master/master.c
author Florian Pose <fp@igh-essen.com>
Tue, 28 Oct 2014 11:26:00 +0100
branchstable-1.5
changeset 2583 fe5687a0a322
parent 2541 1ddd186e9d2c
child 2688 adcbb2ad12e3
permissions -rw-r--r--
Fixed wrong version e1000 includes.
/******************************************************************************
 *
 *  $Id$
 *
 *  Copyright (C) 2006-2012  Florian Pose, Ingenieurgemeinschaft IgH
 *
 *  This file is part of the IgH EtherCAT Master.
 *
 *  The IgH EtherCAT Master is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License version 2, as
 *  published by the Free Software Foundation.
 *
 *  The IgH EtherCAT Master is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
 *  Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the IgH EtherCAT Master; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *  ---
 *
 *  The license mentioned above concerns the source code only. Using the
 *  EtherCAT technology and brand is only permitted in compliance with the
 *  industrial property and similar rights of Beckhoff Automation GmbH.
 *
 *  vim: expandtab
 *
 *****************************************************************************/

/**
   \file
   EtherCAT master methods.
*/

/*****************************************************************************/

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/version.h>
#include <linux/hrtimer.h>
#include "globals.h"
#include "slave.h"
#include "slave_config.h"
#include "device.h"
#include "datagram.h"
#ifdef EC_EOE
#include "ethernet.h"
#endif
#include "master.h"

/*****************************************************************************/

/** Set to 1 to enable external datagram injection debugging.
 */
#define DEBUG_INJECT 0

/** Always output corrupted frames.
 */
#define FORCE_OUTPUT_CORRUPTED 0

#ifdef EC_HAVE_CYCLES

/** Frame timeout in cycles.
 */
static cycles_t timeout_cycles;

/** Timeout for external datagram injection [cycles].
 */
static cycles_t ext_injection_timeout_cycles;

#else

/** Frame timeout in jiffies.
 */
static unsigned long timeout_jiffies;

/** Timeout for external datagram injection [jiffies].
 */
static unsigned long ext_injection_timeout_jiffies;

#endif

/** List of intervals for statistics [s].
 */
const unsigned int rate_intervals[] = {
    1, 10, 60
};

/*****************************************************************************/

void ec_master_clear_slave_configs(ec_master_t *);
void ec_master_clear_domains(ec_master_t *);
static int ec_master_idle_thread(void *);
static int ec_master_operation_thread(void *);
#ifdef EC_EOE
static int ec_master_eoe_thread(void *);
#endif
void ec_master_find_dc_ref_clock(ec_master_t *);
void ec_master_clear_device_stats(ec_master_t *);
void ec_master_update_device_stats(ec_master_t *);

/*****************************************************************************/

/** Static variables initializer.
*/
void ec_master_init_static(void)
{
#ifdef EC_HAVE_CYCLES
    timeout_cycles = (cycles_t) EC_IO_TIMEOUT /* us */ * (cpu_khz / 1000);
    ext_injection_timeout_cycles =
        (cycles_t) EC_SDO_INJECTION_TIMEOUT /* us */ * (cpu_khz / 1000);
#else
    // one jiffy may always elapse between time measurement
    timeout_jiffies = max(EC_IO_TIMEOUT * HZ / 1000000, 1);
    ext_injection_timeout_jiffies =
        max(EC_SDO_INJECTION_TIMEOUT * HZ / 1000000, 1);
#endif
}

/*****************************************************************************/

/**
   Master constructor.
   \return 0 in case of success, else < 0
*/

int ec_master_init(ec_master_t *master, /**< EtherCAT master */
        unsigned int index, /**< master index */
        const uint8_t *main_mac, /**< MAC address of main device */
        const uint8_t *backup_mac, /**< MAC address of backup device */
        dev_t device_number, /**< Character device number. */
        struct class *class, /**< Device class. */
        unsigned int debug_level /**< Debug level (module parameter). */
        )
{
    int ret;
    unsigned int dev_idx, i;

    master->index = index;
    master->reserved = 0;

    sema_init(&master->master_sem, 1);

    for (dev_idx = EC_DEVICE_MAIN; dev_idx < EC_MAX_NUM_DEVICES; dev_idx++) {
        master->macs[dev_idx] = NULL;
    }

    master->macs[EC_DEVICE_MAIN] = main_mac;

#if EC_MAX_NUM_DEVICES > 1
    master->macs[EC_DEVICE_BACKUP] = backup_mac;
    master->num_devices = 1 + !ec_mac_is_zero(backup_mac);
#else
    if (!ec_mac_is_zero(backup_mac)) {
        EC_MASTER_WARN(master, "Ignoring backup MAC address!");
    }
#endif

    ec_master_clear_device_stats(master);

    sema_init(&master->device_sem, 1);

    master->phase = EC_ORPHANED;
    master->active = 0;
    master->config_changed = 0;
    master->injection_seq_fsm = 0;
    master->injection_seq_rt = 0;

    master->slaves = NULL;
    master->slave_count = 0;

    INIT_LIST_HEAD(&master->configs);
    INIT_LIST_HEAD(&master->domains);

    master->app_time = 0ULL;
    master->app_start_time = 0ULL;
    master->has_app_time = 0;

    master->scan_busy = 0;
    master->allow_scan = 1;
    sema_init(&master->scan_sem, 1);
    init_waitqueue_head(&master->scan_queue);

    master->config_busy = 0;
    sema_init(&master->config_sem, 1);
    init_waitqueue_head(&master->config_queue);

    INIT_LIST_HEAD(&master->datagram_queue);
    master->datagram_index = 0;

    INIT_LIST_HEAD(&master->ext_datagram_queue);
    sema_init(&master->ext_queue_sem, 1);

    master->ext_ring_idx_rt = 0;
    master->ext_ring_idx_fsm = 0;

    // init external datagram ring
    for (i = 0; i < EC_EXT_RING_SIZE; i++) {
        ec_datagram_t *datagram = &master->ext_datagram_ring[i];
        ec_datagram_init(datagram);
        snprintf(datagram->name, EC_DATAGRAM_NAME_SIZE, "ext-%u", i);
    }

    // send interval in IDLE phase
    ec_master_set_send_interval(master, 1000000 / HZ);

    master->fsm_slave = NULL;
    INIT_LIST_HEAD(&master->fsm_exec_list);
    master->fsm_exec_count = 0U;

    master->debug_level = debug_level;
    master->stats.timeouts = 0;
    master->stats.corrupted = 0;
    master->stats.unmatched = 0;
    master->stats.output_jiffies = 0;

    master->thread = NULL;

#ifdef EC_EOE
    master->eoe_thread = NULL;
    INIT_LIST_HEAD(&master->eoe_handlers);
#endif

    sema_init(&master->io_sem, 1);
    master->send_cb = NULL;
    master->receive_cb = NULL;
    master->cb_data = NULL;
    master->app_send_cb = NULL;
    master->app_receive_cb = NULL;
    master->app_cb_data = NULL;

    INIT_LIST_HEAD(&master->sii_requests);
    INIT_LIST_HEAD(&master->emerg_reg_requests);

    init_waitqueue_head(&master->request_queue);

    // init devices
    for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
            dev_idx++) {
        ret = ec_device_init(&master->devices[dev_idx], master);
        if (ret < 0) {
            goto out_clear_devices;
        }
    }

    // init state machine datagram
    ec_datagram_init(&master->fsm_datagram);
    snprintf(master->fsm_datagram.name, EC_DATAGRAM_NAME_SIZE, "master-fsm");
    ret = ec_datagram_prealloc(&master->fsm_datagram, EC_MAX_DATA_SIZE);
    if (ret < 0) {
        ec_datagram_clear(&master->fsm_datagram);
        EC_MASTER_ERR(master, "Failed to allocate FSM datagram.\n");
        goto out_clear_devices;
    }

    // create state machine object
    ec_fsm_master_init(&master->fsm, master, &master->fsm_datagram);

    // alloc external datagram ring
    for (i = 0; i < EC_EXT_RING_SIZE; i++) {
        ec_datagram_t *datagram = &master->ext_datagram_ring[i];
        ret = ec_datagram_prealloc(datagram, EC_MAX_DATA_SIZE);
        if (ret) {
            EC_MASTER_ERR(master, "Failed to allocate external"
                    " datagram %u.\n", i);
            goto out_clear_ext_datagrams;
        }
    }

    // init reference sync datagram
    ec_datagram_init(&master->ref_sync_datagram);
    snprintf(master->ref_sync_datagram.name, EC_DATAGRAM_NAME_SIZE,
            "refsync");
    ret = ec_datagram_prealloc(&master->ref_sync_datagram, 4);
    if (ret < 0) {
        ec_datagram_clear(&master->ref_sync_datagram);
        EC_MASTER_ERR(master, "Failed to allocate reference"
                " synchronisation datagram.\n");
        goto out_clear_ext_datagrams;
    }

    // init sync datagram
    ec_datagram_init(&master->sync_datagram);
    snprintf(master->sync_datagram.name, EC_DATAGRAM_NAME_SIZE, "sync");
    ret = ec_datagram_prealloc(&master->sync_datagram, 4);
    if (ret < 0) {
        ec_datagram_clear(&master->sync_datagram);
        EC_MASTER_ERR(master, "Failed to allocate"
                " synchronisation datagram.\n");
        goto out_clear_ref_sync;
    }

    // init sync monitor datagram
    ec_datagram_init(&master->sync_mon_datagram);
    snprintf(master->sync_mon_datagram.name, EC_DATAGRAM_NAME_SIZE,
            "syncmon");
    ret = ec_datagram_brd(&master->sync_mon_datagram, 0x092c, 4);
    if (ret < 0) {
        ec_datagram_clear(&master->sync_mon_datagram);
        EC_MASTER_ERR(master, "Failed to allocate sync"
                " monitoring datagram.\n");
        goto out_clear_sync;
    }

    master->dc_ref_config = NULL;
    master->dc_ref_clock = NULL;

    // init character device
    ret = ec_cdev_init(&master->cdev, master, device_number);
    if (ret)
        goto out_clear_sync_mon;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
    master->class_device = device_create(class, NULL,
            MKDEV(MAJOR(device_number), master->index), NULL,
            "EtherCAT%u", master->index);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26)
    master->class_device = device_create(class, NULL,
            MKDEV(MAJOR(device_number), master->index),
            "EtherCAT%u", master->index);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 15)
    master->class_device = class_device_create(class, NULL,
            MKDEV(MAJOR(device_number), master->index), NULL,
            "EtherCAT%u", master->index);
#else
    master->class_device = class_device_create(class,
            MKDEV(MAJOR(device_number), master->index), NULL,
            "EtherCAT%u", master->index);
#endif
    if (IS_ERR(master->class_device)) {
        EC_MASTER_ERR(master, "Failed to create class device!\n");
        ret = PTR_ERR(master->class_device);
        goto out_clear_cdev;
    }

#ifdef EC_RTDM
    // init RTDM device
    ret = ec_rtdm_dev_init(&master->rtdm_dev, master);
    if (ret) {
        goto out_unregister_class_device;
    }
#endif

    return 0;

#ifdef EC_RTDM
out_unregister_class_device:
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26)
    device_unregister(master->class_device);
#else
    class_device_unregister(master->class_device);
#endif
#endif
out_clear_cdev:
    ec_cdev_clear(&master->cdev);
out_clear_sync_mon:
    ec_datagram_clear(&master->sync_mon_datagram);
out_clear_sync:
    ec_datagram_clear(&master->sync_datagram);
out_clear_ref_sync:
    ec_datagram_clear(&master->ref_sync_datagram);
out_clear_ext_datagrams:
    for (i = 0; i < EC_EXT_RING_SIZE; i++) {
        ec_datagram_clear(&master->ext_datagram_ring[i]);
    }
    ec_fsm_master_clear(&master->fsm);
    ec_datagram_clear(&master->fsm_datagram);
out_clear_devices:
    for (; dev_idx > 0; dev_idx--) {
        ec_device_clear(&master->devices[dev_idx - 1]);
    }
    return ret;
}

/*****************************************************************************/

/** Destructor.
*/
void ec_master_clear(
        ec_master_t *master /**< EtherCAT master */
        )
{
    unsigned int dev_idx, i;

#ifdef EC_RTDM
    ec_rtdm_dev_clear(&master->rtdm_dev);
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26)
    device_unregister(master->class_device);
#else
    class_device_unregister(master->class_device);
#endif

    ec_cdev_clear(&master->cdev);

#ifdef EC_EOE
    ec_master_clear_eoe_handlers(master);
#endif
    ec_master_clear_domains(master);
    ec_master_clear_slave_configs(master);
    ec_master_clear_slaves(master);

    ec_datagram_clear(&master->sync_mon_datagram);
    ec_datagram_clear(&master->sync_datagram);
    ec_datagram_clear(&master->ref_sync_datagram);

    for (i = 0; i < EC_EXT_RING_SIZE; i++) {
        ec_datagram_clear(&master->ext_datagram_ring[i]);
    }

    ec_fsm_master_clear(&master->fsm);
    ec_datagram_clear(&master->fsm_datagram);

    for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
            dev_idx++) {
        ec_device_clear(&master->devices[dev_idx]);
    }
}

/*****************************************************************************/

#ifdef EC_EOE
/** Clear and free all EoE handlers.
 */
void ec_master_clear_eoe_handlers(
        ec_master_t *master /**< EtherCAT master */
        )
{
    ec_eoe_t *eoe, *next;

    list_for_each_entry_safe(eoe, next, &master->eoe_handlers, list) {
        list_del(&eoe->list);
        ec_eoe_clear(eoe);
        kfree(eoe);
    }
}
#endif

/*****************************************************************************/

/** Clear all slave configurations.
 */
void ec_master_clear_slave_configs(ec_master_t *master)
{
    ec_slave_config_t *sc, *next;

    master->dc_ref_config = NULL;
    master->fsm.sdo_request = NULL; // mark sdo_request as invalid

    list_for_each_entry_safe(sc, next, &master->configs, list) {
        list_del(&sc->list);
        ec_slave_config_clear(sc);
        kfree(sc);
    }
}

/*****************************************************************************/

/** Clear all slaves.
 */
void ec_master_clear_slaves(ec_master_t *master)
{
    ec_slave_t *slave;

    master->dc_ref_clock = NULL;

    // External requests are obsolete, so we wake pending waiters and remove
    // them from the list.

    while (!list_empty(&master->sii_requests)) {
        ec_sii_write_request_t *request =
            list_entry(master->sii_requests.next,
                    ec_sii_write_request_t, list);
        list_del_init(&request->list); // dequeue
        EC_MASTER_WARN(master, "Discarding SII request, slave %u about"
                " to be deleted.\n", request->slave->ring_position);
        request->state = EC_INT_REQUEST_FAILURE;
        wake_up_all(&master->request_queue);
    }

    master->fsm_slave = NULL;
    INIT_LIST_HEAD(&master->fsm_exec_list);
    master->fsm_exec_count = 0;

    for (slave = master->slaves;
            slave < master->slaves + master->slave_count;
            slave++) {
        ec_slave_clear(slave);
    }

    if (master->slaves) {
        kfree(master->slaves);
        master->slaves = NULL;
    }

    master->slave_count = 0;
}

/*****************************************************************************/

/** Clear all domains.
 */
void ec_master_clear_domains(ec_master_t *master)
{
    ec_domain_t *domain, *next;

    list_for_each_entry_safe(domain, next, &master->domains, list) {
        list_del(&domain->list);
        ec_domain_clear(domain);
        kfree(domain);
    }
}

/*****************************************************************************/

/** Clear the configuration applied by the application.
 */
void ec_master_clear_config(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    down(&master->master_sem);
    ec_master_clear_domains(master);
    ec_master_clear_slave_configs(master);
    up(&master->master_sem);
}

/*****************************************************************************/

/** Internal sending callback.
 */
void ec_master_internal_send_cb(
        void *cb_data /**< Callback data. */
        )
{
    ec_master_t *master = (ec_master_t *) cb_data;
    down(&master->io_sem);
    ecrt_master_send_ext(master);
    up(&master->io_sem);
}

/*****************************************************************************/

/** Internal receiving callback.
 */
void ec_master_internal_receive_cb(
        void *cb_data /**< Callback data. */
        )
{
    ec_master_t *master = (ec_master_t *) cb_data;
    down(&master->io_sem);
    ecrt_master_receive(master);
    up(&master->io_sem);
}

/*****************************************************************************/

/** Starts the master thread.
 *
 * \retval  0 Success.
 * \retval <0 Error code.
 */
int ec_master_thread_start(
        ec_master_t *master, /**< EtherCAT master */
        int (*thread_func)(void *), /**< thread function to start */
        const char *name /**< Thread name. */
        )
{
    EC_MASTER_INFO(master, "Starting %s thread.\n", name);
    master->thread = kthread_run(thread_func, master, name);
    if (IS_ERR(master->thread)) {
        int err = (int) PTR_ERR(master->thread);
        EC_MASTER_ERR(master, "Failed to start master thread (error %i)!\n",
                err);
        master->thread = NULL;
        return err;
    }

    return 0;
}

/*****************************************************************************/

/** Stops the master thread.
 */
void ec_master_thread_stop(
        ec_master_t *master /**< EtherCAT master */
        )
{
    unsigned long sleep_jiffies;

    if (!master->thread) {
        EC_MASTER_WARN(master, "%s(): Already finished!\n", __func__);
        return;
    }

    EC_MASTER_DBG(master, 1, "Stopping master thread.\n");

    kthread_stop(master->thread);
    master->thread = NULL;
    EC_MASTER_INFO(master, "Master thread exited.\n");

    if (master->fsm_datagram.state != EC_DATAGRAM_SENT) {
        return;
    }

    // wait for FSM datagram
    sleep_jiffies = max(HZ / 100, 1); // 10 ms, at least 1 jiffy
    schedule_timeout(sleep_jiffies);
}

/*****************************************************************************/

/** Transition function from ORPHANED to IDLE phase.
 *
 * \return Zero on success, otherwise a negative error code.
 */
int ec_master_enter_idle_phase(
        ec_master_t *master /**< EtherCAT master */
        )
{
    int ret;
    ec_device_index_t dev_idx;

    EC_MASTER_DBG(master, 1, "ORPHANED -> IDLE.\n");

    master->send_cb = ec_master_internal_send_cb;
    master->receive_cb = ec_master_internal_receive_cb;
    master->cb_data = master;

    master->phase = EC_IDLE;

    // reset number of responding slaves to trigger scanning
    for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
            dev_idx++) {
        master->fsm.slaves_responding[dev_idx] = 0;
    }

    ret = ec_master_thread_start(master, ec_master_idle_thread,
            "EtherCAT-IDLE");
    if (ret)
        master->phase = EC_ORPHANED;

    return ret;
}

/*****************************************************************************/

/** Transition function from IDLE to ORPHANED phase.
 */
void ec_master_leave_idle_phase(ec_master_t *master /**< EtherCAT master */)
{
    EC_MASTER_DBG(master, 1, "IDLE -> ORPHANED.\n");

    master->phase = EC_ORPHANED;

#ifdef EC_EOE
    ec_master_eoe_stop(master);
#endif
    ec_master_thread_stop(master);

    down(&master->master_sem);
    ec_master_clear_slaves(master);
    up(&master->master_sem);

    ec_fsm_master_reset(&master->fsm);
}

/*****************************************************************************/

/** Transition function from IDLE to OPERATION phase.
 *
 * \return Zero on success, otherwise a negative error code.
 */
int ec_master_enter_operation_phase(
        ec_master_t *master /**< EtherCAT master */
        )
{
    int ret = 0;
    ec_slave_t *slave;
#ifdef EC_EOE
    ec_eoe_t *eoe;
#endif

    EC_MASTER_DBG(master, 1, "IDLE -> OPERATION.\n");

    down(&master->config_sem);
    if (master->config_busy) {
        up(&master->config_sem);

        // wait for slave configuration to complete
        ret = wait_event_interruptible(master->config_queue,
                    !master->config_busy);
        if (ret) {
            EC_MASTER_INFO(master, "Finishing slave configuration"
                    " interrupted by signal.\n");
            goto out_return;
        }

        EC_MASTER_DBG(master, 1, "Waiting for pending slave"
                " configuration returned.\n");
    } else {
        up(&master->config_sem);
    }

    down(&master->scan_sem);
    master->allow_scan = 0; // 'lock' the slave list
    if (!master->scan_busy) {
        up(&master->scan_sem);
    } else {
        up(&master->scan_sem);

        // wait for slave scan to complete
        ret = wait_event_interruptible(master->scan_queue,
                !master->scan_busy);
        if (ret) {
            EC_MASTER_INFO(master, "Waiting for slave scan"
                    " interrupted by signal.\n");
            goto out_allow;
        }

        EC_MASTER_DBG(master, 1, "Waiting for pending"
                " slave scan returned.\n");
    }

    // set states for all slaves
    for (slave = master->slaves;
            slave < master->slaves + master->slave_count;
            slave++) {
        ec_slave_request_state(slave, EC_SLAVE_STATE_PREOP);
    }

#ifdef EC_EOE
    // ... but set EoE slaves to OP
    list_for_each_entry(eoe, &master->eoe_handlers, list) {
        if (ec_eoe_is_open(eoe))
            ec_slave_request_state(eoe->slave, EC_SLAVE_STATE_OP);
    }
#endif

    master->phase = EC_OPERATION;
    master->app_send_cb = NULL;
    master->app_receive_cb = NULL;
    master->app_cb_data = NULL;
    return ret;

out_allow:
    master->allow_scan = 1;
out_return:
    return ret;
}

/*****************************************************************************/

/** Transition function from OPERATION to IDLE phase.
 */
void ec_master_leave_operation_phase(
        ec_master_t *master /**< EtherCAT master */
        )
{
    if (master->active) {
        ecrt_master_deactivate(master); // also clears config
    } else {
        ec_master_clear_config(master);
    }

    /* Re-allow scanning for IDLE phase. */
    master->allow_scan = 1;

    EC_MASTER_DBG(master, 1, "OPERATION -> IDLE.\n");

    master->phase = EC_IDLE;
}

/*****************************************************************************/

/** Injects external datagrams that fit into the datagram queue.
 */
void ec_master_inject_external_datagrams(
        ec_master_t *master /**< EtherCAT master */
        )
{
    ec_datagram_t *datagram;
    size_t queue_size = 0, new_queue_size = 0;
#if DEBUG_INJECT
    unsigned int datagram_count = 0;
#endif

    if (master->ext_ring_idx_rt == master->ext_ring_idx_fsm) {
        // nothing to inject
        return;
    }

    list_for_each_entry(datagram, &master->datagram_queue, queue) {
        if (datagram->state == EC_DATAGRAM_QUEUED) {
            queue_size += datagram->data_size;
        }
    }

#if DEBUG_INJECT
    EC_MASTER_DBG(master, 1, "Injecting datagrams, queue_size=%zu\n",
            queue_size);
#endif

    while (master->ext_ring_idx_rt != master->ext_ring_idx_fsm) {
        datagram = &master->ext_datagram_ring[master->ext_ring_idx_rt];

        if (datagram->state != EC_DATAGRAM_INIT) {
            // skip datagram
            master->ext_ring_idx_rt =
                (master->ext_ring_idx_rt + 1) % EC_EXT_RING_SIZE;
            continue;
        }

        new_queue_size = queue_size + datagram->data_size;
        if (new_queue_size <= master->max_queue_size) {
#if DEBUG_INJECT
            EC_MASTER_DBG(master, 1, "Injecting datagram %s"
                    " size=%zu, queue_size=%zu\n", datagram->name,
                    datagram->data_size, new_queue_size);
            datagram_count++;
#endif
#ifdef EC_HAVE_CYCLES
            datagram->cycles_sent = 0;
#endif
            datagram->jiffies_sent = 0;
            ec_master_queue_datagram(master, datagram);
            queue_size = new_queue_size;
        }
        else if (datagram->data_size > master->max_queue_size) {
            datagram->state = EC_DATAGRAM_ERROR;
            EC_MASTER_ERR(master, "External datagram %s is too large,"
                    " size=%zu, max_queue_size=%zu\n",
                    datagram->name, datagram->data_size,
                    master->max_queue_size);
        }
        else { // datagram does not fit in the current cycle
#ifdef EC_HAVE_CYCLES
            cycles_t cycles_now = get_cycles();

            if (cycles_now - datagram->cycles_sent
                    > ext_injection_timeout_cycles)
#else
            if (jiffies - datagram->jiffies_sent
                    > ext_injection_timeout_jiffies)
#endif
            {
#if defined EC_RT_SYSLOG || DEBUG_INJECT
                unsigned int time_us;
#endif

                datagram->state = EC_DATAGRAM_ERROR;

#if defined EC_RT_SYSLOG || DEBUG_INJECT
#ifdef EC_HAVE_CYCLES
                time_us = (unsigned int)
                    ((cycles_now - datagram->cycles_sent) * 1000LL)
                    / cpu_khz;
#else
                time_us = (unsigned int)
                    ((jiffies - datagram->jiffies_sent) * 1000000 / HZ);
#endif
                EC_MASTER_ERR(master, "Timeout %u us: Injecting"
                        " external datagram %s size=%zu,"
                        " max_queue_size=%zu\n", time_us, datagram->name,
                        datagram->data_size, master->max_queue_size);
#endif
            }
            else {
#if DEBUG_INJECT
                EC_MASTER_DBG(master, 1, "Deferred injecting"
                        " external datagram %s size=%u, queue_size=%u\n",
                        datagram->name, datagram->data_size, queue_size);
#endif
                break;
            }
        }

        master->ext_ring_idx_rt =
            (master->ext_ring_idx_rt + 1) % EC_EXT_RING_SIZE;
    }

#if DEBUG_INJECT
    EC_MASTER_DBG(master, 1, "Injected %u datagrams.\n", datagram_count);
#endif
}

/*****************************************************************************/

/** Sets the expected interval between calls to ecrt_master_send
 * and calculates the maximum amount of data to queue.
 */
void ec_master_set_send_interval(
        ec_master_t *master, /**< EtherCAT master */
        unsigned int send_interval /**< Send interval */
        )
{
    master->send_interval = send_interval;
    master->max_queue_size =
        (send_interval * 1000) / EC_BYTE_TRANSMISSION_TIME_NS;
    master->max_queue_size -= master->max_queue_size / 10;
}

/*****************************************************************************/

/** Searches for a free datagram in the external datagram ring.
 *
 * \return Next free datagram, or NULL.
 */
ec_datagram_t *ec_master_get_external_datagram(
        ec_master_t *master /**< EtherCAT master */
        )
{
    if ((master->ext_ring_idx_fsm + 1) % EC_EXT_RING_SIZE !=
            master->ext_ring_idx_rt) {
        ec_datagram_t *datagram =
            &master->ext_datagram_ring[master->ext_ring_idx_fsm];
        return datagram;
    }
    else {
        return NULL;
    }
}

/*****************************************************************************/

/** Places a datagram in the datagram queue.
 */
void ec_master_queue_datagram(
        ec_master_t *master, /**< EtherCAT master */
        ec_datagram_t *datagram /**< datagram */
        )
{
    ec_datagram_t *queued_datagram;

    /* It is possible, that a datagram in the queue is re-initialized with the
     * ec_datagram_<type>() methods and then shall be queued with this method.
     * In that case, the state is already reset to EC_DATAGRAM_INIT. Check if
     * the datagram is queued to avoid duplicate queuing (which results in an
     * infinite loop!). Set the state to EC_DATAGRAM_QUEUED again, probably
     * causing an unmatched datagram. */
    list_for_each_entry(queued_datagram, &master->datagram_queue, queue) {
        if (queued_datagram == datagram) {
            datagram->skip_count++;
#ifdef EC_RT_SYSLOG
            EC_MASTER_DBG(master, 1,
                    "Datagram %p already queued (skipping).\n", datagram);
#endif
            datagram->state = EC_DATAGRAM_QUEUED;
            return;
        }
    }

    list_add_tail(&datagram->queue, &master->datagram_queue);
    datagram->state = EC_DATAGRAM_QUEUED;
}

/*****************************************************************************/

/** Places a datagram in the non-application datagram queue.
 */
void ec_master_queue_datagram_ext(
        ec_master_t *master, /**< EtherCAT master */
        ec_datagram_t *datagram /**< datagram */
        )
{
    down(&master->ext_queue_sem);
    list_add_tail(&datagram->queue, &master->ext_datagram_queue);
    up(&master->ext_queue_sem);
}

/*****************************************************************************/

/** Sends the datagrams in the queue for a certain device.
 *
 */
void ec_master_send_datagrams(
        ec_master_t *master, /**< EtherCAT master */
        ec_device_index_t device_index /**< Device index. */
        )
{
    ec_datagram_t *datagram, *next;
    size_t datagram_size;
    uint8_t *frame_data, *cur_data = NULL;
    void *follows_word;
#ifdef EC_HAVE_CYCLES
    cycles_t cycles_start, cycles_sent, cycles_end;
#endif
    unsigned long jiffies_sent;
    unsigned int frame_count, more_datagrams_waiting;
    struct list_head sent_datagrams;

#ifdef EC_HAVE_CYCLES
    cycles_start = get_cycles();
#endif
    frame_count = 0;
    INIT_LIST_HEAD(&sent_datagrams);

    EC_MASTER_DBG(master, 2, "%s(device_index = %u)\n",
            __func__, device_index);

    do {
        frame_data = NULL;
        follows_word = NULL;
        more_datagrams_waiting = 0;

        // fill current frame with datagrams
        list_for_each_entry(datagram, &master->datagram_queue, queue) {
            if (datagram->state != EC_DATAGRAM_QUEUED ||
                    datagram->device_index != device_index) {
                continue;
            }

            if (!frame_data) {
                // fetch pointer to transmit socket buffer
                frame_data =
                    ec_device_tx_data(&master->devices[device_index]);
                cur_data = frame_data + EC_FRAME_HEADER_SIZE;
            }

            // does the current datagram fit in the frame?
            datagram_size = EC_DATAGRAM_HEADER_SIZE + datagram->data_size
                + EC_DATAGRAM_FOOTER_SIZE;
            if (cur_data - frame_data + datagram_size > ETH_DATA_LEN) {
                more_datagrams_waiting = 1;
                break;
            }

            list_add_tail(&datagram->sent, &sent_datagrams);
            datagram->index = master->datagram_index++;

            EC_MASTER_DBG(master, 2, "Adding datagram 0x%02X\n",
                    datagram->index);

            // set "datagram following" flag in previous datagram
            if (follows_word) {
                EC_WRITE_U16(follows_word,
                        EC_READ_U16(follows_word) | 0x8000);
            }

            // EtherCAT datagram header
            EC_WRITE_U8 (cur_data, datagram->type);
            EC_WRITE_U8 (cur_data + 1, datagram->index);
            memcpy(cur_data + 2, datagram->address, EC_ADDR_LEN);
            EC_WRITE_U16(cur_data + 6, datagram->data_size & 0x7FF);
            EC_WRITE_U16(cur_data + 8, 0x0000);
            follows_word = cur_data + 6;
            cur_data += EC_DATAGRAM_HEADER_SIZE;

            // EtherCAT datagram data
            memcpy(cur_data, datagram->data, datagram->data_size);
            cur_data += datagram->data_size;

            // EtherCAT datagram footer
            EC_WRITE_U16(cur_data, 0x0000); // reset working counter
            cur_data += EC_DATAGRAM_FOOTER_SIZE;
        }

        if (list_empty(&sent_datagrams)) {
            EC_MASTER_DBG(master, 2, "nothing to send.\n");
            break;
        }

        // EtherCAT frame header
        EC_WRITE_U16(frame_data, ((cur_data - frame_data
                        - EC_FRAME_HEADER_SIZE) & 0x7FF) | 0x1000);

        // pad frame
        while (cur_data - frame_data < ETH_ZLEN - ETH_HLEN)
            EC_WRITE_U8(cur_data++, 0x00);

        EC_MASTER_DBG(master, 2, "frame size: %zu\n", cur_data - frame_data);

        // send frame
        ec_device_send(&master->devices[device_index],
                cur_data - frame_data);
#ifdef EC_HAVE_CYCLES
        cycles_sent = get_cycles();
#endif
        jiffies_sent = jiffies;

        // set datagram states and sending timestamps
        list_for_each_entry_safe(datagram, next, &sent_datagrams, sent) {
            datagram->state = EC_DATAGRAM_SENT;
#ifdef EC_HAVE_CYCLES
            datagram->cycles_sent = cycles_sent;
#endif
            datagram->jiffies_sent = jiffies_sent;
            list_del_init(&datagram->sent); // empty list of sent datagrams
        }

        frame_count++;
    }
    while (more_datagrams_waiting);

#ifdef EC_HAVE_CYCLES
    if (unlikely(master->debug_level > 1)) {
        cycles_end = get_cycles();
        EC_MASTER_DBG(master, 0, "%s()"
                " sent %u frames in %uus.\n", __func__, frame_count,
               (unsigned int) (cycles_end - cycles_start) * 1000 / cpu_khz);
    }
#endif
}

/*****************************************************************************/

/** Processes a received frame.
 *
 * This function is called by the network driver for every received frame.
 *
 * \return 0 in case of success, else < 0
 */
void ec_master_receive_datagrams(
        ec_master_t *master, /**< EtherCAT master */
        ec_device_t *device, /**< EtherCAT device */
        const uint8_t *frame_data, /**< frame data */
        size_t size /**< size of the received data */
        )
{
    size_t frame_size, data_size;
    uint8_t datagram_type, datagram_index;
    unsigned int cmd_follows, matched;
    const uint8_t *cur_data;
    ec_datagram_t *datagram;

    if (unlikely(size < EC_FRAME_HEADER_SIZE)) {
        if (master->debug_level || FORCE_OUTPUT_CORRUPTED) {
            EC_MASTER_DBG(master, 0, "Corrupted frame received"
                    " on %s (size %zu < %u byte):\n",
                    device->dev->name, size, EC_FRAME_HEADER_SIZE);
            ec_print_data(frame_data, size);
        }
        master->stats.corrupted++;
#ifdef EC_RT_SYSLOG
        ec_master_output_stats(master);
#endif
        return;
    }

    cur_data = frame_data;

    // check length of entire frame
    frame_size = EC_READ_U16(cur_data) & 0x07FF;
    cur_data += EC_FRAME_HEADER_SIZE;

    if (unlikely(frame_size > size)) {
        if (master->debug_level || FORCE_OUTPUT_CORRUPTED) {
            EC_MASTER_DBG(master, 0, "Corrupted frame received"
                    " on %s (invalid frame size %zu for "
                    "received size %zu):\n", device->dev->name,
                    frame_size, size);
            ec_print_data(frame_data, size);
        }
        master->stats.corrupted++;
#ifdef EC_RT_SYSLOG
        ec_master_output_stats(master);
#endif
        return;
    }

    cmd_follows = 1;
    while (cmd_follows) {
        // process datagram header
        datagram_type  = EC_READ_U8 (cur_data);
        datagram_index = EC_READ_U8 (cur_data + 1);
        data_size      = EC_READ_U16(cur_data + 6) & 0x07FF;
        cmd_follows    = EC_READ_U16(cur_data + 6) & 0x8000;
        cur_data += EC_DATAGRAM_HEADER_SIZE;

        if (unlikely(cur_data - frame_data
                     + data_size + EC_DATAGRAM_FOOTER_SIZE > size)) {
            if (master->debug_level || FORCE_OUTPUT_CORRUPTED) {
                EC_MASTER_DBG(master, 0, "Corrupted frame received"
                        " on %s (invalid data size %zu):\n",
                        device->dev->name, data_size);
                ec_print_data(frame_data, size);
            }
            master->stats.corrupted++;
#ifdef EC_RT_SYSLOG
            ec_master_output_stats(master);
#endif
            return;
        }

        // search for matching datagram in the queue
        matched = 0;
        list_for_each_entry(datagram, &master->datagram_queue, queue) {
            if (datagram->index == datagram_index
                && datagram->state == EC_DATAGRAM_SENT
                && datagram->type == datagram_type
                && datagram->data_size == data_size) {
                matched = 1;
                break;
            }
        }

        // no matching datagram was found
        if (!matched) {
            master->stats.unmatched++;
#ifdef EC_RT_SYSLOG
            ec_master_output_stats(master);
#endif

            if (unlikely(master->debug_level > 0)) {
                EC_MASTER_DBG(master, 0, "UNMATCHED datagram:\n");
                ec_print_data(cur_data - EC_DATAGRAM_HEADER_SIZE,
                        EC_DATAGRAM_HEADER_SIZE + data_size
                        + EC_DATAGRAM_FOOTER_SIZE);
#ifdef EC_DEBUG_RING
                ec_device_debug_ring_print(&master->devices[EC_DEVICE_MAIN]);
#endif
            }

            cur_data += data_size + EC_DATAGRAM_FOOTER_SIZE;
            continue;
        }

        if (datagram->type != EC_DATAGRAM_APWR &&
                datagram->type != EC_DATAGRAM_FPWR &&
                datagram->type != EC_DATAGRAM_BWR &&
                datagram->type != EC_DATAGRAM_LWR) {
            // copy received data into the datagram memory,
            // if something has been read
            memcpy(datagram->data, cur_data, data_size);
        }
        cur_data += data_size;

        // set the datagram's working counter
        datagram->working_counter = EC_READ_U16(cur_data);
        cur_data += EC_DATAGRAM_FOOTER_SIZE;

        // dequeue the received datagram
        datagram->state = EC_DATAGRAM_RECEIVED;
#ifdef EC_HAVE_CYCLES
        datagram->cycles_received =
            master->devices[EC_DEVICE_MAIN].cycles_poll;
#endif
        datagram->jiffies_received =
            master->devices[EC_DEVICE_MAIN].jiffies_poll;
        list_del_init(&datagram->queue);
    }
}

/*****************************************************************************/

/** Output master statistics.
 *
 * This function outputs statistical data on demand, but not more often than
 * necessary. The output happens at most once a second.
 */
void ec_master_output_stats(ec_master_t *master /**< EtherCAT master */)
{
    if (unlikely(jiffies - master->stats.output_jiffies >= HZ)) {
        master->stats.output_jiffies = jiffies;

        if (master->stats.timeouts) {
            EC_MASTER_WARN(master, "%u datagram%s TIMED OUT!\n",
                    master->stats.timeouts,
                    master->stats.timeouts == 1 ? "" : "s");
            master->stats.timeouts = 0;
        }
        if (master->stats.corrupted) {
            EC_MASTER_WARN(master, "%u frame%s CORRUPTED!\n",
                    master->stats.corrupted,
                    master->stats.corrupted == 1 ? "" : "s");
            master->stats.corrupted = 0;
        }
        if (master->stats.unmatched) {
            EC_MASTER_WARN(master, "%u datagram%s UNMATCHED!\n",
                    master->stats.unmatched,
                    master->stats.unmatched == 1 ? "" : "s");
            master->stats.unmatched = 0;
        }
    }
}

/*****************************************************************************/

/** Clears the common device statistics.
 */
void ec_master_clear_device_stats(
        ec_master_t *master /**< EtherCAT master */
        )
{
    unsigned int i;

    // zero frame statistics
    master->device_stats.tx_count = 0;
    master->device_stats.last_tx_count = 0;
    master->device_stats.rx_count = 0;
    master->device_stats.last_rx_count = 0;
    master->device_stats.tx_bytes = 0;
    master->device_stats.last_tx_bytes = 0;
    master->device_stats.rx_bytes = 0;
    master->device_stats.last_rx_bytes = 0;
    master->device_stats.last_loss = 0;

    for (i = 0; i < EC_RATE_COUNT; i++) {
        master->device_stats.tx_frame_rates[i] = 0;
        master->device_stats.tx_byte_rates[i] = 0;
        master->device_stats.loss_rates[i] = 0;
    }
}

/*****************************************************************************/

/** Updates the common device statistics.
 */
void ec_master_update_device_stats(
        ec_master_t *master /**< EtherCAT master */
        )
{
    ec_device_stats_t *s = &master->device_stats;
    s32 tx_frame_rate, rx_frame_rate, tx_byte_rate, rx_byte_rate, loss_rate;
    u64 loss;
    unsigned int i, dev_idx;

    // frame statistics
    if (likely(jiffies - s->jiffies < HZ)) {
        return;
    }

    tx_frame_rate = (s->tx_count - s->last_tx_count) * 1000;
    rx_frame_rate = (s->rx_count - s->last_rx_count) * 1000;
    tx_byte_rate = s->tx_bytes - s->last_tx_bytes;
    rx_byte_rate = s->rx_bytes - s->last_rx_bytes;
    loss = s->tx_count - s->rx_count;
    loss_rate = (loss - s->last_loss) * 1000;

    /* Low-pass filter:
     *      Y_n = y_(n - 1) + T / tau * (x - y_(n - 1))   | T = 1
     *   -> Y_n += (x - y_(n - 1)) / tau
     */
    for (i = 0; i < EC_RATE_COUNT; i++) {
        s32 n = rate_intervals[i];
        s->tx_frame_rates[i] += (tx_frame_rate - s->tx_frame_rates[i]) / n;
        s->rx_frame_rates[i] += (rx_frame_rate - s->rx_frame_rates[i]) / n;
        s->tx_byte_rates[i] += (tx_byte_rate - s->tx_byte_rates[i]) / n;
        s->rx_byte_rates[i] += (rx_byte_rate - s->rx_byte_rates[i]) / n;
        s->loss_rates[i] += (loss_rate - s->loss_rates[i]) / n;
    }

    s->last_tx_count = s->tx_count;
    s->last_rx_count = s->rx_count;
    s->last_tx_bytes = s->tx_bytes;
    s->last_rx_bytes = s->rx_bytes;
    s->last_loss = loss;

    for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
            dev_idx++) {
        ec_device_update_stats(&master->devices[dev_idx]);
    }

    s->jiffies = jiffies;
}

/*****************************************************************************/

#ifdef EC_USE_HRTIMER

/*
 * Sleep related functions:
 */
static enum hrtimer_restart ec_master_nanosleep_wakeup(struct hrtimer *timer)
{
    struct hrtimer_sleeper *t =
        container_of(timer, struct hrtimer_sleeper, timer);
    struct task_struct *task = t->task;

    t->task = NULL;
    if (task)
        wake_up_process(task);

    return HRTIMER_NORESTART;
}

/*****************************************************************************/

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)

/* compatibility with new hrtimer interface */
static inline ktime_t hrtimer_get_expires(const struct hrtimer *timer)
{
    return timer->expires;
}

/*****************************************************************************/

static inline void hrtimer_set_expires(struct hrtimer *timer, ktime_t time)
{
    timer->expires = time;
}

#endif

/*****************************************************************************/

void ec_master_nanosleep(const unsigned long nsecs)
{
    struct hrtimer_sleeper t;
    enum hrtimer_mode mode = HRTIMER_MODE_REL;

    hrtimer_init(&t.timer, CLOCK_MONOTONIC, mode);
    t.timer.function = ec_master_nanosleep_wakeup;
    t.task = current;
#ifdef CONFIG_HIGH_RES_TIMERS
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 24)
    t.timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 26)
    t.timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 28)
    t.timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
#endif
#endif
    hrtimer_set_expires(&t.timer, ktime_set(0, nsecs));

    do {
        set_current_state(TASK_INTERRUPTIBLE);
        hrtimer_start(&t.timer, hrtimer_get_expires(&t.timer), mode);

        if (likely(t.task))
            schedule();

        hrtimer_cancel(&t.timer);
        mode = HRTIMER_MODE_ABS;

    } while (t.task && !signal_pending(current));
}

#endif // EC_USE_HRTIMER

/*****************************************************************************/

/** Execute slave FSMs.
 */
void ec_master_exec_slave_fsms(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    ec_datagram_t *datagram;
    ec_fsm_slave_t *fsm, *next;
    unsigned int count = 0;

    list_for_each_entry_safe(fsm, next, &master->fsm_exec_list, list) {
        if (!fsm->datagram) {
            EC_MASTER_WARN(master, "Slave %u FSM has zero datagram."
                    "This is a bug!\n", fsm->slave->ring_position);
            list_del_init(&fsm->list);
            master->fsm_exec_count--;
            return;
        }

        if (fsm->datagram->state == EC_DATAGRAM_INIT ||
                fsm->datagram->state == EC_DATAGRAM_QUEUED ||
                fsm->datagram->state == EC_DATAGRAM_SENT) {
            // previous datagram was not sent or received yet.
            // wait until next thread execution
            return;
        }

        datagram = ec_master_get_external_datagram(master);
        if (!datagram) {
            // no free datagrams at the moment
            EC_MASTER_WARN(master, "No free datagram during"
                    " slave FSM execution. This is a bug!\n");
            continue;
        }

#if DEBUG_INJECT
        EC_MASTER_DBG(master, 1, "Executing slave %u FSM.\n",
                fsm->slave->ring_position);
#endif
        if (ec_fsm_slave_exec(fsm, datagram)) {
            // FSM consumed datagram
#if DEBUG_INJECT
            EC_MASTER_DBG(master, 1, "FSM consumed datagram %s\n",
                    datagram->name);
#endif
            master->ext_ring_idx_fsm =
                (master->ext_ring_idx_fsm + 1) % EC_EXT_RING_SIZE;
        }
        else {
            // FSM finished
            list_del_init(&fsm->list);
            master->fsm_exec_count--;
#if DEBUG_INJECT
            EC_MASTER_DBG(master, 1, "FSM finished. %u remaining.\n",
                    master->fsm_exec_count);
#endif
        }
    }

    while (master->fsm_exec_count < EC_EXT_RING_SIZE / 2
            && count < master->slave_count) {

        if (ec_fsm_slave_is_ready(&master->fsm_slave->fsm)) {
            datagram = ec_master_get_external_datagram(master);

            if (ec_fsm_slave_exec(&master->fsm_slave->fsm, datagram)) {
                master->ext_ring_idx_fsm =
                    (master->ext_ring_idx_fsm + 1) % EC_EXT_RING_SIZE;
                list_add_tail(&master->fsm_slave->fsm.list,
                        &master->fsm_exec_list);
                master->fsm_exec_count++;
#if DEBUG_INJECT
                EC_MASTER_DBG(master, 1, "New slave %u FSM"
                        " consumed datagram %s, now %u FSMs in list.\n",
                        master->fsm_slave->ring_position, datagram->name,
                        master->fsm_exec_count);
#endif
            }
        }

        master->fsm_slave++;
        if (master->fsm_slave >= master->slaves + master->slave_count) {
            master->fsm_slave = master->slaves;
        }
        count++;
    }
}

/*****************************************************************************/

/** Master kernel thread function for IDLE phase.
 */
static int ec_master_idle_thread(void *priv_data)
{
    ec_master_t *master = (ec_master_t *) priv_data;
    int fsm_exec;
#ifdef EC_USE_HRTIMER
    size_t sent_bytes;
#endif

    // send interval in IDLE phase
    ec_master_set_send_interval(master, 1000000 / HZ);

    EC_MASTER_DBG(master, 1, "Idle thread running with send interval = %u us,"
            " max data size=%zu\n", master->send_interval,
            master->max_queue_size);

    while (!kthread_should_stop()) {
        ec_datagram_output_stats(&master->fsm_datagram);

        // receive
        down(&master->io_sem);
        ecrt_master_receive(master);
        up(&master->io_sem);

        // execute master & slave state machines
        if (down_interruptible(&master->master_sem)) {
            break;
        }

        fsm_exec = ec_fsm_master_exec(&master->fsm);

        ec_master_exec_slave_fsms(master);

        up(&master->master_sem);

        // queue and send
        down(&master->io_sem);
        if (fsm_exec) {
            ec_master_queue_datagram(master, &master->fsm_datagram);
        }
        ecrt_master_send(master);
#ifdef EC_USE_HRTIMER
        sent_bytes = master->devices[EC_DEVICE_MAIN].tx_skb[
            master->devices[EC_DEVICE_MAIN].tx_ring_index]->len;
#endif
        up(&master->io_sem);

        if (ec_fsm_master_idle(&master->fsm)) {
#ifdef EC_USE_HRTIMER
            ec_master_nanosleep(master->send_interval * 1000);
#else
            set_current_state(TASK_INTERRUPTIBLE);
            schedule_timeout(1);
#endif
        } else {
#ifdef EC_USE_HRTIMER
            ec_master_nanosleep(sent_bytes * EC_BYTE_TRANSMISSION_TIME_NS);
#else
            schedule();
#endif
        }
    }

    EC_MASTER_DBG(master, 1, "Master IDLE thread exiting...\n");

    return 0;
}

/*****************************************************************************/

/** Master kernel thread function for OPERATION phase.
 */
static int ec_master_operation_thread(void *priv_data)
{
    ec_master_t *master = (ec_master_t *) priv_data;

    EC_MASTER_DBG(master, 1, "Operation thread running"
            " with fsm interval = %u us, max data size=%zu\n",
            master->send_interval, master->max_queue_size);

    while (!kthread_should_stop()) {
        ec_datagram_output_stats(&master->fsm_datagram);

        if (master->injection_seq_rt == master->injection_seq_fsm) {
            // output statistics
            ec_master_output_stats(master);

            // execute master & slave state machines
            if (down_interruptible(&master->master_sem)) {
                break;
            }

            if (ec_fsm_master_exec(&master->fsm)) {
                // Inject datagrams (let the RT thread queue them, see
                // ecrt_master_send())
                master->injection_seq_fsm++;
            }

            ec_master_exec_slave_fsms(master);

            up(&master->master_sem);
        }

#ifdef EC_USE_HRTIMER
        // the op thread should not work faster than the sending RT thread
        ec_master_nanosleep(master->send_interval * 1000);
#else
        if (ec_fsm_master_idle(&master->fsm)) {
            set_current_state(TASK_INTERRUPTIBLE);
            schedule_timeout(1);
        }
        else {
            schedule();
        }
#endif
    }

    EC_MASTER_DBG(master, 1, "Master OP thread exiting...\n");
    return 0;
}

/*****************************************************************************/

#ifdef EC_EOE
/** Starts Ethernet over EtherCAT processing on demand.
 */
void ec_master_eoe_start(ec_master_t *master /**< EtherCAT master */)
{
    struct sched_param param = { .sched_priority = 0 };

    if (master->eoe_thread) {
        EC_MASTER_WARN(master, "EoE already running!\n");
        return;
    }

    if (list_empty(&master->eoe_handlers))
        return;

    if (!master->send_cb || !master->receive_cb) {
        EC_MASTER_WARN(master, "No EoE processing"
                " because of missing callbacks!\n");
        return;
    }

    EC_MASTER_INFO(master, "Starting EoE thread.\n");
    master->eoe_thread = kthread_run(ec_master_eoe_thread, master,
            "EtherCAT-EoE");
    if (IS_ERR(master->eoe_thread)) {
        int err = (int) PTR_ERR(master->eoe_thread);
        EC_MASTER_ERR(master, "Failed to start EoE thread (error %i)!\n",
                err);
        master->eoe_thread = NULL;
        return;
    }

    sched_setscheduler(master->eoe_thread, SCHED_NORMAL, &param);
    set_user_nice(master->eoe_thread, 0);
}

/*****************************************************************************/

/** Stops the Ethernet over EtherCAT processing.
 */
void ec_master_eoe_stop(ec_master_t *master /**< EtherCAT master */)
{
    if (master->eoe_thread) {
        EC_MASTER_INFO(master, "Stopping EoE thread.\n");

        kthread_stop(master->eoe_thread);
        master->eoe_thread = NULL;
        EC_MASTER_INFO(master, "EoE thread exited.\n");
    }
}

/*****************************************************************************/

/** Does the Ethernet over EtherCAT processing.
 */
static int ec_master_eoe_thread(void *priv_data)
{
    ec_master_t *master = (ec_master_t *) priv_data;
    ec_eoe_t *eoe;
    unsigned int none_open, sth_to_send, all_idle;

    EC_MASTER_DBG(master, 1, "EoE thread running.\n");

    while (!kthread_should_stop()) {
        none_open = 1;
        all_idle = 1;

        list_for_each_entry(eoe, &master->eoe_handlers, list) {
            if (ec_eoe_is_open(eoe)) {
                none_open = 0;
                break;
            }
        }
        if (none_open)
            goto schedule;

        // receive datagrams
        master->receive_cb(master->cb_data);

        // actual EoE processing
        sth_to_send = 0;
        list_for_each_entry(eoe, &master->eoe_handlers, list) {
            ec_eoe_run(eoe);
            if (eoe->queue_datagram) {
                sth_to_send = 1;
            }
            if (!ec_eoe_is_idle(eoe)) {
                all_idle = 0;
            }
        }

        if (sth_to_send) {
            list_for_each_entry(eoe, &master->eoe_handlers, list) {
                ec_eoe_queue(eoe);
            }
            // (try to) send datagrams
            down(&master->ext_queue_sem);
            master->send_cb(master->cb_data);
            up(&master->ext_queue_sem);
        }

schedule:
        if (all_idle) {
            set_current_state(TASK_INTERRUPTIBLE);
            schedule_timeout(1);
        } else {
            schedule();
        }
    }

    EC_MASTER_DBG(master, 1, "EoE thread exiting...\n");
    return 0;
}
#endif

/*****************************************************************************/

/** Attaches the slave configurations to the slaves.
 */
void ec_master_attach_slave_configs(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    ec_slave_config_t *sc;

    list_for_each_entry(sc, &master->configs, list) {
        ec_slave_config_attach(sc);
    }
}

/*****************************************************************************/

/** Common implementation for ec_master_find_slave()
 * and ec_master_find_slave_const().
 */
#define EC_FIND_SLAVE \
    do { \
        if (alias) { \
            for (; slave < master->slaves + master->slave_count; \
                    slave++) { \
                if (slave->effective_alias == alias) \
                break; \
            } \
            if (slave == master->slaves + master->slave_count) \
            return NULL; \
        } \
        \
        slave += position; \
        if (slave < master->slaves + master->slave_count) { \
            return slave; \
        } else { \
            return NULL; \
        } \
    } while (0)

/** Finds a slave in the bus, given the alias and position.
 *
 * \return Search result, or NULL.
 */
ec_slave_t *ec_master_find_slave(
        ec_master_t *master, /**< EtherCAT master. */
        uint16_t alias, /**< Slave alias. */
        uint16_t position /**< Slave position. */
        )
{
    ec_slave_t *slave = master->slaves;
    EC_FIND_SLAVE;
}

/** Finds a slave in the bus, given the alias and position.
 *
 * Const version.
 *
 * \return Search result, or NULL.
 */
const ec_slave_t *ec_master_find_slave_const(
        const ec_master_t *master, /**< EtherCAT master. */
        uint16_t alias, /**< Slave alias. */
        uint16_t position /**< Slave position. */
        )
{
    const ec_slave_t *slave = master->slaves;
    EC_FIND_SLAVE;
}

/*****************************************************************************/

/** Get the number of slave configurations provided by the application.
 *
 * \return Number of configurations.
 */
unsigned int ec_master_config_count(
        const ec_master_t *master /**< EtherCAT master. */
        )
{
    const ec_slave_config_t *sc;
    unsigned int count = 0;

    list_for_each_entry(sc, &master->configs, list) {
        count++;
    }

    return count;
}

/*****************************************************************************/

/** Common implementation for ec_master_get_config()
 * and ec_master_get_config_const().
 */
#define EC_FIND_CONFIG \
    do { \
        list_for_each_entry(sc, &master->configs, list) { \
            if (pos--) \
                continue; \
            return sc; \
        } \
        return NULL; \
    } while (0)

/** Get a slave configuration via its position in the list.
 *
 * \return Slave configuration or \a NULL.
 */
ec_slave_config_t *ec_master_get_config(
        const ec_master_t *master, /**< EtherCAT master. */
        unsigned int pos /**< List position. */
        )
{
    ec_slave_config_t *sc;
    EC_FIND_CONFIG;
}

/** Get a slave configuration via its position in the list.
 *
 * Const version.
 *
 * \return Slave configuration or \a NULL.
 */
const ec_slave_config_t *ec_master_get_config_const(
        const ec_master_t *master, /**< EtherCAT master. */
        unsigned int pos /**< List position. */
        )
{
    const ec_slave_config_t *sc;
    EC_FIND_CONFIG;
}

/*****************************************************************************/

/** Get the number of domains.
 *
 * \return Number of domains.
 */
unsigned int ec_master_domain_count(
        const ec_master_t *master /**< EtherCAT master. */
        )
{
    const ec_domain_t *domain;
    unsigned int count = 0;

    list_for_each_entry(domain, &master->domains, list) {
        count++;
    }

    return count;
}

/*****************************************************************************/

/** Common implementation for ec_master_find_domain() and
 * ec_master_find_domain_const().
 */
#define EC_FIND_DOMAIN \
    do { \
        list_for_each_entry(domain, &master->domains, list) { \
            if (index--) \
                continue; \
            return domain; \
        } \
        \
        return NULL; \
    } while (0)

/** Get a domain via its position in the list.
 *
 * \return Domain pointer, or \a NULL if not found.
 */
ec_domain_t *ec_master_find_domain(
        ec_master_t *master, /**< EtherCAT master. */
        unsigned int index /**< Domain index. */
        )
{
    ec_domain_t *domain;
    EC_FIND_DOMAIN;
}

/** Get a domain via its position in the list.
 *
 * Const version.
 *
 * \return Domain pointer, or \a NULL if not found.
 */
const ec_domain_t *ec_master_find_domain_const(
        const ec_master_t *master, /**< EtherCAT master. */
        unsigned int index /**< Domain index. */
        )
{
    const ec_domain_t *domain;
    EC_FIND_DOMAIN;
}

/*****************************************************************************/

#ifdef EC_EOE

/** Get the number of EoE handlers.
 *
 * \return Number of EoE handlers.
 */
uint16_t ec_master_eoe_handler_count(
        const ec_master_t *master /**< EtherCAT master. */
        )
{
    const ec_eoe_t *eoe;
    unsigned int count = 0;

    list_for_each_entry(eoe, &master->eoe_handlers, list) {
        count++;
    }

    return count;
}

/*****************************************************************************/

/** Get an EoE handler via its position in the list.
 *
 * Const version.
 *
 * \return EoE handler pointer, or \a NULL if not found.
 */
const ec_eoe_t *ec_master_get_eoe_handler_const(
        const ec_master_t *master, /**< EtherCAT master. */
        uint16_t index /**< EoE handler index. */
        )
{
    const ec_eoe_t *eoe;

    list_for_each_entry(eoe, &master->eoe_handlers, list) {
        if (index--)
            continue;
        return eoe;
    }

    return NULL;
}

#endif

/*****************************************************************************/

/** Set the debug level.
 *
 * \retval       0 Success.
 * \retval -EINVAL Invalid debug level.
 */
int ec_master_debug_level(
        ec_master_t *master, /**< EtherCAT master. */
        unsigned int level /**< Debug level. May be 0, 1 or 2. */
        )
{
    if (level > 2) {
        EC_MASTER_ERR(master, "Invalid debug level %u!\n", level);
        return -EINVAL;
    }

    if (level != master->debug_level) {
        master->debug_level = level;
        EC_MASTER_INFO(master, "Master debug level set to %u.\n",
                master->debug_level);
    }

    return 0;
}

/*****************************************************************************/

/** Finds the DC reference clock.
 */
void ec_master_find_dc_ref_clock(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    ec_slave_t *slave, *ref = NULL;

    if (master->dc_ref_config) {
        // Use application-selected reference clock
        slave = master->dc_ref_config->slave;

        if (slave) {
            if (slave->base_dc_supported && slave->has_dc_system_time) {
                ref = slave;
            }
            else {
                EC_MASTER_WARN(master, "Slave %u can not act as a"
                        " DC reference clock!", slave->ring_position);
            }
        }
        else {
            EC_MASTER_WARN(master, "DC reference clock config (%u-%u)"
                    " has no slave attached!\n", master->dc_ref_config->alias,
                    master->dc_ref_config->position);
        }
    }
    else {
        // Use first slave with DC support as reference clock
        for (slave = master->slaves;
                slave < master->slaves + master->slave_count;
                slave++) {
            if (slave->base_dc_supported && slave->has_dc_system_time) {
                ref = slave;
                break;
            }
        }

    }

    master->dc_ref_clock = ref;

    if (ref) {
        EC_MASTER_INFO(master, "Using slave %u as DC reference clock.\n",
                ref->ring_position);
    }
    else {
        EC_MASTER_INFO(master, "No DC reference clock found.\n");
    }

    // These calls always succeed, because the
    // datagrams have been pre-allocated.
    ec_datagram_fpwr(&master->ref_sync_datagram,
            ref ? ref->station_address : 0xffff, 0x0910, 4);
    ec_datagram_frmw(&master->sync_datagram,
            ref ? ref->station_address : 0xffff, 0x0910, 4);
}

/*****************************************************************************/

/** Calculates the bus topology; recursion function.
 *
 * \return Zero on success, otherwise a negative error code.
 */
int ec_master_calc_topology_rec(
        ec_master_t *master, /**< EtherCAT master. */
        ec_slave_t *port0_slave, /**< Slave at port 0. */
        unsigned int *slave_position /**< Slave position. */
        )
{
    ec_slave_t *slave = master->slaves + *slave_position;
    unsigned int port_index;
    int ret;

    static const unsigned int next_table[EC_MAX_PORTS] = {
        3, 2, 0, 1
    };

    slave->ports[0].next_slave = port0_slave;

    port_index = 3;
    while (port_index != 0) {
        if (!slave->ports[port_index].link.loop_closed) {
            *slave_position = *slave_position + 1;
            if (*slave_position < master->slave_count) {
                slave->ports[port_index].next_slave =
                    master->slaves + *slave_position;
                ret = ec_master_calc_topology_rec(master,
                        slave, slave_position);
                if (ret) {
                    return ret;
                }
            } else {
                return -1;
            }
        }

        port_index = next_table[port_index];
    }

    return 0;
}

/*****************************************************************************/

/** Calculates the bus topology.
 */
void ec_master_calc_topology(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    unsigned int slave_position = 0;

    if (master->slave_count == 0)
        return;

    if (ec_master_calc_topology_rec(master, NULL, &slave_position))
        EC_MASTER_ERR(master, "Failed to calculate bus topology.\n");
}

/*****************************************************************************/

/** Calculates the bus transmission delays.
 */
void ec_master_calc_transmission_delays(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    ec_slave_t *slave;

    for (slave = master->slaves;
            slave < master->slaves + master->slave_count;
            slave++) {
        ec_slave_calc_port_delays(slave);
    }

    if (master->dc_ref_clock) {
        uint32_t delay = 0;
        ec_slave_calc_transmission_delays_rec(master->dc_ref_clock, &delay);
    }
}

/*****************************************************************************/

/** Distributed-clocks calculations.
 */
void ec_master_calc_dc(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    // find DC reference clock
    ec_master_find_dc_ref_clock(master);

    // calculate bus topology
    ec_master_calc_topology(master);

    ec_master_calc_transmission_delays(master);
}

/*****************************************************************************/

/** Request OP state for configured slaves.
 */
void ec_master_request_op(
        ec_master_t *master /**< EtherCAT master. */
        )
{
    unsigned int i;
    ec_slave_t *slave;

    if (!master->active)
        return;

    EC_MASTER_DBG(master, 1, "Requesting OP...\n");

    // request OP for all configured slaves
    for (i = 0; i < master->slave_count; i++) {
        slave = master->slaves + i;
        if (slave->config) {
            ec_slave_request_state(slave, EC_SLAVE_STATE_OP);
        }
    }

    // always set DC reference clock to OP
    if (master->dc_ref_clock) {
        ec_slave_request_state(master->dc_ref_clock, EC_SLAVE_STATE_OP);
    }
}

/******************************************************************************
 *  Application interface
 *****************************************************************************/

/** Same as ecrt_master_create_domain(), but with ERR_PTR() return value.
 *
 * \return New domain, or ERR_PTR() return value.
 */
ec_domain_t *ecrt_master_create_domain_err(
        ec_master_t *master /**< master */
        )
{
    ec_domain_t *domain, *last_domain;
    unsigned int index;

    EC_MASTER_DBG(master, 1, "ecrt_master_create_domain(master = 0x%p)\n",
            master);

    if (!(domain =
                (ec_domain_t *) kmalloc(sizeof(ec_domain_t), GFP_KERNEL))) {
        EC_MASTER_ERR(master, "Error allocating domain memory!\n");
        return ERR_PTR(-ENOMEM);
    }

    down(&master->master_sem);

    if (list_empty(&master->domains)) {
        index = 0;
    } else {
        last_domain = list_entry(master->domains.prev, ec_domain_t, list);
        index = last_domain->index + 1;
    }

    ec_domain_init(domain, master, index);
    list_add_tail(&domain->list, &master->domains);

    up(&master->master_sem);

    EC_MASTER_DBG(master, 1, "Created domain %u.\n", domain->index);

    return domain;
}

/*****************************************************************************/

ec_domain_t *ecrt_master_create_domain(
        ec_master_t *master /**< master */
        )
{
    ec_domain_t *d = ecrt_master_create_domain_err(master);
    return IS_ERR(d) ? NULL : d;
}

/*****************************************************************************/

int ecrt_master_activate(ec_master_t *master)
{
    uint32_t domain_offset;
    ec_domain_t *domain;
    int ret;
#ifdef EC_EOE
    int eoe_was_running;
#endif

    EC_MASTER_DBG(master, 1, "ecrt_master_activate(master = 0x%p)\n", master);

    if (master->active) {
        EC_MASTER_WARN(master, "%s: Master already active!\n", __func__);
        return 0;
    }

    down(&master->master_sem);

    // finish all domains
    domain_offset = 0;
    list_for_each_entry(domain, &master->domains, list) {
        ret = ec_domain_finish(domain, domain_offset);
        if (ret < 0) {
            up(&master->master_sem);
            EC_MASTER_ERR(master, "Failed to finish domain 0x%p!\n", domain);
            return ret;
        }
        domain_offset += domain->data_size;
    }

    up(&master->master_sem);

    // restart EoE process and master thread with new locking

    ec_master_thread_stop(master);
#ifdef EC_EOE
    eoe_was_running = master->eoe_thread != NULL;
    ec_master_eoe_stop(master);
#endif

    EC_MASTER_DBG(master, 1, "FSM datagram is %p.\n", &master->fsm_datagram);

    master->injection_seq_fsm = 0;
    master->injection_seq_rt = 0;

    master->send_cb = master->app_send_cb;
    master->receive_cb = master->app_receive_cb;
    master->cb_data = master->app_cb_data;

#ifdef EC_EOE
    if (eoe_was_running) {
        ec_master_eoe_start(master);
    }
#endif
    ret = ec_master_thread_start(master, ec_master_operation_thread,
                "EtherCAT-OP");
    if (ret < 0) {
        EC_MASTER_ERR(master, "Failed to start master thread!\n");
        return ret;
    }

    /* Allow scanning after a topology change. */
    master->allow_scan = 1;

    master->active = 1;

    // notify state machine, that the configuration shall now be applied
    master->config_changed = 1;

    return 0;
}

/*****************************************************************************/

void ecrt_master_deactivate(ec_master_t *master)
{
    ec_slave_t *slave;
#ifdef EC_EOE
    ec_eoe_t *eoe;
    int eoe_was_running;
#endif

    EC_MASTER_DBG(master, 1, "%s(master = 0x%p)\n", __func__, master);

    if (!master->active) {
        EC_MASTER_WARN(master, "%s: Master not active.\n", __func__);
        return;
    }

    ec_master_thread_stop(master);
#ifdef EC_EOE
    eoe_was_running = master->eoe_thread != NULL;
    ec_master_eoe_stop(master);
#endif

    master->send_cb = ec_master_internal_send_cb;
    master->receive_cb = ec_master_internal_receive_cb;
    master->cb_data = master;

    ec_master_clear_config(master);

    for (slave = master->slaves;
            slave < master->slaves + master->slave_count;
            slave++) {

        // set states for all slaves
        ec_slave_request_state(slave, EC_SLAVE_STATE_PREOP);

        // mark for reconfiguration, because the master could have no
        // possibility for a reconfiguration between two sequential operation
        // phases.
        slave->force_config = 1;
    }

#ifdef EC_EOE
    // ... but leave EoE slaves in OP
    list_for_each_entry(eoe, &master->eoe_handlers, list) {
        if (ec_eoe_is_open(eoe))
            ec_slave_request_state(eoe->slave, EC_SLAVE_STATE_OP);
    }
#endif

    master->app_time = 0ULL;
    master->app_start_time = 0ULL;
    master->has_app_time = 0;

#ifdef EC_EOE
    if (eoe_was_running) {
        ec_master_eoe_start(master);
    }
#endif
    if (ec_master_thread_start(master, ec_master_idle_thread,
                "EtherCAT-IDLE")) {
        EC_MASTER_WARN(master, "Failed to restart master thread!\n");
    }

    /* Disallow scanning to get into the same state like after a master
     * request (after ec_master_enter_operation_phase() is called). */
    master->allow_scan = 0;

    master->active = 0;
}

/*****************************************************************************/

void ecrt_master_send(ec_master_t *master)
{
    ec_datagram_t *datagram, *n;
    ec_device_index_t dev_idx;

    if (master->injection_seq_rt != master->injection_seq_fsm) {
        // inject datagram produced by master FSM
        ec_master_queue_datagram(master, &master->fsm_datagram);
        master->injection_seq_rt = master->injection_seq_fsm;
    }

    ec_master_inject_external_datagrams(master);

    for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
            dev_idx++) {
        if (unlikely(!master->devices[dev_idx].link_state)) {
            // link is down, no datagram can be sent
            list_for_each_entry_safe(datagram, n,
                    &master->datagram_queue, queue) {
                if (datagram->device_index == dev_idx) {
                    datagram->state = EC_DATAGRAM_ERROR;
                    list_del_init(&datagram->queue);
                }
            }

            if (!master->devices[dev_idx].dev) {
                continue;
            }

            // query link state
            ec_device_poll(&master->devices[dev_idx]);

            // clear frame statistics
            ec_device_clear_stats(&master->devices[dev_idx]);
            continue;
        }

        // send frames
        ec_master_send_datagrams(master, dev_idx);
    }
}

/*****************************************************************************/

void ecrt_master_receive(ec_master_t *master)
{
    unsigned int dev_idx;
    ec_datagram_t *datagram, *next;

    // receive datagrams
    for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
            dev_idx++) {
        ec_device_poll(&master->devices[dev_idx]);
    }
    ec_master_update_device_stats(master);

    // dequeue all datagrams that timed out
    list_for_each_entry_safe(datagram, next, &master->datagram_queue, queue) {
        if (datagram->state != EC_DATAGRAM_SENT) continue;

#ifdef EC_HAVE_CYCLES
        if (master->devices[EC_DEVICE_MAIN].cycles_poll -
                datagram->cycles_sent > timeout_cycles) {
#else
        if (master->devices[EC_DEVICE_MAIN].jiffies_poll -
                datagram->jiffies_sent > timeout_jiffies) {
#endif
            list_del_init(&datagram->queue);
            datagram->state = EC_DATAGRAM_TIMED_OUT;
            master->stats.timeouts++;

#ifdef EC_RT_SYSLOG
            ec_master_output_stats(master);

            if (unlikely(master->debug_level > 0)) {
                unsigned int time_us;
#ifdef EC_HAVE_CYCLES
                time_us = (unsigned int)
                    (master->devices[EC_DEVICE_MAIN].cycles_poll -
                        datagram->cycles_sent) * 1000 / cpu_khz;
#else
                time_us = (unsigned int)
                    ((master->devices[EC_DEVICE_MAIN].jiffies_poll -
                            datagram->jiffies_sent) * 1000000 / HZ);
#endif
                EC_MASTER_DBG(master, 0, "TIMED OUT datagram %p,"
                        " index %02X waited %u us.\n",
                        datagram, datagram->index, time_us);
            }
#endif /* RT_SYSLOG */
        }
    }
}

/*****************************************************************************/

void ecrt_master_send_ext(ec_master_t *master)
{
    ec_datagram_t *datagram, *next;

    list_for_each_entry_safe(datagram, next, &master->ext_datagram_queue,
            queue) {
        list_del(&datagram->queue);
        ec_master_queue_datagram(master, datagram);
    }

    ecrt_master_send(master);
}

/*****************************************************************************/

/** Same as ecrt_master_slave_config(), but with ERR_PTR() return value.
 */
ec_slave_config_t *ecrt_master_slave_config_err(ec_master_t *master,
        uint16_t alias, uint16_t position, uint32_t vendor_id,
        uint32_t product_code)
{
    ec_slave_config_t *sc;
    unsigned int found = 0;


    EC_MASTER_DBG(master, 1, "ecrt_master_slave_config(master = 0x%p,"
            " alias = %u, position = %u, vendor_id = 0x%08x,"
            " product_code = 0x%08x)\n",
            master, alias, position, vendor_id, product_code);

    list_for_each_entry(sc, &master->configs, list) {
        if (sc->alias == alias && sc->position == position) {
            found = 1;
            break;
        }
    }

    if (found) { // config with same alias/position already existing
        if (sc->vendor_id != vendor_id || sc->product_code != product_code) {
            EC_MASTER_ERR(master, "Slave type mismatch. Slave was"
                    " configured as 0x%08X/0x%08X before. Now configuring"
                    " with 0x%08X/0x%08X.\n", sc->vendor_id, sc->product_code,
                    vendor_id, product_code);
            return ERR_PTR(-ENOENT);
        }
    } else {
        EC_MASTER_DBG(master, 1, "Creating slave configuration for %u:%u,"
                " 0x%08X/0x%08X.\n",
                alias, position, vendor_id, product_code);

        if (!(sc = (ec_slave_config_t *) kmalloc(sizeof(ec_slave_config_t),
                        GFP_KERNEL))) {
            EC_MASTER_ERR(master, "Failed to allocate memory"
                    " for slave configuration.\n");
            return ERR_PTR(-ENOMEM);
        }

        ec_slave_config_init(sc, master,
                alias, position, vendor_id, product_code);

        down(&master->master_sem);

        // try to find the addressed slave
        ec_slave_config_attach(sc);
        ec_slave_config_load_default_sync_config(sc);
        list_add_tail(&sc->list, &master->configs);

        up(&master->master_sem);
    }

    return sc;
}

/*****************************************************************************/

ec_slave_config_t *ecrt_master_slave_config(ec_master_t *master,
        uint16_t alias, uint16_t position, uint32_t vendor_id,
        uint32_t product_code)
{
    ec_slave_config_t *sc = ecrt_master_slave_config_err(master, alias,
            position, vendor_id, product_code);
    return IS_ERR(sc) ? NULL : sc;
}

/*****************************************************************************/

int ecrt_master_select_reference_clock(ec_master_t *master,
        ec_slave_config_t *sc)
{
    if (sc) {
        ec_slave_t *slave = sc->slave;

        // output an early warning
        if (slave &&
                (!slave->base_dc_supported || !slave->has_dc_system_time)) {
            EC_MASTER_WARN(master, "Slave %u can not act as"
                    " a reference clock!", slave->ring_position);
        }
    }

    master->dc_ref_config = sc;
    return 0;
}

/*****************************************************************************/

int ecrt_master(ec_master_t *master, ec_master_info_t *master_info)
{
    EC_MASTER_DBG(master, 1, "ecrt_master(master = 0x%p,"
            " master_info = 0x%p)\n", master, master_info);

    master_info->slave_count = master->slave_count;
    master_info->link_up = master->devices[EC_DEVICE_MAIN].link_state;
    master_info->scan_busy = master->scan_busy;
    master_info->app_time = master->app_time;
    return 0;
}

/*****************************************************************************/

int ecrt_master_get_slave(ec_master_t *master, uint16_t slave_position,
        ec_slave_info_t *slave_info)
{
    const ec_slave_t *slave;
    unsigned int i;
    int ret = 0;

    if (down_interruptible(&master->master_sem)) {
        return -EINTR;
    }

    slave = ec_master_find_slave_const(master, 0, slave_position);

    if (slave == NULL) {
       ret = -ENOENT;
       goto out_get_slave;
    }

    slave_info->position = slave->ring_position;
    slave_info->vendor_id = slave->sii.vendor_id;
    slave_info->product_code = slave->sii.product_code;
    slave_info->revision_number = slave->sii.revision_number;
    slave_info->serial_number = slave->sii.serial_number;
    slave_info->alias = slave->effective_alias;
    slave_info->current_on_ebus = slave->sii.current_on_ebus;

    for (i = 0; i < EC_MAX_PORTS; i++) {
        slave_info->ports[i].desc = slave->ports[i].desc;
        slave_info->ports[i].link.link_up = slave->ports[i].link.link_up;
        slave_info->ports[i].link.loop_closed =
            slave->ports[i].link.loop_closed;
        slave_info->ports[i].link.signal_detected =
            slave->ports[i].link.signal_detected;
        slave_info->ports[i].receive_time = slave->ports[i].receive_time;
        if (slave->ports[i].next_slave) {
            slave_info->ports[i].next_slave =
                slave->ports[i].next_slave->ring_position;
        } else {
            slave_info->ports[i].next_slave = 0xffff;
        }
        slave_info->ports[i].delay_to_next_dc =
            slave->ports[i].delay_to_next_dc;
    }

    slave_info->al_state = slave->current_state;
    slave_info->error_flag = slave->error_flag;
    slave_info->sync_count = slave->sii.sync_count;
    slave_info->sdo_count = ec_slave_sdo_count(slave);
    if (slave->sii.name) {
        strncpy(slave_info->name, slave->sii.name, EC_MAX_STRING_LENGTH);
    } else {
        slave_info->name[0] = 0;
    }

out_get_slave:
    up(&master->master_sem);

    return ret;
}

/*****************************************************************************/

void ecrt_master_callbacks(ec_master_t *master,
        void (*send_cb)(void *), void (*receive_cb)(void *), void *cb_data)
{
    EC_MASTER_DBG(master, 1, "ecrt_master_callbacks(master = 0x%p,"
            " send_cb = 0x%p, receive_cb = 0x%p, cb_data = 0x%p)\n",
            master, send_cb, receive_cb, cb_data);

    master->app_send_cb = send_cb;
    master->app_receive_cb = receive_cb;
    master->app_cb_data = cb_data;
}

/*****************************************************************************/

void ecrt_master_state(const ec_master_t *master, ec_master_state_t *state)
{
    ec_device_index_t dev_idx;

    state->slaves_responding = 0U;
    state->al_states = 0;
    state->link_up = 0U;

    for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
            dev_idx++) {
        /* Announce sum of responding slaves on all links. */
        state->slaves_responding += master->fsm.slaves_responding[dev_idx];

        /* Binary-or slave states of all links. */
        state->al_states |= master->fsm.slave_states[dev_idx];

        /* Signal link up if at least one device has link. */
        state->link_up |= master->devices[dev_idx].link_state;
    }
}

/*****************************************************************************/

int ecrt_master_link_state(const ec_master_t *master, unsigned int dev_idx,
        ec_master_link_state_t *state)
{
    if (dev_idx >= ec_master_num_devices(master)) {
        return -EINVAL;
    }

    state->slaves_responding = master->fsm.slaves_responding[dev_idx];
    state->al_states = master->fsm.slave_states[dev_idx];
    state->link_up = master->devices[dev_idx].link_state;

    return 0;
}

/*****************************************************************************/

void ecrt_master_application_time(ec_master_t *master, uint64_t app_time)
{
    master->app_time = app_time;

    if (unlikely(!master->has_app_time)) {
        master->app_start_time = app_time;
        master->has_app_time = 1;
    }
}

/*****************************************************************************/

int ecrt_master_reference_clock_time(ec_master_t *master, uint32_t *time)
{
    if (!master->dc_ref_clock) {
        return -ENXIO;
    }

    if (master->sync_datagram.state != EC_DATAGRAM_RECEIVED) {
        return -EIO;
    }

    // Get returned datagram time, transmission delay removed.
    *time = EC_READ_U32(master->sync_datagram.data) -
        master->dc_ref_clock->transmission_delay;

    return 0;
}

/*****************************************************************************/

void ecrt_master_sync_reference_clock(ec_master_t *master)
{
    if (master->dc_ref_clock) {
        EC_WRITE_U32(master->ref_sync_datagram.data, master->app_time);
        ec_master_queue_datagram(master, &master->ref_sync_datagram);
    }
}

/*****************************************************************************/

void ecrt_master_sync_slave_clocks(ec_master_t *master)
{
    if (master->dc_ref_clock) {
        ec_datagram_zero(&master->sync_datagram);
        ec_master_queue_datagram(master, &master->sync_datagram);
    }
}

/*****************************************************************************/

void ecrt_master_sync_monitor_queue(ec_master_t *master)
{
    ec_datagram_zero(&master->sync_mon_datagram);
    ec_master_queue_datagram(master, &master->sync_mon_datagram);
}

/*****************************************************************************/

uint32_t ecrt_master_sync_monitor_process(ec_master_t *master)
{
    if (master->sync_mon_datagram.state == EC_DATAGRAM_RECEIVED) {
        return EC_READ_U32(master->sync_mon_datagram.data) & 0x7fffffff;
    } else {
        return 0xffffffff;
    }
}

/*****************************************************************************/

int ecrt_master_sdo_download(ec_master_t *master, uint16_t slave_position,
        uint16_t index, uint8_t subindex, uint8_t *data,
        size_t data_size, uint32_t *abort_code)
{
    ec_sdo_request_t request;
    ec_slave_t *slave;
    int ret;

    EC_MASTER_DBG(master, 1, "%s(master = 0x%p,"
            " slave_position = %u, index = 0x%04X, subindex = 0x%02X,"
            " data = 0x%p, data_size = %zu, abort_code = 0x%p)\n",
            __func__, master, slave_position, index, subindex,
            data, data_size, abort_code);

    if (!data_size) {
        EC_MASTER_ERR(master, "Zero data size!\n");
        return -EINVAL;
    }

    ec_sdo_request_init(&request);
    ecrt_sdo_request_index(&request, index, subindex);
    ret = ec_sdo_request_alloc(&request, data_size);
    if (ret) {
        ec_sdo_request_clear(&request);
        return ret;
    }

    memcpy(request.data, data, data_size);
    request.data_size = data_size;
    ecrt_sdo_request_write(&request);

    if (down_interruptible(&master->master_sem)) {
        ec_sdo_request_clear(&request);
        return -EINTR;
    }

    if (!(slave = ec_master_find_slave(master, 0, slave_position))) {
        up(&master->master_sem);
        EC_MASTER_ERR(master, "Slave %u does not exist!\n", slave_position);
        ec_sdo_request_clear(&request);
        return -EINVAL;
    }

    EC_SLAVE_DBG(slave, 1, "Scheduling SDO download request.\n");

    // schedule request.
    list_add_tail(&request.list, &slave->sdo_requests);

    up(&master->master_sem);

    // wait for processing through FSM
    if (wait_event_interruptible(master->request_queue,
                request.state != EC_INT_REQUEST_QUEUED)) {
        // interrupted by signal
        down(&master->master_sem);
        if (request.state == EC_INT_REQUEST_QUEUED) {
            list_del(&request.list);
            up(&master->master_sem);
            ec_sdo_request_clear(&request);
            return -EINTR;
        }
        // request already processing: interrupt not possible.
        up(&master->master_sem);
    }

    // wait until master FSM has finished processing
    wait_event(master->request_queue, request.state != EC_INT_REQUEST_BUSY);

    *abort_code = request.abort_code;

    if (request.state == EC_INT_REQUEST_SUCCESS) {
        ret = 0;
    } else if (request.errno) {
        ret = -request.errno;
    } else {
        ret = -EIO;
    }

    ec_sdo_request_clear(&request);
    return ret;
}

/*****************************************************************************/

int ecrt_master_sdo_download_complete(ec_master_t *master,
        uint16_t slave_position, uint16_t index, uint8_t *data,
        size_t data_size, uint32_t *abort_code)
{
    ec_sdo_request_t request;
    ec_slave_t *slave;
    int ret;

    EC_MASTER_DBG(master, 1, "%s(master = 0x%p,"
            " slave_position = %u, index = 0x%04X,"
            " data = 0x%p, data_size = %zu, abort_code = 0x%p)\n",
            __func__, master, slave_position, index, data, data_size,
            abort_code);

    if (!data_size) {
        EC_MASTER_ERR(master, "Zero data size!\n");
        return -EINVAL;
    }

    ec_sdo_request_init(&request);
    ecrt_sdo_request_index(&request, index, 0);
    ret = ec_sdo_request_alloc(&request, data_size);
    if (ret) {
        ec_sdo_request_clear(&request);
        return ret;
    }

    request.complete_access = 1;
    memcpy(request.data, data, data_size);
    request.data_size = data_size;
    ecrt_sdo_request_write(&request);

    if (down_interruptible(&master->master_sem)) {
        ec_sdo_request_clear(&request);
        return -EINTR;
    }

    if (!(slave = ec_master_find_slave(master, 0, slave_position))) {
        up(&master->master_sem);
        EC_MASTER_ERR(master, "Slave %u does not exist!\n", slave_position);
        ec_sdo_request_clear(&request);
        return -EINVAL;
    }

    EC_SLAVE_DBG(slave, 1, "Scheduling SDO download request"
            " (complete access).\n");

    // schedule request.
    list_add_tail(&request.list, &slave->sdo_requests);

    up(&master->master_sem);

    // wait for processing through FSM
    if (wait_event_interruptible(master->request_queue,
                request.state != EC_INT_REQUEST_QUEUED)) {
        // interrupted by signal
        down(&master->master_sem);
        if (request.state == EC_INT_REQUEST_QUEUED) {
            list_del(&request.list);
            up(&master->master_sem);
            ec_sdo_request_clear(&request);
            return -EINTR;
        }
        // request already processing: interrupt not possible.
        up(&master->master_sem);
    }

    // wait until master FSM has finished processing
    wait_event(master->request_queue, request.state != EC_INT_REQUEST_BUSY);

    *abort_code = request.abort_code;

    if (request.state == EC_INT_REQUEST_SUCCESS) {
        ret = 0;
    } else if (request.errno) {
        ret = -request.errno;
    } else {
        ret = -EIO;
    }

    ec_sdo_request_clear(&request);
    return ret;
}

/*****************************************************************************/

int ecrt_master_sdo_upload(ec_master_t *master, uint16_t slave_position,
        uint16_t index, uint8_t subindex, uint8_t *target,
        size_t target_size, size_t *result_size, uint32_t *abort_code)
{
    ec_sdo_request_t request;
    ec_slave_t *slave;
    int ret = 0;

    EC_MASTER_DBG(master, 1, "%s(master = 0x%p,"
            " slave_position = %u, index = 0x%04X, subindex = 0x%02X,"
            " target = 0x%p, target_size = %zu, result_size = 0x%p,"
            " abort_code = 0x%p)\n",
            __func__, master, slave_position, index, subindex,
            target, target_size, result_size, abort_code);

    ec_sdo_request_init(&request);
    ecrt_sdo_request_index(&request, index, subindex);
    ecrt_sdo_request_read(&request);

    if (down_interruptible(&master->master_sem)) {
        ec_sdo_request_clear(&request);
        return -EINTR;
    }

    if (!(slave = ec_master_find_slave(master, 0, slave_position))) {
        up(&master->master_sem);
        ec_sdo_request_clear(&request);
        EC_MASTER_ERR(master, "Slave %u does not exist!\n", slave_position);
        return -EINVAL;
    }

    EC_SLAVE_DBG(slave, 1, "Scheduling SDO upload request.\n");

    // schedule request.
    list_add_tail(&request.list, &slave->sdo_requests);

    up(&master->master_sem);

    // wait for processing through FSM
    if (wait_event_interruptible(master->request_queue,
                request.state != EC_INT_REQUEST_QUEUED)) {
        // interrupted by signal
        down(&master->master_sem);
        if (request.state == EC_INT_REQUEST_QUEUED) {
            list_del(&request.list);
            up(&master->master_sem);
            ec_sdo_request_clear(&request);
            return -EINTR;
        }
        // request already processing: interrupt not possible.
        up(&master->master_sem);
    }

    // wait until master FSM has finished processing
    wait_event(master->request_queue, request.state != EC_INT_REQUEST_BUSY);

    *abort_code = request.abort_code;

    if (request.state != EC_INT_REQUEST_SUCCESS) {
        *result_size = 0;
        if (request.errno) {
            ret = -request.errno;
        } else {
            ret = -EIO;
        }
    } else {
        if (request.data_size > target_size) {
            EC_MASTER_ERR(master, "Buffer too small.\n");
            ret = -EOVERFLOW;
        }
        else {
            memcpy(target, request.data, request.data_size);
            *result_size = request.data_size;
            ret = 0;
        }
    }

    ec_sdo_request_clear(&request);
    return ret;
}

/*****************************************************************************/

int ecrt_master_write_idn(ec_master_t *master, uint16_t slave_position,
        uint8_t drive_no, uint16_t idn, uint8_t *data, size_t data_size,
        uint16_t *error_code)
{
    ec_soe_request_t request;
    ec_slave_t *slave;
    int ret;

    if (drive_no > 7) {
        EC_MASTER_ERR(master, "Invalid drive number!\n");
        return -EINVAL;
    }

    ec_soe_request_init(&request);
    ec_soe_request_set_drive_no(&request, drive_no);
    ec_soe_request_set_idn(&request, idn);

    ret = ec_soe_request_alloc(&request, data_size);
    if (ret) {
        ec_soe_request_clear(&request);
        return ret;
    }

    memcpy(request.data, data, data_size);
    request.data_size = data_size;
    ec_soe_request_write(&request);

    if (down_interruptible(&master->master_sem)) {
        ec_soe_request_clear(&request);
        return -EINTR;
    }

    if (!(slave = ec_master_find_slave(master, 0, slave_position))) {
        up(&master->master_sem);
        EC_MASTER_ERR(master, "Slave %u does not exist!\n",
                slave_position);
        ec_soe_request_clear(&request);
        return -EINVAL;
    }

    EC_SLAVE_DBG(slave, 1, "Scheduling SoE write request.\n");

    // schedule SoE write request.
    list_add_tail(&request.list, &slave->soe_requests);

    up(&master->master_sem);

    // wait for processing through FSM
    if (wait_event_interruptible(master->request_queue,
                request.state != EC_INT_REQUEST_QUEUED)) {
        // interrupted by signal
        down(&master->master_sem);
        if (request.state == EC_INT_REQUEST_QUEUED) {
            // abort request
            list_del(&request.list);
            up(&master->master_sem);
            ec_soe_request_clear(&request);
            return -EINTR;
        }
        up(&master->master_sem);
    }

    // wait until master FSM has finished processing
    wait_event(master->request_queue, request.state != EC_INT_REQUEST_BUSY);

    if (error_code) {
        *error_code = request.error_code;
    }
    ret = request.state == EC_INT_REQUEST_SUCCESS ? 0 : -EIO;
    ec_soe_request_clear(&request);

    return ret;
}

/*****************************************************************************/

int ecrt_master_read_idn(ec_master_t *master, uint16_t slave_position,
        uint8_t drive_no, uint16_t idn, uint8_t *target, size_t target_size,
        size_t *result_size, uint16_t *error_code)
{
    ec_soe_request_t request;
    ec_slave_t *slave;
    int ret;

    if (drive_no > 7) {
        EC_MASTER_ERR(master, "Invalid drive number!\n");
        return -EINVAL;
    }

    ec_soe_request_init(&request);
    ec_soe_request_set_drive_no(&request, drive_no);
    ec_soe_request_set_idn(&request, idn);
    ec_soe_request_read(&request);

    if (down_interruptible(&master->master_sem)) {
        ec_soe_request_clear(&request);
        return -EINTR;
    }

    if (!(slave = ec_master_find_slave(master, 0, slave_position))) {
        up(&master->master_sem);
        ec_soe_request_clear(&request);
        EC_MASTER_ERR(master, "Slave %u does not exist!\n", slave_position);
        return -EINVAL;
    }

    EC_SLAVE_DBG(slave, 1, "Scheduling SoE read request.\n");

    // schedule request.
    list_add_tail(&request.list, &slave->soe_requests);

    up(&master->master_sem);

    // wait for processing through FSM
    if (wait_event_interruptible(master->request_queue,
                request.state != EC_INT_REQUEST_QUEUED)) {
        // interrupted by signal
        down(&master->master_sem);
        if (request.state == EC_INT_REQUEST_QUEUED) {
            list_del(&request.list);
            up(&master->master_sem);
            ec_soe_request_clear(&request);
            return -EINTR;
        }
        // request already processing: interrupt not possible.
        up(&master->master_sem);
    }

    // wait until master FSM has finished processing
    wait_event(master->request_queue, request.state != EC_INT_REQUEST_BUSY);

    if (error_code) {
        *error_code = request.error_code;
    }

    if (request.state != EC_INT_REQUEST_SUCCESS) {
        if (result_size) {
            *result_size = 0;
        }
        ret = -EIO;
    } else { // success
        if (request.data_size > target_size) {
            EC_MASTER_ERR(master, "Buffer too small.\n");
            ret = -EOVERFLOW;
        }
        else { // data fits in buffer
            if (result_size) {
                *result_size = request.data_size;
            }
            memcpy(target, request.data, request.data_size);
            ret = 0;
        }
    }

    ec_soe_request_clear(&request);
    return ret;
}

/*****************************************************************************/

void ecrt_master_reset(ec_master_t *master)
{
    ec_slave_config_t *sc;

    list_for_each_entry(sc, &master->configs, list) {
        if (sc->slave) {
            ec_slave_request_state(sc->slave, EC_SLAVE_STATE_OP);
        }
    }
}

/*****************************************************************************/

/** \cond */

EXPORT_SYMBOL(ecrt_master_create_domain);
EXPORT_SYMBOL(ecrt_master_activate);
EXPORT_SYMBOL(ecrt_master_deactivate);
EXPORT_SYMBOL(ecrt_master_send);
EXPORT_SYMBOL(ecrt_master_send_ext);
EXPORT_SYMBOL(ecrt_master_receive);
EXPORT_SYMBOL(ecrt_master_callbacks);
EXPORT_SYMBOL(ecrt_master);
EXPORT_SYMBOL(ecrt_master_get_slave);
EXPORT_SYMBOL(ecrt_master_slave_config);
EXPORT_SYMBOL(ecrt_master_select_reference_clock);
EXPORT_SYMBOL(ecrt_master_state);
EXPORT_SYMBOL(ecrt_master_link_state);
EXPORT_SYMBOL(ecrt_master_application_time);
EXPORT_SYMBOL(ecrt_master_sync_reference_clock);
EXPORT_SYMBOL(ecrt_master_sync_slave_clocks);
EXPORT_SYMBOL(ecrt_master_reference_clock_time);
EXPORT_SYMBOL(ecrt_master_sync_monitor_queue);
EXPORT_SYMBOL(ecrt_master_sync_monitor_process);
EXPORT_SYMBOL(ecrt_master_sdo_download);
EXPORT_SYMBOL(ecrt_master_sdo_download_complete);
EXPORT_SYMBOL(ecrt_master_sdo_upload);
EXPORT_SYMBOL(ecrt_master_write_idn);
EXPORT_SYMBOL(ecrt_master_read_idn);
EXPORT_SYMBOL(ecrt_master_reset);

/** \endcond */

/*****************************************************************************/