Support changed tty_prepare_flip_string() interface from kernel 3.9.
/*****************************************************************************
*
* $Id$
*
* Copyright (C) 2007-2009 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* The IgH EtherCAT Master is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* ---
*
* The license mentioned above concerns the source code only. Using the
* EtherCAT technology and brand is only permitted in compliance with the
* industrial property and similar rights of Beckhoff Automation GmbH.
*
****************************************************************************/
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h> /* clock_gettime() */
#include <sys/mman.h> /* mlockall() */
/****************************************************************************/
#include "ecrt.h"
/****************************************************************************/
/** Task period in ns. */
#define PERIOD_NS (1000000)
#define MAX_SAFE_STACK (8 * 1024) /* The maximum stack size which is
guranteed safe to access without
faulting */
/****************************************************************************/
/* Constants */
#define NSEC_PER_SEC (1000000000)
#define FREQUENCY (NSEC_PER_SEC / PERIOD_NS)
/****************************************************************************/
// EtherCAT
static ec_master_t *master = NULL;
static ec_master_state_t master_state = {};
static ec_domain_t *domain1 = NULL;
static ec_domain_state_t domain1_state = {};
static ec_slave_config_t *sc_ana_in = NULL;
static ec_slave_config_state_t sc_ana_in_state = {};
/****************************************************************************/
// process data
static uint8_t *domain1_pd = NULL;
#define BusCouplerPos 0, 0
#define DigOutSlavePos 0, 2
#define AnaInSlavePos 0, 3
#define AnaOutSlavePos 0, 4
#define Beckhoff_EK1100 0x00000002, 0x044c2c52
#define Beckhoff_EL2004 0x00000002, 0x07d43052
#define Beckhoff_EL2032 0x00000002, 0x07f03052
#define Beckhoff_EL3152 0x00000002, 0x0c503052
#define Beckhoff_EL3102 0x00000002, 0x0c1e3052
#define Beckhoff_EL4102 0x00000002, 0x10063052
// offsets for PDO entries
static unsigned int off_ana_in_status;
static unsigned int off_ana_in_value;
static unsigned int off_ana_out;
static unsigned int off_dig_out;
const static ec_pdo_entry_reg_t domain1_regs[] = {
{AnaInSlavePos, Beckhoff_EL3102, 0x3101, 1, &off_ana_in_status},
{AnaInSlavePos, Beckhoff_EL3102, 0x3101, 2, &off_ana_in_value},
{AnaOutSlavePos, Beckhoff_EL4102, 0x3001, 1, &off_ana_out},
{DigOutSlavePos, Beckhoff_EL2032, 0x3001, 1, &off_dig_out},
{}
};
static unsigned int counter = 0;
static unsigned int blink = 0;
/*****************************************************************************/
// Analog in --------------------------
static ec_pdo_entry_info_t el3102_pdo_entries[] = {
{0x3101, 1, 8}, // channel 1 status
{0x3101, 2, 16}, // channel 1 value
{0x3102, 1, 8}, // channel 2 status
{0x3102, 2, 16}, // channel 2 value
{0x6401, 1, 16}, // channel 1 value (alt.)
{0x6401, 2, 16} // channel 2 value (alt.)
};
static ec_pdo_info_t el3102_pdos[] = {
{0x1A00, 2, el3102_pdo_entries},
{0x1A01, 2, el3102_pdo_entries + 2}
};
static ec_sync_info_t el3102_syncs[] = {
{2, EC_DIR_OUTPUT},
{3, EC_DIR_INPUT, 2, el3102_pdos},
{0xff}
};
// Analog out -------------------------
static ec_pdo_entry_info_t el4102_pdo_entries[] = {
{0x3001, 1, 16}, // channel 1 value
{0x3002, 1, 16}, // channel 2 value
};
static ec_pdo_info_t el4102_pdos[] = {
{0x1600, 1, el4102_pdo_entries},
{0x1601, 1, el4102_pdo_entries + 1}
};
static ec_sync_info_t el4102_syncs[] = {
{2, EC_DIR_OUTPUT, 2, el4102_pdos},
{3, EC_DIR_INPUT},
{0xff}
};
// Digital out ------------------------
static ec_pdo_entry_info_t el2004_channels[] = {
{0x3001, 1, 1}, // Value 1
{0x3001, 2, 1}, // Value 2
{0x3001, 3, 1}, // Value 3
{0x3001, 4, 1} // Value 4
};
static ec_pdo_info_t el2004_pdos[] = {
{0x1600, 1, &el2004_channels[0]},
{0x1601, 1, &el2004_channels[1]},
{0x1602, 1, &el2004_channels[2]},
{0x1603, 1, &el2004_channels[3]}
};
static ec_sync_info_t el2004_syncs[] = {
{0, EC_DIR_OUTPUT, 4, el2004_pdos},
{1, EC_DIR_INPUT},
{0xff}
};
/*****************************************************************************/
void check_domain1_state(void)
{
ec_domain_state_t ds;
ecrt_domain_state(domain1, &ds);
if (ds.working_counter != domain1_state.working_counter) {
printf("Domain1: WC %u.\n", ds.working_counter);
}
if (ds.wc_state != domain1_state.wc_state) {
printf("Domain1: State %u.\n", ds.wc_state);
}
domain1_state = ds;
}
/*****************************************************************************/
void check_master_state(void)
{
ec_master_state_t ms;
ecrt_master_state(master, &ms);
if (ms.slaves_responding != master_state.slaves_responding) {
printf("%u slave(s).\n", ms.slaves_responding);
}
if (ms.al_states != master_state.al_states) {
printf("AL states: 0x%02X.\n", ms.al_states);
}
if (ms.link_up != master_state.link_up) {
printf("Link is %s.\n", ms.link_up ? "up" : "down");
}
master_state = ms;
}
/*****************************************************************************/
void check_slave_config_states(void)
{
ec_slave_config_state_t s;
ecrt_slave_config_state(sc_ana_in, &s);
if (s.al_state != sc_ana_in_state.al_state) {
printf("AnaIn: State 0x%02X.\n", s.al_state);
}
if (s.online != sc_ana_in_state.online) {
printf("AnaIn: %s.\n", s.online ? "online" : "offline");
}
if (s.operational != sc_ana_in_state.operational) {
printf("AnaIn: %soperational.\n", s.operational ? "" : "Not ");
}
sc_ana_in_state = s;
}
/*****************************************************************************/
void cyclic_task()
{
// receive process data
ecrt_master_receive(master);
ecrt_domain_process(domain1);
// check process data state
check_domain1_state();
if (counter) {
counter--;
} else { // do this at 1 Hz
counter = FREQUENCY;
// calculate new process data
blink = !blink;
// check for master state (optional)
check_master_state();
// check for slave configuration state(s) (optional)
check_slave_config_states();
}
#if 0
// read process data
printf("AnaIn: state %u value %u\n",
EC_READ_U8(domain1_pd + off_ana_in_status),
EC_READ_U16(domain1_pd + off_ana_in_value));
#endif
#if 1
// write process data
EC_WRITE_U8(domain1_pd + off_dig_out, blink ? 0x06 : 0x09);
#endif
// send process data
ecrt_domain_queue(domain1);
ecrt_master_send(master);
}
/****************************************************************************/
void stack_prefault(void)
{
unsigned char dummy[MAX_SAFE_STACK];
memset(dummy, 0, MAX_SAFE_STACK);
}
/****************************************************************************/
int main(int argc, char **argv)
{
ec_slave_config_t *sc;
struct timespec wakeup_time;
int ret = 0;
master = ecrt_request_master(0);
if (!master) {
return -1;
}
domain1 = ecrt_master_create_domain(master);
if (!domain1) {
return -1;
}
if (!(sc_ana_in = ecrt_master_slave_config(
master, AnaInSlavePos, Beckhoff_EL3102))) {
fprintf(stderr, "Failed to get slave configuration.\n");
return -1;
}
printf("Configuring PDOs...\n");
if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el3102_syncs)) {
fprintf(stderr, "Failed to configure PDOs.\n");
return -1;
}
if (!(sc = ecrt_master_slave_config(
master, AnaOutSlavePos, Beckhoff_EL4102))) {
fprintf(stderr, "Failed to get slave configuration.\n");
return -1;
}
if (ecrt_slave_config_pdos(sc, EC_END, el4102_syncs)) {
fprintf(stderr, "Failed to configure PDOs.\n");
return -1;
}
if (!(sc = ecrt_master_slave_config(
master, DigOutSlavePos, Beckhoff_EL2032))) {
fprintf(stderr, "Failed to get slave configuration.\n");
return -1;
}
if (ecrt_slave_config_pdos(sc, EC_END, el2004_syncs)) {
fprintf(stderr, "Failed to configure PDOs.\n");
return -1;
}
// Create configuration for bus coupler
sc = ecrt_master_slave_config(master, BusCouplerPos, Beckhoff_EK1100);
if (!sc) {
return -1;
}
if (ecrt_domain_reg_pdo_entry_list(domain1, domain1_regs)) {
fprintf(stderr, "PDO entry registration failed!\n");
return -1;
}
printf("Activating master...\n");
if (ecrt_master_activate(master)) {
return -1;
}
if (!(domain1_pd = ecrt_domain_data(domain1))) {
return -1;
}
/* Set priority */
pid_t pid = getpid();
if (setpriority(PRIO_PROCESS, pid, -19)) {
fprintf(stderr, "Warning: Failed to set priority: %s\n",
strerror(errno));
}
/* Lock memory */
if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
fprintf(stderr, "Warning: Failed to lock memory: %s\n",
strerror(errno));
}
stack_prefault();
printf("Starting RT task with dt=%u ns.\n", PERIOD_NS);
clock_gettime(CLOCK_MONOTONIC, &wakeup_time);
wakeup_time.tv_sec += 1; /* start in future */
wakeup_time.tv_nsec = 0;
while (1) {
ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
&wakeup_time, NULL);
if (ret) {
fprintf(stderr, "clock_nanosleep(): %s\n", strerror(ret));
break;
}
cyclic_task();
wakeup_time.tv_nsec += PERIOD_NS;
while (wakeup_time.tv_nsec >= NSEC_PER_SEC) {
wakeup_time.tv_nsec -= NSEC_PER_SEC;
wakeup_time.tv_sec++;
}
}
return ret;
}
/****************************************************************************/