Release 1.3.2.
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it
* and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* The IgH EtherCAT Master is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* The right to use EtherCAT Technology is granted and comes free of
* charge under condition of compatibility of product made by
* Licensee. People intending to distribute/sell products based on the
* code, have to sign an agreement to guarantee that products using
* software based on IgH EtherCAT master stay compatible with the actual
* EtherCAT specification (which are released themselves as an open
* standard) as the (only) precondition to have the right to use EtherCAT
* Technology, IP and trade marks.
*
*****************************************************************************/
/**
\file
EtherCAT domain methods.
*/
/*****************************************************************************/
#include <linux/module.h>
#include "globals.h"
#include "domain.h"
#include "master.h"
/*****************************************************************************/
/**
Data registration type.
*/
typedef struct
{
struct list_head list; /**< list item */
ec_slave_t *slave; /**< slave */
const ec_sync_t *sync; /**< sync manager */
off_t sync_offset; /**< pdo offset */
void **data_ptr; /**< pointer to process data pointer(s) */
}
ec_data_reg_t;
/*****************************************************************************/
void ec_domain_clear(struct kobject *);
void ec_domain_clear_data_regs(ec_domain_t *);
ssize_t ec_show_domain_attribute(struct kobject *, struct attribute *, char *);
/*****************************************************************************/
/** \cond */
EC_SYSFS_READ_ATTR(image_size);
static struct attribute *def_attrs[] = {
&attr_image_size,
NULL,
};
static struct sysfs_ops sysfs_ops = {
.show = &ec_show_domain_attribute,
.store = NULL
};
static struct kobj_type ktype_ec_domain = {
.release = ec_domain_clear,
.sysfs_ops = &sysfs_ops,
.default_attrs = def_attrs
};
/** \endcond */
/*****************************************************************************/
/**
Domain constructor.
\return 0 in case of success, else < 0
*/
int ec_domain_init(ec_domain_t *domain, /**< EtherCAT domain */
ec_master_t *master, /**< owning master */
unsigned int index /**< domain index */
)
{
domain->master = master;
domain->index = index;
domain->data_size = 0;
domain->base_address = 0;
domain->response_count = 0xFFFFFFFF;
domain->notify_jiffies = 0;
domain->working_counter_changes = 0;
INIT_LIST_HEAD(&domain->data_regs);
INIT_LIST_HEAD(&domain->datagrams);
// init kobject and add it to the hierarchy
memset(&domain->kobj, 0x00, sizeof(struct kobject));
kobject_init(&domain->kobj);
domain->kobj.ktype = &ktype_ec_domain;
domain->kobj.parent = &master->kobj;
if (kobject_set_name(&domain->kobj, "domain%i", index)) {
EC_ERR("Failed to set kobj name.\n");
kobject_put(&domain->kobj);
return -1;
}
if (kobject_add(&domain->kobj)) {
EC_ERR("Failed to add domain kobject.\n");
kobject_put(&domain->kobj);
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Domain destructor.
Clears and frees a domain object.
*/
void ec_domain_destroy(ec_domain_t *domain /**< EtherCAT domain */)
{
ec_datagram_t *datagram;
// dequeue datagrams
list_for_each_entry(datagram, &domain->datagrams, list) {
if (!list_empty(&datagram->queue)) // datagram queued?
list_del_init(&datagram->queue);
}
// destroy self
kobject_del(&domain->kobj);
kobject_put(&domain->kobj);
}
/*****************************************************************************/
/**
Clear and free domain.
This method is called by the kobject,
once there are no more references to it.
*/
void ec_domain_clear(struct kobject *kobj /**< kobject of the domain */)
{
ec_datagram_t *datagram, *next;
ec_domain_t *domain;
domain = container_of(kobj, ec_domain_t, kobj);
list_for_each_entry_safe(datagram, next, &domain->datagrams, list) {
ec_datagram_clear(datagram);
kfree(datagram);
}
ec_domain_clear_data_regs(domain);
kfree(domain);
}
/*****************************************************************************/
/**
* Registers a PDO entry.
* \return 0 in case of success, else < 0
*/
int ec_domain_reg_pdo_entry(
ec_domain_t *domain, /**< EtherCAT domain */
ec_sync_t *sync, /**< sync manager */
const ec_pdo_entry_t *entry, /**< PDO entry to register */
void **data_ptr /**< pointer to the process data pointer */
)
{
ec_data_reg_t *data_reg;
const ec_pdo_t *other_pdo;
const ec_pdo_entry_t *other_entry;
unsigned int bit_offset, byte_offset;
// Calculate offset (in sync manager) for process data pointer
bit_offset = 0;
byte_offset = 0;
list_for_each_entry(other_pdo, &sync->pdos, list) {
list_for_each_entry(other_entry, &other_pdo->entries, list) {
if (other_entry == entry) {
byte_offset = bit_offset / 8;
break;
}
bit_offset += other_entry->bit_length;
}
}
// Allocate memory for data registration object
if (!(data_reg =
(ec_data_reg_t *) kmalloc(sizeof(ec_data_reg_t), GFP_KERNEL))) {
EC_ERR("Failed to allocate data registration.\n");
return -1;
}
if (ec_slave_prepare_fmmu(sync->slave, domain, sync)) {
EC_ERR("FMMU configuration failed.\n");
kfree(data_reg);
return -1;
}
data_reg->slave = sync->slave;
data_reg->sync = sync;
data_reg->sync_offset = byte_offset;
data_reg->data_ptr = data_ptr;
list_add_tail(&data_reg->list, &domain->data_regs);
return 0;
}
/*****************************************************************************/
/**
Clears the list of the data registrations.
*/
void ec_domain_clear_data_regs(ec_domain_t *domain /**< EtherCAT domain */)
{
ec_data_reg_t *data_reg, *next;
list_for_each_entry_safe(data_reg, next, &domain->data_regs, list) {
list_del(&data_reg->list);
kfree(data_reg);
}
}
/*****************************************************************************/
/**
Allocates a process data datagram and appends it to the list.
\return 0 in case of success, else < 0
*/
int ec_domain_add_datagram(ec_domain_t *domain, /**< EtherCAT domain */
uint32_t offset, /**< logical offset */
size_t data_size /**< size of the datagram data */
)
{
ec_datagram_t *datagram;
if (!(datagram = kmalloc(sizeof(ec_datagram_t), GFP_KERNEL))) {
EC_ERR("Failed to allocate domain datagram!\n");
return -1;
}
ec_datagram_init(datagram);
snprintf(datagram->name, EC_DATAGRAM_NAME_SIZE,
"domain%u-%u", domain->index, offset);
if (ec_datagram_lrw(datagram, offset, data_size)) {
kfree(datagram);
return -1;
}
list_add_tail(&datagram->list, &domain->datagrams);
return 0;
}
/*****************************************************************************/
/**
Creates a domain.
Reserves domain memory, calculates the logical addresses of the
corresponding FMMUs and sets the process data pointer of the registered
process data.
\return 0 in case of success, else < 0
*/
int ec_domain_alloc(ec_domain_t *domain, /**< EtherCAT domain */
uint32_t base_address /**< logical base address */
)
{
ec_data_reg_t *data_reg;
ec_slave_t *slave;
ec_fmmu_t *fmmu;
unsigned int i, j, datagram_count;
uint32_t pdo_off, pdo_off_datagram;
uint32_t datagram_offset, log_addr;
size_t datagram_data_size, sync_size;
ec_datagram_t *datagram;
domain->base_address = base_address;
// calculate size of process data and allocate memory
domain->data_size = 0;
datagram_offset = base_address;
datagram_data_size = 0;
datagram_count = 0;
list_for_each_entry(slave, &domain->master->slaves, list) {
for (j = 0; j < slave->fmmu_count; j++) {
fmmu = &slave->fmmus[j];
if (fmmu->domain == domain) {
fmmu->logical_start_address = base_address + domain->data_size;
sync_size = ec_sync_size(fmmu->sync);
domain->data_size += sync_size;
if (datagram_data_size + sync_size > EC_MAX_DATA_SIZE) {
if (ec_domain_add_datagram(domain, datagram_offset,
datagram_data_size)) return -1;
datagram_offset += datagram_data_size;
datagram_data_size = 0;
datagram_count++;
}
datagram_data_size += sync_size;
}
}
}
// allocate last datagram
if (datagram_data_size) {
if (ec_domain_add_datagram(domain, datagram_offset,
datagram_data_size))
return -1;
datagram_count++;
}
if (!datagram_count) {
EC_WARN("Domain %i contains no data!\n", domain->index);
ec_domain_clear_data_regs(domain);
return 0;
}
// set all process data pointers
list_for_each_entry(data_reg, &domain->data_regs, list) {
for (i = 0; i < data_reg->slave->fmmu_count; i++) {
fmmu = &data_reg->slave->fmmus[i];
if (fmmu->domain == domain && fmmu->sync == data_reg->sync) {
pdo_off = fmmu->logical_start_address + data_reg->sync_offset;
// search datagram
list_for_each_entry(datagram, &domain->datagrams, list) {
log_addr = EC_READ_U32(datagram->address);
pdo_off_datagram = pdo_off - log_addr;
if (pdo_off >= log_addr &&
pdo_off_datagram < datagram->mem_size) {
*data_reg->data_ptr = datagram->data +
pdo_off_datagram;
}
}
if (!data_reg->data_ptr) {
EC_ERR("Failed to assign data pointer!\n");
return -1;
}
break;
}
}
}
EC_INFO("Domain %i - Allocated %i bytes in %i datagram%s.\n",
domain->index, domain->data_size, datagram_count,
datagram_count == 1 ? "" : "s");
ec_domain_clear_data_regs(domain);
return 0;
}
/*****************************************************************************/
/**
Formats attribute data for SysFS reading.
\return number of bytes to read
*/
ssize_t ec_show_domain_attribute(struct kobject *kobj, /**< kobject */
struct attribute *attr, /**< attribute */
char *buffer /**< memory to store data in */
)
{
ec_domain_t *domain = container_of(kobj, ec_domain_t, kobj);
if (attr == &attr_image_size) {
return sprintf(buffer, "%i\n", domain->data_size);
}
return 0;
}
/******************************************************************************
* Realtime interface
*****************************************************************************/
/**
* Registers a PDO for a domain.
* \return 0 on success, else non-zero
* \ingroup RealtimeInterface
*/
int ecrt_domain_register_pdo(
ec_domain_t *domain, /**< EtherCAT domain */
ec_slave_t *slave, /**< EtherCAT slave */
uint16_t pdo_entry_index, /**< PDO entry index */
uint8_t pdo_entry_subindex, /**< PDO entry subindex */
void **data_ptr /**< address of the process data pointer */
)
{
ec_sync_t *sync;
const ec_pdo_t *pdo;
const ec_pdo_entry_t *entry;
unsigned int i;
// search for PDO entry
for (i = 0; i < slave->sii_sync_count; i++) {
sync = &slave->sii_syncs[i];
list_for_each_entry(pdo, &sync->pdos, list) {
list_for_each_entry(entry, &pdo->entries, list) {
if (entry->index != pdo_entry_index ||
entry->subindex != pdo_entry_subindex) continue;
// PDO entry found
if (ec_domain_reg_pdo_entry(domain, sync, entry, data_ptr)) {
return -1;
}
return 0;
}
}
}
EC_ERR("PDO entry 0x%04X:%u is not mapped in slave %u.\n",
pdo_entry_index, pdo_entry_subindex, slave->ring_position);
return -1;
}
/*****************************************************************************/
/**
* Registers a bunch of data fields.
* \attention The list has to be terminated with a NULL structure ({})!
* \return 0 in case of success, else < 0
* \ingroup RealtimeInterface
*/
int ecrt_domain_register_pdo_list(
ec_domain_t *domain, /**< EtherCAT domain */
const ec_pdo_reg_t *pdo_regs /**< array of PDO registrations */
)
{
const ec_pdo_reg_t *reg;
ec_slave_t *slave;
for (reg = pdo_regs; reg->slave_address; reg++) {
if (!(slave = ecrt_master_get_slave(domain->master,
reg->slave_address, reg->vendor_id,
reg->product_code)))
return -1;
if (ecrt_domain_register_pdo(domain, slave, reg->pdo_entry_index,
reg->pdo_entry_subindex, reg->data_ptr))
return -1;
}
return 0;
}
/*****************************************************************************/
/**
* Registers a PDO range in a domain.
* \return 0 on success, else non-zero
* \ingroup RealtimeInterface
*/
int ecrt_domain_register_pdo_range(
ec_domain_t *domain, /**< EtherCAT domain */
ec_slave_t *slave, /**< EtherCAT slave */
ec_direction_t dir, /**< data direction */
uint16_t offset, /**< offset in slave's PDO range */
uint16_t length, /**< length of this range */
void **data_ptr /**< address of the process data pointer */
)
{
ec_data_reg_t *data_reg;
ec_sync_t *sync;
uint16_t sync_length;
if (!(sync = ec_slave_get_pdo_sync(slave, dir))) {
EC_ERR("No sync manager found for PDO range.\n");
return -1;
}
// Allocate memory for data registration object
if (!(data_reg =
(ec_data_reg_t *) kmalloc(sizeof(ec_data_reg_t), GFP_KERNEL))) {
EC_ERR("Failed to allocate data registration.\n");
return -1;
}
if (ec_slave_prepare_fmmu(slave, domain, sync)) {
EC_ERR("FMMU configuration failed.\n");
kfree(data_reg);
return -1;
}
data_reg->slave = slave;
data_reg->sync = sync;
data_reg->sync_offset = offset;
data_reg->data_ptr = data_ptr;
// estimate sync manager length
sync_length = offset + length;
if (sync->est_length < sync_length) {
sync->est_length = sync_length;
if (domain->master->debug_level) {
EC_DBG("Estimating length of sync manager %i of slave %i to %i.\n",
sync->index, slave->ring_position, sync_length);
}
}
list_add_tail(&data_reg->list, &domain->data_regs);
return 0;
}
/*****************************************************************************/
/**
Processes received process data and requeues the domain datagram(s).
\ingroup RealtimeInterface
*/
void ecrt_domain_process(ec_domain_t *domain /**< EtherCAT domain */)
{
unsigned int working_counter_sum;
ec_datagram_t *datagram;
working_counter_sum = 0;
domain->state = 0;
list_for_each_entry(datagram, &domain->datagrams, list) {
ec_datagram_output_stats(datagram);
if (datagram->state == EC_DATAGRAM_RECEIVED) {
working_counter_sum += datagram->working_counter;
}
else {
domain->state = -1;
}
}
if (working_counter_sum != domain->response_count) {
domain->working_counter_changes++;
domain->response_count = working_counter_sum;
}
if (domain->working_counter_changes &&
jiffies - domain->notify_jiffies > HZ) {
domain->notify_jiffies = jiffies;
if (domain->working_counter_changes == 1) {
EC_INFO("Domain %i working counter change: %i\n", domain->index,
domain->response_count);
}
else {
EC_INFO("Domain %i: %u WC changes. Current response count: %i\n",
domain->index, domain->working_counter_changes,
domain->response_count);
}
domain->working_counter_changes = 0;
}
}
/*****************************************************************************/
/**
Places all process data datagrams in the masters datagram queue.
\ingroup RealtimeInterface
*/
void ecrt_domain_queue(ec_domain_t *domain /**< EtherCAT domain */)
{
ec_datagram_t *datagram;
list_for_each_entry(datagram, &domain->datagrams, list) {
ec_master_queue_datagram(domain->master, datagram);
}
}
/*****************************************************************************/
/**
Returns the state of a domain.
\return 0 if all datagrams were received, else -1.
\ingroup RealtimeInterface
*/
int ecrt_domain_state(const ec_domain_t *domain /**< EtherCAT domain */)
{
return domain->state;
}
/*****************************************************************************/
/** \cond */
EXPORT_SYMBOL(ecrt_domain_register_pdo);
EXPORT_SYMBOL(ecrt_domain_register_pdo_list);
EXPORT_SYMBOL(ecrt_domain_register_pdo_range);
EXPORT_SYMBOL(ecrt_domain_process);
EXPORT_SYMBOL(ecrt_domain_queue);
EXPORT_SYMBOL(ecrt_domain_state);
/** \endcond */
/*****************************************************************************/