TODO.
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006-2008 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* The IgH EtherCAT Master is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* ---
*
* The license mentioned above concerns the source code only. Using the
* EtherCAT technology and brand is only permitted in compliance with the
* industrial property and similar rights of Beckhoff Automation GmbH.
*
*****************************************************************************/
/**
\file
Methods of an EtherCAT datagram.
*/
/*****************************************************************************/
#include <linux/slab.h>
#include "datagram.h"
#include "master.h"
/*****************************************************************************/
/** \cond */
#define EC_FUNC_HEADER \
ret = ec_datagram_prealloc(datagram, data_size); \
if (unlikely(ret)) \
return ret; \
datagram->index = 0; \
datagram->working_counter = 0; \
datagram->state = EC_DATAGRAM_INIT;
#define EC_FUNC_FOOTER \
datagram->data_size = data_size; \
return 0;
/** \endcond */
/*****************************************************************************/
/** Array of datagram type strings used in ec_datagram_type_string().
*
* \attention This is indexed by ec_datagram_type_t.
*/
static const char *type_strings[] = {
"?",
"APRD",
"APWR",
"APRW",
"FPRD",
"FPWR",
"FPRW",
"BRD",
"BWR",
"BRW",
"LRD",
"LWR",
"LRW",
"ARMW",
"FRMW"
};
/*****************************************************************************/
/** Constructor.
*/
void ec_datagram_init(ec_datagram_t *datagram /**< EtherCAT datagram. */)
{
INIT_LIST_HEAD(&datagram->queue); // mark as unqueued
datagram->type = EC_DATAGRAM_NONE;
memset(datagram->address, 0x00, EC_ADDR_LEN);
datagram->data = NULL;
datagram->data_origin = EC_ORIG_INTERNAL;
datagram->mem_size = 0;
datagram->data_size = 0;
datagram->index = 0x00;
datagram->working_counter = 0x0000;
datagram->state = EC_DATAGRAM_INIT;
#ifdef EC_HAVE_CYCLES
datagram->cycles_sent = 0;
#endif
datagram->jiffies_sent = 0;
#ifdef EC_HAVE_CYCLES
datagram->cycles_received = 0;
#endif
datagram->jiffies_received = 0;
datagram->skip_count = 0;
datagram->stats_output_jiffies = 0;
memset(datagram->name, 0x00, EC_DATAGRAM_NAME_SIZE);
}
/*****************************************************************************/
/** Destructor.
*/
void ec_datagram_clear(ec_datagram_t *datagram /**< EtherCAT datagram. */)
{
ec_datagram_unqueue(datagram);
if (datagram->data_origin == EC_ORIG_INTERNAL && datagram->data) {
kfree(datagram->data);
datagram->data = NULL;
}
}
/*****************************************************************************/
/** Unqueue datagram.
*/
void ec_datagram_unqueue(ec_datagram_t *datagram /**< EtherCAT datagram. */)
{
if (!list_empty(&datagram->queue)) {
list_del_init(&datagram->queue);
}
}
/*****************************************************************************/
/** Allocates internal payload memory.
*
* If the allocated memory is already larger than requested, nothing ist done.
*
* \attention If external payload memory has been provided, no range checking
* is done!
*
* \return 0 in case of success, otherwise \a -ENOMEM.
*/
int ec_datagram_prealloc(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
size_t size /**< New payload size in bytes. */
)
{
if (datagram->data_origin == EC_ORIG_EXTERNAL
|| size <= datagram->mem_size)
return 0;
if (datagram->data) {
kfree(datagram->data);
datagram->data = NULL;
datagram->mem_size = 0;
}
if (!(datagram->data = kmalloc(size, GFP_KERNEL))) {
EC_ERR("Failed to allocate %zu bytes of datagram memory!\n", size);
return -ENOMEM;
}
datagram->mem_size = size;
return 0;
}
/*****************************************************************************/
/** Fills the datagram payload memory with zeros.
*/
void ec_datagram_zero(ec_datagram_t *datagram /**< EtherCAT datagram. */)
{
memset(datagram->data, 0x00, datagram->data_size);
}
/*****************************************************************************/
/** Initializes an EtherCAT APRD datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_aprd(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t ring_position, /**< Auto-increment address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to read. */
)
{
int ret;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_APRD;
EC_WRITE_S16(datagram->address, (int16_t) ring_position * (-1));
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT APWR datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_apwr(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t ring_position, /**< Auto-increment address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to write. */
)
{
int ret;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_APWR;
EC_WRITE_S16(datagram->address, (int16_t) ring_position * (-1));
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT APRW datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_aprw(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t ring_position, /**< Auto-increment address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to write. */
)
{
int ret;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_APRW;
EC_WRITE_S16(datagram->address, (int16_t) ring_position * (-1));
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT ARMW datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_armw(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t ring_position, /**< Auto-increment address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to read. */
)
{
int ret;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_ARMW;
EC_WRITE_S16(datagram->address, (int16_t) ring_position * (-1));
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT FPRD datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_fprd(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t configured_address, /**< Configured station address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to read. */
)
{
int ret;
if (unlikely(configured_address == 0x0000))
EC_WARN("Using configured station address 0x0000!\n");
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_FPRD;
EC_WRITE_U16(datagram->address, configured_address);
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT FPWR datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_fpwr(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t configured_address, /**< Configured station address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to write. */
)
{
int ret;
if (unlikely(configured_address == 0x0000))
EC_WARN("Using configured station address 0x0000!\n");
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_FPWR;
EC_WRITE_U16(datagram->address, configured_address);
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT FPRW datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_fprw(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t configured_address, /**< Configured station address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to write. */
)
{
int ret;
if (unlikely(configured_address == 0x0000))
EC_WARN("Using configured station address 0x0000!\n");
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_FPRW;
EC_WRITE_U16(datagram->address, configured_address);
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT FRMW datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_frmw(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t configured_address, /**< Configured station address. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to write. */
)
{
int ret;
if (unlikely(configured_address == 0x0000))
EC_WARN("Using configured station address 0x0000!\n");
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_FRMW;
EC_WRITE_U16(datagram->address, configured_address);
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT BRD datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_brd(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to read. */
)
{
int ret;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_BRD;
EC_WRITE_U16(datagram->address, 0x0000);
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT BWR datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_bwr(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to write. */
)
{
int ret;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_BWR;
EC_WRITE_U16(datagram->address, 0x0000);
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT BRW datagram.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_brw(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint16_t mem_address, /**< Physical memory address. */
size_t data_size /**< Number of bytes to write. */
)
{
int ret;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_BRW;
EC_WRITE_U16(datagram->address, 0x0000);
EC_WRITE_U16(datagram->address + 2, mem_address);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT LRD datagram.
*
* \attention It is assumed, that the external memory is at least \a data_size
* bytes large.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_lrd(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint32_t offset, /**< Logical address. */
size_t data_size, /**< Number of bytes to read/write. */
uint8_t *external_memory /**< Pointer to the memory to use. */
)
{
int ret;
datagram->data = external_memory;
datagram->data_origin = EC_ORIG_EXTERNAL;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_LRD;
EC_WRITE_U32(datagram->address, offset);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT LWR datagram.
*
* \attention It is assumed, that the external memory is at least \a data_size
* bytes large.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_lwr(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint32_t offset, /**< Logical address. */
size_t data_size, /**< Number of bytes to read/write. */
uint8_t *external_memory /**< Pointer to the memory to use. */
)
{
int ret;
datagram->data = external_memory;
datagram->data_origin = EC_ORIG_EXTERNAL;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_LWR;
EC_WRITE_U32(datagram->address, offset);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Initializes an EtherCAT LRW datagram.
*
* \attention It is assumed, that the external memory is at least \a data_size
* bytes large.
*
* \return Return value of ec_datagram_prealloc().
*/
int ec_datagram_lrw(
ec_datagram_t *datagram, /**< EtherCAT datagram. */
uint32_t offset, /**< Logical address. */
size_t data_size, /**< Number of bytes to read/write. */
uint8_t *external_memory /**< Pointer to the memory to use. */
)
{
int ret;
datagram->data = external_memory;
datagram->data_origin = EC_ORIG_EXTERNAL;
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_LRW;
EC_WRITE_U32(datagram->address, offset);
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/** Prints the state of a datagram.
*
* Outputs a text message.
*/
void ec_datagram_print_state(
const ec_datagram_t *datagram /**< EtherCAT datagram */
)
{
printk("Datagram ");
switch (datagram->state) {
case EC_DATAGRAM_INIT:
printk("initialized");
break;
case EC_DATAGRAM_QUEUED:
printk("queued");
break;
case EC_DATAGRAM_SENT:
printk("sent");
break;
case EC_DATAGRAM_RECEIVED:
printk("received");
break;
case EC_DATAGRAM_TIMED_OUT:
printk("timed out");
break;
case EC_DATAGRAM_ERROR:
printk("error");
break;
default:
printk("???");
}
printk(".\n");
}
/*****************************************************************************/
/** Evaluates the working counter of a single-cast datagram.
*
* Outputs an error message.
*/
void ec_datagram_print_wc_error(
const ec_datagram_t *datagram /**< EtherCAT datagram */
)
{
if (datagram->working_counter == 0)
printk("No response.");
else if (datagram->working_counter > 1)
printk("%u slaves responded!", datagram->working_counter);
else
printk("Success.");
printk("\n");
}
/*****************************************************************************/
/** Outputs datagram statistics at most every second.
*/
void ec_datagram_output_stats(
ec_datagram_t *datagram
)
{
if (jiffies - datagram->stats_output_jiffies < HZ) {
datagram->stats_output_jiffies = jiffies;
if (unlikely(datagram->skip_count)) {
EC_WARN("Datagram %p (%s) was SKIPPED %u time%s.\n",
datagram, datagram->name,
datagram->skip_count,
datagram->skip_count == 1 ? "" : "s");
datagram->skip_count = 0;
}
}
}
/*****************************************************************************/
/** Returns a string describing the datagram type.
*/
const char *ec_datagram_type_string(
const ec_datagram_t *datagram /**< EtherCAT datagram. */
)
{
return type_strings[datagram->type];
}
/*****************************************************************************/