devices/e1000/e1000_main-2.6.13-ethercat.c
author Edouard Tisserant <edouard.tisserant@gmail.com>
Sun, 07 Oct 2018 17:05:42 +0200
branchstable-1.5
changeset 2725 e008dc9d8c9f
parent 2582 87e502828b3f
permissions -rw-r--r--
merged
/*******************************************************************************

  
  Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  
  This program is free software; you can redistribute it and/or modify it 
  under the terms of the GNU General Public License as published by the Free 
  Software Foundation; either version 2 of the License, or (at your option) 
  any later version.
  
  This program is distributed in the hope that it will be useful, but WITHOUT 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
  more details.
  
  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59 
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  
  The full GNU General Public License is included in this distribution in the
  file called LICENSE.
  
  Contact Information:
  Linux NICS <linux.nics@intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

  vim: noexpandtab

*******************************************************************************/

#include "e1000-2.6.13-ethercat.h"

/* Change Log
 * 6.0.58       4/20/05
 *   o Accepted ethtool cleanup patch from Stephen Hemminger 
 * 6.0.44+	2/15/05
 *   o applied Anton's patch to resolve tx hang in hardware
 *   o Applied Andrew Mortons patch - e1000 stops working after resume
 */

char e1000_driver_name[] = "ec_e1000";
static char e1000_driver_string[] = "EtherCAT Intel(R) PRO/1000 Network Driver";
#ifndef CONFIG_E1000_NAPI
#define DRIVERNAPI
#else
#define DRIVERNAPI "-NAPI"
#endif
#define DRV_VERSION		"6.0.60-k2"DRIVERNAPI
char e1000_driver_version[] = DRV_VERSION;
char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";

/* e1000_pci_tbl - PCI Device ID Table
 *
 * Last entry must be all 0s
 *
 * Macro expands to...
 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
 */
static struct pci_device_id e1000_pci_tbl[] = {
	INTEL_E1000_ETHERNET_DEVICE(0x1000),
	INTEL_E1000_ETHERNET_DEVICE(0x1001),
	INTEL_E1000_ETHERNET_DEVICE(0x1004),
	INTEL_E1000_ETHERNET_DEVICE(0x1008),
	INTEL_E1000_ETHERNET_DEVICE(0x1009),
	INTEL_E1000_ETHERNET_DEVICE(0x100C),
	INTEL_E1000_ETHERNET_DEVICE(0x100D),
	INTEL_E1000_ETHERNET_DEVICE(0x100E),
	INTEL_E1000_ETHERNET_DEVICE(0x100F),
	INTEL_E1000_ETHERNET_DEVICE(0x1010),
	INTEL_E1000_ETHERNET_DEVICE(0x1011),
	INTEL_E1000_ETHERNET_DEVICE(0x1012),
	INTEL_E1000_ETHERNET_DEVICE(0x1013),
	INTEL_E1000_ETHERNET_DEVICE(0x1014),
	INTEL_E1000_ETHERNET_DEVICE(0x1015),
	INTEL_E1000_ETHERNET_DEVICE(0x1016),
	INTEL_E1000_ETHERNET_DEVICE(0x1017),
	INTEL_E1000_ETHERNET_DEVICE(0x1018),
	INTEL_E1000_ETHERNET_DEVICE(0x1019),
	INTEL_E1000_ETHERNET_DEVICE(0x101A),
	INTEL_E1000_ETHERNET_DEVICE(0x101D),
	INTEL_E1000_ETHERNET_DEVICE(0x101E),
	INTEL_E1000_ETHERNET_DEVICE(0x1026),
	INTEL_E1000_ETHERNET_DEVICE(0x1027),
	INTEL_E1000_ETHERNET_DEVICE(0x1028),
	INTEL_E1000_ETHERNET_DEVICE(0x1075),
	INTEL_E1000_ETHERNET_DEVICE(0x1076),
	INTEL_E1000_ETHERNET_DEVICE(0x1077),
	INTEL_E1000_ETHERNET_DEVICE(0x1078),
	INTEL_E1000_ETHERNET_DEVICE(0x1079),
	INTEL_E1000_ETHERNET_DEVICE(0x107A),
	INTEL_E1000_ETHERNET_DEVICE(0x107B),
	INTEL_E1000_ETHERNET_DEVICE(0x107C),
	INTEL_E1000_ETHERNET_DEVICE(0x108A),
	INTEL_E1000_ETHERNET_DEVICE(0x108B),
	INTEL_E1000_ETHERNET_DEVICE(0x108C),
	INTEL_E1000_ETHERNET_DEVICE(0x1099),
	/* required last entry */
	{0,}
};

// do not auto-load driver
// MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

int e1000_up(struct e1000_adapter *adapter);
void e1000_down(struct e1000_adapter *adapter);
void e1000_reset(struct e1000_adapter *adapter);
int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
int e1000_setup_tx_resources(struct e1000_adapter *adapter);
int e1000_setup_rx_resources(struct e1000_adapter *adapter);
void e1000_free_tx_resources(struct e1000_adapter *adapter);
void e1000_free_rx_resources(struct e1000_adapter *adapter);
void e1000_update_stats(struct e1000_adapter *adapter);

/* Local Function Prototypes */

static int e1000_init_module(void);
static void e1000_exit_module(void);
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void __devexit e1000_remove(struct pci_dev *pdev);
static int e1000_sw_init(struct e1000_adapter *adapter);
static int e1000_open(struct net_device *netdev);
static int e1000_close(struct net_device *netdev);
static void e1000_configure_tx(struct e1000_adapter *adapter);
static void e1000_configure_rx(struct e1000_adapter *adapter);
static void e1000_setup_rctl(struct e1000_adapter *adapter);
static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
static void e1000_set_multi(struct net_device *netdev);
static void e1000_update_phy_info(unsigned long data);
static void e1000_watchdog(unsigned long data);
static void e1000_watchdog_task(struct e1000_adapter *adapter);
static void e1000_82547_tx_fifo_stall(unsigned long data);
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
static int e1000_set_mac(struct net_device *netdev, void *p);
void ec_poll(struct net_device *);
static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
#ifdef CONFIG_E1000_NAPI
static int e1000_clean(struct net_device *netdev, int *budget);
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
                                    int *work_done, int work_to_do);
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
                                       int *work_done, int work_to_do);
#else
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
#endif
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd);
void e1000_set_ethtool_ops(struct net_device *netdev);
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
static void e1000_tx_timeout(struct net_device *dev);
static void e1000_tx_timeout_task(struct net_device *dev);
static void e1000_smartspeed(struct e1000_adapter *adapter);
static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
					      struct sk_buff *skb);

static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
static void e1000_restore_vlan(struct e1000_adapter *adapter);

#ifdef CONFIG_PM
static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
static int e1000_resume(struct pci_dev *pdev);
#endif

#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void e1000_netpoll (struct net_device *netdev);
#endif

/* Exported from other modules */

extern void e1000_check_options(struct e1000_adapter *adapter);

static struct pci_driver e1000_driver = {
	.name     = e1000_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
	/* Power Managment Hooks */
#ifdef CONFIG_PM
	.suspend  = e1000_suspend,
	.resume   = e1000_resume
#endif
};

MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>");
MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/

static int __init
e1000_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       e1000_driver_string, e1000_driver_version);

	printk(KERN_INFO "%s\n", e1000_copyright);

	ret = pci_module_init(&e1000_driver);

	return ret;
}

module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/

static void __exit
e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}

module_exit(e1000_exit_module);

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/

static inline void
e1000_irq_disable(struct e1000_adapter *adapter)
{
    if (adapter->ecdev)
        return;
	atomic_inc(&adapter->irq_sem);
	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
	E1000_WRITE_FLUSH(&adapter->hw);
	synchronize_irq(adapter->pdev->irq);
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/

static inline void
e1000_irq_enable(struct e1000_adapter *adapter)
{
    if (adapter->ecdev)
        return;
	if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
		E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
		E1000_WRITE_FLUSH(&adapter->hw);
	}
}
void
e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	uint16_t vid = adapter->hw.mng_cookie.vlan_id;
	uint16_t old_vid = adapter->mng_vlan_id;
	if(adapter->vlgrp) {
		if(!adapter->vlgrp->vlan_devices[vid]) {
			if(adapter->hw.mng_cookie.status &
				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
				e1000_vlan_rx_add_vid(netdev, vid);
				adapter->mng_vlan_id = vid;
			} else
				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
				
			if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
					(vid != old_vid) && 
					!adapter->vlgrp->vlan_devices[old_vid])
				e1000_vlan_rx_kill_vid(netdev, old_vid);
		}
	}
}
	
int
e1000_up(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

	/* hardware has been reset, we need to reload some things */

	/* Reset the PHY if it was previously powered down */
	if(adapter->hw.media_type == e1000_media_type_copper) {
		uint16_t mii_reg;
		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
		if(mii_reg & MII_CR_POWER_DOWN)
			e1000_phy_reset(&adapter->hw);
	}

	e1000_set_multi(netdev);

	e1000_restore_vlan(adapter);

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
	adapter->alloc_rx_buf(adapter);

#ifdef CONFIG_PCI_MSI
	if(adapter->hw.mac_type > e1000_82547_rev_2) {
		adapter->have_msi = TRUE;
		if((err = pci_enable_msi(adapter->pdev))) {
			DPRINTK(PROBE, ERR,
			 "Unable to allocate MSI interrupt Error: %d\n", err);
			adapter->have_msi = FALSE;
		}
	}
#endif
    if (!adapter->ecdev) {
        if((err = request_irq(adapter->pdev->irq, &e1000_intr,
                        SA_SHIRQ | SA_SAMPLE_RANDOM,
                        netdev->name, netdev))) {
            DPRINTK(PROBE, ERR,
                    "Unable to allocate interrupt Error: %d\n", err);
            return err;
        }

        mod_timer(&adapter->watchdog_timer, jiffies);

#ifdef CONFIG_E1000_NAPI
        netif_poll_enable(netdev);
#endif
        e1000_irq_enable(adapter);
    }

	return 0;
}

void
e1000_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

    if (!adapter->ecdev) {
        e1000_irq_disable(adapter);
        free_irq(adapter->pdev->irq, netdev);
    }
#ifdef CONFIG_PCI_MSI
	if(adapter->hw.mac_type > e1000_82547_rev_2 &&
	   adapter->have_msi == TRUE)
		pci_disable_msi(adapter->pdev);
#endif
    if (!adapter->ecdev) {
        del_timer_sync(&adapter->tx_fifo_stall_timer);
        del_timer_sync(&adapter->watchdog_timer);
        del_timer_sync(&adapter->phy_info_timer);

#ifdef CONFIG_E1000_NAPI
        netif_poll_disable(netdev);
#endif
    }
	adapter->link_speed = 0;
	adapter->link_duplex = 0;
	if (!adapter->ecdev) {
		netif_carrier_off(netdev);
		netif_stop_queue(netdev);
	}

	e1000_reset(adapter);
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

	/* If WoL is not enabled
	 * and management mode is not IAMT
	 * Power down the PHY so no link is implied when interface is down */
	if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
	   adapter->hw.media_type == e1000_media_type_copper &&
	   !e1000_check_mng_mode(&adapter->hw) &&
	   !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
		uint16_t mii_reg;
		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
		mii_reg |= MII_CR_POWER_DOWN;
		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
		mdelay(1);
	}
}

void
e1000_reset(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	uint32_t pba, manc;
	uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
	uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */

	switch (adapter->hw.mac_type) {
	case e1000_82547:
	case e1000_82547_rev_2:
		pba = E1000_PBA_30K;
		break;
	case e1000_82573:
		pba = E1000_PBA_12K;
		break;
	default:
		pba = E1000_PBA_48K;
		break;
	}

	if((adapter->hw.mac_type != e1000_82573) &&
	   (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
		pba -= 8; /* allocate more FIFO for Tx */
		/* send an XOFF when there is enough space in the
		 * Rx FIFO to hold one extra full size Rx packet 
		*/
		fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
					ETHERNET_FCS_SIZE + 1;
		fc_low_water_mark = fc_high_water_mark + 8;
	}


	if(adapter->hw.mac_type == e1000_82547) {
		adapter->tx_fifo_head = 0;
		adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
		adapter->tx_fifo_size =
			(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
		atomic_set(&adapter->tx_fifo_stall, 0);
	}

	E1000_WRITE_REG(&adapter->hw, PBA, pba);

	/* flow control settings */
	adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
				    fc_high_water_mark;
	adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
				   fc_low_water_mark;
	adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
	adapter->hw.fc_send_xon = 1;
	adapter->hw.fc = adapter->hw.original_fc;

	/* Allow time for pending master requests to run */
	e1000_reset_hw(&adapter->hw);
	if(adapter->hw.mac_type >= e1000_82544)
		E1000_WRITE_REG(&adapter->hw, WUC, 0);
	if(e1000_init_hw(&adapter->hw))
		DPRINTK(PROBE, ERR, "Hardware Error\n");
	e1000_update_mng_vlan(adapter);
	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);

	e1000_reset_adaptive(&adapter->hw);
	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
	if (adapter->en_mng_pt) {
		manc = E1000_READ_REG(&adapter->hw, MANC);
		manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
		E1000_WRITE_REG(&adapter->hw, MANC, manc);
	}
}

/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/

static int __devinit
e1000_probe(struct pci_dev *pdev,
            const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	unsigned long mmio_start, mmio_len;
	uint32_t swsm;

	static int cards_found = 0;
	int i, err, pci_using_dac;
	uint16_t eeprom_data;
	uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
	if((err = pci_enable_device(pdev)))
		return err;

	if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
		pci_using_dac = 1;
	} else {
		if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
			E1000_ERR("No usable DMA configuration, aborting\n");
			return err;
		}
		pci_using_dac = 0;
	}

	if((err = pci_request_regions(pdev, e1000_driver_name)))
		return err;

	pci_set_master(pdev);

	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if(!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_MODULE_OWNER(netdev);
	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->hw.back = adapter;
	adapter->msg_enable = (1 << debug) - 1;

	mmio_start = pci_resource_start(pdev, BAR_0);
	mmio_len = pci_resource_len(pdev, BAR_0);

	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if(!adapter->hw.hw_addr) {
		err = -EIO;
		goto err_ioremap;
	}

	for(i = BAR_1; i <= BAR_5; i++) {
		if(pci_resource_len(pdev, i) == 0)
			continue;
		if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
			adapter->hw.io_base = pci_resource_start(pdev, i);
			break;
		}
	}

	netdev->open = &e1000_open;
	netdev->stop = &e1000_close;
	netdev->hard_start_xmit = &e1000_xmit_frame;
	netdev->get_stats = &e1000_get_stats;
	netdev->set_multicast_list = &e1000_set_multi;
	netdev->set_mac_address = &e1000_set_mac;
	netdev->change_mtu = &e1000_change_mtu;
	netdev->do_ioctl = &e1000_ioctl;
	e1000_set_ethtool_ops(netdev);
	netdev->tx_timeout = &e1000_tx_timeout;
	netdev->watchdog_timeo = 5 * HZ;
#ifdef CONFIG_E1000_NAPI
	netdev->poll = &e1000_clean;
	netdev->weight = 64;
#endif
	netdev->vlan_rx_register = e1000_vlan_rx_register;
	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
#ifdef CONFIG_NET_POLL_CONTROLLER
	netdev->poll_controller = e1000_netpoll;
#endif
	strcpy(netdev->name, pci_name(pdev));

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;
	netdev->base_addr = adapter->hw.io_base;

	adapter->bd_number = cards_found;

	/* setup the private structure */

	if((err = e1000_sw_init(adapter)))
		goto err_sw_init;

	if((err = e1000_check_phy_reset_block(&adapter->hw)))
		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");

	if(adapter->hw.mac_type >= e1000_82543) {
		netdev->features = NETIF_F_SG |
				   NETIF_F_HW_CSUM |
				   NETIF_F_HW_VLAN_TX |
				   NETIF_F_HW_VLAN_RX |
				   NETIF_F_HW_VLAN_FILTER;
	}

#ifdef NETIF_F_TSO
	if((adapter->hw.mac_type >= e1000_82544) &&
	   (adapter->hw.mac_type != e1000_82547))
		netdev->features |= NETIF_F_TSO;

#ifdef NETIF_F_TSO_IPV6
	if(adapter->hw.mac_type > e1000_82547_rev_2)
		netdev->features |= NETIF_F_TSO_IPV6;
#endif
#endif
	if(pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

 	/* hard_start_xmit is safe against parallel locking */
 	netdev->features |= NETIF_F_LLTX; 
 
	adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);

	/* before reading the EEPROM, reset the controller to 
	 * put the device in a known good starting state */
	
	e1000_reset_hw(&adapter->hw);

	/* make sure the EEPROM is good */

	if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the EEPROM */

	if(e1000_read_mac_addr(&adapter->hw))
		DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);

	if(!is_valid_ether_addr(netdev->dev_addr)) {
		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

	e1000_read_part_num(&adapter->hw, &(adapter->part_num));

	e1000_get_bus_info(&adapter->hw);

	init_timer(&adapter->tx_fifo_stall_timer);
	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;

	init_timer(&adapter->watchdog_timer);
	adapter->watchdog_timer.function = &e1000_watchdog;
	adapter->watchdog_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->watchdog_task,
		(void (*)(void *))e1000_watchdog_task, adapter);

	init_timer(&adapter->phy_info_timer);
	adapter->phy_info_timer.function = &e1000_update_phy_info;
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->tx_timeout_task,
		(void (*)(void *))e1000_tx_timeout_task, netdev);

	/* we're going to reset, so assume we have no link for now */

	if (!adapter->ecdev) {
		netif_carrier_off(netdev);
		netif_stop_queue(netdev);
	}

	e1000_check_options(adapter);

	/* Initial Wake on LAN setting
	 * If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

	switch(adapter->hw.mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
	case e1000_82543:
		break;
	case e1000_82544:
		e1000_read_eeprom(&adapter->hw,
			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
		eeprom_apme_mask = E1000_EEPROM_82544_APM;
		break;
	case e1000_82546:
	case e1000_82546_rev_3:
		if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
		   && (adapter->hw.media_type == e1000_media_type_copper)) {
			e1000_read_eeprom(&adapter->hw,
				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
			break;
		}
		/* Fall Through */
	default:
		e1000_read_eeprom(&adapter->hw,
			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
		break;
	}
	if(eeprom_data & eeprom_apme_mask)
		adapter->wol |= E1000_WUFC_MAG;

	/* reset the hardware with the new settings */
	e1000_reset(adapter);

	/* Let firmware know the driver has taken over */
	switch(adapter->hw.mac_type) {
	case e1000_82573:
		swsm = E1000_READ_REG(&adapter->hw, SWSM);
		E1000_WRITE_REG(&adapter->hw, SWSM,
				swsm | E1000_SWSM_DRV_LOAD);
		break;
	default:
		break;
	}

	// offer device to EtherCAT master module
	adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE);
	if (adapter->ecdev) {
		err = ecdev_open(adapter->ecdev);
		if (err) {
			ecdev_withdraw(adapter->ecdev);
			goto err_register;
		}
	} else {
		strcpy(netdev->name, "eth%d");
		if ((err = register_netdev(netdev)))
			goto err_register;
	}

	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");

	cards_found++;
	return 0;

err_register:
err_sw_init:
err_eeprom:
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
	pci_release_regions(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/

static void __devexit
e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	uint32_t manc, swsm;

	flush_scheduled_work();

	if(adapter->hw.mac_type >= e1000_82540 &&
	   adapter->hw.media_type == e1000_media_type_copper) {
		manc = E1000_READ_REG(&adapter->hw, MANC);
		if(manc & E1000_MANC_SMBUS_EN) {
			manc |= E1000_MANC_ARP_EN;
			E1000_WRITE_REG(&adapter->hw, MANC, manc);
		}
	}

	switch(adapter->hw.mac_type) {
	case e1000_82573:
		swsm = E1000_READ_REG(&adapter->hw, SWSM);
		E1000_WRITE_REG(&adapter->hw, SWSM,
				swsm & ~E1000_SWSM_DRV_LOAD);
		break;

	default:
		break;
	}

	if (adapter->ecdev) {
		ecdev_close(adapter->ecdev);
		ecdev_withdraw(adapter->ecdev);
	} else {
		unregister_netdev(netdev);
	}

	if(!e1000_check_phy_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);

	iounmap(adapter->hw.hw_addr);
	pci_release_regions(pdev);

	free_netdev(netdev);

	pci_disable_device(pdev);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/

static int __devinit
e1000_sw_init(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	/* PCI config space info */

	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_id = pdev->subsystem_device;

	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);

	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);

	adapter->rx_buffer_len = E1000_RXBUFFER_2048;
	adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
	hw->max_frame_size = netdev->mtu +
			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;

	/* identify the MAC */

	if(e1000_set_mac_type(hw)) {
		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
		return -EIO;
	}

	/* initialize eeprom parameters */

	if(e1000_init_eeprom_params(hw)) {
		E1000_ERR("EEPROM initialization failed\n");
		return -EIO;
	}

	switch(hw->mac_type) {
	default:
		break;
	case e1000_82541:
	case e1000_82547:
	case e1000_82541_rev_2:
	case e1000_82547_rev_2:
		hw->phy_init_script = 1;
		break;
	}

	e1000_set_media_type(hw);

	hw->wait_autoneg_complete = FALSE;
	hw->tbi_compatibility_en = TRUE;
	hw->adaptive_ifs = TRUE;

	/* Copper options */

	if(hw->media_type == e1000_media_type_copper) {
		hw->mdix = AUTO_ALL_MODES;
		hw->disable_polarity_correction = FALSE;
		hw->master_slave = E1000_MASTER_SLAVE;
	}

	atomic_set(&adapter->irq_sem, 1);
	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tx_lock);

	return 0;
}

/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/

static int
e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int err;

	/* allocate transmit descriptors */

	if((err = e1000_setup_tx_resources(adapter)))
		goto err_setup_tx;

	/* allocate receive descriptors */

	if((err = e1000_setup_rx_resources(adapter)))
		goto err_setup_rx;

	if((err = e1000_up(adapter)))
		goto err_up;
	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
		e1000_update_mng_vlan(adapter);
	}

	return E1000_SUCCESS;

err_up:
	e1000_free_rx_resources(adapter);
err_setup_rx:
	e1000_free_tx_resources(adapter);
err_setup_tx:
	e1000_reset(adapter);

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/

static int
e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	e1000_down(adapter);

	e1000_free_tx_resources(adapter);
	e1000_free_rx_resources(adapter);

	if((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
	}
	return 0;
}

/**
 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
 * @adapter: address of board private structure
 * @start: address of beginning of memory
 * @len: length of memory
 **/
static inline boolean_t
e1000_check_64k_bound(struct e1000_adapter *adapter,
		      void *start, unsigned long len)
{
	unsigned long begin = (unsigned long) start;
	unsigned long end = begin + len;

	/* First rev 82545 and 82546 need to not allow any memory
	 * write location to cross 64k boundary due to errata 23 */
	if (adapter->hw.mac_type == e1000_82545 ||
	    adapter->hw.mac_type == e1000_82546) {
		return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
	}

	return TRUE;
}

/**
 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/

int
e1000_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *txdr = &adapter->tx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int size;

	size = sizeof(struct e1000_buffer) * txdr->count;
	txdr->buffer_info = vmalloc(size);
	if(!txdr->buffer_info) {
		DPRINTK(PROBE, ERR,
		"Unable to allocate memory for the transmit descriptor ring\n");
		return -ENOMEM;
	}
	memset(txdr->buffer_info, 0, size);

	/* round up to nearest 4K */

	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
	E1000_ROUNDUP(txdr->size, 4096);

	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
	if(!txdr->desc) {
setup_tx_desc_die:
		vfree(txdr->buffer_info);
		DPRINTK(PROBE, ERR,
		"Unable to allocate memory for the transmit descriptor ring\n");
		return -ENOMEM;
	}

	/* Fix for errata 23, can't cross 64kB boundary */
	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
		void *olddesc = txdr->desc;
		dma_addr_t olddma = txdr->dma;
		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
				     "at %p\n", txdr->size, txdr->desc);
		/* Try again, without freeing the previous */
		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
		if(!txdr->desc) {
		/* Failed allocation, critical failure */
			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
			goto setup_tx_desc_die;
		}

		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
			/* give up */
			pci_free_consistent(pdev, txdr->size, txdr->desc,
					    txdr->dma);
			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
			DPRINTK(PROBE, ERR,
				"Unable to allocate aligned memory "
				"for the transmit descriptor ring\n");
			vfree(txdr->buffer_info);
			return -ENOMEM;
		} else {
			/* Free old allocation, new allocation was successful */
			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
		}
	}
	memset(txdr->desc, 0, txdr->size);

	txdr->next_to_use = 0;
	txdr->next_to_clean = 0;

	return 0;
}

/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/

static void
e1000_configure_tx(struct e1000_adapter *adapter)
{
	uint64_t tdba = adapter->tx_ring.dma;
	uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
	uint32_t tctl, tipg;

	E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
	E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));

	E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);

	/* Setup the HW Tx Head and Tail descriptor pointers */

	E1000_WRITE_REG(&adapter->hw, TDH, 0);
	E1000_WRITE_REG(&adapter->hw, TDT, 0);

	/* Set the default values for the Tx Inter Packet Gap timer */

	switch (adapter->hw.mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
		tipg = DEFAULT_82542_TIPG_IPGT;
		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
		break;
	default:
		if(adapter->hw.media_type == e1000_media_type_fiber ||
		   adapter->hw.media_type == e1000_media_type_internal_serdes)
			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
		else
			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
	}
	E1000_WRITE_REG(&adapter->hw, TIPG, tipg);

	/* Set the Tx Interrupt Delay register */

	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
	if(adapter->hw.mac_type >= e1000_82540)
		E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);

	/* Program the Transmit Control Register */

	tctl = E1000_READ_REG(&adapter->hw, TCTL);

	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	E1000_WRITE_REG(&adapter->hw, TCTL, tctl);

	e1000_config_collision_dist(&adapter->hw);

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
		E1000_TXD_CMD_IFCS;

	if(adapter->hw.mac_type < e1000_82543)
		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
	else
		adapter->txd_cmd |= E1000_TXD_CMD_RS;

	/* Cache if we're 82544 running in PCI-X because we'll
	 * need this to apply a workaround later in the send path. */
	if(adapter->hw.mac_type == e1000_82544 &&
	   adapter->hw.bus_type == e1000_bus_type_pcix)
		adapter->pcix_82544 = 1;
}

/**
 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/

int
e1000_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rxdr = &adapter->rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int size, desc_len;

	size = sizeof(struct e1000_buffer) * rxdr->count;
	rxdr->buffer_info = vmalloc(size);
	if(!rxdr->buffer_info) {
		DPRINTK(PROBE, ERR,
		"Unable to allocate memory for the receive descriptor ring\n");
		return -ENOMEM;
	}
	memset(rxdr->buffer_info, 0, size);

	size = sizeof(struct e1000_ps_page) * rxdr->count;
	rxdr->ps_page = kmalloc(size, GFP_KERNEL);
	if(!rxdr->ps_page) {
		vfree(rxdr->buffer_info);
		DPRINTK(PROBE, ERR,
		"Unable to allocate memory for the receive descriptor ring\n");
		return -ENOMEM;
	}
	memset(rxdr->ps_page, 0, size);

	size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
	rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
	if(!rxdr->ps_page_dma) {
		vfree(rxdr->buffer_info);
		kfree(rxdr->ps_page);
		DPRINTK(PROBE, ERR,
		"Unable to allocate memory for the receive descriptor ring\n");
		return -ENOMEM;
	}
	memset(rxdr->ps_page_dma, 0, size);

	if(adapter->hw.mac_type <= e1000_82547_rev_2)
		desc_len = sizeof(struct e1000_rx_desc);
	else
		desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */

	rxdr->size = rxdr->count * desc_len;
	E1000_ROUNDUP(rxdr->size, 4096);

	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);

	if(!rxdr->desc) {
setup_rx_desc_die:
		vfree(rxdr->buffer_info);
		kfree(rxdr->ps_page);
		kfree(rxdr->ps_page_dma);
		DPRINTK(PROBE, ERR,
		"Unable to allocate memory for the receive descriptor ring\n");
		return -ENOMEM;
	}

	/* Fix for errata 23, can't cross 64kB boundary */
	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
		void *olddesc = rxdr->desc;
		dma_addr_t olddma = rxdr->dma;
		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
				     "at %p\n", rxdr->size, rxdr->desc);
		/* Try again, without freeing the previous */
		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
		if(!rxdr->desc) {
		/* Failed allocation, critical failure */
			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
			goto setup_rx_desc_die;
		}

		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
			/* give up */
			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
					    rxdr->dma);
			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
			DPRINTK(PROBE, ERR,
				"Unable to allocate aligned memory "
				"for the receive descriptor ring\n");
			vfree(rxdr->buffer_info);
			kfree(rxdr->ps_page);
			kfree(rxdr->ps_page_dma);
			return -ENOMEM;
		} else {
			/* Free old allocation, new allocation was successful */
			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
		}
	}
	memset(rxdr->desc, 0, rxdr->size);

	rxdr->next_to_clean = 0;
	rxdr->next_to_use = 0;

	return 0;
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/

static void
e1000_setup_rctl(struct e1000_adapter *adapter)
{
	uint32_t rctl, rfctl;
	uint32_t psrctl = 0;

	rctl = E1000_READ_REG(&adapter->hw, RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);

	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);

	if(adapter->hw.tbi_compatibility_on == 1)
		rctl |= E1000_RCTL_SBP;
	else
		rctl &= ~E1000_RCTL_SBP;

	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

	/* Setup buffer sizes */
	if(adapter->hw.mac_type == e1000_82573) {
		/* We can now specify buffers in 1K increments.
		 * BSIZE and BSEX are ignored in this case. */
		rctl |= adapter->rx_buffer_len << 0x11;
	} else {
		rctl &= ~E1000_RCTL_SZ_4096;
		rctl |= E1000_RCTL_BSEX; 
		switch (adapter->rx_buffer_len) {
		case E1000_RXBUFFER_2048:
		default:
			rctl |= E1000_RCTL_SZ_2048;
			rctl &= ~E1000_RCTL_BSEX;
			break;
		case E1000_RXBUFFER_4096:
			rctl |= E1000_RCTL_SZ_4096;
			break;
		case E1000_RXBUFFER_8192:
			rctl |= E1000_RCTL_SZ_8192;
			break;
		case E1000_RXBUFFER_16384:
			rctl |= E1000_RCTL_SZ_16384;
			break;
		}
	}

#ifdef CONFIG_E1000_PACKET_SPLIT
	/* 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 */
	adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) 
			  && (adapter->netdev->mtu 
	                      < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
#endif
	if(adapter->rx_ps) {
		/* Configure extra packet-split registers */
		rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
		rfctl |= E1000_RFCTL_EXTEN;
		/* disable IPv6 packet split support */
		rfctl |= E1000_RFCTL_IPV6_DIS;
		E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);

		rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
		
		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;
		psrctl |= PAGE_SIZE >>
			E1000_PSRCTL_BSIZE1_SHIFT;
		psrctl |= PAGE_SIZE <<
			E1000_PSRCTL_BSIZE2_SHIFT;
		psrctl |= PAGE_SIZE <<
			E1000_PSRCTL_BSIZE3_SHIFT;

		E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
	}

	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}

/**
 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/

static void
e1000_configure_rx(struct e1000_adapter *adapter)
{
	uint64_t rdba = adapter->rx_ring.dma;
	uint32_t rdlen, rctl, rxcsum;

	if(adapter->rx_ps) {
		rdlen = adapter->rx_ring.count *
			sizeof(union e1000_rx_desc_packet_split);
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
	} else {
		rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = E1000_READ_REG(&adapter->hw, RCTL);
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);

	/* set the Receive Delay Timer Register */
	E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);

	if(adapter->hw.mac_type >= e1000_82540) {
		E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
		if(adapter->itr > 1)
			E1000_WRITE_REG(&adapter->hw, ITR,
				1000000000 / (adapter->itr * 256));
	}

	/* Setup the Base and Length of the Rx Descriptor Ring */
	E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
	E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));

	E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);

	/* Setup the HW Rx Head and Tail Descriptor Pointers */
	E1000_WRITE_REG(&adapter->hw, RDH, 0);
	E1000_WRITE_REG(&adapter->hw, RDT, 0);

	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
	if(adapter->hw.mac_type >= e1000_82543) {
		rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
		if(adapter->rx_csum == TRUE) {
			rxcsum |= E1000_RXCSUM_TUOFL;

			/* Enable 82573 IPv4 payload checksum for UDP fragments
			 * Must be used in conjunction with packet-split. */
			if((adapter->hw.mac_type > e1000_82547_rev_2) && 
			   (adapter->rx_ps)) {
				rxcsum |= E1000_RXCSUM_IPPCSE;
			}
		} else {
			rxcsum &= ~E1000_RXCSUM_TUOFL;
			/* don't need to clear IPPCSE as it defaults to 0 */
		}
		E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
	}

	if (adapter->hw.mac_type == e1000_82573)
		E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);

	/* Enable Receives */
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}

/**
 * e1000_free_tx_resources - Free Tx Resources
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/

void
e1000_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;

	e1000_clean_tx_ring(adapter);

	vfree(adapter->tx_ring.buffer_info);
	adapter->tx_ring.buffer_info = NULL;

	pci_free_consistent(pdev, adapter->tx_ring.size,
	                    adapter->tx_ring.desc, adapter->tx_ring.dma);

	adapter->tx_ring.desc = NULL;
}

static inline void
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
			struct e1000_buffer *buffer_info)
{
	if (adapter->ecdev)
		return;

	if(buffer_info->dma) {
		pci_unmap_page(adapter->pdev,
				buffer_info->dma,
				buffer_info->length,
				PCI_DMA_TODEVICE);
		buffer_info->dma = 0;
	}
	if(buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/

static void
e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	/* Free all the Tx ring sk_buffs */

	if (likely(adapter->previous_buffer_info.skb != NULL)) {
		e1000_unmap_and_free_tx_resource(adapter,
				&adapter->previous_buffer_info);
	}

	for(i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	E1000_WRITE_REG(&adapter->hw, TDH, 0);
	E1000_WRITE_REG(&adapter->hw, TDT, 0);
}

/**
 * e1000_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void
e1000_free_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct pci_dev *pdev = adapter->pdev;

	e1000_clean_rx_ring(adapter);

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;
	kfree(rx_ring->ps_page);
	rx_ring->ps_page = NULL;
	kfree(rx_ring->ps_page_dma);
	rx_ring->ps_page_dma = NULL;

	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);

	rx_ring->desc = NULL;
}

/**
 * e1000_clean_rx_ring - Free Rx Buffers
 * @adapter: board private structure
 **/

static void
e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct e1000_ps_page_dma *ps_page_dma;
	struct pci_dev *pdev = adapter->pdev;
	unsigned long size;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */

	for(i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if(buffer_info->skb) {
			ps_page = &rx_ring->ps_page[i];
			ps_page_dma = &rx_ring->ps_page_dma[i];
			pci_unmap_single(pdev,
					 buffer_info->dma,
					 buffer_info->length,
					 PCI_DMA_FROMDEVICE);

			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;

			for(j = 0; j < PS_PAGE_BUFFERS; j++) {
				if(!ps_page->ps_page[j]) break;
				pci_unmap_single(pdev,
						 ps_page_dma->ps_page_dma[j],
						 PAGE_SIZE, PCI_DMA_FROMDEVICE);
				ps_page_dma->ps_page_dma[j] = 0;
				put_page(ps_page->ps_page[j]);
				ps_page->ps_page[j] = NULL;
			}
		}
	}

	size = sizeof(struct e1000_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);
	size = sizeof(struct e1000_ps_page) * rx_ring->count;
	memset(rx_ring->ps_page, 0, size);
	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
	memset(rx_ring->ps_page_dma, 0, size);

	/* Zero out the descriptor ring */

	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	E1000_WRITE_REG(&adapter->hw, RDH, 0);
	E1000_WRITE_REG(&adapter->hw, RDT, 0);
}

/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
 * and memory write and invalidate disabled for certain operations
 */
static void
e1000_enter_82542_rst(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	uint32_t rctl;

	e1000_pci_clear_mwi(&adapter->hw);

	rctl = E1000_READ_REG(&adapter->hw, RCTL);
	rctl |= E1000_RCTL_RST;
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
	E1000_WRITE_FLUSH(&adapter->hw);
	mdelay(5);

	if (!adapter->ecdev && netif_running(netdev))
		e1000_clean_rx_ring(adapter);
}

static void
e1000_leave_82542_rst(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	uint32_t rctl;

	rctl = E1000_READ_REG(&adapter->hw, RCTL);
	rctl &= ~E1000_RCTL_RST;
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
	E1000_WRITE_FLUSH(&adapter->hw);
	mdelay(5);

	if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
		e1000_pci_set_mwi(&adapter->hw);

	if (!adapter->ecdev && netif_running(netdev)) {
		e1000_configure_rx(adapter);
		e1000_alloc_rx_buffers(adapter);
	}
}

/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/

static int
e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if(!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	/* 82542 2.0 needs to be in reset to write receive address registers */

	if(adapter->hw.mac_type == e1000_82542_rev2_0)
		e1000_enter_82542_rst(adapter);

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);

	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);

	if(adapter->hw.mac_type == e1000_82542_rev2_0)
		e1000_leave_82542_rst(adapter);

	return 0;
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/

static void
e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct dev_mc_list *mc_ptr;
	unsigned long flags = 0;
	uint32_t rctl;
	uint32_t hash_value;
	int i;

    if (!adapter->ecdev)
        spin_lock_irqsave(&adapter->tx_lock, flags);

	/* Check for Promiscuous and All Multicast modes */

	rctl = E1000_READ_REG(hw, RCTL);

	if(netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
	} else if(netdev->flags & IFF_ALLMULTI) {
		rctl |= E1000_RCTL_MPE;
		rctl &= ~E1000_RCTL_UPE;
	} else {
		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
	}

	E1000_WRITE_REG(hw, RCTL, rctl);

	/* 82542 2.0 needs to be in reset to write receive address registers */

	if(hw->mac_type == e1000_82542_rev2_0)
		e1000_enter_82542_rst(adapter);

	/* load the first 14 multicast address into the exact filters 1-14
	 * RAR 0 is used for the station MAC adddress
	 * if there are not 14 addresses, go ahead and clear the filters
	 */
	mc_ptr = netdev->mc_list;

	for(i = 1; i < E1000_RAR_ENTRIES; i++) {
		if(mc_ptr) {
			e1000_rar_set(hw, mc_ptr->dmi_addr, i);
			mc_ptr = mc_ptr->next;
		} else {
			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
		}
	}

	/* clear the old settings from the multicast hash table */

	for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);

	/* load any remaining addresses into the hash table */

	for(; mc_ptr; mc_ptr = mc_ptr->next) {
		hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
		e1000_mta_set(hw, hash_value);
	}

	if(hw->mac_type == e1000_82542_rev2_0)
		e1000_leave_82542_rst(adapter);

    if (!adapter->ecdev)
        spin_unlock_irqrestore(&adapter->tx_lock, flags);
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */

static void
e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
}

/**
 * e1000_82547_tx_fifo_stall - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/

static void
e1000_82547_tx_fifo_stall(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
	struct net_device *netdev = adapter->netdev;
	uint32_t tctl;

	if(atomic_read(&adapter->tx_fifo_stall)) {
		if((E1000_READ_REG(&adapter->hw, TDT) ==
		    E1000_READ_REG(&adapter->hw, TDH)) &&
		   (E1000_READ_REG(&adapter->hw, TDFT) ==
		    E1000_READ_REG(&adapter->hw, TDFH)) &&
		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
		    E1000_READ_REG(&adapter->hw, TDFHS))) {
			tctl = E1000_READ_REG(&adapter->hw, TCTL);
			E1000_WRITE_REG(&adapter->hw, TCTL,
					tctl & ~E1000_TCTL_EN);
			E1000_WRITE_REG(&adapter->hw, TDFT,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TDFH,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TDFTS,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TDFHS,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
			E1000_WRITE_FLUSH(&adapter->hw);

			adapter->tx_fifo_head = 0;
			atomic_set(&adapter->tx_fifo_stall, 0);
			if (!adapter->ecdev) netif_wake_queue(netdev);
		} else {
			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
		}
	}
}

/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void
e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void
e1000_watchdog_task(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_desc_ring *txdr = &adapter->tx_ring;
	uint32_t link;

	e1000_check_for_link(&adapter->hw);
	if (adapter->hw.mac_type == e1000_82573) {
		e1000_enable_tx_pkt_filtering(&adapter->hw);
		if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
			e1000_update_mng_vlan(adapter);
	}	

	if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
		link = !adapter->hw.serdes_link_down;
	else
		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;

	if (link) {
		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
			e1000_get_speed_and_duplex(&adapter->hw,
			                           &adapter->link_speed,
			                           &adapter->link_duplex);

			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
			       "Full Duplex" : "Half Duplex");

			if (adapter->ecdev) {
				ecdev_set_link(adapter->ecdev, 1);
			} else {
				netif_carrier_on(netdev);
				netif_wake_queue(netdev);
                mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
			}
			adapter->smartspeed = 0;
		}
	} else {
		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
			DPRINTK(LINK, INFO, "NIC Link is Down\n");
			if (adapter->ecdev) {
				ecdev_set_link(adapter->ecdev, 0);
			} else {
				netif_carrier_off(netdev);
				netif_stop_queue(netdev);
                mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
			}
		}

		e1000_smartspeed(adapter);
	}

	e1000_update_stats(adapter);

	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
	adapter->gorcl_old = adapter->stats.gorcl;
	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
	adapter->gotcl_old = adapter->stats.gotcl;

	e1000_update_adaptive(&adapter->hw);

	if (!adapter->ecdev && !netif_carrier_ok(netdev)) {
		if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			schedule_work(&adapter->tx_timeout_task);
		}
	}

	/* Dynamic mode for Interrupt Throttle Rate (ITR) */
	if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
		/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
		 * asymmetrical Tx or Rx gets ITR=8000; everyone
		 * else is between 2000-8000. */
		uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
		uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
			adapter->gotcl - adapter->gorcl :
			adapter->gorcl - adapter->gotcl) / 10000;
		uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
		E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
	}

	/* Cause software interrupt to ensure rx ring is cleaned */
	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);

	/* Force detection of hung controller every watchdog period */
	if (!adapter->ecdev) adapter->detect_tx_hung = TRUE;

	/* Reset the timer */
	if (!adapter->ecdev)
        mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static inline int
e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
{
#ifdef NETIF_F_TSO
	struct e1000_context_desc *context_desc;
	unsigned int i;
	uint32_t cmd_length = 0;
	uint16_t ipcse = 0, tucse, mss;
	uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
	int err;

	if(skb_shinfo(skb)->tso_size) {
		if (skb_header_cloned(skb)) {
			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
			if (err)
				return err;
		}

		hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
		mss = skb_shinfo(skb)->tso_size;
		if(skb->protocol == ntohs(ETH_P_IP)) {
			skb->nh.iph->tot_len = 0;
			skb->nh.iph->check = 0;
			skb->h.th->check =
				~csum_tcpudp_magic(skb->nh.iph->saddr,
						   skb->nh.iph->daddr,
						   0,
						   IPPROTO_TCP,
						   0);
			cmd_length = E1000_TXD_CMD_IP;
			ipcse = skb->h.raw - skb->data - 1;
#ifdef NETIF_F_TSO_IPV6
		} else if(skb->protocol == ntohs(ETH_P_IPV6)) {
			skb->nh.ipv6h->payload_len = 0;
			skb->h.th->check =
				~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
						 &skb->nh.ipv6h->daddr,
						 0,
						 IPPROTO_TCP,
						 0);
			ipcse = 0;
#endif
		}
		ipcss = skb->nh.raw - skb->data;
		ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
		tucss = skb->h.raw - skb->data;
		tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
		tucse = 0;

		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

		i = adapter->tx_ring.next_to_use;
		context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);

		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
		context_desc->upper_setup.tcp_fields.tucss = tucss;
		context_desc->upper_setup.tcp_fields.tucso = tucso;
		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
		context_desc->cmd_and_length = cpu_to_le32(cmd_length);

		if(++i == adapter->tx_ring.count) i = 0;
		adapter->tx_ring.next_to_use = i;

		return 1;
	}
#endif

	return 0;
}

static inline boolean_t
e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_context_desc *context_desc;
	unsigned int i;
	uint8_t css;

	if(likely(skb->ip_summed == CHECKSUM_HW)) {
		css = skb->h.raw - skb->data;

		i = adapter->tx_ring.next_to_use;
		context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);

		context_desc->upper_setup.tcp_fields.tucss = css;
		context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
		context_desc->upper_setup.tcp_fields.tucse = 0;
		context_desc->tcp_seg_setup.data = 0;
		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);

		if(unlikely(++i == adapter->tx_ring.count)) i = 0;
		adapter->tx_ring.next_to_use = i;

		return TRUE;
	}

	return FALSE;
}

#define E1000_MAX_TXD_PWR	12
#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)

static inline int
e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
	unsigned int first, unsigned int max_per_txd,
	unsigned int nr_frags, unsigned int mss)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned int len = skb->len;
	unsigned int offset = 0, size, count = 0, i;
	unsigned int f;
	len -= skb->data_len;

	i = tx_ring->next_to_use;

	while(len) {
		buffer_info = &tx_ring->buffer_info[i];
		size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
		/* Workaround for premature desc write-backs
		 * in TSO mode.  Append 4-byte sentinel desc */
		if(unlikely(mss && !nr_frags && size == len && size > 8))
			size -= 4;
#endif
		/* work-around for errata 10 and it applies
		 * to all controllers in PCI-X mode
		 * The fix is to make sure that the first descriptor of a
		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
		 */
		if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
		                (size > 2015) && count == 0))
		        size = 2015;
                                                                                
		/* Workaround for potential 82544 hang in PCI-X.  Avoid
		 * terminating buffers within evenly-aligned dwords. */
		if(unlikely(adapter->pcix_82544 &&
		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
		   size > 4))
			size -= 4;

		buffer_info->length = size;
		buffer_info->dma =
			pci_map_single(adapter->pdev,
				skb->data + offset,
				size,
				PCI_DMA_TODEVICE);
		buffer_info->time_stamp = jiffies;

		len -= size;
		offset += size;
		count++;
		if(unlikely(++i == tx_ring->count)) i = 0;
	}

	for(f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
		offset = frag->page_offset;

		while(len) {
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
			/* Workaround for premature desc write-backs
			 * in TSO mode.  Append 4-byte sentinel desc */
			if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
				size -= 4;
#endif
			/* Workaround for potential 82544 hang in PCI-X.
			 * Avoid terminating buffers within evenly-aligned
			 * dwords. */
			if(unlikely(adapter->pcix_82544 &&
			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
			   size > 4))
				size -= 4;

			buffer_info->length = size;
			buffer_info->dma =
				pci_map_page(adapter->pdev,
					frag->page,
					offset,
					size,
					PCI_DMA_TODEVICE);
			buffer_info->time_stamp = jiffies;

			len -= size;
			offset += size;
			count++;
			if(unlikely(++i == tx_ring->count)) i = 0;
		}
	}

	i = (i == 0) ? tx_ring->count - 1 : i - 1;
	tx_ring->buffer_info[i].skb = skb;
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
}

static inline void
e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
		             E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

	while(count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);
		if(unlikely(++i == tx_ring->count)) i = 0;
	}

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
	E1000_WRITE_REG(&adapter->hw, TDT, i);
}

/**
 * 82547 workaround to avoid controller hang in half-duplex environment.
 * The workaround is to avoid queuing a large packet that would span
 * the internal Tx FIFO ring boundary by notifying the stack to resend
 * the packet at a later time.  This gives the Tx FIFO an opportunity to
 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
 * to the beginning of the Tx FIFO.
 **/

#define E1000_FIFO_HDR			0x10
#define E1000_82547_PAD_LEN		0x3E0

static inline int
e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
	uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;

	E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);

	if(adapter->link_duplex != HALF_DUPLEX)
		goto no_fifo_stall_required;

	if(atomic_read(&adapter->tx_fifo_stall))
		return 1;

	if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
		atomic_set(&adapter->tx_fifo_stall, 1);
		return 1;
	}

no_fifo_stall_required:
	adapter->tx_fifo_head += skb_fifo_len;
	if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
		adapter->tx_fifo_head -= adapter->tx_fifo_size;
	return 0;
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static inline int
e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	uint16_t length, offset;
	if(vlan_tx_tag_present(skb)) {
		if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
			( adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
			return 0;
	}
	if(htons(ETH_P_IP) == skb->protocol) {
		const struct iphdr *ip = skb->nh.iph;
		if(IPPROTO_UDP == ip->protocol) {
			struct udphdr *udp = (struct udphdr *)(skb->h.uh);
			if(ntohs(udp->dest) == 67) {
				offset = (uint8_t *)udp + 8 - skb->data;
				length = skb->len - offset;

				return e1000_mng_write_dhcp_info(hw,
						(uint8_t *)udp + 8, length);
			}
		}
	} else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
		struct ethhdr *eth = (struct ethhdr *) skb->data;
		if((htons(ETH_P_IP) == eth->h_proto)) {
			const struct iphdr *ip = 
				(struct iphdr *)((uint8_t *)skb->data+14);
			if(IPPROTO_UDP == ip->protocol) {
				struct udphdr *udp = 
					(struct udphdr *)((uint8_t *)ip + 
						(ip->ihl << 2));
				if(ntohs(udp->dest) == 67) {
					offset = (uint8_t *)udp + 8 - skb->data;
					length = skb->len - offset;

					return e1000_mng_write_dhcp_info(hw,
							(uint8_t *)udp + 8, 
							length);
				}
			}
		}
	}
	return 0;
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
static int
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
	unsigned int len = skb->len;
	unsigned long flags = 0;
	unsigned int nr_frags = 0;
	unsigned int mss = 0;
	int count = 0;
	int tso;
	unsigned int f;
	len -= skb->data_len;

	if(unlikely(skb->len <= 0)) {
		if (!adapter->ecdev)
			dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

#ifdef NETIF_F_TSO
	mss = skb_shinfo(skb)->tso_size;
	/* The controller does a simple calculation to 
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
	 * drops. */
	if(mss) {
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;
	}

	if((mss) || (skb->ip_summed == CHECKSUM_HW))
		count++;
	count++;
#else
	if(skb->ip_summed == CHECKSUM_HW)
		count++;
#endif
	count += TXD_USE_COUNT(len, max_txd_pwr);

	if(adapter->pcix_82544)
		count++;

	/* work-around for errata 10 and it applies to all controllers 
	 * in PCI-X mode, so add one more descriptor to the count
	 */
	if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
			(len > 2015)))
		count++;

	nr_frags = skb_shinfo(skb)->nr_frags;
	for(f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);
	if(adapter->pcix_82544)
		count += nr_frags;

	if (!adapter->ecdev) {
		local_irq_save(flags); 
		if (!spin_trylock(&adapter->tx_lock)) { 
			/* Collision - tell upper layer to requeue */ 
			local_irq_restore(flags); 
			return NETDEV_TX_LOCKED; 
		} 
		if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
			e1000_transfer_dhcp_info(adapter, skb);
	}


	/* need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time */
	if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
		if (!adapter->ecdev) {
			netif_stop_queue(netdev);
			spin_unlock_irqrestore(&adapter->tx_lock, flags);
		}
		return NETDEV_TX_BUSY;
	}

	if(unlikely(adapter->hw.mac_type == e1000_82547)) {
		if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
			if (!adapter->ecdev) {
				netif_stop_queue(netdev);
                mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
				spin_unlock_irqrestore(&adapter->tx_lock, flags);
            }
			return NETDEV_TX_BUSY;
		}
	}

	if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = adapter->tx_ring.next_to_use;
	
	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		if (!adapter->ecdev) {
			dev_kfree_skb_any(skb);
			spin_unlock_irqrestore(&adapter->tx_lock, flags);
		}
		return NETDEV_TX_OK;
	}

	if (likely(tso))
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if(likely(e1000_tx_csum(adapter, skb)))
		tx_flags |= E1000_TX_FLAGS_CSUM;

	/* Old method was to assume IPv4 packet by default if TSO was enabled.
	 * 82573 hardware supports TSO capabilities for IPv6 as well...
	 * no longer assume, we must. */
	if(likely(skb->protocol == ntohs(ETH_P_IP)))
		tx_flags |= E1000_TX_FLAGS_IPV4;

	e1000_tx_queue(adapter,
		e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
		tx_flags);

	netdev->trans_start = jiffies;

	/* Make sure there is space in the ring for the next send. */
	if (!adapter->ecdev) {
		if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
			netif_stop_queue(netdev);
		spin_unlock_irqrestore(&adapter->tx_lock, flags);
	}
	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/

static void
e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	schedule_work(&adapter->tx_timeout_task);
}

static void
e1000_tx_timeout_task(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	e1000_down(adapter);
	e1000_up(adapter);
}

/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/

static struct net_device_stats *
e1000_get_stats(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	e1000_update_stats(adapter);
	return &adapter->net_stats;
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/

static int
e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;

	if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
		(max_frame > MAX_JUMBO_FRAME_SIZE)) {
			DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
			return -EINVAL;
	}

#define MAX_STD_JUMBO_FRAME_SIZE 9216
	/* might want this to be bigger enum check... */
	if (adapter->hw.mac_type == e1000_82573 &&
	    max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
		DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
				    "on 82573\n");
		return -EINVAL;
	}

	if(adapter->hw.mac_type > e1000_82547_rev_2) {
		adapter->rx_buffer_len = max_frame;
		E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
	} else {
		if(unlikely((adapter->hw.mac_type < e1000_82543) &&
		   (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
			DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
					    "on 82542\n");
			return -EINVAL;

		} else {
			if(max_frame <= E1000_RXBUFFER_2048) {
				adapter->rx_buffer_len = E1000_RXBUFFER_2048;
			} else if(max_frame <= E1000_RXBUFFER_4096) {
				adapter->rx_buffer_len = E1000_RXBUFFER_4096;
			} else if(max_frame <= E1000_RXBUFFER_8192) {
				adapter->rx_buffer_len = E1000_RXBUFFER_8192;
			} else if(max_frame <= E1000_RXBUFFER_16384) {
				adapter->rx_buffer_len = E1000_RXBUFFER_16384;
			}
		}
	}

	netdev->mtu = new_mtu;

	if (adapter->ecdev || netif_running(netdev)) {
		e1000_down(adapter);
		e1000_up(adapter);
	}

	adapter->hw.max_frame_size = max_frame;

	return 0;
}

/**
 * e1000_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void
e1000_update_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned long flags = 0;
	uint16_t phy_tmp;

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	if (!adapter->ecdev)
		spin_lock_irqsave(&adapter->stats_lock, flags);

	/* these counters are modified from e1000_adjust_tbi_stats,
	 * called from the interrupt context, so they must only
	 * be written while holding adapter->stats_lock
	 */

	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
	adapter->stats.roc += E1000_READ_REG(hw, ROC);
	adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
	adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
	adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
	adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
	adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
	adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);

	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
	adapter->stats.scc += E1000_READ_REG(hw, SCC);
	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
	adapter->stats.dc += E1000_READ_REG(hw, DC);
	adapter->stats.sec += E1000_READ_REG(hw, SEC);
	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
	adapter->stats.torl += E1000_READ_REG(hw, TORL);
	adapter->stats.torh += E1000_READ_REG(hw, TORH);
	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
	adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
	adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
	adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
	adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
	adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
	adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);

	/* used for adaptive IFS */

	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
	adapter->stats.tpt += hw->tx_packet_delta;
	hw->collision_delta = E1000_READ_REG(hw, COLC);
	adapter->stats.colc += hw->collision_delta;

	if(hw->mac_type >= e1000_82543) {
		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
	}
	if(hw->mac_type > e1000_82547_rev_2) {
		adapter->stats.iac += E1000_READ_REG(hw, IAC);
		adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
		adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
		adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
		adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
		adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
		adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
		adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
		adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
	}

	/* Fill out the OS statistics structure */

	adapter->net_stats.rx_packets = adapter->stats.gprc;
	adapter->net_stats.tx_packets = adapter->stats.gptc;
	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
	adapter->net_stats.multicast = adapter->stats.mprc;
	adapter->net_stats.collisions = adapter->stats.colc;

	/* Rx Errors */

	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.rlec + adapter->stats.mpc + 
		adapter->stats.cexterr;
	adapter->net_stats.rx_dropped = adapter->stats.mpc;
	adapter->net_stats.rx_length_errors = adapter->stats.rlec;
	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
	adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */

	adapter->net_stats.tx_errors = adapter->stats.ecol +
	                               adapter->stats.latecol;
	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */

	if(hw->media_type == e1000_media_type_copper) {
		if((adapter->link_speed == SPEED_1000) &&
		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}

		if((hw->mac_type <= e1000_82546) &&
		   (hw->phy_type == e1000_phy_m88) &&
		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
			adapter->phy_stats.receive_errors += phy_tmp;
	}

	if (!adapter->ecdev)
		spin_unlock_irqrestore(&adapter->stats_lock, flags);
}

void ec_poll(struct net_device *netdev)
{
    struct e1000_adapter *adapter = netdev_priv(netdev);

    if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
        e1000_watchdog_task(adapter);
        adapter->ec_watchdog_jiffies = jiffies;
    }

    e1000_intr(0, netdev, NULL);
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 * @pt_regs: CPU registers structure
 **/

static irqreturn_t
e1000_intr(int irq, void *data, struct pt_regs *regs)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	uint32_t icr = E1000_READ_REG(hw, ICR);
	unsigned int i;
#ifdef CONFIG_E1000_NAPI
	int work_done = 0;
#endif

	if(unlikely(!icr))
		return IRQ_NONE;  /* Not our interrupt */

	if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
		hw->get_link_status = 1;
		if (!adapter->ecdev)
            mod_timer(&adapter->watchdog_timer, jiffies);
	}

#ifdef CONFIG_E1000_NAPI
	if (adapter->ecdev) {
		for(i = 0; i < E1000_MAX_INTR; i++)
			if(unlikely(!adapter->clean_rx(adapter, &work_done, 100) &&
						!e1000_clean_tx_irq(adapter)))
				break;
	} else {
		if(likely(netif_rx_schedule_prep(netdev))) {

			/* Disable interrupts and register for poll. The flush 
			   of the posted write is intentionally left out.
			 */

			atomic_inc(&adapter->irq_sem);
			E1000_WRITE_REG(hw, IMC, ~0);
			__netif_rx_schedule(netdev);
		}
	}
#else
	/* Writing IMC and IMS is needed for 82547.
	   Due to Hub Link bus being occupied, an interrupt
	   de-assertion message is not able to be sent.
	   When an interrupt assertion message is generated later,
	   two messages are re-ordered and sent out.
	   That causes APIC to think 82547 is in de-assertion
	   state, while 82547 is in assertion state, resulting
	   in dead lock. Writing IMC forces 82547 into
	   de-assertion state.
	*/
	if(!adapter->ecdev &&
			(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)){
		atomic_inc(&adapter->irq_sem);
		E1000_WRITE_REG(hw, IMC, ~0);
	}

	for(i = 0; i < E1000_MAX_INTR; i++)
		if(unlikely(!adapter->clean_rx(adapter) &
		   !e1000_clean_tx_irq(adapter)))
			break;

	if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
		e1000_irq_enable(adapter);
#endif

	return IRQ_HANDLED;
}

#ifdef CONFIG_E1000_NAPI
/**
 * e1000_clean - NAPI Rx polling callback
 * @adapter: board private structure
 **/

static int
e1000_clean(struct net_device *netdev, int *budget) // never called for EtherCAT
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int work_to_do = min(*budget, netdev->quota);
	int tx_cleaned;
	int work_done = 0;

	tx_cleaned = e1000_clean_tx_irq(adapter);
	adapter->clean_rx(adapter, &work_done, work_to_do);

	*budget -= work_done;
	netdev->quota -= work_done;
	
	if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
	/* If no Tx and not enough Rx work done, exit the polling mode */
		netif_rx_complete(netdev);
		e1000_irq_enable(adapter);
		return 0;
	}

	return 1;
}

#endif
/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 **/

static boolean_t
e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct net_device *netdev = adapter->netdev;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	boolean_t cleaned = FALSE;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

	while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
		/* Premature writeback of Tx descriptors clear (free buffers
		 * and unmap pci_mapping) previous_buffer_info */
		if (likely(adapter->previous_buffer_info.skb != NULL)) {
			e1000_unmap_and_free_tx_resource(adapter,
					&adapter->previous_buffer_info);
		}

		for(cleaned = FALSE; !cleaned; ) {
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

#ifdef NETIF_F_TSO
			if (!(netdev->features & NETIF_F_TSO)) {
#endif
				e1000_unmap_and_free_tx_resource(adapter,
				                                 buffer_info);
#ifdef NETIF_F_TSO
			} else {
				if (cleaned) {
					memcpy(&adapter->previous_buffer_info,
					       buffer_info,
					       sizeof(struct e1000_buffer));
					memset(buffer_info, 0,
					       sizeof(struct e1000_buffer));
				} else {
					e1000_unmap_and_free_tx_resource(
					    adapter, buffer_info);
				}
			}
#endif

			tx_desc->buffer_addr = 0;
			tx_desc->lower.data = 0;
			tx_desc->upper.data = 0;

			if(unlikely(++i == tx_ring->count)) i = 0;
		}
		
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

	if (!adapter->ecdev) {
		spin_lock(&adapter->tx_lock);

		if(unlikely(cleaned && netif_queue_stopped(netdev) &&
					netif_carrier_ok(netdev)))
			netif_wake_queue(netdev);

		spin_unlock(&adapter->tx_lock);
	}

	if(!adapter->ecdev && adapter->detect_tx_hung) {

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		adapter->detect_tx_hung = FALSE;
		if (tx_ring->buffer_info[i].dma &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
		    && !(E1000_READ_REG(&adapter->hw, STATUS) &
			E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
			i = tx_ring->next_to_clean;
			eop = tx_ring->buffer_info[i].next_to_watch;
			eop_desc = E1000_TX_DESC(*tx_ring, eop);
			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
					"  TDH                  <%x>\n"
					"  TDT                  <%x>\n"
					"  next_to_use          <%x>\n"
					"  next_to_clean        <%x>\n"
					"buffer_info[next_to_clean]\n"
					"  dma                  <%zx>\n"
					"  time_stamp           <%lx>\n"
					"  next_to_watch        <%x>\n"
					"  jiffies              <%lx>\n"
					"  next_to_watch.status <%x>\n",
				E1000_READ_REG(&adapter->hw, TDH),
				E1000_READ_REG(&adapter->hw, TDT),
				tx_ring->next_to_use,
				i,
				tx_ring->buffer_info[i].dma,
				tx_ring->buffer_info[i].time_stamp,
				eop,
				jiffies,
				eop_desc->upper.fields.status);
			netif_stop_queue(netdev);
		}
	}
#ifdef NETIF_F_TSO

	if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	    time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
		e1000_unmap_and_free_tx_resource(
		    adapter, &adapter->previous_buffer_info);

#endif
	return cleaned;
}

/**
 * e1000_rx_checksum - Receive Checksum Offload for 82543
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:        receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/

static inline void
e1000_rx_checksum(struct e1000_adapter *adapter,
		  uint32_t status_err, uint32_t csum,
		  struct sk_buff *skb)
{
	uint16_t status = (uint16_t)status_err;
	uint8_t errors = (uint8_t)(status_err >> 24);
	skb->ip_summed = CHECKSUM_NONE;

	/* 82543 or newer only */
	if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
	/* Ignore Checksum bit is set */
	if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
	/* TCP/UDP checksum error bit is set */
	if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}
	/* TCP/UDP Checksum has not been calculated */
	if(adapter->hw.mac_type <= e1000_82547_rev_2) {
		if(!(status & E1000_RXD_STAT_TCPCS))
			return;
	} else {
		if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
			return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (likely(status & E1000_RXD_STAT_TCPCS)) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
		/* IP fragment with UDP payload */
		/* Hardware complements the payload checksum, so we undo it
		 * and then put the value in host order for further stack use.
		 */
		csum = ntohl(csum ^ 0xFFFF);
		skb->csum = csum;
		skb->ip_summed = CHECKSUM_HW;
	}
	adapter->hw_csum_good++;
}

/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 **/

static boolean_t
#ifdef CONFIG_E1000_NAPI
e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
                   int work_to_do)
#else
e1000_clean_rx_irq(struct e1000_adapter *adapter)
#endif
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned long flags;
	uint32_t length;
	uint8_t last_byte;
	unsigned int i;
	boolean_t cleaned = FALSE;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);

	while(rx_desc->status & E1000_RXD_STAT_DD) {
		buffer_info = &rx_ring->buffer_info[i];
#ifdef CONFIG_E1000_NAPI
		if(*work_done >= work_to_do)
			break;
		(*work_done)++;
#endif
		cleaned = TRUE;

		pci_unmap_single(pdev,
		                 buffer_info->dma,
		                 buffer_info->length,
		                 PCI_DMA_FROMDEVICE);

		skb = buffer_info->skb;
		length = le16_to_cpu(rx_desc->length);

		if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
			/* All receives must fit into a single buffer */
			E1000_DBG("%s: Receive packet consumed multiple"
				  " buffers\n", netdev->name);
			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		if(!adapter->ecdev && unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
			last_byte = *(skb->data + length - 1);
			if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
			              rx_desc->errors, length, last_byte)) {
				spin_lock_irqsave(&adapter->stats_lock, flags);
				e1000_tbi_adjust_stats(&adapter->hw,
				                       &adapter->stats,
				                       length, skb->data);
				spin_unlock_irqrestore(&adapter->stats_lock,
				                       flags);
				length--;
			} else {
				dev_kfree_skb_irq(skb);
				goto next_desc;
			}
		}

		/* Good Receive */
		skb_put(skb, length - ETHERNET_FCS_SIZE);

		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter,
				  (uint32_t)(rx_desc->status) |
				  ((uint32_t)(rx_desc->errors) << 24),
				  rx_desc->csum, skb);
		if (adapter->ecdev) {
			ecdev_receive(adapter->ecdev, skb->data, length);

			// No need to detect link status as
			// long as frames are received: Reset watchdog.
			adapter->ec_watchdog_jiffies = jiffies;

			skb_trim(skb, 0);

			if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
				/* Force memory writes to complete before letting h/w
				 * know there are new descriptors to fetch.  (Only
				 * applicable for weak-ordered memory model archs,
				 * such as IA-64). */
				wmb();
				E1000_WRITE_REG(&adapter->hw, RDT, i);
			}
		} else {
			skb->protocol = eth_type_trans(skb, netdev);
#ifdef CONFIG_E1000_NAPI
			if(unlikely(adapter->vlgrp &&
						(rx_desc->status & E1000_RXD_STAT_VP))) {
				vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
						le16_to_cpu(rx_desc->special) &
						E1000_RXD_SPC_VLAN_MASK);
			} else {
				netif_receive_skb(skb);
			}
#else /* CONFIG_E1000_NAPI */
			if(unlikely(adapter->vlgrp &&
						(rx_desc->status & E1000_RXD_STAT_VP))) {
				vlan_hwaccel_rx(skb, adapter->vlgrp,
						le16_to_cpu(rx_desc->special) &
						E1000_RXD_SPC_VLAN_MASK);
			} else {
				netif_rx(skb);
			}
#endif /* CONFIG_E1000_NAPI */
		}
		netdev->last_rx = jiffies;

next_desc:
		rx_desc->status = 0;
		if (!adapter->ecdev) buffer_info->skb = NULL;
		if(unlikely(++i == rx_ring->count)) i = 0;

		rx_desc = E1000_RX_DESC(*rx_ring, i);
	}
	rx_ring->next_to_clean = i;
	if (adapter->ecdev) {
		rx_ring->next_to_use = i;
	} else {
		adapter->alloc_rx_buf(adapter);
	}

	return cleaned;
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 **/

static boolean_t
#ifdef CONFIG_E1000_NAPI
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
                      int work_to_do)
#else
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
#endif
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct e1000_ps_page_dma *ps_page_dma;
	struct sk_buff *skb;
	unsigned int i, j;
	uint32_t length, staterr;
	boolean_t cleaned = FALSE;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);

	while(staterr & E1000_RXD_STAT_DD) {
		buffer_info = &rx_ring->buffer_info[i];
		ps_page = &rx_ring->ps_page[i];
		ps_page_dma = &rx_ring->ps_page_dma[i];
#ifdef CONFIG_E1000_NAPI
		if(unlikely(*work_done >= work_to_do))
			break;
		(*work_done)++;
#endif
		cleaned = TRUE;
		pci_unmap_single(pdev, buffer_info->dma,
				 buffer_info->length,
				 PCI_DMA_FROMDEVICE);

		skb = buffer_info->skb;

		if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
			E1000_DBG("%s: Packet Split buffers didn't pick up"
				  " the full packet\n", netdev->name);
			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if(unlikely(!length)) {
			E1000_DBG("%s: Last part of the packet spanning"
				  " multiple descriptors\n", netdev->name);
			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		for(j = 0; j < PS_PAGE_BUFFERS; j++) {
			if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
				break;

			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
					PAGE_SIZE, PCI_DMA_FROMDEVICE);
			ps_page_dma->ps_page_dma[j] = 0;
			skb_shinfo(skb)->frags[j].page =
				ps_page->ps_page[j];
			ps_page->ps_page[j] = NULL;
			skb_shinfo(skb)->frags[j].page_offset = 0;
			skb_shinfo(skb)->frags[j].size = length;
			skb_shinfo(skb)->nr_frags++;
			skb->len += length;
			skb->data_len += length;
		}

		e1000_rx_checksum(adapter, staterr,
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);

#ifdef HAVE_RX_ZERO_COPY
		if(likely(rx_desc->wb.upper.header_status &
			  E1000_RXDPS_HDRSTAT_HDRSP))
			skb_shinfo(skb)->zero_copy = TRUE;
#endif
		if (adapter->ecdev) {
			ecdev_receive(adapter->ecdev, skb->data, length);
			skb_trim(skb, 0);

			if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
				/* Force memory writes to complete before letting h/w
				 * know there are new descriptors to fetch.  (Only
				 * applicable for weak-ordered memory model archs,
				 * such as IA-64). */
				wmb();
				/* Hardware increments by 16 bytes, but packet split
				 * descriptors are 32 bytes...so we increment tail
				 * twice as much.
				 */
				E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
			}
		} else {
			skb->protocol = eth_type_trans(skb, netdev);
#ifdef CONFIG_E1000_NAPI
			if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
				vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
						le16_to_cpu(rx_desc->wb.middle.vlan) &
						E1000_RXD_SPC_VLAN_MASK);
			} else {
				netif_receive_skb(skb);
			}
#else /* CONFIG_E1000_NAPI */
			if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
				vlan_hwaccel_rx(skb, adapter->vlgrp,
						le16_to_cpu(rx_desc->wb.middle.vlan) &
						E1000_RXD_SPC_VLAN_MASK);
			} else {
				netif_rx(skb);
			}
#endif /* CONFIG_E1000_NAPI */
		}
		netdev->last_rx = jiffies;

next_desc:
		rx_desc->wb.middle.status_error &= ~0xFF;
		if (!adapter->ecdev) buffer_info->skb = NULL;
		if(unlikely(++i == rx_ring->count)) i = 0;

		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;
	if (adapter->ecdev) { 
		rx_ring->next_to_use = i;
	} else {
		adapter->alloc_rx_buf(adapter);
	}

	return cleaned;
}

/**
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 * @adapter: address of board private structure
 **/

static void
e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while(!buffer_info->skb) {
		skb = dev_alloc_skb(bufsz);

		if(unlikely(!skb)) {
			/* Better luck next round */
			break;
		}

		/* Fix for errata 23, can't cross 64kB boundary */
		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
			struct sk_buff *oldskb = skb;
			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
					     "at %p\n", bufsz, skb->data);
			/* Try again, without freeing the previous */
			skb = dev_alloc_skb(bufsz);
			/* Failed allocation, critical failure */
			if (!skb) {
				dev_kfree_skb(oldskb);
				break;
			}

			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
				/* give up */
				dev_kfree_skb(skb);
				dev_kfree_skb(oldskb);
				break; /* while !buffer_info->skb */
			} else {
				/* Use new allocation */
				dev_kfree_skb(oldskb);
			}
		}
		/* Make buffer alignment 2 beyond a 16 byte boundary
		 * this will result in a 16 byte aligned IP header after
		 * the 14 byte MAC header is removed
		 */
		skb_reserve(skb, NET_IP_ALIGN);

		skb->dev = netdev;

		buffer_info->skb = skb;
		buffer_info->length = adapter->rx_buffer_len;
		buffer_info->dma = pci_map_single(pdev,
						  skb->data,
						  adapter->rx_buffer_len,
						  PCI_DMA_FROMDEVICE);

		/* Fix for errata 23, can't cross 64kB boundary */
		if (!e1000_check_64k_bound(adapter,
					(void *)(unsigned long)buffer_info->dma,
					adapter->rx_buffer_len)) {
			DPRINTK(RX_ERR, ERR,
				"dma align check failed: %u bytes at %p\n",
				adapter->rx_buffer_len,
				(void *)(unsigned long)buffer_info->dma);
			dev_kfree_skb(skb);
			buffer_info->skb = NULL;

			pci_unmap_single(pdev, buffer_info->dma,
					 adapter->rx_buffer_len,
					 PCI_DMA_FROMDEVICE);

			break; /* while !buffer_info->skb */
		}
		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
			/* Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64). */
			wmb();
			E1000_WRITE_REG(&adapter->hw, RDT, i);
		}

		if(unlikely(++i == rx_ring->count)) i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	rx_ring->next_to_use = i;
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/

static void
e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct e1000_ps_page_dma *ps_page_dma;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];
	ps_page = &rx_ring->ps_page[i];
	ps_page_dma = &rx_ring->ps_page_dma[i];

	while(!buffer_info->skb) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for(j = 0; j < PS_PAGE_BUFFERS; j++) {
			if(unlikely(!ps_page->ps_page[j])) {
				ps_page->ps_page[j] =
					alloc_page(GFP_ATOMIC);
				if(unlikely(!ps_page->ps_page[j]))
					goto no_buffers;
				ps_page_dma->ps_page_dma[j] =
					pci_map_page(pdev,
						     ps_page->ps_page[j],
						     0, PAGE_SIZE,
						     PCI_DMA_FROMDEVICE);
			}
			/* Refresh the desc even if buffer_addrs didn't
			 * change because each write-back erases this info.
			 */
			rx_desc->read.buffer_addr[j+1] =
				cpu_to_le64(ps_page_dma->ps_page_dma[j]);
		}

		skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);

		if(unlikely(!skb))
			break;

		/* Make buffer alignment 2 beyond a 16 byte boundary
		 * this will result in a 16 byte aligned IP header after
		 * the 14 byte MAC header is removed
		 */
		skb_reserve(skb, NET_IP_ALIGN);

		skb->dev = netdev;

		buffer_info->skb = skb;
		buffer_info->length = adapter->rx_ps_bsize0;
		buffer_info->dma = pci_map_single(pdev, skb->data,
						  adapter->rx_ps_bsize0,
						  PCI_DMA_FROMDEVICE);

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

		if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
			/* Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64). */
			wmb();
			/* Hardware increments by 16 bytes, but packet split
			 * descriptors are 32 bytes...so we increment tail
			 * twice as much.
			 */
			E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
		}

		if(unlikely(++i == rx_ring->count)) i = 0;
		buffer_info = &rx_ring->buffer_info[i];
		ps_page = &rx_ring->ps_page[i];
		ps_page_dma = &rx_ring->ps_page_dma[i];
	}

no_buffers:
	rx_ring->next_to_use = i;
}

/**
 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
 * @adapter:
 **/

static void
e1000_smartspeed(struct e1000_adapter *adapter)
{
	uint16_t phy_status;
	uint16_t phy_ctrl;

	if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
		return;

	if(adapter->smartspeed == 0) {
		/* If Master/Slave config fault is asserted twice,
		 * we assume back-to-back */
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
		if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
		if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
		if(phy_ctrl & CR_1000T_MS_ENABLE) {
			phy_ctrl &= ~CR_1000T_MS_ENABLE;
			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
					    phy_ctrl);
			adapter->smartspeed++;
			if(!e1000_phy_setup_autoneg(&adapter->hw) &&
			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
				   	       &phy_ctrl)) {
				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
					     MII_CR_RESTART_AUTO_NEG);
				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
						    phy_ctrl);
			}
		}
		return;
	} else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
		/* If still no link, perhaps using 2/3 pair cable */
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
		phy_ctrl |= CR_1000T_MS_ENABLE;
		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
		if(!e1000_phy_setup_autoneg(&adapter->hw) &&
		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
				     MII_CR_RESTART_AUTO_NEG);
			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
		}
	}
	/* Restart process after E1000_SMARTSPEED_MAX iterations */
	if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
		adapter->smartspeed = 0;
}

/**
 * e1000_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/

static int
e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

/**
 * e1000_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/

static int
e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);
	int retval;
	uint16_t mii_reg;
	uint16_t spddplx;
	unsigned long flags;

	if(adapter->hw.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy_addr;
		break;
	case SIOCGMIIREG:
		if(adapter->ecdev || !capable(CAP_NET_ADMIN))
			return -EPERM;
		spin_lock_irqsave(&adapter->stats_lock, flags);
		if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
				   &data->val_out)) {
			spin_unlock_irqrestore(&adapter->stats_lock, flags);
			return -EIO;
		}
		spin_unlock_irqrestore(&adapter->stats_lock, flags);
		break;
	case SIOCSMIIREG:
		if(adapter->ecdev || !capable(CAP_NET_ADMIN))
			return -EPERM;
		if(data->reg_num & ~(0x1F))
			return -EFAULT;
		mii_reg = data->val_in;
		spin_lock_irqsave(&adapter->stats_lock, flags);
		if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
					mii_reg)) {
			spin_unlock_irqrestore(&adapter->stats_lock, flags);
			return -EIO;
		}
		if(adapter->hw.phy_type == e1000_phy_m88) {
			switch (data->reg_num) {
			case PHY_CTRL:
				if(mii_reg & MII_CR_POWER_DOWN)
					break;
				if(mii_reg & MII_CR_AUTO_NEG_EN) {
					adapter->hw.autoneg = 1;
					adapter->hw.autoneg_advertised = 0x2F;
				} else {
					if (mii_reg & 0x40)
						spddplx = SPEED_1000;
					else if (mii_reg & 0x2000)
						spddplx = SPEED_100;
					else
						spddplx = SPEED_10;
					spddplx += (mii_reg & 0x100)
						   ? FULL_DUPLEX :
						   HALF_DUPLEX;
					retval = e1000_set_spd_dplx(adapter,
								    spddplx);
					if(retval) {
						spin_unlock_irqrestore(
							&adapter->stats_lock, 
							flags);
						return retval;
					}
				}
				if(adapter->ecdev || netif_running(adapter->netdev)) {
					e1000_down(adapter);
					e1000_up(adapter);
				} else
					e1000_reset(adapter);
				break;
			case M88E1000_PHY_SPEC_CTRL:
			case M88E1000_EXT_PHY_SPEC_CTRL:
				if(e1000_phy_reset(&adapter->hw)) {
					spin_unlock_irqrestore(
						&adapter->stats_lock, flags);
					return -EIO;
				}
				break;
			}
		} else {
			switch (data->reg_num) {
			case PHY_CTRL:
				if(mii_reg & MII_CR_POWER_DOWN)
					break;
				if(adapter->ecdev || netif_running(adapter->netdev)) {
					e1000_down(adapter);
					e1000_up(adapter);
				} else
					e1000_reset(adapter);
				break;
			}
		}
		spin_unlock_irqrestore(&adapter->stats_lock, flags);
		break;
	default:
		return -EOPNOTSUPP;
	}
	return E1000_SUCCESS;
}

void
e1000_pci_set_mwi(struct e1000_hw *hw)
{
	struct e1000_adapter *adapter = hw->back;
	int ret_val = pci_set_mwi(adapter->pdev);

	if(ret_val)
		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
}

void
e1000_pci_clear_mwi(struct e1000_hw *hw)
{
	struct e1000_adapter *adapter = hw->back;

	pci_clear_mwi(adapter->pdev);
}

void
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
	struct e1000_adapter *adapter = hw->back;

	pci_read_config_word(adapter->pdev, reg, value);
}

void
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
	struct e1000_adapter *adapter = hw->back;

	pci_write_config_word(adapter->pdev, reg, *value);
}

uint32_t
e1000_io_read(struct e1000_hw *hw, unsigned long port)
{
	return inl(port);
}

void
e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
{
	outl(value, port);
}

static void
e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	uint32_t ctrl, rctl;

	e1000_irq_disable(adapter);
	adapter->vlgrp = grp;

	if(grp) {
		/* enable VLAN tag insert/strip */
		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
		ctrl |= E1000_CTRL_VME;
		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);

		/* enable VLAN receive filtering */
		rctl = E1000_READ_REG(&adapter->hw, RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
		e1000_update_mng_vlan(adapter);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
		ctrl &= ~E1000_CTRL_VME;
		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);

		/* disable VLAN filtering */
		rctl = E1000_READ_REG(&adapter->hw, RCTL);
		rctl &= ~E1000_RCTL_VFE;
		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
		if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
		}
	}

	e1000_irq_enable(adapter);
}

static void
e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	uint32_t vfta, index;
	if((adapter->hw.mng_cookie.status &
		E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
		(vid == adapter->mng_vlan_id))
		return;
	/* add VID to filter table */
	index = (vid >> 5) & 0x7F;
	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
	vfta |= (1 << (vid & 0x1F));
	e1000_write_vfta(&adapter->hw, index, vfta);
}

static void
e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	uint32_t vfta, index;

	e1000_irq_disable(adapter);

	if(adapter->vlgrp)
		adapter->vlgrp->vlan_devices[vid] = NULL;

	e1000_irq_enable(adapter);

	if((adapter->hw.mng_cookie.status &
		E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
		(vid == adapter->mng_vlan_id))
		return;
	/* remove VID from filter table */
	index = (vid >> 5) & 0x7F;
	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
	vfta &= ~(1 << (vid & 0x1F));
	e1000_write_vfta(&adapter->hw, index, vfta);
}

static void
e1000_restore_vlan(struct e1000_adapter *adapter)
{
	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if(adapter->vlgrp) {
		uint16_t vid;
		for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if(!adapter->vlgrp->vlan_devices[vid])
				continue;
			e1000_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int
e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
{
	adapter->hw.autoneg = 0;

	/* Fiber NICs only allow 1000 gbps Full duplex */
	if((adapter->hw.media_type == e1000_media_type_fiber) &&
		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}

	switch(spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		adapter->hw.forced_speed_duplex = e1000_10_half;
		break;
	case SPEED_10 + DUPLEX_FULL:
		adapter->hw.forced_speed_duplex = e1000_10_full;
		break;
	case SPEED_100 + DUPLEX_HALF:
		adapter->hw.forced_speed_duplex = e1000_100_half;
		break;
	case SPEED_100 + DUPLEX_FULL:
		adapter->hw.forced_speed_duplex = e1000_100_full;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		adapter->hw.autoneg = 1;
		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}
	return 0;
}

#ifdef CONFIG_PM
static int
e1000_suspend(struct pci_dev *pdev, uint32_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
	uint32_t wufc = adapter->wol;

	if (!adapter->ecdev)
		netif_device_detach(netdev);

	if (adapter->ecdev || netif_running(netdev))
		e1000_down(adapter);

	status = E1000_READ_REG(&adapter->hw, STATUS);
	if(status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if(wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if(adapter->wol & E1000_WUFC_MC) {
			rctl = E1000_READ_REG(&adapter->hw, RCTL);
			rctl |= E1000_RCTL_MPE;
			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
		}

		if(adapter->hw.mac_type >= e1000_82540) {
			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
			/* advertise wake from D3Cold */
			#define E1000_CTRL_ADVD3WUC 0x00100000
			/* phy power management enable */
			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
			ctrl |= E1000_CTRL_ADVD3WUC |
				E1000_CTRL_EN_PHY_PWR_MGMT;
			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
		}

		if(adapter->hw.media_type == e1000_media_type_fiber ||
		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
			/* keep the laser running in D3 */
			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
		}

		/* Allow time for pending master requests to run */
		e1000_disable_pciex_master(&adapter->hw);

		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
		pci_enable_wake(pdev, 3, 1);
		pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
	} else {
		E1000_WRITE_REG(&adapter->hw, WUC, 0);
		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
		pci_enable_wake(pdev, 3, 0);
		pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
	}

	pci_save_state(pdev);

	if(adapter->hw.mac_type >= e1000_82540 &&
	   adapter->hw.media_type == e1000_media_type_copper) {
		manc = E1000_READ_REG(&adapter->hw, MANC);
		if(manc & E1000_MANC_SMBUS_EN) {
			manc |= E1000_MANC_ARP_EN;
			E1000_WRITE_REG(&adapter->hw, MANC, manc);
			pci_enable_wake(pdev, 3, 1);
			pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
		}
	}

	switch(adapter->hw.mac_type) {
	case e1000_82573:
		swsm = E1000_READ_REG(&adapter->hw, SWSM);
		E1000_WRITE_REG(&adapter->hw, SWSM,
				swsm & ~E1000_SWSM_DRV_LOAD);
		break;
	default:
		break;
	}

	pci_disable_device(pdev);

	state = (state > 0) ? 3 : 0;
	pci_set_power_state(pdev, state);

	return 0;
}

static int
e1000_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	uint32_t manc, ret_val, swsm;

	pci_set_power_state(pdev, 0);
	pci_restore_state(pdev);
	ret_val = pci_enable_device(pdev);
	pci_set_master(pdev);

	pci_enable_wake(pdev, 3, 0);
	pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */

	e1000_reset(adapter);
	E1000_WRITE_REG(&adapter->hw, WUS, ~0);

	if(adapter->ecdev || netif_running(netdev))
		e1000_up(adapter);

	if (!adapter->ecdev) netif_device_attach(netdev);

	if(adapter->hw.mac_type >= e1000_82540 &&
	   adapter->hw.media_type == e1000_media_type_copper) {
		manc = E1000_READ_REG(&adapter->hw, MANC);
		manc &= ~(E1000_MANC_ARP_EN);
		E1000_WRITE_REG(&adapter->hw, MANC, manc);
	}

	switch(adapter->hw.mac_type) {
	case e1000_82573:
		swsm = E1000_READ_REG(&adapter->hw, SWSM);
		E1000_WRITE_REG(&adapter->hw, SWSM,
				swsm | E1000_SWSM_DRV_LOAD);
		break;
	default:
		break;
	}

	return 0;
}
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void
e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	disable_irq(adapter->pdev->irq);
	e1000_intr(adapter->pdev->irq, netdev, NULL);
	e1000_clean_tx_irq(adapter);
	enable_irq(adapter->pdev->irq);
}
#endif

/* e1000_main.c */