devices/e1000e/phy-3.16-ethercat.c
author Edouard Tisserant <edouard.tisserant@gmail.com>
Sat, 29 Sep 2018 23:58:09 +0200
branchstable-1.5
changeset 2714 ec417efca1fd
parent 2588 792892ab4806
permissions -rw-r--r--
This fix a segfault in xenomai_posix example when calling pthread_setschedparam(cyclic_thread, ...) from main thread. As a side effect EL2004 becomes EL2088 - that's what IU have for testing.
/* Intel PRO/1000 Linux driver
 * Copyright(c) 1999 - 2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * Linux NICS <linux.nics@intel.com>
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */

#include "e1000-3.16-ethercat.h"

static s32 e1000_wait_autoneg(struct e1000_hw *hw);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read, bool page_set);
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read);

/* Cable length tables */
static const u16 e1000_m88_cable_length_table[] = {
	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};

#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
		ARRAY_SIZE(e1000_m88_cable_length_table)

static const u16 e1000_igp_2_cable_length_table[] = {
	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
	124
};

#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
		ARRAY_SIZE(e1000_igp_2_cable_length_table)

/**
 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Read the PHY management control register and check whether a PHY reset
 *  is blocked.  If a reset is not blocked return 0, otherwise
 *  return E1000_BLK_PHY_RESET (12).
 **/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
	u32 manc;

	manc = er32(MANC);

	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_id;
	u16 retry_count = 0;

	if (!phy->ops.read_reg)
		return 0;

	while (retry_count < 2) {
		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		usleep_range(20, 40);
		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
			return 0;

		retry_count++;
	}

	return 0;
}

/**
 *  e1000e_phy_reset_dsp - Reset PHY DSP
 *  @hw: pointer to the HW structure
 *
 *  Reset the digital signal processor.
 **/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
	if (ret_val)
		return ret_val;

	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}

/**
 *  e1000e_read_phy_reg_mdic - Read MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the MDI control register in the PHY at offset and stores the
 *  information read to data.
 **/
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		e_dbg("PHY Address %d is out of range\n", offset);
		return -E1000_ERR_PARAM;
	}

	/* Set up Op-code, Phy Address, and register offset in the MDI
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_READ));

	ew32(MDIC, mdic);

	/* Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
		e_dbg("MDI Read did not complete\n");
		return -E1000_ERR_PHY;
	}
	if (mdic & E1000_MDIC_ERROR) {
		e_dbg("MDI Error\n");
		return -E1000_ERR_PHY;
	}
	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
		e_dbg("MDI Read offset error - requested %d, returned %d\n",
		      offset,
		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
		return -E1000_ERR_PHY;
	}
	*data = (u16)mdic;

	/* Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

	return 0;
}

/**
 *  e1000e_write_phy_reg_mdic - Write MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		e_dbg("PHY Address %d is out of range\n", offset);
		return -E1000_ERR_PARAM;
	}

	/* Set up Op-code, Phy Address, and register offset in the MDI
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = (((u32)data) |
		(offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_WRITE));

	ew32(MDIC, mdic);

	/* Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
		e_dbg("MDI Write did not complete\n");
		return -E1000_ERR_PHY;
	}
	if (mdic & E1000_MDIC_ERROR) {
		e_dbg("MDI Error\n");
		return -E1000_ERR_PHY;
	}
	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
		e_dbg("MDI Write offset error - requested %d, returned %d\n",
		      offset,
		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
		return -E1000_ERR_PHY;
	}

	/* Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

	return 0;
}

/**
 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);

	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);

	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 *  @hw: pointer to the HW structure
 *  @page: page to set (shifted left when necessary)
 *
 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 *  must set it appropriately (if necessary) after this function returns.
 **/
s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
{
	e_dbg("Setting page 0x%x\n", page);

	hw->phy.addr = 1;

	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
}

/**
 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *  @locked: semaphore has already been acquired or not
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and stores the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
				     bool locked)
{
	s32 ret_val = 0;

	if (!locked) {
		if (!hw->phy.ops.acquire)
			return 0;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
	}

	if (offset > MAX_PHY_MULTI_PAGE_REG)
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
	if (!ret_val)
		ret_val = e1000e_read_phy_reg_mdic(hw,
						   MAX_PHY_REG_ADDRESS & offset,
						   data);
	if (!locked)
		hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000e_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores the
 *  retrieved information in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
}

/**
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *  @locked: semaphore has already been acquired or not
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
				      bool locked)
{
	s32 ret_val = 0;

	if (!locked) {
		if (!hw->phy.ops.acquire)
			return 0;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
	}

	if (offset > MAX_PHY_MULTI_PAGE_REG)
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
	if (!ret_val)
		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
						    offset, data);
	if (!locked)
		hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.
 *  Assumes semaphore already acquired.
 **/
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
}

/**
 *  __e1000_read_kmrn_reg - Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *  @locked: semaphore has already been acquired or not
 *
 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 *  using the kumeran interface.  The information retrieved is stored in data.
 *  Release any acquired semaphores before exiting.
 **/
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
				 bool locked)
{
	u32 kmrnctrlsta;

	if (!locked) {
		s32 ret_val = 0;

		if (!hw->phy.ops.acquire)
			return 0;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
	}

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
	e1e_flush();

	udelay(2);

	kmrnctrlsta = er32(KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

	if (!locked)
		hw->phy.ops.release(hw);

	return 0;
}

/**
 *  e1000e_read_kmrn_reg -  Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset using the
 *  kumeran interface.  The information retrieved is stored in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_kmrn_reg(hw, offset, data, false);
}

/**
 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the kumeran interface.  The
 *  information retrieved is stored in data.
 *  Assumes semaphore already acquired.
 **/
s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_kmrn_reg(hw, offset, data, true);
}

/**
 *  __e1000_write_kmrn_reg - Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *  @locked: semaphore has already been acquired or not
 *
 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 *  at the offset using the kumeran interface.  Release any acquired semaphores
 *  before exiting.
 **/
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
				  bool locked)
{
	u32 kmrnctrlsta;

	if (!locked) {
		s32 ret_val = 0;

		if (!hw->phy.ops.acquire)
			return 0;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
	}

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | data;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
	e1e_flush();

	udelay(2);

	if (!locked)
		hw->phy.ops.release(hw);

	return 0;
}

/**
 *  e1000e_write_kmrn_reg -  Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to the PHY register at the offset
 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 **/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_kmrn_reg(hw, offset, data, false);
}

/**
 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Write the data to PHY register at the offset using the kumeran interface.
 *  Assumes semaphore already acquired.
 **/
s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_kmrn_reg(hw, offset, data, true);
}

/**
 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 *  @hw: pointer to the HW structure
 *
 *  Sets up Master/slave mode
 **/
static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;

	/* Resolve Master/Slave mode */
	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
	if (ret_val)
		return ret_val;

	/* load defaults for future use */
	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
	    ((phy_data & CTL1000_AS_MASTER) ?
	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;

	switch (hw->phy.ms_type) {
	case e1000_ms_force_master:
		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
		break;
	case e1000_ms_force_slave:
		phy_data |= CTL1000_ENABLE_MASTER;
		phy_data &= ~(CTL1000_AS_MASTER);
		break;
	case e1000_ms_auto:
		phy_data &= ~CTL1000_ENABLE_MASTER;
		/* fall-through */
	default:
		break;
	}

	return e1e_wphy(hw, MII_CTRL1000, phy_data);
}

/**
 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up Carrier-sense on Transmit and downshift values.
 **/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;

	/* Enable CRS on Tx. This must be set for half-duplex operation. */
	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;

	/* Enable downshift */
	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;

	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
	if (ret_val)
		return ret_val;

	/* Set MDI/MDIX mode */
	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
	if (ret_val)
		return ret_val;
	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
	/* Options:
	 *   0 - Auto (default)
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 */
	switch (hw->phy.mdix) {
	case 1:
		break;
	case 2:
		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
		break;
	case 0:
	default:
		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
		break;
	}
	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
	if (ret_val)
		return ret_val;

	return e1000_set_master_slave_mode(hw);
}

/**
 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 *  and downshift values are set also.
 **/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

	/* Enable CRS on Tx. This must be set for half-duplex operation. */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	/* For BM PHY this bit is downshift enable */
	if (phy->type != e1000_phy_bm)
		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;

	/* Options:
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

	/* Options:
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
	if (phy->disable_polarity_correction)
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

	/* Enable downshift on BM (disabled by default) */
	if (phy->type == e1000_phy_bm) {
		/* For 82574/82583, first disable then enable downshift */
		if (phy->id == BME1000_E_PHY_ID_R2) {
			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
					   phy_data);
			if (ret_val)
				return ret_val;
			/* Commit the changes. */
			ret_val = phy->ops.commit(hw);
			if (ret_val) {
				e_dbg("Error committing the PHY changes\n");
				return ret_val;
			}
		}

		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
	}

	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	if ((phy->type == e1000_phy_m88) &&
	    (phy->revision < E1000_REVISION_4) &&
	    (phy->id != BME1000_E_PHY_ID_R2)) {
		/* Force TX_CLK in the Extended PHY Specific Control Register
		 * to 25MHz clock.
		 */
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
			/* 82573L PHY - set the downshift counter to 5x. */
			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
		}
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
		/* Set PHY page 0, register 29 to 0x0003 */
		ret_val = e1e_wphy(hw, 29, 0x0003);
		if (ret_val)
			return ret_val;

		/* Set PHY page 0, register 30 to 0x0000 */
		ret_val = e1e_wphy(hw, 30, 0x0000);
		if (ret_val)
			return ret_val;
	}

	/* Commit the changes. */
	if (phy->ops.commit) {
		ret_val = phy->ops.commit(hw);
		if (ret_val) {
			e_dbg("Error committing the PHY changes\n");
			return ret_val;
		}
	}

	if (phy->type == e1000_phy_82578) {
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		/* 82578 PHY - set the downshift count to 1x. */
		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

	return 0;
}

/**
 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 *  igp PHY's.
 **/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1000_phy_hw_reset(hw);
	if (ret_val) {
		e_dbg("Error resetting the PHY.\n");
		return ret_val;
	}

	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
	 * timeout issues when LFS is enabled.
	 */
	msleep(100);

	/* disable lplu d0 during driver init */
	if (hw->phy.ops.set_d0_lplu_state) {
		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
		if (ret_val) {
			e_dbg("Error Disabling LPLU D0\n");
			return ret_val;
		}
	}
	/* Configure mdi-mdix settings */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IGP01E1000_PSCR_AUTO_MDIX;

	switch (phy->mdix) {
	case 1:
		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 2:
		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 0:
	default:
		data |= IGP01E1000_PSCR_AUTO_MDIX;
		break;
	}
	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
	if (ret_val)
		return ret_val;

	/* set auto-master slave resolution settings */
	if (hw->mac.autoneg) {
		/* when autonegotiation advertisement is only 1000Mbps then we
		 * should disable SmartSpeed and enable Auto MasterSlave
		 * resolution as hardware default.
		 */
		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;

			/* Set auto Master/Slave resolution process */
			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
			if (ret_val)
				return ret_val;

			data &= ~CTL1000_ENABLE_MASTER;
			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
			if (ret_val)
				return ret_val;
		}

		ret_val = e1000_set_master_slave_mode(hw);
	}

	return ret_val;
}

/**
 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 *  @hw: pointer to the HW structure
 *
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 *  register and if the PHY is already setup for auto-negotiation, then
 *  return successful.  Otherwise, setup advertisement and flow control to
 *  the appropriate values for the wanted auto-negotiation.
 **/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg = 0;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

	/* Need to parse both autoneg_advertised and fc and set up
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
				 ADVERTISE_100HALF |
				 ADVERTISE_10FULL | ADVERTISE_10HALF);
	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);

	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
		e_dbg("Advertise 10mb Half duplex\n");
		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
		e_dbg("Advertise 10mb Full duplex\n");
		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
		e_dbg("Advertise 100mb Half duplex\n");
		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
		e_dbg("Advertise 100mb Full duplex\n");
		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
		e_dbg("Advertise 1000mb Half duplex request denied!\n");

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
		e_dbg("Advertise 1000mb Full duplex\n");
		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
	}

	/* Check for a software override of the flow control settings, and
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *          but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *          but we do not support receiving pause frames).
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
	 *  other:  No software override.  The flow control configuration
	 *          in the EEPROM is used.
	 */
	switch (hw->fc.current_mode) {
	case e1000_fc_none:
		/* Flow control (Rx & Tx) is completely disabled by a
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &=
		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
		break;
	case e1000_fc_rx_pause:
		/* Rx Flow control is enabled, and Tx Flow control is
		 * disabled, by a software over-ride.
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of Rx Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric Rx PAUSE.  Later
		 * (in e1000e_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |=
		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
		break;
	case e1000_fc_tx_pause:
		/* Tx Flow control is enabled, and Rx Flow control is
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
		break;
	case e1000_fc_full:
		/* Flow control (both Rx and Tx) is enabled by a software
		 * over-ride.
		 */
		mii_autoneg_adv_reg |=
		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
		break;
	default:
		e_dbg("Flow control param set incorrectly\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);

	return ret_val;
}

/**
 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
 *  @hw: pointer to the HW structure
 *
 *  Performs initial bounds checking on autoneg advertisement parameter, then
 *  configure to advertise the full capability.  Setup the PHY to autoneg
 *  and restart the negotiation process between the link partner.  If
 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 **/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_ctrl;

	/* Perform some bounds checking on the autoneg advertisement
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

	/* If autoneg_advertised is zero, we assume it was not defaulted
	 * by the calling code so we set to advertise full capability.
	 */
	if (!phy->autoneg_advertised)
		phy->autoneg_advertised = phy->autoneg_mask;

	e_dbg("Reconfiguring auto-neg advertisement params\n");
	ret_val = e1000_phy_setup_autoneg(hw);
	if (ret_val) {
		e_dbg("Error Setting up Auto-Negotiation\n");
		return ret_val;
	}
	e_dbg("Restarting Auto-Neg\n");

	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
	if (ret_val)
		return ret_val;

	/* Does the user want to wait for Auto-Neg to complete here, or
	 * check at a later time (for example, callback routine).
	 */
	if (phy->autoneg_wait_to_complete) {
		ret_val = e1000_wait_autoneg(hw);
		if (ret_val) {
			e_dbg("Error while waiting for autoneg to complete\n");
			return ret_val;
		}
	}

	hw->mac.get_link_status = true;

	return ret_val;
}

/**
 *  e1000e_setup_copper_link - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Calls the appropriate function to configure the link for auto-neg or forced
 *  speed and duplex.  Then we check for link, once link is established calls
 *  to configure collision distance and flow control are called.  If link is
 *  not established, we return -E1000_ERR_PHY (-2).
 **/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
	s32 ret_val;
	bool link;

	if (hw->mac.autoneg) {
		/* Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
		ret_val = e1000_copper_link_autoneg(hw);
		if (ret_val)
			return ret_val;
	} else {
		/* PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
		e_dbg("Forcing Speed and Duplex\n");
		ret_val = hw->phy.ops.force_speed_duplex(hw);
		if (ret_val) {
			e_dbg("Error Forcing Speed and Duplex\n");
			return ret_val;
		}
	}

	/* Check link status. Wait up to 100 microseconds for link to become
	 * valid.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
					      &link);
	if (ret_val)
		return ret_val;

	if (link) {
		e_dbg("Valid link established!!!\n");
		hw->mac.ops.config_collision_dist(hw);
		ret_val = e1000e_config_fc_after_link_up(hw);
	} else {
		e_dbg("Unable to establish link!!!\n");
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
	if (ret_val)
		return ret_val;

	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	e_dbg("IGP PSCR: %X\n", phy_data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;

		if (!link)
			e_dbg("Link taking longer than expected.\n");

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 *  changes.  If time expires while waiting for link up, we reset the DSP.
 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
 *  successful completion, else return corresponding error code.
 **/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	e_dbg("M88E1000 PSCR: %X\n", phy_data);

	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
	if (ret_val)
		return ret_val;

	/* Reset the phy to commit changes. */
	if (hw->phy.ops.commit) {
		ret_val = hw->phy.ops.commit(hw);
		if (ret_val)
			return ret_val;
	}

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
			if (hw->phy.type != e1000_phy_m88) {
				e_dbg("Link taking longer than expected.\n");
			} else {
				/* We didn't get link.
				 * Reset the DSP and cross our fingers.
				 */
				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
						   0x001d);
				if (ret_val)
					return ret_val;
				ret_val = e1000e_phy_reset_dsp(hw);
				if (ret_val)
					return ret_val;
			}
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type != e1000_phy_m88)
		return 0;

	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	/* Resetting the phy means we need to re-force TX_CLK in the
	 * Extended PHY Specific Control Register to 25MHz clock from
	 * the reset value of 2.5MHz.
	 */
	phy_data |= M88E1000_EPSCR_TX_CLK_25;
	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	/* In addition, we must re-enable CRS on Tx for both half and full
	 * duplex.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);

	return ret_val;
}

/**
 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
 *  @hw: pointer to the HW structure
 *
 *  Forces the speed and duplex settings of the PHY.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1e_rphy(hw, MII_BMCR, &data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &data);

	ret_val = e1e_wphy(hw, MII_BMCR, data);
	if (ret_val)
		return ret_val;

	/* Disable MDI-X support for 10/100 */
	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IFE_PMC_AUTO_MDIX;
	data &= ~IFE_PMC_FORCE_MDIX;

	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
	if (ret_val)
		return ret_val;

	e_dbg("IFE PMC: %X\n", data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;

		if (!link)
			e_dbg("Link taking longer than expected.\n");

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;
	}

	return 0;
}

/**
 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 *  @hw: pointer to the HW structure
 *  @phy_ctrl: pointer to current value of MII_BMCR
 *
 *  Forces speed and duplex on the PHY by doing the following: disable flow
 *  control, force speed/duplex on the MAC, disable auto speed detection,
 *  disable auto-negotiation, configure duplex, configure speed, configure
 *  the collision distance, write configuration to CTRL register.  The
 *  caller must write to the MII_BMCR register for these settings to
 *  take affect.
 **/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl;

	/* Turn off flow control when forcing speed/duplex */
	hw->fc.current_mode = e1000_fc_none;

	/* Force speed/duplex on the mac */
	ctrl = er32(CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~E1000_CTRL_SPD_SEL;

	/* Disable Auto Speed Detection */
	ctrl &= ~E1000_CTRL_ASDE;

	/* Disable autoneg on the phy */
	*phy_ctrl &= ~BMCR_ANENABLE;

	/* Forcing Full or Half Duplex? */
	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
		ctrl &= ~E1000_CTRL_FD;
		*phy_ctrl &= ~BMCR_FULLDPLX;
		e_dbg("Half Duplex\n");
	} else {
		ctrl |= E1000_CTRL_FD;
		*phy_ctrl |= BMCR_FULLDPLX;
		e_dbg("Full Duplex\n");
	}

	/* Forcing 10mb or 100mb? */
	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
		ctrl |= E1000_CTRL_SPD_100;
		*phy_ctrl |= BMCR_SPEED100;
		*phy_ctrl &= ~BMCR_SPEED1000;
		e_dbg("Forcing 100mb\n");
	} else {
		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
		e_dbg("Forcing 10mb\n");
	}

	hw->mac.ops.config_collision_dist(hw);

	ew32(CTRL, ctrl);
}

/**
 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (!active) {
		data &= ~IGP02E1000_PM_D3_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= IGP02E1000_PM_D3_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns 1
 *
 *  A downshift is detected by querying the PHY link health.
 **/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	switch (phy->type) {
	case e1000_phy_m88:
	case e1000_phy_gg82563:
	case e1000_phy_bm:
	case e1000_phy_82578:
		offset = M88E1000_PHY_SPEC_STATUS;
		mask = M88E1000_PSSR_DOWNSHIFT;
		break;
	case e1000_phy_igp_2:
	case e1000_phy_igp_3:
		offset = IGP01E1000_PHY_LINK_HEALTH;
		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
		break;
	default:
		/* speed downshift not supported */
		phy->speed_downgraded = false;
		return 0;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->speed_downgraded = !!(phy_data & mask);

	return ret_val;
}

/**
 *  e1000_check_polarity_m88 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);

	if (!ret_val)
		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
				       ? e1000_rev_polarity_reversed
				       : e1000_rev_polarity_normal);

	return ret_val;
}

/**
 *  e1000_check_polarity_igp - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY port status register, and the
 *  current speed (since there is no polarity at 100Mbps).
 **/
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data, offset, mask;

	/* Polarity is determined based on the speed of
	 * our connection.
	 */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		offset = IGP01E1000_PHY_PCS_INIT_REG;
		mask = IGP01E1000_PHY_POLARITY_MASK;
	} else {
		/* This really only applies to 10Mbps since
		 * there is no polarity for 100Mbps (always 0).
		 */
		offset = IGP01E1000_PHY_PORT_STATUS;
		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
	}

	ret_val = e1e_rphy(hw, offset, &data);

	if (!ret_val)
		phy->cable_polarity = ((data & mask)
				       ? e1000_rev_polarity_reversed
				       : e1000_rev_polarity_normal);

	return ret_val;
}

/**
 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
 *  @hw: pointer to the HW structure
 *
 *  Polarity is determined on the polarity reversal feature being enabled.
 **/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	/* Polarity is determined based on the reversal feature being enabled.
	 */
	if (phy->polarity_correction) {
		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
		mask = IFE_PESC_POLARITY_REVERSED;
	} else {
		offset = IFE_PHY_SPECIAL_CONTROL;
		mask = IFE_PSC_FORCE_POLARITY;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->cable_polarity = ((phy_data & mask)
				       ? e1000_rev_polarity_reversed
				       : e1000_rev_polarity_normal);

	return ret_val;
}

/**
 *  e1000_wait_autoneg - Wait for auto-neg completion
 *  @hw: pointer to the HW structure
 *
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
 *  limit to expire, which ever happens first.
 **/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
		if (ret_val)
			break;
		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
		if (ret_val)
			break;
		if (phy_status & BMSR_ANEGCOMPLETE)
			break;
		msleep(100);
	}

	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
	 * has completed.
	 */
	return ret_val;
}

/**
 *  e1000e_phy_has_link_generic - Polls PHY for link
 *  @hw: pointer to the HW structure
 *  @iterations: number of times to poll for link
 *  @usec_interval: delay between polling attempts
 *  @success: pointer to whether polling was successful or not
 *
 *  Polls the PHY status register for link, 'iterations' number of times.
 **/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
				u32 usec_interval, bool *success)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	for (i = 0; i < iterations; i++) {
		/* Some PHYs require the MII_BMSR register to be read
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
		if (ret_val) {
			/* If the first read fails, another entity may have
			 * ownership of the resources, wait and try again to
			 * see if they have relinquished the resources yet.
			 */
			if (usec_interval >= 1000)
				msleep(usec_interval / 1000);
			else
				udelay(usec_interval);
		}
		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
		if (ret_val)
			break;
		if (phy_status & BMSR_LSTATUS)
			break;
		if (usec_interval >= 1000)
			msleep(usec_interval / 1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations);

	return ret_val;
}

/**
 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY specific status register to retrieve the cable length
 *  information.  The cable length is determined by averaging the minimum and
 *  maximum values to get the "average" cable length.  The m88 PHY has four
 *  possible cable length values, which are:
 *	Register Value		Cable Length
 *	0			< 50 meters
 *	1			50 - 80 meters
 *	2			80 - 110 meters
 *	3			110 - 140 meters
 *	4			> 140 meters
 **/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);

	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
		return -E1000_ERR_PHY;

	phy->min_cable_length = e1000_m88_cable_length_table[index];
	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return 0;
}

/**
 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
 *  @hw: pointer to the HW structure
 *
 *  The automatic gain control (agc) normalizes the amplitude of the
 *  received signal, adjusting for the attenuation produced by the
 *  cable.  By reading the AGC registers, which represent the
 *  combination of coarse and fine gain value, the value can be put
 *  into a lookup table to obtain the approximate cable length
 *  for each channel.
 **/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, i, agc_value = 0;
	u16 cur_agc_index, max_agc_index = 0;
	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
		IGP02E1000_PHY_AGC_A,
		IGP02E1000_PHY_AGC_B,
		IGP02E1000_PHY_AGC_C,
		IGP02E1000_PHY_AGC_D
	};

	/* Read the AGC registers for all channels */
	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
		if (ret_val)
			return ret_val;

		/* Getting bits 15:9, which represent the combination of
		 * coarse and fine gain values.  The result is a number
		 * that can be put into the lookup table to obtain the
		 * approximate cable length.
		 */
		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
				 IGP02E1000_AGC_LENGTH_MASK);

		/* Array index bound check. */
		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
		    (cur_agc_index == 0))
			return -E1000_ERR_PHY;

		/* Remove min & max AGC values from calculation. */
		if (e1000_igp_2_cable_length_table[min_agc_index] >
		    e1000_igp_2_cable_length_table[cur_agc_index])
			min_agc_index = cur_agc_index;
		if (e1000_igp_2_cable_length_table[max_agc_index] <
		    e1000_igp_2_cable_length_table[cur_agc_index])
			max_agc_index = cur_agc_index;

		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
	}

	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
		      e1000_igp_2_cable_length_table[max_agc_index]);
	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

	/* Calculate cable length with the error range of +/- 10 meters. */
	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return 0;
}

/**
 *  e1000e_get_phy_info_m88 - Retrieve PHY information
 *  @hw: pointer to the HW structure
 *
 *  Valid for only copper links.  Read the PHY status register (sticky read)
 *  to verify that link is up.  Read the PHY special control register to
 *  determine the polarity and 10base-T extended distance.  Read the PHY
 *  special status register to determine MDI/MDIx and current speed.  If
 *  speed is 1000, then determine cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	if (phy->media_type != e1000_media_type_copper) {
		e_dbg("Phy info is only valid for copper media\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy->polarity_correction = !!(phy_data &
				      M88E1000_PSCR_POLARITY_REVERSAL);

	ret_val = e1000_check_polarity_m88(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);

	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
		ret_val = hw->phy.ops.get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
	} else {
		/* Set values to "undefined" */
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
		return -E1000_ERR_CONFIG;
	}

	phy->polarity_correction = true;

	ret_val = e1000_check_polarity_igp(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		ret_val = phy->ops.get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (data & LPA_1000LOCALRXOK)
		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & LPA_1000REMRXOK)
		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
 *  @hw: pointer to the HW structure
 *
 *  Populates "phy" structure with various feature states.
 **/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
	if (ret_val)
		return ret_val;
	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);

	if (phy->polarity_correction) {
		ret_val = e1000_check_polarity_ife(hw);
		if (ret_val)
			return ret_val;
	} else {
		/* Polarity is forced */
		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
				       ? e1000_rev_polarity_reversed
				       : e1000_rev_polarity_normal);
	}

	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);

	/* The following parameters are undefined for 10/100 operation. */
	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
	phy->local_rx = e1000_1000t_rx_status_undefined;
	phy->remote_rx = e1000_1000t_rx_status_undefined;

	return 0;
}

/**
 *  e1000e_phy_sw_reset - PHY software reset
 *  @hw: pointer to the HW structure
 *
 *  Does a software reset of the PHY by reading the PHY control register and
 *  setting/write the control register reset bit to the PHY.
 **/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_ctrl;

	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= BMCR_RESET;
	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
	if (ret_val)
		return ret_val;

	udelay(1);

	return ret_val;
}

/**
 *  e1000e_phy_hw_reset_generic - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Verify the reset block is not blocking us from resetting.  Acquire
 *  semaphore (if necessary) and read/set/write the device control reset
 *  bit in the PHY.  Wait the appropriate delay time for the device to
 *  reset and release the semaphore (if necessary).
 **/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl;

	if (phy->ops.check_reset_block) {
		ret_val = phy->ops.check_reset_block(hw);
		if (ret_val)
			return 0;
	}

	ret_val = phy->ops.acquire(hw);
	if (ret_val)
		return ret_val;

	ctrl = er32(CTRL);
	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
	e1e_flush();

	udelay(phy->reset_delay_us);

	ew32(CTRL, ctrl);
	e1e_flush();

	usleep_range(150, 300);

	phy->ops.release(hw);

	return phy->ops.get_cfg_done(hw);
}

/**
 *  e1000e_get_cfg_done_generic - Generic configuration done
 *  @hw: pointer to the HW structure
 *
 *  Generic function to wait 10 milli-seconds for configuration to complete
 *  and return success.
 **/
s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
{
	mdelay(10);

	return 0;
}

/**
 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
 *  @hw: pointer to the HW structure
 *
 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
 **/
s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
{
	e_dbg("Running IGP 3 PHY init script\n");

	/* PHY init IGP 3 */
	/* Enable rise/fall, 10-mode work in class-A */
	e1e_wphy(hw, 0x2F5B, 0x9018);
	/* Remove all caps from Replica path filter */
	e1e_wphy(hw, 0x2F52, 0x0000);
	/* Bias trimming for ADC, AFE and Driver (Default) */
	e1e_wphy(hw, 0x2FB1, 0x8B24);
	/* Increase Hybrid poly bias */
	e1e_wphy(hw, 0x2FB2, 0xF8F0);
	/* Add 4% to Tx amplitude in Gig mode */
	e1e_wphy(hw, 0x2010, 0x10B0);
	/* Disable trimming (TTT) */
	e1e_wphy(hw, 0x2011, 0x0000);
	/* Poly DC correction to 94.6% + 2% for all channels */
	e1e_wphy(hw, 0x20DD, 0x249A);
	/* ABS DC correction to 95.9% */
	e1e_wphy(hw, 0x20DE, 0x00D3);
	/* BG temp curve trim */
	e1e_wphy(hw, 0x28B4, 0x04CE);
	/* Increasing ADC OPAMP stage 1 currents to max */
	e1e_wphy(hw, 0x2F70, 0x29E4);
	/* Force 1000 ( required for enabling PHY regs configuration) */
	e1e_wphy(hw, 0x0000, 0x0140);
	/* Set upd_freq to 6 */
	e1e_wphy(hw, 0x1F30, 0x1606);
	/* Disable NPDFE */
	e1e_wphy(hw, 0x1F31, 0xB814);
	/* Disable adaptive fixed FFE (Default) */
	e1e_wphy(hw, 0x1F35, 0x002A);
	/* Enable FFE hysteresis */
	e1e_wphy(hw, 0x1F3E, 0x0067);
	/* Fixed FFE for short cable lengths */
	e1e_wphy(hw, 0x1F54, 0x0065);
	/* Fixed FFE for medium cable lengths */
	e1e_wphy(hw, 0x1F55, 0x002A);
	/* Fixed FFE for long cable lengths */
	e1e_wphy(hw, 0x1F56, 0x002A);
	/* Enable Adaptive Clip Threshold */
	e1e_wphy(hw, 0x1F72, 0x3FB0);
	/* AHT reset limit to 1 */
	e1e_wphy(hw, 0x1F76, 0xC0FF);
	/* Set AHT master delay to 127 msec */
	e1e_wphy(hw, 0x1F77, 0x1DEC);
	/* Set scan bits for AHT */
	e1e_wphy(hw, 0x1F78, 0xF9EF);
	/* Set AHT Preset bits */
	e1e_wphy(hw, 0x1F79, 0x0210);
	/* Change integ_factor of channel A to 3 */
	e1e_wphy(hw, 0x1895, 0x0003);
	/* Change prop_factor of channels BCD to 8 */
	e1e_wphy(hw, 0x1796, 0x0008);
	/* Change cg_icount + enable integbp for channels BCD */
	e1e_wphy(hw, 0x1798, 0xD008);
	/* Change cg_icount + enable integbp + change prop_factor_master
	 * to 8 for channel A
	 */
	e1e_wphy(hw, 0x1898, 0xD918);
	/* Disable AHT in Slave mode on channel A */
	e1e_wphy(hw, 0x187A, 0x0800);
	/* Enable LPLU and disable AN to 1000 in non-D0a states,
	 * Enable SPD+B2B
	 */
	e1e_wphy(hw, 0x0019, 0x008D);
	/* Enable restart AN on an1000_dis change */
	e1e_wphy(hw, 0x001B, 0x2080);
	/* Enable wh_fifo read clock in 10/100 modes */
	e1e_wphy(hw, 0x0014, 0x0045);
	/* Restart AN, Speed selection is 1000 */
	e1e_wphy(hw, 0x0000, 0x1340);

	return 0;
}

/**
 *  e1000e_get_phy_type_from_id - Get PHY type from id
 *  @phy_id: phy_id read from the phy
 *
 *  Returns the phy type from the id.
 **/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	switch (phy_id) {
	case M88E1000_I_PHY_ID:
	case M88E1000_E_PHY_ID:
	case M88E1111_I_PHY_ID:
	case M88E1011_I_PHY_ID:
		phy_type = e1000_phy_m88;
		break;
	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
		phy_type = e1000_phy_igp_2;
		break;
	case GG82563_E_PHY_ID:
		phy_type = e1000_phy_gg82563;
		break;
	case IGP03E1000_E_PHY_ID:
		phy_type = e1000_phy_igp_3;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy_type = e1000_phy_ife;
		break;
	case BME1000_E_PHY_ID:
	case BME1000_E_PHY_ID_R2:
		phy_type = e1000_phy_bm;
		break;
	case I82578_E_PHY_ID:
		phy_type = e1000_phy_82578;
		break;
	case I82577_E_PHY_ID:
		phy_type = e1000_phy_82577;
		break;
	case I82579_E_PHY_ID:
		phy_type = e1000_phy_82579;
		break;
	case I217_E_PHY_ID:
		phy_type = e1000_phy_i217;
		break;
	default:
		phy_type = e1000_phy_unknown;
		break;
	}
	return phy_type;
}

/**
 *  e1000e_determine_phy_address - Determines PHY address.
 *  @hw: pointer to the HW structure
 *
 *  This uses a trial and error method to loop through possible PHY
 *  addresses. It tests each by reading the PHY ID registers and
 *  checking for a match.
 **/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
	u32 phy_addr = 0;
	u32 i;
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	hw->phy.id = phy_type;

	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
		hw->phy.addr = phy_addr;
		i = 0;

		do {
			e1000e_get_phy_id(hw);
			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);

			/* If phy_type is valid, break - we found our
			 * PHY address
			 */
			if (phy_type != e1000_phy_unknown)
				return 0;

			usleep_range(1000, 2000);
			i++;
		} while (i < 10);
	}

	return -E1000_ERR_PHY_TYPE;
}

/**
 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
 *  @page: page to access
 *
 *  Returns the phy address for the page requested.
 **/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
	u32 phy_addr = 2;

	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000e_write_phy_reg_bm - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false, false);
		goto release;
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		u32 page_shift, page_select;

		/* Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
						    (page << page_shift));
		if (ret_val)
			goto release;
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);

release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  e1000e_read_phy_reg_bm - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true, false);
		goto release;
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		u32 page_shift, page_select;

		/* Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
						    (page << page_shift));
		if (ret_val)
			goto release;
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true, false);
		goto release;
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

		if (ret_val)
			goto release;
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false, false);
		goto release;
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

		if (ret_val)
			goto release;
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);

release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
 *  @hw: pointer to the HW structure
 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
 *
 *  Assumes semaphore already acquired and phy_reg points to a valid memory
 *  address to store contents of the BM_WUC_ENABLE_REG register.
 **/
s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
	s32 ret_val;
	u16 temp;

	/* All page select, port ctrl and wakeup registers use phy address 1 */
	hw->phy.addr = 1;

	/* Select Port Control Registers page */
	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
	if (ret_val) {
		e_dbg("Could not set Port Control page\n");
		return ret_val;
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
	if (ret_val) {
		e_dbg("Could not read PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
		return ret_val;
	}

	/* Enable both PHY wakeup mode and Wakeup register page writes.
	 * Prevent a power state change by disabling ME and Host PHY wakeup.
	 */
	temp = *phy_reg;
	temp |= BM_WUC_ENABLE_BIT;
	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);

	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
	if (ret_val) {
		e_dbg("Could not write PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
		return ret_val;
	}

	/* Select Host Wakeup Registers page - caller now able to write
	 * registers on the Wakeup registers page
	 */
	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
}

/**
 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
 *  @hw: pointer to the HW structure
 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
 *
 *  Restore BM_WUC_ENABLE_REG to its original value.
 *
 *  Assumes semaphore already acquired and *phy_reg is the contents of the
 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
 *  caller.
 **/
s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
	s32 ret_val;

	/* Select Port Control Registers page */
	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
	if (ret_val) {
		e_dbg("Could not set Port Control page\n");
		return ret_val;
	}

	/* Restore 769.17 to its original value */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
	if (ret_val)
		e_dbg("Could not restore PHY register %d.%d\n",
		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);

	return ret_val;
}

/**
 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to read or write
 *  @read: determines if operation is read or write
 *  @page_set: BM_WUC_PAGE already set and access enabled
 *
 *  Read the PHY register at offset and store the retrieved information in
 *  data, or write data to PHY register at offset.  Note the procedure to
 *  access the PHY wakeup registers is different than reading the other PHY
 *  registers. It works as such:
 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
 *  2) Set page to 800 for host (801 if we were manageability)
 *  3) Write the address using the address opcode (0x11)
 *  4) Read or write the data using the data opcode (0x12)
 *  5) Restore 769.17.2 to its original value
 *
 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
 *
 *  Assumes semaphore is already acquired.  When page_set==true, assumes
 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
 **/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read, bool page_set)
{
	s32 ret_val;
	u16 reg = BM_PHY_REG_NUM(offset);
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 phy_reg = 0;

	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
	if ((hw->mac.type == e1000_pchlan) &&
	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
		e_dbg("Attempting to access page %d while gig enabled.\n",
		      page);

	if (!page_set) {
		/* Enable access to PHY wakeup registers */
		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
		if (ret_val) {
			e_dbg("Could not enable PHY wakeup reg access\n");
			return ret_val;
		}
	}

	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);

	/* Write the Wakeup register page offset value using opcode 0x11 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
	if (ret_val) {
		e_dbg("Could not write address opcode to page %d\n", page);
		return ret_val;
	}

	if (read) {
		/* Read the Wakeup register page value using opcode 0x12 */
		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
						   data);
	} else {
		/* Write the Wakeup register page value using opcode 0x12 */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
						    *data);
	}

	if (ret_val) {
		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
		return ret_val;
	}

	if (!page_set)
		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

	return ret_val;
}

/**
 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, MII_BMCR, &mii_reg);
	mii_reg &= ~BMCR_PDOWN;
	e1e_wphy(hw, MII_BMCR, mii_reg);
}

/**
 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, MII_BMCR, &mii_reg);
	mii_reg |= BMCR_PDOWN;
	e1e_wphy(hw, MII_BMCR, mii_reg);
	usleep_range(1000, 2000);
}

/**
 *  __e1000_read_phy_reg_hv -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *  @locked: semaphore has already been acquired or not
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and stores the retrieved information in data.  Release any acquired
 *  semaphore before exiting.
 **/
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
				   bool locked, bool page_set)
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);
	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);

	if (!locked) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
	}

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true, page_set);
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
							 data, true);
		goto out;
	}

	if (!page_set) {
		if (page == HV_INTC_FC_PAGE_START)
			page = 0;

		if (reg > MAX_PHY_MULTI_PAGE_REG) {
			/* Page is shifted left, PHY expects (page x 32) */
			ret_val = e1000_set_page_igp(hw,
						     (page << IGP_PAGE_SHIFT));

			hw->phy.addr = phy_addr;

			if (ret_val)
				goto out;
		}
	}

	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
	      page << IGP_PAGE_SHIFT, reg);

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
out:
	if (!locked)
		hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_read_phy_reg_hv -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores
 *  the retrieved information in data.  Release the acquired semaphore
 *  before exiting.
 **/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
}

/**
 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
}

/**
 *  e1000_read_phy_reg_page_hv - Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired and page already set.
 **/
s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
}

/**
 *  __e1000_write_phy_reg_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *  @locked: semaphore has already been acquired or not
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
				    bool locked, bool page_set)
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);
	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);

	if (!locked) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
	}

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false, page_set);
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
							 &data, false);
		goto out;
	}

	if (!page_set) {
		if (page == HV_INTC_FC_PAGE_START)
			page = 0;

		/* Workaround MDIO accesses being disabled after entering IEEE
		 * Power Down (when bit 11 of the PHY Control register is set)
		 */
		if ((hw->phy.type == e1000_phy_82578) &&
		    (hw->phy.revision >= 1) &&
		    (hw->phy.addr == 2) &&
		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
			u16 data2 = 0x7EFF;

			ret_val = e1000_access_phy_debug_regs_hv(hw,
								 (1 << 6) | 0x3,
								 &data2, false);
			if (ret_val)
				goto out;
		}

		if (reg > MAX_PHY_MULTI_PAGE_REG) {
			/* Page is shifted left, PHY expects (page x 32) */
			ret_val = e1000_set_page_igp(hw,
						     (page << IGP_PAGE_SHIFT));

			hw->phy.addr = phy_addr;

			if (ret_val)
				goto out;
		}
	}

	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
	      page << IGP_PAGE_SHIFT, reg);

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
					    data);

out:
	if (!locked)
		hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_write_phy_reg_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register at the offset.
 *  Release the acquired semaphores before exiting.
 **/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
}

/**
 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired.
 **/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
}

/**
 *  e1000_write_phy_reg_page_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired and page already set.
 **/
s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
}

/**
 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
 *  @page: page to be accessed
 **/
static u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
	u32 phy_addr = 2;

	if (page >= HV_INTC_FC_PAGE_START)
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to be read or written
 *  @read: determines if operation is read or write
 *
 *  Reads the PHY register at offset and stores the retreived information
 *  in data.  Assumes semaphore already acquired.  Note that the procedure
 *  to access these regs uses the address port and data port to read/write.
 *  These accesses done with PHY address 2 and without using pages.
 **/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read)
{
	s32 ret_val;
	u32 addr_reg;
	u32 data_reg;

	/* This takes care of the difference with desktop vs mobile phy */
	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
		    I82578_ADDR_REG : I82577_ADDR_REG);
	data_reg = addr_reg + 1;

	/* All operations in this function are phy address 2 */
	hw->phy.addr = 2;

	/* masking with 0x3F to remove the page from offset */
	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
	if (ret_val) {
		e_dbg("Could not write the Address Offset port register\n");
		return ret_val;
	}

	/* Read or write the data value next */
	if (read)
		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
	else
		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);

	if (ret_val)
		e_dbg("Could not access the Data port register\n");

	return ret_val;
}

/**
 *  e1000_link_stall_workaround_hv - Si workaround
 *  @hw: pointer to the HW structure
 *
 *  This function works around a Si bug where the link partner can get
 *  a link up indication before the PHY does.  If small packets are sent
 *  by the link partner they can be placed in the packet buffer without
 *  being properly accounted for by the PHY and will stall preventing
 *  further packets from being received.  The workaround is to clear the
 *  packet buffer after the PHY detects link up.
 **/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 data;

	if (hw->phy.type != e1000_phy_82578)
		return 0;

	/* Do not apply workaround if in PHY loopback bit 14 set */
	e1e_rphy(hw, MII_BMCR, &data);
	if (data & BMCR_LOOPBACK)
		return 0;

	/* check if link is up and at 1Gbps */
	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
	if (ret_val)
		return ret_val;

	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
		 BM_CS_STATUS_SPEED_MASK);

	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
		     BM_CS_STATUS_SPEED_1000))
		return 0;

	msleep(200);

	/* flush the packets in the fifo buffer */
	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
			    HV_MUX_DATA_CTRL_FORCE_SPEED));
	if (ret_val)
		return ret_val;

	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
}

/**
 *  e1000_check_polarity_82577 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);

	if (!ret_val)
		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
				       ? e1000_rev_polarity_reversed
				       : e1000_rev_polarity_normal);

	return ret_val;
}

/**
 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.
 **/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
	if (ret_val)
		return ret_val;

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;

		if (!link)
			e_dbg("Link taking longer than expected.\n");

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
	}

	return ret_val;
}

/**
 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
		return -E1000_ERR_CONFIG;
	}

	phy->polarity_correction = true;

	ret_val = e1000_check_polarity_82577(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);

	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
		ret_val = hw->phy.ops.get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (data & LPA_1000LOCALRXOK)
		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & LPA_1000REMRXOK)
		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return 0;
}

/**
 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
 *  @hw: pointer to the HW structure
 *
 * Reads the diagnostic status register and verifies result is valid before
 * placing it in the phy_cable_length field.
 **/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, length;

	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);

	if (length == E1000_CABLE_LENGTH_UNDEFINED)
		return -E1000_ERR_PHY;

	phy->cable_length = length;

	return 0;
}