graphics/GraphicCommons.py
changeset 0 b622defdfd98
child 2 93bc4c2cf376
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/graphics/GraphicCommons.py	Wed Jan 31 16:31:39 2007 +0100
@@ -0,0 +1,1694 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
+#based on the plcopen standard. 
+#
+#Copyright (C): Edouard TISSERANT and Laurent BESSARD
+#
+#See COPYING file for copyrights details.
+#
+#This library is free software; you can redistribute it and/or
+#modify it under the terms of the GNU Lesser General Public
+#License as published by the Free Software Foundation; either
+#version 2.1 of the License, or (at your option) any later version.
+#
+#This library is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+#Lesser General Public License for more details.
+#
+#You should have received a copy of the GNU Lesser General Public
+#License along with this library; if not, write to the Free Software
+#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+
+from wxPython.wx import *
+import wx
+from math import *
+
+
+#-------------------------------------------------------------------------------
+#                               Common constants
+#-------------------------------------------------------------------------------
+
+"""
+Definition of constants for dimensions of graphic elements
+"""
+
+# FBD and SFC constants
+MIN_MOVE = 5            # Minimum move before starting a element dragging
+CONNECTOR_SIZE = 8      # Size of connectors
+BLOCK_LINE_SIZE = 20    # Minimum size of each line in a block
+HANDLE_SIZE = 6         # Size of the squares for handles
+ANCHOR_DISTANCE = 5     # Distance where wire is automativally attached to a connector
+POINT_RADIUS = 2        # Radius of the point of wire ends
+MIN_SEGMENT_SIZE = 2    # Minimum size of the endling segments of a wire
+
+# LD constants
+LD_LINE_SIZE = 40                   # Distance between two lines in a ladder rung
+LD_ELEMENT_SIZE = (21, 15)          # Size (width, height) of a ladder element (contact or coil)
+LD_WIRE_SIZE = 30                   # Size of a wire between two contact
+LD_WIRECOIL_SIZE = 70               # Size of a wire between a coil and a contact
+LD_OFFSET = (10, 10)                # Distance (x, y) between each comment and rung of the ladder
+LD_COMMENT_DEFAULTSIZE = (600, 40)  # Size (width, height) of a comment box
+
+# SFC constants
+SFC_STEP_DEFAULT_SIZE = (40, 30)      # Default size of a SFC step
+SFC_TRANSITION_SIZE = (20, 2)         # Size of a SFC transition
+SFC_DEFAULT_SEQUENCE_INTERVAL = 80    # Default size of the interval between two divergence branches
+SFC_SIMULTANEOUS_SEQUENCE_EXTRA = 20  # Size of extra lines for simultaneous divergence and convergence
+SFC_JUMP_SIZE = (12, 13)              # Size of a SFC jump to step
+SFC_WIRE_MIN_SIZE = 25                # Size of a wire between two elements
+SFC_ACTION_MIN_SIZE = (100, 30)       # Minimum size of an action block line
+
+# Type definition constants for graphic elements
+[INPUT, OUTPUT, INOUT] = range(3)
+[CONNECTOR, CONTINUATION] = range(2)
+[LEFTRAIL, RIGHTRAIL] = range(2)
+[CONTACT_NORMAL, CONTACT_REVERSE, CONTACT_RISING, CONTACT_FALLING] = range(4)
+[COIL_NORMAL, COIL_REVERSE, COIL_SET, COIL_RESET] = range(4)
+[SELECTION_DIVERGENCE, SELECTION_CONVERGENCE, SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE] = range(4)
+
+# Constants for defining the type of dragging that has been selected
+[HANDLE_MOVE, HANDLE_RESIZE, HANDLE_POINT, HANDLE_SEGMENT, HANDLE_CONNECTOR] = range(5)
+
+# List of value for resize handle that are valid
+VALID_HANDLES = [(1,1), (1,2), (1,3), (2,3), (3,3), (3,2), (3,1), (2,1)]
+
+# Contants for defining the direction of a connector
+[EAST, NORTH, WEST, SOUTH] = [(1,0), (0,-1), (-1,0), (0,1)]
+
+# Contants for defining which mode is selected for each view 
+[MODE_SELECTION, MODE_BLOCK, MODE_VARIABLE, MODE_CONNECTION, MODE_COMMENT, MODE_WIRE,
+ MODE_INITIAL_STEP] = range(7)
+
+"""
+Basic vector operations for calculate wire points
+"""
+
+# Calculate the scalar product of two vectors
+def product(v1, v2):
+    return v1[0] * v2[0] + v1[1] * v2[1]
+
+# Create a vector from two points and define if vector must be normal
+def vector(p1, p2, normal = True):
+    vector = (p2.x - p1.x, p2.y - p1.y)
+    if normal:
+        return normalize(vector)
+    return vector
+
+# Calculate the norm of a given vector
+def norm(v):
+    return sqrt(v[0] * v[0] + v[1] * v[1])
+
+# Normalize a given vector
+def normalize(v):
+    v_norm = norm(v)
+    # Verifie if it is not a null vector
+    if v_norm > 0:
+        return (v[0] / v_norm, v[1] / v_norm)
+    else:
+        return v
+
+
+"""
+Function that calculates the nearest point of the grid defined by scaling for the given point
+"""
+
+def GetScaledEventPosition(event, scaling):
+    pos = event.GetPosition()
+    if scaling:
+        pos.x = round(float(pos.x) / float(scaling[0])) * scaling[0]
+        pos.y = round(float(pos.y) / float(scaling[1])) * scaling[1]
+    return pos
+
+
+"""
+Function that choose a direction during the wire points generation
+"""
+
+def DirectionChoice(v_base, v_target, dir_target):
+    dir_product = product(v_base, v_target)
+    if dir_product < 0:
+        return (-v_base[0], -v_base[1])
+    elif dir_product == 0 and product(v_base, dir_target) != 0:
+        return dir_target
+    return v_base
+
+
+#-------------------------------------------------------------------------------
+#                               Viewer Rubberband
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a rubberband
+"""
+
+class RubberBand:
+    
+    # Create a rubberband by indicated on which window it must be drawn
+    def __init__(self, drawingSurface):
+        self.drawingSurface = drawingSurface
+        self.Reset()
+    
+    # Method that initializes the internal attributes of the rubberband
+    def Reset(self):
+        self.startPoint = None
+        self.currentBox = None
+        self.lastBox = None
+    
+    # Method that return if a box is currently edited
+    def IsShown(self):
+        return self.currentBox != None
+    
+    # Method that returns the currently edited box
+    def GetCurrentExtent(self):
+        return self.currentBox
+    
+    # Method called when a new box starts to be edited
+    def OnLeftDown(self, event, scaling):
+        pos = GetScaledEventPosition(event, scaling)
+        # Save the point for calculate the box position and size
+        self.startPoint = pos
+        self.currentBox = wxRect(pos.x, pos.y, 0, 0)
+        self.drawingSurface.SetCursor(wxStockCursor(wxCURSOR_CROSS))
+        self.Redraw()
+    
+    # Method called when dragging with a box edited
+    def OnMotion(self, event, scaling):
+        pos = GetScaledEventPosition(event, scaling)
+        # Save the last position and size of the box for erasing it
+        self.lastBox = wxRect(self.currentBox.x, self.currentBox.y, self.currentBox.width,
+            self.currentBox.height)
+        # Calculate new position and size of the box 
+        if pos.x >= self.startPoint.x:
+            self.currentBox.x = self.startPoint.x
+            self.currentBox.width = pos.x - self.startPoint.x + 1
+        else:
+            self.currentBox.x = pos.x
+            self.currentBox.width = self.startPoint.x - pos.x + 1
+        if pos.y >= self.startPoint.y:
+            self.currentBox.y = self.startPoint.y
+            self.currentBox.height = pos.y - self.startPoint.y + 1
+        else:
+            self.currentBox.y = pos.y
+            self.currentBox.height = self.startPoint.y - pos.y + 1
+        self.Redraw()
+    
+    # Method called when dragging is stopped
+    def OnLeftUp(self, event, scaling):
+        self.drawingSurface.SetCursor(wxNullCursor)
+        self.lastBox = self.currentBox
+        self.currentBox = None
+        self.Redraw()
+
+    # Method that erase the last box and draw the new box
+    def Redraw(self):
+        dc = wxClientDC(self.drawingSurface)
+        dc.SetPen(wxPen(wxWHITE, 1, wxDOT))
+        dc.SetBrush(wxTRANSPARENT_BRUSH)
+        dc.SetLogicalFunction(wxXOR)
+        if self.lastBox:
+            # Erase last box
+            dc.DrawRectangle(self.lastBox.x, self.lastBox.y, self.lastBox.width,
+                self.lastBox.height)
+        if self.currentBox:
+            # Draw current box
+            dc.DrawRectangle(self.currentBox.x, self.currentBox.y, self.currentBox.width,
+                self.currentBox.height)
+
+
+#-------------------------------------------------------------------------------
+#                           Graphic element base class
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a generic graphic element
+"""
+
+class Graphic_Element:
+    
+    # Create a new graphic element
+    def __init__(self, parent, id = None):
+        self.Parent = parent
+        self.Id = id
+        self.oldPos = None
+        self.Handle = False
+        self.Dragging = False
+        self.Selected = False
+        self.Pos = wxPoint(0, 0)
+        self.Size = wxSize(0, 0)
+        self.BoundingBox = wxRect(0, 0, 0, 0)
+    
+    # Make a clone of this element
+    def Clone(self):
+        return Graphic_Element(self.Parent, self.Id)
+    
+    # Changes the block position
+    def SetPosition(self, x, y):
+        self.Pos.x = x
+        self.Pos.y = y
+        self.RefreshConnected()
+        self.RefreshBoundingBox()
+
+    # Returns the block position
+    def GetPosition(self):
+        return self.Pos.x, self.Pos.y
+    
+    # Changes the element size
+    def SetSize(self, width, height):
+        self.Size.SetWidth(width)
+        self.Size.SetHeight(height)
+        self.RefreshConnectors()
+        self.RefreshBoundingBox()
+
+    # Returns the element size
+    def GetSize(self):
+        return self.Size.GetWidth(), self.Size.GetHeight()
+    
+    # Refresh the element Bounding Box
+    def RefreshBoundingBox(self):
+        self.BoundingBox = wxRect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1])
+    
+    # Refresh the element connectors position
+    def RefreshConnectors(self):
+        pass
+    
+    # Refresh the position of wires connected to element inputs and outputs
+    def RefreshConnected(self):
+        pass
+    
+    # Change the parent
+    def SetParent(self, parent):
+        self.Parent = parent
+    
+    # Override this method for defining the method to call for deleting this element
+    def Delete(self):
+        pass
+    
+    # Returns the Id
+    def GetId(self):
+        return self.Id
+    
+    # Returns if the point given is in the bounding box
+    def HitTest(self, pt):
+        rect = self.BoundingBox
+        return rect.InsideXY(pt.x, pt.y)
+    
+    # Override this method for refreshing the bounding box
+    def RefreshBoundingBox(self):
+        pass
+    
+    # Returns the bounding box
+    def GetBoundingBox(self):
+        return self.BoundingBox
+    
+    # Change the variable that indicates if this element is selected
+    def SetSelected(self, selected):
+        self.Selected = selected
+    
+    # Test if the point is on a handle of this element
+    def TestHandle(self, pt):
+        # Verify that this element is selected
+        if self.Selected:
+            # Find if point is on a handle horizontally
+            if self.BoundingBox.x - HANDLE_SIZE - 2 <= pt.x < self.BoundingBox.x - 2:
+                handle_x = 1
+            elif self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2 <= pt.x < self.BoundingBox.x + (self.BoundingBox.width + HANDLE_SIZE) / 2:
+                handle_x = 2
+            elif self.BoundingBox.x + self.BoundingBox.width + 2 <= pt.x < self.BoundingBox.x + self.BoundingBox.width + HANDLE_SIZE + 2:
+                handle_x = 3
+            else:
+                handle_x = 0
+            # Find if point is on a handle vertically
+            if self.BoundingBox.y - HANDLE_SIZE - 2 <= pt.y < self.BoundingBox.y - 2:
+                handle_y = 1
+            elif self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2 <= pt.y < self.BoundingBox.y + (self.BoundingBox.height + HANDLE_SIZE) / 2:
+                handle_y = 2
+            elif self.BoundingBox.y + self.BoundingBox.height - 2 <= pt.y < self.BoundingBox.y + self.BoundingBox.height + HANDLE_SIZE + 2:
+                handle_y = 3
+            else:
+                handle_y = 0
+            # Verify that the result is valid
+            if (handle_x, handle_y) in VALID_HANDLES:
+                return handle_x, handle_y
+        return 0, 0
+    
+    # Method called when a LeftDown event have been generated
+    def OnLeftDown(self, event, scaling):
+        pos = event.GetPosition()
+        # Test if an handle have been clicked
+        result = self.TestHandle(pos)
+        # Find which type of handle have been clicked,
+        # Save a resize event and change the cursor
+        if result == (1, 1) or result == (3, 3):
+            self.Handle = (HANDLE_RESIZE, result)
+            self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENWSE))
+        elif result == (1, 3) or result == (3, 1):
+            self.Handle = (HANDLE_RESIZE, result)
+            self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENESW))
+        elif result == (1, 2) or result == (3, 2):
+            self.Handle = (HANDLE_RESIZE, result)
+            self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZEWE))
+        elif result == (2, 1) or result == (2, 3):
+            self.Handle = (HANDLE_RESIZE, result)
+            self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENS))
+        # If no handle have been clicked, save a move event, and change the cursor
+        else:
+            self.Handle = (HANDLE_MOVE, None)
+            self.Parent.SetCursor(wxStockCursor(wxCURSOR_HAND))
+            self.SetSelected(False)
+        # Initializes the last position
+        self.oldPos = GetScaledEventPosition(event, scaling)
+    
+    # Method called when a LeftUp event have been generated
+    def OnLeftUp(self, event, scaling):
+        # If a dragging have been initiated
+        if self.Dragging and self.oldPos:
+            # Calculate the movement of cursor and refreshes the element state
+            pos = GetScaledEventPosition(event, scaling)
+            movex = pos.x - self.oldPos.x
+            movey = pos.y - self.oldPos.y
+            self.ProcessDragging(movex, movey)
+            self.RefreshModel()
+        self.SetSelected(True)
+        self.oldPos = None
+
+    # Method called when a RightUp event have been generated
+    def OnRightUp(self, event, scaling):
+        self.SetSelected(True)
+        self.oldPos = None
+
+    # Method called when a LeftDClick event have been generated
+    def OnLeftDClick(self, event, scaling):
+        pass
+    
+    # Method called when a Motion event have been generated
+    def OnMotion(self, event, scaling):
+        # If the cursor is dragging and the element have been clicked
+        if event.Dragging() and self.oldPos:
+            # Calculate the movement of cursor
+            pos = GetScaledEventPosition(event, scaling)
+            movex = pos.x - self.oldPos.x
+            movey = pos.y - self.oldPos.y
+            # If movement is greater than MIN_MOVE then a dragging is initiated
+            if not self.Dragging and (abs(movex) > MIN_MOVE or abs(movey) > MIN_MOVE):
+                self.Dragging = True
+            # If a dragging have been initiated, refreshes the element state
+            if self.Dragging:
+                self.ProcessDragging(movex, movey)
+                self.oldPos = pos
+        # If cursor just pass over the element, changes the cursor if it is on a handle
+        else:
+            pos = event.GetPosition()
+            handle = self.TestHandle(pos)
+            if handle == (1, 1) or handle == (3, 3):
+                wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENWSE))
+            elif handle == (1, 3) or handle == (3, 1):
+                wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENESW))
+            elif handle == (1, 2) or handle == (3, 2):
+                wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZEWE))
+            elif handle == (2, 1) or handle == (2, 3):
+                wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENS))
+            else:
+                wxCallAfter(self.Parent.SetCursor, wxNullCursor)
+    
+    # Moves the element
+    def Move(self, dx, dy, exclude = []):
+        self.Pos.x += dx
+        self.Pos.y += dy
+        self.RefreshConnected(exclude)
+        self.RefreshBoundingBox()
+    
+    # Resizes the element from position and size given
+    def Resize(self, x, y, width, height):
+        self.Move(x, y)
+        self.SetSize(width, height)
+    
+    # Refreshes the element state according to move defined and handle selected
+    def ProcessDragging(self, movex, movey):
+        handle_type, handle = self.Handle
+        # If it is a resize handle, calculate the values from resizing
+        if handle_type == HANDLE_RESIZE:
+            x, y = 0, 0
+            width, height = self.GetSize()
+            if handle[0] == 1:
+                x = movex
+                width -= movex
+            elif handle[0] == 3:
+                width += movex
+            if handle[1] == 1:
+                y = movey
+                height -= movey
+            elif handle[1] == 3:
+                height += movey
+            # Verify that new size is not lesser than minimum
+            min_width, min_height = self.GetMinSize()
+            if width >= min_width and height >= min_height:
+                self.Resize(x, y, width, height)
+        # If it is a move handle, Move this element
+        elif handle_type == HANDLE_MOVE:
+            self.Move(movex, movey)
+    
+    # Override this method for defining the method to call for refreshing the model of this element
+    def RefreshModel(self, move=True):
+        pass
+    
+    # Draws the handles of this element if it is selected
+    def Draw(self, dc):
+        if self.Selected:
+            dc.SetPen(wxBLACK_PEN)
+            dc.SetBrush(wxBLACK_BRUSH)
+            dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.DrawRectangle(self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2,
+                self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2, 
+                self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2, 
+                self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2, 
+                self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.DrawRectangle(self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2, 
+                self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2, HANDLE_SIZE, HANDLE_SIZE)
+            dc.SetBrush(wxWHITE_BRUSH)
+
+
+#-------------------------------------------------------------------------------
+#                           Group of graphic elements
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a group of graphic elements
+"""
+
+class Graphic_Group(Graphic_Element):
+    
+    # Create a new group of graphic elements
+    def __init__(self, parent):
+        Graphic_Element.__init__(self, parent)
+        self.Elements = []
+        self.RefreshBoundingBox()
+    
+    # Destructor
+    def __del__(self):
+        self.Elements = []
+    
+    # Make a clone of this group
+    def Clone(self):
+        clone = Graphic_Group(self.Parent)
+        elements = []
+        # Makes a clone of all the elements in this group
+        for element in self.Elements:
+            elements.append(element.Clone())
+        clone.SetElements(elements)
+        return clone
+    
+    # Clean this group of elements
+    def Clean(self):
+        # Clean all the elements of the group
+        for element in self.Elements:
+            element.Clean()
+    
+    # Delete this group of elements
+    def Delete(self):
+        # Delete all the elements of the group
+        for element in self.Elements:
+            element.Delete()
+    
+    # Returns if the point given is in the bounding box of one of the elements of this group
+    def HitTest(self, pt):
+        result = False
+        for element in self.Elements:
+            result |= element.HitTest(pt)
+        return result
+    
+    # Returns if the element given is in this group
+    def IsElementIn(self, element):
+        return element in self.Elements
+    
+    # Change the elements of the group
+    def SetElements(self, elements):
+        self.Elements = elements
+        self.RefreshBoundingBox()
+    
+    # Returns the elements of the group
+    def GetElements(self):
+        return self.Elements
+    
+    # Remove or select the given element if it is or not in the group
+    def SelectElement(self, element):
+        if element in self.Elements:
+            self.Elements.remove(element)
+        else:
+            self.Elements.append(element)
+        self.RefreshBoundingBox()
+    
+    # Move this group of elements
+    def Move(self, movex, movey):
+        exclude = []
+        for element in self.Elements:
+            if isinstance(element, Wire):
+                exclude.append(element)
+        # Move all the elements of the group
+        for element in self.Elements:
+            if isinstance(element, Wire):
+                element.Move(movex, movey, True)
+            else:
+                element.Move(movex, movey, exclude)
+        self.RefreshBoundingBox()
+    
+    # Refreshes the bounding box of this group of elements
+    def RefreshBoundingBox(self):
+        if len(self.Elements) > 0:
+            bbox = self.Elements[0].GetBoundingBox()
+            minx, miny = bbox.x, bbox.y
+            maxx = bbox.x + bbox.width
+            maxy = bbox.y + bbox.height
+            for element in self.Elements[1:]:
+                bbox = element.GetBoundingBox()
+                minx = min(minx, bbox.x)
+                miny = min(miny, bbox.y)
+                maxx = max(maxx, bbox.x + bbox.width)
+                maxy = max(maxy, bbox.y + bbox.height)
+            self.BoundingBox = wxRect(minx, miny, maxx - minx, maxy - miny)
+        else:
+            self.BoundingBox = wxRect(0, 0, 0, 0)
+
+    # Forbids to change the group position
+    def SetPosition(x, y):
+        pass
+    
+    # Returns the position of this group
+    def GetPosition(self):
+        return self.BoundingBox.x, self.BoundingBox.y
+    
+    # Forbids to change the group size
+    def SetSize(width, height):
+        pass
+    
+    # Returns the size of this group
+    def GetSize(self):
+        return self.BoundingBox.width, self.BoundingBox.height
+
+    # Change the variable that indicates if the elemente is selected
+    def SetSelected(self, selected):
+        for element in self.Elements:
+            element.SetSelected(selected)
+
+    # Refreshes the model of all the elements of this group
+    def RefreshModel(self):
+        for element in self.Elements:
+            element.RefreshModel()
+
+
+#-------------------------------------------------------------------------------
+#                         Connector for all types of blocks
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a connector for any type of block
+"""
+
+class Connector:
+    
+    # Create a new connector
+    def __init__(self, parent, name, type, position, direction, negated = False, edge = "none"):
+        self.ParentBlock = parent
+        self.Name = name
+        self.Type = type
+        self.Pos = position
+        self.Direction = direction
+        self.Wires = []
+        self.Negated = negated
+        self.Edge = edge
+        self.Pen = wxBLACK_PEN
+    
+    # Change the connector pen
+    def SetPen(self, pen):
+        self.Pen = pen
+    
+    # Make a clone of the connector
+    def Clone(self):
+        return Connector(self.Parent, self.Name, self.Type, wxPoint(self.Pos[0], self.Pos[1]),
+                self.Direction, self.Negated)
+    
+    # Returns the connector parent block
+    def GetParentBlock(self):
+        return self.ParentBlock
+    
+    # Returns the connector name
+    def GetName(self):
+        return self.Name
+    
+    # Changes the connector name
+    def SetName(self, name):
+        self.Name = name
+    
+    # Returns the wires connected to the connector
+    def GetWires(self):
+        return self.Wires
+    
+    # Returns the parent block Id
+    def GetBlockId(self):
+        return self.ParentBlock.GetId()
+    
+    # Returns the connector relative position
+    def GetRelPosition(self):
+        return self.Pos
+    
+    # Returns the connector absolute position
+    def GetPosition(self, size = True):
+        parent_pos = self.ParentBlock.GetPosition()
+        # If the position of the end of the connector is asked
+        if size:
+            x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
+            y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
+        else:
+            x = parent_pos[0] + self.Pos.x
+            y = parent_pos[1] + self.Pos.y
+        return wxPoint(x, y)
+    
+    # Change the connector relative position
+    def SetPosition(self, pos):
+        self.Pos = pos
+    
+    # Returns the connector direction
+    def GetDirection(self):
+        return self.Direction
+    
+    # Change the connector direction
+    def SetDirection(self, direction):
+        self.Direction = direction
+    
+    # Connect a wire to this connector at the last place
+    def Connect(self, wire, refresh = True):
+        self.InsertConnect(len(self.Wires), wire, refresh)
+    
+    # Connect a wire to this connector at the place given
+    def InsertConnect(self, idx, wire, refresh = True):
+        if wire not in self.Wires:
+            self.Wires.insert(idx, wire)
+            if refresh:
+                self.ParentBlock.RefreshModel(False)
+    
+    # Returns the index of the wire given in the list of connected
+    def GetWireIndex(self, wire):
+        for i, (tmp_wire, handle) in enumerate(self.Wires):
+            if tmp_wire == wire:
+                return i
+        return None
+    
+    # Unconnect a wire or all wires connected to the connector
+    def UnConnect(self, wire = None, unconnect = True):
+        i = 0
+        found = False
+        while i < len(self.Wires) and not found:
+            if not wire or self.Wires[i][0] == wire:
+                # If Unconnect haven't been called from a wire, disconnect the connector in the wire
+                if unconnect:
+                    if self.Wires[i][1] == 0:
+                        self.Wires[i][0].UnConnectStartPoint()
+                    else:
+                        self.Wires[i][0].UnConnectEndPoint()
+                # Remove wire from connected
+                if wire:
+                    self.Wires.pop(i)
+                    found = True
+            i += 1
+        # If no wire defined, unconnect all wires
+        if not wire:
+            self.Wires = []
+        self.ParentBlock.RefreshModel(False)
+    
+    # Returns if connector has one or more wire connected
+    def IsConnected(self):
+        return len(self.Wires) > 0
+    
+    # Move the wires connected
+    def MoveConnected(self, exclude = []):
+        if len(self.Wires) > 0:
+            # Calculate the new position of the end point
+            parent_pos = self.ParentBlock.GetPosition()
+            x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
+            y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
+            # Move the corresponding point on all the wires connected
+            for wire, index in self.Wires:
+                if wire not in exclude:
+                    if index == 0:
+                        wire.MoveStartPoint(wxPoint(x, y))
+                    else:
+                        wire.MoveEndPoint(wxPoint(x, y))
+    
+    # Refreshes the model of all the wires connected
+    def RefreshWires(self):
+        for wire in self.Wires:
+            wire[0].RefreshModel()
+    
+    # Refreshes the parent block model
+    def RefreshParentBlock(self):
+        self.ParentBlock.RefreshModel(False)
+    
+    # Returns the connector negated property
+    def IsNegated(self):
+        return self.Negated
+    
+    # Changes the connector negated property
+    def SetNegated(self, negated):
+        self.Negated = negated
+        self.Edge = "none"
+    
+    # Returns the connector edge property
+    def GetEdge(self):
+        return self.Edge
+    
+    # Changes the connector edge property
+    def SetEdge(self, edge):
+        self.Edge = edge
+        self.Negated = False
+    
+    # Tests if the point given is near from the end point of this connector
+    def TestPoint(self, pt, exclude = True):
+        parent_pos = self.ParentBlock.GetPosition()
+        if not (len(self.Wires) > 0 and self.Direction == WEST and exclude):
+            # Calculate a square around the end point of this connector
+            x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE - ANCHOR_DISTANCE
+            y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE - ANCHOR_DISTANCE
+            width = ANCHOR_DISTANCE * 2 + abs(self.Direction[0]) * CONNECTOR_SIZE
+            height = ANCHOR_DISTANCE * 2 + abs(self.Direction[1]) * CONNECTOR_SIZE
+            rect = wxRect(x, y, width, height)
+            return rect.InsideXY(pt.x, pt.y)
+        return False
+    
+    # Draws the connector
+    def Draw(self, dc):
+        dc.SetPen(self.Pen)
+        dc.SetBrush(wxWHITE_BRUSH)
+        parent_pos = self.ParentBlock.GetPosition()
+        if self.Negated:
+            # If connector is negated, draw a circle
+            xcenter = parent_pos[0] + self.Pos.x + (CONNECTOR_SIZE * self.Direction[0]) / 2
+            ycenter = parent_pos[1] + self.Pos.y + (CONNECTOR_SIZE * self.Direction[1]) / 2
+            dc.DrawCircle(xcenter, ycenter, CONNECTOR_SIZE / 2)
+        else:
+            xstart = parent_pos[0] + self.Pos.x
+            ystart = parent_pos[1] + self.Pos.y
+            if self.Edge == "rising":
+                # If connector has a rising edge, draw a right arrow
+                dc.DrawLine(xstart, ystart, xstart - 4, ystart - 4)
+                dc.DrawLine(xstart, ystart, xstart - 4, ystart + 4)
+            elif self.Edge == "falling":
+                # If connector has a falling edge, draw a left arrow
+                dc.DrawLine(xstart, ystart, xstart + 4, ystart - 4)
+                dc.DrawLine(xstart, ystart, xstart + 4, ystart + 4)
+            xend = xstart + CONNECTOR_SIZE * self.Direction[0]
+            yend = ystart + CONNECTOR_SIZE * self.Direction[1]
+            dc.DrawLine(xstart + self.Direction[0], ystart + self.Direction[1], xend, yend)
+        # Calculate the position of the text
+        text_size = dc.GetTextExtent(self.Name)
+        if self.Direction[0] != 0:
+            ytext = parent_pos[1] + self.Pos.y - text_size[1] / 2
+            if self.Direction[0] < 0:
+                xtext = parent_pos[0] + self.Pos.x + 5
+            else:
+                xtext = parent_pos[0] + self.Pos.x - (text_size[0] + 5)
+        if self.Direction[1] != 0:
+            xtext = parent_pos[0] + self.Pos.x - text_size[0] / 2
+            if self.Direction[1] < 0:
+                ytext = parent_pos[1] + self.Pos.y + 5
+            else:
+                ytext = parent_pos[1] + self.Pos.y - (text_size[1] + 5)
+        # Draw the text
+        dc.DrawText(self.Name, xtext, ytext)
+
+
+#-------------------------------------------------------------------------------
+#                           Common Wire Element
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a wire for connecting two blocks
+"""
+
+class Wire(Graphic_Element):
+    
+    # Create a new wire
+    def __init__(self, parent, start = None, end = None):
+        Graphic_Element.__init__(self, parent)
+        self.StartPoint = start
+        self.EndPoint = end
+        self.StartConnected = None
+        self.EndConnected = None
+        # If the start and end points are defined, calculate the wire
+        if start and end:
+            self.ResetPoints()
+            self.GeneratePoints()
+        else:
+            self.Points = []
+            self.Segments = []
+        self.SelectedSegment = None
+        self.OverStart = False
+        self.OverEnd = False
+    
+    # Destructor of a wire
+    def __del__(self):
+        self.StartConnected = None
+        self.EndConnected = None
+    
+    # Forbids to change the wire position
+    def SetPosition(x, y):
+        pass
+    
+    # Forbids to change the wire size
+    def SetSize(width, height):
+        pass
+    
+    # Unconnect the start and end points
+    def Clean(self):
+        if self.StartConnected:
+            self.UnConnectStartPoint()
+        if self.EndConnected:
+            self.UnConnectEndPoint()
+    
+    # Delete this wire by calling the corresponding method
+    def Delete(self):
+        self.Parent.DeleteWire(self)
+    
+    # Select a segment and not the whole wire. It's useful for Ladder Diagram
+    def SetSelectedSegment(self, segment):
+        # The last segment is indicated
+        if segment == -1:
+            segment = len(self.Segments) - 1
+        # The selected segment is reinitialised
+        if segment == None:
+            if self.StartConnected:
+                self.StartConnected.SetPen(wxBLACK_PEN)
+            if self.EndConnected:
+                self.EndConnected.SetPen(wxBLACK_PEN)
+        # The segment selected is the first
+        elif segment == 0:
+            if self.StartConnected:
+                self.StartConnected.SetPen(wxRED_PEN)
+            if self.EndConnected:
+                # There is only one segment
+                if len(self.Segments) == 1:
+                    self.EndConnected.SetPen(wxRED_PEN)
+                else:
+                    self.EndConnected.SetPen(wxBLACK_PEN)
+        # The segment selected is the last
+        elif segment == len(self.Segments) - 1:
+            if self.StartConnected:
+                self.StartConnected.SetPen(wxBLACK_PEN)
+            if self.EndConnected:
+                self.EndConnected.SetPen(wxRED_PEN)
+        self.SelectedSegment = segment
+    
+    # Reinitialize the wire points
+    def ResetPoints(self):
+        if self.StartPoint and self.EndPoint:
+            self.Points = [self.StartPoint[0], self.EndPoint[0]]
+            self.Segments = [self.StartPoint[1]]
+        else:
+            self.Points = []
+            self.Segments = []
+    
+    # Refresh the wire bounding box
+    def RefreshBoundingBox(self):
+        if len(self.Points) > 0:
+            # If startpoint or endpoint is connected, save the point radius
+            start_radius = end_radius = 0
+            if not self.StartConnected:
+                start_radius = POINT_RADIUS
+            if not self.EndConnected:
+                end_radius = POINT_RADIUS
+            # Initialize minimum and maximum from the first point
+            minx, minbbxx = self.Points[0].x, self.Points[0].x - start_radius
+            maxx, maxbbxx = self.Points[0].x, self.Points[0].x + start_radius
+            miny, minbbxy = self.Points[0].y, self.Points[0].y - start_radius
+            maxy, maxbbxy = self.Points[0].y, self.Points[0].y + start_radius
+            # Actualize minimum and maximum with the other points
+            for point in self.Points[1:-1]:
+                minx, minbbxx = min(minx, point.x), min(minbbxx, point.x)
+                maxx, maxbbxx = max(maxx, point.x), max(maxbbxx, point.x)
+                miny, minbbxy = min(miny, point.y), min(minbbxy, point.y)
+                maxy, maxbbxy = max(maxy, point.y), max(maxbbxy, point.y)
+            if len(self.Points) > 1:
+                minx, minbbxx = min(minx, self.Points[-1].x), min(minbbxx, self.Points[-1].x - end_radius)
+                maxx, maxbbxx = max(maxx, self.Points[-1].x), max(maxbbxx, self.Points[-1].x + end_radius)
+                miny, minbbxy = min(miny, self.Points[-1].y), min(minbbxy, self.Points[-1].y - end_radius)
+                maxy, maxbbxy = max(maxy, self.Points[-1].y), max(maxbbxy, self.Points[-1].y + end_radius)
+            self.Pos = wxPoint(minx, miny)
+            self.Size = wxSize(maxx -minx + 1, maxy - miny + 1)
+            self.BoundingBox = wxRect(minbbxx, minbbxy, maxbbxx - minbbxx + 1, maxbbxy - minbbxy + 1)
+    
+    # Refresh the realpoints that permits to keep the proportionality in wire during resizing
+    def RefreshRealPoints(self):
+        if len(self.Points) > 0:
+            self.RealPoints = []
+            # Calculate float relative position of each point with the minimum point
+            for point in self.Points:
+                self.RealPoints.append([float(point.x - self.Pos.x), float(point.y - self.Pos.y)])
+    
+    # Returns the wire minimum size 
+    def GetMinSize(self):
+        width = 1
+        height = 1
+        dir_product = product(self.StartPoint[1], self.EndPoint[1])
+        # The directions are opposed
+        if dir_product < 0:
+            if self.StartPoint[0] != 0:
+                width = MIN_SEGMENT_SIZE * 2
+            if self.StartPoint[1] != 0:
+                height = MIN_SEGMENT_SIZE * 2
+        # The directions are the same
+        elif dir_product > 0:
+            if self.StartPoint[0] != 0:
+                width = MIN_SEGMENT_SIZE
+            if self.StartPoint[1] != 0:
+                height = MIN_SEGMENT_SIZE
+        # The directions are perpendiculars
+        else:
+            width = MIN_SEGMENT_SIZE
+            height = MIN_SEGMENT_SIZE
+        return width + 1, height + 1
+    
+    # Returns if the point given is on one of the wire segments
+    def HitTest(self, pt):
+        test = False
+        for i in xrange(len(self.Points) - 1):
+            rect = wxRect(0, 0, 0, 0)
+            x1, y1 = self.Points[i].x, self.Points[i].y
+            x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
+            # Calculate a rectangle around the segment
+            rect = wxRect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
+                abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
+            test |= rect.InsideXY(pt.x, pt.y) 
+        return test
+    
+    # Returns the wire start or end point if the point given is on one of them 
+    def TestPoint(self, pt):
+        # Test the wire start point
+        rect = wxRect(self.Points[0].x - ANCHOR_DISTANCE, self.Points[0].y - ANCHOR_DISTANCE,
+            2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
+        if rect.InsideXY(pt.x, pt.y):
+            return 0
+        # Test the wire end point
+        if len(self.Points) > 1:
+            rect = wxRect(self.Points[-1].x - ANCHOR_DISTANCE, self.Points[-1].y - ANCHOR_DISTANCE,
+                2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
+            if rect.InsideXY(pt.x, pt.y):
+                return -1
+        return None
+    
+    # Returns the wire segment if the point given is on it
+    def TestSegment(self, pt, all=False):
+        for i in xrange(len(self.Segments)):
+            # If wire is not in a Ladder Diagram, first and last segments are excluded
+            if 0 < i < len(self.Segments) - 1 or all:
+                x1, y1 = self.Points[i].x, self.Points[i].y
+                x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
+                # Calculate a rectangle around the segment
+                rect = wxRect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
+                    abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
+                if rect.InsideXY(pt.x, pt.y):
+                    return i, self.Segments[i]
+        return None
+    
+    # Define the wire points
+    def SetPoints(self, points):
+        if len(points) > 1:
+            self.Points = [wxPoint(x, y) for x, y in points]
+            # Calculate the start and end directions
+            self.StartPoint = [None, vector(self.Points[0], self.Points[1])]
+            self.EndPoint = [None, vector(self.Points[-1], self.Points[-2])]
+            # Calculate the start and end points
+            self.StartPoint[0] = wxPoint(self.Points[0].x + CONNECTOR_SIZE * self.StartPoint[1][0], 
+                self.Points[0].y + CONNECTOR_SIZE * self.StartPoint[1][1])
+            self.EndPoint[0] = wxPoint(self.Points[-1].x + CONNECTOR_SIZE * self.EndPoint[1][0], 
+                self.Points[-1].y + CONNECTOR_SIZE * self.EndPoint[1][1])
+            self.Points[0] = self.StartPoint[0]
+            self.Points[-1] = self.EndPoint[0]
+            # Calculate the segments directions
+            self.Segments = []
+            for i in xrange(len(self.Points) - 1):
+                self.Segments.append(vector(self.Points[i], self.Points[i + 1]))
+            self.RefreshBoundingBox()
+            self.RefreshRealPoints()
+    
+    # Returns the position of the point indicated
+    def GetPoint(self, index):
+        if index < len(self.Points):
+            return self.Points[index].x, self.Points[index].y
+        return None
+    
+    # Returns a list of the position of all wire points
+    def GetPoints(self, invert = False):
+        points = self.VerifyPoints()
+        points[0] = wxPoint(points[0].x - CONNECTOR_SIZE * self.StartPoint[1][0], 
+                points[0].y - CONNECTOR_SIZE * self.StartPoint[1][1])
+        points[-1] = wxPoint(points[-1].x - CONNECTOR_SIZE * self.EndPoint[1][0], 
+                points[-1].y - CONNECTOR_SIZE * self.EndPoint[1][1])
+        # An inversion of the list is asked
+        if invert:
+            points.reverse()
+        return points
+    
+    # Returns the position of the two selected segment points
+    def GetSelectedSegmentPoints(self):
+        if self.SelectedSegment != None and len(self.Points) > 1:
+            return self.Points[self.SelectedSegment:self.SelectedSegment + 2]
+        return []
+    
+    # Returns if the selected segment is the first and/or the last of the wire
+    def GetSelectedSegmentConnections(self):
+        if self.SelectedSegment != None and len(self.Points) > 1:
+            return self.SelectedSegment == 0, self.SelectedSegment == len(self.Segments) - 1
+        return (True, True)
+    
+    # Returns the connectors on which the wire is connected
+    def GetConnected(self):
+        connected = []
+        if self.StartConnected and self.StartPoint[1] == WEST:
+            connected.append(self.StartConnected)
+        if self.EndConnected and self.EndPoint[1] == WEST:
+            connected.append(self.EndConnected)
+        return connected
+    
+    # Returns the id of the block connected to the first or the last wire point
+    def GetConnectedId(self, index):
+        if index == 0 and self.StartConnected:
+            return self.StartConnected.GetBlockId()
+        elif index == -1 and self.EndConnected:
+            return self.EndConnected.GetBlockId()
+        return None
+    
+    # Update the wire points position by keeping at most possible the current positions
+    def GeneratePoints(self, realpoints = True):
+        i = 0
+        # Calculate the start enad end points with the minimum segment size in the right direction
+        end = wxPoint(self.EndPoint[0].x + self.EndPoint[1][0] * MIN_SEGMENT_SIZE,
+            self.EndPoint[0].y + self.EndPoint[1][1] * MIN_SEGMENT_SIZE)
+        start = wxPoint(self.StartPoint[0].x + self.StartPoint[1][0] * MIN_SEGMENT_SIZE, 
+            self.StartPoint[0].y + self.StartPoint[1][1] * MIN_SEGMENT_SIZE)
+        # Evaluate the point till it's the last
+        while i < len(self.Points) - 1:
+            # The next point is the last
+            if i + 1 == len(self.Points) - 1:
+                # Calculate the direction from current point to end point
+                v_end = vector(self.Points[i], end)
+                # The current point is the first
+                if i == 0:
+                    # If the end point is not in the start direction, a point is added
+                    if v_end != self.Segments[0] or v_end == self.EndPoint[1]:
+                        self.Points.insert(1, wxPoint(start.x, start.y))
+                        self.Segments.insert(1, DirectionChoice((self.Segments[0][1], 
+                            self.Segments[0][0]), v_end, self.EndPoint[1]))
+                # The current point is the second
+                elif i == 1:
+                    # The previous direction and the target direction are mainly opposed, a point is added
+                    if product(v_end, self.Segments[0]) < 0:
+                        self.Points.insert(2, wxPoint(self.Points[1].x, self.Points[1].y))
+                        self.Segments.insert(2, DirectionChoice((self.Segments[1][1], 
+                            self.Segments[1][0]), v_end, self.EndPoint[1]))
+                    # The previous direction and the end direction are the same or they are
+                    # perpendiculars and the end direction points towards current segment
+                    elif product(self.Segments[0], self.EndPoint[1]) >= 0 and product(self.Segments[1], self.EndPoint[1]) <= 0:
+                        # Current point and end point are aligned
+                        if self.Segments[0][0] != 0:
+                            self.Points[1].x = end.x
+                        if self.Segments[0][1] != 0:
+                            self.Points[1].y = end.y
+                        # If the previous direction and the end direction are the same, a point is added
+                        if product(self.Segments[0], self.EndPoint[1]) > 0:
+                            self.Points.insert(2, wxPoint(self.Points[1].x, self.Points[1].y))
+                            self.Segments.insert(2, DirectionChoice((self.Segments[1][1], 
+                                self.Segments[1][0]), v_end, self.EndPoint[1]))
+                    else:
+                        # Current point is positioned in the middle of start point
+                        # and end point on the current direction and a point is added
+                        if self.Segments[0][0] != 0:
+                            self.Points[1].x = (end.x + start.x) / 2
+                        if self.Segments[0][1] != 0:
+                            self.Points[1].y = (end.y + start.y) / 2
+                        self.Points.insert(2, wxPoint(self.Points[1].x, self.Points[1].y))
+                        self.Segments.insert(2, DirectionChoice((self.Segments[1][1], 
+                            self.Segments[1][0]), v_end, self.EndPoint[1]))
+                else:
+                    # The previous direction and the end direction are perpendiculars
+                    if product(self.Segments[i - 1], self.EndPoint[1]) == 0:
+                        # The target direction and the end direction aren't mainly the same
+                        if product(v_end, self.EndPoint[1]) <= 0:
+                            # Current point and end point are aligned
+                            if self.Segments[i - 1][0] != 0:
+                                self.Points[i].x = end.x
+                            if self.Segments[i - 1][1] != 0:
+                                self.Points[i].y = end.y
+                            # Previous direction is updated from the new point
+                            if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
+                                self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
+                        else:
+                            test = True
+                            # If the current point is the third, test if the second 
+                            # point can be aligned with the end point
+                            if i == 2:
+                                test_point = wxPoint(self.Points[1].x, self.Points[1].y)
+                                if self.Segments[1][0] != 0:
+                                    test_point.y = end.y
+                                if self.Segments[1][1] != 0:
+                                    test_point.x = end.x
+                                test = norm(vector(self.Points[0], test_point, False)) > MIN_SEGMENT_SIZE
+                            # The previous point can be aligned
+                            if test:
+                                self.Points[i].x, self.Points[i].y = end.x, end.y
+                                if self.Segments[i - 1][0] != 0:
+                                    self.Points[i - 1].y = end.y
+                                if self.Segments[i - 1][1] != 0:
+                                    self.Points[i - 1].x = end.x
+                                self.Segments[i] = (-self.EndPoint[1][0], -self.EndPoint[1][1])
+                            else:
+                                # Current point is positioned in the middle of previous point
+                                # and end point on the current direction and a point is added
+                                if self.Segments[1][0] != 0:
+                                    self.Points[2].x = (self.Points[1].x + end.x) / 2
+                                if self.Segments[1][1] != 0:
+                                    self.Points[2].y = (self.Points[1].y + end.y) / 2
+                                self.Points.insert(3, wxPoint(self.Points[2].x, self.Points[2].y))
+                                self.Segments.insert(3, DirectionChoice((self.Segments[2][1], 
+                                    self.Segments[2][0]), v_end, self.EndPoint[1]))
+                    else:
+                        # Current point is aligned with end point
+                        if self.Segments[i - 1][0] != 0:
+                            self.Points[i].x = end.x
+                        if self.Segments[i - 1][1] != 0:
+                            self.Points[i].y = end.y
+                        # Previous direction is updated from the new point
+                        if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
+                            self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
+                        # If previous direction and end direction are opposed
+                        if product(self.Segments[i - 1], self.EndPoint[1]) < 0:
+                            # Current point is positioned in the middle of previous point
+                            # and end point on the current direction
+                            if self.Segments[i - 1][0] != 0:
+                                self.Points[i].x = (end.x + self.Points[i - 1].x) / 2
+                            if self.Segments[i - 1][1] != 0:
+                                self.Points[i].y = (end.y + self.Points[i - 1].y) / 2
+                        # A point is added
+                        self.Points.insert(i + 1, wxPoint(self.Points[i].x, self.Points[i].y))
+                        self.Segments.insert(i + 1, DirectionChoice((self.Segments[i][1], 
+                                self.Segments[i][0]), v_end, self.EndPoint[1]))
+            else:
+                # Current point is the first, and second is not mainly in the first direction
+                if i == 0 and product(vector(start, self.Points[1]), self.Segments[0]) < 0:
+                    # If first and second directions aren't perpendiculars, a point is added 
+                    if product(self.Segments[0], self.Segments[1]) != 0:
+                        self.Points.insert(1, wxPoint(start.x, start.y))
+                        self.Segments.insert(1, DirectionChoice((self.Segments[0][1], 
+                            self.Segments[0][0]), vector(start, self.Points[1]), self.Segments[1]))
+                    else:
+                        self.Points[1].x, self.Points[1].y = start.x, start.y
+                else:
+                    # Next point is aligned with current point
+                    if self.Segments[i][0] != 0:
+                        self.Points[i + 1].y = self.Points[i].y
+                    if self.Segments[i][1] != 0:
+                        self.Points[i + 1].x = self.Points[i].x
+                    # Current direction is updated from the new point
+                    if product(vector(self.Points[i], self.Points[i + 1]), self.Segments[i]) < 0:
+                        self.Segments[i] = (-self.Segments[i][0], -self.Segments[i][1])
+            i += 1
+        self.RefreshBoundingBox()
+        if realpoints:
+            self.RefreshRealPoints()
+    
+    # Verify that two consecutive points haven't the same position
+    def VerifyPoints(self):
+        points = [point for point in self.Points]
+        segments = [segment for segment in self.Segments]
+        i = 1
+        while i < len(points) - 1:
+            if points[i] == points[i + 1] and segments[i - 1] == segments[i + 1]:
+                for j in xrange(2):
+                    points.pop(i)
+                    segments.pop(i)
+            else:
+                i += 1
+        # If the wire isn't in a Ladder Diagram, save the new point list
+        if self.Parent.__class__.__name__ != "LD_Viewer":
+            self.Points = [point for point in points]
+            self.Segments = [segment for segment in segments]
+            self.RefreshBoundingBox()
+            self.RefreshRealPoints()
+        return points
+    
+    # Moves all the wire points except the first and the last if they are connected
+    def Move(self, dx, dy, endpoints = False):
+        for i, point in enumerate(self.Points):
+            if endpoints or not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                point.x += dx
+                point.y += dy
+        self.StartPoint[0] = self.Points[0]
+        self.EndPoint[0] = self.Points[-1]
+        self.GeneratePoints()
+    
+    # Resize the wire from position and size given
+    def Resize(self, x, y, width, height):
+        if len(self.Points) > 1:
+            # Calculate the new position of each point for testing the new size
+            minx, miny = self.Pos.x, self.Pos.y
+            lastwidth, lastheight = self.Size.width, self.Size.height
+            for i, point in enumerate(self.RealPoints):
+                # If start or end point is connected, it's not calculate
+                if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                    if i == 0:
+                        dir = self.StartPoint[1]
+                    elif i == len(self.Points) - 1:
+                        dir = self.EndPoint[1]
+                    else:
+                        dir = (0, 0)
+                    pointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0] * (width - 1) / float(lastwidth - 1))),
+                            width - dir[0] * MIN_SEGMENT_SIZE - 1))
+                    pointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1] * (height - 1) / float(lastheight - 1))),
+                            height - dir[1] * MIN_SEGMENT_SIZE - 1))
+                    self.Points[i] = wxPoint(minx + x + pointx, miny + y + pointy)
+            self.StartPoint[0] = self.Points[0]
+            self.EndPoint[0] = self.Points[-1]
+            self.GeneratePoints(False)
+            # Test if the wire position or size have changed
+            if x != 0 and minx == self.Pos.x:
+                x = 0
+                width = lastwidth
+            if y != 0 and miny == self.Pos.y:
+                y = 0
+                height = lastwidth
+            if width != lastwidth and lastwidth == self.Size.width:
+                width = lastwidth
+            if height != lastheight and lastheight == self.Size.height:
+                height = lastheight
+            # Calculate the real points from the new size, it's important for
+            # keeping a proportionality in the points position with the size
+            # duringa resize dragging
+            for i, point in enumerate(self.RealPoints):
+                if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                    point[0] = point[0] * (width - 1) / float(lastwidth - 1)
+                    point[1] = point[1] * (height - 1) / float(lastheight - 1)
+            # Calculate the correct position of the points from real points
+            for i, point in enumerate(self.RealPoints):
+                if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
+                    if i == 0:
+                        dir = self.StartPoint[1]
+                    elif i == len(self.Points) - 1:
+                        dir = self.EndPoint[1]
+                    else:
+                        dir = (0, 0)
+                    realpointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0])),
+                            width - dir[0] * MIN_SEGMENT_SIZE - 1))
+                    realpointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1])),
+                            height - dir[1] * MIN_SEGMENT_SIZE - 1))
+                    self.Points[i] = wxPoint(minx + x + realpointx, miny + y + realpointy)
+            self.StartPoint[0] = self.Points[0]
+            self.EndPoint[0] = self.Points[-1]
+            self.GeneratePoints(False)
+    
+    # Moves the wire start point and update the wire points
+    def MoveStartPoint(self, point):
+        if len(self.Points) > 1:
+            self.StartPoint[0] = point
+            self.Points[0] = point
+            self.GeneratePoints()
+    
+    # Changes the wire start direction and update the wire points
+    def SetStartPointDirection(self, dir):
+        if len(self.Points) > 1:
+            self.StartPoint[1] = dir
+            self.Segments[0] = dir
+            self.GeneratePoints()
+    
+    # Rotates the wire start direction by an angle of 90 degrees anticlockwise
+    def RotateStartPoint(self):
+        self.SetStartPointDirection((self.StartPoint[1][1], -self.StartPoint[1][0]))
+    
+    # Connects wire start point to the connector given and moves wire start point
+    # to given point
+    def ConnectStartPoint(self, point, connector):
+        if point:
+            self.MoveStartPoint(point)
+        self.StartConnected = connector
+    
+    # Unconnects wire start point
+    def UnConnectStartPoint(self):
+        self.StartConnected.UnConnect(self, False)
+        self.StartConnected = None
+    
+    # Moves the wire end point and update the wire points
+    def MoveEndPoint(self, point):
+        if len(self.Points) > 1:
+            self.EndPoint[0] = point
+            self.Points[-1] = point
+            self.GeneratePoints()
+
+    # Changes the wire end direction and update the wire points
+    def SetEndPointDirection(self, dir):
+        if len(self.Points) > 1:
+            self.EndPoint[1] = dir
+            self.GeneratePoints()
+            
+    # Rotates the wire end direction by an angle of 90 degrees anticlockwise
+    def RotateEndPoint(self):
+        self.SetEndPointDirection((self.EndPoint[1][1], -self.EndPoint[1][0]))
+
+    # Connects wire end point to the connector given and moves wire end point
+    # to given point
+    def ConnectEndPoint(self, point, connector):
+        if point:
+            self.MoveEndPoint(point)
+        self.EndConnected = connector
+    
+    # Unconnects wire end point
+    def UnConnectEndPoint(self):
+        self.EndConnected.UnConnect(self, False)
+        self.EndConnected = None
+    
+    # Moves the wire segment given by its index
+    def MoveSegment(self, idx, movex, movey):
+        if 0 < idx < len(self.Segments) - 1:
+            if self.Segments[idx] in (NORTH, SOUTH):
+                self.Points[idx].x += movex
+                self.Points[idx + 1].x += movex
+            elif self.Segments[idx] in (EAST, WEST):
+                self.Points[idx].y += movey
+                self.Points[idx + 1].y += movey
+            self.GeneratePoints()
+    
+    # Adds two points in the middle of the handled segment
+    def AddSegment(self):
+        handle_type, handle = self.Handle
+        if handle_type == HANDLE_SEGMENT:
+            segment, dir = handle
+            pointx = self.Points[segment].x
+            pointy = self.Points[segment].y
+            if dir[0] != 0:
+                pointx = (self.Points[segment].x + self.Points[segment + 1].x) / 2
+            if dir[1] != 0:
+                pointy = (self.Points[segment].y + self.Points[segment + 1].y) / 2
+            self.Points.insert(segment + 1, wxPoint(pointx, pointy))
+            self.Segments.insert(segment + 1, (dir[1], dir[0]))
+            self.Points.insert(segment + 2, wxPoint(pointx, pointy))
+            self.Segments.insert(segment + 2, dir)
+            self.GeneratePoints()
+    
+    # Delete the handled segment by removing the two segment points
+    def DeleteSegment(self):
+        handle_type, handle = self.Handle
+        if handle_type == HANDLE_SEGMENT:
+            segment, dir = handle
+            for i in xrange(2):
+                self.Points.pop(segment)
+                self.Segments.pop(segment)
+            self.GeneratePoints()
+            self.RefreshModel()
+            
+    # Method called when a LeftDown event have been generated
+    def OnLeftDown(self, event, scaling):
+        pos = GetScaledEventPosition(event, scaling)
+        # Test if a point have been handled
+        result = self.TestPoint(pos)
+        if result != None:
+            self.Handle = (HANDLE_POINT, result)
+            self.Parent.SetCursor(wxStockCursor(wxCURSOR_HAND))
+        else:
+            # Test if a segment have been handled
+            result = self.TestSegment(pos)
+            if result != None:
+                if result[1] in (NORTH, SOUTH):
+                    self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZEWE))
+                elif result[1] in (EAST, WEST):
+                    self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENS))
+                self.Handle = (HANDLE_SEGMENT, result)
+            # Execute the default method for a graphic element
+            else:
+                Graphic_Element.OnLeftDown(self, event, scaling)
+        self.oldPos = pos
+    
+    # Method called when a RightUp event have been generated
+    def OnRightUp(self, event, scaling):
+        pos = GetScaledEventPosition(event, scaling)
+        # Test if a segment has been handled
+        result = self.TestSegment(pos)
+        if result != None:
+            self.Handle = (HANDLE_SEGMENT, result)
+            # Popup the menu with special items for a wire
+            self.Parent.PopupWireMenu()
+        else:
+            # Execute the default method for a graphic element
+            Graphic_Element.OnRightUp(self, event, scaling)
+    
+    # Method called when a LeftDClick event have been generated
+    def OnLeftDClick(self, event, scaling):
+        self.ResetPoints()
+        self.GeneratePoints()
+        
+    # Method called when a Motion event have been generated
+    def OnMotion(self, event, scaling):
+        pos = GetScaledEventPosition(event, scaling)
+        if not event.Dragging():
+            # Test if a segment has been handled
+            result = self.TestSegment(pos)
+            if result:
+                if result[1] in (NORTH, SOUTH):
+                    wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZEWE))
+                elif result[1] in (EAST, WEST):
+                    wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENS))
+            else:
+                # Test if a point has been handled
+                result = self.TestPoint(pos)
+                if result != None:
+                    if result == 0 and self.StartConnected:
+                        self.OverStart = True
+                    elif result != 0 and self.EndConnected:
+                        self.OverEnd = True
+                else:
+                    self.OverStart = False
+                    self.OverEnd = False
+                    # Execute the default method for a graphic element
+                    Graphic_Element.OnMotion(self, event, scaling)
+        else:
+            # Execute the default method for a graphic element
+            Graphic_Element.OnMotion(self, event, scaling)
+    
+    # Refreshes the wire state according to move defined and handle selected
+    def ProcessDragging(self, movex, movey):
+        handle_type, handle = self.Handle
+        # A point has been handled
+        if handle_type == HANDLE_POINT:
+            # Try to connect point to a connector
+            new_pos = wxPoint(self.Points[handle].x + movex, self.Points[handle].y + movey)
+            connector = self.Parent.FindBlockConnector(new_pos)
+            if connector:
+                if handle == 0 and self.EndConnected != connector:
+                    connector.Connect((self, handle))
+                    self.SetStartPointDirection(connector.GetDirection())
+                    self.ConnectStartPoint(connector.GetPosition(), connector)
+                    self.Dragging = False
+                elif handle != 0 and self.StartConnected != connector:
+                    connector.Connect((self, handle))
+                    self.SetEndPointDirection(connector.GetDirection())
+                    self.ConnectEndPoint(connector.GetPosition(), connector)
+                    self.Dragging = False
+                elif handle == 0:
+                    self.MoveStartPoint(new_pos)
+                else:
+                    self.MoveEndPoint(new_pos)
+            # If there is no connector, move the point
+            elif handle == 0:
+                if self.StartConnected:
+                    self.UnConnectStartPoint()
+                self.MoveStartPoint(new_pos)
+            else:
+                if self.EndConnected:
+                    self.UnConnectEndPoint()
+                self.MoveEndPoint(new_pos)
+            self.RefreshModel()
+        # A segment has been handled, move a segment
+        elif handle_type == HANDLE_SEGMENT:
+            self.MoveSegment(handle[0], movex, movey)
+        # Execute the default method for a graphic element
+        else:
+            Graphic_Element.ProcessDragging(self, movex, movey)
+    
+    # Refreshes the wire model
+    def RefreshModel(self, move=True):
+        if self.StartConnected and self.StartPoint[1] in [WEST, NORTH]:
+            self.StartConnected.RefreshParentBlock()
+        if self.EndConnected and self.EndPoint[1] in [WEST, NORTH]:
+            self.EndConnected.RefreshParentBlock()
+    
+    # Draws the wire lines and points
+    def Draw(self, dc):
+        dc.SetPen(wxBLACK_PEN)
+        dc.SetBrush(wxBLACK_BRUSH)
+        # Draw the start and end points if they are not connected or the mouse is over them
+        if len(self.Points) > 0 and (not self.StartConnected or self.OverStart):
+            dc.DrawCircle(self.Points[0].x, self.Points[0].y, POINT_RADIUS)
+        if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd):
+            dc.DrawCircle(self.Points[-1].x, self.Points[-1].y, POINT_RADIUS)
+        # Draw the wire lines and the last point (it seems that DrawLines stop before the last point)
+        dc.DrawLines(self.Points)
+        dc.DrawPoint(self.Points[-1].x, self.Points[-1].y)
+        # Draw the segment selected in red
+        if self.SelectedSegment != None:
+            dc.SetPen(wxRED_PEN)
+            dc.DrawLine(self.Points[self.SelectedSegment].x, self.Points[self.SelectedSegment].y,
+                        self.Points[self.SelectedSegment + 1].x, self.Points[self.SelectedSegment + 1].y)
+            if self.SelectedSegment == len(self.Segments) - 1:
+                dc.DrawPoint(self.Points[-1].x, self.Points[-1].y)
+        Graphic_Element.Draw(self, dc)
+
+
+#-------------------------------------------------------------------------------
+#                           Graphic comment element
+#-------------------------------------------------------------------------------
+
+"""
+Class that implements a comment
+"""
+
+class Comment(Graphic_Element):
+
+    # Create a new comment
+    def __init__(self, parent, content, id = None):
+        Graphic_Element.__init__(self, parent)
+        self.Id = id
+        self.Content = content
+        self.Pos = wxPoint(0, 0)
+        self.Size = wxSize(0, 0)
+    
+    # Method for keeping compatibility with others
+    def Clean(self):
+        pass
+    
+    # Delete this comment by calling the corresponding method
+    def Delete(self):
+        self.Parent.DeleteComment(self)
+    
+    # Refresh the comment bounding box
+    def RefreshBoundingBox(self):
+        self.BoundingBox = wxRect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
+    
+    # Changes the comment size
+    def SetSize(self, width, height):
+        self.Size.SetWidth(width)
+        self.Size.SetHeight(height)
+        self.RefreshBoundingBox()
+
+    # Returns the comment size
+    def GetSize(self):
+        return self.Size.GetWidth(), self.Size.GetHeight()
+    
+    # Returns the comment minimum size
+    def GetMinSize(self):
+        dc = wxClientDC(self.Parent)
+        min_width = 0
+        min_height = 0
+        # The comment minimum size is the maximum size of words in the content
+        for line in self.Content.splitlines():
+            for word in line.split(" "):
+                wordwidth, wordheight = dc.GetTextExtent(word)
+                min_width = max(min_width, wordwidth)
+                min_height = max(min_height, wordheight)
+        return min_width + 20, min_height + 20
+    
+    # Changes the comment position
+    def SetPosition(self, x, y):
+        self.Pos.x = x
+        self.Pos.y = y
+        self.RefreshBoundingBox()
+
+    # Changes the comment content
+    def SetContent(self, content):
+        self.Content = content
+        min_width, min_height = self.GetMinSize()
+        self.Size[0] = max(self.Size[0], min_width)
+        self.Size[1] = max(self.Size[1], min_height)
+        self.RefreshBoundingBox()
+
+    # Returns the comment content
+    def GetContent(self):
+        return self.Content
+
+    # Returns the comment position
+    def GetPosition(self):
+        return self.Pos.x, self.Pos.y
+    
+    # Moves the comment
+    def Move(self, dx, dy, connected = True):
+        self.Pos.x += dx
+        self.Pos.y += dy
+        self.RefreshBoundingBox()
+    
+    # Resizes the comment with the position and the size given
+    def Resize(self, x, y, width, height):
+        self.Move(x, y)
+        self.SetSize(width, height)
+    
+    # Method called when a RightUp event have been generated
+    def OnRightUp(self, event, scaling):
+        # Popup the default menu
+        self.Parent.PopupDefaultMenu()
+    
+    # Refreshes the comment model
+    def RefreshModel(self, move=True):
+        self.Parent.RefreshCommentModel(self)
+    
+    # Method called when a LeftDClick event have been generated
+    def OnLeftDClick(self, event, scaling):
+        # Edit the comment content
+        self.Parent.EditCommentContent(self)
+    
+    # Draws the comment and its content
+    def Draw(self, dc):
+        dc.SetPen(wxBLACK_PEN)
+        dc.SetBrush(wxWHITE_BRUSH)
+        # Draws the comment shape
+        polygon = [wxPoint(self.Pos.x, self.Pos.y), 
+                   wxPoint(self.Pos.x + self.Size[0] - 10, self.Pos.y),
+                   wxPoint(self.Pos.x + self.Size[0], self.Pos.y + 10),
+                   wxPoint(self.Pos.x + self.Size[0], self.Pos.y + self.Size[1] + 1),
+                   wxPoint(self.Pos.x, self.Pos.y + self.Size[1] + 1)]
+        dc.DrawPolygon(polygon)
+        lines = [wxPoint(self.Pos.x + self.Size[0] - 10, self.Pos.y),
+                 wxPoint(self.Pos.x + self.Size[0] - 10, self.Pos.y + 10),
+                 wxPoint(self.Pos.x + self.Size[0], self.Pos.y + 10)]
+        dc.DrawLines(lines)
+        # Draws the comment content
+        y = self.Pos.y + 10
+        for line in self.Content.splitlines():
+            first = True
+            words = line.split(" ")
+            for i, word in enumerate(words):
+                if first:
+                    test = word
+                else:
+                    test = linetext + " " + word
+                wordwidth, wordheight = dc.GetTextExtent(test)
+                if y + wordheight > self.Pos.y + self.Size[1] - 10:
+                    break
+                if wordwidth < self.Size[0] - 20 and i < len(words) - 1:
+                    linetext = test
+                    first = False
+                else:
+                    if wordwidth < self.Size[0] - 20 and i == len(words) - 1:
+                        dc.DrawText(test, self.Pos.x + 10, y)
+                    else:
+                        dc.DrawText(linetext, self.Pos.x + 10, y)
+                        if i == len(words) - 1:
+                            y += wordheight + 5
+                            if y + wordheight > self.Pos.y + self.Size[1] - 10:
+                                break
+                            dc.DrawText(word, self.Pos.x + 10, y)
+                        else:
+                            linetext = word
+                    y += wordheight + 5
+            if y + wordheight > self.Pos.y + self.Size[1] - 10:
+                break
+        Graphic_Element.Draw(self, dc)