Fixed compiler warning.
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006-2008 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* The IgH EtherCAT Master is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* ---
*
* The license mentioned above concerns the source code only. Using the
* EtherCAT technology and brand is only permitted in compliance with the
* industrial property and similar rights of Beckhoff Automation GmbH.
*
* vim: expandtab
*
*****************************************************************************/
/**
\file
EtherCAT master methods.
*/
/*****************************************************************************/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/version.h>
#include <linux/hrtimer.h>
#include "globals.h"
#include "slave.h"
#include "slave_config.h"
#include "device.h"
#include "datagram.h"
#ifdef EC_EOE
#include "ethernet.h"
#endif
#include "master.h"
/*****************************************************************************/
/** Set to 1 to enable fsm datagram injection debugging.
*/
#ifdef USE_TRACE_PRINTK
#define DEBUG_INJECT 1
#else
#define DEBUG_INJECT 0
#endif
#ifdef EC_HAVE_CYCLES
/** Frame timeout in cycles.
*/
static cycles_t timeout_cycles;
/** Timeout for fsm datagram injection [cycles].
*/
static cycles_t fsm_injection_timeout_cycles;
#else
/** Frame timeout in jiffies.
*/
static unsigned long timeout_jiffies;
/** Timeout for fsm datagram injection [jiffies].
*/
static unsigned long fsm_injection_timeout_jiffies;
#endif
/*****************************************************************************/
void ec_master_clear_slave_configs(ec_master_t *);
void ec_master_clear_domains(ec_master_t *);
static int ec_master_idle_thread(void *);
static int ec_master_operation_thread(void *);
#ifdef EC_EOE
static int ec_master_eoe_processing(ec_master_t *);
#endif
void ec_master_find_dc_ref_clock(ec_master_t *);
/*****************************************************************************/
/** Static variables initializer.
*/
void ec_master_init_static(void)
{
#ifdef EC_HAVE_CYCLES
timeout_cycles = (cycles_t) EC_IO_TIMEOUT /* us */ * (cpu_khz / 1000);
fsm_injection_timeout_cycles = (cycles_t) EC_FSM_INJECTION_TIMEOUT /* us */ * (cpu_khz / 1000);
#else
// one jiffy may always elapse between time measurement
timeout_jiffies = max(EC_IO_TIMEOUT * HZ / 1000000, 1);
fsm_injection_timeout_jiffies = max(EC_FSM_INJECTION_TIMEOUT * HZ / 1000000, 1);
#endif
}
/*****************************************************************************/
/**
Master constructor.
\return 0 in case of success, else < 0
*/
int ec_master_init(ec_master_t *master, /**< EtherCAT master */
unsigned int index, /**< master index */
const uint8_t *main_mac, /**< MAC address of main device */
const uint8_t *backup_mac, /**< MAC address of backup device */
dev_t device_number, /**< Character device number. */
struct class *class, /**< Device class. */
unsigned int debug_level /**< Debug level (module parameter). */
)
{
int ret;
master->index = index;
master->reserved = 0;
ec_mutex_init(&master->master_mutex);
master->main_mac = main_mac;
master->backup_mac = backup_mac;
ec_mutex_init(&master->device_mutex);
master->phase = EC_ORPHANED;
master->active = 0;
master->config_changed = 0;
master->injection_seq_fsm = 0;
master->injection_seq_rt = 0;
master->slaves = NULL;
master->slave_count = 0;
INIT_LIST_HEAD(&master->configs);
master->app_time = 0ULL;
#ifdef EC_HAVE_CYCLES
master->dc_cycles_app_start_time = 0;
#endif
master->dc_jiffies_app_start_time = 0;
master->app_start_time = 0ULL;
master->has_app_time = 0;
master->scan_busy = 0;
ec_mutex_init(&master->scan_mutex);
init_waitqueue_head(&master->scan_queue);
master->config_busy = 0;
ec_mutex_init(&master->config_mutex);
init_waitqueue_head(&master->config_queue);
INIT_LIST_HEAD(&master->datagram_queue);
master->datagram_index = 0;
ec_mutex_init(&master->fsm_queue_mutex);
INIT_LIST_HEAD(&master->fsm_datagram_queue);
// send interval in IDLE phase
ec_master_set_send_interval(master, 1000000 / HZ);
INIT_LIST_HEAD(&master->domains);
master->debug_level = debug_level;
master->stats.timeouts = 0;
master->stats.corrupted = 0;
master->stats.unmatched = 0;
master->stats.output_jiffies = 0;
master->thread = NULL;
#ifdef EC_EOE
master->eoe_thread = NULL;
INIT_LIST_HEAD(&master->eoe_handlers);
#endif
ec_mutex_init(&master->io_mutex);
master->fsm_queue_lock_cb = NULL;
master->fsm_queue_unlock_cb = NULL;
master->fsm_queue_locking_data = NULL;
master->app_fsm_queue_lock_cb = NULL;
master->app_fsm_queue_unlock_cb = NULL;
master->app_fsm_queue_locking_data = NULL;
INIT_LIST_HEAD(&master->sii_requests);
init_waitqueue_head(&master->sii_queue);
INIT_LIST_HEAD(&master->reg_requests);
init_waitqueue_head(&master->reg_queue);
// init devices
ret = ec_device_init(&master->main_device, master);
if (ret < 0)
goto out_return;
ret = ec_device_init(&master->backup_device, master);
if (ret < 0)
goto out_clear_main;
// init state machine datagram
ec_datagram_init(&master->fsm_datagram);
snprintf(master->fsm_datagram.name, EC_DATAGRAM_NAME_SIZE, "master-fsm");
ret = ec_datagram_prealloc(&master->fsm_datagram, EC_MAX_DATA_SIZE);
if (ret < 0) {
ec_datagram_clear(&master->fsm_datagram);
EC_MASTER_ERR(master, "Failed to allocate FSM datagram.\n");
goto out_clear_backup;
}
// create state machine object
ec_mbox_init(&master->fsm_mbox,&master->fsm_datagram);
ec_fsm_master_init(&master->fsm, master, &master->fsm_datagram);
// init reference sync datagram
ec_datagram_init(&master->ref_sync_datagram);
snprintf(master->ref_sync_datagram.name, EC_DATAGRAM_NAME_SIZE, "refsync");
ret = ec_datagram_apwr(&master->ref_sync_datagram, 0, 0x0910, 8);
if (ret < 0) {
ec_datagram_clear(&master->ref_sync_datagram);
EC_MASTER_ERR(master, "Failed to allocate reference"
" synchronisation datagram.\n");
goto out_clear_fsm;
}
// init sync datagram
ec_datagram_init(&master->sync_datagram);
snprintf(master->sync_datagram.name, EC_DATAGRAM_NAME_SIZE, "sync");
ret = ec_datagram_prealloc(&master->sync_datagram, 4);
if (ret < 0) {
ec_datagram_clear(&master->sync_datagram);
EC_MASTER_ERR(master, "Failed to allocate"
" synchronisation datagram.\n");
goto out_clear_ref_sync;
}
// init sync monitor datagram
ec_datagram_init(&master->sync_mon_datagram);
snprintf(master->sync_mon_datagram.name, EC_DATAGRAM_NAME_SIZE, "syncmon");
ret = ec_datagram_brd(&master->sync_mon_datagram, 0x092c, 4);
if (ret < 0) {
ec_datagram_clear(&master->sync_mon_datagram);
EC_MASTER_ERR(master, "Failed to allocate sync"
" monitoring datagram.\n");
goto out_clear_sync;
}
ec_master_find_dc_ref_clock(master);
// init character device
ret = ec_cdev_init(&master->cdev, master, device_number);
if (ret)
goto out_clear_sync_mon;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
master->class_device = device_create(class, NULL,
MKDEV(MAJOR(device_number), master->index), NULL,
"EtherCAT%u", master->index);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26)
master->class_device = device_create(class, NULL,
MKDEV(MAJOR(device_number), master->index),
"EtherCAT%u", master->index);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 15)
master->class_device = class_device_create(class, NULL,
MKDEV(MAJOR(device_number), master->index), NULL,
"EtherCAT%u", master->index);
#else
master->class_device = class_device_create(class,
MKDEV(MAJOR(device_number), master->index), NULL,
"EtherCAT%u", master->index);
#endif
if (IS_ERR(master->class_device)) {
EC_MASTER_ERR(master, "Failed to create class device!\n");
ret = PTR_ERR(master->class_device);
goto out_clear_cdev;
}
return 0;
out_clear_cdev:
ec_cdev_clear(&master->cdev);
out_clear_sync_mon:
ec_datagram_clear(&master->sync_mon_datagram);
out_clear_sync:
ec_datagram_clear(&master->sync_datagram);
out_clear_ref_sync:
ec_datagram_clear(&master->ref_sync_datagram);
out_clear_fsm:
ec_fsm_master_clear(&master->fsm);
ec_datagram_clear(&master->fsm_datagram);
out_clear_backup:
ec_device_clear(&master->backup_device);
out_clear_main:
ec_device_clear(&master->main_device);
out_return:
return ret;
}
/*****************************************************************************/
/** Destructor.
*/
void ec_master_clear(
ec_master_t *master /**< EtherCAT master */
)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26)
device_unregister(master->class_device);
#else
class_device_unregister(master->class_device);
#endif
ec_cdev_clear(&master->cdev);
#ifdef EC_EOE
ec_master_clear_eoe_handlers(master);
#endif
ec_master_clear_domains(master);
ec_master_clear_slave_configs(master);
ec_master_clear_slaves(master);
ec_datagram_clear(&master->sync_mon_datagram);
ec_datagram_clear(&master->sync_datagram);
ec_datagram_clear(&master->ref_sync_datagram);
ec_fsm_master_clear(&master->fsm);
ec_mbox_clear(&master->fsm_mbox);
ec_datagram_clear(&master->fsm_datagram);
ec_device_clear(&master->backup_device);
ec_device_clear(&master->main_device);
}
/*****************************************************************************/
#ifdef EC_EOE
/** Clear and free all EoE handlers.
*/
void ec_master_clear_eoe_handlers(
ec_master_t *master /**< EtherCAT master */
)
{
ec_eoe_t *eoe, *next;
list_for_each_entry_safe(eoe, next, &master->eoe_handlers, list) {
list_del(&eoe->list);
ec_eoe_clear(eoe);
kfree(eoe);
}
}
#endif
/*****************************************************************************/
/** Clear all slave configurations.
*/
void ec_master_clear_slave_configs(ec_master_t *master)
{
ec_slave_config_t *sc, *next;
list_for_each_entry_safe(sc, next, &master->configs, list) {
list_del(&sc->list);
ec_slave_config_clear(sc);
kfree(sc);
}
}
/*****************************************************************************/
/** Clear all slaves.
*/
void ec_master_clear_slaves(ec_master_t *master)
{
ec_slave_t *slave;
master->dc_ref_clock = NULL;
// external requests are obsolete, so we wake pending waiters and remove
// them from the list
while (!list_empty(&master->sii_requests)) {
ec_sii_write_request_t *request =
list_entry(master->sii_requests.next,
ec_sii_write_request_t, list);
list_del_init(&request->list); // dequeue
EC_MASTER_WARN(master, "Discarding SII request, slave %u about"
" to be deleted.\n", request->slave->ring_position);
request->state = EC_INT_REQUEST_FAILURE;
kref_put(&request->refcount,ec_master_sii_write_request_release);
wake_up(&master->sii_queue);
}
while (!list_empty(&master->reg_requests)) {
ec_reg_request_t *request =
list_entry(master->reg_requests.next, ec_reg_request_t, list);
list_del_init(&request->list); // dequeue
EC_MASTER_WARN(master, "Discarding register request, slave %u"
" about to be deleted.\n", request->slave->ring_position);
request->state = EC_INT_REQUEST_FAILURE;
kref_put(&request->refcount,ec_master_reg_request_release);
wake_up(&master->reg_queue);
}
// we must lock the io_mutex here because the slave's fsm_datagram
// will be unqueued
ec_mutex_lock(&master->io_mutex);
for (slave = master->slaves;
slave < master->slaves + master->slave_count;
slave++) {
ec_slave_clear(slave);
}
ec_mutex_unlock(&master->io_mutex);
if (master->slaves) {
kfree(master->slaves);
master->slaves = NULL;
}
master->slave_count = 0;
}
/*****************************************************************************/
/** Clear all domains.
*/
void ec_master_clear_domains(ec_master_t *master)
{
ec_domain_t *domain, *next;
// we must lock the io_mutex here because the domains's datagram
// will be unqueued
ec_mutex_lock(&master->io_mutex);
list_for_each_entry_safe(domain, next, &master->domains, list) {
list_del(&domain->list);
ec_domain_clear(domain);
kfree(domain);
}
ec_mutex_unlock(&master->io_mutex);
}
/*****************************************************************************/
/** Clear the configuration applied by the application.
*/
void ec_master_clear_config(
ec_master_t *master /**< EtherCAT master. */
)
{
ec_mutex_lock(&master->master_mutex);
ec_master_clear_domains(master);
ec_master_clear_slave_configs(master);
ec_mutex_unlock(&master->master_mutex);
}
/*****************************************************************************/
/** Starts the master thread.
*
* \retval 0 Success.
* \retval <0 Error code.
*/
int ec_master_thread_start(
ec_master_t *master, /**< EtherCAT master */
int (*thread_func)(void *), /**< thread function to start */
const char *name /**< Thread name. */
)
{
EC_MASTER_INFO(master, "Starting %s thread.\n", name);
master->thread = kthread_run(thread_func, master, name);
if (IS_ERR(master->thread)) {
int err = (int) PTR_ERR(master->thread);
EC_MASTER_ERR(master, "Failed to start master thread (error %i)!\n",
err);
master->thread = NULL;
return err;
}
return 0;
}
/*****************************************************************************/
/** Stops the master thread.
*/
void ec_master_thread_stop(
ec_master_t *master /**< EtherCAT master */
)
{
unsigned long sleep_jiffies;
if (!master->thread) {
EC_MASTER_WARN(master, "%s(): Already finished!\n", __func__);
return;
}
EC_MASTER_DBG(master, 1, "Stopping master thread.\n");
kthread_stop(master->thread);
master->thread = NULL;
EC_MASTER_INFO(master, "Master thread exited.\n");
if (master->fsm_datagram.state != EC_DATAGRAM_SENT)
return;
// wait for FSM datagram
sleep_jiffies = max(HZ / 100, 1); // 10 ms, at least 1 jiffy
schedule_timeout(sleep_jiffies);
}
/*****************************************************************************/
/** Transition function from ORPHANED to IDLE phase.
*/
int ec_master_enter_idle_phase(
ec_master_t *master /**< EtherCAT master */
)
{
int ret;
EC_MASTER_DBG(master, 1, "ORPHANED -> IDLE.\n");
master->fsm_queue_lock_cb = NULL;
master->fsm_queue_unlock_cb = NULL;
master->fsm_queue_locking_data = NULL;
master->phase = EC_IDLE;
ret = ec_master_thread_start(master, ec_master_idle_thread,
"EtherCAT-IDLE");
if (ret)
master->phase = EC_ORPHANED;
return ret;
}
/*****************************************************************************/
/** Transition function from IDLE to ORPHANED phase.
*/
void ec_master_leave_idle_phase(ec_master_t *master /**< EtherCAT master */)
{
EC_MASTER_DBG(master, 1, "IDLE -> ORPHANED.\n");
master->phase = EC_ORPHANED;
ec_master_thread_stop(master);
ec_mutex_lock(&master->master_mutex);
ec_master_clear_slaves(master);
ec_mutex_unlock(&master->master_mutex);
}
/*****************************************************************************/
/** Transition function from IDLE to OPERATION phase.
*/
int ec_master_enter_operation_phase(
ec_master_t *master /**< EtherCAT master */
)
{
int ret = 0;
ec_slave_t *slave;
#ifdef EC_EOE
ec_eoe_t *eoe;
#endif
EC_MASTER_DBG(master, 1, "IDLE -> OPERATION.\n");
ec_mutex_lock(&master->config_mutex);
if (master->config_busy) {
ec_mutex_unlock(&master->config_mutex);
// wait for slave configuration to complete
ret = wait_event_interruptible(master->config_queue,
!master->config_busy);
if (ret) {
EC_MASTER_INFO(master, "Finishing slave configuration"
" interrupted by signal.\n");
goto out_allow;
}
EC_MASTER_DBG(master, 1, "Waiting for pending slave"
" configuration returned.\n");
} else {
ec_mutex_unlock(&master->config_mutex);
}
ec_mutex_lock(&master->scan_mutex);
master->allow_scan = 0; // 'lock' the slave list
if (!master->scan_busy) {
ec_mutex_unlock(&master->scan_mutex);
} else {
ec_mutex_unlock(&master->scan_mutex);
// wait for slave scan to complete
ret = wait_event_interruptible(master->scan_queue, !master->scan_busy);
if (ret) {
EC_MASTER_INFO(master, "Waiting for slave scan"
" interrupted by signal.\n");
goto out_allow;
}
EC_MASTER_DBG(master, 1, "Waiting for pending"
" slave scan returned.\n");
}
// set states for all slaves
for (slave = master->slaves;
slave < master->slaves + master->slave_count;
slave++) {
ec_slave_request_state(slave, EC_SLAVE_STATE_PREOP);
}
#ifdef EC_EOE
// ... but set EoE slaves to OP
list_for_each_entry(eoe, &master->eoe_handlers, list) {
if (ec_eoe_is_open(eoe))
ec_slave_request_state(eoe->slave, EC_SLAVE_STATE_OP);
}
#endif
master->phase = EC_OPERATION;
master->app_fsm_queue_lock_cb = NULL;
master->app_fsm_queue_unlock_cb = NULL;
master->app_fsm_queue_locking_data = NULL;
return ret;
out_allow:
master->allow_scan = 1;
return ret;
}
/*****************************************************************************/
/** Transition function from OPERATION to IDLE phase.
*/
void ec_master_leave_operation_phase(
ec_master_t *master /**< EtherCAT master */
)
{
if (master->active) {
ecrt_master_deactivate(master); // also clears config
} else {
ec_master_clear_config(master);
}
EC_MASTER_DBG(master, 1, "OPERATION -> IDLE.\n");
master->phase = EC_IDLE;
}
/*****************************************************************************/
/** Injects fsm datagrams that fit into the datagram queue.
*/
void ec_master_inject_fsm_datagrams(
ec_master_t *master /**< EtherCAT master */
)
{
ec_datagram_t *datagram, *next;
size_t queue_size = 0;
if (master->fsm_queue_lock_cb) {
master->fsm_queue_lock_cb(master->fsm_queue_locking_data);
}
if (ec_mutex_trylock(&master->fsm_queue_mutex) == 0) {
goto unlock_cb;
}
if (list_empty(&master->fsm_datagram_queue)) {
goto unlock;
}
list_for_each_entry(datagram, &master->datagram_queue, queue) {
queue_size += datagram->data_size;
}
list_for_each_entry_safe(datagram, next, &master->fsm_datagram_queue,
fsm_queue) {
queue_size += datagram->data_size;
if (queue_size <= master->max_queue_size) {
list_del_init(&datagram->fsm_queue);
#if DEBUG_INJECT
EC_MASTER_DBG(master, 2, "Injecting fsm datagram %p"
" size=%zu, queue_size=%zu\n", datagram,
datagram->data_size, queue_size);
#endif
#ifdef EC_HAVE_CYCLES
datagram->cycles_sent = 0;
#endif
datagram->jiffies_sent = 0; // FIXME why?
ec_master_queue_datagram(master, datagram);
} else {
if (datagram->data_size > master->max_queue_size) {
list_del_init(&datagram->fsm_queue);
datagram->state = EC_DATAGRAM_ERROR;
EC_MASTER_ERR(master, "Fsm datagram %p is too large,"
" size=%zu, max_queue_size=%zu\n",
datagram, datagram->data_size,
master->max_queue_size);
} else {
#ifdef EC_HAVE_CYCLES
cycles_t cycles_now = get_cycles();
if (cycles_now - datagram->cycles_sent
> fsm_injection_timeout_cycles)
#else
if (jiffies - datagram->jiffies_sent
> fsm_injection_timeout_jiffies)
#endif
{
unsigned int time_us;
list_del_init(&datagram->fsm_queue);
datagram->state = EC_DATAGRAM_ERROR;
#ifdef EC_HAVE_CYCLES
time_us = (unsigned int)
((cycles_now - datagram->cycles_sent) * 1000LL)
/ cpu_khz;
#else
time_us = (unsigned int)
((jiffies - datagram->jiffies_sent) * 1000000 / HZ);
#endif
EC_MASTER_ERR(master, "Timeout %u us: Injecting"
" fsm datagram %p size=%zu,"
" max_queue_size=%zu\n", time_us, datagram,
datagram->data_size, master->max_queue_size);
}
#if DEBUG_INJECT
else {
EC_MASTER_DBG(master, 2, "Deferred injecting"
" of fsm datagram %p"
" size=%zu, queue_size=%zu\n",
datagram, datagram->data_size, queue_size);
}
#endif
}
}
}
unlock:
ec_mutex_unlock(&master->fsm_queue_mutex);
unlock_cb:
if (master->fsm_queue_unlock_cb) {
master->fsm_queue_unlock_cb(master->fsm_queue_locking_data);
}
}
/*****************************************************************************/
/** Sets the expected interval between calls to ecrt_master_send
* and calculates the maximum amount of data to queue.
*/
void ec_master_set_send_interval(
ec_master_t *master, /**< EtherCAT master */
unsigned int send_interval /**< Send interval */
)
{
master->send_interval = send_interval;
master->max_queue_size =
(send_interval * 1000) / EC_BYTE_TRANSMISSION_TIME_NS;
master->max_queue_size -= master->max_queue_size / 10;
}
/*****************************************************************************/
/** Places an request (SDO/FoE/SoE/EoE) fsm datagram in the sdo datagram
* queue.
*/
void ec_master_queue_request_fsm_datagram(
ec_master_t *master, /**< EtherCAT master */
ec_datagram_t *datagram /**< datagram */
)
{
ec_master_queue_fsm_datagram(master, datagram);
master->fsm.idle = 0; // pump the bus as fast as possible
}
/*****************************************************************************/
/** Places an fsm datagram in the sdo datagram queue.
*/
void ec_master_queue_fsm_datagram(
ec_master_t *master, /**< EtherCAT master */
ec_datagram_t *datagram /**< datagram */
)
{
ec_datagram_t *queued_datagram;
if (master->fsm_queue_lock_cb) {
master->fsm_queue_lock_cb(master->fsm_queue_locking_data);
}
ec_mutex_lock(&master->fsm_queue_mutex);
// check, if the datagram is already queued
list_for_each_entry(queued_datagram, &master->fsm_datagram_queue,
fsm_queue) {
if (queued_datagram == datagram) {
datagram->state = EC_DATAGRAM_QUEUED;
goto unlock;
}
}
#if DEBUG_INJECT
EC_MASTER_DBG(master, 2, "Requesting fsm datagram %p size=%zu\n",
datagram, datagram->data_size);
#endif
list_add_tail(&datagram->fsm_queue, &master->fsm_datagram_queue);
datagram->state = EC_DATAGRAM_QUEUED;
#ifdef EC_HAVE_CYCLES
datagram->cycles_sent = get_cycles();
#endif
datagram->jiffies_sent = jiffies; // FIXME why?
unlock:
ec_mutex_unlock(&master->fsm_queue_mutex);
if (master->fsm_queue_unlock_cb) {
master->fsm_queue_unlock_cb(master->fsm_queue_locking_data);
}
}
/*****************************************************************************/
/** Places a datagram in the datagram queue.
*/
void ec_master_queue_datagram(
ec_master_t *master, /**< EtherCAT master */
ec_datagram_t *datagram /**< datagram */
)
{
ec_datagram_t *queued_datagram;
/* It is possible, that a datagram in the queue is re-initialized with the
* ec_datagram_<type>() methods and then shall be queued with this method.
* In that case, the state is already reset to EC_DATAGRAM_INIT. Check if
* the datagram is queued to avoid duplicate queuing (which results in an
* infinite loop!). Set the state to EC_DATAGRAM_QUEUED again, probably
* causing an unmatched datagram. */
list_for_each_entry(queued_datagram, &master->datagram_queue, queue) {
if (queued_datagram == datagram) {
datagram->skip_count++;
if (master->debug_level) {
EC_MASTER_DBG(master, 1, "Skipping datagram %p (", datagram);
ec_datagram_output_info(datagram);
printk(")\n");
}
goto queued;
}
}
list_add_tail(&datagram->queue, &master->datagram_queue);
queued:
datagram->state = EC_DATAGRAM_QUEUED;
}
/*****************************************************************************/
/** Sends the datagrams in the queue.
*
*/
void ec_master_send_datagrams(ec_master_t *master /**< EtherCAT master */)
{
ec_datagram_t *datagram, *next;
size_t datagram_size;
uint8_t *frame_data, *cur_data, *frame_datagram_data;
void *follows_word;
#ifdef EC_HAVE_CYCLES
cycles_t cycles_start, cycles_sent, cycles_end;
#endif
unsigned long jiffies_sent;
unsigned int frame_count, more_datagrams_waiting;
struct list_head sent_datagrams;
ec_fmmu_config_t* domain_fmmu;
#ifdef EC_HAVE_CYCLES
cycles_start = get_cycles();
#endif
frame_count = 0;
INIT_LIST_HEAD(&sent_datagrams);
EC_MASTER_DBG(master, 2, "ec_master_send_datagrams\n");
do {
// fetch pointer to transmit socket buffer
frame_data = ec_device_tx_data(&master->main_device);
cur_data = frame_data + EC_FRAME_HEADER_SIZE;
follows_word = NULL;
more_datagrams_waiting = 0;
// fill current frame with datagrams
list_for_each_entry(datagram, &master->datagram_queue, queue) {
if (datagram->state != EC_DATAGRAM_QUEUED) continue;
// does the current datagram fit in the frame?
datagram_size = EC_DATAGRAM_HEADER_SIZE + datagram->data_size
+ EC_DATAGRAM_FOOTER_SIZE;
if (cur_data - frame_data + datagram_size > ETH_DATA_LEN) {
more_datagrams_waiting = 1;
break;
}
list_add_tail(&datagram->sent, &sent_datagrams);
datagram->index = master->datagram_index++;
EC_MASTER_DBG(master, 2, "Adding datagram %p i=0x%02X size=%zu\n",
datagram, datagram->index, datagram_size);
// set "datagram following" flag in previous frame
if (follows_word) {
EC_WRITE_U16(follows_word,
EC_READ_U16(follows_word) | 0x8000);
}
// EtherCAT datagram header
EC_WRITE_U8 (cur_data, datagram->type);
EC_WRITE_U8 (cur_data + 1, datagram->index);
memcpy(cur_data + 2, datagram->address, EC_ADDR_LEN);
EC_WRITE_U16(cur_data + 6, datagram->data_size & 0x7FF);
EC_WRITE_U16(cur_data + 8, 0x0000);
follows_word = cur_data + 6;
cur_data += EC_DATAGRAM_HEADER_SIZE;
// EtherCAT datagram data
frame_datagram_data = cur_data;
// distinguish between domain and non-domain datagrams...
// this is not nice... FIXME
if (datagram->domain) {
unsigned int datagram_address =
EC_READ_U32(datagram->address);
int i = 0;
uint8_t *domain_data = datagram->data;
// FIXME all FMMU configs are taken into acount,
// maybe the belong to another datagram?
// test with large process data!
list_for_each_entry(domain_fmmu,
&datagram->domain->fmmu_configs, list) {
if (domain_fmmu->dir == EC_DIR_OUTPUT) {
unsigned int frame_offset =
domain_fmmu->logical_start_address
- datagram_address;
memcpy(frame_datagram_data + frame_offset,
domain_data, domain_fmmu->data_size);
if (unlikely(master->debug_level > 1)) {
EC_MASTER_DBG(master, 0, "Sending datagram %p"
" i=0x%02X FMMU %u fp=%u"
" dp=%zu size=%u\n",
datagram, datagram->index, i, frame_offset,
domain_data - datagram->data,
domain_fmmu->data_size);
ec_print_data(domain_data,
domain_fmmu->data_size);
}
}
domain_data += domain_fmmu->data_size;
i++;
}
} else {
memcpy(frame_datagram_data, datagram->data,
datagram->data_size);
}
cur_data += datagram->data_size;
// EtherCAT datagram footer
EC_WRITE_U16(cur_data, 0x0000); // reset working counter
cur_data += EC_DATAGRAM_FOOTER_SIZE;
}
if (list_empty(&sent_datagrams)) {
EC_MASTER_DBG(master, 2, "nothing to send.\n");
break;
}
// EtherCAT frame header
EC_WRITE_U16(frame_data, ((cur_data - frame_data
- EC_FRAME_HEADER_SIZE) & 0x7FF) | 0x1000);
// pad frame
while (cur_data - frame_data < ETH_ZLEN - ETH_HLEN)
EC_WRITE_U8(cur_data++, 0x00);
EC_MASTER_DBG(master, 2, "frame size: %zu\n", cur_data - frame_data);
// send frame
ec_device_send(&master->main_device, cur_data - frame_data);
#ifdef EC_HAVE_CYCLES
cycles_sent = get_cycles();
#endif
jiffies_sent = jiffies;
// set datagram states and sending timestamps
list_for_each_entry_safe(datagram, next, &sent_datagrams, sent) {
datagram->state = EC_DATAGRAM_SENT;
#ifdef EC_HAVE_CYCLES
datagram->cycles_sent = cycles_sent;
#endif
datagram->jiffies_sent = jiffies_sent;
list_del_init(&datagram->sent); // empty list of sent datagrams
}
frame_count++;
}
while (more_datagrams_waiting);
#ifdef EC_HAVE_CYCLES
if (unlikely(master->debug_level > 1)) {
cycles_end = get_cycles();
EC_MASTER_DBG(master, 0, "ec_master_send_datagrams"
" sent %u frames in %uus.\n", frame_count,
(unsigned int) (cycles_end - cycles_start) * 1000 / cpu_khz);
}
#endif
}
/*****************************************************************************/
/** Processes a received frame.
*
* This function is called by the network driver for every received frame.
*
* \return 0 in case of success, else < 0
*/
void ec_master_receive_datagrams(
ec_master_t *master, /**< EtherCAT master */
const uint8_t *frame_data, /**< Frame data */
size_t size /**< Size of the received data */
)
{
size_t frame_size, data_size;
uint8_t datagram_type, datagram_index;
unsigned int datagram_follows, matched;
const uint8_t *cur_data, *frame_datagram_data;
ec_datagram_t *datagram;
ec_fmmu_config_t* domain_fmmu;
if (unlikely(size < EC_FRAME_HEADER_SIZE)) {
if (master->debug_level) {
EC_MASTER_DBG(master, 0, "Corrupted frame received"
" (size %zu < %u byte):\n",
size, EC_FRAME_HEADER_SIZE);
ec_print_data(frame_data, size);
}
master->stats.corrupted++;
ec_master_output_stats(master);
return;
}
cur_data = frame_data;
// check length of entire frame
frame_size = EC_READ_U16(cur_data) & 0x07FF;
cur_data += EC_FRAME_HEADER_SIZE;
if (unlikely(frame_size > size)) {
if (master->debug_level) {
EC_MASTER_DBG(master, 0, "Corrupted frame received"
" (invalid frame size %zu for "
"received size %zu):\n", frame_size, size);
ec_print_data(frame_data, size);
}
master->stats.corrupted++;
ec_master_output_stats(master);
return;
}
datagram_follows = 1;
while (datagram_follows) {
// process datagram header
datagram_type = EC_READ_U8(cur_data);
datagram_index = EC_READ_U8(cur_data + 1);
data_size = EC_READ_U16(cur_data + 6) & 0x07FF;
datagram_follows = EC_READ_U16(cur_data + 6) & 0x8000;
cur_data += EC_DATAGRAM_HEADER_SIZE;
if (unlikely(cur_data - frame_data
+ data_size + EC_DATAGRAM_FOOTER_SIZE > size)) {
if (master->debug_level) {
EC_MASTER_DBG(master, 0, "Corrupted frame received"
" (invalid data size %zu):\n", data_size);
ec_print_data(frame_data, size);
}
master->stats.corrupted++;
ec_master_output_stats(master);
return;
}
// search for matching datagram in the queue
matched = 0;
list_for_each_entry(datagram, &master->datagram_queue, queue) {
if (datagram->index == datagram_index
&& datagram->state == EC_DATAGRAM_SENT
&& datagram->type == datagram_type
&& datagram->data_size == data_size) {
matched = 1;
break;
}
}
// no matching datagram was found
if (!matched) {
master->stats.unmatched++;
ec_master_output_stats(master);
if (unlikely(master->debug_level > 0)) {
EC_MASTER_DBG(master, 0, "UNMATCHED datagram:\n");
ec_print_data(cur_data - EC_DATAGRAM_HEADER_SIZE,
EC_DATAGRAM_HEADER_SIZE + data_size
+ EC_DATAGRAM_FOOTER_SIZE);
#ifdef EC_DEBUG_RING
ec_device_debug_ring_print(&master->main_device);
#endif
}
cur_data += data_size + EC_DATAGRAM_FOOTER_SIZE;
continue;
}
frame_datagram_data = cur_data;
// distinguish between domain and non-domain datagrams
// this is not nice FIXME
if (datagram->domain) {
size_t datagram_address = EC_READ_U32(datagram->address);
int i = 0;
uint8_t *domain_data = datagram->data;
// FIXME see ecrt_master_send_datagrams()
// it is not correct to walk though *all* FMMU configs,
// because they may not all belong to the same frame!
list_for_each_entry(domain_fmmu, &datagram->domain->fmmu_configs,
list) {
if (domain_fmmu->dir == EC_DIR_INPUT) {
unsigned int frame_offset =
domain_fmmu->logical_start_address - datagram_address;
memcpy(domain_data, frame_datagram_data + frame_offset,
domain_fmmu->data_size);
if (unlikely(master->debug_level > 1)) {
EC_MASTER_DBG(master, 0, "Receiving datagram %p"
" i=0x%02X fmmu %u fp=%u"
" dp=%zu size=%u\n",
datagram, datagram->index, i,
frame_offset, domain_data - datagram->data,
domain_fmmu->data_size);
ec_print_data(domain_data, domain_fmmu->data_size);
}
}
domain_data += domain_fmmu->data_size;
i++;
}
} else if (datagram->type != EC_DATAGRAM_APWR &&
datagram->type != EC_DATAGRAM_FPWR &&
datagram->type != EC_DATAGRAM_BWR &&
datagram->type != EC_DATAGRAM_LWR) {
// copy received data into the datagram memory,
// if something has been read
memcpy(datagram->data, frame_datagram_data, data_size);
}
cur_data += data_size;
// set the datagram's working counter
datagram->working_counter = EC_READ_U16(cur_data);
cur_data += EC_DATAGRAM_FOOTER_SIZE;
// dequeue the received datagram
datagram->state = EC_DATAGRAM_RECEIVED;
#ifdef EC_HAVE_CYCLES
datagram->cycles_received = master->main_device.cycles_poll;
#endif
datagram->jiffies_received = master->main_device.jiffies_poll;
EC_MASTER_DBG(master, 2, "removing datagram %p i=0x%02X\n",datagram,
datagram->index);
list_del_init(&datagram->queue);
}
}
/*****************************************************************************/
/** Output master statistics.
*
* This function outputs statistical data on demand, but not more often than
* necessary. The output happens at most once a second.
*/
void ec_master_output_stats(ec_master_t *master /**< EtherCAT master */)
{
if (unlikely(jiffies - master->stats.output_jiffies >= HZ)) {
master->stats.output_jiffies = jiffies;
if (master->stats.timeouts) {
EC_MASTER_WARN(master, "%u datagram%s TIMED OUT!\n",
master->stats.timeouts,
master->stats.timeouts == 1 ? "" : "s");
master->stats.timeouts = 0;
}
if (master->stats.corrupted) {
EC_MASTER_WARN(master, "%u frame%s CORRUPTED!\n",
master->stats.corrupted,
master->stats.corrupted == 1 ? "" : "s");
master->stats.corrupted = 0;
}
if (master->stats.unmatched) {
EC_MASTER_WARN(master, "%u datagram%s UNMATCHED!\n",
master->stats.unmatched,
master->stats.unmatched == 1 ? "" : "s");
master->stats.unmatched = 0;
}
}
}
/*****************************************************************************/
#ifdef EC_USE_HRTIMER
/*
* Sleep related functions:
*/
static enum hrtimer_restart ec_master_nanosleep_wakeup(struct hrtimer *timer)
{
struct hrtimer_sleeper *t =
container_of(timer, struct hrtimer_sleeper, timer);
struct task_struct *task = t->task;
t->task = NULL;
if (task)
wake_up_process(task);
return HRTIMER_NORESTART;
}
/*****************************************************************************/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
/* compatibility with new hrtimer interface */
static inline ktime_t hrtimer_get_expires(const struct hrtimer *timer)
{
return timer->expires;
}
/*****************************************************************************/
static inline void hrtimer_set_expires(struct hrtimer *timer, ktime_t time)
{
timer->expires = time;
}
#endif
/*****************************************************************************/
void ec_master_nanosleep(const unsigned long nsecs)
{
struct hrtimer_sleeper t;
enum hrtimer_mode mode = HRTIMER_MODE_REL;
hrtimer_init(&t.timer, CLOCK_MONOTONIC, mode);
t.timer.function = ec_master_nanosleep_wakeup;
t.task = current;
#ifdef CONFIG_HIGH_RES_TIMERS
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 24)
t.timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 26)
t.timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 28)
t.timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
#endif
#endif
hrtimer_set_expires(&t.timer, ktime_set(0, nsecs));
do {
set_current_state(TASK_INTERRUPTIBLE);
hrtimer_start(&t.timer, hrtimer_get_expires(&t.timer), mode);
if (likely(t.task))
schedule();
hrtimer_cancel(&t.timer);
mode = HRTIMER_MODE_ABS;
} while (t.task && !signal_pending(current));
}
#endif // EC_USE_HRTIMER
/*****************************************************************************/
/** Master kernel thread function for IDLE phase.
*/
static int ec_master_idle_thread(void *priv_data)
{
ec_master_t *master = (ec_master_t *) priv_data;
ec_slave_t *slave = NULL;
size_t sent_bytes;
// send interval in IDLE phase
ec_master_set_send_interval(master, 1000000 / HZ);
EC_MASTER_DBG(master, 1, "Idle thread running with send interval = %u us,"
" max data size=%zu\n", master->send_interval,
master->max_queue_size);
while (!kthread_should_stop()) {
ec_datagram_output_stats(&master->fsm_datagram);
// receive
ec_mutex_lock(&master->io_mutex);
ecrt_master_receive(master);
ec_mutex_unlock(&master->io_mutex);
// execute master & slave state machines
if (ec_mutex_lock_interruptible(&master->master_mutex)) {
break;
}
if (ec_fsm_master_exec(&master->fsm)) {
ec_master_mbox_queue_datagrams(master, &master->fsm_mbox);
}
for (slave = master->slaves;
slave < master->slaves + master->slave_count;
slave++) {
ec_fsm_slave_exec(&slave->fsm); // may queue datagram in fsm queue
}
#if defined(EC_EOE)
if (!ec_master_eoe_processing(master)) {
master->fsm.idle = 0; // pump the bus as fast as possible
}
#endif
ec_mutex_unlock(&master->master_mutex);
// queue and send
ec_mutex_lock(&master->io_mutex);
ecrt_master_send(master);
sent_bytes = master->main_device.tx_skb[
master->main_device.tx_ring_index]->len;
ec_mutex_unlock(&master->io_mutex);
if (ec_fsm_master_idle(&master->fsm)) {
#ifdef EC_USE_HRTIMER
ec_master_nanosleep(master->send_interval * 1000);
#else
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
#endif
} else {
#ifdef EC_USE_HRTIMER
ec_master_nanosleep(sent_bytes * EC_BYTE_TRANSMISSION_TIME_NS);
#else
schedule();
#endif
}
}
EC_MASTER_DBG(master, 1, "Master IDLE thread exiting...\n");
return 0;
}
/*****************************************************************************/
/** Master kernel thread function for OPERATION phase.
*/
static int ec_master_operation_thread(void *priv_data)
{
ec_master_t *master = (ec_master_t *) priv_data;
ec_slave_t *slave = NULL;
EC_MASTER_DBG(master, 1, "Operation thread running"
" with fsm interval = %u us, max data size=%zu\n",
master->send_interval, master->max_queue_size);
while (!kthread_should_stop()) {
ec_datagram_output_stats(&master->fsm_datagram);
// output statistics
ec_master_output_stats(master);
// execute master & slave state machines
if (ec_mutex_lock_interruptible(&master->master_mutex)) {
break;
}
if (ec_fsm_master_exec(&master->fsm)) {
ec_master_mbox_queue_datagrams(master, &master->fsm_mbox);
}
for (slave = master->slaves;
slave < master->slaves + master->slave_count;
slave++) {
ec_fsm_slave_exec(&slave->fsm); // may queue datagram in fsm queue
}
#if defined(EC_EOE)
ec_master_eoe_processing(master);
#endif
ec_mutex_unlock(&master->master_mutex);
#ifdef EC_USE_HRTIMER
// the op thread should not work faster than the sending RT thread
ec_master_nanosleep(master->send_interval * 1000);
#else
if (ec_fsm_master_idle(&master->fsm)) {
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
}
else {
schedule();
}
#endif
}
EC_MASTER_DBG(master, 1, "Master OP thread exiting...\n");
return 0;
}
/*****************************************************************************/
#ifdef EC_EOE
/*****************************************************************************/
/** Does the Ethernet over EtherCAT processing.
*/
static int ec_master_eoe_processing(ec_master_t *master)
{
ec_eoe_t *eoe;
unsigned int none_open, sth_to_send, all_idle;
none_open = 1;
all_idle = 1;
list_for_each_entry(eoe, &master->eoe_handlers, list) {
if (ec_eoe_is_open(eoe)) {
none_open = 0;
break;
}
}
if (none_open)
return all_idle;
// actual EoE processing
sth_to_send = 0;
list_for_each_entry(eoe, &master->eoe_handlers, list) {
ec_eoe_run(eoe);
if (eoe->queue_datagram) {
sth_to_send = 1;
}
if (!ec_eoe_is_idle(eoe)) {
all_idle = 0;
}
}
if (sth_to_send) {
list_for_each_entry(eoe, &master->eoe_handlers, list) {
ec_eoe_queue(eoe);
}
}
return all_idle;
}
#endif // EC_EOE
/*****************************************************************************/
/** Detaches the slave configurations from the slaves.
*/
void ec_master_detach_slave_configs(
ec_master_t *master /**< EtherCAT master. */
)
{
ec_slave_config_t *sc;
list_for_each_entry(sc, &master->configs, list) {
ec_slave_config_detach(sc);
}
}
/*****************************************************************************/
/** Attaches the slave configurations to the slaves.
*/
void ec_master_attach_slave_configs(
ec_master_t *master /**< EtherCAT master. */
)
{
ec_slave_config_t *sc;
list_for_each_entry(sc, &master->configs, list) {
ec_slave_config_attach(sc);
}
}
/*****************************************************************************/
/** Common implementation for ec_master_find_slave()
* and ec_master_find_slave_const().
*/
#define EC_FIND_SLAVE \
do { \
if (alias) { \
for (; slave < master->slaves + master->slave_count; \
slave++) { \
if (slave->effective_alias == alias) \
break; \
} \
if (slave == master->slaves + master->slave_count) \
return NULL; \
} \
\
slave += position; \
if (slave < master->slaves + master->slave_count) { \
return slave; \
} else { \
return NULL; \
} \
} while (0)
/** Finds a slave in the bus, given the alias and position.
*/
ec_slave_t *ec_master_find_slave(
ec_master_t *master, /**< EtherCAT master. */
uint16_t alias, /**< Slave alias. */
uint16_t position /**< Slave position. */
)
{
ec_slave_t *slave = master->slaves;
EC_FIND_SLAVE;
}
/** Finds a slave in the bus, given the alias and position.
*
* Const version.
*/
const ec_slave_t *ec_master_find_slave_const(
const ec_master_t *master, /**< EtherCAT master. */
uint16_t alias, /**< Slave alias. */
uint16_t position /**< Slave position. */
)
{
const ec_slave_t *slave = master->slaves;
EC_FIND_SLAVE;
}
/*****************************************************************************/
/** Get the number of slave configurations provided by the application.
*
* \return Number of configurations.
*/
unsigned int ec_master_config_count(
const ec_master_t *master /**< EtherCAT master. */
)
{
const ec_slave_config_t *sc;
unsigned int count = 0;
list_for_each_entry(sc, &master->configs, list) {
count++;
}
return count;
}
/*****************************************************************************/
/** Common implementation for ec_master_get_config()
* and ec_master_get_config_const().
*/
#define EC_FIND_CONFIG \
do { \
list_for_each_entry(sc, &master->configs, list) { \
if (pos--) \
continue; \
return sc; \
} \
return NULL; \
} while (0)
/** Get a slave configuration via its position in the list.
*
* \return Slave configuration or \a NULL.
*/
ec_slave_config_t *ec_master_get_config(
const ec_master_t *master, /**< EtherCAT master. */
unsigned int pos /**< List position. */
)
{
ec_slave_config_t *sc;
EC_FIND_CONFIG;
}
/** Get a slave configuration via its position in the list.
*
* Const version.
*
* \return Slave configuration or \a NULL.
*/
const ec_slave_config_t *ec_master_get_config_const(
const ec_master_t *master, /**< EtherCAT master. */
unsigned int pos /**< List position. */
)
{
const ec_slave_config_t *sc;
EC_FIND_CONFIG;
}
/*****************************************************************************/
/** Get the number of domains.
*
* \return Number of domains.
*/
unsigned int ec_master_domain_count(
const ec_master_t *master /**< EtherCAT master. */
)
{
const ec_domain_t *domain;
unsigned int count = 0;
list_for_each_entry(domain, &master->domains, list) {
count++;
}
return count;
}
/*****************************************************************************/
/** Common implementation for ec_master_find_domain() and
* ec_master_find_domain_const().
*/
#define EC_FIND_DOMAIN \
do { \
list_for_each_entry(domain, &master->domains, list) { \
if (index--) \
continue; \
return domain; \
} \
\
return NULL; \
} while (0)
/** Get a domain via its position in the list.
*
* \return Domain pointer, or \a NULL if not found.
*/
ec_domain_t *ec_master_find_domain(
ec_master_t *master, /**< EtherCAT master. */
unsigned int index /**< Domain index. */
)
{
ec_domain_t *domain;
EC_FIND_DOMAIN;
}
/** Wrapper Function for external usage
*
* \return Domain pointer, or \a NULL if not found.
*/
ec_domain_t *ecrt_master_find_domain(
ec_master_t *master, /**< EtherCAT master. */
unsigned int index /**< Domain index. */
)
{
return ec_master_find_domain(
master,
index);
}
/** Get a domain via its position in the list.
*
* Const version.
*
* \return Domain pointer, or \a NULL if not found.
*/
const ec_domain_t *ec_master_find_domain_const(
const ec_master_t *master, /**< EtherCAT master. */
unsigned int index /**< Domain index. */
)
{
const ec_domain_t *domain;
EC_FIND_DOMAIN;
}
/*****************************************************************************/
#ifdef EC_EOE
/** Get the number of EoE handlers.
*
* \return Number of EoE handlers.
*/
uint16_t ec_master_eoe_handler_count(
const ec_master_t *master /**< EtherCAT master. */
)
{
const ec_eoe_t *eoe;
unsigned int count = 0;
list_for_each_entry(eoe, &master->eoe_handlers, list) {
count++;
}
return count;
}
/*****************************************************************************/
/** Get an EoE handler via its position in the list.
*
* Const version.
*
* \return EoE handler pointer, or \a NULL if not found.
*/
const ec_eoe_t *ec_master_get_eoe_handler_const(
const ec_master_t *master, /**< EtherCAT master. */
uint16_t index /**< EoE handler index. */
)
{
const ec_eoe_t *eoe;
list_for_each_entry(eoe, &master->eoe_handlers, list) {
if (index--)
continue;
return eoe;
}
return NULL;
}
#endif
/*****************************************************************************/
/** Set the debug level.
*
* \retval 0 Success.
* \retval -EINVAL Invalid debug level.
*/
int ec_master_debug_level(
ec_master_t *master, /**< EtherCAT master. */
unsigned int level /**< Debug level. May be 0, 1 or 2. */
)
{
if (level > 2) {
EC_MASTER_ERR(master, "Invalid debug level %u!\n", level);
return -EINVAL;
}
if (level != master->debug_level) {
master->debug_level = level;
EC_MASTER_INFO(master, "Master debug level set to %u.\n",
master->debug_level);
}
return 0;
}
/*****************************************************************************/
/** Finds the DC reference clock.
*/
void ec_master_find_dc_ref_clock(
ec_master_t *master /**< EtherCAT master. */
)
{
ec_slave_t *slave, *ref = NULL;
for (slave = master->slaves;
slave < master->slaves + master->slave_count;
slave++) {
if (slave->base_dc_supported && slave->has_dc_system_time) {
ref = slave;
break;
}
}
master->dc_ref_clock = ref;
// This call always succeeds, because the datagram has been pre-allocated.
ec_datagram_frmw(&master->sync_datagram,
ref ? ref->station_address : 0xffff, 0x0910, 4);
}
/*****************************************************************************/
/** Calculates the bus topology; recursion function.
*/
int ec_master_calc_topology_rec(
ec_master_t *master, /**< EtherCAT master. */
ec_slave_t *port0_slave, /**< Slave at port 0. */
unsigned int *slave_position /**< Slave position. */
)
{
ec_slave_t *slave = master->slaves + *slave_position;
unsigned int i;
int ret;
slave->ports[0].next_slave = port0_slave;
i = 3;
while (i != 0) {
if (!slave->ports[i].link.loop_closed) {
*slave_position = *slave_position + 1;
if (*slave_position < master->slave_count) {
slave->ports[i].next_slave = master->slaves + *slave_position;
ret = ec_master_calc_topology_rec(master,
slave, slave_position);
if (ret)
return ret;
} else {
return -1;
}
}
switch (i)
{
case 0: i = 3; break;
case 1: i = 2; break;
case 3: i = 1; break;
case 2:
default:i = 0; break;
}
}
return 0;
}
/*****************************************************************************/
/** Calculates the bus topology.
*/
void ec_master_calc_topology(
ec_master_t *master /**< EtherCAT master. */
)
{
unsigned int slave_position = 0;
if (master->slave_count == 0)
return;
if (ec_master_calc_topology_rec(master, NULL, &slave_position))
EC_MASTER_ERR(master, "Failed to calculate bus topology.\n");
}
/*****************************************************************************/
/** Calculates the bus transmission delays.
*/
void ec_master_calc_transmission_delays(
ec_master_t *master /**< EtherCAT master. */
)
{
ec_slave_t *slave;
for (slave = master->slaves;
slave < master->slaves + master->slave_count;
slave++) {
ec_slave_calc_port_delays(slave);
}
if (master->dc_ref_clock) {
uint32_t delay = 0;
ec_slave_calc_transmission_delays_rec(master->dc_ref_clock, &delay);
}
}
/*****************************************************************************/
/** Distributed-clocks calculations.
*/
void ec_master_calc_dc(
ec_master_t *master /**< EtherCAT master. */
)
{
// find DC reference clock
ec_master_find_dc_ref_clock(master);
// calculate bus topology
ec_master_calc_topology(master);
ec_master_calc_transmission_delays(master);
}
/*****************************************************************************/
/** Request OP state for configured slaves.
*/
void ec_master_request_op(
ec_master_t *master /**< EtherCAT master. */
)
{
unsigned int i;
ec_slave_t *slave;
if (!master->active)
return;
EC_MASTER_DBG(master, 1, "Requesting OP...\n");
// request OP for all configured slaves
for (i = 0; i < master->slave_count; i++) {
slave = master->slaves + i;
if (slave->config) {
ec_slave_request_state(slave, EC_SLAVE_STATE_OP);
}
}
// always set DC reference clock to OP
if (master->dc_ref_clock) {
ec_slave_request_state(master->dc_ref_clock,
EC_SLAVE_STATE_OP);
}
}
/******************************************************************************
* Application interface
*****************************************************************************/
/** Same as ecrt_master_create_domain(), but with ERR_PTR() return value.
*/
ec_domain_t *ecrt_master_create_domain_err(
ec_master_t *master /**< master */
)
{
ec_domain_t *domain, *last_domain;
unsigned int index;
EC_MASTER_DBG(master, 1, "ecrt_master_create_domain(master = 0x%p)\n",
master);
if (!(domain =
(ec_domain_t *) kmalloc(sizeof(ec_domain_t), GFP_KERNEL))) {
EC_MASTER_ERR(master, "Error allocating domain memory!\n");
return ERR_PTR(-ENOMEM);
}
ec_mutex_lock(&master->master_mutex);
if (list_empty(&master->domains)) {
index = 0;
} else {
last_domain = list_entry(master->domains.prev, ec_domain_t, list);
index = last_domain->index + 1;
}
ec_domain_init(domain, master, index);
list_add_tail(&domain->list, &master->domains);
ec_mutex_unlock(&master->master_mutex);
EC_MASTER_DBG(master, 1, "Created domain %u.\n", domain->index);
return domain;
}
/*****************************************************************************/
ec_domain_t *ecrt_master_create_domain(
ec_master_t *master /**< master */
)
{
ec_domain_t *d = ecrt_master_create_domain_err(master);
return IS_ERR(d) ? NULL : d;
}
/*****************************************************************************/
int ecrt_master_activate(ec_master_t *master)
{
uint32_t domain_offset;
ec_domain_t *domain;
int ret;
EC_MASTER_DBG(master, 1, "ecrt_master_activate(master = 0x%p)\n", master);
if (master->active) {
EC_MASTER_WARN(master, "%s: Master already active!\n", __func__);
return 0;
}
ec_mutex_lock(&master->master_mutex);
// finish all domains
domain_offset = 0;
list_for_each_entry(domain, &master->domains, list) {
ret = ec_domain_finish(domain, domain_offset);
if (ret < 0) {
ec_mutex_unlock(&master->master_mutex);
EC_MASTER_ERR(master, "Failed to finish domain 0x%p!\n", domain);
return ret;
}
domain_offset += domain->data_size;
}
ec_mutex_unlock(&master->master_mutex);
// restart EoE process and master thread with new locking
ec_master_thread_stop(master);
EC_MASTER_DBG(master, 1, "FSM datagram is %p.\n", &master->fsm_datagram);
master->injection_seq_fsm = 0;
master->injection_seq_rt = 0;
master->fsm_queue_lock_cb = master->app_fsm_queue_lock_cb;
master->fsm_queue_unlock_cb = master->app_fsm_queue_unlock_cb;
master->fsm_queue_locking_data = master->app_fsm_queue_locking_data;
ret = ec_master_thread_start(master, ec_master_operation_thread,
"EtherCAT-OP");
if (ret < 0) {
EC_MASTER_ERR(master, "Failed to start master thread!\n");
return ret;
}
master->allow_scan = 1; // allow re-scanning on topology change
master->active = 1;
// notify state machine, that the configuration shall now be applied
master->config_changed = 1;
return 0;
}
/*****************************************************************************/
void ecrt_master_deactivate(ec_master_t *master)
{
ec_slave_t *slave;
#ifdef EC_EOE
ec_eoe_t *eoe;
int is_eoe_slave;
#endif
EC_MASTER_DBG(master, 1, "%s(master = 0x%p)\n", __func__, master);
if (!master->active) {
EC_MASTER_WARN(master, "%s: Master not active.\n", __func__);
return;
}
ec_master_thread_stop(master);
master->fsm_queue_lock_cb = NULL;
master->fsm_queue_unlock_cb= NULL;
master->fsm_queue_locking_data = NULL;
ec_master_clear_config(master);
for (slave = master->slaves;
slave < master->slaves + master->slave_count;
slave++) {
// set state to PREOP for all but eoe slaves
#ifdef EC_EOE
is_eoe_slave = 0;
// ... but leave EoE slaves in OP
list_for_each_entry(eoe, &master->eoe_handlers, list) {
if (slave == eoe->slave && ec_eoe_is_open(eoe))
is_eoe_slave = 1;
}
if (!is_eoe_slave) {
ec_slave_request_state(slave, EC_SLAVE_STATE_PREOP);
// mark for reconfiguration, because the master could have no
// possibility for a reconfiguration between two sequential
// operation phases.
slave->force_config = 1;
}
#else
ec_slave_request_state(slave, EC_SLAVE_STATE_PREOP);
// mark for reconfiguration, because the master could have no
// possibility for a reconfiguration between two sequential operation
// phases.
slave->force_config = 1;
#endif
}
master->app_time = 0ULL;
master->app_start_time = 0ULL;
master->has_app_time = 0;
if (ec_master_thread_start(master, ec_master_idle_thread,
"EtherCAT-IDLE"))
EC_MASTER_WARN(master, "Failed to restart master thread!\n");
master->allow_scan = 1;
master->active = 0;
}
/*****************************************************************************/
void ecrt_master_send(ec_master_t *master)
{
ec_datagram_t *datagram, *next;
ec_master_inject_fsm_datagrams(master);
if (unlikely(!master->main_device.link_state)) {
// link is down, no datagram can be sent
list_for_each_entry_safe(datagram, next, &master->datagram_queue,
queue) {
datagram->state = EC_DATAGRAM_ERROR;
list_del_init(&datagram->queue);
}
// query link state
ec_device_poll(&master->main_device);
// clear frame statistics
ec_device_clear_stats(&master->main_device);
return;
}
// send frames
ec_master_send_datagrams(master);
}
/*****************************************************************************/
void ecrt_master_receive(ec_master_t *master)
{
ec_datagram_t *datagram, *next;
// receive datagrams
ec_device_poll(&master->main_device);
// dequeue all datagrams that timed out
list_for_each_entry_safe(datagram, next, &master->datagram_queue, queue) {
if (datagram->state != EC_DATAGRAM_SENT) continue;
#ifdef EC_HAVE_CYCLES
if (master->main_device.cycles_poll - datagram->cycles_sent
> timeout_cycles) {
#else
if (master->main_device.jiffies_poll - datagram->jiffies_sent
> timeout_jiffies) {
#endif
list_del_init(&datagram->queue);
datagram->state = EC_DATAGRAM_TIMED_OUT;
master->stats.timeouts++;
ec_master_output_stats(master);
if (unlikely(master->debug_level > 0)) {
unsigned int time_us;
#ifdef EC_HAVE_CYCLES
time_us = (unsigned int) (master->main_device.cycles_poll -
datagram->cycles_sent) * 1000 / cpu_khz;
#else
time_us = (unsigned int) ((master->main_device.jiffies_poll -
datagram->jiffies_sent) * 1000000 / HZ);
#endif
EC_MASTER_DBG(master, 0, "TIMED OUT datagram %p,"
" index %02X waited %u us.\n",
datagram, datagram->index, time_us);
}
}
}
}
/*****************************************************************************/
/** Same as ecrt_master_slave_config(), but with ERR_PTR() return value.
*/
ec_slave_config_t *ecrt_master_slave_config_err(ec_master_t *master,
uint16_t alias, uint16_t position, uint32_t vendor_id,
uint32_t product_code)
{
ec_slave_config_t *sc;
unsigned int found = 0;
EC_MASTER_DBG(master, 1, "ecrt_master_slave_config(master = 0x%p,"
" alias = %u, position = %u, vendor_id = 0x%08x,"
" product_code = 0x%08x)\n",
master, alias, position, vendor_id, product_code);
list_for_each_entry(sc, &master->configs, list) {
if (sc->alias == alias && sc->position == position) {
found = 1;
break;
}
}
if (found) { // config with same alias/position already existing
if (sc->vendor_id != vendor_id || sc->product_code != product_code) {
EC_MASTER_ERR(master, "Slave type mismatch. Slave was"
" configured as 0x%08X/0x%08X before. Now configuring"
" with 0x%08X/0x%08X.\n", sc->vendor_id, sc->product_code,
vendor_id, product_code);
return ERR_PTR(-ENOENT);
}
} else {
EC_MASTER_DBG(master, 1, "Creating slave configuration for %u:%u,"
" 0x%08X/0x%08X.\n",
alias, position, vendor_id, product_code);
if (!(sc = (ec_slave_config_t *) kmalloc(sizeof(ec_slave_config_t),
GFP_KERNEL))) {
EC_MASTER_ERR(master, "Failed to allocate memory"
" for slave configuration.\n");
return ERR_PTR(-ENOMEM);
}
ec_slave_config_init(sc, master,
alias, position, vendor_id, product_code);
ec_mutex_lock(&master->master_mutex);
// try to find the addressed slave
ec_slave_config_attach(sc);
ec_slave_config_load_default_sync_config(sc);
list_add_tail(&sc->list, &master->configs);
ec_mutex_unlock(&master->master_mutex);
}
return sc;
}
/*****************************************************************************/
ec_slave_config_t *ecrt_master_slave_config(ec_master_t *master,
uint16_t alias, uint16_t position, uint32_t vendor_id,
uint32_t product_code)
{
ec_slave_config_t *sc = ecrt_master_slave_config_err(master, alias,
position, vendor_id, product_code);
return IS_ERR(sc) ? NULL : sc;
}
/*****************************************************************************/
int ecrt_master(ec_master_t *master, ec_master_info_t *master_info)
{
EC_MASTER_DBG(master, 1, "ecrt_master(master = 0x%p,"
" master_info = 0x%p)\n", master, master_info);
master_info->slave_count = master->slave_count;
master_info->link_up = master->main_device.link_state;
master_info->scan_busy = master->scan_busy;
master_info->app_time = master->app_time;
return 0;
}
/*****************************************************************************/
int ecrt_master_get_slave(ec_master_t *master, uint16_t slave_position,
ec_slave_info_t *slave_info)
{
const ec_slave_t *slave;
if (ec_mutex_lock_interruptible(&master->master_mutex)) {
return -EINTR;
}
slave = ec_master_find_slave_const(master, 0, slave_position);
slave_info->position = slave->ring_position;
slave_info->vendor_id = slave->sii.vendor_id;
slave_info->product_code = slave->sii.product_code;
slave_info->revision_number = slave->sii.revision_number;
slave_info->serial_number = slave->sii.serial_number;
slave_info->alias = slave->effective_alias;
slave_info->current_on_ebus = slave->sii.current_on_ebus;
slave_info->al_state = slave->current_state;
slave_info->error_flag = slave->error_flag;
slave_info->sync_count = slave->sii.sync_count;
slave_info->sdo_count = ec_slave_sdo_count(slave);
if (slave->sii.name) {
strncpy(slave_info->name, slave->sii.name, EC_MAX_STRING_LENGTH);
} else {
slave_info->name[0] = 0;
}
ec_mutex_unlock(&master->master_mutex);
return 0;
}
/*****************************************************************************/
void ecrt_master_callbacks(ec_master_t *master,
void (*lock_cb)(void *), void (*unlock_cb)(void *),
void *cb_data)
{
EC_MASTER_DBG(master, 1,"ecrt_master_callbacks(master = %p, "
"lock_cb = %p, unlock_cb = %p, cb_data = %p)\n",
master, lock_cb, unlock_cb, cb_data);
master->app_fsm_queue_lock_cb = lock_cb;
master->app_fsm_queue_unlock_cb = unlock_cb;
master->app_fsm_queue_locking_data = cb_data;
}
/*****************************************************************************/
void ecrt_master_state(const ec_master_t *master, ec_master_state_t *state)
{
state->slaves_responding = master->fsm.slaves_responding;
state->al_states = master->fsm.slave_states;
state->link_up = master->main_device.link_state;
}
/*****************************************************************************/
void ecrt_master_configured_slaves_state(
const ec_master_t *master,
ec_master_state_t *state
)
{
const ec_slave_config_t *sc;
ec_slave_config_state_t sc_state;
// collect al_states of all configured online slaves
state->al_states = 0;
list_for_each_entry(sc, &master->configs, list) {
ecrt_slave_config_state(sc,&sc_state);
if (sc_state.online)
state->al_states |= sc_state.al_state;
}
state->slaves_responding = master->fsm.slaves_responding;
state->link_up = master->main_device.link_state;
}
/*****************************************************************************/
void ecrt_master_application_time(ec_master_t *master, uint64_t app_time)
{
master->app_time = app_time;
if (unlikely(!master->has_app_time)) {
EC_MASTER_DBG(master, 1, "Set application start time = %llu\n",
app_time);
master->app_start_time = app_time;
#ifdef EC_HAVE_CYCLES
master->dc_cycles_app_start_time = get_cycles();
#endif
master->dc_jiffies_app_start_time = jiffies;
master->has_app_time = 1;
}
}
/*****************************************************************************/
void ecrt_master_sync_reference_clock(ec_master_t *master)
{
EC_WRITE_U32(master->ref_sync_datagram.data, master->app_time);
ec_master_queue_datagram(master, &master->ref_sync_datagram);
}
/*****************************************************************************/
void ecrt_master_sync_slave_clocks(ec_master_t *master)
{
ec_datagram_zero(&master->sync_datagram);
ec_master_queue_datagram(master, &master->sync_datagram);
}
/*****************************************************************************/
void ecrt_master_sync_monitor_queue(ec_master_t *master)
{
ec_datagram_zero(&master->sync_mon_datagram);
ec_master_queue_datagram(master, &master->sync_mon_datagram);
}
/*****************************************************************************/
uint32_t ecrt_master_sync_monitor_process(ec_master_t *master)
{
if (master->sync_mon_datagram.state == EC_DATAGRAM_RECEIVED) {
return EC_READ_U32(master->sync_mon_datagram.data) & 0x7fffffff;
} else {
return 0xffffffff;
}
}
/*****************************************************************************/
int ecrt_master_sdo_download(ec_master_t *master, uint16_t slave_position,
uint16_t index, uint8_t subindex, uint8_t *data,
size_t data_size, uint32_t *abort_code)
{
ec_master_sdo_request_t* request;
int retval;
EC_MASTER_DBG(master, 1, "%s(master = 0x%p,"
" slave_position = %u, index = 0x%04X, subindex = 0x%02X,"
" data = 0x%p, data_size = %zu, abort_code = 0x%p)\n",
__func__, master, slave_position, index, subindex,
data, data_size, abort_code);
if (!data_size) {
EC_MASTER_ERR(master, "Zero data size!\n");
return -EINVAL;
}
request = kmalloc(sizeof(*request), GFP_KERNEL);
if (!request) {
return -ENOMEM;
}
kref_init(&request->refcount);
ec_sdo_request_init(&request->req);
ec_sdo_request_address(&request->req, index, subindex);
if (ec_sdo_request_alloc(&request->req, data_size)) {
kref_put(&request->refcount, ec_master_sdo_request_release);
return -ENOMEM;
}
memcpy(request->req.data, data, data_size);
request->req.data_size = data_size;
ecrt_sdo_request_write(&request->req);
if (ec_mutex_lock_interruptible(&master->master_mutex)) {
kref_put(&request->refcount, ec_master_sdo_request_release);
return -EINTR;
}
if (!(request->slave = ec_master_find_slave(
master, 0, slave_position))) {
ec_mutex_unlock(&master->master_mutex);
EC_MASTER_ERR(master, "Slave %u does not exist!\n", slave_position);
kref_put(&request->refcount, ec_master_sdo_request_release);
return -EINVAL;
}
EC_SLAVE_DBG(request->slave, 1, "Schedule SDO download request %p.\n",
request);
// schedule request
kref_get(&request->refcount);
list_add_tail(&request->list, &request->slave->slave_sdo_requests);
ec_mutex_unlock(&master->master_mutex);
// wait for processing through FSM
if (wait_event_interruptible(request->slave->sdo_queue,
((request->req.state == EC_INT_REQUEST_SUCCESS) ||
(request->req.state == EC_INT_REQUEST_FAILURE)))) {
// interrupted by signal
kref_put(&request->refcount, ec_master_sdo_request_release);
return -EINTR;
}
EC_SLAVE_DBG(request->slave, 1, "Finished SDO download request %p.\n",
request);
*abort_code = request->req.abort_code;
if (request->req.state == EC_INT_REQUEST_SUCCESS) {
retval = 0;
} else if (request->req.errno) {
retval = -request->req.errno;
} else {
retval = -EIO;
}
kref_put(&request->refcount, ec_master_sdo_request_release);
return retval;
}
/*****************************************************************************/
int ecrt_master_sdo_upload(ec_master_t *master, uint16_t slave_position,
uint16_t index, uint8_t subindex, uint8_t *target,
size_t target_size, size_t *result_size, uint32_t *abort_code)
{
ec_master_sdo_request_t* request;
int retval;
EC_MASTER_DBG(master, 1, "%s(master = 0x%p,"
" slave_position = %u, index = 0x%04X, subindex = 0x%02X,"
" target = 0x%p, target_size = %zu, result_size = 0x%p, "
" abort_code = 0x%p)\n",
__func__, master, slave_position, index, subindex, target,
target_size, result_size, abort_code);
request = kmalloc(sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
kref_init(&request->refcount);
ec_sdo_request_init(&request->req);
ec_sdo_request_address(&request->req, index, subindex);
ecrt_sdo_request_read(&request->req);
if (ec_mutex_lock_interruptible(&master->master_mutex)) {
kref_put(&request->refcount, ec_master_sdo_request_release);
return -EINTR;
}
if (!(request->slave = ec_master_find_slave(
master, 0, slave_position))) {
ec_mutex_unlock(&master->master_mutex);
EC_MASTER_ERR(master, "Slave %u does not exist!\n", slave_position);
kref_put(&request->refcount, ec_master_sdo_request_release);
return -EINVAL;
}
EC_SLAVE_DBG(request->slave, 1, "Schedule SDO upload request %p.\n",
request);
// schedule request
kref_get(&request->refcount);
list_add_tail(&request->list, &request->slave->slave_sdo_requests);
ec_mutex_unlock(&master->master_mutex);
// wait for processing through FSM
if (wait_event_interruptible(request->slave->sdo_queue,
((request->req.state == EC_INT_REQUEST_SUCCESS) ||
(request->req.state == EC_INT_REQUEST_FAILURE)))) {
// interrupted by signal
kref_put(&request->refcount, ec_master_sdo_request_release);
return -EINTR;
}
EC_SLAVE_DBG(request->slave, 1, "Finished SDO upload request %p.\n",
request);
*abort_code = request->req.abort_code;
if (request->req.state != EC_INT_REQUEST_SUCCESS) {
*result_size = 0;
if (request->req.errno) {
retval = -request->req.errno;
} else {
retval = -EIO;
}
} else {
if (request->req.data_size > target_size) {
EC_MASTER_ERR(master, "Buffer too small.\n");
kref_put(&request->refcount, ec_master_sdo_request_release);
return -EOVERFLOW;
}
memcpy(target, request->req.data, request->req.data_size);
*result_size = request->req.data_size;
retval = 0;
}
kref_put(&request->refcount, ec_master_sdo_request_release);
return retval;
}
/*****************************************************************************/
int ecrt_master_write_idn(ec_master_t *master, uint16_t slave_position,
uint8_t drive_no, uint16_t idn, uint8_t *data, size_t data_size,
uint16_t *error_code)
{
ec_master_soe_request_t* request;
int retval;
if (drive_no > 7) {
EC_MASTER_ERR(master, "Invalid drive number!\n");
return -EINVAL;
}
request = kmalloc(sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
kref_init(&request->refcount);
INIT_LIST_HEAD(&request->list);
ec_soe_request_init(&request->req);
ec_soe_request_set_drive_no(&request->req, drive_no);
ec_soe_request_set_idn(&request->req, idn);
if (ec_soe_request_alloc(&request->req, data_size)) {
ec_soe_request_clear(&request->req);
kref_put(&request->refcount,ec_master_soe_request_release);
return -ENOMEM;
}
memcpy(request->req.data, data, data_size);
request->req.data_size = data_size;
ec_soe_request_write(&request->req);
if (ec_mutex_lock_interruptible(&master->master_mutex)) {
kref_put(&request->refcount,ec_master_soe_request_release);
return -EINTR;
}
if (!(request->slave = ec_master_find_slave(
master, 0, slave_position))) {
ec_mutex_unlock(&master->master_mutex);
EC_MASTER_ERR(master, "Slave %u does not exist!\n",
slave_position);
kref_put(&request->refcount,ec_master_soe_request_release);
return -EINVAL;
}
EC_SLAVE_DBG(request->slave, 1, "Scheduled SoE write request %p.\n",
request);
// schedule SoE write request.
list_add_tail(&request->list, &request->slave->soe_requests);
kref_get(&request->refcount);
ec_mutex_unlock(&master->master_mutex);
// wait for processing through FSM
if (wait_event_interruptible(request->slave->soe_queue,
((request->req.state == EC_INT_REQUEST_SUCCESS) ||
(request->req.state == EC_INT_REQUEST_FAILURE)))) {
// interrupted by signal
kref_put(&request->refcount,ec_master_soe_request_release);
return -EINTR;
}
if (error_code) {
*error_code = request->req.error_code;
}
retval = request->req.state == EC_INT_REQUEST_SUCCESS ? 0 : -EIO;
kref_put(&request->refcount,ec_master_soe_request_release);
return retval;
}
/*****************************************************************************/
int ecrt_master_read_idn(ec_master_t *master, uint16_t slave_position,
uint8_t drive_no, uint16_t idn, uint8_t *target, size_t target_size,
size_t *result_size, uint16_t *error_code)
{
ec_master_soe_request_t* request;
if (drive_no > 7) {
EC_MASTER_ERR(master, "Invalid drive number!\n");
return -EINVAL;
}
request = kmalloc(sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
kref_init(&request->refcount);
INIT_LIST_HEAD(&request->list);
ec_soe_request_init(&request->req);
ec_soe_request_set_drive_no(&request->req, drive_no);
ec_soe_request_set_idn(&request->req, idn);
ec_soe_request_read(&request->req);
if (ec_mutex_lock_interruptible(&master->master_mutex)) {
kref_put(&request->refcount,ec_master_soe_request_release);
return -EINTR;
}
if (!(request->slave = ec_master_find_slave(master, 0, slave_position))) {
ec_mutex_unlock(&master->master_mutex);
kref_put(&request->refcount,ec_master_soe_request_release);
EC_MASTER_ERR(master, "Slave %u does not exist!\n", slave_position);
return -EINVAL;
}
// schedule request.
list_add_tail(&request->list, &request->slave->soe_requests);
kref_get(&request->refcount);
ec_mutex_unlock(&master->master_mutex);
EC_SLAVE_DBG(request->slave, 1, "Scheduled SoE read request %p.\n",
request);
// wait for processing through FSM
if (wait_event_interruptible(request->slave->soe_queue,
((request->req.state == EC_INT_REQUEST_SUCCESS) ||
(request->req.state == EC_INT_REQUEST_FAILURE)))) {
// interrupted by signal
kref_put(&request->refcount,ec_master_soe_request_release);
return -EINTR;
}
if (error_code) {
*error_code = request->req.error_code;
}
EC_SLAVE_DBG(request->slave, 1, "SoE request %p read %zd bytes"
" via SoE.\n", request, request->req.data_size);
if (request->req.state != EC_INT_REQUEST_SUCCESS) {
if (result_size) {
*result_size = 0;
}
kref_put(&request->refcount,ec_master_soe_request_release);
return -EIO;
} else {
if (request->req.data_size > target_size) {
EC_MASTER_ERR(master, "Buffer too small.\n");
kref_put(&request->refcount,ec_master_soe_request_release);
return -EOVERFLOW;
}
if (result_size) {
*result_size = request->req.data_size;
}
memcpy(target, request->req.data, request->req.data_size);
kref_put(&request->refcount,ec_master_soe_request_release);
return 0;
}
}
/*****************************************************************************/
void ecrt_master_reset(ec_master_t *master)
{
ec_slave_config_t *sc;
list_for_each_entry(sc, &master->configs, list) {
if (sc->slave) {
ec_slave_request_state(sc->slave, EC_SLAVE_STATE_OP);
}
}
}
/*****************************************************************************/
/** \cond */
EXPORT_SYMBOL(ecrt_master_create_domain);
EXPORT_SYMBOL(ecrt_master_activate);
EXPORT_SYMBOL(ecrt_master_deactivate);
EXPORT_SYMBOL(ecrt_master_send);
EXPORT_SYMBOL(ecrt_master_receive);
EXPORT_SYMBOL(ecrt_master_callbacks);
EXPORT_SYMBOL(ecrt_master);
EXPORT_SYMBOL(ecrt_master_get_slave);
EXPORT_SYMBOL(ecrt_master_slave_config);
EXPORT_SYMBOL(ecrt_master_state);
EXPORT_SYMBOL(ecrt_master_application_time);
EXPORT_SYMBOL(ecrt_master_sync_reference_clock);
EXPORT_SYMBOL(ecrt_master_sync_slave_clocks);
EXPORT_SYMBOL(ecrt_master_sync_monitor_queue);
EXPORT_SYMBOL(ecrt_master_sync_monitor_process);
EXPORT_SYMBOL(ecrt_master_sdo_download);
EXPORT_SYMBOL(ecrt_master_sdo_upload);
EXPORT_SYMBOL(ecrt_master_write_idn);
EXPORT_SYMBOL(ecrt_master_read_idn);
EXPORT_SYMBOL(ecrt_master_reset);
EXPORT_SYMBOL(ecrt_master_find_domain);
/** \endcond */
/*****************************************************************************/