/**
* Linux specific code
**/
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#include <pthread.h>
#include <locale.h>
#include <semaphore.h>
#ifdef REALTIME_LINUX
#include <sys/mman.h>
#endif
#define _Log(level,text,...) \
{\
char mstr[256];\
snprintf(mstr, 255, text, ##__VA_ARGS__);\
LogMessage(LOG_CRITICAL, mstr, strlen(mstr));\
}
#define _LogError(text,...) _Log(LOG_CRITICAL, text, ##__VA_ARGS__)
#define _LogWarning(text,...) _Log(LOG_WARNING, text, ##__VA_ARGS__)
static unsigned long __debug_tick;
static pthread_t PLC_thread;
static pthread_mutex_t python_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t python_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t debug_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t debug_mutex = PTHREAD_MUTEX_INITIALIZER;
static int PLC_shutdown = 0;
long AtomicCompareExchange(long* atomicvar,long compared, long exchange)
{
return __sync_val_compare_and_swap(atomicvar, compared, exchange);
}
long long AtomicCompareExchange64(long long* atomicvar, long long compared, long long exchange)
{
return __sync_val_compare_and_swap(atomicvar, compared, exchange);
}
void PLC_GetTime(IEC_TIME *CURRENT_TIME)
{
struct timespec tmp;
clock_gettime(CLOCK_REALTIME, &tmp);
CURRENT_TIME->tv_sec = tmp.tv_sec;
CURRENT_TIME->tv_nsec = tmp.tv_nsec;
}
static long long period_ns = 0;
struct timespec next_cycle_time;
static void inc_timespec(struct timespec *ts, unsigned long long value_ns)
{
long long next_ns = ((long long) ts->tv_sec * 1000000000) + ts->tv_nsec + value_ns;
#ifdef __lldiv_t_defined
lldiv_t next_div = lldiv(next_ns, 1000000000);
ts->tv_sec = next_div.quot;
ts->tv_nsec = next_div.rem;
#else
ts->tv_sec = next_ns / 1000000000;
ts->tv_nsec = next_ns % 1000000000;
#endif
}
void PLC_SetTimer(unsigned long long next, unsigned long long period)
{
/*
printf("SetTimer(%lld,%lld)\n",next, period);
*/
period_ns = period;
clock_gettime(CLOCK_MONOTONIC, &next_cycle_time);
inc_timespec(&next_cycle_time, next);
// interrupt clock_nanpsleep
pthread_kill(PLC_thread, SIGUSR1);
}
void catch_signal(int sig)
{
// signal(SIGTERM, catch_signal);
signal(SIGINT, catch_signal);
printf("Got Signal %d\n",sig);
exit(0);
}
void PLCThreadSignalHandler(int sig)
{
if (sig == SIGUSR2)
pthread_exit(NULL);
}
int ForceSaveRetainReq(void) {
return PLC_shutdown;
}
#define MAX_JITTER period_ns/10
#define MIN_IDLE_TIME_NS 1000000 /* 1ms */
/* Macro to compare timespec, evaluate to True if a is past b */
#define timespec_gt(a,b) (a.tv_sec > b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec > b.tv_nsec))
void PLC_thread_proc(void *arg)
{
/* initialize next occurence and period */
period_ns = common_ticktime__;
clock_gettime(CLOCK_MONOTONIC, &next_cycle_time);
while (!PLC_shutdown) {
int res;
struct timespec plc_end_time;
int periods = 0;
#ifdef REALTIME_LINUX
struct timespec deadline_time;
struct timespec plc_start_time;
#endif
// Sleep until next PLC run
res = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &next_cycle_time, NULL);
if(res==EINTR){
continue;
}
if(res!=0){
_LogError("PLC thread timer returned error %d \n", res);
return;
}
#ifdef REALTIME_LINUX
// timer overrun detection
clock_gettime(CLOCK_MONOTONIC, &plc_start_time);
deadline_time=next_cycle_time;
inc_timespec(&deadline_time, MAX_JITTER);
if(timespec_gt(plc_start_time, deadline_time)){
_LogWarning("PLC thread woken up too late. PLC cyclic task interval is too small.\n");
}
#endif
PLC_GetTime(&__CURRENT_TIME);
__run();
// ensure next PLC cycle occurence is in the future
clock_gettime(CLOCK_MONOTONIC, &plc_end_time);
while(timespec_gt(plc_end_time, next_cycle_time)){
periods += 1;
inc_timespec(&next_cycle_time, period_ns);
}
// plc execution time overrun detection
if(periods > 1) {
// Mitigate CPU hogging, in case of too small cyclic task interval:
// - since cycle deadline already missed, better keep system responsive
// - test if next cycle occurs after minimal idle
// - enforce minimum idle time if not
struct timespec earliest_possible_time = plc_end_time;
inc_timespec(&earliest_possible_time, MIN_IDLE_TIME_NS);
while(timespec_gt(earliest_possible_time, next_cycle_time)){
periods += 1;
inc_timespec(&next_cycle_time, period_ns);
}
// increment tick count anyhow, so that task scheduling keeps consistent
__tick+=periods-1;
_LogWarning("PLC execution time is longer than requested PLC cyclic task interval. %d cycles skipped\n", periods);
}
}
pthread_exit(0);
}
#define maxval(a,b) ((a>b)?a:b)
int startPLC(int argc,char **argv)
{
int ret;
pthread_attr_t *pattr = NULL;
#ifdef REALTIME_LINUX
struct sched_param param;
pthread_attr_t attr;
/* Lock memory */
ret = mlockall(MCL_CURRENT|MCL_FUTURE);
if(ret == -1) {
_LogError("mlockall failed: %m\n");
return ret;
}
/* Initialize pthread attributes (default values) */
ret = pthread_attr_init(&attr);
if (ret) {
_LogError("init pthread attributes failed\n");
return ret;
}
/* Set scheduler policy and priority of pthread */
ret = pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
if (ret) {
_LogError("pthread setschedpolicy failed\n");
return ret;
}
param.sched_priority = PLC_THREAD_PRIORITY;
ret = pthread_attr_setschedparam(&attr, ¶m);
if (ret) {
_LogError("pthread setschedparam failed\n");
return ret;
}
/* Use scheduling parameters of attr */
ret = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
if (ret) {
_LogError("pthread setinheritsched failed\n");
return ret;
}
pattr = &attr;
#endif
PLC_shutdown = 0;
pthread_mutex_init(&debug_wait_mutex, NULL);
pthread_mutex_init(&debug_mutex, NULL);
pthread_mutex_init(&python_wait_mutex, NULL);
pthread_mutex_init(&python_mutex, NULL);
pthread_mutex_lock(&debug_wait_mutex);
pthread_mutex_lock(&python_wait_mutex);
if((ret = __init(argc,argv)) == 0 ){
/* Signal to wakeup PLC thread when period changes */
signal(SIGUSR1, PLCThreadSignalHandler);
/* Signal to end PLC thread */
signal(SIGUSR2, PLCThreadSignalHandler);
/* install signal handler for manual break */
signal(SIGINT, catch_signal);
ret = pthread_create(&PLC_thread, pattr, (void*) &PLC_thread_proc, NULL);
if (ret) {
_LogError("create pthread failed\n");
return ret;
}
}else{
return ret;
}
return 0;
}
int TryEnterDebugSection(void)
{
if (pthread_mutex_trylock(&debug_mutex) == 0){
/* Only enter if debug active */
if(__DEBUG){
return 1;
}
pthread_mutex_unlock(&debug_mutex);
}
return 0;
}
void LeaveDebugSection(void)
{
pthread_mutex_unlock(&debug_mutex);
}
int stopPLC()
{
/* Stop the PLC */
PLC_shutdown = 1;
/* Order PLCThread to exit */
pthread_kill(PLC_thread, SIGUSR2);
pthread_join(PLC_thread, NULL);
__cleanup();
pthread_mutex_destroy(&debug_wait_mutex);
pthread_mutex_destroy(&debug_mutex);
pthread_mutex_destroy(&python_wait_mutex);
pthread_mutex_destroy(&python_mutex);
return 0;
}
extern unsigned long __tick;
int WaitDebugData(unsigned long *tick)
{
int res;
if (PLC_shutdown) return 1;
/* Wait signal from PLC thread */
res = pthread_mutex_lock(&debug_wait_mutex);
*tick = __debug_tick;
return res;
}
/* Called by PLC thread when debug_publish finished
* This is supposed to unlock debugger thread in WaitDebugData*/
void InitiateDebugTransfer()
{
/* remember tick */
__debug_tick = __tick;
/* signal debugger thread it can read data */
pthread_mutex_unlock(&debug_wait_mutex);
}
int suspendDebug(int disable)
{
/* Prevent PLC to enter debug code */
pthread_mutex_lock(&debug_mutex);
/*__DEBUG is protected by this mutex */
__DEBUG = !disable;
if (disable)
pthread_mutex_unlock(&debug_mutex);
return 0;
}
void resumeDebug(void)
{
__DEBUG = 1;
/* Let PLC enter debug code */
pthread_mutex_unlock(&debug_mutex);
}
/* from plc_python.c */
int WaitPythonCommands(void)
{
/* Wait signal from PLC thread */
return pthread_mutex_lock(&python_wait_mutex);
}
/* Called by PLC thread on each new python command*/
void UnBlockPythonCommands(void)
{
/* signal python thread it can read data */
pthread_mutex_unlock(&python_wait_mutex);
}
int TryLockPython(void)
{
return pthread_mutex_trylock(&python_mutex) == 0;
}
void UnLockPython(void)
{
pthread_mutex_unlock(&python_mutex);
}
void LockPython(void)
{
pthread_mutex_lock(&python_mutex);
}
struct RT_to_nRT_signal_s {
int used;
pthread_cond_t WakeCond;
pthread_mutex_t WakeCondLock;
};
typedef struct RT_to_nRT_signal_s RT_to_nRT_signal_t;
#define _LogAndReturnNull(text) \
{\
char mstr[256] = text " for ";\
strncat(mstr, name, 255);\
LogMessage(LOG_CRITICAL, mstr, strlen(mstr));\
return NULL;\
}
void *create_RT_to_nRT_signal(char* name){
RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)malloc(sizeof(RT_to_nRT_signal_t));
if(!sig)
_LogAndReturnNull("Failed allocating memory for RT_to_nRT signal");
sig->used = 1;
pthread_cond_init(&sig->WakeCond, NULL);
pthread_mutex_init(&sig->WakeCondLock, NULL);
return (void*)sig;
}
void delete_RT_to_nRT_signal(void* handle){
RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)handle;
pthread_mutex_lock(&sig->WakeCondLock);
sig->used = 0;
pthread_cond_signal(&sig->WakeCond);
pthread_mutex_unlock(&sig->WakeCondLock);
}
int wait_RT_to_nRT_signal(void* handle){
int ret;
RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)handle;
pthread_mutex_lock(&sig->WakeCondLock);
ret = pthread_cond_wait(&sig->WakeCond, &sig->WakeCondLock);
if(!sig->used) ret = -EINVAL;
pthread_mutex_unlock(&sig->WakeCondLock);
if(!sig->used){
pthread_cond_destroy(&sig->WakeCond);
pthread_mutex_destroy(&sig->WakeCondLock);
free(sig);
}
return ret;
}
int unblock_RT_to_nRT_signal(void* handle){
RT_to_nRT_signal_t *sig = (RT_to_nRT_signal_t*)handle;
return pthread_cond_signal(&sig->WakeCond);
}
void nRT_reschedule(void){
sched_yield();
}