diff -r 000000000000 -r b622defdfd98 graphics/GraphicCommons.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/graphics/GraphicCommons.py Wed Jan 31 16:31:39 2007 +0100 @@ -0,0 +1,1694 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor +#based on the plcopen standard. +# +#Copyright (C): Edouard TISSERANT and Laurent BESSARD +# +#See COPYING file for copyrights details. +# +#This library is free software; you can redistribute it and/or +#modify it under the terms of the GNU Lesser General Public +#License as published by the Free Software Foundation; either +#version 2.1 of the License, or (at your option) any later version. +# +#This library is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +#Lesser General Public License for more details. +# +#You should have received a copy of the GNU Lesser General Public +#License along with this library; if not, write to the Free Software +#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + +from wxPython.wx import * +import wx +from math import * + + +#------------------------------------------------------------------------------- +# Common constants +#------------------------------------------------------------------------------- + +""" +Definition of constants for dimensions of graphic elements +""" + +# FBD and SFC constants +MIN_MOVE = 5 # Minimum move before starting a element dragging +CONNECTOR_SIZE = 8 # Size of connectors +BLOCK_LINE_SIZE = 20 # Minimum size of each line in a block +HANDLE_SIZE = 6 # Size of the squares for handles +ANCHOR_DISTANCE = 5 # Distance where wire is automativally attached to a connector +POINT_RADIUS = 2 # Radius of the point of wire ends +MIN_SEGMENT_SIZE = 2 # Minimum size of the endling segments of a wire + +# LD constants +LD_LINE_SIZE = 40 # Distance between two lines in a ladder rung +LD_ELEMENT_SIZE = (21, 15) # Size (width, height) of a ladder element (contact or coil) +LD_WIRE_SIZE = 30 # Size of a wire between two contact +LD_WIRECOIL_SIZE = 70 # Size of a wire between a coil and a contact +LD_OFFSET = (10, 10) # Distance (x, y) between each comment and rung of the ladder +LD_COMMENT_DEFAULTSIZE = (600, 40) # Size (width, height) of a comment box + +# SFC constants +SFC_STEP_DEFAULT_SIZE = (40, 30) # Default size of a SFC step +SFC_TRANSITION_SIZE = (20, 2) # Size of a SFC transition +SFC_DEFAULT_SEQUENCE_INTERVAL = 80 # Default size of the interval between two divergence branches +SFC_SIMULTANEOUS_SEQUENCE_EXTRA = 20 # Size of extra lines for simultaneous divergence and convergence +SFC_JUMP_SIZE = (12, 13) # Size of a SFC jump to step +SFC_WIRE_MIN_SIZE = 25 # Size of a wire between two elements +SFC_ACTION_MIN_SIZE = (100, 30) # Minimum size of an action block line + +# Type definition constants for graphic elements +[INPUT, OUTPUT, INOUT] = range(3) +[CONNECTOR, CONTINUATION] = range(2) +[LEFTRAIL, RIGHTRAIL] = range(2) +[CONTACT_NORMAL, CONTACT_REVERSE, CONTACT_RISING, CONTACT_FALLING] = range(4) +[COIL_NORMAL, COIL_REVERSE, COIL_SET, COIL_RESET] = range(4) +[SELECTION_DIVERGENCE, SELECTION_CONVERGENCE, SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE] = range(4) + +# Constants for defining the type of dragging that has been selected +[HANDLE_MOVE, HANDLE_RESIZE, HANDLE_POINT, HANDLE_SEGMENT, HANDLE_CONNECTOR] = range(5) + +# List of value for resize handle that are valid +VALID_HANDLES = [(1,1), (1,2), (1,3), (2,3), (3,3), (3,2), (3,1), (2,1)] + +# Contants for defining the direction of a connector +[EAST, NORTH, WEST, SOUTH] = [(1,0), (0,-1), (-1,0), (0,1)] + +# Contants for defining which mode is selected for each view +[MODE_SELECTION, MODE_BLOCK, MODE_VARIABLE, MODE_CONNECTION, MODE_COMMENT, MODE_WIRE, + MODE_INITIAL_STEP] = range(7) + +""" +Basic vector operations for calculate wire points +""" + +# Calculate the scalar product of two vectors +def product(v1, v2): + return v1[0] * v2[0] + v1[1] * v2[1] + +# Create a vector from two points and define if vector must be normal +def vector(p1, p2, normal = True): + vector = (p2.x - p1.x, p2.y - p1.y) + if normal: + return normalize(vector) + return vector + +# Calculate the norm of a given vector +def norm(v): + return sqrt(v[0] * v[0] + v[1] * v[1]) + +# Normalize a given vector +def normalize(v): + v_norm = norm(v) + # Verifie if it is not a null vector + if v_norm > 0: + return (v[0] / v_norm, v[1] / v_norm) + else: + return v + + +""" +Function that calculates the nearest point of the grid defined by scaling for the given point +""" + +def GetScaledEventPosition(event, scaling): + pos = event.GetPosition() + if scaling: + pos.x = round(float(pos.x) / float(scaling[0])) * scaling[0] + pos.y = round(float(pos.y) / float(scaling[1])) * scaling[1] + return pos + + +""" +Function that choose a direction during the wire points generation +""" + +def DirectionChoice(v_base, v_target, dir_target): + dir_product = product(v_base, v_target) + if dir_product < 0: + return (-v_base[0], -v_base[1]) + elif dir_product == 0 and product(v_base, dir_target) != 0: + return dir_target + return v_base + + +#------------------------------------------------------------------------------- +# Viewer Rubberband +#------------------------------------------------------------------------------- + +""" +Class that implements a rubberband +""" + +class RubberBand: + + # Create a rubberband by indicated on which window it must be drawn + def __init__(self, drawingSurface): + self.drawingSurface = drawingSurface + self.Reset() + + # Method that initializes the internal attributes of the rubberband + def Reset(self): + self.startPoint = None + self.currentBox = None + self.lastBox = None + + # Method that return if a box is currently edited + def IsShown(self): + return self.currentBox != None + + # Method that returns the currently edited box + def GetCurrentExtent(self): + return self.currentBox + + # Method called when a new box starts to be edited + def OnLeftDown(self, event, scaling): + pos = GetScaledEventPosition(event, scaling) + # Save the point for calculate the box position and size + self.startPoint = pos + self.currentBox = wxRect(pos.x, pos.y, 0, 0) + self.drawingSurface.SetCursor(wxStockCursor(wxCURSOR_CROSS)) + self.Redraw() + + # Method called when dragging with a box edited + def OnMotion(self, event, scaling): + pos = GetScaledEventPosition(event, scaling) + # Save the last position and size of the box for erasing it + self.lastBox = wxRect(self.currentBox.x, self.currentBox.y, self.currentBox.width, + self.currentBox.height) + # Calculate new position and size of the box + if pos.x >= self.startPoint.x: + self.currentBox.x = self.startPoint.x + self.currentBox.width = pos.x - self.startPoint.x + 1 + else: + self.currentBox.x = pos.x + self.currentBox.width = self.startPoint.x - pos.x + 1 + if pos.y >= self.startPoint.y: + self.currentBox.y = self.startPoint.y + self.currentBox.height = pos.y - self.startPoint.y + 1 + else: + self.currentBox.y = pos.y + self.currentBox.height = self.startPoint.y - pos.y + 1 + self.Redraw() + + # Method called when dragging is stopped + def OnLeftUp(self, event, scaling): + self.drawingSurface.SetCursor(wxNullCursor) + self.lastBox = self.currentBox + self.currentBox = None + self.Redraw() + + # Method that erase the last box and draw the new box + def Redraw(self): + dc = wxClientDC(self.drawingSurface) + dc.SetPen(wxPen(wxWHITE, 1, wxDOT)) + dc.SetBrush(wxTRANSPARENT_BRUSH) + dc.SetLogicalFunction(wxXOR) + if self.lastBox: + # Erase last box + dc.DrawRectangle(self.lastBox.x, self.lastBox.y, self.lastBox.width, + self.lastBox.height) + if self.currentBox: + # Draw current box + dc.DrawRectangle(self.currentBox.x, self.currentBox.y, self.currentBox.width, + self.currentBox.height) + + +#------------------------------------------------------------------------------- +# Graphic element base class +#------------------------------------------------------------------------------- + +""" +Class that implements a generic graphic element +""" + +class Graphic_Element: + + # Create a new graphic element + def __init__(self, parent, id = None): + self.Parent = parent + self.Id = id + self.oldPos = None + self.Handle = False + self.Dragging = False + self.Selected = False + self.Pos = wxPoint(0, 0) + self.Size = wxSize(0, 0) + self.BoundingBox = wxRect(0, 0, 0, 0) + + # Make a clone of this element + def Clone(self): + return Graphic_Element(self.Parent, self.Id) + + # Changes the block position + def SetPosition(self, x, y): + self.Pos.x = x + self.Pos.y = y + self.RefreshConnected() + self.RefreshBoundingBox() + + # Returns the block position + def GetPosition(self): + return self.Pos.x, self.Pos.y + + # Changes the element size + def SetSize(self, width, height): + self.Size.SetWidth(width) + self.Size.SetHeight(height) + self.RefreshConnectors() + self.RefreshBoundingBox() + + # Returns the element size + def GetSize(self): + return self.Size.GetWidth(), self.Size.GetHeight() + + # Refresh the element Bounding Box + def RefreshBoundingBox(self): + self.BoundingBox = wxRect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1]) + + # Refresh the element connectors position + def RefreshConnectors(self): + pass + + # Refresh the position of wires connected to element inputs and outputs + def RefreshConnected(self): + pass + + # Change the parent + def SetParent(self, parent): + self.Parent = parent + + # Override this method for defining the method to call for deleting this element + def Delete(self): + pass + + # Returns the Id + def GetId(self): + return self.Id + + # Returns if the point given is in the bounding box + def HitTest(self, pt): + rect = self.BoundingBox + return rect.InsideXY(pt.x, pt.y) + + # Override this method for refreshing the bounding box + def RefreshBoundingBox(self): + pass + + # Returns the bounding box + def GetBoundingBox(self): + return self.BoundingBox + + # Change the variable that indicates if this element is selected + def SetSelected(self, selected): + self.Selected = selected + + # Test if the point is on a handle of this element + def TestHandle(self, pt): + # Verify that this element is selected + if self.Selected: + # Find if point is on a handle horizontally + if self.BoundingBox.x - HANDLE_SIZE - 2 <= pt.x < self.BoundingBox.x - 2: + handle_x = 1 + elif self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2 <= pt.x < self.BoundingBox.x + (self.BoundingBox.width + HANDLE_SIZE) / 2: + handle_x = 2 + elif self.BoundingBox.x + self.BoundingBox.width + 2 <= pt.x < self.BoundingBox.x + self.BoundingBox.width + HANDLE_SIZE + 2: + handle_x = 3 + else: + handle_x = 0 + # Find if point is on a handle vertically + if self.BoundingBox.y - HANDLE_SIZE - 2 <= pt.y < self.BoundingBox.y - 2: + handle_y = 1 + elif self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2 <= pt.y < self.BoundingBox.y + (self.BoundingBox.height + HANDLE_SIZE) / 2: + handle_y = 2 + elif self.BoundingBox.y + self.BoundingBox.height - 2 <= pt.y < self.BoundingBox.y + self.BoundingBox.height + HANDLE_SIZE + 2: + handle_y = 3 + else: + handle_y = 0 + # Verify that the result is valid + if (handle_x, handle_y) in VALID_HANDLES: + return handle_x, handle_y + return 0, 0 + + # Method called when a LeftDown event have been generated + def OnLeftDown(self, event, scaling): + pos = event.GetPosition() + # Test if an handle have been clicked + result = self.TestHandle(pos) + # Find which type of handle have been clicked, + # Save a resize event and change the cursor + if result == (1, 1) or result == (3, 3): + self.Handle = (HANDLE_RESIZE, result) + self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENWSE)) + elif result == (1, 3) or result == (3, 1): + self.Handle = (HANDLE_RESIZE, result) + self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENESW)) + elif result == (1, 2) or result == (3, 2): + self.Handle = (HANDLE_RESIZE, result) + self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZEWE)) + elif result == (2, 1) or result == (2, 3): + self.Handle = (HANDLE_RESIZE, result) + self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENS)) + # If no handle have been clicked, save a move event, and change the cursor + else: + self.Handle = (HANDLE_MOVE, None) + self.Parent.SetCursor(wxStockCursor(wxCURSOR_HAND)) + self.SetSelected(False) + # Initializes the last position + self.oldPos = GetScaledEventPosition(event, scaling) + + # Method called when a LeftUp event have been generated + def OnLeftUp(self, event, scaling): + # If a dragging have been initiated + if self.Dragging and self.oldPos: + # Calculate the movement of cursor and refreshes the element state + pos = GetScaledEventPosition(event, scaling) + movex = pos.x - self.oldPos.x + movey = pos.y - self.oldPos.y + self.ProcessDragging(movex, movey) + self.RefreshModel() + self.SetSelected(True) + self.oldPos = None + + # Method called when a RightUp event have been generated + def OnRightUp(self, event, scaling): + self.SetSelected(True) + self.oldPos = None + + # Method called when a LeftDClick event have been generated + def OnLeftDClick(self, event, scaling): + pass + + # Method called when a Motion event have been generated + def OnMotion(self, event, scaling): + # If the cursor is dragging and the element have been clicked + if event.Dragging() and self.oldPos: + # Calculate the movement of cursor + pos = GetScaledEventPosition(event, scaling) + movex = pos.x - self.oldPos.x + movey = pos.y - self.oldPos.y + # If movement is greater than MIN_MOVE then a dragging is initiated + if not self.Dragging and (abs(movex) > MIN_MOVE or abs(movey) > MIN_MOVE): + self.Dragging = True + # If a dragging have been initiated, refreshes the element state + if self.Dragging: + self.ProcessDragging(movex, movey) + self.oldPos = pos + # If cursor just pass over the element, changes the cursor if it is on a handle + else: + pos = event.GetPosition() + handle = self.TestHandle(pos) + if handle == (1, 1) or handle == (3, 3): + wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENWSE)) + elif handle == (1, 3) or handle == (3, 1): + wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENESW)) + elif handle == (1, 2) or handle == (3, 2): + wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZEWE)) + elif handle == (2, 1) or handle == (2, 3): + wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENS)) + else: + wxCallAfter(self.Parent.SetCursor, wxNullCursor) + + # Moves the element + def Move(self, dx, dy, exclude = []): + self.Pos.x += dx + self.Pos.y += dy + self.RefreshConnected(exclude) + self.RefreshBoundingBox() + + # Resizes the element from position and size given + def Resize(self, x, y, width, height): + self.Move(x, y) + self.SetSize(width, height) + + # Refreshes the element state according to move defined and handle selected + def ProcessDragging(self, movex, movey): + handle_type, handle = self.Handle + # If it is a resize handle, calculate the values from resizing + if handle_type == HANDLE_RESIZE: + x, y = 0, 0 + width, height = self.GetSize() + if handle[0] == 1: + x = movex + width -= movex + elif handle[0] == 3: + width += movex + if handle[1] == 1: + y = movey + height -= movey + elif handle[1] == 3: + height += movey + # Verify that new size is not lesser than minimum + min_width, min_height = self.GetMinSize() + if width >= min_width and height >= min_height: + self.Resize(x, y, width, height) + # If it is a move handle, Move this element + elif handle_type == HANDLE_MOVE: + self.Move(movex, movey) + + # Override this method for defining the method to call for refreshing the model of this element + def RefreshModel(self, move=True): + pass + + # Draws the handles of this element if it is selected + def Draw(self, dc): + if self.Selected: + dc.SetPen(wxBLACK_PEN) + dc.SetBrush(wxBLACK_BRUSH) + dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE) + dc.DrawRectangle(self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2, + self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE) + dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2, + self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE) + dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2, + self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2, HANDLE_SIZE, HANDLE_SIZE) + dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2, + self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE) + dc.DrawRectangle(self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2, + self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE) + dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE) + dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2, HANDLE_SIZE, HANDLE_SIZE) + dc.SetBrush(wxWHITE_BRUSH) + + +#------------------------------------------------------------------------------- +# Group of graphic elements +#------------------------------------------------------------------------------- + +""" +Class that implements a group of graphic elements +""" + +class Graphic_Group(Graphic_Element): + + # Create a new group of graphic elements + def __init__(self, parent): + Graphic_Element.__init__(self, parent) + self.Elements = [] + self.RefreshBoundingBox() + + # Destructor + def __del__(self): + self.Elements = [] + + # Make a clone of this group + def Clone(self): + clone = Graphic_Group(self.Parent) + elements = [] + # Makes a clone of all the elements in this group + for element in self.Elements: + elements.append(element.Clone()) + clone.SetElements(elements) + return clone + + # Clean this group of elements + def Clean(self): + # Clean all the elements of the group + for element in self.Elements: + element.Clean() + + # Delete this group of elements + def Delete(self): + # Delete all the elements of the group + for element in self.Elements: + element.Delete() + + # Returns if the point given is in the bounding box of one of the elements of this group + def HitTest(self, pt): + result = False + for element in self.Elements: + result |= element.HitTest(pt) + return result + + # Returns if the element given is in this group + def IsElementIn(self, element): + return element in self.Elements + + # Change the elements of the group + def SetElements(self, elements): + self.Elements = elements + self.RefreshBoundingBox() + + # Returns the elements of the group + def GetElements(self): + return self.Elements + + # Remove or select the given element if it is or not in the group + def SelectElement(self, element): + if element in self.Elements: + self.Elements.remove(element) + else: + self.Elements.append(element) + self.RefreshBoundingBox() + + # Move this group of elements + def Move(self, movex, movey): + exclude = [] + for element in self.Elements: + if isinstance(element, Wire): + exclude.append(element) + # Move all the elements of the group + for element in self.Elements: + if isinstance(element, Wire): + element.Move(movex, movey, True) + else: + element.Move(movex, movey, exclude) + self.RefreshBoundingBox() + + # Refreshes the bounding box of this group of elements + def RefreshBoundingBox(self): + if len(self.Elements) > 0: + bbox = self.Elements[0].GetBoundingBox() + minx, miny = bbox.x, bbox.y + maxx = bbox.x + bbox.width + maxy = bbox.y + bbox.height + for element in self.Elements[1:]: + bbox = element.GetBoundingBox() + minx = min(minx, bbox.x) + miny = min(miny, bbox.y) + maxx = max(maxx, bbox.x + bbox.width) + maxy = max(maxy, bbox.y + bbox.height) + self.BoundingBox = wxRect(minx, miny, maxx - minx, maxy - miny) + else: + self.BoundingBox = wxRect(0, 0, 0, 0) + + # Forbids to change the group position + def SetPosition(x, y): + pass + + # Returns the position of this group + def GetPosition(self): + return self.BoundingBox.x, self.BoundingBox.y + + # Forbids to change the group size + def SetSize(width, height): + pass + + # Returns the size of this group + def GetSize(self): + return self.BoundingBox.width, self.BoundingBox.height + + # Change the variable that indicates if the elemente is selected + def SetSelected(self, selected): + for element in self.Elements: + element.SetSelected(selected) + + # Refreshes the model of all the elements of this group + def RefreshModel(self): + for element in self.Elements: + element.RefreshModel() + + +#------------------------------------------------------------------------------- +# Connector for all types of blocks +#------------------------------------------------------------------------------- + +""" +Class that implements a connector for any type of block +""" + +class Connector: + + # Create a new connector + def __init__(self, parent, name, type, position, direction, negated = False, edge = "none"): + self.ParentBlock = parent + self.Name = name + self.Type = type + self.Pos = position + self.Direction = direction + self.Wires = [] + self.Negated = negated + self.Edge = edge + self.Pen = wxBLACK_PEN + + # Change the connector pen + def SetPen(self, pen): + self.Pen = pen + + # Make a clone of the connector + def Clone(self): + return Connector(self.Parent, self.Name, self.Type, wxPoint(self.Pos[0], self.Pos[1]), + self.Direction, self.Negated) + + # Returns the connector parent block + def GetParentBlock(self): + return self.ParentBlock + + # Returns the connector name + def GetName(self): + return self.Name + + # Changes the connector name + def SetName(self, name): + self.Name = name + + # Returns the wires connected to the connector + def GetWires(self): + return self.Wires + + # Returns the parent block Id + def GetBlockId(self): + return self.ParentBlock.GetId() + + # Returns the connector relative position + def GetRelPosition(self): + return self.Pos + + # Returns the connector absolute position + def GetPosition(self, size = True): + parent_pos = self.ParentBlock.GetPosition() + # If the position of the end of the connector is asked + if size: + x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE + y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE + else: + x = parent_pos[0] + self.Pos.x + y = parent_pos[1] + self.Pos.y + return wxPoint(x, y) + + # Change the connector relative position + def SetPosition(self, pos): + self.Pos = pos + + # Returns the connector direction + def GetDirection(self): + return self.Direction + + # Change the connector direction + def SetDirection(self, direction): + self.Direction = direction + + # Connect a wire to this connector at the last place + def Connect(self, wire, refresh = True): + self.InsertConnect(len(self.Wires), wire, refresh) + + # Connect a wire to this connector at the place given + def InsertConnect(self, idx, wire, refresh = True): + if wire not in self.Wires: + self.Wires.insert(idx, wire) + if refresh: + self.ParentBlock.RefreshModel(False) + + # Returns the index of the wire given in the list of connected + def GetWireIndex(self, wire): + for i, (tmp_wire, handle) in enumerate(self.Wires): + if tmp_wire == wire: + return i + return None + + # Unconnect a wire or all wires connected to the connector + def UnConnect(self, wire = None, unconnect = True): + i = 0 + found = False + while i < len(self.Wires) and not found: + if not wire or self.Wires[i][0] == wire: + # If Unconnect haven't been called from a wire, disconnect the connector in the wire + if unconnect: + if self.Wires[i][1] == 0: + self.Wires[i][0].UnConnectStartPoint() + else: + self.Wires[i][0].UnConnectEndPoint() + # Remove wire from connected + if wire: + self.Wires.pop(i) + found = True + i += 1 + # If no wire defined, unconnect all wires + if not wire: + self.Wires = [] + self.ParentBlock.RefreshModel(False) + + # Returns if connector has one or more wire connected + def IsConnected(self): + return len(self.Wires) > 0 + + # Move the wires connected + def MoveConnected(self, exclude = []): + if len(self.Wires) > 0: + # Calculate the new position of the end point + parent_pos = self.ParentBlock.GetPosition() + x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE + y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE + # Move the corresponding point on all the wires connected + for wire, index in self.Wires: + if wire not in exclude: + if index == 0: + wire.MoveStartPoint(wxPoint(x, y)) + else: + wire.MoveEndPoint(wxPoint(x, y)) + + # Refreshes the model of all the wires connected + def RefreshWires(self): + for wire in self.Wires: + wire[0].RefreshModel() + + # Refreshes the parent block model + def RefreshParentBlock(self): + self.ParentBlock.RefreshModel(False) + + # Returns the connector negated property + def IsNegated(self): + return self.Negated + + # Changes the connector negated property + def SetNegated(self, negated): + self.Negated = negated + self.Edge = "none" + + # Returns the connector edge property + def GetEdge(self): + return self.Edge + + # Changes the connector edge property + def SetEdge(self, edge): + self.Edge = edge + self.Negated = False + + # Tests if the point given is near from the end point of this connector + def TestPoint(self, pt, exclude = True): + parent_pos = self.ParentBlock.GetPosition() + if not (len(self.Wires) > 0 and self.Direction == WEST and exclude): + # Calculate a square around the end point of this connector + x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE - ANCHOR_DISTANCE + y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE - ANCHOR_DISTANCE + width = ANCHOR_DISTANCE * 2 + abs(self.Direction[0]) * CONNECTOR_SIZE + height = ANCHOR_DISTANCE * 2 + abs(self.Direction[1]) * CONNECTOR_SIZE + rect = wxRect(x, y, width, height) + return rect.InsideXY(pt.x, pt.y) + return False + + # Draws the connector + def Draw(self, dc): + dc.SetPen(self.Pen) + dc.SetBrush(wxWHITE_BRUSH) + parent_pos = self.ParentBlock.GetPosition() + if self.Negated: + # If connector is negated, draw a circle + xcenter = parent_pos[0] + self.Pos.x + (CONNECTOR_SIZE * self.Direction[0]) / 2 + ycenter = parent_pos[1] + self.Pos.y + (CONNECTOR_SIZE * self.Direction[1]) / 2 + dc.DrawCircle(xcenter, ycenter, CONNECTOR_SIZE / 2) + else: + xstart = parent_pos[0] + self.Pos.x + ystart = parent_pos[1] + self.Pos.y + if self.Edge == "rising": + # If connector has a rising edge, draw a right arrow + dc.DrawLine(xstart, ystart, xstart - 4, ystart - 4) + dc.DrawLine(xstart, ystart, xstart - 4, ystart + 4) + elif self.Edge == "falling": + # If connector has a falling edge, draw a left arrow + dc.DrawLine(xstart, ystart, xstart + 4, ystart - 4) + dc.DrawLine(xstart, ystart, xstart + 4, ystart + 4) + xend = xstart + CONNECTOR_SIZE * self.Direction[0] + yend = ystart + CONNECTOR_SIZE * self.Direction[1] + dc.DrawLine(xstart + self.Direction[0], ystart + self.Direction[1], xend, yend) + # Calculate the position of the text + text_size = dc.GetTextExtent(self.Name) + if self.Direction[0] != 0: + ytext = parent_pos[1] + self.Pos.y - text_size[1] / 2 + if self.Direction[0] < 0: + xtext = parent_pos[0] + self.Pos.x + 5 + else: + xtext = parent_pos[0] + self.Pos.x - (text_size[0] + 5) + if self.Direction[1] != 0: + xtext = parent_pos[0] + self.Pos.x - text_size[0] / 2 + if self.Direction[1] < 0: + ytext = parent_pos[1] + self.Pos.y + 5 + else: + ytext = parent_pos[1] + self.Pos.y - (text_size[1] + 5) + # Draw the text + dc.DrawText(self.Name, xtext, ytext) + + +#------------------------------------------------------------------------------- +# Common Wire Element +#------------------------------------------------------------------------------- + +""" +Class that implements a wire for connecting two blocks +""" + +class Wire(Graphic_Element): + + # Create a new wire + def __init__(self, parent, start = None, end = None): + Graphic_Element.__init__(self, parent) + self.StartPoint = start + self.EndPoint = end + self.StartConnected = None + self.EndConnected = None + # If the start and end points are defined, calculate the wire + if start and end: + self.ResetPoints() + self.GeneratePoints() + else: + self.Points = [] + self.Segments = [] + self.SelectedSegment = None + self.OverStart = False + self.OverEnd = False + + # Destructor of a wire + def __del__(self): + self.StartConnected = None + self.EndConnected = None + + # Forbids to change the wire position + def SetPosition(x, y): + pass + + # Forbids to change the wire size + def SetSize(width, height): + pass + + # Unconnect the start and end points + def Clean(self): + if self.StartConnected: + self.UnConnectStartPoint() + if self.EndConnected: + self.UnConnectEndPoint() + + # Delete this wire by calling the corresponding method + def Delete(self): + self.Parent.DeleteWire(self) + + # Select a segment and not the whole wire. It's useful for Ladder Diagram + def SetSelectedSegment(self, segment): + # The last segment is indicated + if segment == -1: + segment = len(self.Segments) - 1 + # The selected segment is reinitialised + if segment == None: + if self.StartConnected: + self.StartConnected.SetPen(wxBLACK_PEN) + if self.EndConnected: + self.EndConnected.SetPen(wxBLACK_PEN) + # The segment selected is the first + elif segment == 0: + if self.StartConnected: + self.StartConnected.SetPen(wxRED_PEN) + if self.EndConnected: + # There is only one segment + if len(self.Segments) == 1: + self.EndConnected.SetPen(wxRED_PEN) + else: + self.EndConnected.SetPen(wxBLACK_PEN) + # The segment selected is the last + elif segment == len(self.Segments) - 1: + if self.StartConnected: + self.StartConnected.SetPen(wxBLACK_PEN) + if self.EndConnected: + self.EndConnected.SetPen(wxRED_PEN) + self.SelectedSegment = segment + + # Reinitialize the wire points + def ResetPoints(self): + if self.StartPoint and self.EndPoint: + self.Points = [self.StartPoint[0], self.EndPoint[0]] + self.Segments = [self.StartPoint[1]] + else: + self.Points = [] + self.Segments = [] + + # Refresh the wire bounding box + def RefreshBoundingBox(self): + if len(self.Points) > 0: + # If startpoint or endpoint is connected, save the point radius + start_radius = end_radius = 0 + if not self.StartConnected: + start_radius = POINT_RADIUS + if not self.EndConnected: + end_radius = POINT_RADIUS + # Initialize minimum and maximum from the first point + minx, minbbxx = self.Points[0].x, self.Points[0].x - start_radius + maxx, maxbbxx = self.Points[0].x, self.Points[0].x + start_radius + miny, minbbxy = self.Points[0].y, self.Points[0].y - start_radius + maxy, maxbbxy = self.Points[0].y, self.Points[0].y + start_radius + # Actualize minimum and maximum with the other points + for point in self.Points[1:-1]: + minx, minbbxx = min(minx, point.x), min(minbbxx, point.x) + maxx, maxbbxx = max(maxx, point.x), max(maxbbxx, point.x) + miny, minbbxy = min(miny, point.y), min(minbbxy, point.y) + maxy, maxbbxy = max(maxy, point.y), max(maxbbxy, point.y) + if len(self.Points) > 1: + minx, minbbxx = min(minx, self.Points[-1].x), min(minbbxx, self.Points[-1].x - end_radius) + maxx, maxbbxx = max(maxx, self.Points[-1].x), max(maxbbxx, self.Points[-1].x + end_radius) + miny, minbbxy = min(miny, self.Points[-1].y), min(minbbxy, self.Points[-1].y - end_radius) + maxy, maxbbxy = max(maxy, self.Points[-1].y), max(maxbbxy, self.Points[-1].y + end_radius) + self.Pos = wxPoint(minx, miny) + self.Size = wxSize(maxx -minx + 1, maxy - miny + 1) + self.BoundingBox = wxRect(minbbxx, minbbxy, maxbbxx - minbbxx + 1, maxbbxy - minbbxy + 1) + + # Refresh the realpoints that permits to keep the proportionality in wire during resizing + def RefreshRealPoints(self): + if len(self.Points) > 0: + self.RealPoints = [] + # Calculate float relative position of each point with the minimum point + for point in self.Points: + self.RealPoints.append([float(point.x - self.Pos.x), float(point.y - self.Pos.y)]) + + # Returns the wire minimum size + def GetMinSize(self): + width = 1 + height = 1 + dir_product = product(self.StartPoint[1], self.EndPoint[1]) + # The directions are opposed + if dir_product < 0: + if self.StartPoint[0] != 0: + width = MIN_SEGMENT_SIZE * 2 + if self.StartPoint[1] != 0: + height = MIN_SEGMENT_SIZE * 2 + # The directions are the same + elif dir_product > 0: + if self.StartPoint[0] != 0: + width = MIN_SEGMENT_SIZE + if self.StartPoint[1] != 0: + height = MIN_SEGMENT_SIZE + # The directions are perpendiculars + else: + width = MIN_SEGMENT_SIZE + height = MIN_SEGMENT_SIZE + return width + 1, height + 1 + + # Returns if the point given is on one of the wire segments + def HitTest(self, pt): + test = False + for i in xrange(len(self.Points) - 1): + rect = wxRect(0, 0, 0, 0) + x1, y1 = self.Points[i].x, self.Points[i].y + x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y + # Calculate a rectangle around the segment + rect = wxRect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE, + abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE) + test |= rect.InsideXY(pt.x, pt.y) + return test + + # Returns the wire start or end point if the point given is on one of them + def TestPoint(self, pt): + # Test the wire start point + rect = wxRect(self.Points[0].x - ANCHOR_DISTANCE, self.Points[0].y - ANCHOR_DISTANCE, + 2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE) + if rect.InsideXY(pt.x, pt.y): + return 0 + # Test the wire end point + if len(self.Points) > 1: + rect = wxRect(self.Points[-1].x - ANCHOR_DISTANCE, self.Points[-1].y - ANCHOR_DISTANCE, + 2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE) + if rect.InsideXY(pt.x, pt.y): + return -1 + return None + + # Returns the wire segment if the point given is on it + def TestSegment(self, pt, all=False): + for i in xrange(len(self.Segments)): + # If wire is not in a Ladder Diagram, first and last segments are excluded + if 0 < i < len(self.Segments) - 1 or all: + x1, y1 = self.Points[i].x, self.Points[i].y + x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y + # Calculate a rectangle around the segment + rect = wxRect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE, + abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE) + if rect.InsideXY(pt.x, pt.y): + return i, self.Segments[i] + return None + + # Define the wire points + def SetPoints(self, points): + if len(points) > 1: + self.Points = [wxPoint(x, y) for x, y in points] + # Calculate the start and end directions + self.StartPoint = [None, vector(self.Points[0], self.Points[1])] + self.EndPoint = [None, vector(self.Points[-1], self.Points[-2])] + # Calculate the start and end points + self.StartPoint[0] = wxPoint(self.Points[0].x + CONNECTOR_SIZE * self.StartPoint[1][0], + self.Points[0].y + CONNECTOR_SIZE * self.StartPoint[1][1]) + self.EndPoint[0] = wxPoint(self.Points[-1].x + CONNECTOR_SIZE * self.EndPoint[1][0], + self.Points[-1].y + CONNECTOR_SIZE * self.EndPoint[1][1]) + self.Points[0] = self.StartPoint[0] + self.Points[-1] = self.EndPoint[0] + # Calculate the segments directions + self.Segments = [] + for i in xrange(len(self.Points) - 1): + self.Segments.append(vector(self.Points[i], self.Points[i + 1])) + self.RefreshBoundingBox() + self.RefreshRealPoints() + + # Returns the position of the point indicated + def GetPoint(self, index): + if index < len(self.Points): + return self.Points[index].x, self.Points[index].y + return None + + # Returns a list of the position of all wire points + def GetPoints(self, invert = False): + points = self.VerifyPoints() + points[0] = wxPoint(points[0].x - CONNECTOR_SIZE * self.StartPoint[1][0], + points[0].y - CONNECTOR_SIZE * self.StartPoint[1][1]) + points[-1] = wxPoint(points[-1].x - CONNECTOR_SIZE * self.EndPoint[1][0], + points[-1].y - CONNECTOR_SIZE * self.EndPoint[1][1]) + # An inversion of the list is asked + if invert: + points.reverse() + return points + + # Returns the position of the two selected segment points + def GetSelectedSegmentPoints(self): + if self.SelectedSegment != None and len(self.Points) > 1: + return self.Points[self.SelectedSegment:self.SelectedSegment + 2] + return [] + + # Returns if the selected segment is the first and/or the last of the wire + def GetSelectedSegmentConnections(self): + if self.SelectedSegment != None and len(self.Points) > 1: + return self.SelectedSegment == 0, self.SelectedSegment == len(self.Segments) - 1 + return (True, True) + + # Returns the connectors on which the wire is connected + def GetConnected(self): + connected = [] + if self.StartConnected and self.StartPoint[1] == WEST: + connected.append(self.StartConnected) + if self.EndConnected and self.EndPoint[1] == WEST: + connected.append(self.EndConnected) + return connected + + # Returns the id of the block connected to the first or the last wire point + def GetConnectedId(self, index): + if index == 0 and self.StartConnected: + return self.StartConnected.GetBlockId() + elif index == -1 and self.EndConnected: + return self.EndConnected.GetBlockId() + return None + + # Update the wire points position by keeping at most possible the current positions + def GeneratePoints(self, realpoints = True): + i = 0 + # Calculate the start enad end points with the minimum segment size in the right direction + end = wxPoint(self.EndPoint[0].x + self.EndPoint[1][0] * MIN_SEGMENT_SIZE, + self.EndPoint[0].y + self.EndPoint[1][1] * MIN_SEGMENT_SIZE) + start = wxPoint(self.StartPoint[0].x + self.StartPoint[1][0] * MIN_SEGMENT_SIZE, + self.StartPoint[0].y + self.StartPoint[1][1] * MIN_SEGMENT_SIZE) + # Evaluate the point till it's the last + while i < len(self.Points) - 1: + # The next point is the last + if i + 1 == len(self.Points) - 1: + # Calculate the direction from current point to end point + v_end = vector(self.Points[i], end) + # The current point is the first + if i == 0: + # If the end point is not in the start direction, a point is added + if v_end != self.Segments[0] or v_end == self.EndPoint[1]: + self.Points.insert(1, wxPoint(start.x, start.y)) + self.Segments.insert(1, DirectionChoice((self.Segments[0][1], + self.Segments[0][0]), v_end, self.EndPoint[1])) + # The current point is the second + elif i == 1: + # The previous direction and the target direction are mainly opposed, a point is added + if product(v_end, self.Segments[0]) < 0: + self.Points.insert(2, wxPoint(self.Points[1].x, self.Points[1].y)) + self.Segments.insert(2, DirectionChoice((self.Segments[1][1], + self.Segments[1][0]), v_end, self.EndPoint[1])) + # The previous direction and the end direction are the same or they are + # perpendiculars and the end direction points towards current segment + elif product(self.Segments[0], self.EndPoint[1]) >= 0 and product(self.Segments[1], self.EndPoint[1]) <= 0: + # Current point and end point are aligned + if self.Segments[0][0] != 0: + self.Points[1].x = end.x + if self.Segments[0][1] != 0: + self.Points[1].y = end.y + # If the previous direction and the end direction are the same, a point is added + if product(self.Segments[0], self.EndPoint[1]) > 0: + self.Points.insert(2, wxPoint(self.Points[1].x, self.Points[1].y)) + self.Segments.insert(2, DirectionChoice((self.Segments[1][1], + self.Segments[1][0]), v_end, self.EndPoint[1])) + else: + # Current point is positioned in the middle of start point + # and end point on the current direction and a point is added + if self.Segments[0][0] != 0: + self.Points[1].x = (end.x + start.x) / 2 + if self.Segments[0][1] != 0: + self.Points[1].y = (end.y + start.y) / 2 + self.Points.insert(2, wxPoint(self.Points[1].x, self.Points[1].y)) + self.Segments.insert(2, DirectionChoice((self.Segments[1][1], + self.Segments[1][0]), v_end, self.EndPoint[1])) + else: + # The previous direction and the end direction are perpendiculars + if product(self.Segments[i - 1], self.EndPoint[1]) == 0: + # The target direction and the end direction aren't mainly the same + if product(v_end, self.EndPoint[1]) <= 0: + # Current point and end point are aligned + if self.Segments[i - 1][0] != 0: + self.Points[i].x = end.x + if self.Segments[i - 1][1] != 0: + self.Points[i].y = end.y + # Previous direction is updated from the new point + if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0: + self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1]) + else: + test = True + # If the current point is the third, test if the second + # point can be aligned with the end point + if i == 2: + test_point = wxPoint(self.Points[1].x, self.Points[1].y) + if self.Segments[1][0] != 0: + test_point.y = end.y + if self.Segments[1][1] != 0: + test_point.x = end.x + test = norm(vector(self.Points[0], test_point, False)) > MIN_SEGMENT_SIZE + # The previous point can be aligned + if test: + self.Points[i].x, self.Points[i].y = end.x, end.y + if self.Segments[i - 1][0] != 0: + self.Points[i - 1].y = end.y + if self.Segments[i - 1][1] != 0: + self.Points[i - 1].x = end.x + self.Segments[i] = (-self.EndPoint[1][0], -self.EndPoint[1][1]) + else: + # Current point is positioned in the middle of previous point + # and end point on the current direction and a point is added + if self.Segments[1][0] != 0: + self.Points[2].x = (self.Points[1].x + end.x) / 2 + if self.Segments[1][1] != 0: + self.Points[2].y = (self.Points[1].y + end.y) / 2 + self.Points.insert(3, wxPoint(self.Points[2].x, self.Points[2].y)) + self.Segments.insert(3, DirectionChoice((self.Segments[2][1], + self.Segments[2][0]), v_end, self.EndPoint[1])) + else: + # Current point is aligned with end point + if self.Segments[i - 1][0] != 0: + self.Points[i].x = end.x + if self.Segments[i - 1][1] != 0: + self.Points[i].y = end.y + # Previous direction is updated from the new point + if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0: + self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1]) + # If previous direction and end direction are opposed + if product(self.Segments[i - 1], self.EndPoint[1]) < 0: + # Current point is positioned in the middle of previous point + # and end point on the current direction + if self.Segments[i - 1][0] != 0: + self.Points[i].x = (end.x + self.Points[i - 1].x) / 2 + if self.Segments[i - 1][1] != 0: + self.Points[i].y = (end.y + self.Points[i - 1].y) / 2 + # A point is added + self.Points.insert(i + 1, wxPoint(self.Points[i].x, self.Points[i].y)) + self.Segments.insert(i + 1, DirectionChoice((self.Segments[i][1], + self.Segments[i][0]), v_end, self.EndPoint[1])) + else: + # Current point is the first, and second is not mainly in the first direction + if i == 0 and product(vector(start, self.Points[1]), self.Segments[0]) < 0: + # If first and second directions aren't perpendiculars, a point is added + if product(self.Segments[0], self.Segments[1]) != 0: + self.Points.insert(1, wxPoint(start.x, start.y)) + self.Segments.insert(1, DirectionChoice((self.Segments[0][1], + self.Segments[0][0]), vector(start, self.Points[1]), self.Segments[1])) + else: + self.Points[1].x, self.Points[1].y = start.x, start.y + else: + # Next point is aligned with current point + if self.Segments[i][0] != 0: + self.Points[i + 1].y = self.Points[i].y + if self.Segments[i][1] != 0: + self.Points[i + 1].x = self.Points[i].x + # Current direction is updated from the new point + if product(vector(self.Points[i], self.Points[i + 1]), self.Segments[i]) < 0: + self.Segments[i] = (-self.Segments[i][0], -self.Segments[i][1]) + i += 1 + self.RefreshBoundingBox() + if realpoints: + self.RefreshRealPoints() + + # Verify that two consecutive points haven't the same position + def VerifyPoints(self): + points = [point for point in self.Points] + segments = [segment for segment in self.Segments] + i = 1 + while i < len(points) - 1: + if points[i] == points[i + 1] and segments[i - 1] == segments[i + 1]: + for j in xrange(2): + points.pop(i) + segments.pop(i) + else: + i += 1 + # If the wire isn't in a Ladder Diagram, save the new point list + if self.Parent.__class__.__name__ != "LD_Viewer": + self.Points = [point for point in points] + self.Segments = [segment for segment in segments] + self.RefreshBoundingBox() + self.RefreshRealPoints() + return points + + # Moves all the wire points except the first and the last if they are connected + def Move(self, dx, dy, endpoints = False): + for i, point in enumerate(self.Points): + if endpoints or not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected): + point.x += dx + point.y += dy + self.StartPoint[0] = self.Points[0] + self.EndPoint[0] = self.Points[-1] + self.GeneratePoints() + + # Resize the wire from position and size given + def Resize(self, x, y, width, height): + if len(self.Points) > 1: + # Calculate the new position of each point for testing the new size + minx, miny = self.Pos.x, self.Pos.y + lastwidth, lastheight = self.Size.width, self.Size.height + for i, point in enumerate(self.RealPoints): + # If start or end point is connected, it's not calculate + if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected): + if i == 0: + dir = self.StartPoint[1] + elif i == len(self.Points) - 1: + dir = self.EndPoint[1] + else: + dir = (0, 0) + pointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0] * (width - 1) / float(lastwidth - 1))), + width - dir[0] * MIN_SEGMENT_SIZE - 1)) + pointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1] * (height - 1) / float(lastheight - 1))), + height - dir[1] * MIN_SEGMENT_SIZE - 1)) + self.Points[i] = wxPoint(minx + x + pointx, miny + y + pointy) + self.StartPoint[0] = self.Points[0] + self.EndPoint[0] = self.Points[-1] + self.GeneratePoints(False) + # Test if the wire position or size have changed + if x != 0 and minx == self.Pos.x: + x = 0 + width = lastwidth + if y != 0 and miny == self.Pos.y: + y = 0 + height = lastwidth + if width != lastwidth and lastwidth == self.Size.width: + width = lastwidth + if height != lastheight and lastheight == self.Size.height: + height = lastheight + # Calculate the real points from the new size, it's important for + # keeping a proportionality in the points position with the size + # duringa resize dragging + for i, point in enumerate(self.RealPoints): + if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected): + point[0] = point[0] * (width - 1) / float(lastwidth - 1) + point[1] = point[1] * (height - 1) / float(lastheight - 1) + # Calculate the correct position of the points from real points + for i, point in enumerate(self.RealPoints): + if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected): + if i == 0: + dir = self.StartPoint[1] + elif i == len(self.Points) - 1: + dir = self.EndPoint[1] + else: + dir = (0, 0) + realpointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0])), + width - dir[0] * MIN_SEGMENT_SIZE - 1)) + realpointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1])), + height - dir[1] * MIN_SEGMENT_SIZE - 1)) + self.Points[i] = wxPoint(minx + x + realpointx, miny + y + realpointy) + self.StartPoint[0] = self.Points[0] + self.EndPoint[0] = self.Points[-1] + self.GeneratePoints(False) + + # Moves the wire start point and update the wire points + def MoveStartPoint(self, point): + if len(self.Points) > 1: + self.StartPoint[0] = point + self.Points[0] = point + self.GeneratePoints() + + # Changes the wire start direction and update the wire points + def SetStartPointDirection(self, dir): + if len(self.Points) > 1: + self.StartPoint[1] = dir + self.Segments[0] = dir + self.GeneratePoints() + + # Rotates the wire start direction by an angle of 90 degrees anticlockwise + def RotateStartPoint(self): + self.SetStartPointDirection((self.StartPoint[1][1], -self.StartPoint[1][0])) + + # Connects wire start point to the connector given and moves wire start point + # to given point + def ConnectStartPoint(self, point, connector): + if point: + self.MoveStartPoint(point) + self.StartConnected = connector + + # Unconnects wire start point + def UnConnectStartPoint(self): + self.StartConnected.UnConnect(self, False) + self.StartConnected = None + + # Moves the wire end point and update the wire points + def MoveEndPoint(self, point): + if len(self.Points) > 1: + self.EndPoint[0] = point + self.Points[-1] = point + self.GeneratePoints() + + # Changes the wire end direction and update the wire points + def SetEndPointDirection(self, dir): + if len(self.Points) > 1: + self.EndPoint[1] = dir + self.GeneratePoints() + + # Rotates the wire end direction by an angle of 90 degrees anticlockwise + def RotateEndPoint(self): + self.SetEndPointDirection((self.EndPoint[1][1], -self.EndPoint[1][0])) + + # Connects wire end point to the connector given and moves wire end point + # to given point + def ConnectEndPoint(self, point, connector): + if point: + self.MoveEndPoint(point) + self.EndConnected = connector + + # Unconnects wire end point + def UnConnectEndPoint(self): + self.EndConnected.UnConnect(self, False) + self.EndConnected = None + + # Moves the wire segment given by its index + def MoveSegment(self, idx, movex, movey): + if 0 < idx < len(self.Segments) - 1: + if self.Segments[idx] in (NORTH, SOUTH): + self.Points[idx].x += movex + self.Points[idx + 1].x += movex + elif self.Segments[idx] in (EAST, WEST): + self.Points[idx].y += movey + self.Points[idx + 1].y += movey + self.GeneratePoints() + + # Adds two points in the middle of the handled segment + def AddSegment(self): + handle_type, handle = self.Handle + if handle_type == HANDLE_SEGMENT: + segment, dir = handle + pointx = self.Points[segment].x + pointy = self.Points[segment].y + if dir[0] != 0: + pointx = (self.Points[segment].x + self.Points[segment + 1].x) / 2 + if dir[1] != 0: + pointy = (self.Points[segment].y + self.Points[segment + 1].y) / 2 + self.Points.insert(segment + 1, wxPoint(pointx, pointy)) + self.Segments.insert(segment + 1, (dir[1], dir[0])) + self.Points.insert(segment + 2, wxPoint(pointx, pointy)) + self.Segments.insert(segment + 2, dir) + self.GeneratePoints() + + # Delete the handled segment by removing the two segment points + def DeleteSegment(self): + handle_type, handle = self.Handle + if handle_type == HANDLE_SEGMENT: + segment, dir = handle + for i in xrange(2): + self.Points.pop(segment) + self.Segments.pop(segment) + self.GeneratePoints() + self.RefreshModel() + + # Method called when a LeftDown event have been generated + def OnLeftDown(self, event, scaling): + pos = GetScaledEventPosition(event, scaling) + # Test if a point have been handled + result = self.TestPoint(pos) + if result != None: + self.Handle = (HANDLE_POINT, result) + self.Parent.SetCursor(wxStockCursor(wxCURSOR_HAND)) + else: + # Test if a segment have been handled + result = self.TestSegment(pos) + if result != None: + if result[1] in (NORTH, SOUTH): + self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZEWE)) + elif result[1] in (EAST, WEST): + self.Parent.SetCursor(wxStockCursor(wxCURSOR_SIZENS)) + self.Handle = (HANDLE_SEGMENT, result) + # Execute the default method for a graphic element + else: + Graphic_Element.OnLeftDown(self, event, scaling) + self.oldPos = pos + + # Method called when a RightUp event have been generated + def OnRightUp(self, event, scaling): + pos = GetScaledEventPosition(event, scaling) + # Test if a segment has been handled + result = self.TestSegment(pos) + if result != None: + self.Handle = (HANDLE_SEGMENT, result) + # Popup the menu with special items for a wire + self.Parent.PopupWireMenu() + else: + # Execute the default method for a graphic element + Graphic_Element.OnRightUp(self, event, scaling) + + # Method called when a LeftDClick event have been generated + def OnLeftDClick(self, event, scaling): + self.ResetPoints() + self.GeneratePoints() + + # Method called when a Motion event have been generated + def OnMotion(self, event, scaling): + pos = GetScaledEventPosition(event, scaling) + if not event.Dragging(): + # Test if a segment has been handled + result = self.TestSegment(pos) + if result: + if result[1] in (NORTH, SOUTH): + wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZEWE)) + elif result[1] in (EAST, WEST): + wxCallAfter(self.Parent.SetCursor, wxStockCursor(wxCURSOR_SIZENS)) + else: + # Test if a point has been handled + result = self.TestPoint(pos) + if result != None: + if result == 0 and self.StartConnected: + self.OverStart = True + elif result != 0 and self.EndConnected: + self.OverEnd = True + else: + self.OverStart = False + self.OverEnd = False + # Execute the default method for a graphic element + Graphic_Element.OnMotion(self, event, scaling) + else: + # Execute the default method for a graphic element + Graphic_Element.OnMotion(self, event, scaling) + + # Refreshes the wire state according to move defined and handle selected + def ProcessDragging(self, movex, movey): + handle_type, handle = self.Handle + # A point has been handled + if handle_type == HANDLE_POINT: + # Try to connect point to a connector + new_pos = wxPoint(self.Points[handle].x + movex, self.Points[handle].y + movey) + connector = self.Parent.FindBlockConnector(new_pos) + if connector: + if handle == 0 and self.EndConnected != connector: + connector.Connect((self, handle)) + self.SetStartPointDirection(connector.GetDirection()) + self.ConnectStartPoint(connector.GetPosition(), connector) + self.Dragging = False + elif handle != 0 and self.StartConnected != connector: + connector.Connect((self, handle)) + self.SetEndPointDirection(connector.GetDirection()) + self.ConnectEndPoint(connector.GetPosition(), connector) + self.Dragging = False + elif handle == 0: + self.MoveStartPoint(new_pos) + else: + self.MoveEndPoint(new_pos) + # If there is no connector, move the point + elif handle == 0: + if self.StartConnected: + self.UnConnectStartPoint() + self.MoveStartPoint(new_pos) + else: + if self.EndConnected: + self.UnConnectEndPoint() + self.MoveEndPoint(new_pos) + self.RefreshModel() + # A segment has been handled, move a segment + elif handle_type == HANDLE_SEGMENT: + self.MoveSegment(handle[0], movex, movey) + # Execute the default method for a graphic element + else: + Graphic_Element.ProcessDragging(self, movex, movey) + + # Refreshes the wire model + def RefreshModel(self, move=True): + if self.StartConnected and self.StartPoint[1] in [WEST, NORTH]: + self.StartConnected.RefreshParentBlock() + if self.EndConnected and self.EndPoint[1] in [WEST, NORTH]: + self.EndConnected.RefreshParentBlock() + + # Draws the wire lines and points + def Draw(self, dc): + dc.SetPen(wxBLACK_PEN) + dc.SetBrush(wxBLACK_BRUSH) + # Draw the start and end points if they are not connected or the mouse is over them + if len(self.Points) > 0 and (not self.StartConnected or self.OverStart): + dc.DrawCircle(self.Points[0].x, self.Points[0].y, POINT_RADIUS) + if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd): + dc.DrawCircle(self.Points[-1].x, self.Points[-1].y, POINT_RADIUS) + # Draw the wire lines and the last point (it seems that DrawLines stop before the last point) + dc.DrawLines(self.Points) + dc.DrawPoint(self.Points[-1].x, self.Points[-1].y) + # Draw the segment selected in red + if self.SelectedSegment != None: + dc.SetPen(wxRED_PEN) + dc.DrawLine(self.Points[self.SelectedSegment].x, self.Points[self.SelectedSegment].y, + self.Points[self.SelectedSegment + 1].x, self.Points[self.SelectedSegment + 1].y) + if self.SelectedSegment == len(self.Segments) - 1: + dc.DrawPoint(self.Points[-1].x, self.Points[-1].y) + Graphic_Element.Draw(self, dc) + + +#------------------------------------------------------------------------------- +# Graphic comment element +#------------------------------------------------------------------------------- + +""" +Class that implements a comment +""" + +class Comment(Graphic_Element): + + # Create a new comment + def __init__(self, parent, content, id = None): + Graphic_Element.__init__(self, parent) + self.Id = id + self.Content = content + self.Pos = wxPoint(0, 0) + self.Size = wxSize(0, 0) + + # Method for keeping compatibility with others + def Clean(self): + pass + + # Delete this comment by calling the corresponding method + def Delete(self): + self.Parent.DeleteComment(self) + + # Refresh the comment bounding box + def RefreshBoundingBox(self): + self.BoundingBox = wxRect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1) + + # Changes the comment size + def SetSize(self, width, height): + self.Size.SetWidth(width) + self.Size.SetHeight(height) + self.RefreshBoundingBox() + + # Returns the comment size + def GetSize(self): + return self.Size.GetWidth(), self.Size.GetHeight() + + # Returns the comment minimum size + def GetMinSize(self): + dc = wxClientDC(self.Parent) + min_width = 0 + min_height = 0 + # The comment minimum size is the maximum size of words in the content + for line in self.Content.splitlines(): + for word in line.split(" "): + wordwidth, wordheight = dc.GetTextExtent(word) + min_width = max(min_width, wordwidth) + min_height = max(min_height, wordheight) + return min_width + 20, min_height + 20 + + # Changes the comment position + def SetPosition(self, x, y): + self.Pos.x = x + self.Pos.y = y + self.RefreshBoundingBox() + + # Changes the comment content + def SetContent(self, content): + self.Content = content + min_width, min_height = self.GetMinSize() + self.Size[0] = max(self.Size[0], min_width) + self.Size[1] = max(self.Size[1], min_height) + self.RefreshBoundingBox() + + # Returns the comment content + def GetContent(self): + return self.Content + + # Returns the comment position + def GetPosition(self): + return self.Pos.x, self.Pos.y + + # Moves the comment + def Move(self, dx, dy, connected = True): + self.Pos.x += dx + self.Pos.y += dy + self.RefreshBoundingBox() + + # Resizes the comment with the position and the size given + def Resize(self, x, y, width, height): + self.Move(x, y) + self.SetSize(width, height) + + # Method called when a RightUp event have been generated + def OnRightUp(self, event, scaling): + # Popup the default menu + self.Parent.PopupDefaultMenu() + + # Refreshes the comment model + def RefreshModel(self, move=True): + self.Parent.RefreshCommentModel(self) + + # Method called when a LeftDClick event have been generated + def OnLeftDClick(self, event, scaling): + # Edit the comment content + self.Parent.EditCommentContent(self) + + # Draws the comment and its content + def Draw(self, dc): + dc.SetPen(wxBLACK_PEN) + dc.SetBrush(wxWHITE_BRUSH) + # Draws the comment shape + polygon = [wxPoint(self.Pos.x, self.Pos.y), + wxPoint(self.Pos.x + self.Size[0] - 10, self.Pos.y), + wxPoint(self.Pos.x + self.Size[0], self.Pos.y + 10), + wxPoint(self.Pos.x + self.Size[0], self.Pos.y + self.Size[1] + 1), + wxPoint(self.Pos.x, self.Pos.y + self.Size[1] + 1)] + dc.DrawPolygon(polygon) + lines = [wxPoint(self.Pos.x + self.Size[0] - 10, self.Pos.y), + wxPoint(self.Pos.x + self.Size[0] - 10, self.Pos.y + 10), + wxPoint(self.Pos.x + self.Size[0], self.Pos.y + 10)] + dc.DrawLines(lines) + # Draws the comment content + y = self.Pos.y + 10 + for line in self.Content.splitlines(): + first = True + words = line.split(" ") + for i, word in enumerate(words): + if first: + test = word + else: + test = linetext + " " + word + wordwidth, wordheight = dc.GetTextExtent(test) + if y + wordheight > self.Pos.y + self.Size[1] - 10: + break + if wordwidth < self.Size[0] - 20 and i < len(words) - 1: + linetext = test + first = False + else: + if wordwidth < self.Size[0] - 20 and i == len(words) - 1: + dc.DrawText(test, self.Pos.x + 10, y) + else: + dc.DrawText(linetext, self.Pos.x + 10, y) + if i == len(words) - 1: + y += wordheight + 5 + if y + wordheight > self.Pos.y + self.Size[1] - 10: + break + dc.DrawText(word, self.Pos.x + 10, y) + else: + linetext = word + y += wordheight + 5 + if y + wordheight > self.Pos.y + self.Size[1] - 10: + break + Graphic_Element.Draw(self, dc)