devices/e1000e/80003es2lan-3.16-ethercat.c
author Edouard Tisserant <edouard.tisserant@gmail.com>
Mon, 30 Jul 2018 11:58:02 +0200
branchstable-1.5
changeset 2704 a1bb4998a953
parent 2588 792892ab4806
permissions -rw-r--r--
migrate native xenomai example to Xenomai3
/* Intel PRO/1000 Linux driver
 * Copyright(c) 1999 - 2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * Linux NICS <linux.nics@intel.com>
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */

/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
 */

#include "e1000-3.16-ethercat.h"

/* A table for the GG82563 cable length where the range is defined
 * with a lower bound at "index" and the upper bound at
 * "index + 5".
 */
static const u16 e1000_gg82563_cable_length_table[] = {
	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
};

#define GG82563_CABLE_LENGTH_TABLE_SIZE \
		ARRAY_SIZE(e1000_gg82563_cable_length_table)

static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
					   u16 *data);
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
					    u16 data);
static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);

/**
 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		return 0;
	} else {
		phy->ops.power_up = e1000_power_up_phy_copper;
		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
	}

	phy->addr = 1;
	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us = 100;
	phy->type = e1000_phy_gg82563;

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000e_get_phy_id(hw);

	/* Verify phy id */
	if (phy->id != GG82563_E_PHY_ID)
		return -E1000_ERR_PHY;

	return ret_val;
}

/**
 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	nvm->type = e1000_nvm_eeprom_spi;

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
		     E1000_EECD_SIZE_EX_SHIFT);

	/* Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;

	/* EEPROM access above 16k is unsupported */
	if (size > 14)
		size = 14;
	nvm->word_size = 1 << size;

	return 0;
}

/**
 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type and media-dependent function pointers */
	switch (hw->adapter->pdev->device) {
	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
		hw->phy.media_type = e1000_media_type_internal_serdes;
		mac->ops.check_for_link = e1000e_check_for_serdes_link;
		mac->ops.setup_physical_interface =
		    e1000e_setup_fiber_serdes_link;
		break;
	default:
		hw->phy.media_type = e1000_media_type_copper;
		mac->ops.check_for_link = e1000e_check_for_copper_link;
		mac->ops.setup_physical_interface =
		    e1000_setup_copper_link_80003es2lan;
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC supported; valid only if manageability features are enabled. */
	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
	/* Adaptive IFS not supported */
	mac->adaptive_ifs = false;

	/* set lan id for port to determine which phy lock to use */
	hw->mac.ops.set_lan_id(hw);

	return 0;
}

static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_80003es2lan(hw);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_80003es2lan(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_80003es2lan(hw);
	if (rc)
		return rc;

	return 0;
}

/**
 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to acquire access rights to the correct PHY.
 **/
static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.
 **/
static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
	e1000_release_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 *  @hw: pointer to the HW structure
 *
 *  Acquire the semaphore to access the Kumeran interface.
 *
 **/
static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	mask = E1000_SWFW_CSR_SM;

	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 *  @hw: pointer to the HW structure
 *
 *  Release the semaphore used to access the Kumeran interface
 **/
static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	mask = E1000_SWFW_CSR_SM;

	e1000_release_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the semaphore to access the EEPROM.
 **/
static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
	if (ret_val)
		return ret_val;

	ret_val = e1000e_acquire_nvm(hw);

	if (ret_val)
		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);

	return ret_val;
}

/**
 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 *  @hw: pointer to the HW structure
 *
 *  Release the semaphore used to access the EEPROM.
 **/
static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
}

/**
 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 i = 0;
	s32 timeout = 50;

	while (i < timeout) {
		if (e1000e_get_hw_semaphore(hw))
			return -E1000_ERR_SWFW_SYNC;

		swfw_sync = er32(SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/* Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask)
		 */
		e1000e_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
		return -E1000_ERR_SWFW_SYNC;
	}

	swfw_sync |= swmask;
	ew32(SW_FW_SYNC, swfw_sync);

	e1000e_put_hw_semaphore(hw);

	return 0;
}

/**
 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (e1000e_get_hw_semaphore(hw) != 0)
		; /* Empty */

	swfw_sync = er32(SW_FW_SYNC);
	swfw_sync &= ~mask;
	ew32(SW_FW_SYNC, swfw_sync);

	e1000e_put_hw_semaphore(hw);
}

/**
 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @data: pointer to the data returned from the operation
 *
 *  Read the GG82563 PHY register.
 **/
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
						  u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	ret_val = e1000_acquire_phy_80003es2lan(hw);
	if (ret_val)
		return ret_val;

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
		page_select = GG82563_PHY_PAGE_SELECT;
	} else {
		/* Use Alternative Page Select register to access
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;
	}

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
	if (ret_val) {
		e1000_release_phy_80003es2lan(hw);
		return ret_val;
	}

	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
		/* The "ready" bit in the MDIC register may be incorrectly set
		 * before the device has completed the "Page Select" MDI
		 * transaction.  So we wait 200us after each MDI command...
		 */
		usleep_range(200, 400);

		/* ...and verify the command was successful. */
		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);

		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
			e1000_release_phy_80003es2lan(hw);
			return -E1000_ERR_PHY;
		}

		usleep_range(200, 400);

		ret_val = e1000e_read_phy_reg_mdic(hw,
						   MAX_PHY_REG_ADDRESS & offset,
						   data);

		usleep_range(200, 400);
	} else {
		ret_val = e1000e_read_phy_reg_mdic(hw,
						   MAX_PHY_REG_ADDRESS & offset,
						   data);
	}

	e1000_release_phy_80003es2lan(hw);

	return ret_val;
}

/**
 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @data: value to write to the register
 *
 *  Write to the GG82563 PHY register.
 **/
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
						   u32 offset, u16 data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	ret_val = e1000_acquire_phy_80003es2lan(hw);
	if (ret_val)
		return ret_val;

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
		page_select = GG82563_PHY_PAGE_SELECT;
	} else {
		/* Use Alternative Page Select register to access
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;
	}

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
	if (ret_val) {
		e1000_release_phy_80003es2lan(hw);
		return ret_val;
	}

	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
		/* The "ready" bit in the MDIC register may be incorrectly set
		 * before the device has completed the "Page Select" MDI
		 * transaction.  So we wait 200us after each MDI command...
		 */
		usleep_range(200, 400);

		/* ...and verify the command was successful. */
		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);

		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
			e1000_release_phy_80003es2lan(hw);
			return -E1000_ERR_PHY;
		}

		usleep_range(200, 400);

		ret_val = e1000e_write_phy_reg_mdic(hw,
						    MAX_PHY_REG_ADDRESS &
						    offset, data);

		usleep_range(200, 400);
	} else {
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    MAX_PHY_REG_ADDRESS &
						    offset, data);
	}

	e1000_release_phy_80003es2lan(hw);

	return ret_val;
}

/**
 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @words: number of words to write
 *  @data: buffer of data to write to the NVM
 *
 *  Write "words" of data to the ESB2 NVM.
 **/
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
				       u16 words, u16 *data)
{
	return e1000e_write_nvm_spi(hw, offset, words, data);
}

/**
 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 *  @hw: pointer to the HW structure
 *
 *  Wait a specific amount of time for manageability processes to complete.
 *  This is a function pointer entry point called by the phy module.
 **/
static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;

	while (timeout) {
		if (er32(EEMNGCTL) & mask)
			break;
		usleep_range(1000, 2000);
		timeout--;
	}
	if (!timeout) {
		e_dbg("MNG configuration cycle has not completed.\n");
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 *  @hw: pointer to the HW structure
 *
 *  Force the speed and duplex settings onto the PHY.  This is a
 *  function pointer entry point called by the phy module.
 **/
static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;
	bool link;

	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	e_dbg("GG82563 PSCR: %X\n", phy_data);

	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	/* Reset the phy to commit changes. */
	phy_data |= BMCR_RESET;

	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
	if (ret_val)
		return ret_val;

	udelay(1);

	if (hw->phy.autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
			/* We didn't get link.
			 * Reset the DSP and cross our fingers.
			 */
			ret_val = e1000e_phy_reset_dsp(hw);
			if (ret_val)
				return ret_val;
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						      100000, &link);
		if (ret_val)
			return ret_val;
	}

	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	/* Resetting the phy means we need to verify the TX_CLK corresponds
	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
	 */
	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
	else
		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;

	/* In addition, we must re-enable CRS on Tx for both half and full
	 * duplex.
	 */
	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);

	return ret_val;
}

/**
 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 *  @hw: pointer to the HW structure
 *
 *  Find the approximate cable length as measured by the GG82563 PHY.
 *  This is a function pointer entry point called by the phy module.
 **/
static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
	if (ret_val)
		return ret_val;

	index = phy_data & GG82563_DSPD_CABLE_LENGTH;

	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
		return -E1000_ERR_PHY;

	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return 0;
}

/**
 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to speed buffer
 *  @duplex: pointer to duplex buffer
 *
 *  Retrieve the current speed and duplex configuration.
 **/
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
					      u16 *duplex)
{
	s32 ret_val;

	if (hw->phy.media_type == e1000_media_type_copper) {
		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
		hw->phy.ops.cfg_on_link_up(hw);
	} else {
		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
								   speed,
								   duplex);
	}

	return ret_val;
}

/**
 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 *  @hw: pointer to the HW structure
 *
 *  Perform a global reset to the ESB2 controller.
 **/
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 kum_reg_data;

	/* Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
		e_dbg("PCI-E Master disable polling has failed.\n");

	e_dbg("Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	usleep_range(10000, 20000);

	ctrl = er32(CTRL);

	ret_val = e1000_acquire_phy_80003es2lan(hw);
	if (ret_val)
		return ret_val;

	e_dbg("Issuing a global reset to MAC\n");
	ew32(CTRL, ctrl | E1000_CTRL_RST);
	e1000_release_phy_80003es2lan(hw);

	/* Disable IBIST slave mode (far-end loopback) */
	ret_val =
	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
					    &kum_reg_data);
	if (ret_val)
		return ret_val;
	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
					 kum_reg_data);

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
	er32(ICR);

	return e1000_check_alt_mac_addr_generic(hw);
}

/**
 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 *  @hw: pointer to the HW structure
 *
 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 **/
static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
	u16 kum_reg_data;
	u16 i;

	e1000_initialize_hw_bits_80003es2lan(hw);

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	/* An error is not fatal and we should not stop init due to this */
	if (ret_val)
		e_dbg("Error initializing identification LED\n");

	/* Disabling VLAN filtering */
	e_dbg("Initializing the IEEE VLAN\n");
	mac->ops.clear_vfta(hw);

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	e_dbg("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);
	if (ret_val)
		return ret_val;

	/* Disable IBIST slave mode (far-end loopback) */
	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
					&kum_reg_data);
	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
					 kum_reg_data);

	/* Set the transmit descriptor write-back policy */
	reg_data = er32(TXDCTL(0));
	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
	ew32(TXDCTL(0), reg_data);

	/* ...for both queues. */
	reg_data = er32(TXDCTL(1));
	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
	ew32(TXDCTL(1), reg_data);

	/* Enable retransmit on late collisions */
	reg_data = er32(TCTL);
	reg_data |= E1000_TCTL_RTLC;
	ew32(TCTL, reg_data);

	/* Configure Gigabit Carry Extend Padding */
	reg_data = er32(TCTL_EXT);
	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
	ew32(TCTL_EXT, reg_data);

	/* Configure Transmit Inter-Packet Gap */
	reg_data = er32(TIPG);
	reg_data &= ~E1000_TIPG_IPGT_MASK;
	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	ew32(TIPG, reg_data);

	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
	reg_data &= ~0x00100000;
	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);

	/* default to true to enable the MDIC W/A */
	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;

	ret_val =
	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
	if (!ret_val) {
		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
	}

	/* Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_80003es2lan(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
	reg = er32(TXDCTL(0));
	reg |= (1 << 22);
	ew32(TXDCTL(0), reg);

	/* Transmit Descriptor Control 1 */
	reg = er32(TXDCTL(1));
	reg |= (1 << 22);
	ew32(TXDCTL(1), reg);

	/* Transmit Arbitration Control 0 */
	reg = er32(TARC(0));
	reg &= ~(0xF << 27);	/* 30:27 */
	if (hw->phy.media_type != e1000_media_type_copper)
		reg &= ~(1 << 20);
	ew32(TARC(0), reg);

	/* Transmit Arbitration Control 1 */
	reg = er32(TARC(1));
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	ew32(TARC(1), reg);

	/* Disable IPv6 extension header parsing because some malformed
	 * IPv6 headers can hang the Rx.
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
	ew32(RFCTL, reg);
}

/**
 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 *  @hw: pointer to the HW structure
 *
 *  Setup some GG82563 PHY registers for obtaining link
 **/
static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 reg;
	u16 data;

	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;

	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
	if (ret_val)
		return ret_val;

	/* Options:
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;

	switch (phy->mdix) {
	case 1:
		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
		break;
	case 2:
		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
		break;
	case 0:
	default:
		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
		break;
	}

	/* Options:
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
	if (phy->disable_polarity_correction)
		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;

	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
	if (ret_val)
		return ret_val;

	/* SW Reset the PHY so all changes take effect */
	ret_val = hw->phy.ops.commit(hw);
	if (ret_val) {
		e_dbg("Error Resetting the PHY\n");
		return ret_val;
	}

	/* Bypass Rx and Tx FIFO's */
	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
	if (ret_val)
		return ret_val;

	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
	if (ret_val)
		return ret_val;
	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
	if (ret_val)
		return ret_val;

	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
	if (ret_val)
		return ret_val;

	reg = er32(CTRL_EXT);
	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
	ew32(CTRL_EXT, reg);

	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
	if (ret_val)
		return ret_val;

	/* Do not init these registers when the HW is in IAMT mode, since the
	 * firmware will have already initialized them.  We only initialize
	 * them if the HW is not in IAMT mode.
	 */
	if (!hw->mac.ops.check_mng_mode(hw)) {
		/* Enable Electrical Idle on the PHY */
		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
		if (ret_val)
			return ret_val;

		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
		if (ret_val)
			return ret_val;
	}

	/* Workaround: Disable padding in Kumeran interface in the MAC
	 * and in the PHY to avoid CRC errors.
	 */
	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= GG82563_ICR_DIS_PADDING;
	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
	if (ret_val)
		return ret_val;

	return 0;
}

/**
 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
 *  @hw: pointer to the HW structure
 *
 *  Essentially a wrapper for setting up all things "copper" related.
 *  This is a function pointer entry point called by the mac module.
 **/
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	/* Set the mac to wait the maximum time between each
	 * iteration and increase the max iterations when
	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
	 */
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
						   0xFFFF);
	if (ret_val)
		return ret_val;
	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
						  &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
						   reg_data);
	if (ret_val)
		return ret_val;
	ret_val =
	    e1000_read_kmrn_reg_80003es2lan(hw,
					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
					    &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
	ret_val =
	    e1000_write_kmrn_reg_80003es2lan(hw,
					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
					     reg_data);
	if (ret_val)
		return ret_val;

	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
	if (ret_val)
		return ret_val;

	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
 *  @hw: pointer to the HW structure
 *  @duplex: current duplex setting
 *
 *  Configure the KMRN interface by applying last minute quirks for
 *  10/100 operation.
 **/
static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 speed;
	u16 duplex;

	if (hw->phy.media_type == e1000_media_type_copper) {
		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
							     &duplex);
		if (ret_val)
			return ret_val;

		if (speed == SPEED_1000)
			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
		else
			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
	}

	return ret_val;
}

/**
 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
 *  @hw: pointer to the HW structure
 *  @duplex: current duplex setting
 *
 *  Configure the KMRN interface by applying last minute quirks for
 *  10/100 operation.
 **/
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
{
	s32 ret_val;
	u32 tipg;
	u32 i = 0;
	u16 reg_data, reg_data2;

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
	ret_val =
	    e1000_write_kmrn_reg_80003es2lan(hw,
					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
					     reg_data);
	if (ret_val)
		return ret_val;

	/* Configure Transmit Inter-Packet Gap */
	tipg = er32(TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
	ew32(TIPG, tipg);

	do {
		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
		if (ret_val)
			return ret_val;
		i++;
	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));

	if (duplex == HALF_DUPLEX)
		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
	else
		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
}

/**
 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
 *  @hw: pointer to the HW structure
 *
 *  Configure the KMRN interface by applying last minute quirks for
 *  gigabit operation.
 **/
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data, reg_data2;
	u32 tipg;
	u32 i = 0;

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
	ret_val =
	    e1000_write_kmrn_reg_80003es2lan(hw,
					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
					     reg_data);
	if (ret_val)
		return ret_val;

	/* Configure Transmit Inter-Packet Gap */
	tipg = er32(TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	ew32(TIPG, tipg);

	do {
		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
		if (ret_val)
			return ret_val;
		i++;
	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));

	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
}

/**
 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquire semaphore, then read the PHY register at offset
 *  using the kumeran interface.  The information retrieved is stored in data.
 *  Release the semaphore before exiting.
 **/
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
					   u16 *data)
{
	u32 kmrnctrlsta;
	s32 ret_val;

	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
	if (ret_val)
		return ret_val;

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
	e1e_flush();

	udelay(2);

	kmrnctrlsta = er32(KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

	e1000_release_mac_csr_80003es2lan(hw);

	return ret_val;
}

/**
 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquire semaphore, then write the data to PHY register
 *  at the offset using the kumeran interface.  Release semaphore
 *  before exiting.
 **/
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
					    u16 data)
{
	u32 kmrnctrlsta;
	s32 ret_val;

	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
	if (ret_val)
		return ret_val;

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | data;
	ew32(KMRNCTRLSTA, kmrnctrlsta);
	e1e_flush();

	udelay(2);

	e1000_release_mac_csr_80003es2lan(hw);

	return ret_val;
}

/**
 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;

	/* If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		return ret_val;

	return e1000_read_mac_addr_generic(hw);
}

/**
 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

/**
 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
}

static const struct e1000_mac_operations es2_mac_ops = {
	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
	.id_led_init		= e1000e_id_led_init_generic,
	.blink_led		= e1000e_blink_led_generic,
	.check_mng_mode		= e1000e_check_mng_mode_generic,
	/* check_for_link dependent on media type */
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
	.get_bus_info		= e1000e_get_bus_info_pcie,
	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
	.led_on			= e1000e_led_on_generic,
	.led_off		= e1000e_led_off_generic,
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
	.write_vfta		= e1000_write_vfta_generic,
	.clear_vfta		= e1000_clear_vfta_generic,
	.reset_hw		= e1000_reset_hw_80003es2lan,
	.init_hw		= e1000_init_hw_80003es2lan,
	.setup_link		= e1000e_setup_link_generic,
	/* setup_physical_interface dependent on media type */
	.setup_led		= e1000e_setup_led_generic,
	.config_collision_dist	= e1000e_config_collision_dist_generic,
	.rar_set		= e1000e_rar_set_generic,
	.rar_get_count		= e1000e_rar_get_count_generic,
};

static const struct e1000_phy_operations es2_phy_ops = {
	.acquire		= e1000_acquire_phy_80003es2lan,
	.check_polarity		= e1000_check_polarity_m88,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit			= e1000e_phy_sw_reset,
	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
	.get_cable_length	= e1000_get_cable_length_80003es2lan,
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
	.release		= e1000_release_phy_80003es2lan,
	.reset			= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state	= NULL,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
};

static const struct e1000_nvm_operations es2_nvm_ops = {
	.acquire		= e1000_acquire_nvm_80003es2lan,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_80003es2lan,
	.reload			= e1000e_reload_nvm_generic,
	.update			= e1000e_update_nvm_checksum_generic,
	.valid_led_default	= e1000e_valid_led_default,
	.validate		= e1000e_validate_nvm_checksum_generic,
	.write			= e1000_write_nvm_80003es2lan,
};

const struct e1000_info e1000_es2_info = {
	.mac			= e1000_80003es2lan,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_RX_NEEDS_RESTART /* errata */
				  | FLAG_TARC_SET_BIT_ZERO /* errata */
				  | FLAG_APME_CHECK_PORT_B
				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
	.flags2			= FLAG2_DMA_BURST,
	.pba			= 38,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_80003es2lan,
	.mac_ops		= &es2_mac_ops,
	.phy_ops		= &es2_phy_ops,
	.nvm_ops		= &es2_nvm_ops,
};