EoE bridge default gateway.
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it
* and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* The IgH EtherCAT Master is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* The right to use EtherCAT Technology is granted and comes free of
* charge under condition of compatibility of product made by
* Licensee. People intending to distribute/sell products based on the
* code, have to sign an agreement to guarantee that products using
* software based on IgH EtherCAT master stay compatible with the actual
* EtherCAT specification (which are released themselves as an open
* standard) as the (only) precondition to have the right to use EtherCAT
* Technology, IP and trade marks.
*
*****************************************************************************/
/**
\file
EtherCAT finite state machines.
*/
/*****************************************************************************/
#include "globals.h"
#include "fsm.h"
#include "master.h"
/*****************************************************************************/
const ec_code_msg_t al_status_messages[];
/*****************************************************************************/
void ec_fsm_master_start(ec_fsm_t *);
void ec_fsm_master_broadcast(ec_fsm_t *);
void ec_fsm_master_proc_states(ec_fsm_t *);
void ec_fsm_master_scan(ec_fsm_t *);
void ec_fsm_master_states(ec_fsm_t *);
void ec_fsm_master_validate_vendor(ec_fsm_t *);
void ec_fsm_master_validate_product(ec_fsm_t *);
void ec_fsm_master_reconfigure(ec_fsm_t *);
void ec_fsm_master_address(ec_fsm_t *);
void ec_fsm_master_conf(ec_fsm_t *);
void ec_fsm_master_eeprom(ec_fsm_t *);
void ec_fsm_slave_start_reading(ec_fsm_t *);
void ec_fsm_slave_read_status(ec_fsm_t *);
void ec_fsm_slave_read_base(ec_fsm_t *);
void ec_fsm_slave_read_dl(ec_fsm_t *);
void ec_fsm_slave_eeprom_size(ec_fsm_t *);
void ec_fsm_slave_fetch_eeprom(ec_fsm_t *);
void ec_fsm_slave_fetch_eeprom2(ec_fsm_t *);
void ec_fsm_slave_end(ec_fsm_t *);
void ec_fsm_slave_conf(ec_fsm_t *);
void ec_fsm_slave_sync(ec_fsm_t *);
void ec_fsm_slave_preop(ec_fsm_t *);
void ec_fsm_slave_fmmu(ec_fsm_t *);
void ec_fsm_slave_saveop(ec_fsm_t *);
void ec_fsm_slave_op(ec_fsm_t *);
void ec_fsm_slave_op2(ec_fsm_t *);
void ec_fsm_sii_start_reading(ec_fsm_t *);
void ec_fsm_sii_read_check(ec_fsm_t *);
void ec_fsm_sii_read_fetch(ec_fsm_t *);
void ec_fsm_sii_start_writing(ec_fsm_t *);
void ec_fsm_sii_write_check(ec_fsm_t *);
void ec_fsm_sii_write_check2(ec_fsm_t *);
void ec_fsm_sii_end(ec_fsm_t *);
void ec_fsm_sii_error(ec_fsm_t *);
void ec_fsm_change_start(ec_fsm_t *);
void ec_fsm_change_check(ec_fsm_t *);
void ec_fsm_change_status(ec_fsm_t *);
void ec_fsm_change_code(ec_fsm_t *);
void ec_fsm_change_ack(ec_fsm_t *);
void ec_fsm_change_ack2(ec_fsm_t *);
void ec_fsm_change_end(ec_fsm_t *);
void ec_fsm_change_error(ec_fsm_t *);
/*****************************************************************************/
/**
Constructor.
*/
int ec_fsm_init(ec_fsm_t *fsm, /**< finite state machine */
ec_master_t *master /**< EtherCAT master */
)
{
fsm->master = master;
fsm->master_state = ec_fsm_master_start;
fsm->master_slaves_responding = 0;
fsm->master_slave_states = EC_SLAVE_STATE_UNKNOWN;
fsm->master_validation = 0;
ec_command_init(&fsm->command);
if (ec_command_prealloc(&fsm->command, EC_MAX_DATA_SIZE)) {
EC_ERR("FSM failed to allocate FSM command.\n");
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Destructor.
*/
void ec_fsm_clear(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_clear(&fsm->command);
}
/*****************************************************************************/
/**
Resets the state machine.
*/
void ec_fsm_reset(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->master_state = ec_fsm_master_start;
fsm->master_slaves_responding = 0;
fsm->master_slave_states = EC_SLAVE_STATE_UNKNOWN;
}
/*****************************************************************************/
/**
Executes the current state of the state machine.
*/
void ec_fsm_execute(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->master_state(fsm);
}
/******************************************************************************
* master state machine
*****************************************************************************/
/**
Master state: START.
Starts with getting slave count and slave states.
*/
void ec_fsm_master_start(ec_fsm_t *fsm)
{
ec_command_brd(&fsm->command, 0x0130, 2);
ec_master_queue_command(fsm->master, &fsm->command);
fsm->master_state = ec_fsm_master_broadcast;
}
/*****************************************************************************/
/**
Master state: BROADCAST.
Processes the broadcast read slave count and slaves states.
*/
void ec_fsm_master_broadcast(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
unsigned int topology_change, states_change, i;
ec_slave_t *slave;
ec_master_t *master = fsm->master;
if (command->state != EC_CMD_RECEIVED) {
if (!master->device->link_state) {
fsm->master_slaves_responding = 0;
list_for_each_entry(slave, &master->slaves, list) {
slave->online = 0;
}
}
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
topology_change = (command->working_counter !=
fsm->master_slaves_responding);
states_change = (EC_READ_U8(command->data) != fsm->master_slave_states);
fsm->master_slave_states = EC_READ_U8(command->data);
fsm->master_slaves_responding = command->working_counter;
if (topology_change) {
EC_INFO("%i slave%s responding.\n",
fsm->master_slaves_responding,
fsm->master_slaves_responding == 1 ? "" : "s");
if (master->mode == EC_MASTER_MODE_RUNNING) {
if (fsm->master_slaves_responding == master->slave_count) {
fsm->master_validation = 1; // start validation later
}
else {
EC_WARN("Invalid slave count. Bus in tainted state.\n");
}
}
}
if (states_change) {
EC_INFO("Slave states: ");
ec_print_states(fsm->master_slave_states);
printk(".\n");
}
// topology change in free-run mode: clear all slaves and scan the bus
if (topology_change && master->mode == EC_MASTER_MODE_FREERUN) {
EC_INFO("Scanning bus.\n");
ec_master_eoe_stop(master);
ec_master_clear_slaves(master);
if (!fsm->master_slaves_responding) {
// no slaves present -> finish state machine.
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// init slaves
for (i = 0; i < fsm->master_slaves_responding; i++) {
if (!(slave = (ec_slave_t *) kmalloc(sizeof(ec_slave_t),
GFP_ATOMIC))) {
EC_ERR("Failed to allocate slave %i!\n", i);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (ec_slave_init(slave, master, i, i + 1)) {
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (kobject_add(&slave->kobj)) {
EC_ERR("Failed to add kobject.\n");
kobject_put(&slave->kobj); // free
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
list_add_tail(&slave->list, &master->slaves);
}
// begin scanning of slaves
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slave_start_reading;
fsm->master_state = ec_fsm_master_scan;
fsm->master_state(fsm); // execute immediately
return;
}
// fetch state from each slave
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
ec_command_nprd(&fsm->command, fsm->slave->station_address, 0x0130, 2);
ec_master_queue_command(master, &fsm->command);
fsm->master_state = ec_fsm_master_states;
}
/*****************************************************************************/
/**
Master action: Get state of next slave.
*/
void ec_fsm_master_action_next_slave_state(ec_fsm_t *fsm
/**< finite state machine */)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave = fsm->slave;
// have all states been read?
if (slave->list.next == &master->slaves) {
// check, if a bus validation has to be done
if (fsm->master_validation) {
fsm->master_validation = 0;
list_for_each_entry(slave, &master->slaves, list) {
if (slave->online) continue;
// At least one slave is offline. validate!
EC_INFO("Validating bus.\n");
fsm->slave = list_entry(master->slaves.next, ec_slave_t, list);
fsm->master_state = ec_fsm_master_validate_vendor;
fsm->sii_offset = 0x0008; // vendor ID
fsm->sii_mode = 0;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute immediately
return;
}
}
fsm->master_state = ec_fsm_master_proc_states;
fsm->master_state(fsm); // execute immediately
return;
}
// process next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
ec_command_nprd(&fsm->command, fsm->slave->station_address, 0x0130, 2);
ec_master_queue_command(master, &fsm->command);
fsm->master_state = ec_fsm_master_states;
}
/*****************************************************************************/
/**
Master state: STATES.
Fetches the AL- and online state of a slave.
*/
void ec_fsm_master_states(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
ec_command_t *command = &fsm->command;
uint8_t new_state;
if (command->state != EC_CMD_RECEIVED) {
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// did the slave not respond to its station address?
if (command->working_counter != 1) {
if (slave->online) {
slave->online = 0;
EC_INFO("Slave %i: offline.\n", slave->ring_position);
}
ec_fsm_master_action_next_slave_state(fsm);
return;
}
// slave responded
new_state = EC_READ_U8(command->data);
if (!slave->online) { // slave was offline before
slave->online = 1;
slave->state_error = 0;
slave->current_state = new_state;
EC_INFO("Slave %i: online (", slave->ring_position);
ec_print_states(new_state);
printk(").\n");
}
else if (new_state != slave->current_state) {
EC_INFO("Slave %i: ", slave->ring_position);
ec_print_states(slave->current_state);
printk(" -> ");
ec_print_states(new_state);
printk(".\n");
slave->current_state = new_state;
}
ec_fsm_master_action_next_slave_state(fsm);
}
/*****************************************************************************/
/**
Master state: PROC_STATES.
Processes the slave states.
*/
void ec_fsm_master_proc_states(ec_fsm_t *fsm /**< finite state machine */)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave;
// check if any slaves are not in the state, they're supposed to be
list_for_each_entry(slave, &master->slaves, list) {
if (slave->state_error || !slave->online ||
slave->requested_state == EC_SLAVE_STATE_UNKNOWN ||
slave->current_state == slave->requested_state) continue;
EC_INFO("Changing state of slave %i from ", slave->ring_position);
ec_print_states(slave->current_state);
printk(" to ");
ec_print_states(slave->requested_state);
printk(".\n");
fsm->slave = slave;
fsm->slave_state = ec_fsm_slave_conf;
fsm->change_new = EC_SLAVE_STATE_INIT;
fsm->change_state = ec_fsm_change_start;
fsm->master_state = ec_fsm_master_conf;
fsm->master_state(fsm); // execute immediately
return;
}
if (master->mode == EC_MASTER_MODE_FREERUN) {
// nothing to configure. check for pending EEPROM write operations.
list_for_each_entry(slave, &master->slaves, list) {
if (!slave->new_eeprom_data) continue;
// found pending EEPROM write operation. execute it!
EC_INFO("Writing EEPROM of slave %i...\n", slave->ring_position);
fsm->sii_offset = 0x0000;
memcpy(fsm->sii_value, slave->new_eeprom_data, 2);
fsm->sii_mode = 1;
fsm->sii_state = ec_fsm_sii_start_writing;
fsm->slave = slave;
fsm->master_state = ec_fsm_master_eeprom;
fsm->master_state(fsm); // execute immediately
return;
}
}
// nothing to do. restart master state machine.
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: VALIDATE_VENDOR.
Validates the vendor ID of a slave.
*/
void ec_fsm_master_validate_vendor(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
fsm->sii_state(fsm); // execute SII state machine
if (fsm->sii_state == ec_fsm_sii_error) {
EC_ERR("Failed to validate vendor ID of slave %i.\n",
slave->ring_position);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (fsm->sii_state != ec_fsm_sii_end) return;
if (EC_READ_U32(fsm->sii_value) != slave->sii_vendor_id) {
EC_ERR("Slave %i: invalid vendor ID!\n", slave->ring_position);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// vendor ID is ok. check product code.
fsm->master_state = ec_fsm_master_validate_product;
fsm->sii_offset = 0x000A; // product code
fsm->sii_mode = 0;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: VALIDATE_PRODUCT.
Validates the product ID of a slave.
*/
void ec_fsm_master_validate_product(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
fsm->sii_state(fsm); // execute SII state machine
if (fsm->sii_state == ec_fsm_sii_error) {
EC_ERR("Failed to validate product code of slave %i.\n",
slave->ring_position);
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (fsm->sii_state != ec_fsm_sii_end) return;
if (EC_READ_U32(fsm->sii_value) != slave->sii_product_code) {
EC_ERR("Slave %i: invalid product code!\n", slave->ring_position);
EC_ERR("expected 0x%08X, got 0x%08X.\n", slave->sii_product_code,
EC_READ_U32(fsm->sii_value));
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// have all states been validated?
if (slave->list.next == &fsm->master->slaves) {
fsm->slave = list_entry(fsm->master->slaves.next, ec_slave_t, list);
fsm->master_state = ec_fsm_master_reconfigure;
return;
}
// validate next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
fsm->master_state = ec_fsm_master_validate_vendor;
fsm->sii_offset = 0x0008; // vendor ID
fsm->sii_mode = 0;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: RECONFIGURE.
Looks for slave, that have lost their configuration and writes
their station address, so that they can be reconfigured later.
*/
void ec_fsm_master_reconfigure(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
while (fsm->slave->online) {
if (fsm->slave->list.next == &fsm->master->slaves) { // last slave?
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// check next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
}
EC_INFO("Reinitializing slave %i.\n", fsm->slave->ring_position);
// write station address
ec_command_apwr(command, fsm->slave->ring_position, 0x0010, 2);
EC_WRITE_U16(command->data, fsm->slave->station_address);
ec_master_queue_command(fsm->master, command);
fsm->master_state = ec_fsm_master_address;
}
/*****************************************************************************/
/**
Master state: ADDRESS.
Checks, if the new station address has been written to the slave.
*/
void ec_fsm_master_address(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
ec_command_t *command = &fsm->command;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("Failed to write station address on slave %i.\n",
slave->ring_position);
}
if (fsm->slave->list.next == &fsm->master->slaves) { // last slave?
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// check next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
fsm->master_state = ec_fsm_master_reconfigure;
fsm->master_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: SCAN.
Executes the sub-statemachine for the scanning of a slave.
*/
void ec_fsm_master_scan(ec_fsm_t *fsm /**< finite state machine */)
{
ec_master_t *master = fsm->master;
ec_slave_t *slave = fsm->slave;
uint16_t coupler_index, coupler_subindex;
uint16_t reverse_coupler_index, current_coupler_index;
ec_slave_ident_t *ident;
fsm->slave_state(fsm); // execute slave state machine
if (fsm->slave_state != ec_fsm_slave_end) return;
// have all slaves been fetched?
if (slave->list.next == &master->slaves) {
EC_INFO("Bus scanning completed.\n");
// identify all slaves and calculate coupler addressing
coupler_index = 0;
reverse_coupler_index = 0xFFFF;
current_coupler_index = 0x3FFF;
coupler_subindex = 0;
list_for_each_entry(slave, &master->slaves, list)
{
// search for identification in "database"
ident = slave_idents;
while (ident->type) {
if (ident->vendor_id == slave->sii_vendor_id
&& ident->product_code == slave->sii_product_code) {
slave->type = ident->type;
break;
}
ident++;
}
if (!slave->type) {
EC_WARN("FSM: Unknown slave device (vendor 0x%08X,"
" code 0x%08X) at position %i.\n",
slave->sii_vendor_id, slave->sii_product_code,
slave->ring_position);
}
else {
// if the slave is a bus coupler, change adressing base
if (slave->type->special == EC_TYPE_BUS_COUPLER) {
if (slave->sii_alias)
current_coupler_index = reverse_coupler_index--;
else
current_coupler_index = coupler_index++;
coupler_subindex = 0;
}
}
// determine initial state.
if ((slave->type && slave->type->special == EC_TYPE_BUS_COUPLER)) {
slave->requested_state = EC_SLAVE_STATE_OP;
}
else {
if (master->mode == EC_MASTER_MODE_RUNNING)
slave->requested_state = EC_SLAVE_STATE_PREOP;
else
slave->requested_state = EC_SLAVE_STATE_INIT;
}
slave->state_error = 0;
// calculate coupler-based slave address
slave->coupler_index = current_coupler_index;
slave->coupler_subindex = coupler_subindex;
coupler_subindex++;
}
if (master->mode == EC_MASTER_MODE_FREERUN) {
// start EoE processing
ec_master_eoe_start(master);
}
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
// process next slave
fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list);
fsm->slave_state = ec_fsm_slave_start_reading;
fsm->slave_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: CONF.
Starts configuring a slave.
*/
void ec_fsm_master_conf(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->slave_state(fsm); // execute slave's state machine
if (fsm->slave_state != ec_fsm_slave_end) return;
fsm->master_state = ec_fsm_master_proc_states;
fsm->master_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Master state: EEPROM.
*/
void ec_fsm_master_eeprom(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
fsm->sii_state(fsm); // execute SII state machine
if (fsm->sii_state == ec_fsm_sii_error) {
EC_ERR("Failed to write EEPROM contents to slave %i.\n",
slave->ring_position);
kfree(slave->new_eeprom_data);
slave->new_eeprom_data = NULL;
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
if (fsm->sii_state != ec_fsm_sii_end) return;
fsm->sii_offset++;
if (fsm->sii_offset < slave->new_eeprom_size) {
memcpy(fsm->sii_value, slave->new_eeprom_data + fsm->sii_offset, 2);
fsm->sii_state = ec_fsm_sii_start_writing;
fsm->sii_state(fsm); // execute immediately
return;
}
// finished writing EEPROM
EC_INFO("Finished writing EEPROM of slave %i.\n", slave->ring_position);
kfree(slave->new_eeprom_data);
slave->new_eeprom_data = NULL;
// restart master state machine.
fsm->master_state = ec_fsm_master_start;
fsm->master_state(fsm); // execute immediately
return;
}
/******************************************************************************
* slave state machine
*****************************************************************************/
/**
Slave state: START_READING.
First state of the slave state machine. Writes the station address to the
slave, according to its ring position.
*/
void ec_fsm_slave_start_reading(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
// write station address
ec_command_apwr(command, fsm->slave->ring_position, 0x0010, 2);
EC_WRITE_U16(command->data, fsm->slave->station_address);
ec_master_queue_command(fsm->master, command);
fsm->slave_state = ec_fsm_slave_read_status;
}
/*****************************************************************************/
/**
Slave state: READ_STATUS.
*/
void ec_fsm_slave_read_status(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("FSM failed to write station address of slave %i.\n",
fsm->slave->ring_position);
fsm->slave_state = ec_fsm_slave_end;
return;
}
// read AL status
ec_command_nprd(command, fsm->slave->station_address, 0x0130, 2);
ec_master_queue_command(fsm->master, command);
fsm->slave_state = ec_fsm_slave_read_base;
}
/*****************************************************************************/
/**
Slave state: READ_BASE.
*/
void ec_fsm_slave_read_base(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("FSM failed to read AL status of slave %i.\n",
fsm->slave->ring_position);
fsm->slave_state = ec_fsm_slave_end;
return;
}
slave->current_state = EC_READ_U8(command->data);
if (slave->current_state & EC_ACK) {
EC_WARN("Slave %i has status error bit set (0x%02X)!\n",
slave->ring_position, slave->current_state);
slave->current_state &= 0x0F;
}
// read base data
ec_command_nprd(command, fsm->slave->station_address, 0x0000, 6);
ec_master_queue_command(fsm->master, command);
fsm->slave_state = ec_fsm_slave_read_dl;
}
/*****************************************************************************/
/**
Slave state: READ_DL.
*/
void ec_fsm_slave_read_dl(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("FSM failed to read base data of slave %i.\n",
slave->ring_position);
fsm->slave_state = ec_fsm_slave_end;
return;
}
slave->base_type = EC_READ_U8 (command->data);
slave->base_revision = EC_READ_U8 (command->data + 1);
slave->base_build = EC_READ_U16(command->data + 2);
slave->base_fmmu_count = EC_READ_U8 (command->data + 4);
slave->base_sync_count = EC_READ_U8 (command->data + 5);
if (slave->base_fmmu_count > EC_MAX_FMMUS)
slave->base_fmmu_count = EC_MAX_FMMUS;
// read data link status
ec_command_nprd(command, slave->station_address, 0x0110, 2);
ec_master_queue_command(slave->master, command);
fsm->slave_state = ec_fsm_slave_eeprom_size;
}
/*****************************************************************************/
/**
Slave state: EEPROM_SIZE.
Read the actual size of the EEPROM to allocate the EEPROM image.
*/
void ec_fsm_slave_eeprom_size(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
uint16_t dl_status;
unsigned int i;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("FSM failed to read DL status of slave %i.\n",
slave->ring_position);
fsm->slave_state = ec_fsm_slave_end;
return;
}
dl_status = EC_READ_U16(command->data);
for (i = 0; i < 4; i++) {
slave->dl_link[i] = dl_status & (1 << (4 + i)) ? 1 : 0;
slave->dl_loop[i] = dl_status & (1 << (8 + i * 2)) ? 1 : 0;
slave->dl_signal[i] = dl_status & (1 << (9 + i * 2)) ? 1 : 0;
}
// Start fetching EEPROM size
fsm->sii_offset = 0x0040; // first category header
fsm->sii_mode = 1;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->slave_state = ec_fsm_slave_fetch_eeprom;
fsm->slave_state(fsm); // execute state immediately
}
/*****************************************************************************/
/**
Slave state: FETCH_EEPROM.
*/
void ec_fsm_slave_fetch_eeprom(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
uint16_t cat_type, cat_size;
// execute SII state machine
fsm->sii_state(fsm);
if (fsm->sii_state == ec_fsm_sii_error) {
fsm->slave_state = ec_fsm_slave_end;
EC_ERR("Failed to read EEPROM size of slave %i.\n",
slave->ring_position);
return;
}
if (fsm->sii_state != ec_fsm_sii_end) return;
cat_type = EC_READ_U16(fsm->sii_value);
cat_size = EC_READ_U16(fsm->sii_value + 2);
if (cat_type != 0xFFFF) { // not the last category
fsm->sii_offset += cat_size + 2;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute state immediately
return;
}
slave->eeprom_size = (fsm->sii_offset + 1) * 2;
if (slave->eeprom_data) {
EC_INFO("Freeing old EEPROM data on slave %i...\n",
slave->ring_position);
kfree(slave->eeprom_data);
}
if (!(slave->eeprom_data =
(uint8_t *) kmalloc(slave->eeprom_size, GFP_ATOMIC))) {
EC_ERR("Failed to allocate EEPROM data on slave %i.\n",
slave->ring_position);
fsm->slave_state = ec_fsm_slave_end;
return;
}
// Start fetching EEPROM contents
fsm->sii_offset = 0x0000;
fsm->sii_mode = 1;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->slave_state = ec_fsm_slave_fetch_eeprom2;
fsm->slave_state(fsm); // execute state immediately
}
/*****************************************************************************/
/**
Slave state: FETCH_EEPROM2.
*/
void ec_fsm_slave_fetch_eeprom2(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
uint16_t *cat_word, cat_type, cat_size;
// execute SII state machine
fsm->sii_state(fsm);
if (fsm->sii_state == ec_fsm_sii_error) {
fsm->slave_state = ec_fsm_slave_end;
EC_ERR("Failed to fetch EEPROM contents of slave %i.\n",
slave->ring_position);
return;
}
if (fsm->sii_state != ec_fsm_sii_end) return;
// 2 words fetched
if (fsm->sii_offset + 2 <= slave->eeprom_size / 2) { // 2 words fit
memcpy(slave->eeprom_data + fsm->sii_offset * 2, fsm->sii_value, 4);
}
else { // copy the last word
memcpy(slave->eeprom_data + fsm->sii_offset * 2, fsm->sii_value, 2);
}
if (fsm->sii_offset + 2 < slave->eeprom_size / 2) {
// fetch the next 2 words
fsm->sii_offset += 2;
fsm->sii_state = ec_fsm_sii_start_reading;
fsm->sii_state(fsm); // execute state immediately
return;
}
// Evaluate EEPROM contents
slave->sii_alias =
EC_READ_U16(slave->eeprom_data + 2 * 0x0004);
slave->sii_vendor_id =
EC_READ_U32(slave->eeprom_data + 2 * 0x0008);
slave->sii_product_code =
EC_READ_U32(slave->eeprom_data + 2 * 0x000A);
slave->sii_revision_number =
EC_READ_U32(slave->eeprom_data + 2 * 0x000C);
slave->sii_serial_number =
EC_READ_U32(slave->eeprom_data + 2 * 0x000E);
slave->sii_rx_mailbox_offset =
EC_READ_U16(slave->eeprom_data + 2 * 0x0018);
slave->sii_rx_mailbox_size =
EC_READ_U16(slave->eeprom_data + 2 * 0x0019);
slave->sii_tx_mailbox_offset =
EC_READ_U16(slave->eeprom_data + 2 * 0x001A);
slave->sii_tx_mailbox_size =
EC_READ_U16(slave->eeprom_data + 2 * 0x001B);
slave->sii_mailbox_protocols =
EC_READ_U16(slave->eeprom_data + 2 * 0x001C);
// evaluate category data
cat_word = (uint16_t *) slave->eeprom_data + 0x0040;
while (EC_READ_U16(cat_word) != 0xFFFF) {
cat_type = EC_READ_U16(cat_word) & 0x7FFF;
cat_size = EC_READ_U16(cat_word + 1);
switch (cat_type) {
case 0x000A:
if (ec_slave_fetch_strings(slave, (uint8_t *) (cat_word + 2)))
goto end;
break;
case 0x001E:
if (ec_slave_fetch_general(slave, (uint8_t *) (cat_word + 2)))
goto end;
break;
case 0x0028:
break;
case 0x0029:
if (ec_slave_fetch_sync(slave, (uint8_t *) (cat_word + 2),
cat_size))
goto end;
break;
case 0x0032:
if (ec_slave_fetch_pdo(slave, (uint8_t *) (cat_word + 2),
cat_size, EC_TX_PDO))
goto end;
break;
case 0x0033:
if (ec_slave_fetch_pdo(slave, (uint8_t *) (cat_word + 2),
cat_size, EC_RX_PDO))
goto end;
break;
default:
EC_WARN("Unknown category type 0x%04X in slave %i.\n",
cat_type, slave->ring_position);
}
cat_word += cat_size + 2;
}
end:
fsm->slave_state = ec_fsm_slave_end;
}
/*****************************************************************************/
/**
Slave state: CONF.
*/
void ec_fsm_slave_conf(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
ec_master_t *master = fsm->master;
ec_command_t *command = &fsm->command;
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_change_error) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
if (fsm->change_state != ec_fsm_change_end) return;
// slave is now in INIT
if (slave->current_state == slave->requested_state) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
// check for slave registration
if (!slave->type) {
EC_WARN("Slave %i has unknown type!\n", slave->ring_position);
}
// check and reset CRC fault counters
//ec_slave_check_crc(slave);
if (!slave->base_fmmu_count) { // no fmmus
fsm->slave_state = ec_fsm_slave_sync;
fsm->slave_state(fsm); // execute immediately
return;
}
// reset FMMUs
ec_command_npwr(command, slave->station_address, 0x0600,
EC_FMMU_SIZE * slave->base_fmmu_count);
memset(command->data, 0x00, EC_FMMU_SIZE * slave->base_fmmu_count);
ec_master_queue_command(master, command);
fsm->slave_state = ec_fsm_slave_sync;
}
/*****************************************************************************/
/**
Slave state: SYNC.
Configure sync managers.
*/
void ec_fsm_slave_sync(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
unsigned int j;
const ec_sync_t *sync;
ec_eeprom_sync_t *eeprom_sync, mbox_sync;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("Failed to reset FMMUs of slave %i.\n",
slave->ring_position);
slave->state_error = 1;
fsm->slave_state = ec_fsm_slave_end;
return;
}
if (!slave->base_sync_count) { // no sync managers
fsm->slave_state = ec_fsm_slave_preop;
fsm->slave_state(fsm); // execute immediately
return;
}
// configure sync managers
ec_command_npwr(command, slave->station_address, 0x0800,
EC_SYNC_SIZE * slave->base_sync_count);
memset(command->data, 0x00, EC_SYNC_SIZE * slave->base_sync_count);
// known slave type, take type's SM information
if (slave->type) {
for (j = 0; slave->type->sync_managers[j] && j < EC_MAX_SYNC; j++) {
sync = slave->type->sync_managers[j];
ec_sync_config(sync, slave, command->data + EC_SYNC_SIZE * j);
}
}
// unknown type, but slave has mailbox
else if (slave->sii_mailbox_protocols)
{
// does it supply sync manager configurations in its EEPROM?
if (!list_empty(&slave->eeprom_syncs)) {
list_for_each_entry(eeprom_sync, &slave->eeprom_syncs, list) {
if (eeprom_sync->index >= slave->base_sync_count) {
EC_ERR("Invalid sync manager configuration found!");
fsm->slave_state = ec_fsm_slave_end;
return;
}
ec_eeprom_sync_config(eeprom_sync,
command->data + EC_SYNC_SIZE
* eeprom_sync->index);
}
}
// no sync manager information; guess mailbox settings
else {
mbox_sync.physical_start_address =
slave->sii_rx_mailbox_offset;
mbox_sync.length = slave->sii_rx_mailbox_size;
mbox_sync.control_register = 0x26;
mbox_sync.enable = 1;
ec_eeprom_sync_config(&mbox_sync, command->data);
mbox_sync.physical_start_address =
slave->sii_tx_mailbox_offset;
mbox_sync.length = slave->sii_tx_mailbox_size;
mbox_sync.control_register = 0x22;
mbox_sync.enable = 1;
ec_eeprom_sync_config(&mbox_sync,
command->data + EC_SYNC_SIZE);
}
EC_INFO("Mailbox configured for unknown slave %i\n",
slave->ring_position);
}
ec_master_queue_command(fsm->master, command);
fsm->slave_state = ec_fsm_slave_preop;
}
/*****************************************************************************/
/**
Slave state: PREOP.
Change slave state to PREOP.
*/
void ec_fsm_slave_preop(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("Failed to set sync managers on slave %i.\n",
slave->ring_position);
slave->state_error = 1;
fsm->slave_state = ec_fsm_slave_end;
return;
}
fsm->change_new = EC_SLAVE_STATE_PREOP;
fsm->change_state = ec_fsm_change_start;
fsm->slave_state = ec_fsm_slave_fmmu;
fsm->change_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Slave state: FMMU.
Configure FMMUs.
*/
void ec_fsm_slave_fmmu(ec_fsm_t *fsm /**< finite state machine */)
{
ec_slave_t *slave = fsm->slave;
ec_master_t *master = fsm->master;
ec_command_t *command = &fsm->command;
unsigned int j;
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_change_error) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
if (fsm->change_state != ec_fsm_change_end) return;
// slave is now in PREOP
if (slave->current_state == slave->requested_state) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
// stop activation here for slaves without type
if (!slave->type) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
if (!slave->base_fmmu_count) {
fsm->slave_state = ec_fsm_slave_saveop;
fsm->slave_state(fsm); // execute immediately
return;
}
// configure FMMUs
ec_command_npwr(command, slave->station_address,
0x0600, EC_FMMU_SIZE * slave->base_fmmu_count);
memset(command->data, 0x00, EC_FMMU_SIZE * slave->base_fmmu_count);
for (j = 0; j < slave->fmmu_count; j++) {
ec_fmmu_config(&slave->fmmus[j], slave,
command->data + EC_FMMU_SIZE * j);
}
ec_master_queue_command(master, command);
fsm->slave_state = ec_fsm_slave_saveop;
}
/*****************************************************************************/
/**
Slave state: SAVEOP.
Set slave state to SAVEOP.
*/
void ec_fsm_slave_saveop(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
if (fsm->slave->base_fmmu_count && (command->state != EC_CMD_RECEIVED ||
command->working_counter != 1)) {
EC_ERR("FSM failed to set FMMUs on slave %i.\n",
fsm->slave->ring_position);
fsm->slave->state_error = 1;
fsm->slave_state = ec_fsm_slave_end;
return;
}
// set state to SAVEOP
fsm->slave_state = ec_fsm_slave_op;
fsm->change_new = EC_SLAVE_STATE_SAVEOP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Slave state: OP.
Set slave state to OP.
*/
void ec_fsm_slave_op(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_change_error) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
if (fsm->change_state != ec_fsm_change_end) return;
// slave is now in SAVEOP
if (fsm->slave->current_state == fsm->slave->requested_state) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
// set state to OP
fsm->slave_state = ec_fsm_slave_op2;
fsm->change_new = EC_SLAVE_STATE_OP;
fsm->change_state = ec_fsm_change_start;
fsm->change_state(fsm); // execute immediately
}
/*****************************************************************************/
/**
Slave state: OP2
Executes the change state machine, until the OP state is set.
*/
void ec_fsm_slave_op2(ec_fsm_t *fsm /**< finite state machine */)
{
fsm->change_state(fsm); // execute state change state machine
if (fsm->change_state == ec_fsm_change_error) {
fsm->slave_state = ec_fsm_slave_end;
return;
}
if (fsm->change_state != ec_fsm_change_end) return;
// slave is now in OP
fsm->slave_state = ec_fsm_slave_end;
}
/*****************************************************************************/
/**
Slave state: END.
End state of the slave state machine.
*/
void ec_fsm_slave_end(ec_fsm_t *fsm /**< finite state machine */)
{
}
/******************************************************************************
* SII state machine
*****************************************************************************/
/**
SII state: START_READING.
Starts reading the slave information interface.
*/
void ec_fsm_sii_start_reading(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
// initiate read operation
if (fsm->sii_mode) {
ec_command_npwr(command, fsm->slave->station_address, 0x502, 4);
}
else {
ec_command_apwr(command, fsm->slave->ring_position, 0x502, 4);
}
EC_WRITE_U8 (command->data, 0x00); // read-only access
EC_WRITE_U8 (command->data + 1, 0x01); // request read operation
EC_WRITE_U16(command->data + 2, fsm->sii_offset);
ec_master_queue_command(fsm->master, command);
fsm->sii_state = ec_fsm_sii_read_check;
}
/*****************************************************************************/
/**
SII state: READ_CHECK.
Checks, if the SII-read-command has been sent and issues a fetch command.
*/
void ec_fsm_sii_read_check(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("SII: Reception of read command failed.\n");
fsm->sii_state = ec_fsm_sii_error;
return;
}
fsm->sii_start = get_cycles();
// issue check/fetch command
if (fsm->sii_mode) {
ec_command_nprd(command, fsm->slave->station_address, 0x502, 10);
}
else {
ec_command_aprd(command, fsm->slave->ring_position, 0x502, 10);
}
ec_master_queue_command(fsm->master, command);
fsm->sii_state = ec_fsm_sii_read_fetch;
}
/*****************************************************************************/
/**
SII state: READ_FETCH.
Fetches the result of an SII-read command.
*/
void ec_fsm_sii_read_fetch(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("SII: Reception of check/fetch command failed.\n");
fsm->sii_state = ec_fsm_sii_error;
return;
}
// check "busy bit"
if (EC_READ_U8(command->data + 1) & 0x81) {
// still busy... timeout?
if (get_cycles() - fsm->sii_start >= (cycles_t) 10 * cpu_khz) {
EC_ERR("SII: Timeout.\n");
fsm->sii_state = ec_fsm_sii_error;
#if 0
EC_DBG("SII busy: %02X %02X %02X %02X\n",
EC_READ_U8(command->data + 0),
EC_READ_U8(command->data + 1),
EC_READ_U8(command->data + 2),
EC_READ_U8(command->data + 3));
#endif
}
// issue check/fetch command again
if (fsm->sii_mode) {
ec_command_nprd(command, fsm->slave->station_address, 0x502, 10);
}
else {
ec_command_aprd(command, fsm->slave->ring_position, 0x502, 10);
}
ec_master_queue_command(fsm->master, command);
return;
}
#if 0
EC_DBG("SII rec: %02X %02X %02X %02X - %02X %02X %02X %02X\n",
EC_READ_U8(command->data + 0), EC_READ_U8(command->data + 1),
EC_READ_U8(command->data + 2), EC_READ_U8(command->data + 3),
EC_READ_U8(command->data + 6), EC_READ_U8(command->data + 7),
EC_READ_U8(command->data + 8), EC_READ_U8(command->data + 9));
#endif
// SII value received.
memcpy(fsm->sii_value, command->data + 6, 4);
fsm->sii_state = ec_fsm_sii_end;
}
/*****************************************************************************/
/**
SII state: START_WRITING.
Starts reading the slave information interface.
*/
void ec_fsm_sii_start_writing(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
// initiate write operation
ec_command_npwr(command, fsm->slave->station_address, 0x502, 8);
EC_WRITE_U8 (command->data, 0x01); // enable write access
EC_WRITE_U8 (command->data + 1, 0x02); // request write operation
EC_WRITE_U32(command->data + 2, fsm->sii_offset);
memcpy(command->data + 6, fsm->sii_value, 2);
ec_master_queue_command(fsm->master, command);
fsm->sii_state = ec_fsm_sii_write_check;
}
/*****************************************************************************/
/**
SII state: WRITE_CHECK.
*/
void ec_fsm_sii_write_check(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("SII: Reception of write command failed.\n");
fsm->sii_state = ec_fsm_sii_error;
return;
}
fsm->sii_start = get_cycles();
// issue check/fetch command
ec_command_nprd(command, fsm->slave->station_address, 0x502, 2);
ec_master_queue_command(fsm->master, command);
fsm->sii_state = ec_fsm_sii_write_check2;
}
/*****************************************************************************/
/**
SII state: WRITE_CHECK2.
*/
void ec_fsm_sii_write_check2(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("SII: Reception of write check command failed.\n");
fsm->sii_state = ec_fsm_sii_error;
return;
}
if (EC_READ_U8(command->data + 1) & 0x82) {
// still busy... timeout?
if (get_cycles() - fsm->sii_start >= (cycles_t) 10 * cpu_khz) {
EC_ERR("SII: Write timeout.\n");
fsm->sii_state = ec_fsm_sii_error;
}
// issue check/fetch command again
ec_master_queue_command(fsm->master, command);
}
else if (EC_READ_U8(command->data + 1) & 0x40) {
EC_ERR("SII: Write operation failed!\n");
fsm->sii_state = ec_fsm_sii_error;
}
else { // success
fsm->sii_state = ec_fsm_sii_end;
}
}
/*****************************************************************************/
/**
SII state: END.
End state of the slave SII state machine.
*/
void ec_fsm_sii_end(ec_fsm_t *fsm /**< finite state machine */)
{
}
/*****************************************************************************/
/**
SII state: ERROR.
End state of the slave SII state machine.
*/
void ec_fsm_sii_error(ec_fsm_t *fsm /**< finite state machine */)
{
}
/******************************************************************************
* state change state machine
*****************************************************************************/
/**
Change state: START.
*/
void ec_fsm_change_start(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
// write new state to slave
ec_command_npwr(command, slave->station_address, 0x0120, 2);
EC_WRITE_U16(command->data, fsm->change_new);
ec_master_queue_command(fsm->master, command);
fsm->change_state = ec_fsm_change_check;
}
/*****************************************************************************/
/**
Change state: CHECK.
*/
void ec_fsm_change_check(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
if (command->state != EC_CMD_RECEIVED) {
EC_ERR("Failed to send state command to slave %i!\n",
fsm->slave->ring_position);
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
return;
}
if (command->working_counter != 1) {
EC_ERR("Failed to set state 0x%02X on slave %i: Slave did not"
" respond.\n", fsm->change_new, fsm->slave->ring_position);
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
return;
}
fsm->change_start = get_cycles();
// read AL status from slave
ec_command_nprd(command, slave->station_address, 0x0130, 2);
ec_master_queue_command(fsm->master, command);
fsm->change_state = ec_fsm_change_status;
}
/*****************************************************************************/
/**
Change state: STATUS.
*/
void ec_fsm_change_status(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("Failed to check state 0x%02X on slave %i.\n",
fsm->change_new, slave->ring_position);
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
return;
}
slave->current_state = EC_READ_U8(command->data);
if (slave->current_state == fsm->change_new) {
// state has been set successfully
fsm->change_state = ec_fsm_change_end;
return;
}
if (slave->current_state & 0x10) {
// state change error
fsm->change_new = slave->current_state & 0x0F;
EC_ERR("Failed to set state 0x%02X - Slave %i refused state change"
" (code 0x%02X)!\n", fsm->change_new, slave->ring_position,
slave->current_state);
// fetch AL status error code
ec_command_nprd(command, slave->station_address, 0x0134, 2);
ec_master_queue_command(fsm->master, command);
fsm->change_state = ec_fsm_change_code;
return;
}
if (get_cycles() - fsm->change_start >= (cycles_t) 10 * cpu_khz) {
// timeout while checking
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
EC_ERR("Timeout while setting state 0x%02X on slave %i.\n",
fsm->change_new, slave->ring_position);
return;
}
// still old state: check again
ec_command_nprd(command, slave->station_address, 0x0130, 2);
ec_master_queue_command(fsm->master, command);
}
/*****************************************************************************/
/**
Change state: CODE.
*/
void ec_fsm_change_code(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
uint32_t code;
const ec_code_msg_t *al_msg;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("Reception of AL status code command failed.\n");
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
return;
}
if ((code = EC_READ_U16(command->data))) {
for (al_msg = al_status_messages; al_msg->code; al_msg++) {
if (al_msg->code != code) continue;
EC_ERR("AL status message 0x%04X: \"%s\".\n",
al_msg->code, al_msg->message);
break;
}
if (!al_msg->code)
EC_ERR("Unknown AL status code 0x%04X.\n", code);
}
// acknowledge "old" slave state
ec_command_npwr(command, slave->station_address, 0x0120, 2);
EC_WRITE_U16(command->data, slave->current_state);
ec_master_queue_command(fsm->master, command);
fsm->change_state = ec_fsm_change_ack;
}
/*****************************************************************************/
/**
Change state: ACK.
*/
void ec_fsm_change_ack(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("Reception of state ack command failed.\n");
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
return;
}
// read new AL status
ec_command_nprd(command, slave->station_address, 0x0130, 2);
ec_master_queue_command(fsm->master, command);
fsm->change_state = ec_fsm_change_ack2;
}
/*****************************************************************************/
/**
Change state: ACK.
Acknowledge 2.
*/
void ec_fsm_change_ack2(ec_fsm_t *fsm /**< finite state machine */)
{
ec_command_t *command = &fsm->command;
ec_slave_t *slave = fsm->slave;
if (command->state != EC_CMD_RECEIVED || command->working_counter != 1) {
EC_ERR("Reception of state ack check command failed.\n");
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
return;
}
slave->current_state = EC_READ_U8(command->data);
if (slave->current_state == fsm->change_new) {
EC_INFO("Acknowleged state 0x%02X on slave %i.\n",
slave->current_state, slave->ring_position);
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
return;
}
EC_WARN("Failed to acknowledge state 0x%02X on slave %i"
" - Timeout!\n", fsm->change_new, slave->ring_position);
slave->state_error = 1;
fsm->change_state = ec_fsm_change_error;
}
/*****************************************************************************/
/**
Change state: END.
*/
void ec_fsm_change_end(ec_fsm_t *fsm /**< finite state machine */)
{
}
/*****************************************************************************/
/**
Change state: ERROR.
*/
void ec_fsm_change_error(ec_fsm_t *fsm /**< finite state machine */)
{
}
/*****************************************************************************/
/**
Application layer status messages.
*/
const ec_code_msg_t al_status_messages[] = {
{0x0001, "Unspecified error"},
{0x0011, "Invalud requested state change"},
{0x0012, "Unknown requested state"},
{0x0013, "Bootstrap not supported"},
{0x0014, "No valid firmware"},
{0x0015, "Invalid mailbox configuration"},
{0x0016, "Invalid mailbox configuration"},
{0x0017, "Invalid sync manager configuration"},
{0x0018, "No valid inputs available"},
{0x0019, "No valid outputs"},
{0x001A, "Synchronisation error"},
{0x001B, "Sync manager watchdog"},
{0x0020, "Slave needs cold start"},
{0x0021, "Slave needs INIT"},
{0x0022, "Slave needs PREOP"},
{0x0023, "Slave needs SAVEOP"},
{}
};
/*****************************************************************************/