devices/e1000e/ich8lan-3.16-ethercat.c
author Florian Pose <fp@igh-essen.com>
Fri, 03 Mar 2017 16:00:35 +0100
branchstable-1.5
changeset 2671 5d7a83195c80
parent 2588 792892ab4806
permissions -rw-r--r--
Display alias adressing in graph.
/* Intel PRO/1000 Linux driver
 * Copyright(c) 1999 - 2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * Linux NICS <linux.nics@intel.com>
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */

/* 82562G 10/100 Network Connection
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
 * 82567V Gigabit Network Connection
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
 * 82567LM-4 Gigabit Network Connection
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
 * Ethernet Connection I217-LM
 * Ethernet Connection I217-V
 * Ethernet Connection I218-V
 * Ethernet Connection I218-LM
 * Ethernet Connection (2) I218-LM
 * Ethernet Connection (2) I218-V
 * Ethernet Connection (3) I218-LM
 * Ethernet Connection (3) I218-V
 */

#include "e1000-3.16-ethercat.h"

/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
		u16 dael:1;	/* bit 2 Direct Access error Log */
		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
		u16 reserved1:2;	/* bit 13:6 Reserved */
		u16 reserved2:6;	/* bit 13:6 Reserved */
		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo:1;	/* 0 Flash Cycle Go */
		u16 flcycle:2;	/* 2:1 Flash Cycle */
		u16 reserved:5;	/* 7:3 Reserved  */
		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
		u16 flockdn:6;	/* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra:8;	/* 0:7 GbE region Read Access */
		u32 grwa:8;	/* 8:15 GbE region Write Access */
		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;	/* 0:12 Protected Range Base */
		u32 reserved1:2;	/* 13:14 Reserved */
		u32 rpe:1;	/* 15 Read Protection Enable */
		u32 limit:13;	/* 16:28 Protected Range Limit */
		u32 reserved2:2;	/* 29:30 Reserved */
		u32 wpe:1;	/* 31 Write Protection Enable */
	} range;
	u32 regval;
};

static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))

/**
 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 *  @hw: pointer to the HW structure
 *
 *  Test access to the PHY registers by reading the PHY ID registers.  If
 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 *  otherwise assume the read PHY ID is correct if it is valid.
 *
 *  Assumes the sw/fw/hw semaphore is already acquired.
 **/
static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
{
	u16 phy_reg = 0;
	u32 phy_id = 0;
	s32 ret_val = 0;
	u16 retry_count;
	u32 mac_reg = 0;

	for (retry_count = 0; retry_count < 2; retry_count++) {
		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
		if (ret_val || (phy_reg == 0xFFFF))
			continue;
		phy_id = (u32)(phy_reg << 16);

		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
		if (ret_val || (phy_reg == 0xFFFF)) {
			phy_id = 0;
			continue;
		}
		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
		break;
	}

	if (hw->phy.id) {
		if (hw->phy.id == phy_id)
			goto out;
	} else if (phy_id) {
		hw->phy.id = phy_id;
		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
		goto out;
	}

	/* In case the PHY needs to be in mdio slow mode,
	 * set slow mode and try to get the PHY id again.
	 */
	if (hw->mac.type < e1000_pch_lpt) {
		hw->phy.ops.release(hw);
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (!ret_val)
			ret_val = e1000e_get_phy_id(hw);
		hw->phy.ops.acquire(hw);
	}

	if (ret_val)
		return false;
out:
	if (hw->mac.type == e1000_pch_lpt) {
		/* Unforce SMBus mode in PHY */
		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);

		/* Unforce SMBus mode in MAC */
		mac_reg = er32(CTRL_EXT);
		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
		ew32(CTRL_EXT, mac_reg);
	}

	return true;
}

/**
 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 *  @hw: pointer to the HW structure
 *
 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 *  used to reset the PHY to a quiescent state when necessary.
 **/
static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
{
	u32 mac_reg;

	/* Set Phy Config Counter to 50msec */
	mac_reg = er32(FEXTNVM3);
	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
	ew32(FEXTNVM3, mac_reg);

	/* Toggle LANPHYPC Value bit */
	mac_reg = er32(CTRL);
	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
	ew32(CTRL, mac_reg);
	e1e_flush();
	usleep_range(10, 20);
	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
	ew32(CTRL, mac_reg);
	e1e_flush();

	if (hw->mac.type < e1000_pch_lpt) {
		msleep(50);
	} else {
		u16 count = 20;

		do {
			usleep_range(5000, 10000);
		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);

		msleep(30);
	}
}

/**
 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 *  @hw: pointer to the HW structure
 *
 *  Workarounds/flow necessary for PHY initialization during driver load
 *  and resume paths.
 **/
static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
{
	struct e1000_adapter *adapter = hw->adapter;
	u32 mac_reg, fwsm = er32(FWSM);
	s32 ret_val;

	/* Gate automatic PHY configuration by hardware on managed and
	 * non-managed 82579 and newer adapters.
	 */
	e1000_gate_hw_phy_config_ich8lan(hw, true);

	/* It is not possible to be certain of the current state of ULP
	 * so forcibly disable it.
	 */
	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
	e1000_disable_ulp_lpt_lp(hw, true);

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val) {
		e_dbg("Failed to initialize PHY flow\n");
		goto out;
	}

	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
	 * inaccessible and resetting the PHY is not blocked, toggle the
	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
	 */
	switch (hw->mac.type) {
	case e1000_pch_lpt:
		if (e1000_phy_is_accessible_pchlan(hw))
			break;

		/* Before toggling LANPHYPC, see if PHY is accessible by
		 * forcing MAC to SMBus mode first.
		 */
		mac_reg = er32(CTRL_EXT);
		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
		ew32(CTRL_EXT, mac_reg);

		/* Wait 50 milliseconds for MAC to finish any retries
		 * that it might be trying to perform from previous
		 * attempts to acknowledge any phy read requests.
		 */
		msleep(50);

		/* fall-through */
	case e1000_pch2lan:
		if (e1000_phy_is_accessible_pchlan(hw))
			break;

		/* fall-through */
	case e1000_pchlan:
		if ((hw->mac.type == e1000_pchlan) &&
		    (fwsm & E1000_ICH_FWSM_FW_VALID))
			break;

		if (hw->phy.ops.check_reset_block(hw)) {
			e_dbg("Required LANPHYPC toggle blocked by ME\n");
			ret_val = -E1000_ERR_PHY;
			break;
		}

		/* Toggle LANPHYPC Value bit */
		e1000_toggle_lanphypc_pch_lpt(hw);
		if (hw->mac.type >= e1000_pch_lpt) {
			if (e1000_phy_is_accessible_pchlan(hw))
				break;

			/* Toggling LANPHYPC brings the PHY out of SMBus mode
			 * so ensure that the MAC is also out of SMBus mode
			 */
			mac_reg = er32(CTRL_EXT);
			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
			ew32(CTRL_EXT, mac_reg);

			if (e1000_phy_is_accessible_pchlan(hw))
				break;

			ret_val = -E1000_ERR_PHY;
		}
		break;
	default:
		break;
	}

	hw->phy.ops.release(hw);
	if (!ret_val) {

		/* Check to see if able to reset PHY.  Print error if not */
		if (hw->phy.ops.check_reset_block(hw)) {
			e_err("Reset blocked by ME\n");
			goto out;
		}

		/* Reset the PHY before any access to it.  Doing so, ensures
		 * that the PHY is in a known good state before we read/write
		 * PHY registers.  The generic reset is sufficient here,
		 * because we haven't determined the PHY type yet.
		 */
		ret_val = e1000e_phy_hw_reset_generic(hw);
		if (ret_val)
			goto out;

		/* On a successful reset, possibly need to wait for the PHY
		 * to quiesce to an accessible state before returning control
		 * to the calling function.  If the PHY does not quiesce, then
		 * return E1000E_BLK_PHY_RESET, as this is the condition that
		 *  the PHY is in.
		 */
		ret_val = hw->phy.ops.check_reset_block(hw);
		if (ret_val)
			e_err("ME blocked access to PHY after reset\n");
	}

out:
	/* Ungate automatic PHY configuration on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
		usleep_range(10000, 20000);
		e1000_gate_hw_phy_config_ich8lan(hw, false);
	}

	return ret_val;
}

/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

	phy->addr = 1;
	phy->reset_delay_us = 100;

	phy->ops.set_page = e1000_set_page_igp;
	phy->ops.read_reg = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
	phy->ops.write_reg = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
	phy->ops.power_up = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;

	phy->id = e1000_phy_unknown;

	ret_val = e1000_init_phy_workarounds_pchlan(hw);
	if (ret_val)
		return ret_val;

	if (phy->id == e1000_phy_unknown)
		switch (hw->mac.type) {
		default:
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
				break;
			/* fall-through */
		case e1000_pch2lan:
		case e1000_pch_lpt:
			/* In case the PHY needs to be in mdio slow mode,
			 * set slow mode and try to get the PHY id again.
			 */
			ret_val = e1000_set_mdio_slow_mode_hv(hw);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
			break;
		}
	phy->type = e1000e_get_phy_type_from_id(phy->id);

	switch (phy->type) {
	case e1000_phy_82577:
	case e1000_phy_82579:
	case e1000_phy_i217:
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
		    e1000_phy_force_speed_duplex_82577;
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
		break;
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	return ret_val;
}

/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr = 1;
	phy->reset_delay_us = 100;

	phy->ops.power_up = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;

	/* We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		ret_val = e1000e_determine_phy_address(hw);
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
			return ret_val;
		}
	}

	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
		usleep_range(1000, 2000);
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
		break;
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 gfpreg, sector_base_addr, sector_end_addr;
	u16 i;

	/* Can't read flash registers if the register set isn't mapped. */
	if (!hw->flash_address) {
		e_dbg("ERROR: Flash registers not mapped\n");
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
	 * Add 1 to sector_end_addr since this sector is included in
	 * the overall size.
	 */
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

	/* find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT);
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
		dev_spec->shadow_ram[i].modified = false;
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
	hw->phy.media_type = e1000_media_type_copper;

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;

	/* LED and other operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
		/* ID LED init */
		mac->ops.id_led_init = e1000e_id_led_init_generic;
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pch2lan:
		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch2lan;
		/* fall-through */
	case e1000_pch_lpt:
	case e1000_pchlan:
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

	if (mac->type == e1000_pch_lpt) {
		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch_lpt;
		mac->ops.setup_physical_interface =
		    e1000_setup_copper_link_pch_lpt;
		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
	}

	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);

	return 0;
}

/**
 *  __e1000_access_emi_reg_locked - Read/write EMI register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: pointer to value to read/write from/to the EMI address
 *  @read: boolean flag to indicate read or write
 *
 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 **/
static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
					 u16 *data, bool read)
{
	s32 ret_val;

	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
	else
		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);

	return ret_val;
}

/**
 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: value to be read from the EMI address
 *
 *  Assumes the SW/FW/HW Semaphore is already acquired.
 **/
s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
{
	return __e1000_access_emi_reg_locked(hw, addr, data, true);
}

/**
 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: value to be written to the EMI address
 *
 *  Assumes the SW/FW/HW Semaphore is already acquired.
 **/
s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
{
	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
}

/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 *  the link and the EEE capabilities of the link partner.  The LPI Control
 *  register bits will remain set only if/when link is up.
 *
 *  EEE LPI must not be asserted earlier than one second after link is up.
 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 *  can be link issues with some switches.  Other devices can have EEE LPI
 *  enabled immediately upon link up since they have a timer in hardware which
 *  prevents LPI from being asserted too early.
 **/
s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	s32 ret_val;
	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;

	switch (hw->phy.type) {
	case e1000_phy_82579:
		lpa = I82579_EEE_LP_ABILITY;
		pcs_status = I82579_EEE_PCS_STATUS;
		adv_addr = I82579_EEE_ADVERTISEMENT;
		break;
	case e1000_phy_i217:
		lpa = I217_EEE_LP_ABILITY;
		pcs_status = I217_EEE_PCS_STATUS;
		adv_addr = I217_EEE_ADVERTISEMENT;
		break;
	default:
		return 0;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
	if (ret_val)
		goto release;

	/* Clear bits that enable EEE in various speeds */
	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;

	/* Enable EEE if not disabled by user */
	if (!dev_spec->eee_disable) {
		/* Save off link partner's EEE ability */
		ret_val = e1000_read_emi_reg_locked(hw, lpa,
						    &dev_spec->eee_lp_ability);
		if (ret_val)
			goto release;

		/* Read EEE advertisement */
		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
		if (ret_val)
			goto release;

		/* Enable EEE only for speeds in which the link partner is
		 * EEE capable and for which we advertise EEE.
		 */
		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;

		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
			e1e_rphy_locked(hw, MII_LPA, &data);
			if (data & LPA_100FULL)
				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
			else
				/* EEE is not supported in 100Half, so ignore
				 * partner's EEE in 100 ability if full-duplex
				 * is not advertised.
				 */
				dev_spec->eee_lp_ability &=
				    ~I82579_EEE_100_SUPPORTED;
		}
	}

	if (hw->phy.type == e1000_phy_82579) {
		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
						    &data);
		if (ret_val)
			goto release;

		data &= ~I82579_LPI_100_PLL_SHUT;
		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
						     data);
	}

	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
	if (ret_val)
		goto release;

	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 *  preventing further DMA write requests.  Workaround the issue by disabling
 *  the de-assertion of the clock request when in 1Gpbs mode.
 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 *  speeds in order to avoid Tx hangs.
 **/
static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
{
	u32 fextnvm6 = er32(FEXTNVM6);
	u32 status = er32(STATUS);
	s32 ret_val = 0;
	u16 reg;

	if (link && (status & E1000_STATUS_SPEED_1000)) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;

		ret_val =
		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
						&reg);
		if (ret_val)
			goto release;

		ret_val =
		    e1000e_write_kmrn_reg_locked(hw,
						 E1000_KMRNCTRLSTA_K1_CONFIG,
						 reg &
						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
		if (ret_val)
			goto release;

		usleep_range(10, 20);

		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);

		ret_val =
		    e1000e_write_kmrn_reg_locked(hw,
						 E1000_KMRNCTRLSTA_K1_CONFIG,
						 reg);
release:
		hw->phy.ops.release(hw);
	} else {
		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;

		if (!link || ((status & E1000_STATUS_SPEED_100) &&
			      (status & E1000_STATUS_FD)))
			goto update_fextnvm6;

		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
		if (ret_val)
			return ret_val;

		/* Clear link status transmit timeout */
		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;

		if (status & E1000_STATUS_SPEED_100) {
			/* Set inband Tx timeout to 5x10us for 100Half */
			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;

			/* Do not extend the K1 entry latency for 100Half */
			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
		} else {
			/* Set inband Tx timeout to 50x10us for 10Full/Half */
			reg |= 50 <<
			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;

			/* Extend the K1 entry latency for 10 Mbps */
			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
		}

		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
		if (ret_val)
			return ret_val;

update_fextnvm6:
		ew32(FEXTNVM6, fextnvm6);
	}

	return ret_val;
}

/**
 *  e1000_platform_pm_pch_lpt - Set platform power management values
 *  @hw: pointer to the HW structure
 *  @link: bool indicating link status
 *
 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 *  when link is up (which must not exceed the maximum latency supported
 *  by the platform), otherwise specify there is no LTR requirement.
 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 *  Capability register set, on this device LTR is set by writing the
 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 *  message to the PMC.
 **/
static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
{
	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
	u16 lat_enc = 0;	/* latency encoded */

	if (link) {
		u16 speed, duplex, scale = 0;
		u16 max_snoop, max_nosnoop;
		u16 max_ltr_enc;	/* max LTR latency encoded */
		s64 lat_ns;	/* latency (ns) */
		s64 value;
		u32 rxa;

		if (!hw->adapter->max_frame_size) {
			e_dbg("max_frame_size not set.\n");
			return -E1000_ERR_CONFIG;
		}

		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
		if (!speed) {
			e_dbg("Speed not set.\n");
			return -E1000_ERR_CONFIG;
		}

		/* Rx Packet Buffer Allocation size (KB) */
		rxa = er32(PBA) & E1000_PBA_RXA_MASK;

		/* Determine the maximum latency tolerated by the device.
		 *
		 * Per the PCIe spec, the tolerated latencies are encoded as
		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
		 * a 10-bit value (0-1023) to provide a range from 1 ns to
		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
		 */
		lat_ns = ((s64)rxa * 1024 -
			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
		if (lat_ns < 0)
			lat_ns = 0;
		else
			do_div(lat_ns, speed);

		value = lat_ns;
		while (value > PCI_LTR_VALUE_MASK) {
			scale++;
			value = DIV_ROUND_UP(value, (1 << 5));
		}
		if (scale > E1000_LTRV_SCALE_MAX) {
			e_dbg("Invalid LTR latency scale %d\n", scale);
			return -E1000_ERR_CONFIG;
		}
		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);

		/* Determine the maximum latency tolerated by the platform */
		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
				     &max_snoop);
		pci_read_config_word(hw->adapter->pdev,
				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);

		if (lat_enc > max_ltr_enc)
			lat_enc = max_ltr_enc;
	}

	/* Set Snoop and No-Snoop latencies the same */
	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
	ew32(LTRV, reg);

	return 0;
}

/**
 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
 *  @hw: pointer to the HW structure
 *  @to_sx: boolean indicating a system power state transition to Sx
 *
 *  When link is down, configure ULP mode to significantly reduce the power
 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
 *  ME firmware to start the ULP configuration.  If not on an ME enabled
 *  system, configure the ULP mode by software.
 */
s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
{
	u32 mac_reg;
	s32 ret_val = 0;
	u16 phy_reg;

	if ((hw->mac.type < e1000_pch_lpt) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
		return 0;

	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
		/* Request ME configure ULP mode in the PHY */
		mac_reg = er32(H2ME);
		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
		ew32(H2ME, mac_reg);

		goto out;
	}

	if (!to_sx) {
		int i = 0;

		/* Poll up to 5 seconds for Cable Disconnected indication */
		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
			/* Bail if link is re-acquired */
			if (er32(STATUS) & E1000_STATUS_LU)
				return -E1000_ERR_PHY;

			if (i++ == 100)
				break;

			msleep(50);
		}
		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
		      (er32(FEXT) &
		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	/* Force SMBus mode in PHY */
	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);

	/* Force SMBus mode in MAC */
	mac_reg = er32(CTRL_EXT);
	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
	ew32(CTRL_EXT, mac_reg);

	/* Set Inband ULP Exit, Reset to SMBus mode and
	 * Disable SMBus Release on PERST# in PHY
	 */
	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
	if (to_sx) {
		if (er32(WUFC) & E1000_WUFC_LNKC)
			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;

		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
	} else {
		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
	}
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);

	/* Set Disable SMBus Release on PERST# in MAC */
	mac_reg = er32(FEXTNVM7);
	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
	ew32(FEXTNVM7, mac_reg);

	/* Commit ULP changes in PHY by starting auto ULP configuration */
	phy_reg |= I218_ULP_CONFIG1_START;
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
release:
	hw->phy.ops.release(hw);
out:
	if (ret_val)
		e_dbg("Error in ULP enable flow: %d\n", ret_val);
	else
		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;

	return ret_val;
}

/**
 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
 *  @hw: pointer to the HW structure
 *  @force: boolean indicating whether or not to force disabling ULP
 *
 *  Un-configure ULP mode when link is up, the system is transitioned from
 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
 *  system, poll for an indication from ME that ULP has been un-configured.
 *  If not on an ME enabled system, un-configure the ULP mode by software.
 *
 *  During nominal operation, this function is called when link is acquired
 *  to disable ULP mode (force=false); otherwise, for example when unloading
 *  the driver or during Sx->S0 transitions, this is called with force=true
 *  to forcibly disable ULP.
 */
static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 phy_reg;
	int i = 0;

	if ((hw->mac.type < e1000_pch_lpt) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
		return 0;

	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
		if (force) {
			/* Request ME un-configure ULP mode in the PHY */
			mac_reg = er32(H2ME);
			mac_reg &= ~E1000_H2ME_ULP;
			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
			ew32(H2ME, mac_reg);
		}

		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
			if (i++ == 10) {
				ret_val = -E1000_ERR_PHY;
				goto out;
			}

			usleep_range(10000, 20000);
		}
		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);

		if (force) {
			mac_reg = er32(H2ME);
			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
			ew32(H2ME, mac_reg);
		} else {
			/* Clear H2ME.ULP after ME ULP configuration */
			mac_reg = er32(H2ME);
			mac_reg &= ~E1000_H2ME_ULP;
			ew32(H2ME, mac_reg);
		}

		goto out;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	if (force)
		/* Toggle LANPHYPC Value bit */
		e1000_toggle_lanphypc_pch_lpt(hw);

	/* Unforce SMBus mode in PHY */
	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
	if (ret_val) {
		/* The MAC might be in PCIe mode, so temporarily force to
		 * SMBus mode in order to access the PHY.
		 */
		mac_reg = er32(CTRL_EXT);
		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
		ew32(CTRL_EXT, mac_reg);

		msleep(50);

		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
						       &phy_reg);
		if (ret_val)
			goto release;
	}
	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);

	/* Unforce SMBus mode in MAC */
	mac_reg = er32(CTRL_EXT);
	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
	ew32(CTRL_EXT, mac_reg);

	/* When ULP mode was previously entered, K1 was disabled by the
	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
	 */
	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg |= HV_PM_CTRL_K1_ENABLE;
	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);

	/* Clear ULP enabled configuration */
	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg &= ~(I218_ULP_CONFIG1_IND |
		     I218_ULP_CONFIG1_STICKY_ULP |
		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
		     I218_ULP_CONFIG1_WOL_HOST |
		     I218_ULP_CONFIG1_INBAND_EXIT |
		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);

	/* Commit ULP changes by starting auto ULP configuration */
	phy_reg |= I218_ULP_CONFIG1_START;
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);

	/* Clear Disable SMBus Release on PERST# in MAC */
	mac_reg = er32(FEXTNVM7);
	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
	ew32(FEXTNVM7, mac_reg);

release:
	hw->phy.ops.release(hw);
	if (force) {
		e1000_phy_hw_reset(hw);
		msleep(50);
	}
out:
	if (ret_val)
		e_dbg("Error in ULP disable flow: %d\n", ret_val);
	else
		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;

	return ret_val;
}

/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;
	u16 phy_reg;

	/* We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status)
		return 0;

	/* First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
			return ret_val;
	}

	/* When connected at 10Mbps half-duplex, some parts are excessively
	 * aggressive resulting in many collisions. To avoid this, increase
	 * the IPG and reduce Rx latency in the PHY.
	 */
	if (((hw->mac.type == e1000_pch2lan) ||
	     (hw->mac.type == e1000_pch_lpt)) && link) {
		u32 reg;

		reg = er32(STATUS);
		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
			u16 emi_addr;

			reg = er32(TIPG);
			reg &= ~E1000_TIPG_IPGT_MASK;
			reg |= 0xFF;
			ew32(TIPG, reg);

			/* Reduce Rx latency in analog PHY */
			ret_val = hw->phy.ops.acquire(hw);
			if (ret_val)
				return ret_val;

			if (hw->mac.type == e1000_pch2lan)
				emi_addr = I82579_RX_CONFIG;
			else
				emi_addr = I217_RX_CONFIG;

			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);

			hw->phy.ops.release(hw);

			if (ret_val)
				return ret_val;
		}
	}

	/* Work-around I218 hang issue */
	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
		if (ret_val)
			return ret_val;
	}

	if (hw->mac.type == e1000_pch_lpt) {
		/* Set platform power management values for
		 * Latency Tolerance Reporting (LTR)
		 */
		ret_val = e1000_platform_pm_pch_lpt(hw, link);
		if (ret_val)
			return ret_val;
	}

	/* Clear link partner's EEE ability */
	hw->dev_spec.ich8lan.eee_lp_ability = 0;

	if (!link)
		return 0;	/* No link detected */

	mac->get_link_status = false;

	switch (hw->mac.type) {
	case e1000_pch2lan:
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
			return ret_val;
		/* fall-thru */
	case e1000_pchlan:
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1000_link_stall_workaround_hv(hw);
			if (ret_val)
				return ret_val;
		}

		/* Workaround for PCHx parts in half-duplex:
		 * Set the number of preambles removed from the packet
		 * when it is passed from the PHY to the MAC to prevent
		 * the MAC from misinterpreting the packet type.
		 */
		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;

		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);

		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
		break;
	default:
		break;
	}

	/* Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

	/* Enable/Disable EEE after link up */
	if (hw->phy.type > e1000_phy_82579) {
		ret_val = e1000_set_eee_pchlan(hw);
		if (ret_val)
			return ret_val;
	}

	/* If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;

	/* Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	mac->ops.config_collision_dist(hw);

	/* Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
		e_dbg("Error configuring flow control\n");

	return ret_val;
}

static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_ich8lan(hw);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
		rc = e1000_init_phy_params_ich8lan(hw);
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
	case e1000_pch_lpt:
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
	if (rc)
		return rc;

	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;

		hw->mac.ops.blink_led = NULL;
	}

	if ((adapter->hw.mac.type == e1000_ich8lan) &&
	    (adapter->hw.phy.type != e1000_phy_ife))
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

	/* Enable workaround for 82579 w/ ME enabled */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;

	return 0;
}

static DEFINE_MUTEX(nvm_mutex);

/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
{
	mutex_unlock(&nvm_mutex);
}

/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;

	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
			     &hw->adapter->state)) {
		e_dbg("contention for Phy access\n");
		return -E1000_ERR_PHY;
	}

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;

		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		e_dbg("SW has already locked the resource.\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	timeout = SW_FLAG_TIMEOUT;

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;

		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
		      er32(FWSM), extcnf_ctrl);
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

out:
	if (ret_val)
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);

	return ret_val;
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}

	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
}

/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has any manageability enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
		((fwsm & E1000_FWSM_MODE_MASK) ==
		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}

/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}

/**
 *  e1000_rar_set_pch2lan - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.  For 82579, RAR[0] is the base address register that is to
 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
 *  Use SHRA[0-3] in place of those reserved for ME.
 **/
static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return 0;
	}

	/* RAR[1-6] are owned by manageability.  Skip those and program the
	 * next address into the SHRA register array.
	 */
	if (index < (u32)(hw->mac.rar_entry_count)) {
		s32 ret_val;

		ret_val = e1000_acquire_swflag_ich8lan(hw);
		if (ret_val)
			goto out;

		ew32(SHRAL(index - 1), rar_low);
		e1e_flush();
		ew32(SHRAH(index - 1), rar_high);
		e1e_flush();

		e1000_release_swflag_ich8lan(hw);

		/* verify the register updates */
		if ((er32(SHRAL(index - 1)) == rar_low) &&
		    (er32(SHRAH(index - 1)) == rar_high))
			return 0;

		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
		      (index - 1), er32(FWSM));
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
	return -E1000_ERR_CONFIG;
}

/**
 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
 *  @hw: pointer to the HW structure
 *
 *  Get the number of available receive registers that the Host can
 *  program. SHRA[0-10] are the shared receive address registers
 *  that are shared between the Host and manageability engine (ME).
 *  ME can reserve any number of addresses and the host needs to be
 *  able to tell how many available registers it has access to.
 **/
static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
{
	u32 wlock_mac;
	u32 num_entries;

	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;

	switch (wlock_mac) {
	case 0:
		/* All SHRA[0..10] and RAR[0] available */
		num_entries = hw->mac.rar_entry_count;
		break;
	case 1:
		/* Only RAR[0] available */
		num_entries = 1;
		break;
	default:
		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
		num_entries = wlock_mac + 1;
		break;
	}

	return num_entries;
}

/**
 *  e1000_rar_set_pch_lpt - Set receive address registers
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address register array at index to the address passed
 *  in by addr. For LPT, RAR[0] is the base address register that is to
 *  contain the MAC address. SHRA[0-10] are the shared receive address
 *  registers that are shared between the Host and manageability engine (ME).
 **/
static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;
	u32 wlock_mac;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return 0;
	}

	/* The manageability engine (ME) can lock certain SHRAR registers that
	 * it is using - those registers are unavailable for use.
	 */
	if (index < hw->mac.rar_entry_count) {
		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;

		/* Check if all SHRAR registers are locked */
		if (wlock_mac == 1)
			goto out;

		if ((wlock_mac == 0) || (index <= wlock_mac)) {
			s32 ret_val;

			ret_val = e1000_acquire_swflag_ich8lan(hw);

			if (ret_val)
				goto out;

			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
			e1e_flush();
			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
			e1e_flush();

			e1000_release_swflag_ich8lan(hw);

			/* verify the register updates */
			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
				return 0;
		}
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
	return -E1000_ERR_CONFIG;
}

/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	bool blocked = false;
	int i = 0;

	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
	       (i++ < 10))
		usleep_range(10000, 20000);
	return blocked ? E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
	    E1000_STRAP_SMT_FREQ_SHIFT;
	s32 ret_val;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;

	if (hw->phy.type == e1000_phy_i217) {
		/* Restore SMBus frequency */
		if (freq--) {
			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
			phy_data |= (freq & (1 << 0)) <<
			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
			phy_data |= (freq & (1 << 1)) <<
			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
		} else {
			e_dbg("Unsupported SMB frequency in PHY\n");
		}
	}

	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
}

/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
	s32 ret_val = 0;
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/* Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
	case e1000_pch2lan:
	case e1000_pch_lpt:
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
		goto release;

	/* Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
	if ((hw->mac.type < e1000_pch2lan) &&
	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
		goto release;

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
		goto release;

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

	if (((hw->mac.type == e1000_pchlan) &&
	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
	    (hw->mac.type > e1000_pchlan)) {
		/* HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
		 */
		ret_val = e1000_write_smbus_addr(hw);
		if (ret_val)
			goto release;

		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
			goto release;
	}

	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
		if (ret_val)
			goto release;

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
			goto release;

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
		}

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
		if (ret_val)
			goto release;
	}

release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
		return 0;

	/* Wrap the whole flow with the sw flag */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
						  &status_reg);
			if (ret_val)
				goto release;

			status_reg &= (BM_CS_STATUS_LINK_UP |
				       BM_CS_STATUS_RESOLVED |
				       BM_CS_STATUS_SPEED_MASK);

			if (status_reg == (BM_CS_STATUS_LINK_UP |
					   BM_CS_STATUS_RESOLVED |
					   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
			if (ret_val)
				goto release;

			status_reg &= (HV_M_STATUS_LINK_UP |
				       HV_M_STATUS_AUTONEG_COMPLETE |
				       HV_M_STATUS_SPEED_MASK);

			if (status_reg == (HV_M_STATUS_LINK_UP |
					   HV_M_STATUS_AUTONEG_COMPLETE |
					   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
	s32 ret_val;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					      &kmrn_reg);
	if (ret_val)
		return ret_val;

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					       kmrn_reg);
	if (ret_val)
		return ret_val;

	usleep_range(20, 40);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
	e1e_flush();
	usleep_range(20, 40);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
	usleep_range(20, 40);

	return 0;
}

/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

	if (hw->mac.type < e1000_pchlan)
		return ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	if (hw->mac.type == e1000_pchlan) {
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
			goto release;
	}

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
		goto release;

	mac_reg = er32(PHY_CTRL);

	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		goto release;

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
			       E1000_PHY_CTRL_NOND0A_LPLU))
			oem_reg |= HV_OEM_BITS_LPLU;
	}

	/* Set Restart auto-neg to activate the bits */
	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
	    !hw->phy.ops.check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;

	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);

release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_data;

	if (hw->mac.type != e1000_pchlan)
		return 0;

	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			return ret_val;
	}

	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/* Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
		}
	}

	/* Select page 0 */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	hw->phy.addr = 1;
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
	hw->phy.ops.release(hw);
	if (ret_val)
		return ret_val;

	/* Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
	if (ret_val)
		return ret_val;

	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
	if (ret_val)
		goto release;
	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
	if (ret_val)
		goto release;

	/* set MSE higher to enable link to stay up when noise is high */
	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
		mac_reg = er32(RAL(i));
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

		mac_reg = er32(RAH(i));
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
	}

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

	if (hw->mac.type < e1000_pch2lan)
		return 0;

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
		return ret_val;

	if (enable) {
		/* Write Rx addresses (rar_entry_count for RAL/H, and
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < hw->mac.rar_entry_count; i++) {
			u8 mac_addr[ETH_ALEN] = { 0 };
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
					       &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
			return ret_val;
		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_HD_CTRL,
					       &data);
		if (ret_val)
			return ret_val;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			return ret_val;

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x1A << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			return ret_val;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
			return ret_val;
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
					       &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
			return ret_val;
		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_HD_CTRL,
					       &data);
		if (ret_val)
			return ret_val;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			return ret_val;

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			return ret_val;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
			return ret_val;
	}

	/* re-enable Rx path after enabling/disabling workaround */
	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
		return 0;

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
	/* set MSE higher to enable link to stay up when noise is high */
	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
	if (ret_val)
		goto release;
	/* drop link after 5 times MSE threshold was reached */
	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
 *  Disable K1 in 1000Mbps and 100Mbps
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;

	if (hw->mac.type != e1000_pch2lan)
		return 0;

	/* Set K1 beacon duration based on 10Mbs speed */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
		return ret_val;

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		if (status_reg &
		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
			u16 pm_phy_reg;

			/* LV 1G/100 Packet drop issue wa  */
			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
			if (ret_val)
				return ret_val;
			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
			if (ret_val)
				return ret_val;
		} else {
			u32 mac_reg;

			mac_reg = er32(FEXTNVM4);
			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
			ew32(FEXTNVM4, mac_reg);
		}
	}

	return ret_val;
}

/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

	if (hw->mac.type < e1000_pch2lan)
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		usleep_range(100, 200);
	} while ((!data) && --loop);

	/* If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

/**
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 reg;

	if (hw->phy.ops.check_reset_block(hw))
		return 0;

	/* Allow time for h/w to get to quiescent state after reset */
	usleep_range(10000, 20000);

	/* Perform any necessary post-reset workarounds */
	switch (hw->mac.type) {
	case e1000_pchlan:
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			return ret_val;
		break;
	default:
		break;
	}

	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}

	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		return ret_val;

	/* Configure the LCD with the OEM bits in NVM */
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);

	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			usleep_range(10000, 20000);
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
		ret_val = e1000_write_emi_reg_locked(hw,
						     I82579_LPI_UPDATE_TIMER,
						     0x1387);
		hw->phy.ops.release(hw);
	}

	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		return ret_val;

	return e1000_post_phy_reset_ich8lan(hw);
}

/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		return ret_val;

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

	if (!hw->phy.ops.check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;

	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
}

/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

	if (phy->type == e1000_phy_ife)
		return 0;

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
	u32 eecd;
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
	u8 sig_byte = 0;
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
							&sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 0;
			return 0;
		}

		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
							bank1_offset,
							&sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
		}

		e_dbg("ERROR: No valid NVM bank present\n");
		return -E1000_ERR_NVM;
	}
}

/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
	s32 ret_val = 0;
	u32 bank = 0;
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	nvm->ops.acquire(hw);

	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	act_offset = (bank) ? nvm->flash_bank_size : 0;
	act_offset += offset;

	ret_val = 0;
	for (i = 0; i < words; i++) {
		if (dev_spec->shadow_ram[offset + i].modified) {
			data[i] = dev_spec->shadow_ram[offset + i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

	nvm->ops.release(hw);

out:
	if (ret_val)
		e_dbg("NVM read error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (!hsfsts.hsf_status.fldesvalid) {
		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

	/* Either we should have a hardware SPI cycle in progress
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
	 * is 1 after hardware reset, which can then be used as an
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (!hsfsts.hsf_status.flcinprog) {
		/* There is no cycle running at present,
		 * so we can start a cycle.
		 * Begin by setting Flash Cycle Done.
		 */
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
		s32 i;

		/* Otherwise poll for sometime so the current
		 * cycle has a chance to end before giving up.
		 */
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (!hsfsts.hsf_status.flcinprog) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
		if (!ret_val) {
			/* Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
			e_dbg("Flash controller busy, cannot get access\n");
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
		return 0;

	return -E1000_ERR_NVM;
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			     hw->nvm.flash_base_addr);

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val =
		    e1000_flash_cycle_ich8lan(hw,
					      ICH_FLASH_READ_COMMAND_TIMEOUT);

		/* Check if FCERR is set to 1, if set to 1, clear it
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
		 * least significant byte first msb to lsb
		 */
		if (!ret_val) {
			flash_data = er32flash(ICH_FLASH_FDATA0);
			if (size == 1)
				*data = (u8)(flash_data & 0x000000FF);
			else if (size == 2)
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
			/* If we've gotten here, then things are probably
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (!hsfsts.hsf_status.flcdone) {
				e_dbg("Timeout error - flash cycle did not complete.\n");
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	nvm->ops.acquire(hw);

	for (i = 0; i < words; i++) {
		dev_spec->shadow_ram[offset + i].modified = true;
		dev_spec->shadow_ram[offset + i].value = data[i];
	}

	nvm->ops.release(hw);

	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
 *  After a successful commit, the shadow ram is cleared and is ready for
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		goto out;

	if (nvm->type != e1000_nvm_flash_sw)
		goto out;

	nvm->ops.acquire(hw);

	/* We're writing to the opposite bank so if we're on bank 1,
	 * write to bank 0 etc.  We also need to erase the segment that
	 * is going to be written
	 */
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	if (bank == 0) {
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
		if (ret_val)
			goto release;
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
		if (ret_val)
			goto release;
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		/* Determine whether to write the value stored
		 * in the other NVM bank or a modified value stored
		 * in the shadow RAM
		 */
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
								old_bank_offset,
								&data);
			if (ret_val)
				break;
		}

		/* If the word is 0x13, then make sure the signature bits
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
		 * while the write is still in progress
		 */
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		usleep_range(100, 200);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		usleep_range(100, 200);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset + 1,
							       (u8)(data >> 8));
		if (ret_val)
			break;
	}

	/* Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
	if (ret_val) {
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
		e_dbg("Flash commit failed.\n");
		goto release;
	}

	/* Finally validate the new segment by setting bit 15:14
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
	 * and we need to change bit 14 to 0b
	 */
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
	if (ret_val)
		goto release;

	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
	if (ret_val)
		goto release;

	/* And invalidate the previously valid segment by setting
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
	 * to 1's. We can write 1's to 0's without an erase
	 */
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
	if (ret_val)
		goto release;

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		dev_spec->shadow_ram[i].modified = false;
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

release:
	nvm->ops.release(hw);

	/* Reload the EEPROM, or else modifications will not appear
	 * until after the next adapter reset.
	 */
	if (!ret_val) {
		nvm->ops.reload(hw);
		usleep_range(10000, 20000);
	}

out:
	if (ret_val)
		e_dbg("NVM update error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;
	u16 word;
	u16 valid_csum_mask;

	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
	 * the checksum needs to be fixed.  This bit is an indication that
	 * the NVM was prepared by OEM software and did not calculate
	 * the checksum...a likely scenario.
	 */
	switch (hw->mac.type) {
	case e1000_pch_lpt:
		word = NVM_COMPAT;
		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
		break;
	default:
		word = NVM_FUTURE_INIT_WORD1;
		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
		break;
	}

	ret_val = e1000_read_nvm(hw, word, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & valid_csum_mask)) {
		data |= valid_csum_mask;
		ret_val = e1000_write_nvm(hw, word, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

	nvm->ops.acquire(hw);

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/* Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

	nvm->ops.release(hw);
}

/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			     hw->nvm.flash_base_addr);

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

		/* check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
		ret_val =
		    e1000_flash_cycle_ich8lan(hw,
					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

		/* If we're here, then things are most likely
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr)
			/* Repeat for some time before giving up. */
			continue;
		if (!hsfsts.hsf_status.flcdone) {
			e_dbg("Timeout error - flash cycle did not complete.\n");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
		usleep_range(100, 200);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
	s32 j, iteration, sector_size;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
		iteration = 1;
		break;
	case 2:
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
		iteration = 1;
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
	flash_linear_addr += (bank) ? flash_bank_size : 0;

	for (j = 0; j < iteration; j++) {
		do {
			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;

			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

			/* Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

			/* Write the last 24 bits of an index within the
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
			if (!ret_val)
				break;

			/* Check if FCERR is set to 1.  If 1,
			 * clear it and try the whole sequence
			 * a few more times else Done
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr)
				/* repeat for some time before giving up */
				continue;
			else if (!hsfsts.hsf_status.flcdone)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		return ret_val;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

	return 0;
}

/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

	/* ICH devices are "PCI Express"-ish.  They have
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 kum_cfg;
	u32 ctrl, reg;
	s32 ret_val;

	/* Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
		e_dbg("PCI-E Master disable polling has failed.\n");

	e_dbg("Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

	/* Disable the Transmit and Receive units.  Then delay to allow
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	usleep_range(10000, 20000);

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

	if (hw->mac.type == e1000_pchlan) {
		/* Save the NVM K1 bit setting */
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
		if (ret_val)
			return ret_val;

		if (kum_cfg & E1000_NVM_K1_ENABLE)
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

	ctrl = er32(CTRL);

	if (!hw->phy.ops.check_reset_block(hw)) {
		/* Full-chip reset requires MAC and PHY reset at the same
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;

		/* Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
	e_dbg("Issuing a global reset to ich8lan\n");
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
	/* cannot issue a flush here because it hangs the hardware */
	msleep(20);

	/* Set Phy Config Counter to 50msec */
	if (hw->mac.type == e1000_pch2lan) {
		reg = er32(FEXTNVM3);
		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, reg);
	}

	if (!ret_val)
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);

	if (ctrl & E1000_CTRL_PHY_RST) {
		ret_val = hw->phy.ops.get_cfg_done(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1000_post_phy_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

	/* For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

	ew32(IMC, 0xffffffff);
	er32(ICR);

	reg = er32(KABGTXD);
	reg |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, reg);

	return 0;
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
 *   - setup transmit descriptors
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	/* An error is not fatal and we should not stop init due to this */
	if (ret_val)
		e_dbg("Error initializing identification LED\n");

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	e_dbg("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/* Set the transmit descriptor write-back policy for both queues */
	txdctl = er32(TXDCTL(0));
	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
		  E1000_TXDCTL_FULL_TX_DESC_WB);
	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
		  E1000_TXDCTL_FULL_TX_DESC_WB);
	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
	ew32(TXDCTL(1), txdctl);

	/* ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

	/* Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
	reg = er32(TXDCTL(0));
	reg |= (1 << 22);
	ew32(TXDCTL(0), reg);

	/* Transmit Descriptor Control 1 */
	reg = er32(TXDCTL(1));
	reg |= (1 << 22);
	ew32(TXDCTL(1), reg);

	/* Transmit Arbitration Control 0 */
	reg = er32(TARC(0));
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
	ew32(TARC(0), reg);

	/* Transmit Arbitration Control 1 */
	reg = er32(TARC(1));
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
	ew32(TARC(1), reg);

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}

	/* work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);

	/* Disable IPv6 extension header parsing because some malformed
	 * IPv6 headers can hang the Rx.
	 */
	if (hw->mac.type == e1000_ich8lan)
		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
	ew32(RFCTL, reg);

	/* Enable ECC on Lynxpoint */
	if (hw->mac.type == e1000_pch_lpt) {
		reg = er32(PBECCSTS);
		reg |= E1000_PBECCSTS_ECC_ENABLE;
		ew32(PBECCSTS, reg);

		reg = er32(CTRL);
		reg |= E1000_CTRL_MEHE;
		ew32(CTRL, reg);
	}
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (hw->phy.ops.check_reset_block(hw))
		return 0;

	/* ICH parts do not have a word in the NVM to determine
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}

	/* Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;

	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);

	/* Continue to configure the copper link. */
	ret_val = hw->mac.ops.setup_physical_interface(hw);
	if (ret_val)
		return ret_val;

	ew32(FCTTV, hw->fc.pause_time);
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82579) ||
	    (hw->phy.type == e1000_phy_i217) ||
	    (hw->phy.type == e1000_phy_82577)) {
		ew32(FCRTV_PCH, hw->fc.refresh_time);

		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
		if (ret_val)
			return ret_val;
	}

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	/* Set the mac to wait the maximum time between each iteration
	 * and increase the max iterations when polling the phy;
	 * this fixes erroneous timeouts at 10Mbps.
	 */
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
	if (ret_val)
		return ret_val;
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
				       &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
					reg_data);
	if (ret_val)
		return ret_val;

	switch (hw->phy.type) {
	case e1000_phy_igp_3:
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_82577:
	case e1000_phy_82579:
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
		if (ret_val)
			return ret_val;
		break;
	default:
		break;
	}

	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY specific link setup function and then calls the
 *  generic setup_copper_link to finish configuring the link for
 *  Lynxpoint PCH devices
 **/
static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	ret_val = e1000_copper_link_setup_82577(hw);
	if (ret_val)
		return ret_val;

	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
 *  Calls the generic get_speed_and_duplex to retrieve the current link
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

	/* Make sure link is up before proceeding.  If not just return.
	 * Attempting this while link is negotiating fouled up link
	 * stability
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

	/* Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
 *  @hw: pointer to the HW structure
 *  @state: boolean value used to set the current Kumeran workaround state
 *
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						  bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
		e_dbg("Workaround applies to ICH8 only.\n");
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8 retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

		/* Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
 *  LPLU, Gig disable, MDIC PHY reset):
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
 *  Should only be called for ICH8[m] devices with any 1G Phy.
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
					reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
}

/**
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
 *  'Gig Disable' to force link speed negotiation to a lower speed based on
 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
 *  needs to be written.
 *  Parts that support (and are linked to a partner which support) EEE in
 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
 *  than 10Mbps w/o EEE.
 **/
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;

	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;

	if (hw->phy.type == e1000_phy_i217) {
		u16 phy_reg, device_id = hw->adapter->pdev->device;

		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
			u32 fextnvm6 = er32(FEXTNVM6);

			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
		}

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			goto out;

		if (!dev_spec->eee_disable) {
			u16 eee_advert;

			ret_val =
			    e1000_read_emi_reg_locked(hw,
						      I217_EEE_ADVERTISEMENT,
						      &eee_advert);
			if (ret_val)
				goto release;

			/* Disable LPLU if both link partners support 100BaseT
			 * EEE and 100Full is advertised on both ends of the
			 * link.
			 */
			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
			    (dev_spec->eee_lp_ability &
			     I82579_EEE_100_SUPPORTED) &&
			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
					      E1000_PHY_CTRL_NOND0A_LPLU);
		}

		/* For i217 Intel Rapid Start Technology support,
		 * when the system is going into Sx and no manageability engine
		 * is present, the driver must configure proxy to reset only on
		 * power good.  LPI (Low Power Idle) state must also reset only
		 * on power good, as well as the MTA (Multicast table array).
		 * The SMBus release must also be disabled on LCD reset.
		 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			/* Enable proxy to reset only on power good. */
			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);

			/* Set bit enable LPI (EEE) to reset only on
			 * power good.
			 */
			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);

			/* Disable the SMB release on LCD reset. */
			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
		}

		/* Enable MTA to reset for Intel Rapid Start Technology
		 * Support
		 */
		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);

release:
		hw->phy.ops.release(hw);
	}
out:
	ew32(PHY_CTRL, phy_ctrl);

	if (hw->mac.type == e1000_ich8lan)
		e1000e_gig_downshift_workaround_ich8lan(hw);

	if (hw->mac.type >= e1000_pchlan) {
		e1000_oem_bits_config_ich8lan(hw, false);

		/* Reset PHY to activate OEM bits on 82577/8 */
		if (hw->mac.type == e1000_pchlan)
			e1000e_phy_hw_reset_generic(hw);

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
}

/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
 *  On i217, setup Intel Rapid Start Technology.
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (hw->mac.type < e1000_pch2lan)
		return;

	ret_val = e1000_init_phy_workarounds_pchlan(hw);
	if (ret_val) {
		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
		return;
	}

	/* For i217 Intel Rapid Start Technology support when the system
	 * is transitioning from Sx and no manageability engine is present
	 * configure SMBus to restore on reset, disable proxy, and enable
	 * the reset on MTA (Multicast table array).
	 */
	if (hw->phy.type == e1000_phy_i217) {
		u16 phy_reg;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val) {
			e_dbg("Failed to setup iRST\n");
			return;
		}

		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			/* Restore clear on SMB if no manageability engine
			 * is present
			 */
			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
			if (ret_val)
				goto release;
			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);

			/* Disable Proxy */
			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
		}
		/* Enable reset on MTA */
		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
		if (ret_val)
			goto release;
		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
release:
		if (ret_val)
			e_dbg("Error %d in resume workarounds\n", ret_val);
		hw->phy.ops.release(hw);
	}
}

/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
 *  e1000_led_on_ich8lan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
 *  e1000_led_off_ich8lan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/* If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

	return e1e_wphy(hw, HV_LED_CONFIG, data);
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/* If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

	return e1e_wphy(hw, HV_LED_CONFIG, data);
}

/**
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u32 bank = 0;
	u32 status;

	e1000e_get_cfg_done_generic(hw);

	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/* When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
	}

	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
	if (hw->mac.type <= e1000_ich9lan) {
		if (!(er32(EECD) & E1000_EECD_PRES) &&
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
			e_dbg("EEPROM not present\n");
			ret_val = -E1000_ERR_CONFIG;
		}
	}

	return ret_val;
}

/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
	u16 phy_data;
	s32 ret_val;

	e1000e_clear_hw_cntrs_base(hw);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82579) ||
	    (hw->phy.type == e1000_phy_i217) ||
	    (hw->phy.type == e1000_phy_82577)) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
	}
}

static const struct e1000_mac_operations ich8_mac_ops = {
	/* check_mng_mode dependent on mac type */
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
	/* cleanup_led dependent on mac type */
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
	.set_lan_id		= e1000_set_lan_id_single_port,
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
	/* id_led_init dependent on mac type */
	.config_collision_dist	= e1000e_config_collision_dist_generic,
	.rar_set		= e1000e_rar_set_generic,
	.rar_get_count		= e1000e_rar_get_count_generic,
};

static const struct e1000_phy_operations ich8_phy_ops = {
	.acquire		= e1000_acquire_swflag_ich8lan,
	.check_reset_block	= e1000_check_reset_block_ich8lan,
	.commit			= NULL,
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
	.write_reg		= e1000e_write_phy_reg_igp,
};

static const struct e1000_nvm_operations ich8_nvm_ops = {
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read			= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
	.reload			= e1000e_reload_nvm_generic,
	.update			= e1000_update_nvm_checksum_ich8lan,
	.valid_led_default	= e1000_valid_led_default_ich8lan,
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
};

const struct e1000_info e1000_ich8_info = {
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
				  | FLAG_IS_ICH
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_ich9_info = {
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 18,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_ich10_info = {
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 18,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_pch_info = {
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS,
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_pch2_info = {
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_HW_TIMESTAMP
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
	.pba			= 26,
	.max_hw_frame_size	= 9018,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_pch_lpt_info = {
	.mac			= e1000_pch_lpt,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_HW_TIMESTAMP
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
	.pba			= 26,
	.max_hw_frame_size	= 9018,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};