Fixed serveral races while starting up under high CPU load.
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it
* and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* The IgH EtherCAT Master is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* The right to use EtherCAT Technology is granted and comes free of
* charge under condition of compatibility of product made by
* Licensee. People intending to distribute/sell products based on the
* code, have to sign an agreement to guarantee that products using
* software based on IgH EtherCAT master stay compatible with the actual
* EtherCAT specification (which are released themselves as an open
* standard) as the (only) precondition to have the right to use EtherCAT
* Technology, IP and trade marks.
*
*****************************************************************************/
/**
\file
EtherCAT finite state machines.
*/
/*****************************************************************************/
#include "globals.h"
#include "fsm.h"
#include "master.h"
#include "mailbox.h"
/*****************************************************************************/
void ec_fsm_master_start(ec_fsm_t *);
void ec_fsm_master_broadcast(ec_fsm_t *);
void ec_fsm_master_read_states(ec_fsm_t *);
void ec_fsm_master_validate_vendor(ec_fsm_t *);
void ec_fsm_master_validate_product(ec_fsm_t *);
void ec_fsm_master_rewrite_addresses(ec_fsm_t *);
void ec_fsm_master_configure_slave(ec_fsm_t *);
void ec_fsm_master_scan_slaves(ec_fsm_t *);
void ec_fsm_master_write_eeprom(ec_fsm_t *);
void ec_fsm_startup_start(ec_fsm_t *);
void ec_fsm_startup_broadcast(ec_fsm_t *);
void ec_fsm_startup_scan(ec_fsm_t *);
void ec_fsm_configuration_start(ec_fsm_t *);
void ec_fsm_configuration_conf(ec_fsm_t *);
void ec_fsm_slavescan_start(ec_fsm_t *);
void ec_fsm_slavescan_address(ec_fsm_t *);
void ec_fsm_slavescan_state(ec_fsm_t *);
void ec_fsm_slavescan_base(ec_fsm_t *);
void ec_fsm_slavescan_datalink(ec_fsm_t *);
void ec_fsm_slavescan_eeprom_size(ec_fsm_t *);
void ec_fsm_slavescan_eeprom_data(ec_fsm_t *);
void ec_fsm_slaveconf_init(ec_fsm_t *);
void ec_fsm_slaveconf_sync(ec_fsm_t *);
void ec_fsm_slaveconf_preop(ec_fsm_t *);
void ec_fsm_slaveconf_fmmu(ec_fsm_t *);
void ec_fsm_slaveconf_sdoconf(ec_fsm_t *);
void ec_fsm_slaveconf_saveop(ec_fsm_t *);
void ec_fsm_slaveconf_op(ec_fsm_t *);
void ec_fsm_sii_start_reading(ec_fsm_t *);
void ec_fsm_sii_read_check(ec_fsm_t *);
void ec_fsm_sii_read_fetch(ec_fsm_t *);
void ec_fsm_sii_start_writing(ec_fsm_t *);
void ec_fsm_sii_write_check(ec_fsm_t *);
void ec_fsm_sii_write_check2(ec_fsm_t *);
void ec_fsm_change_start(ec_fsm_t *);
void ec_fsm_change_check(ec_fsm_t *);
void ec_fsm_change_status(ec_fsm_t *);
void ec_fsm_change_code(ec_fsm_t *);
void ec_fsm_change_ack(ec_fsm_t *);
void ec_fsm_change_check_ack(ec_fsm_t *);
void ec_fsm_coe_down_start(ec_fsm_t *);
void ec_fsm_coe_down_request(ec_fsm_t *);
void ec_fsm_coe_down_check(ec_fsm_t *);
void ec_fsm_coe_down_response(ec_fsm_t *);
void ec_fsm_end(ec_fsm_t *);
void ec_fsm_error(ec_fsm_t *);
void ec_canopen_abort_msg(uint32_t);
/*****************************************************************************/
/**
Constructor.
*/
int ec_fsm_init(ec_fsm_t *fsm, /**< finite state machine */
ec_master_t *master /**< EtherCAT master */
)
{
fsm->master = master;
fsm->master_state = ec_fsm_master_start;
fsm->master_slaves_responding = 0;
fsm->master_slave_states = EC_SLAVE_STATE_UNKNOWN;
fsm->master_validation = 0;
ec_datagram_init(&fsm->datagram);
if (ec_datagram_prealloc(&fsm->datagram, EC_MAX_DATA_SIZE)) {
EC_ERR("Failed to allocate FSM datagram.\n");
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Destructor.
*/
void ec_fsm_clear(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_clear(&fsm->datagram);
}
/*****************************************************************************/
/**
Resets the state machine.
*/
void ec_fsm_reset(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->master_state = ec_fsm_master_start;
fsm->master_slaves_responding = 0;
fsm->master_slave_states = EC_SLAVE_STATE_UNKNOWN;
}
/*****************************************************************************/
/**
Executes the current state of the state machine.
*/
void ec_fsm_execute(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->master_state(fsm);
}
/*****************************************************************************/
/**
Initializes the master startup state machine.
*/
void ec_fsm_startup(ec_fsm_t *fsm)
{
fsm->master_state = ec_fsm_startup_start;
}
/*****************************************************************************/
/**
Returns the running state of the master startup state machine.
\return non-zero if not terminated yet.
*/
int ec_fsm_startup_running(ec_fsm_t *fsm /**< Finite state machine */)
{
return fsm->master_state != ec_fsm_end &&
fsm->master_state != ec_fsm_error;
}
/*****************************************************************************/
/**
Returns, if the master startup state machine terminated with success.
\return non-zero if successful.
*/
int ec_fsm_startup_success(ec_fsm_t *fsm /**< Finite state machine */)
{
return fsm->master_state == ec_fsm_end;
}
/*****************************************************************************/
/**
Initializes the master configuration state machine.
*/
void ec_fsm_configuration(ec_fsm_t *fsm)
{
fsm->master_state = ec_fsm_configuration_start;
}
/*****************************************************************************/
/**
Returns the running state of the master configuration state machine.
\return non-zero if not terminated yet.
*/
int ec_fsm_configuration_running(ec_fsm_t *fsm /**< Finite state machine */)
{
return fsm->master_state != ec_fsm_end &&
fsm->master_state != ec_fsm_error;
}
/*****************************************************************************/
/**
Returns, if the master confuguration state machine terminated with success.
\return non-zero if successful.
*/
int ec_fsm_configuration_success(ec_fsm_t *fsm /**< Finite state machine */)
{
return fsm->master_state == ec_fsm_end;
}
/******************************************************************************
* master startup state machine
*****************************************************************************/
/**
Master state: START.
Starts with getting slave count and slave states.
*/
void ec_fsm_startup_start(ec_fsm_t *fsm)
{
ec_datagram_brd(&fsm->datagram, 0x0130, 2);
ec_master_queue_datagram(fsm->master, &fsm->datagram);
fsm->master_state = ec_fsm_startup_broadcast;
}
/*****************************************************************************/
/**
Master state: BROADCAST.
Processes the broadcast read slave count and slaves states.
*/
void ec_fsm_startup_broadcast(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
unsigned int i;
ec_slave_t *slave;
ec_master_t *master = fsm->master;
if (datagram->state != EC_DATAGRAM_RECEIVED) {
EC_ERR("Failed to receive broadcast datagram.\n");
fsm->master_state = ec_fsm_error;
return;
}
EC_INFO("Scanning bus.\n");
ec_master_clear_slaves(master);
master->slave_count = datagram->working_counter;
if (!master->slave_count) {
// no slaves present -> finish state machine.
fsm->master_state = ec_fsm_end;
return;
}
// init slaves
for (i = 0; i < master->slave_count; i++) {
if (!(slave = (ec_slave_t *) kmalloc(sizeof(ec_slave_t),
GFP_KERNEL))) {
EC_ERR("Failed to allocate slave %i!\n", i);
fsm->master_state = ec_fsm_error;
return;
}
if (ec_slave_init(slave, master, i, i + 1)) {
fsm->master_state = ec_fsm_error;
return;
}
if (kobject_add(&slave->kobj)) {
EC_ERR("Failed to add kobject.\n");
kobject_put(&slave->kobj); // free
fsm->master_state = ec_fsm_error;
return;
}
list_add_tail(&slave->list, &master->slaves);
}
// begin scanning of slaves
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slavescan_start;
fsm->master_state = ec_fsm_startup_scan;
fsm->master_state(fsm); // execute immediately
return;
}
/*****************************************************************************/
/**
Master state: SCAN.
Executes the sub-statemachine for the scanning of a slave.
*/
void ec_fsm_startup_scan(ec_fsm_t *fsm /**< finite state machine */)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave = fsm->slave;
fsm->slave_state(fsm); // execute slave state machine
if (fsm->slave_state == ec_fsm_error) {
EC_ERR("Slave scanning failed.\n");
fsm->master_state = ec_fsm_error;
return;
}
if (fsm->slave_state != ec_fsm_end) return;
// another slave to scan?
if (slave->list.next != &master->slaves) {
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slavescan_start;
fsm->slave_state(fsm); // execute immediately
return;
}
EC_INFO("Bus scanning completed.\n");
ec_master_calc_addressing(master);
fsm->master_state = ec_fsm_end;
}
/******************************************************************************
* master configuration state machine
*****************************************************************************/
/**
Master configuration state machine: START.
*/
void ec_fsm_configuration_start(ec_fsm_t *fsm /**< finite state machine */)
{
ec_master_t *master = fsm->master;
if (list_empty(&master->slaves)) {
fsm->master_state = ec_fsm_end;
return;
}
// begin configuring slaves
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slaveconf_init;
fsm->change_new = EC_SLAVE_STATE_INIT;
fsm->change_state = ec_fsm_change_start;
fsm->master_state = ec_fsm_configuration_conf;
fsm->master_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: CONF.
*/
void ec_fsm_configuration_conf(ec_fsm_t *fsm /**< finite state machine */)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave = fsm->slave;
fsm->slave_state(fsm); // execute slave's state machine
if (fsm->slave_state == ec_fsm_error) {
fsm->master_state = ec_fsm_error;
return;
}
if (fsm->slave_state != ec_fsm_end) return;
// another slave to configure?
if (slave->list.next != &master->slaves) {
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slaveconf_init;
fsm->change_new = EC_SLAVE_STATE_INIT;
fsm->change_state = ec_fsm_change_start;
fsm->master_state(fsm); // execute immediately
return;
}
fsm->master_state = ec_fsm_end;
}
/******************************************************************************
* operation / idle state machine
*****************************************************************************/
/**
Master state: START.
Starts with getting slave count and slave states.
*/
void ec_fsm_master_start(ec_fsm_t *fsm)
{
ec_datagram_brd(&fsm->datagram, 0x0130, 2);
ec_master_queue_datagram(fsm->master, &fsm->datagram);
fsm->master_state = ec_fsm_master_broadcast;
}
/*****************************************************************************/
/**
Master state: BROADCAST.
Processes the broadcast read slave count and slaves states.
*/
void ec_fsm_master_broadcast(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
unsigned int topology_change, states_change, i;
ec_slave_t *slave;
ec_master_t *master = fsm->master;
if (datagram->state != EC_DATAGRAM_RECEIVED) {
if (!master->device->link_state) {
fsm->master_slaves_responding = 0;
list_for_each_entry(slave, &master->slaves, list) {
slave->online = 0;
}
}
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
topology_change = (datagram->working_counter !=
fsm->master_slaves_responding);
states_change = (EC_READ_U8(datagram->data) != fsm->master_slave_states);
fsm->master_slave_states = EC_READ_U8(datagram->data);
fsm->master_slaves_responding = datagram->working_counter;
if (topology_change) {
EC_INFO("%i slave%s responding.\n",
fsm->master_slaves_responding,
fsm->master_slaves_responding == 1 ? "" : "s");
if (master->mode == EC_MASTER_MODE_OPERATION) {
if (fsm->master_slaves_responding == master->slave_count) {
fsm->master_validation = 1; // start validation later
}
else {
EC_WARN("Invalid slave count. Bus in tainted state.\n");
}
}
}
if (states_change) {
char states[25];
ec_state_string(fsm->master_slave_states, states);
EC_INFO("Slave states: %s.\n", states);
}
// topology change in idle mode: clear all slaves and scan the bus
if (topology_change && master->mode == EC_MASTER_MODE_IDLE) {
EC_INFO("Scanning bus.\n");
ec_master_eoe_stop(master);
ec_master_clear_slaves(master);
master->slave_count = datagram->working_counter;
if (!master->slave_count) {
// no slaves present -> finish state machine.
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// init slaves
for (i = 0; i < master->slave_count; i++) {
if (!(slave = (ec_slave_t *) kmalloc(sizeof(ec_slave_t),
GFP_ATOMIC))) {
EC_ERR("Failed to allocate slave %i!\n", i);
ec_master_clear_slaves(master);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (ec_slave_init(slave, master, i, i + 1)) {
// freeing of "slave" already done
ec_master_clear_slaves(master);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (kobject_add(&slave->kobj)) {
EC_ERR("Failed to add kobject.\n");
kobject_put(&slave->kobj); // free
ec_master_clear_slaves(master);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
list_add_tail(&slave->list, &master->slaves);
}
// begin scanning of slaves
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slavescan_start;
fsm->master_state = ec_fsm_master_scan_slaves;
fsm->master_state(fsm); // execute immediately
return;
}
// fetch state from each slave
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
ec_datagram_nprd(&fsm->datagram, fsm->slave->station_address, 0x0130, 2);
ec_master_queue_datagram(master, &fsm->datagram);
fsm->master_state = ec_fsm_master_read_states;
}
/*****************************************************************************/
/**
Master action: PROC_STATES.
Processes the slave states.
*/
void ec_fsm_master_action_process_states(ec_fsm_t *fsm
/**< finite state machine */
)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave;
char old_state[25], new_state[25];
// check if any slaves are not in the state, they're supposed to be
list_for_each_entry(slave, &master->slaves, list) {
if (slave->error_flag ||
!slave->online ||
slave->requested_state == EC_SLAVE_STATE_UNKNOWN ||
slave->current_state == slave->requested_state) continue;
ec_state_string(slave->current_state, old_state);
ec_state_string(slave->requested_state, new_state);
EC_INFO("Changing state of slave %i from %s to %s.\n",
slave->ring_position, old_state, new_state);
fsm->slave = slave;
fsm->slave_state = ec_fsm_slaveconf_init;
fsm->change_new = EC_SLAVE_STATE_INIT;
fsm->change_state = ec_fsm_change_start;
fsm->master_state = ec_fsm_master_configure_slave;
fsm->master_state(fsm); // execute immediately
return;
}
// Check, if EoE processing has to be started
ec_master_eoe_start(master);
if (master->mode == EC_MASTER_MODE_IDLE) {
// nothing to configure. check for pending EEPROM write operations.
list_for_each_entry(slave, &master->slaves, list) {
if (!slave->new_eeprom_data) continue;
if (!slave->online || slave->error_flag) {
kfree(slave->new_eeprom_data);
slave->new_eeprom_data = NULL;
EC_ERR("Discarding EEPROM data, slave %i not ready.\n",
slave->ring_position);
continue;
}
// found pending EEPROM write operation. execute it!
EC_INFO("Writing EEPROM of slave %i...\n", slave->ring_position);
fsm->sii_offset = 0x0000;
memcpy(fsm->sii_value, slave->new_eeprom_data, 2);
fsm->sii_mode = 1;
fsm->sii_state = ec_fsm_sii_start_writing;
fsm->slave = slave;
fsm->master_state = ec_fsm_master_write_eeprom;
fsm->master_state(fsm); // execute immediately
return;
}
}
// nothing to do. restart master state machine.
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master action: Get state of next slave.
*/
void ec_fsm_master_action_next_slave_state(ec_fsm_t *fsm
/**< finite state machine */)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave = fsm->slave;
// is there another slave to query?
if (slave->list.next != &master->slaves) {
// process next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
ec_datagram_nprd(&fsm->datagram, fsm->slave->station_address,
0x0130, 2);
ec_master_queue_datagram(master, &fsm->datagram);
fsm->master_state = ec_fsm_master_read_states;
return;
}
// all slave states read
// check, if a bus validation has to be done
if (fsm->master_validation) {
fsm->master_validation = 0;
list_for_each_entry(slave, &master->slaves, list) {
if (slave->online) continue;
// At least one slave is offline. validate!
EC_INFO("Validating bus.\n");
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
fsm->master_state = ec_fsm_master_validate_vendor;
fsm->sii_offset = 0x0008; // vendor ID
fsm->sii_mode = 0;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute immediately
return;
}
}
ec_fsm_master_action_process_states(fsm);
}
/*****************************************************************************/
/**
Master state: STATES.
Fetches the AL- and online state of a slave.
*/
void ec_fsm_master_read_states(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
ec_datagram_t *datagram = &fsm->datagram;
uint8_t new_state;
if (datagram->state != EC_DATAGRAM_RECEIVED) {
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// did the slave not respond to its station address?
if (datagram->working_counter != 1) {
if (slave->online) {
slave->online = 0;
EC_INFO("Slave %i: offline.\n", slave->ring_position);
}
ec_fsm_master_action_next_slave_state(fsm);
return;
}
// slave responded
new_state = EC_READ_U8(datagram->data);
if (!slave->online) { // slave was offline before
char cur_state[25];
slave->online = 1;
slave->error_flag = 0; // clear error flag
slave->current_state = new_state;
ec_state_string(slave->current_state, cur_state);
EC_INFO("Slave %i: online (%s).\n", slave->ring_position, cur_state);
}
else if (new_state != slave->current_state) {
char old_state[25], cur_state[25];
ec_state_string(slave->current_state, old_state);
ec_state_string(new_state, cur_state);
EC_INFO("Slave %i: %s -> %s.\n",
slave->ring_position, old_state, cur_state);
slave->current_state = new_state;
}
ec_fsm_master_action_next_slave_state(fsm);
}
/*****************************************************************************/
/**
Master state: VALIDATE_VENDOR.
Validates the vendor ID of a slave.
*/
void ec_fsm_master_validate_vendor(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
fsm->sii_state(fsm); // execute SII state machine
if (fsm->sii_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
EC_ERR("Failed to validate vendor ID of slave %i.\n",
slave->ring_position);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (fsm->sii_state != ec_fsm_end) return;
if (EC_READ_U32(fsm->sii_value) != slave->sii_vendor_id) {
EC_ERR("Slave %i: invalid vendor ID!\n", slave->ring_position);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// vendor ID is ok. check product code.
fsm->master_state = ec_fsm_master_validate_product;
fsm->sii_offset = 0x000A; // product code
fsm->sii_mode = 0;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master action: ADDRESS.
Looks for slave, that have lost their configuration and writes
their station address, so that they can be reconfigured later.
*/
void ec_fsm_master_action_addresses(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
while (fsm->slave->online) {
if (fsm->slave->list.next == &fsm->master->slaves) { // last slave?
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// check next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
}
EC_INFO("Reinitializing slave %i.\n", fsm->slave->ring_position);
// write station address
ec_datagram_apwr(datagram, fsm->slave->ring_position, 0x0010, 2);
EC_WRITE_U16(datagram->data, fsm->slave->station_address);
ec_master_queue_datagram(fsm->master, datagram);
fsm->master_state = ec_fsm_master_rewrite_addresses;
}
/*****************************************************************************/
/**
Master state: VALIDATE_PRODUCT.
Validates the product ID of a slave.
*/
void ec_fsm_master_validate_product(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
fsm->sii_state(fsm); // execute SII state machine
if (fsm->sii_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
EC_ERR("Failed to validate product code of slave %i.\n",
slave->ring_position);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (fsm->sii_state != ec_fsm_end) return;
if (EC_READ_U32(fsm->sii_value) != slave->sii_product_code) {
EC_ERR("Slave %i: invalid product code!\n", slave->ring_position);
EC_ERR("expected 0x%08X, got 0x%08X.\n", slave->sii_product_code,
EC_READ_U32(fsm->sii_value));
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// have all states been validated?
if (slave->list.next == &fsm->master->slaves) {
fsm->slave = list_entry(fsm->master->slaves.next, ec_slave_t, list);
// start writing addresses to offline slaves
ec_fsm_master_action_addresses(fsm);
return;
}
// validate next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
fsm->master_state = ec_fsm_master_validate_vendor;
fsm->sii_offset = 0x0008; // vendor ID
fsm->sii_mode = 0;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: ADDRESS.
Checks, if the new station address has been written to the slave.
*/
void ec_fsm_master_rewrite_addresses(ec_fsm_t *fsm
/**< finite state machine */
)
{
ec_slave_t *slave = fsm->slave;
ec_datagram_t *datagram = &fsm->datagram;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
EC_ERR("Failed to write station address on slave %i.\n",
slave->ring_position);
}
if (fsm->slave->list.next == &fsm->master->slaves) { // last slave?
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// check next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
// Write new station address to slave
ec_fsm_master_action_addresses(fsm);
}
/*****************************************************************************/
/**
Master state: SCAN.
Executes the sub-statemachine for the scanning of a slave.
*/
void ec_fsm_master_scan_slaves(ec_fsm_t *fsm /**< finite state machine */)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave = fsm->slave;
fsm->slave_state(fsm); // execute slave state machine
if (fsm->slave_state != ec_fsm_end
&& fsm->slave_state != ec_fsm_error) return;
// another slave to fetch?
if (slave->list.next != &master->slaves) {
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slavescan_start;
fsm->slave_state(fsm); // execute immediately
return;
}
EC_INFO("Bus scanning completed.\n");
ec_master_calc_addressing(master);
// determine initial states.
list_for_each_entry(slave, &master->slaves, list) {
if (ec_slave_is_coupler(slave)) {
slave->requested_state = EC_SLAVE_STATE_OP;
}
else {
if (master->mode == EC_MASTER_MODE_OPERATION)
slave->requested_state = EC_SLAVE_STATE_PREOP;
else
slave->requested_state = EC_SLAVE_STATE_INIT;
}
}
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: CONF.
Starts configuring a slave.
*/
void ec_fsm_master_configure_slave(ec_fsm_t *fsm
/**< finite state machine */
)
{
fsm->slave_state(fsm); // execute slave's state machine
if (fsm->slave_state != ec_fsm_end
&& fsm->slave_state != ec_fsm_error) return;
ec_fsm_master_action_process_states(fsm);
}
/*****************************************************************************/
/**
Master state: EEPROM.
*/
void ec_fsm_master_write_eeprom(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
fsm->sii_state(fsm); // execute SII state machine
if (fsm->sii_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
EC_ERR("Failed to write EEPROM contents to slave %i.\n",
slave->ring_position);
kfree(slave->new_eeprom_data);
slave->new_eeprom_data = NULL;
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (fsm->sii_state != ec_fsm_end) return;
fsm->sii_offset++;
if (fsm->sii_offset < slave->new_eeprom_size) {
memcpy(fsm->sii_value, slave->new_eeprom_data + fsm->sii_offset, 2);
fsm->sii_state = ec_fsm_sii_start_writing;
fsm->sii_state(fsm); // execute immediately
return;
}
// finished writing EEPROM
EC_INFO("Finished writing EEPROM of slave %i.\n", slave->ring_position);
kfree(slave->new_eeprom_data);
slave->new_eeprom_data = NULL;
// TODO: Evaluate new EEPROM contents!
// restart master state machine.
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
/******************************************************************************
* slave scan state machine
*****************************************************************************/
/**
Slave state: START_READING.
First state of the slave state machine. Writes the station address to the
slave, according to its ring position.
*/
void ec_fsm_slavescan_start(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
// write station address
ec_datagram_apwr(datagram, fsm->slave->ring_position, 0x0010, 2);
EC_WRITE_U16(datagram->data, fsm->slave->station_address);
ec_master_queue_datagram(fsm->master, datagram);
fsm->slave_state = ec_fsm_slavescan_address;
}
/*****************************************************************************/
/**
Slave state: ADDRESS.
*/
void ec_fsm_slavescan_address(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to write station address of slave %i.\n",
fsm->slave->ring_position);
return;
}
// Read AL state
ec_datagram_nprd(datagram, fsm->slave->station_address, 0x0130, 2);
ec_master_queue_datagram(fsm->master, datagram);
fsm->slave_state = ec_fsm_slavescan_state;
}
/*****************************************************************************/
/**
Slave state: STATE.
*/
void ec_fsm_slavescan_state(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to read AL state of slave %i.\n",
fsm->slave->ring_position);
return;
}
slave->current_state = EC_READ_U8(datagram->data);
if (slave->current_state & EC_ACK) {
EC_WARN("Slave %i has state error bit set (0x%02X)!\n",
slave->ring_position, slave->current_state);
slave->current_state &= 0x0F;
}
// read base data
ec_datagram_nprd(datagram, fsm->slave->station_address, 0x0000, 6);
ec_master_queue_datagram(fsm->master, datagram);
fsm->slave_state = ec_fsm_slavescan_base;
}
/*****************************************************************************/
/**
Slave state: BASE.
*/
void ec_fsm_slavescan_base(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to read base data of slave %i.\n",
slave->ring_position);
return;
}
slave->base_type = EC_READ_U8 (datagram->data);
slave->base_revision = EC_READ_U8 (datagram->data + 1);
slave->base_build = EC_READ_U16(datagram->data + 2);
slave->base_fmmu_count = EC_READ_U8 (datagram->data + 4);
slave->base_sync_count = EC_READ_U8 (datagram->data + 5);
if (slave->base_fmmu_count > EC_MAX_FMMUS)
slave->base_fmmu_count = EC_MAX_FMMUS;
// read data link status
ec_datagram_nprd(datagram, slave->station_address, 0x0110, 2);
ec_master_queue_datagram(slave->master, datagram);
fsm->slave_state = ec_fsm_slavescan_datalink;
}
/*****************************************************************************/
/**
Slave state: DATALINK.
*/
void ec_fsm_slavescan_datalink(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
uint16_t dl_status;
unsigned int i;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to read DL status of slave %i.\n",
slave->ring_position);
return;
}
dl_status = EC_READ_U16(datagram->data);
for (i = 0; i < 4; i++) {
slave->dl_link[i] = dl_status & (1 << (4 + i)) ? 1 : 0;
slave->dl_loop[i] = dl_status & (1 << (8 + i * 2)) ? 1 : 0;
slave->dl_signal[i] = dl_status & (1 << (9 + i * 2)) ? 1 : 0;
}
// Start fetching EEPROM size
fsm->sii_offset = 0x0040; // first category header
fsm->sii_mode = 1;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->slave_state = ec_fsm_slavescan_eeprom_size;
fsm->slave_state(fsm); // execute state immediately
}
/*****************************************************************************/
/**
Slave state: EEPROM_SIZE.
*/
void ec_fsm_slavescan_eeprom_size(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
uint16_t cat_type, cat_size;
// execute SII state machine
fsm->sii_state(fsm);
if (fsm->sii_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to read EEPROM size of slave %i.\n",
slave->ring_position);
return;
}
if (fsm->sii_state != ec_fsm_end) return;
cat_type = EC_READ_U16(fsm->sii_value);
cat_size = EC_READ_U16(fsm->sii_value + 2);
if (cat_type != 0xFFFF) { // not the last category
fsm->sii_offset += cat_size + 2;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute state immediately
return;
}
slave->eeprom_size = (fsm->sii_offset + 1) * 2;
if (slave->eeprom_data) {
EC_INFO("Freeing old EEPROM data on slave %i...\n",
slave->ring_position);
kfree(slave->eeprom_data);
}
if (!(slave->eeprom_data =
(uint8_t *) kmalloc(slave->eeprom_size, GFP_ATOMIC))) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to allocate EEPROM data on slave %i.\n",
slave->ring_position);
return;
}
// Start fetching EEPROM contents
fsm->sii_offset = 0x0000;
fsm->sii_mode = 1;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->slave_state = ec_fsm_slavescan_eeprom_data;
fsm->slave_state(fsm); // execute state immediately
}
/*****************************************************************************/
/**
Slave state: EEPROM_DATA.
*/
void ec_fsm_slavescan_eeprom_data(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
uint16_t *cat_word, cat_type, cat_size;
// execute SII state machine
fsm->sii_state(fsm);
if (fsm->sii_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to fetch EEPROM contents of slave %i.\n",
slave->ring_position);
return;
}
if (fsm->sii_state != ec_fsm_end) return;
// 2 words fetched
if (fsm->sii_offset + 2 <= slave->eeprom_size / 2) { // 2 words fit
memcpy(slave->eeprom_data + fsm->sii_offset * 2, fsm->sii_value, 4);
}
else { // copy the last word
memcpy(slave->eeprom_data + fsm->sii_offset * 2, fsm->sii_value, 2);
}
if (fsm->sii_offset + 2 < slave->eeprom_size / 2) {
// fetch the next 2 words
fsm->sii_offset += 2;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute state immediately
return;
}
// Evaluate EEPROM contents
slave->sii_alias =
EC_READ_U16(slave->eeprom_data + 2 * 0x0004);
slave->sii_vendor_id =
EC_READ_U32(slave->eeprom_data + 2 * 0x0008);
slave->sii_product_code =
EC_READ_U32(slave->eeprom_data + 2 * 0x000A);
slave->sii_revision_number =
EC_READ_U32(slave->eeprom_data + 2 * 0x000C);
slave->sii_serial_number =
EC_READ_U32(slave->eeprom_data + 2 * 0x000E);
slave->sii_rx_mailbox_offset =
EC_READ_U16(slave->eeprom_data + 2 * 0x0018);
slave->sii_rx_mailbox_size =
EC_READ_U16(slave->eeprom_data + 2 * 0x0019);
slave->sii_tx_mailbox_offset =
EC_READ_U16(slave->eeprom_data + 2 * 0x001A);
slave->sii_tx_mailbox_size =
EC_READ_U16(slave->eeprom_data + 2 * 0x001B);
slave->sii_mailbox_protocols =
EC_READ_U16(slave->eeprom_data + 2 * 0x001C);
// evaluate category data
cat_word = (uint16_t *) slave->eeprom_data + 0x0040;
while (EC_READ_U16(cat_word) != 0xFFFF) {
cat_type = EC_READ_U16(cat_word) & 0x7FFF;
cat_size = EC_READ_U16(cat_word + 1);
switch (cat_type) {
case 0x000A:
if (ec_slave_fetch_strings(slave, (uint8_t *) (cat_word + 2)))
goto end;
break;
case 0x001E:
ec_slave_fetch_general(slave, (uint8_t *) (cat_word + 2));
break;
case 0x0028:
break;
case 0x0029:
if (ec_slave_fetch_sync(slave, (uint8_t *) (cat_word + 2),
cat_size))
goto end;
break;
case 0x0032:
if (ec_slave_fetch_pdo(slave, (uint8_t *) (cat_word + 2),
cat_size, EC_TX_PDO))
goto end;
break;
case 0x0033:
if (ec_slave_fetch_pdo(slave, (uint8_t *) (cat_word + 2),
cat_size, EC_RX_PDO))
goto end;
break;
default:
EC_WARN("Unknown category type 0x%04X in slave %i.\n",
cat_type, slave->ring_position);
}
cat_word += cat_size + 2;
}
fsm->slave_state = ec_fsm_end;
return;
end:
EC_ERR("Failed to analyze category data.\n");
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
}
/******************************************************************************
* slave configuration state machine
*****************************************************************************/
/**
Slave state: INIT.
*/
void ec_fsm_slaveconf_init(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
ec_datagram_t *datagram = &fsm->datagram;
const ec_sii_sync_t *sync;
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_error) {
slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
return;
}
if (fsm->change_state != ec_fsm_end) return;
// slave is now in INIT
if (slave->current_state == slave->requested_state) {
fsm->slave_state = ec_fsm_end; // successful
return;
}
// check and reset CRC fault counters
//ec_slave_check_crc(slave);
// TODO: Implement state machine for CRC checking.
if (!slave->base_sync_count) { // no sync managers
fsm->slave_state = ec_fsm_slaveconf_preop;
fsm->change_new = EC_SLAVE_STATE_PREOP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
return;
}
// configure sync managers
ec_datagram_npwr(datagram, slave->station_address, 0x0800,
EC_SYNC_SIZE * slave->base_sync_count);
memset(datagram->data, 0x00, EC_SYNC_SIZE * slave->base_sync_count);
list_for_each_entry(sync, &slave->sii_syncs, list) {
if (sync->index >= slave->base_sync_count) {
EC_ERR("Invalid sync manager configuration found!");
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
return;
}
ec_sync_config(sync, slave,
datagram->data + EC_SYNC_SIZE * sync->index);
}
ec_master_queue_datagram(fsm->master, datagram);
fsm->slave_state = ec_fsm_slaveconf_sync;
}
/*****************************************************************************/
/**
Slave state: SYNC.
*/
void ec_fsm_slaveconf_sync(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to set sync managers on slave %i.\n",
slave->ring_position);
return;
}
fsm->slave_state = ec_fsm_slaveconf_preop;
fsm->change_new = EC_SLAVE_STATE_PREOP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Slave state: PREOP.
*/
void ec_fsm_slaveconf_preop(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
ec_master_t *master = fsm->master;
ec_datagram_t *datagram = &fsm->datagram;
unsigned int j;
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_error) {
slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
return;
}
if (fsm->change_state != ec_fsm_end) return;
// slave is now in PREOP
if (slave->current_state == slave->requested_state) {
fsm->slave_state = ec_fsm_end; // successful
return;
}
if (!slave->base_fmmu_count) { // skip FMMU configuration
if (list_empty(&slave->sdo_confs)) { // skip SDO configuration
fsm->slave_state = ec_fsm_slaveconf_saveop;
fsm->change_new = EC_SLAVE_STATE_SAVEOP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
return;
}
fsm->slave_state = ec_fsm_slaveconf_sdoconf;
fsm->sdodata = list_entry(slave->sdo_confs.next, ec_sdo_data_t, list);
fsm->coe_state = ec_fsm_coe_down_start;
fsm->coe_state(fsm); // execute immediately
return;
}
// configure FMMUs
ec_datagram_npwr(datagram, slave->station_address,
0x0600, EC_FMMU_SIZE * slave->base_fmmu_count);
memset(datagram->data, 0x00, EC_FMMU_SIZE * slave->base_fmmu_count);
for (j = 0; j < slave->fmmu_count; j++) {
ec_fmmu_config(&slave->fmmus[j], slave,
datagram->data + EC_FMMU_SIZE * j);
}
ec_master_queue_datagram(master, datagram);
fsm->slave_state = ec_fsm_slaveconf_fmmu;
}
/*****************************************************************************/
/**
Slave state: FMMU.
*/
void ec_fsm_slaveconf_fmmu(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
EC_ERR("Failed to set FMMUs on slave %i.\n",
fsm->slave->ring_position);
return;
}
// No CoE configuration to be applied? Jump to SAVEOP state.
if (list_empty(&slave->sdo_confs)) { // skip SDO configuration
// set state to SAVEOP
fsm->slave_state = ec_fsm_slaveconf_saveop;
fsm->change_new = EC_SLAVE_STATE_SAVEOP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
return;
}
fsm->slave_state = ec_fsm_slaveconf_sdoconf;
fsm->sdodata = list_entry(slave->sdo_confs.next, ec_sdo_data_t, list);
fsm->coe_state = ec_fsm_coe_down_start;
fsm->coe_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Slave state: SDOCONF.
*/
void ec_fsm_slaveconf_sdoconf(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->coe_state(fsm); // execute CoE state machine
if (fsm->coe_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
return;
}
if (fsm->coe_state != ec_fsm_end) return;
// Another SDO to configure?
if (fsm->sdodata->list.next != &fsm->slave->sdo_confs) {
fsm->sdodata = list_entry(fsm->sdodata->list.next,
ec_sdo_data_t, list);
fsm->coe_state = ec_fsm_coe_down_start;
fsm->coe_state(fsm); // execute immediately
return;
}
// All SDOs are now configured.
// set state to SAVEOP
fsm->slave_state = ec_fsm_slaveconf_saveop;
fsm->change_new = EC_SLAVE_STATE_SAVEOP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Slave state: SAVEOP.
*/
void ec_fsm_slaveconf_saveop(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
return;
}
if (fsm->change_state != ec_fsm_end) return;
// slave is now in SAVEOP
if (fsm->slave->current_state == fsm->slave->requested_state) {
fsm->slave_state = ec_fsm_end; // successful
return;
}
// set state to OP
fsm->slave_state = ec_fsm_slaveconf_op;
fsm->change_new = EC_SLAVE_STATE_OP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Slave state: OP
*/
void ec_fsm_slaveconf_op(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_error) {
fsm->slave->error_flag = 1;
fsm->slave_state = ec_fsm_error;
return;
}
if (fsm->change_state != ec_fsm_end) return;
// slave is now in OP
fsm->slave_state = ec_fsm_end; // successful
}
/******************************************************************************
* SII state machine
*****************************************************************************/
/**
SII state: START_READING.
Starts reading the slave information interface.
*/
void ec_fsm_sii_start_reading(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
// initiate read operation
if (fsm->sii_mode) {
ec_datagram_npwr(datagram, fsm->slave->station_address, 0x502, 4);
}
else {
ec_datagram_apwr(datagram, fsm->slave->ring_position, 0x502, 4);
}
EC_WRITE_U8 (datagram->data, 0x00); // read-only access
EC_WRITE_U8 (datagram->data + 1, 0x01); // request read operation
EC_WRITE_U16(datagram->data + 2, fsm->sii_offset);
ec_master_queue_datagram(fsm->master, datagram);
fsm->sii_state = ec_fsm_sii_read_check;
}
/*****************************************************************************/
/**
SII state: READ_CHECK.
Checks, if the SII-read-datagram has been sent and issues a fetch datagram.
*/
void ec_fsm_sii_read_check(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
EC_ERR("SII: Reception of read datagram failed.\n");
fsm->sii_state = ec_fsm_error;
return;
}
fsm->sii_start = datagram->cycles_sent;
fsm->sii_check_once_more = 1;
// issue check/fetch datagram
if (fsm->sii_mode) {
ec_datagram_nprd(datagram, fsm->slave->station_address, 0x502, 10);
}
else {
ec_datagram_aprd(datagram, fsm->slave->ring_position, 0x502, 10);
}
ec_master_queue_datagram(fsm->master, datagram);
fsm->sii_state = ec_fsm_sii_read_fetch;
}
/*****************************************************************************/
/**
SII state: READ_FETCH.
Fetches the result of an SII-read datagram.
*/
void ec_fsm_sii_read_fetch(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
EC_ERR("SII: Reception of check/fetch datagram failed.\n");
fsm->sii_state = ec_fsm_error;
return;
}
// check "busy bit"
if (EC_READ_U8(datagram->data + 1) & 0x81) {
// still busy... timeout?
if (datagram->cycles_received
- fsm->sii_start >= (cycles_t) 10 * cpu_khz) {
if (!fsm->sii_check_once_more) {
EC_ERR("SII: Read timeout.\n");
fsm->sii_state = ec_fsm_error;
#if 0
EC_DBG("SII busy: %02X %02X %02X %02X\n",
EC_READ_U8(datagram->data + 0),
EC_READ_U8(datagram->data + 1),
EC_READ_U8(datagram->data + 2),
EC_READ_U8(datagram->data + 3));
#endif
return;
}
fsm->sii_check_once_more = 0;
}
// issue check/fetch datagram again
if (fsm->sii_mode) {
ec_datagram_nprd(datagram, fsm->slave->station_address, 0x502, 10);
}
else {
ec_datagram_aprd(datagram, fsm->slave->ring_position, 0x502, 10);
}
ec_master_queue_datagram(fsm->master, datagram);
return;
}
#if 0
EC_DBG("SII rec: %02X %02X %02X %02X - %02X %02X %02X %02X\n",
EC_READ_U8(datagram->data + 0), EC_READ_U8(datagram->data + 1),
EC_READ_U8(datagram->data + 2), EC_READ_U8(datagram->data + 3),
EC_READ_U8(datagram->data + 6), EC_READ_U8(datagram->data + 7),
EC_READ_U8(datagram->data + 8), EC_READ_U8(datagram->data + 9));
#endif
// SII value received.
memcpy(fsm->sii_value, datagram->data + 6, 4);
fsm->sii_state = ec_fsm_end;
}
/*****************************************************************************/
/**
SII state: START_WRITING.
Starts reading the slave information interface.
*/
void ec_fsm_sii_start_writing(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
// initiate write operation
ec_datagram_npwr(datagram, fsm->slave->station_address, 0x502, 8);
EC_WRITE_U8 (datagram->data, 0x01); // enable write access
EC_WRITE_U8 (datagram->data + 1, 0x02); // request write operation
EC_WRITE_U32(datagram->data + 2, fsm->sii_offset);
memcpy(datagram->data + 6, fsm->sii_value, 2);
ec_master_queue_datagram(fsm->master, datagram);
fsm->sii_state = ec_fsm_sii_write_check;
}
/*****************************************************************************/
/**
SII state: WRITE_CHECK.
*/
void ec_fsm_sii_write_check(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
EC_ERR("SII: Reception of write datagram failed.\n");
fsm->sii_state = ec_fsm_error;
return;
}
fsm->sii_start = datagram->cycles_sent;
fsm->sii_check_once_more = 1;
// issue check/fetch datagram
ec_datagram_nprd(datagram, fsm->slave->station_address, 0x502, 2);
ec_master_queue_datagram(fsm->master, datagram);
fsm->sii_state = ec_fsm_sii_write_check2;
}
/*****************************************************************************/
/**
SII state: WRITE_CHECK2.
*/
void ec_fsm_sii_write_check2(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
EC_ERR("SII: Reception of write check datagram failed.\n");
fsm->sii_state = ec_fsm_error;
return;
}
if (EC_READ_U8(datagram->data + 1) & 0x82) {
// still busy... timeout?
if (datagram->cycles_received
- fsm->sii_start >= (cycles_t) 10 * cpu_khz) {
if (!fsm->sii_check_once_more) {
EC_ERR("SII: Write timeout.\n");
fsm->sii_state = ec_fsm_error;
return;
}
fsm->sii_check_once_more = 0;
}
// issue check/fetch datagram again
ec_master_queue_datagram(fsm->master, datagram);
return;
}
if (EC_READ_U8(datagram->data + 1) & 0x40) {
EC_ERR("SII: Write operation failed!\n");
fsm->sii_state = ec_fsm_error;
return;
}
// success
fsm->sii_state = ec_fsm_end;
}
/******************************************************************************
* state change state machine
*****************************************************************************/
/**
Change state: START.
*/
void ec_fsm_change_start(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
fsm->change_take_time = 1;
// write new state to slave
ec_datagram_npwr(datagram, slave->station_address, 0x0120, 2);
EC_WRITE_U16(datagram->data, fsm->change_new);
ec_master_queue_datagram(fsm->master, datagram);
fsm->change_state = ec_fsm_change_check;
}
/*****************************************************************************/
/**
Change state: CHECK.
*/
void ec_fsm_change_check(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED) {
fsm->change_state = ec_fsm_error;
EC_ERR("Failed to send state datagram to slave %i!\n",
fsm->slave->ring_position);
return;
}
if (fsm->change_take_time) {
fsm->change_take_time = 0;
fsm->change_jiffies = datagram->jiffies_sent;
}
if (datagram->working_counter != 1) {
if (datagram->jiffies_received - fsm->change_jiffies >= 3 * HZ) {
fsm->change_state = ec_fsm_error;
EC_ERR("Failed to set state 0x%02X on slave %i: Slave did not"
" respond.\n", fsm->change_new, fsm->slave->ring_position);
return;
}
// repeat writing new state to slave
ec_datagram_npwr(datagram, slave->station_address, 0x0120, 2);
EC_WRITE_U16(datagram->data, fsm->change_new);
ec_master_queue_datagram(fsm->master, datagram);
return;
}
fsm->change_take_time = 1;
// read AL status from slave
ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2);
ec_master_queue_datagram(fsm->master, datagram);
fsm->change_state = ec_fsm_change_status;
}
/*****************************************************************************/
/**
Change state: STATUS.
*/
void ec_fsm_change_status(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->change_state = ec_fsm_error;
EC_ERR("Failed to check state 0x%02X on slave %i.\n",
fsm->change_new, slave->ring_position);
return;
}
if (fsm->change_take_time) {
fsm->change_take_time = 0;
fsm->change_jiffies = datagram->jiffies_sent;
}
slave->current_state = EC_READ_U8(datagram->data);
if (slave->current_state == fsm->change_new) {
// state has been set successfully
fsm->change_state = ec_fsm_end;
return;
}
if (slave->current_state & 0x10) {
// state change error
fsm->change_new = slave->current_state & 0x0F;
EC_ERR("Failed to set state 0x%02X - Slave %i refused state change"
" (code 0x%02X)!\n", fsm->change_new, slave->ring_position,
slave->current_state);
// fetch AL status error code
ec_datagram_nprd(datagram, slave->station_address, 0x0134, 2);
ec_master_queue_datagram(fsm->master, datagram);
fsm->change_state = ec_fsm_change_code;
return;
}
if (datagram->jiffies_received
- fsm->change_jiffies >= 100 * HZ / 1000) { // 100ms
// timeout while checking
fsm->change_state = ec_fsm_error;
EC_ERR("Timeout while setting state 0x%02X on slave %i.\n",
fsm->change_new, slave->ring_position);
return;
}
// still old state: check again
ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2);
ec_master_queue_datagram(fsm->master, datagram);
}
/*****************************************************************************/
/**
Application layer status messages.
*/
const ec_code_msg_t al_status_messages[] = {
{0x0001, "Unspecified error"},
{0x0011, "Invalud requested state change"},
{0x0012, "Unknown requested state"},
{0x0013, "Bootstrap not supported"},
{0x0014, "No valid firmware"},
{0x0015, "Invalid mailbox configuration"},
{0x0016, "Invalid mailbox configuration"},
{0x0017, "Invalid sync manager configuration"},
{0x0018, "No valid inputs available"},
{0x0019, "No valid outputs"},
{0x001A, "Synchronisation error"},
{0x001B, "Sync manager watchdog"},
{0x001C, "Invalid sync manager types"},
{0x001D, "Invalid output configuration"},
{0x001E, "Invalid input configuration"},
{0x001F, "Invalid watchdog configuration"},
{0x0020, "Slave needs cold start"},
{0x0021, "Slave needs INIT"},
{0x0022, "Slave needs PREOP"},
{0x0023, "Slave needs SAVEOP"},
{0x0030, "Invalid DC SYNCH configuration"},
{0x0031, "Invalid DC latch configuration"},
{0x0032, "PLL error"},
{0x0033, "Invalid DC IO error"},
{0x0034, "Invalid DC timeout error"},
{0x0042, "MBOX EOE"},
{0x0043, "MBOX COE"},
{0x0044, "MBOX FOE"},
{0x0045, "MBOX SOE"},
{0x004F, "MBOX VOE"},
{}
};
/*****************************************************************************/
/**
Change state: CODE.
*/
void ec_fsm_change_code(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
uint32_t code;
const ec_code_msg_t *al_msg;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->change_state = ec_fsm_error;
EC_ERR("Reception of AL status code datagram failed.\n");
return;
}
if ((code = EC_READ_U16(datagram->data))) {
for (al_msg = al_status_messages; al_msg->code; al_msg++) {
if (al_msg->code != code) continue;
EC_ERR("AL status message 0x%04X: \"%s\".\n",
al_msg->code, al_msg->message);
break;
}
if (!al_msg->code)
EC_ERR("Unknown AL status code 0x%04X.\n", code);
}
// acknowledge "old" slave state
ec_datagram_npwr(datagram, slave->station_address, 0x0120, 2);
EC_WRITE_U16(datagram->data, slave->current_state);
ec_master_queue_datagram(fsm->master, datagram);
fsm->change_state = ec_fsm_change_ack;
}
/*****************************************************************************/
/**
Change state: ACK.
*/
void ec_fsm_change_ack(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->change_state = ec_fsm_error;
EC_ERR("Reception of state ack datagram failed.\n");
return;
}
fsm->change_take_time = 1;
// read new AL status
ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2);
ec_master_queue_datagram(fsm->master, datagram);
fsm->change_state = ec_fsm_change_check_ack;
}
/*****************************************************************************/
/**
Change state: CHECK ACK.
*/
void ec_fsm_change_check_ack(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
ec_slave_state_t ack_state;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->change_state = ec_fsm_error;
EC_ERR("Reception of state ack check datagram failed.\n");
return;
}
if (fsm->change_take_time) {
fsm->change_take_time = 0;
fsm->change_jiffies = datagram->jiffies_sent;
}
ack_state = EC_READ_U8(datagram->data);
if (ack_state == slave->current_state) {
fsm->change_state = ec_fsm_error;
EC_INFO("Acknowleged state 0x%02X on slave %i.\n",
slave->current_state, slave->ring_position);
return;
}
if (datagram->jiffies_received
- fsm->change_jiffies >= 100 * HZ / 1000) { // 100ms
// timeout while checking
slave->current_state = EC_SLAVE_STATE_UNKNOWN;
fsm->change_state = ec_fsm_error;
EC_ERR("Timeout while acknowleging state 0x%02X on slave %i.\n",
fsm->change_new, slave->ring_position);
return;
}
// reread new AL status
ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2);
ec_master_queue_datagram(fsm->master, datagram);
}
/******************************************************************************
* CoE state machine
*****************************************************************************/
/**
CoE state: DOWN_START.
*/
void ec_fsm_coe_down_start(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
ec_sdo_data_t *sdodata = fsm->sdodata;
uint8_t *data;
EC_INFO("Downloading SDO 0x%04X:%i to slave %i.\n",
sdodata->index, sdodata->subindex, slave->ring_position);
if (slave->sii_rx_mailbox_size < 6 + 10 + sdodata->size) {
EC_ERR("SDO fragmenting not supported yet!\n");
fsm->coe_state = ec_fsm_error;
return;
}
if (!(data = ec_slave_mbox_prepare_send(slave, datagram, 0x03,
sdodata->size + 10))) {
fsm->coe_state = ec_fsm_error;
return;
}
EC_WRITE_U16(data, 0x2 << 12); // SDO request
EC_WRITE_U8 (data + 2, (0x1 // size specified
| 0x1 << 5)); // Download request
EC_WRITE_U16(data + 3, sdodata->index);
EC_WRITE_U8 (data + 5, sdodata->subindex);
EC_WRITE_U32(data + 6, sdodata->size);
memcpy(data + 10, sdodata->data, sdodata->size);
ec_master_queue_datagram(fsm->master, datagram);
fsm->coe_state = ec_fsm_coe_down_request;
}
/*****************************************************************************/
/**
CoE state: DOWN_REQUEST.
*/
void ec_fsm_coe_down_request(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->coe_state = ec_fsm_error;
EC_ERR("Reception of CoE download request failed.\n");
return;
}
fsm->coe_start = datagram->cycles_sent;
ec_slave_mbox_prepare_check(slave, datagram); // can not fail.
ec_master_queue_datagram(fsm->master, datagram);
fsm->coe_state = ec_fsm_coe_down_check;
}
/*****************************************************************************/
/**
CoE state: DOWN_CHECK.
*/
void ec_fsm_coe_down_check(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->coe_state = ec_fsm_error;
EC_ERR("Reception of CoE mailbox check datagram failed.\n");
return;
}
if (!ec_slave_mbox_check(datagram)) {
if (datagram->cycles_received
- fsm->coe_start >= (cycles_t) 100 * cpu_khz) {
fsm->coe_state = ec_fsm_error;
EC_ERR("Timeout while checking SDO configuration on slave %i.\n",
slave->ring_position);
return;
}
ec_slave_mbox_prepare_check(slave, datagram); // can not fail.
ec_master_queue_datagram(fsm->master, datagram);
return;
}
// Fetch response
ec_slave_mbox_prepare_fetch(slave, datagram); // can not fail.
ec_master_queue_datagram(fsm->master, datagram);
fsm->coe_state = ec_fsm_coe_down_response;
}
/*****************************************************************************/
/**
CoE state: DOWN_RESPONSE.
*/
void ec_fsm_coe_down_response(ec_fsm_t *fsm /**< finite state machine */)
{
ec_datagram_t *datagram = &fsm->datagram;
ec_slave_t *slave = fsm->slave;
uint8_t *data, mbox_prot;
size_t rec_size;
ec_sdo_data_t *sdodata = fsm->sdodata;
if (datagram->state != EC_DATAGRAM_RECEIVED
|| datagram->working_counter != 1) {
fsm->coe_state = ec_fsm_error;
EC_ERR("Reception of CoE download response failed.\n");
return;
}
if (!(data = ec_slave_mbox_fetch(slave, datagram,
&mbox_prot, &rec_size))) {
fsm->coe_state = ec_fsm_error;
return;
}
if (mbox_prot != 0x03) { // CoE
EC_WARN("Received mailbox protocol 0x%02X as response.\n", mbox_prot);
fsm->coe_state = ec_fsm_error;
return;
}
if (rec_size < 6) {
fsm->coe_state = ec_fsm_error;
EC_ERR("Received data is too small (%i bytes):\n", rec_size);
ec_print_data(data, rec_size);
return;
}
if (EC_READ_U16(data) >> 12 == 0x2 && // SDO request
EC_READ_U8 (data + 2) >> 5 == 0x4) { // abort SDO transfer request
fsm->coe_state = ec_fsm_error;
EC_ERR("SDO download 0x%04X:%X (%i bytes) aborted on slave %i.\n",
sdodata->index, sdodata->subindex, sdodata->size,
slave->ring_position);
if (rec_size < 10) {
EC_ERR("Incomplete Abort command:\n");
ec_print_data(data, rec_size);
}
else
ec_canopen_abort_msg(EC_READ_U32(data + 6));
return;
}
if (EC_READ_U16(data) >> 12 != 0x3 || // SDO response
EC_READ_U8 (data + 2) >> 5 != 0x3 || // Download response
EC_READ_U16(data + 3) != sdodata->index || // index
EC_READ_U8 (data + 5) != sdodata->subindex) { // subindex
fsm->coe_state = ec_fsm_error;
EC_ERR("SDO download 0x%04X:%X (%i bytes) failed:\n",
sdodata->index, sdodata->subindex, sdodata->size);
EC_ERR("Invalid SDO download response at slave %i!\n",
slave->ring_position);
ec_print_data(data, rec_size);
return;
}
fsm->coe_state = ec_fsm_end; // success
}
/*****************************************************************************/
/**
SDO abort messages.
The "abort SDO transfer request" supplies an abort code,
which can be translated to clear text. This table does
the mapping of the codes and messages.
*/
const ec_code_msg_t sdo_abort_messages[] = {
{0x05030000, "Toggle bit not changed"},
{0x05040000, "SDO protocol timeout"},
{0x05040001, "Client/Server command specifier not valid or unknown"},
{0x05040005, "Out of memory"},
{0x06010000, "Unsupported access to an object"},
{0x06010001, "Attempt to read a write-only object"},
{0x06010002, "Attempt to write a read-only object"},
{0x06020000, "This object does not exist in the object directory"},
{0x06040041, "The object cannot be mapped into the PDO"},
{0x06040042, "The number and length of the objects to be mapped would"
" exceed the PDO length"},
{0x06040043, "General parameter incompatibility reason"},
{0x06040047, "Gerneral internal incompatibility in device"},
{0x06060000, "Access failure due to a hardware error"},
{0x06070010, "Data type does not match, length of service parameter does"
" not match"},
{0x06070012, "Data type does not match, length of service parameter too"
" high"},
{0x06070013, "Data type does not match, length of service parameter too"
" low"},
{0x06090011, "Subindex does not exist"},
{0x06090030, "Value range of parameter exceeded"},
{0x06090031, "Value of parameter written too high"},
{0x06090032, "Value of parameter written too low"},
{0x06090036, "Maximum value is less than minimum value"},
{0x08000000, "General error"},
{0x08000020, "Data cannot be transferred or stored to the application"},
{0x08000021, "Data cannot be transferred or stored to the application"
" because of local control"},
{0x08000022, "Data cannot be transferred or stored to the application"
" because of the present device state"},
{0x08000023, "Object dictionary dynamic generation fails or no object"
" dictionary is present"},
{}
};
/*****************************************************************************/
/**
Outputs an SDO abort message.
*/
void ec_canopen_abort_msg(uint32_t abort_code)
{
const ec_code_msg_t *abort_msg;
for (abort_msg = sdo_abort_messages; abort_msg->code; abort_msg++) {
if (abort_msg->code == abort_code) {
EC_ERR("SDO abort message 0x%08X: \"%s\".\n",
abort_msg->code, abort_msg->message);
return;
}
}
EC_ERR("Unknown SDO abort code 0x%08X.\n", abort_code);
}
/******************************************************************************
* Common state functions
*****************************************************************************/
/**
State: ERROR.
*/
void ec_fsm_error(ec_fsm_t *fsm /**< finite state machine */)
{
}
/*****************************************************************************/
/**
State: END.
*/
void ec_fsm_end(ec_fsm_t *fsm /**< finite state machine */)
{
}
/*****************************************************************************/