Keywords f?r Doxyfile.
/******************************************************************************
*
* m a s t e r . c
*
* Methoden für einen EtherCAT-Master.
*
* $Id$
*
*****************************************************************************/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "../include/EtherCAT_rt.h"
#include "globals.h"
#include "master.h"
#include "slave.h"
#include "types.h"
#include "device.h"
#include "command.h"
/*****************************************************************************/
// Prototypen
int ec_simple_send(ec_master_t *, ec_command_t *);
int ec_simple_receive(ec_master_t *, ec_command_t *);
void ec_output_debug_data(const ec_master_t *);
int ec_sii_read(ec_master_t *, unsigned short, unsigned short, unsigned int *);
void ec_output_lost_frames(ec_master_t *);
/*****************************************************************************/
/**
Konstruktor des EtherCAT-Masters.
*/
void ec_master_init(ec_master_t *master
/**< Zeiger auf den zu initialisierenden EtherCAT-Master */
)
{
master->bus_slaves = NULL;
master->bus_slaves_count = 0;
master->device_registered = 0;
master->command_index = 0x00;
master->tx_data_length = 0;
master->rx_data_length = 0;
master->domain_count = 0;
master->debug_level = 0;
master->bus_time = 0;
master->frames_lost = 0;
master->t_lost_output = 0;
}
/*****************************************************************************/
/**
Destruktor eines EtherCAT-Masters.
Entfernt alle Kommandos aus der Liste, löscht den Zeiger
auf das Slave-Array und gibt die Prozessdaten frei.
*/
void ec_master_clear(ec_master_t *master
/**< Zeiger auf den zu löschenden Master */
)
{
if (master->bus_slaves) {
kfree(master->bus_slaves);
master->bus_slaves = NULL;
}
ec_device_clear(&master->device);
master->domain_count = 0;
}
/*****************************************************************************/
/**
Setzt den Master in den Ausgangszustand.
Bei einem "release" sollte immer diese Funktion aufgerufen werden,
da sonst Slave-Liste, Domains, etc. weiter existieren.
*/
void ec_master_reset(ec_master_t *master
/**< Zeiger auf den zurückzusetzenden Master */
)
{
if (master->bus_slaves) {
kfree(master->bus_slaves);
master->bus_slaves = NULL;
}
master->bus_slaves_count = 0;
master->command_index = 0;
master->tx_data_length = 0;
master->rx_data_length = 0;
master->domain_count = 0;
master->debug_level = 0;
master->bus_time = 0;
master->frames_lost = 0;
master->t_lost_output = 0;
}
/*****************************************************************************/
/**
Öffnet das EtherCAT-Geraet des Masters.
\return 0, wenn alles o.k., < 0, wenn kein Gerät registriert wurde oder
es nicht geoeffnet werden konnte.
*/
int ec_master_open(ec_master_t *master /**< Der EtherCAT-Master */)
{
if (!master->device_registered) {
printk(KERN_ERR "EtherCAT: No device registered!\n");
return -1;
}
if (ec_device_open(&master->device) < 0) {
printk(KERN_ERR "EtherCAT: Could not open device!\n");
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Schliesst das EtherCAT-Geraet, auf dem der Master arbeitet.
*/
void ec_master_close(ec_master_t *master /**< EtherCAT-Master */)
{
if (!master->device_registered) {
printk(KERN_WARNING "EtherCAT: Warning -"
" Trying to close an unregistered device!\n");
return;
}
if (ec_device_close(&master->device) < 0) {
printk(KERN_WARNING "EtherCAT: Warning - Could not close device!\n");
}
}
/*****************************************************************************/
/**
Sendet ein einzelnes Kommando in einem Frame und
wartet auf dessen Empfang.
\return 0 bei Erfolg, sonst < 0
*/
int ec_simple_send_receive(ec_master_t *master,
/**< EtherCAT-Master */
ec_command_t *cmd
/**< Kommando zum Senden/Empfangen */
)
{
unsigned int tries_left;
if (unlikely(ec_simple_send(master, cmd) < 0))
return -1;
tries_left = 20;
do
{
udelay(1);
ec_device_call_isr(&master->device);
tries_left--;
}
while (unlikely(master->device.state == EC_DEVICE_STATE_SENT && tries_left));
if (unlikely(ec_simple_receive(master, cmd) < 0))
return -1;
return 0;
}
/*****************************************************************************/
/**
Sendet ein einzelnes Kommando in einem Frame.
\return 0 bei Erfolg, sonst < 0
*/
int ec_simple_send(ec_master_t *master, /**< EtherCAT-Master */
ec_command_t *cmd /**< Kommando zum Senden */
)
{
unsigned int length, framelength, i;
if (unlikely(master->debug_level > 0)) {
printk(KERN_DEBUG "EtherCAT: ec_simple_send\n");
}
if (unlikely(cmd->state != EC_COMMAND_STATE_READY)) {
printk(KERN_WARNING "EtherCAT: cmd not in ready state!\n");
}
length = cmd->data_length + 12;
framelength = length + 2;
if (unlikely(framelength > EC_FRAME_SIZE)) {
printk(KERN_ERR "EtherCAT: Frame too long (%i)!\n", framelength);
return -1;
}
if (framelength < 46) framelength = 46;
if (unlikely(master->debug_level > 0)) {
printk(KERN_DEBUG "EtherCAT: Frame length: %i\n", framelength);
}
master->tx_data[0] = length & 0xFF;
master->tx_data[1] = ((length & 0x700) >> 8) | 0x10;
cmd->index = master->command_index;
master->command_index = (master->command_index + 1) % 0x0100;
if (unlikely(master->debug_level > 0)) {
printk(KERN_DEBUG "EtherCAT: Sending command index 0x%X\n", cmd->index);
}
cmd->state = EC_COMMAND_STATE_SENT;
master->tx_data[2 + 0] = cmd->type;
master->tx_data[2 + 1] = cmd->index;
master->tx_data[2 + 2] = cmd->address.raw[0];
master->tx_data[2 + 3] = cmd->address.raw[1];
master->tx_data[2 + 4] = cmd->address.raw[2];
master->tx_data[2 + 5] = cmd->address.raw[3];
master->tx_data[2 + 6] = cmd->data_length & 0xFF;
master->tx_data[2 + 7] = (cmd->data_length & 0x700) >> 8;
master->tx_data[2 + 8] = 0x00;
master->tx_data[2 + 9] = 0x00;
if (likely(cmd->type == EC_COMMAND_APWR
|| cmd->type == EC_COMMAND_NPWR
|| cmd->type == EC_COMMAND_BWR
|| cmd->type == EC_COMMAND_LRW)) // Write commands
{
for (i = 0; i < cmd->data_length; i++)
master->tx_data[2 + 10 + i] = cmd->data[i];
}
else // Read commands
{
for (i = 0; i < cmd->data_length; i++) master->tx_data[2 + 10 + i] = 0x00;
}
master->tx_data[2 + 10 + cmd->data_length] = 0x00;
master->tx_data[2 + 11 + cmd->data_length] = 0x00;
// Pad with zeros
for (i = cmd->data_length + 12 + 2; i < 46; i++) master->tx_data[i] = 0x00;
master->tx_data_length = framelength;
if (unlikely(master->debug_level > 0)) {
printk(KERN_DEBUG "EtherCAT: Device send...\n");
}
// Send frame
if (unlikely(ec_device_send(&master->device, master->tx_data,
framelength) != 0)) {
printk(KERN_ERR "EtherCAT: Could not send!\n");
return -1;
}
if (unlikely(master->debug_level > 0)) {
printk(KERN_DEBUG "EtherCAT: ec_simple_send done.\n");
}
return 0;
}
/*****************************************************************************/
/**
Wartet auf den Empfang eines einzeln gesendeten
Kommandos.
\return 0 bei Erfolg, sonst < 0
*/
int ec_simple_receive(ec_master_t *master, /**< EtherCAT-Master */
ec_command_t *cmd /**< Gesendetes Kommando */
)
{
unsigned int length;
int ret;
unsigned char command_type, command_index;
if (unlikely((ret = ec_device_receive(&master->device,
master->rx_data)) < 0))
return -1;
master->rx_data_length = (unsigned int) ret;
if (unlikely(master->rx_data_length < 2)) {
printk(KERN_ERR "EtherCAT: Received frame with incomplete EtherCAT"
" header!\n");
ec_output_debug_data(master);
return -1;
}
// Länge des gesamten Frames prüfen
length = ((master->rx_data[1] & 0x07) << 8)
| (master->rx_data[0] & 0xFF);
if (unlikely(length > master->rx_data_length)) {
printk(KERN_ERR "EtherCAT: Received corrupted frame (length does"
" not match)!\n");
ec_output_debug_data(master);
return -1;
}
command_type = master->rx_data[2];
command_index = master->rx_data[2 + 1];
length = (master->rx_data[2 + 6] & 0xFF)
| ((master->rx_data[2 + 7] & 0x07) << 8);
if (unlikely(master->rx_data_length - 2 < length + 12)) {
printk(KERN_ERR "EtherCAT: Received frame with"
" incomplete command data!\n");
ec_output_debug_data(master);
return -1;
}
if (likely(cmd->state == EC_COMMAND_STATE_SENT
&& cmd->type == command_type
&& cmd->index == command_index
&& cmd->data_length == length))
{
cmd->state = EC_COMMAND_STATE_RECEIVED;
// Empfangene Daten in Kommandodatenspeicher kopieren
memcpy(cmd->data, master->rx_data + 2 + 10, length);
// Working-Counter setzen
cmd->working_counter
= ((master->rx_data[length + 2 + 10] & 0xFF)
| ((master->rx_data[length + 2 + 11] & 0xFF) << 8));
if (unlikely(master->debug_level > 1)) {
ec_output_debug_data(master);
}
}
else
{
printk(KERN_WARNING "EtherCAT: WARNING - Send/Receive anomaly!\n");
ec_output_debug_data(master);
}
master->device.state = EC_DEVICE_STATE_READY;
return 0;
}
/*****************************************************************************/
/**
Durchsucht den Bus nach Slaves.
@return 0 bei Erfolg, sonst < 0
*/
int ec_scan_for_slaves(ec_master_t *master /**< EtherCAT-Master */)
{
ec_command_t cmd;
ec_slave_t *slave;
unsigned int i, j;
unsigned char data[2];
// Determine number of slaves on bus
ec_command_broadcast_read(&cmd, 0x0000, 4);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
master->bus_slaves_count = cmd.working_counter;
printk("EtherCAT: Found %i slaves on bus.\n", master->bus_slaves_count);
if (!master->bus_slaves_count) return 0;
if (!(master->bus_slaves = (ec_slave_t *) kmalloc(master->bus_slaves_count
* sizeof(ec_slave_t),
GFP_KERNEL))) {
printk(KERN_ERR "EtherCAT: Could not allocate memory for bus slaves!\n");
return -1;
}
// For every slave in the list
for (i = 0; i < master->bus_slaves_count; i++)
{
slave = master->bus_slaves + i;
ec_slave_init(slave);
// Set ring position
slave->ring_position = -i;
slave->station_address = i + 1;
// Write station address
data[0] = slave->station_address & 0x00FF;
data[1] = (slave->station_address & 0xFF00) >> 8;
ec_command_position_write(&cmd, slave->ring_position, 0x0010, 2, data);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Slave %i did not repond while writing"
" station address!\n", i);
return -1;
}
// Read base data
ec_command_read(&cmd, slave->station_address, 0x0000, 4);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Slave %i did not respond while reading base"
" data!\n", i);
return -1;
}
// Get base data
slave->base_type = cmd.data[0];
slave->base_revision = cmd.data[1];
slave->base_build = cmd.data[2] | (cmd.data[3] << 8);
// Read identification from "Slave Information Interface" (SII)
if (unlikely(ec_sii_read(master, slave->station_address, 0x0008,
&slave->sii_vendor_id) != 0)) {
printk(KERN_ERR "EtherCAT: Could not read SII vendor id!\n");
return -1;
}
if (unlikely(ec_sii_read(master, slave->station_address, 0x000A,
&slave->sii_product_code) != 0)) {
printk(KERN_ERR "EtherCAT: Could not read SII product code!\n");
return -1;
}
if (unlikely(ec_sii_read(master, slave->station_address, 0x000C,
&slave->sii_revision_number) != 0)) {
printk(KERN_ERR "EtherCAT: Could not read SII revision number!\n");
return -1;
}
if (unlikely(ec_sii_read(master, slave->station_address, 0x000E,
&slave->sii_serial_number) != 0)) {
printk(KERN_ERR "EtherCAT: Could not read SII serial number!\n");
return -1;
}
// Search for identification in "database"
for (j = 0; j < slave_ident_count; j++)
{
if (unlikely(slave_idents[j].vendor_id == slave->sii_vendor_id
&& slave_idents[j].product_code == slave->sii_product_code))
{
slave->type = slave_idents[j].type;
break;
}
}
if (unlikely(!slave->type)) {
printk(KERN_WARNING "EtherCAT: Unknown slave device (vendor 0x%08X, code"
" 0x%08X) at position %i.\n", slave->sii_vendor_id,
slave->sii_product_code, i);
return 0;
}
}
return 0;
}
/*****************************************************************************/
/**
Liest Daten aus dem Slave-Information-Interface
eines EtherCAT-Slaves.
\return 0 bei Erfolg, sonst < 0
*/
int ec_sii_read(ec_master_t *master,
/**< EtherCAT-Master */
unsigned short int node_address,
/**< Knotenadresse des Slaves */
unsigned short int offset,
/**< Adresse des zu lesenden SII-Registers */
unsigned int *target
/**< Zeiger auf einen 4 Byte großen Speicher zum Ablegen der
Daten */
)
{
ec_command_t cmd;
unsigned char data[10];
unsigned int tries_left;
// Initiate read operation
data[0] = 0x00;
data[1] = 0x01;
data[2] = offset & 0xFF;
data[3] = (offset & 0xFF00) >> 8;
data[4] = 0x00;
data[5] = 0x00;
ec_command_write(&cmd, node_address, 0x502, 6, data);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: SII-read - Slave %04X did not respond!\n",
node_address);
return -1;
}
// Der Slave legt die Informationen des Slave-Information-Interface
// in das Datenregister und löscht daraufhin ein Busy-Bit. Solange
// den Status auslesen, bis das Bit weg ist.
tries_left = 100;
while (likely(tries_left))
{
udelay(10);
ec_command_read(&cmd, node_address, 0x502, 10);
if (unlikely(ec_simple_send_receive(master, &cmd) != 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: SII-read status -"
" Slave %04X did not respond!\n", node_address);
return -1;
}
if (likely((cmd.data[1] & 0x81) == 0)) {
memcpy(target, cmd.data + 6, 4);
break;
}
tries_left--;
}
if (unlikely(!tries_left)) {
printk(KERN_WARNING "EtherCAT: SSI-read. Slave %04X timed out!\n",
node_address);
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Ändert den Zustand eines Slaves.
\return 0 bei Erfolg, sonst < 0
*/
int ec_state_change(ec_master_t *master,
/**<EtherCAT-Master */
ec_slave_t *slave,
/**< Slave, dessen Zustand geändert werden soll */
unsigned char state_and_ack
/**< Neuer Zustand, evtl. mit gesetztem Acknowledge-Flag */
)
{
ec_command_t cmd;
unsigned char data[2];
unsigned int tries_left;
data[0] = state_and_ack;
data[1] = 0x00;
ec_command_write(&cmd, slave->station_address, 0x0120, 2, data);
if (unlikely(ec_simple_send_receive(master, &cmd) != 0)) {
printk(KERN_ERR "EtherCAT: Could not set state %02X - Unable to send!\n",
state_and_ack);
return -1;
}
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Could not set state %02X - Slave %i did not"
" respond!\n", state_and_ack, slave->ring_position * (-1));
return -1;
}
tries_left = 100;
while (likely(tries_left))
{
udelay(10);
ec_command_read(&cmd, slave->station_address, 0x0130, 2);
if (unlikely(ec_simple_send_receive(master, &cmd) != 0)) {
printk(KERN_ERR "EtherCAT: Could not check state %02X - Unable to"
" send!\n", state_and_ack);
return -1;
}
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Could not check state %02X - Device %i did"
" not respond!\n", state_and_ack, slave->ring_position * (-1));
return -1;
}
if (unlikely(cmd.data[0] & 0x10)) { // State change error
printk(KERN_ERR "EtherCAT: Could not set state %02X - Device %i refused"
" state change (code %02X)!\n", state_and_ack,
slave->ring_position * (-1), cmd.data[0]);
return -1;
}
if (likely(cmd.data[0] == (state_and_ack & 0x0F))) {
// State change successful
break;
}
tries_left--;
}
if (unlikely(!tries_left)) {
printk(KERN_ERR "EtherCAT: Could not check state %02X of slave %i -"
" Timeout while checking!\n", state_and_ack,
slave->ring_position * (-1));
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Gibt Frame-Inhalte zwecks Debugging aus.
*/
void ec_output_debug_data(const ec_master_t *master /**< EtherCAT-Master */)
{
unsigned int i;
printk(KERN_DEBUG "EtherCAT: tx_data content (%i Bytes):\n",
master->tx_data_length);
printk(KERN_DEBUG);
for (i = 0; i < master->tx_data_length; i++)
{
printk("%02X ", master->tx_data[i]);
if ((i + 1) % 16 == 0) printk("\n" KERN_DEBUG);
}
printk("\n");
printk(KERN_DEBUG "EtherCAT: rx_data content (%i Bytes):\n",
master->rx_data_length);
printk(KERN_DEBUG);
for (i = 0; i < master->rx_data_length; i++)
{
printk("%02X ", master->rx_data[i]);
if ((i + 1) % 16 == 0) printk("\n" KERN_DEBUG);
}
printk("\n");
}
/*****************************************************************************/
/**
Gibt von Zeit zu Zeit die Anzahl verlorener Frames aus.
*/
void ec_output_lost_frames(ec_master_t *master /**< EtherCAT-Master */)
{
unsigned long int t;
if (master->frames_lost) {
rdtscl(t);
if ((t - master->t_lost_output) / cpu_khz > 1000) {
printk(KERN_ERR "EtherCAT: %u frame(s) LOST!\n", master->frames_lost);
master->frames_lost = 0;
master->t_lost_output = t;
}
}
}
/*****************************************************************************/
/**
Wandelt eine ASCII-kodierte Bus-Adresse in einen Slave-Zeiger.
Gültige Adress-Strings sind Folgende:
- \a "X" = der X. Slave im Bus,
- \a "X:Y" = der Y. Slave hinter dem X. Buskoppler,
- \a "#X" = der Slave mit der SSID X,
- \a "#X:Y" = der Y. Slave hinter dem Buskoppler mit der SSID X.
\return Zeiger auf Slave bei Erfolg, sonst NULL
*/
ec_slave_t *ec_address(const ec_master_t *master,
/**< EtherCAT-Master */
const char *address
/**< Address-String */
)
{
unsigned long first, second;
char *remainder, *remainder2;
unsigned int i;
int coupler_idx, slave_idx;
ec_slave_t *slave;
if (!address || address[0] == 0) return NULL;
if (address[0] == '#') {
printk(KERN_ERR "EtherCAT: Bus ID - #<SSID> not implemented yet!\n");
return NULL;
}
first = simple_strtoul(address, &remainder, 0);
if (remainder == address) {
printk(KERN_ERR "EtherCAT: Bus ID - First number empty!\n");
return NULL;
}
if (!remainder[0]) { // absolute position
if (first < master->bus_slaves_count) {
return master->bus_slaves + first;
}
printk(KERN_ERR "EtherCAT: Bus ID - Absolute position illegal!\n");
}
else if (remainder[0] == ':') { // field position
remainder++;
second = simple_strtoul(remainder, &remainder2, 0);
if (remainder2 == remainder) {
printk(KERN_ERR "EtherCAT: Bus ID - Sencond number empty!\n");
return NULL;
}
if (remainder2[0]) {
printk(KERN_ERR "EtherCAT: Bus ID - Illegal trailer (2)!\n");
return NULL;
}
coupler_idx = -1;
slave_idx = 0;
for (i = 0; i < master->bus_slaves_count; i++, slave_idx++) {
slave = master->bus_slaves + i;
if (!slave->type) continue;
if (strcmp(slave->type->vendor_name, "Beckhoff") == 0 &&
strcmp(slave->type->product_name, "EK1100") == 0) {
coupler_idx++;
slave_idx = 0;
}
if (coupler_idx == first && slave_idx == second) return slave;
}
}
else {
printk(KERN_ERR "EtherCAT: Bus ID - Illegal trailer!\n");
}
return NULL;
}
/******************************************************************************
*
* Echtzeitschnittstelle
*
*****************************************************************************/
/**
Registriert einen Slave beim Master.
\return Zeiger auf den Slave bei Erfolg, sonst NULL
*/
ec_slave_t *EtherCAT_rt_register_slave(ec_master_t *master,
/**< EtherCAT-Master */
const char *address,
/**< ASCII-Addresse des Slaves, siehe
auch ec_address() */
const char *vendor_name,
/**< Herstellername */
const char *product_name,
/**< Produktname */
int domain
/**< Domäne */
)
{
ec_slave_t *slave;
const ec_slave_type_t *type;
ec_domain_t *dom;
unsigned int j;
if (domain < 0) {
printk(KERN_ERR "EtherCAT: Invalid domain: %i\n", domain);
return NULL;
}
if ((slave = ec_address(master, address)) == NULL) {
printk(KERN_ERR "EtherCAT: Illegal address: \"%s\"\n", address);
return NULL;
}
if (slave->registered) {
printk(KERN_ERR "EtherCAT: Slave \"%s\" (position %i) has already been"
" registered!\n", address, slave->ring_position * (-1));
return NULL;
}
if (!slave->type) {
printk(KERN_ERR "EtherCAT: Slave \"%s\" (position %i) has unknown type!\n",
address, slave->ring_position * (-1));
return NULL;
}
type = slave->type;
if (strcmp(vendor_name, type->vendor_name) ||
strcmp(product_name, type->product_name)) {
printk(KERN_ERR "Invalid Slave Type! Requested: \"%s %s\", found: \"%s"
" %s\".\n", vendor_name, product_name, type->vendor_name,
type->product_name);
return NULL;
}
// Check, if process data domain already exists...
dom = NULL;
for (j = 0; j < master->domain_count; j++) {
if (domain == master->domains[j].number) {
dom = master->domains + j;
break;
}
}
// Create process data domain
if (!dom) {
if (master->domain_count > EC_MAX_DOMAINS - 1) {
printk(KERN_ERR "EtherCAT: Too many domains!\n");
return NULL;
}
dom = master->domains + master->domain_count;
ec_domain_init(dom);
dom->number = domain;
dom->logical_offset = master->domain_count * EC_FRAME_SIZE;
master->domain_count++;
}
if (dom->data_size + type->process_data_size > EC_FRAME_SIZE - 14) {
printk(KERN_ERR "EtherCAT: Oversized domain %i: %i / %i Bytes!\n",
dom->number, dom->data_size + type->process_data_size,
EC_FRAME_SIZE - 14);
return NULL;
}
slave->process_data = dom->data + dom->data_size;
slave->logical_address = dom->data_size;
slave->registered = 1;
dom->data_size += type->process_data_size;
return slave;
}
/*****************************************************************************/
/**
Registriert eine ganze Liste von Slaves beim Master.
\return 0 bei Erfolg, sonst < 0
*/
int EtherCAT_rt_register_slave_list(ec_master_t *master,
/**< EtherCAT-Master */
const ec_slave_init_t *slaves,
/**< Array von Slave-Initialisierungs-
strukturen */
unsigned int count
/**< Anzahl der Strukturen in \a slaves */
)
{
unsigned int i;
for (i = 0; i < count; i++)
{
if ((*(slaves[i].slave_ptr) =
EtherCAT_rt_register_slave(master, slaves[i].address,
slaves[i].vendor_name,
slaves[i].product_name,
slaves[i].domain)) == NULL)
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Konfiguriert alle Slaves und setzt den Operational-Zustand.
Führt die komplette Konfiguration und Aktivierunge aller registrierten
Slaves durch. Setzt Sync-Manager und FMMU's, führt die entsprechenden
Zustandsübergänge durch, bis der Slave betriebsbereit ist.
\return 0 bei Erfolg, sonst < 0
*/
int EtherCAT_rt_activate_slaves(ec_master_t *master /**< EtherCAT-Master */)
{
unsigned int i;
ec_slave_t *slave;
ec_command_t cmd;
const ec_slave_type_t *type;
unsigned char fmmu[16];
unsigned char data[256];
for (i = 0; i < master->bus_slaves_count; i++)
{
slave = master->bus_slaves + i;
if (unlikely(ec_state_change(master, slave, EC_SLAVE_STATE_INIT) != 0))
return -1;
// Check if slave was registered...
if (!slave->registered) {
printk(KERN_INFO "EtherCAT: Slave %i was not registered.\n", i);
continue;
}
type = slave->type;
// Resetting FMMU's
memset(data, 0x00, 256);
ec_command_write(&cmd, slave->station_address, 0x0600, 256, data);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Resetting FMMUs - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
// Resetting Sync Manager channels
if (type->features != EC_NOSYNC_SLAVE)
{
memset(data, 0x00, 256);
ec_command_write(&cmd, slave->station_address, 0x0800, 256, data);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Resetting SMs - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
}
// Init Mailbox communication
if (type->features == EC_MAILBOX_SLAVE)
{
if (type->sm0)
{
ec_command_write(&cmd, slave->station_address, 0x0800, 8, type->sm0);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Setting SM0 - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
}
if (type->sm1)
{
ec_command_write(&cmd, slave->station_address, 0x0808, 8, type->sm1);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Setting SM1 -"
" Slave %04X did not respond!\n",
slave->station_address);
return -1;
}
}
}
// Change state to PREOP
if (unlikely(ec_state_change(master, slave, EC_SLAVE_STATE_PREOP) != 0))
return -1;
// Set FMMU's
if (type->fmmu0)
{
if (unlikely(!slave->process_data)) {
printk(KERN_ERR "EtherCAT: Warning - Slave %04X is not assigned to any"
" process data object!\n", slave->station_address);
return -1;
}
memcpy(fmmu, type->fmmu0, 16);
fmmu[0] = slave->logical_address & 0x000000FF;
fmmu[1] = (slave->logical_address & 0x0000FF00) >> 8;
fmmu[2] = (slave->logical_address & 0x00FF0000) >> 16;
fmmu[3] = (slave->logical_address & 0xFF000000) >> 24;
ec_command_write(&cmd, slave->station_address, 0x0600, 16, fmmu);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Setting FMMU0 - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
}
// Set Sync Managers
if (type->features != EC_MAILBOX_SLAVE)
{
if (type->sm0)
{
ec_command_write(&cmd, slave->station_address, 0x0800, 8, type->sm0);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Setting SM0 - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
}
if (type->sm1)
{
ec_command_write(&cmd, slave->station_address, 0x0808, 8, type->sm1);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Setting SM1 - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
}
}
if (type->sm2)
{
ec_command_write(&cmd, slave->station_address, 0x0810, 8, type->sm2);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Setting SM2 - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
}
if (type->sm3)
{
ec_command_write(&cmd, slave->station_address, 0x0818, 8, type->sm3);
if (unlikely(ec_simple_send_receive(master, &cmd) < 0))
return -1;
if (unlikely(cmd.working_counter != 1)) {
printk(KERN_ERR "EtherCAT: Setting SM3 - Slave %04X did not"
" respond!\n", slave->station_address);
return -1;
}
}
// Change state to SAVEOP
if (unlikely(ec_state_change(master, slave, EC_SLAVE_STATE_SAVEOP) != 0))
return -1;
// Change state to OP
if (unlikely(ec_state_change(master, slave, EC_SLAVE_STATE_OP) != 0))
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Setzt alle Slaves zurück in den Init-Zustand.
\return 0 bei Erfolg, sonst < 0
*/
int EtherCAT_rt_deactivate_slaves(ec_master_t *master /**< EtherCAT-Master */)
{
ec_slave_t *slave;
unsigned int i;
for (i = 0; i < master->bus_slaves_count; i++)
{
slave = master->bus_slaves + i;
if (unlikely(ec_state_change(master, slave, EC_SLAVE_STATE_INIT) != 0))
return -1;
}
return 0;
}
/*****************************************************************************/
/**
Sendet und empfängt Prozessdaten der angegebenen Domäne
\return 0 bei Erfolg, sonst < 0
*/
int EtherCAT_rt_domain_xio(ec_master_t *master,
/**< EtherCAT-Master */
unsigned int domain,
/**< Domäne */
unsigned int timeout_us
/**< Timeout in Mikrosekunden */
)
{
unsigned int i;
ec_domain_t *dom;
unsigned long start_ticks, end_ticks, timeout_ticks;
ec_output_lost_frames(master); // Evtl. verlorene Frames ausgeben
// Domäne bestimmen
dom = NULL;
for (i = 0; i < master->domain_count; i++) {
if (master->domains[i].number == domain) {
dom = master->domains + i;
break;
}
}
if (unlikely(!dom)) {
printk(KERN_ERR "EtherCAT: No such domain: %i!\n", domain);
return -1;
}
ec_command_logical_read_write(&dom->command, dom->logical_offset,
dom->data_size, dom->data);
rdtscl(start_ticks); // Sendezeit nehmen
if (unlikely(ec_simple_send(master, &dom->command) < 0)) {
printk(KERN_ERR "EtherCAT: Could not send process data command!\n");
return -1;
}
timeout_ticks = timeout_us * cpu_khz / 1000;
// Warten
do {
ec_device_call_isr(&master->device);
rdtscl(end_ticks); // Empfangszeit nehmen
}
while (unlikely(master->device.state == EC_DEVICE_STATE_SENT
&& end_ticks - start_ticks < timeout_ticks));
master->bus_time = (end_ticks - start_ticks) * 1000 / cpu_khz;
if (unlikely(end_ticks - start_ticks >= timeout_ticks)) {
master->device.state = EC_DEVICE_STATE_READY;
master->frames_lost++;
ec_output_lost_frames(master);
return -1;
}
if (unlikely(ec_simple_receive(master, &dom->command) < 0)) {
printk(KERN_ERR "EtherCAT: Could not receive cyclic command!\n");
return -1;
}
if (unlikely(dom->command.state != EC_COMMAND_STATE_RECEIVED)) {
printk(KERN_WARNING "EtherCAT: Process data command not received!\n");
return -1;
}
if (dom->command.working_counter != dom->response_count) {
dom->response_count = dom->command.working_counter;
printk(KERN_INFO "EtherCAT: Domain %i State change - %i slaves"
" responding.\n", dom->number, dom->response_count);
}
// Daten vom Kommando in den Prozessdatenspeicher kopieren
memcpy(dom->data, dom->command.data, dom->data_size);
return 0;
}
/*****************************************************************************/
/**
Setzt die Debug-Ebene des Masters.
Folgende Debug-level sind definiert:
- 1: Nur Positionsmarken in bestimmten Funktionen
- 2: Komplette Frame-Inhalte
*/
void EtherCAT_rt_debug_level(ec_master_t *master,
/**< EtherCAT-Master */
int level
/**< Debug-Level */
)
{
master->debug_level = level;
}
/*****************************************************************************/
EXPORT_SYMBOL(EtherCAT_rt_register_slave);
EXPORT_SYMBOL(EtherCAT_rt_register_slave_list);
EXPORT_SYMBOL(EtherCAT_rt_activate_slaves);
EXPORT_SYMBOL(EtherCAT_rt_deactivate_slaves);
EXPORT_SYMBOL(EtherCAT_rt_domain_xio);
EXPORT_SYMBOL(EtherCAT_rt_debug_level);
/*****************************************************************************/
/* Emacs-Konfiguration
;;; Local Variables: ***
;;; c-basic-offset:2 ***
;;; End: ***
*/