Avoid zeroing mailbox datagram because of VoE handlers.
/*******************************************************************************
Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/* ethtool support for e1000 */
#include "e1000-2.6.13-ethercat.h"
#include <asm/uaccess.h>
extern char e1000_driver_name[];
extern char e1000_driver_version[];
extern int e1000_up(struct e1000_adapter *adapter);
extern void e1000_down(struct e1000_adapter *adapter);
extern void e1000_reset(struct e1000_adapter *adapter);
extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
extern void e1000_update_stats(struct e1000_adapter *adapter);
struct e1000_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int stat_offset;
};
#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
offsetof(struct e1000_adapter, m)
static const struct e1000_stats e1000_gstrings_stats[] = {
{ "rx_packets", E1000_STAT(net_stats.rx_packets) },
{ "tx_packets", E1000_STAT(net_stats.tx_packets) },
{ "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
{ "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
{ "rx_errors", E1000_STAT(net_stats.rx_errors) },
{ "tx_errors", E1000_STAT(net_stats.tx_errors) },
{ "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
{ "multicast", E1000_STAT(net_stats.multicast) },
{ "collisions", E1000_STAT(net_stats.collisions) },
{ "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
{ "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
{ "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
{ "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
{ "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
{ "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
{ "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
{ "tx_deferred_ok", E1000_STAT(stats.dc) },
{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
{ "rx_long_length_errors", E1000_STAT(stats.roc) },
{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
};
#define E1000_STATS_LEN \
sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
"Register test (offline)", "Eeprom test (offline)",
"Interrupt test (offline)", "Loopback test (offline)",
"Link test (on/offline)"
};
#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
static int
e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if(hw->media_type == e1000_media_type_copper) {
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full|
SUPPORTED_Autoneg |
SUPPORTED_TP);
ecmd->advertising = ADVERTISED_TP;
if(hw->autoneg == 1) {
ecmd->advertising |= ADVERTISED_Autoneg;
/* the e1000 autoneg seems to match ethtool nicely */
ecmd->advertising |= hw->autoneg_advertised;
}
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy_addr;
if(hw->mac_type == e1000_82543)
ecmd->transceiver = XCVR_EXTERNAL;
else
ecmd->transceiver = XCVR_INTERNAL;
} else {
ecmd->supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg);
ecmd->advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg);
ecmd->port = PORT_FIBRE;
if(hw->mac_type >= e1000_82545)
ecmd->transceiver = XCVR_INTERNAL;
else
ecmd->transceiver = XCVR_EXTERNAL;
}
if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
|| (!adapter->ecdev && netif_carrier_ok(adapter->netdev))) {
e1000_get_speed_and_duplex(hw, &adapter->link_speed,
&adapter->link_duplex);
ecmd->speed = adapter->link_speed;
/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
* and HALF_DUPLEX != DUPLEX_HALF */
if(adapter->link_duplex == FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
return 0;
}
static int
e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if(ecmd->autoneg == AUTONEG_ENABLE) {
hw->autoneg = 1;
if(hw->media_type == e1000_media_type_fiber)
hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg;
else
hw->autoneg_advertised = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Full|
ADVERTISED_Autoneg |
ADVERTISED_TP;
ecmd->advertising = hw->autoneg_advertised;
} else
if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
return -EINVAL;
/* reset the link */
if (adapter->ecdev || netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_reset(adapter);
e1000_up(adapter);
} else
e1000_reset(adapter);
return 0;
}
static void
e1000_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
if(hw->fc == e1000_fc_rx_pause)
pause->rx_pause = 1;
else if(hw->fc == e1000_fc_tx_pause)
pause->tx_pause = 1;
else if(hw->fc == e1000_fc_full) {
pause->rx_pause = 1;
pause->tx_pause = 1;
}
}
static int
e1000_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
adapter->fc_autoneg = pause->autoneg;
if(pause->rx_pause && pause->tx_pause)
hw->fc = e1000_fc_full;
else if(pause->rx_pause && !pause->tx_pause)
hw->fc = e1000_fc_rx_pause;
else if(!pause->rx_pause && pause->tx_pause)
hw->fc = e1000_fc_tx_pause;
else if(!pause->rx_pause && !pause->tx_pause)
hw->fc = e1000_fc_none;
hw->original_fc = hw->fc;
if(adapter->fc_autoneg == AUTONEG_ENABLE) {
if (adapter->ecdev || netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
e1000_reset(adapter);
}
else
return ((hw->media_type == e1000_media_type_fiber) ?
e1000_setup_link(hw) : e1000_force_mac_fc(hw));
return 0;
}
static uint32_t
e1000_get_rx_csum(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->rx_csum;
}
static int
e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->rx_csum = data;
if (adapter->ecdev || netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
e1000_reset(adapter);
return 0;
}
static uint32_t
e1000_get_tx_csum(struct net_device *netdev)
{
return (netdev->features & NETIF_F_HW_CSUM) != 0;
}
static int
e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if(adapter->hw.mac_type < e1000_82543) {
if (!data)
return -EINVAL;
return 0;
}
if (data)
netdev->features |= NETIF_F_HW_CSUM;
else
netdev->features &= ~NETIF_F_HW_CSUM;
return 0;
}
#ifdef NETIF_F_TSO
static int
e1000_set_tso(struct net_device *netdev, uint32_t data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if((adapter->hw.mac_type < e1000_82544) ||
(adapter->hw.mac_type == e1000_82547))
return data ? -EINVAL : 0;
if (data)
netdev->features |= NETIF_F_TSO;
else
netdev->features &= ~NETIF_F_TSO;
return 0;
}
#endif /* NETIF_F_TSO */
static uint32_t
e1000_get_msglevel(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
static void
e1000_set_msglevel(struct net_device *netdev, uint32_t data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->msg_enable = data;
}
static int
e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32
return E1000_REGS_LEN * sizeof(uint32_t);
}
static void
e1000_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
uint32_t *regs_buff = p;
uint16_t phy_data;
memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = E1000_READ_REG(hw, CTRL);
regs_buff[1] = E1000_READ_REG(hw, STATUS);
regs_buff[2] = E1000_READ_REG(hw, RCTL);
regs_buff[3] = E1000_READ_REG(hw, RDLEN);
regs_buff[4] = E1000_READ_REG(hw, RDH);
regs_buff[5] = E1000_READ_REG(hw, RDT);
regs_buff[6] = E1000_READ_REG(hw, RDTR);
regs_buff[7] = E1000_READ_REG(hw, TCTL);
regs_buff[8] = E1000_READ_REG(hw, TDLEN);
regs_buff[9] = E1000_READ_REG(hw, TDH);
regs_buff[10] = E1000_READ_REG(hw, TDT);
regs_buff[11] = E1000_READ_REG(hw, TIDV);
regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
if(hw->phy_type == e1000_phy_igp) {
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_A);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[13] = (uint32_t)phy_data; /* cable length */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_B);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[14] = (uint32_t)phy_data; /* cable length */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_C);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[15] = (uint32_t)phy_data; /* cable length */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_D);
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[16] = (uint32_t)phy_data; /* cable length */
regs_buff[17] = 0; /* extended 10bt distance (not needed) */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_PCS_INIT_REG);
e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
regs_buff[20] = 0; /* polarity correction enabled (always) */
regs_buff[22] = 0; /* phy receive errors (unavailable) */
regs_buff[23] = regs_buff[18]; /* mdix mode */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
} else {
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
regs_buff[13] = (uint32_t)phy_data; /* cable length */
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
regs_buff[18] = regs_buff[13]; /* cable polarity */
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[20] = regs_buff[17]; /* polarity correction */
/* phy receive errors */
regs_buff[22] = adapter->phy_stats.receive_errors;
regs_buff[23] = regs_buff[13]; /* mdix mode */
}
regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
if(hw->mac_type >= e1000_82540 &&
hw->media_type == e1000_media_type_copper) {
regs_buff[26] = E1000_READ_REG(hw, MANC);
}
}
static int
e1000_get_eeprom_len(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->hw.eeprom.word_size * 2;
}
static int
e1000_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, uint8_t *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
uint16_t *eeprom_buff;
int first_word, last_word;
int ret_val = 0;
uint16_t i;
if(eeprom->len == 0)
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(sizeof(uint16_t) *
(last_word - first_word + 1), GFP_KERNEL);
if(!eeprom_buff)
return -ENOMEM;
if(hw->eeprom.type == e1000_eeprom_spi)
ret_val = e1000_read_eeprom(hw, first_word,
last_word - first_word + 1,
eeprom_buff);
else {
for (i = 0; i < last_word - first_word + 1; i++)
if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
&eeprom_buff[i])))
break;
}
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int
e1000_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, uint8_t *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
uint16_t *eeprom_buff;
void *ptr;
int max_len, first_word, last_word, ret_val = 0;
uint16_t i;
if(eeprom->len == 0)
return -EOPNOTSUPP;
if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EFAULT;
max_len = hw->eeprom.word_size * 2;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if(!eeprom_buff)
return -ENOMEM;
ptr = (void *)eeprom_buff;
if(eeprom->offset & 1) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
ret_val = e1000_read_eeprom(hw, first_word, 1,
&eeprom_buff[0]);
ptr++;
}
if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
/* need read/modify/write of last changed EEPROM word */
/* only the first byte of the word is being modified */
ret_val = e1000_read_eeprom(hw, last_word, 1,
&eeprom_buff[last_word - first_word]);
}
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
ret_val = e1000_write_eeprom(hw, first_word,
last_word - first_word + 1, eeprom_buff);
/* Update the checksum over the first part of the EEPROM if needed */
if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
e1000_update_eeprom_checksum(hw);
kfree(eeprom_buff);
return ret_val;
}
static void
e1000_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
strncpy(drvinfo->driver, e1000_driver_name, 32);
strncpy(drvinfo->version, e1000_driver_version, 32);
strncpy(drvinfo->fw_version, "N/A", 32);
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
drvinfo->n_stats = E1000_STATS_LEN;
drvinfo->testinfo_len = E1000_TEST_LEN;
drvinfo->regdump_len = e1000_get_regs_len(netdev);
drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}
static void
e1000_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_mac_type mac_type = adapter->hw.mac_type;
struct e1000_desc_ring *txdr = &adapter->tx_ring;
struct e1000_desc_ring *rxdr = &adapter->rx_ring;
ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
E1000_MAX_82544_RXD;
ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
E1000_MAX_82544_TXD;
ring->rx_mini_max_pending = 0;
ring->rx_jumbo_max_pending = 0;
ring->rx_pending = rxdr->count;
ring->tx_pending = txdr->count;
ring->rx_mini_pending = 0;
ring->rx_jumbo_pending = 0;
}
static int
e1000_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_mac_type mac_type = adapter->hw.mac_type;
struct e1000_desc_ring *txdr = &adapter->tx_ring;
struct e1000_desc_ring *rxdr = &adapter->rx_ring;
struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
int err;
if (adapter->ecdev)
return -EBUSY;
tx_old = adapter->tx_ring;
rx_old = adapter->rx_ring;
if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
if(netif_running(adapter->netdev))
e1000_down(adapter);
rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
E1000_MAX_RXD : E1000_MAX_82544_RXD));
E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
E1000_MAX_TXD : E1000_MAX_82544_TXD));
E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
if(netif_running(adapter->netdev)) {
/* Try to get new resources before deleting old */
if((err = e1000_setup_rx_resources(adapter)))
goto err_setup_rx;
if((err = e1000_setup_tx_resources(adapter)))
goto err_setup_tx;
/* save the new, restore the old in order to free it,
* then restore the new back again */
rx_new = adapter->rx_ring;
tx_new = adapter->tx_ring;
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
e1000_free_rx_resources(adapter);
e1000_free_tx_resources(adapter);
adapter->rx_ring = rx_new;
adapter->tx_ring = tx_new;
if((err = e1000_up(adapter)))
return err;
}
return 0;
err_setup_tx:
e1000_free_rx_resources(adapter);
err_setup_rx:
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
e1000_up(adapter);
return err;
}
#define REG_PATTERN_TEST(R, M, W) \
{ \
uint32_t pat, value; \
uint32_t test[] = \
{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
value = E1000_READ_REG(&adapter->hw, R); \
if(value != (test[pat] & W & M)) { \
DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
"0x%08X expected 0x%08X\n", \
E1000_##R, value, (test[pat] & W & M)); \
*data = (adapter->hw.mac_type < e1000_82543) ? \
E1000_82542_##R : E1000_##R; \
return 1; \
} \
} \
}
#define REG_SET_AND_CHECK(R, M, W) \
{ \
uint32_t value; \
E1000_WRITE_REG(&adapter->hw, R, W & M); \
value = E1000_READ_REG(&adapter->hw, R); \
if((W & M) != (value & M)) { \
DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
"expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
*data = (adapter->hw.mac_type < e1000_82543) ? \
E1000_82542_##R : E1000_##R; \
return 1; \
} \
}
static int
e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
{
uint32_t value, before, after;
uint32_t i, toggle;
/* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored.
*/
switch (adapter->hw.mac_type) {
case e1000_82573:
toggle = 0x7FFFF033;
break;
default:
toggle = 0xFFFFF833;
break;
}
before = E1000_READ_REG(&adapter->hw, STATUS);
value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
if(value != after) {
DPRINTK(DRV, ERR, "failed STATUS register test got: "
"0x%08X expected: 0x%08X\n", after, value);
*data = 1;
return 1;
}
/* restore previous status */
E1000_WRITE_REG(&adapter->hw, STATUS, before);
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
if(adapter->hw.mac_type >= e1000_82543) {
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
for(i = 0; i < E1000_RAR_ENTRIES; i++) {
REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
0xFFFFFFFF);
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
0xFFFFFFFF);
}
} else {
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
}
for(i = 0; i < E1000_MC_TBL_SIZE; i++)
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
*data = 0;
return 0;
}
static int
e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
{
uint16_t temp;
uint16_t checksum = 0;
uint16_t i;
*data = 0;
/* Read and add up the contents of the EEPROM */
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
*data = 1;
break;
}
checksum += temp;
}
/* If Checksum is not Correct return error else test passed */
if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
*data = 2;
return *data;
}
static irqreturn_t
e1000_test_intr(int irq,
void *data,
struct pt_regs *regs)
{
struct net_device *netdev = (struct net_device *) data;
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
return IRQ_HANDLED;
}
static int
e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
{
struct net_device *netdev = adapter->netdev;
uint32_t mask, i=0, shared_int = TRUE;
uint32_t irq = adapter->pdev->irq;
*data = 0;
/* Hook up test interrupt handler just for this test */
if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
shared_int = FALSE;
} else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
netdev->name, netdev)){
*data = 1;
return -1;
}
/* Disable all the interrupts */
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
msec_delay(10);
/* Test each interrupt */
for(; i < 10; i++) {
/* Interrupt to test */
mask = 1 << i;
if(!shared_int) {
/* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, mask);
E1000_WRITE_REG(&adapter->hw, ICS, mask);
msec_delay(10);
if(adapter->test_icr & mask) {
*data = 3;
break;
}
}
/* Enable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was not posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMS, mask);
E1000_WRITE_REG(&adapter->hw, ICS, mask);
msec_delay(10);
if(!(adapter->test_icr & mask)) {
*data = 4;
break;
}
if(!shared_int) {
/* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
msec_delay(10);
if(adapter->test_icr) {
*data = 5;
break;
}
}
}
/* Disable all the interrupts */
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
msec_delay(10);
/* Unhook test interrupt handler */
free_irq(irq, netdev);
return *data;
}
static void
e1000_free_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
int i;
if(txdr->desc && txdr->buffer_info) {
for(i = 0; i < txdr->count; i++) {
if(txdr->buffer_info[i].dma)
pci_unmap_single(pdev, txdr->buffer_info[i].dma,
txdr->buffer_info[i].length,
PCI_DMA_TODEVICE);
if(txdr->buffer_info[i].skb)
dev_kfree_skb(txdr->buffer_info[i].skb);
}
}
if(rxdr->desc && rxdr->buffer_info) {
for(i = 0; i < rxdr->count; i++) {
if(rxdr->buffer_info[i].dma)
pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
rxdr->buffer_info[i].length,
PCI_DMA_FROMDEVICE);
if(rxdr->buffer_info[i].skb)
dev_kfree_skb(rxdr->buffer_info[i].skb);
}
}
if(txdr->desc)
pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
if(rxdr->desc)
pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
if(txdr->buffer_info)
kfree(txdr->buffer_info);
if(rxdr->buffer_info)
kfree(rxdr->buffer_info);
return;
}
static int
e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
uint32_t rctl;
int size, i, ret_val;
/* Setup Tx descriptor ring and Tx buffers */
if(!txdr->count)
txdr->count = E1000_DEFAULT_TXD;
size = txdr->count * sizeof(struct e1000_buffer);
if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
ret_val = 1;
goto err_nomem;
}
memset(txdr->buffer_info, 0, size);
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
E1000_ROUNDUP(txdr->size, 4096);
if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
ret_val = 2;
goto err_nomem;
}
memset(txdr->desc, 0, txdr->size);
txdr->next_to_use = txdr->next_to_clean = 0;
E1000_WRITE_REG(&adapter->hw, TDBAL,
((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
E1000_WRITE_REG(&adapter->hw, TDLEN,
txdr->count * sizeof(struct e1000_tx_desc));
E1000_WRITE_REG(&adapter->hw, TDH, 0);
E1000_WRITE_REG(&adapter->hw, TDT, 0);
E1000_WRITE_REG(&adapter->hw, TCTL,
E1000_TCTL_PSP | E1000_TCTL_EN |
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
for(i = 0; i < txdr->count; i++) {
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
struct sk_buff *skb;
unsigned int size = 1024;
if(!(skb = alloc_skb(size, GFP_KERNEL))) {
ret_val = 3;
goto err_nomem;
}
skb_put(skb, size);
txdr->buffer_info[i].skb = skb;
txdr->buffer_info[i].length = skb->len;
txdr->buffer_info[i].dma =
pci_map_single(pdev, skb->data, skb->len,
PCI_DMA_TODEVICE);
tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
tx_desc->lower.data = cpu_to_le32(skb->len);
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS |
E1000_TXD_CMD_RPS);
tx_desc->upper.data = 0;
}
/* Setup Rx descriptor ring and Rx buffers */
if(!rxdr->count)
rxdr->count = E1000_DEFAULT_RXD;
size = rxdr->count * sizeof(struct e1000_buffer);
if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
ret_val = 4;
goto err_nomem;
}
memset(rxdr->buffer_info, 0, size);
rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
ret_val = 5;
goto err_nomem;
}
memset(rxdr->desc, 0, rxdr->size);
rxdr->next_to_use = rxdr->next_to_clean = 0;
rctl = E1000_READ_REG(&adapter->hw, RCTL);
E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
E1000_WRITE_REG(&adapter->hw, RDBAL,
((uint64_t) rxdr->dma & 0xFFFFFFFF));
E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
E1000_WRITE_REG(&adapter->hw, RDH, 0);
E1000_WRITE_REG(&adapter->hw, RDT, 0);
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
for(i = 0; i < rxdr->count; i++) {
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
struct sk_buff *skb;
if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
GFP_KERNEL))) {
ret_val = 6;
goto err_nomem;
}
skb_reserve(skb, NET_IP_ALIGN);
rxdr->buffer_info[i].skb = skb;
rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
rxdr->buffer_info[i].dma =
pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
PCI_DMA_FROMDEVICE);
rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
memset(skb->data, 0x00, skb->len);
}
return 0;
err_nomem:
e1000_free_desc_rings(adapter);
return ret_val;
}
static void
e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
}
static void
e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
{
uint16_t phy_reg;
/* Because we reset the PHY above, we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock. This
* value defaults back to a 2.5MHz clock when the PHY is reset.
*/
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
phy_reg |= M88E1000_EPSCR_TX_CLK_25;
e1000_write_phy_reg(&adapter->hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
/* In addition, because of the s/w reset above, we need to enable
* CRS on TX. This must be set for both full and half duplex
* operation.
*/
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
e1000_write_phy_reg(&adapter->hw,
M88E1000_PHY_SPEC_CTRL, phy_reg);
}
static int
e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
{
uint32_t ctrl_reg;
uint16_t phy_reg;
/* Setup the Device Control Register for PHY loopback test. */
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
/* Read the PHY Specific Control Register (0x10) */
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
/* Clear Auto-Crossover bits in PHY Specific Control Register
* (bits 6:5).
*/
phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
/* Perform software reset on the PHY */
e1000_phy_reset(&adapter->hw);
/* Have to setup TX_CLK and TX_CRS after software reset */
e1000_phy_reset_clk_and_crs(adapter);
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
/* Wait for reset to complete. */
udelay(500);
/* Have to setup TX_CLK and TX_CRS after software reset */
e1000_phy_reset_clk_and_crs(adapter);
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1000_phy_disable_receiver(adapter);
/* Set the loopback bit in the PHY control register. */
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
phy_reg |= MII_CR_LOOPBACK;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
/* Setup TX_CLK and TX_CRS one more time. */
e1000_phy_reset_clk_and_crs(adapter);
/* Check Phy Configuration */
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
if(phy_reg != 0x4100)
return 9;
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
if(phy_reg != 0x0070)
return 10;
e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
if(phy_reg != 0x001A)
return 11;
return 0;
}
static int
e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
uint32_t ctrl_reg = 0;
uint32_t stat_reg = 0;
adapter->hw.autoneg = FALSE;
if(adapter->hw.phy_type == e1000_phy_m88) {
/* Auto-MDI/MDIX Off */
e1000_write_phy_reg(&adapter->hw,
M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
/* autoneg off */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
}
/* force 1000, set loopback */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
if(adapter->hw.media_type == e1000_media_type_copper &&
adapter->hw.phy_type == e1000_phy_m88) {
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
} else {
/* Set the ILOS bit on the fiber Nic is half
* duplex link is detected. */
stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
if((stat_reg & E1000_STATUS_FD) == 0)
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
}
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
/* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/
if(adapter->hw.phy_type == e1000_phy_m88)
e1000_phy_disable_receiver(adapter);
udelay(500);
return 0;
}
static int
e1000_set_phy_loopback(struct e1000_adapter *adapter)
{
uint16_t phy_reg = 0;
uint16_t count = 0;
switch (adapter->hw.mac_type) {
case e1000_82543:
if(adapter->hw.media_type == e1000_media_type_copper) {
/* Attempt to setup Loopback mode on Non-integrated PHY.
* Some PHY registers get corrupted at random, so
* attempt this 10 times.
*/
while(e1000_nonintegrated_phy_loopback(adapter) &&
count++ < 10);
if(count < 11)
return 0;
}
break;
case e1000_82544:
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
case e1000_82573:
return e1000_integrated_phy_loopback(adapter);
break;
default:
/* Default PHY loopback work is to read the MII
* control register and assert bit 14 (loopback mode).
*/
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
phy_reg |= MII_CR_LOOPBACK;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
return 0;
break;
}
return 8;
}
static int
e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
uint32_t rctl;
if(adapter->hw.media_type == e1000_media_type_fiber ||
adapter->hw.media_type == e1000_media_type_internal_serdes) {
if(adapter->hw.mac_type == e1000_82545 ||
adapter->hw.mac_type == e1000_82546 ||
adapter->hw.mac_type == e1000_82545_rev_3 ||
adapter->hw.mac_type == e1000_82546_rev_3)
return e1000_set_phy_loopback(adapter);
else {
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl |= E1000_RCTL_LBM_TCVR;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
return 0;
}
} else if(adapter->hw.media_type == e1000_media_type_copper)
return e1000_set_phy_loopback(adapter);
return 7;
}
static void
e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
uint32_t rctl;
uint16_t phy_reg;
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
if(adapter->hw.media_type == e1000_media_type_copper ||
((adapter->hw.media_type == e1000_media_type_fiber ||
adapter->hw.media_type == e1000_media_type_internal_serdes) &&
(adapter->hw.mac_type == e1000_82545 ||
adapter->hw.mac_type == e1000_82546 ||
adapter->hw.mac_type == e1000_82545_rev_3 ||
adapter->hw.mac_type == e1000_82546_rev_3))) {
adapter->hw.autoneg = TRUE;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
if(phy_reg & MII_CR_LOOPBACK) {
phy_reg &= ~MII_CR_LOOPBACK;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
e1000_phy_reset(&adapter->hw);
}
}
}
static void
e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
{
memset(skb->data, 0xFF, frame_size);
frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}
static int
e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
{
frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
if(*(skb->data + 3) == 0xFF) {
if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
(*(skb->data + frame_size / 2 + 12) == 0xAF)) {
return 0;
}
}
return 13;
}
static int
e1000_run_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
int i, j, k, l, lc, good_cnt, ret_val=0;
unsigned long time;
E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
/* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64
* send/receive pairs during each loop
*/
if(rxdr->count <= txdr->count)
lc = ((txdr->count / 64) * 2) + 1;
else
lc = ((rxdr->count / 64) * 2) + 1;
k = l = 0;
for(j = 0; j <= lc; j++) { /* loop count loop */
for(i = 0; i < 64; i++) { /* send the packets */
e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1024);
pci_dma_sync_single_for_device(pdev,
txdr->buffer_info[k].dma,
txdr->buffer_info[k].length,
PCI_DMA_TODEVICE);
if(unlikely(++k == txdr->count)) k = 0;
}
E1000_WRITE_REG(&adapter->hw, TDT, k);
msec_delay(200);
time = jiffies; /* set the start time for the receive */
good_cnt = 0;
do { /* receive the sent packets */
pci_dma_sync_single_for_cpu(pdev,
rxdr->buffer_info[l].dma,
rxdr->buffer_info[l].length,
PCI_DMA_FROMDEVICE);
ret_val = e1000_check_lbtest_frame(
rxdr->buffer_info[l].skb,
1024);
if(!ret_val)
good_cnt++;
if(unlikely(++l == rxdr->count)) l = 0;
/* time + 20 msecs (200 msecs on 2.4) is more than
* enough time to complete the receives, if it's
* exceeded, break and error off
*/
} while (good_cnt < 64 && jiffies < (time + 20));
if(good_cnt != 64) {
ret_val = 13; /* ret_val is the same as mis-compare */
break;
}
if(jiffies >= (time + 2)) {
ret_val = 14; /* error code for time out error */
break;
}
} /* end loop count loop */
return ret_val;
}
static int
e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
{
if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
*data = e1000_run_loopback_test(adapter);
e1000_loopback_cleanup(adapter);
e1000_free_desc_rings(adapter);
err_loopback:
return *data;
}
static int
e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
{
*data = 0;
if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
int i = 0;
adapter->hw.serdes_link_down = TRUE;
/* On some blade server designs, link establishment
* could take as long as 2-3 minutes */
do {
e1000_check_for_link(&adapter->hw);
if (adapter->hw.serdes_link_down == FALSE)
return *data;
msec_delay(20);
} while (i++ < 3750);
*data = 1;
} else {
e1000_check_for_link(&adapter->hw);
if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
msec_delay(4000);
if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
*data = 1;
}
}
return *data;
}
static int
e1000_diag_test_count(struct net_device *netdev)
{
return E1000_TEST_LEN;
}
static void
e1000_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, uint64_t *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
boolean_t if_running = adapter->ecdev || netif_running(netdev);
if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
/* Offline tests */
/* save speed, duplex, autoneg settings */
uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
uint8_t autoneg = adapter->hw.autoneg;
/* Link test performed before hardware reset so autoneg doesn't
* interfere with test result */
if(e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
if(if_running)
e1000_down(adapter);
else
e1000_reset(adapter);
if(e1000_reg_test(adapter, &data[0]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000_reset(adapter);
if(e1000_eeprom_test(adapter, &data[1]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000_reset(adapter);
if(e1000_intr_test(adapter, &data[2]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000_reset(adapter);
if(e1000_loopback_test(adapter, &data[3]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore speed, duplex, autoneg settings */
adapter->hw.autoneg_advertised = autoneg_advertised;
adapter->hw.forced_speed_duplex = forced_speed_duplex;
adapter->hw.autoneg = autoneg;
e1000_reset(adapter);
if(if_running)
e1000_up(adapter);
} else {
/* Online tests */
if(e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* Offline tests aren't run; pass by default */
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
}
}
static void
e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
switch(adapter->hw.device_id) {
case E1000_DEV_ID_82542:
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
case E1000_DEV_ID_82545EM_COPPER:
wol->supported = 0;
wol->wolopts = 0;
return;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
/* Wake events only supported on port A for dual fiber */
if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
wol->supported = 0;
wol->wolopts = 0;
return;
}
/* Fall Through */
default:
wol->supported = WAKE_UCAST | WAKE_MCAST |
WAKE_BCAST | WAKE_MAGIC;
wol->wolopts = 0;
if(adapter->wol & E1000_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if(adapter->wol & E1000_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if(adapter->wol & E1000_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if(adapter->wol & E1000_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
return;
}
}
static int
e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
switch(adapter->hw.device_id) {
case E1000_DEV_ID_82542:
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
case E1000_DEV_ID_82545EM_COPPER:
return wol->wolopts ? -EOPNOTSUPP : 0;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
/* Wake events only supported on port A for dual fiber */
if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
return wol->wolopts ? -EOPNOTSUPP : 0;
/* Fall Through */
default:
if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
adapter->wol = 0;
if(wol->wolopts & WAKE_UCAST)
adapter->wol |= E1000_WUFC_EX;
if(wol->wolopts & WAKE_MCAST)
adapter->wol |= E1000_WUFC_MC;
if(wol->wolopts & WAKE_BCAST)
adapter->wol |= E1000_WUFC_BC;
if(wol->wolopts & WAKE_MAGIC)
adapter->wol |= E1000_WUFC_MAG;
}
return 0;
}
/* toggle LED 4 times per second = 2 "blinks" per second */
#define E1000_ID_INTERVAL (HZ/4)
/* bit defines for adapter->led_status */
#define E1000_LED_ON 0
static void
e1000_led_blink_callback(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
e1000_led_off(&adapter->hw);
else
e1000_led_on(&adapter->hw);
mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
}
static int
e1000_phys_id(struct net_device *netdev, uint32_t data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
if(adapter->hw.mac_type < e1000_82573) {
if(!adapter->blink_timer.function) {
init_timer(&adapter->blink_timer);
adapter->blink_timer.function = e1000_led_blink_callback;
adapter->blink_timer.data = (unsigned long) adapter;
}
e1000_setup_led(&adapter->hw);
mod_timer(&adapter->blink_timer, jiffies);
msleep_interruptible(data * 1000);
del_timer_sync(&adapter->blink_timer);
}
else {
E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
(E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
(E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
msleep_interruptible(data * 1000);
}
e1000_led_off(&adapter->hw);
clear_bit(E1000_LED_ON, &adapter->led_status);
e1000_cleanup_led(&adapter->hw);
return 0;
}
static int
e1000_nway_reset(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->ecdev || netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
}
return 0;
}
static int
e1000_get_stats_count(struct net_device *netdev)
{
return E1000_STATS_LEN;
}
static void
e1000_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, uint64_t *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
int i;
e1000_update_stats(adapter);
for(i = 0; i < E1000_STATS_LEN; i++) {
char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
}
}
static void
e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
{
int i;
switch(stringset) {
case ETH_SS_TEST:
memcpy(data, *e1000_gstrings_test,
E1000_TEST_LEN*ETH_GSTRING_LEN);
break;
case ETH_SS_STATS:
for (i=0; i < E1000_STATS_LEN; i++) {
memcpy(data + i * ETH_GSTRING_LEN,
e1000_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
}
break;
}
}
struct ethtool_ops e1000_ethtool_ops = {
.get_settings = e1000_get_settings,
.set_settings = e1000_set_settings,
.get_drvinfo = e1000_get_drvinfo,
.get_regs_len = e1000_get_regs_len,
.get_regs = e1000_get_regs,
.get_wol = e1000_get_wol,
.set_wol = e1000_set_wol,
.get_msglevel = e1000_get_msglevel,
.set_msglevel = e1000_set_msglevel,
.nway_reset = e1000_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = e1000_get_eeprom_len,
.get_eeprom = e1000_get_eeprom,
.set_eeprom = e1000_set_eeprom,
.get_ringparam = e1000_get_ringparam,
.set_ringparam = e1000_set_ringparam,
.get_pauseparam = e1000_get_pauseparam,
.set_pauseparam = e1000_set_pauseparam,
.get_rx_csum = e1000_get_rx_csum,
.set_rx_csum = e1000_set_rx_csum,
.get_tx_csum = e1000_get_tx_csum,
.set_tx_csum = e1000_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = e1000_set_tso,
#endif
.self_test_count = e1000_diag_test_count,
.self_test = e1000_diag_test,
.get_strings = e1000_get_strings,
.phys_id = e1000_phys_id,
.get_stats_count = e1000_get_stats_count,
.get_ethtool_stats = e1000_get_ethtool_stats,
};
void e1000_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
}