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["inputs"][0][1],testtype), InTypes))
if inps and outs and fdecl["outputs"][0][1] != fdecl["inputs"][0][1]:
return Format
return None
"""
Returns this kind of declaration for all standard functions
[{"name" : "Numerical", 'list': [ {
'baseinputnumber': 1,
'comment': 'Addition',
'extensible': True,
'inputs': [ ('IN1', 'ANY_NUM', 'none'),
('IN2', 'ANY_NUM', 'none')],
'name': 'ADD',
'outputs': [('OUT', 'ANY_NUM', 'none')],
'type': 'function'}, ...... ] },.....]
"""
def get_standard_funtions(table):
variables = get_standard_funtions_input_variables(table)
fonctions = find_section("Standard_functions_type",table)
Standard_Functions_Decl = []
Current_section = None
translate = {
"extensible" : lambda x: {"yes":True, "no":False}[x],
"inputs" : lambda x:csv_input_translate(x,variables,baseinputnumber),
"outputs":lambda x:[("OUT",x,"none")]}
for fields in table:
if fields[1]:
# If function section name given
if fields[0]:
words = fields[0].split('"')
if len(words) > 1:
section_name = words[1]
else:
section_name = fields[0]
Current_section = {"name" : section_name, "list" : []}
Standard_Functions_Decl.append(Current_section)
Function_decl_list = []
if Current_section:
Function_decl = dict([(champ, val) for champ, val in zip(fonctions, fields[1:]) if champ])
baseinputnumber = int(Function_decl.get("baseinputnumber",1))
Function_decl["baseinputnumber"] = baseinputnumber
for param, value in Function_decl.iteritems():
if param in translate:
Function_decl[param] = translate[param](value)
Function_decl["type"] = "function"
if Function_decl["name"].startswith('*') or Function_decl["name"].endswith('*') :
input_ovrloading_types = GetSubTypes(Function_decl["inputs"][0][1])
output_types = GetSubTypes(Function_decl["outputs"][0][1])
else:
input_ovrloading_types = [None]
output_types = [None]
funcdeclname_orig = Function_decl["name"]
funcdeclname = Function_decl["name"].strip('*_')
fdc = Function_decl["inputs"][:]
for intype in input_ovrloading_types:
if intype != None:
Function_decl["inputs"] = []
for decl_tpl in fdc:
if IsOfType(intype, decl_tpl[1]):
Function_decl["inputs"] += [(decl_tpl[0], intype, decl_tpl[2])]
else:
Function_decl["inputs"] += [(decl_tpl)]
if funcdeclname_orig.startswith('*'):
funcdeclin = intype + '_' + funcdeclname
else:
funcdeclin = funcdeclname
else:
funcdeclin = funcdeclname
for outype in output_types:
if outype != None:
decl_tpl = Function_decl["outputs"][0]
Function_decl["outputs"] = [ (decl_tpl[0] , outype, decl_tpl[2])]
if funcdeclname_orig.endswith('*'):
funcdeclout = funcdeclin + '_' + outype
else:
funcdeclout = funcdeclin
else:
funcdeclout = funcdeclin
Function_decl["name"] = funcdeclout
fdecl = Function_decl
res = eval(Function_decl["python_eval_c_code_format"])
if res != None :
# create the copy of decl dict to be appended to section
Function_decl_copy = Function_decl.copy()
Current_section["list"].append(Function_decl_copy)
else:
raise "First function must be in a category"
return Standard_Functions_Decl
std_decl = get_standard_funtions(csv_file_to_table(open(os.path.join(ScriptDirectory,"iec_std.csv"))))#, True)
StdBlckLst.extend(std_decl)
# Dictionary to speedup block type fetching by name
StdBlckDct = OrderedDict()
for section in StdBlckLst:
for desc in section["list"]:
words = desc["comment"].split('"')
if len(words) > 1:
desc["comment"] = words[1]
desc["usage"] = ("\n (%s) => (%s)" %
(", ".join(["%s:%s" % (input[1], input[0])
for input in desc["inputs"]]),
", ".join(["%s:%s" % (output[1], output[0])
for output in desc["outputs"]])))
BlkLst = StdBlckDct.setdefault(desc["name"],[])
BlkLst.append((section["name"], desc))
#-------------------------------------------------------------------------------
# Languages Keywords
#-------------------------------------------------------------------------------
# Keywords for Pou Declaration
POU_BLOCK_START_KEYWORDS = ["FUNCTION", "FUNCTION_BLOCK", "PROGRAM"]
POU_BLOCK_END_KEYWORDS = ["END_FUNCTION", "END_FUNCTION_BLOCK", "END_PROGRAM"]
POU_KEYWORDS = ["EN", "ENO", "F_EDGE", "R_EDGE"] + POU_BLOCK_START_KEYWORDS + POU_BLOCK_END_KEYWORDS
for category in StdBlckLst:
for block in category["list"]:
if block["name"] not in POU_KEYWORDS:
POU_KEYWORDS.append(block["name"])
# Keywords for Type Declaration
TYPE_BLOCK_START_KEYWORDS = ["TYPE", "STRUCT"]
TYPE_BLOCK_END_KEYWORDS = ["END_TYPE", "END_STRUCT"]
TYPE_KEYWORDS = ["ARRAY", "OF", "T", "D", "TIME_OF_DAY", "DATE_AND_TIME"] + TYPE_BLOCK_START_KEYWORDS + TYPE_BLOCK_END_KEYWORDS
TYPE_KEYWORDS.extend([keyword for keyword in TypeHierarchy.keys() if keyword not in TYPE_KEYWORDS])
# Keywords for Variable Declaration
VAR_BLOCK_START_KEYWORDS = ["VAR", "VAR_INPUT", "VAR_OUTPUT", "VAR_IN_OUT", "VAR_TEMP", "VAR_EXTERNAL"]
VAR_BLOCK_END_KEYWORDS = ["END_VAR"]
VAR_KEYWORDS = ["AT", "CONSTANT", "RETAIN", "NON_RETAIN"] + VAR_BLOCK_START_KEYWORDS + VAR_BLOCK_END_KEYWORDS
# Keywords for Configuration Declaration
CONFIG_BLOCK_START_KEYWORDS = ["CONFIGURATION", "RESOURCE", "VAR_ACCESS", "VAR_CONFIG", "VAR_GLOBAL"]
CONFIG_BLOCK_END_KEYWORDS = ["END_CONFIGURATION", "END_RESOURCE", "END_VAR"]
CONFIG_KEYWORDS = ["ON", "PROGRAM", "WITH", "READ_ONLY", "READ_WRITE", "TASK"] + CONFIG_BLOCK_START_KEYWORDS + CONFIG_BLOCK_END_KEYWORDS
# Keywords for Structured Function Chart
SFC_BLOCK_START_KEYWORDS = ["ACTION", "INITIAL_STEP", "STEP", "TRANSITION"]
SFC_BLOCK_END_KEYWORDS = ["END_ACTION", "END_STEP", "END_TRANSITION"]
SFC_KEYWORDS = ["FROM", "TO"] + SFC_BLOCK_START_KEYWORDS + SFC_BLOCK_END_KEYWORDS
# Keywords for Instruction List
IL_KEYWORDS = ["TRUE", "FALSE", "LD", "LDN", "ST", "STN", "S", "R", "AND", "ANDN", "OR", "ORN",
"XOR", "XORN", "NOT", "ADD", "SUB", "MUL", "DIV", "MOD", "GT", "GE", "EQ", "NE",
"LE", "LT", "JMP", "JMPC", "JMPCN", "CAL", "CALC", "CALCN", "RET", "RETC", "RETCN"]
# Keywords for Structured Text
ST_BLOCK_START_KEYWORDS = ["IF", "ELSIF", "ELSE", "CASE", "FOR", "WHILE", "REPEAT"]
ST_BLOCK_END_KEYWORDS = ["END_IF", "END_CASE", "END_FOR", "END_WHILE", "END_REPEAT"]
ST_KEYWORDS = ["TRUE", "FALSE", "THEN", "OF", "TO", "BY", "DO", "DO", "UNTIL", "EXIT",
"RETURN", "NOT", "MOD", "AND", "XOR", "OR"] + ST_BLOCK_START_KEYWORDS + ST_BLOCK_END_KEYWORDS
# All the keywords of IEC
IEC_BLOCK_START_KEYWORDS = []
IEC_BLOCK_END_KEYWORDS = []
IEC_KEYWORDS = ["E", "TRUE", "FALSE"]
for all_keywords, keywords_list in [(IEC_BLOCK_START_KEYWORDS, [POU_BLOCK_START_KEYWORDS, TYPE_BLOCK_START_KEYWORDS,
VAR_BLOCK_START_KEYWORDS, CONFIG_BLOCK_START_KEYWORDS,
SFC_BLOCK_START_KEYWORDS, ST_BLOCK_START_KEYWORDS]),
(IEC_BLOCK_END_KEYWORDS, [POU_BLOCK_END_KEYWORDS, TYPE_BLOCK_END_KEYWORDS,
VAR_BLOCK_END_KEYWORDS, CONFIG_BLOCK_END_KEYWORDS,
SFC_BLOCK_END_KEYWORDS, ST_BLOCK_END_KEYWORDS]),
(IEC_KEYWORDS, [POU_KEYWORDS, TYPE_KEYWORDS, VAR_KEYWORDS, CONFIG_KEYWORDS,
SFC_KEYWORDS, IL_KEYWORDS, ST_KEYWORDS])]:
for keywords in keywords_list:
all_keywords.extend([keyword for keyword in keywords if keyword not in all_keywords])