Minor change.
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006-2008 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* The IgH EtherCAT Master is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* ---
*
* The license mentioned above concerns the source code only. Using the
* EtherCAT technology and brand is only permitted in compliance with the
* industrial property and similar rights of Beckhoff Automation GmbH.
*
*****************************************************************************/
/**
\file
EtherCAT slave methods.
*/
/*****************************************************************************/
#include <linux/module.h>
#include <linux/delay.h>
#include "globals.h"
#include "datagram.h"
#include "master.h"
#include "slave_config.h"
#include "slave.h"
/*****************************************************************************/
extern const ec_code_msg_t al_status_messages[];
/*****************************************************************************/
char *ec_slave_sii_string(ec_slave_t *, unsigned int);
/*****************************************************************************/
/**
Slave constructor.
\return 0 in case of success, else < 0
*/
void ec_slave_init(
ec_slave_t *slave, /**< EtherCAT slave */
ec_master_t *master, /**< EtherCAT master */
ec_device_index_t dev_idx, /**< Device index. */
uint16_t ring_position, /**< ring position */
uint16_t station_address /**< station address to configure */
)
{
unsigned int i;
int ret;
slave->master = master;
slave->device_index = dev_idx;
slave->ring_position = ring_position;
slave->station_address = station_address;
slave->effective_alias = 0x0000;
slave->config = NULL;
slave->requested_state = EC_SLAVE_STATE_PREOP;
slave->current_state = EC_SLAVE_STATE_UNKNOWN;
slave->error_flag = 0;
slave->force_config = 0;
slave->configured_rx_mailbox_offset = 0x0000;
slave->configured_rx_mailbox_size = 0x0000;
slave->configured_tx_mailbox_offset = 0x0000;
slave->configured_tx_mailbox_size = 0x0000;
slave->base_type = 0;
slave->base_revision = 0;
slave->base_build = 0;
slave->base_fmmu_count = 0;
slave->base_sync_count = 0;
for (i = 0; i < EC_MAX_PORTS; i++) {
slave->ports[i].desc = EC_PORT_NOT_IMPLEMENTED;
slave->ports[i].link.link_up = 0;
slave->ports[i].link.loop_closed = 0;
slave->ports[i].link.signal_detected = 0;
slave->sii.physical_layer[i] = 0xFF;
slave->ports[i].receive_time = 0U;
slave->ports[i].next_slave = NULL;
slave->ports[i].delay_to_next_dc = 0U;
}
slave->base_fmmu_bit_operation = 0;
slave->base_dc_supported = 0;
slave->base_dc_range = EC_DC_32;
slave->has_dc_system_time = 0;
slave->transmission_delay = 0U;
slave->sii_words = NULL;
slave->sii_nwords = 0;
slave->sii.alias = 0x0000;
slave->sii.vendor_id = 0x00000000;
slave->sii.product_code = 0x00000000;
slave->sii.revision_number = 0x00000000;
slave->sii.serial_number = 0x00000000;
slave->sii.boot_rx_mailbox_offset = 0x0000;
slave->sii.boot_rx_mailbox_size = 0x0000;
slave->sii.boot_tx_mailbox_offset = 0x0000;
slave->sii.boot_tx_mailbox_size = 0x0000;
slave->sii.std_rx_mailbox_offset = 0x0000;
slave->sii.std_rx_mailbox_size = 0x0000;
slave->sii.std_tx_mailbox_offset = 0x0000;
slave->sii.std_tx_mailbox_size = 0x0000;
slave->sii.mailbox_protocols = 0;
slave->sii.strings = NULL;
slave->sii.string_count = 0;
slave->sii.has_general = 0;
slave->sii.group = NULL;
slave->sii.image = NULL;
slave->sii.order = NULL;
slave->sii.name = NULL;
memset(&slave->sii.coe_details, 0x00, sizeof(ec_sii_coe_details_t));
memset(&slave->sii.general_flags, 0x00, sizeof(ec_sii_general_flags_t));
slave->sii.current_on_ebus = 0;
slave->sii.syncs = NULL;
slave->sii.sync_count = 0;
INIT_LIST_HEAD(&slave->sii.pdos);
INIT_LIST_HEAD(&slave->sdo_dictionary);
slave->sdo_dictionary_fetched = 0;
slave->jiffies_preop = 0;
INIT_LIST_HEAD(&slave->slave_sdo_requests);
init_waitqueue_head(&slave->sdo_queue);
INIT_LIST_HEAD(&slave->foe_requests);
init_waitqueue_head(&slave->foe_queue);
INIT_LIST_HEAD(&slave->soe_requests);
init_waitqueue_head(&slave->soe_queue);
// init state machine datagram
ec_datagram_init(&slave->fsm_datagram);
snprintf(slave->fsm_datagram.name, EC_DATAGRAM_NAME_SIZE,
"slave%u-fsm", slave->ring_position);
ret = ec_datagram_prealloc(&slave->fsm_datagram, EC_MAX_DATA_SIZE);
if (ret < 0) {
ec_datagram_clear(&slave->fsm_datagram);
EC_SLAVE_ERR(slave, "Failed to allocate FSM datagram.\n");
return;
}
// create state machine object
ec_fsm_slave_init(&slave->fsm, slave, &slave->fsm_datagram);
}
/*****************************************************************************/
/**
Slave destructor.
Clears and frees a slave object.
*/
void ec_slave_clear(ec_slave_t *slave /**< EtherCAT slave */)
{
ec_sdo_t *sdo, *next_sdo;
unsigned int i;
ec_pdo_t *pdo, *next_pdo;
// abort all pending requests
while (!list_empty(&slave->slave_sdo_requests)) {
ec_master_sdo_request_t *request =
list_entry(slave->slave_sdo_requests.next,
ec_master_sdo_request_t, list);
list_del_init(&request->list); // dequeue
EC_SLAVE_WARN(slave, "Discarding SDO request,"
" slave about to be deleted.\n");
request->req.state = EC_INT_REQUEST_FAILURE;
wake_up(&slave->sdo_queue);
}
while (!list_empty(&slave->foe_requests)) {
ec_master_foe_request_t *request =
list_entry(slave->foe_requests.next,
ec_master_foe_request_t, list);
list_del_init(&request->list); // dequeue
EC_SLAVE_WARN(slave, "Discarding FoE request,"
" slave about to be deleted.\n");
request->req.state = EC_INT_REQUEST_FAILURE;
wake_up(&slave->foe_queue);
}
while (!list_empty(&slave->soe_requests)) {
ec_master_soe_request_t *request =
list_entry(slave->soe_requests.next,
ec_master_soe_request_t, list);
list_del_init(&request->list); // dequeue
EC_SLAVE_WARN(slave, "Discarding SoE request,"
" slave about to be deleted.\n");
request->req.state = EC_INT_REQUEST_FAILURE;
wake_up(&slave->soe_queue);
}
if (slave->config)
ec_slave_config_detach(slave->config);
// free all SDOs
list_for_each_entry_safe(sdo, next_sdo, &slave->sdo_dictionary, list) {
list_del(&sdo->list);
ec_sdo_clear(sdo);
kfree(sdo);
}
// free all strings
if (slave->sii.strings) {
for (i = 0; i < slave->sii.string_count; i++)
kfree(slave->sii.strings[i]);
kfree(slave->sii.strings);
}
// free all sync managers
ec_slave_clear_sync_managers(slave);
// free all SII PDOs
list_for_each_entry_safe(pdo, next_pdo, &slave->sii.pdos, list) {
list_del(&pdo->list);
ec_pdo_clear(pdo);
kfree(pdo);
}
if (slave->sii_words)
kfree(slave->sii_words);
ec_fsm_slave_clear(&slave->fsm);
ec_datagram_clear(&slave->fsm_datagram);
}
/*****************************************************************************/
/** Clear the sync manager array.
*/
void ec_slave_clear_sync_managers(ec_slave_t *slave /**< EtherCAT slave. */)
{
unsigned int i;
if (slave->sii.syncs) {
for (i = 0; i < slave->sii.sync_count; i++) {
ec_sync_clear(&slave->sii.syncs[i]);
}
kfree(slave->sii.syncs);
slave->sii.syncs = NULL;
}
}
/*****************************************************************************/
/**
* Sets the application state of a slave.
*/
void ec_slave_set_state(ec_slave_t *slave, /**< EtherCAT slave */
ec_slave_state_t new_state /**< new application state */
)
{
if (new_state != slave->current_state) {
if (slave->master->debug_level) {
char old_state[EC_STATE_STRING_SIZE],
cur_state[EC_STATE_STRING_SIZE];
ec_state_string(slave->current_state, old_state, 0);
ec_state_string(new_state, cur_state, 0);
EC_SLAVE_DBG(slave, 0, "%s -> %s.\n", old_state, cur_state);
}
slave->current_state = new_state;
}
}
/*****************************************************************************/
/**
* Request a slave state and resets the error flag.
*/
void ec_slave_request_state(ec_slave_t *slave, /**< EtherCAT slave */
ec_slave_state_t state /**< new state */
)
{
slave->requested_state = state;
slave->error_flag = 0;
}
/*****************************************************************************/
/**
Fetches data from a STRING category.
\todo range checking
\return 0 in case of success, else < 0
*/
int ec_slave_fetch_sii_strings(
ec_slave_t *slave, /**< EtherCAT slave */
const uint8_t *data, /**< category data */
size_t data_size /**< number of bytes */
)
{
int i, err;
size_t size;
off_t offset;
slave->sii.string_count = data[0];
if (slave->sii.string_count) {
if (!(slave->sii.strings =
kmalloc(sizeof(char *) * slave->sii.string_count,
GFP_KERNEL))) {
EC_SLAVE_ERR(slave, "Failed to allocate string array memory.\n");
err = -ENOMEM;
goto out_zero;
}
offset = 1;
for (i = 0; i < slave->sii.string_count; i++) {
size = data[offset];
// allocate memory for string structure and data at a single blow
if (!(slave->sii.strings[i] =
kmalloc(sizeof(char) * size + 1, GFP_KERNEL))) {
EC_SLAVE_ERR(slave, "Failed to allocate string memory.\n");
err = -ENOMEM;
goto out_free;
}
memcpy(slave->sii.strings[i], data + offset + 1, size);
slave->sii.strings[i][size] = 0x00; // append binary zero
offset += 1 + size;
}
}
return 0;
out_free:
for (i--; i >= 0; i--)
kfree(slave->sii.strings[i]);
kfree(slave->sii.strings);
slave->sii.strings = NULL;
out_zero:
slave->sii.string_count = 0;
return err;
}
/*****************************************************************************/
/**
Fetches data from a GENERAL category.
\return 0 in case of success, else < 0
*/
int ec_slave_fetch_sii_general(
ec_slave_t *slave, /**< EtherCAT slave */
const uint8_t *data, /**< category data */
size_t data_size /**< size in bytes */
)
{
unsigned int i;
uint8_t flags;
if (data_size != 32) {
EC_SLAVE_ERR(slave, "Wrong size of general category (%zu/32).\n",
data_size);
return -EINVAL;
}
slave->sii.group = ec_slave_sii_string(slave, data[0]);
slave->sii.image = ec_slave_sii_string(slave, data[1]);
slave->sii.order = ec_slave_sii_string(slave, data[2]);
slave->sii.name = ec_slave_sii_string(slave, data[3]);
for (i = 0; i < 4; i++)
slave->sii.physical_layer[i] =
(data[4] & (0x03 << (i * 2))) >> (i * 2);
// read CoE details
flags = EC_READ_U8(data + 5);
slave->sii.coe_details.enable_sdo = (flags >> 0) & 0x01;
slave->sii.coe_details.enable_sdo_info = (flags >> 1) & 0x01;
slave->sii.coe_details.enable_pdo_assign = (flags >> 2) & 0x01;
slave->sii.coe_details.enable_pdo_configuration = (flags >> 3) & 0x01;
slave->sii.coe_details.enable_upload_at_startup = (flags >> 4) & 0x01;
slave->sii.coe_details.enable_sdo_complete_access = (flags >> 5) & 0x01;
// read general flags
flags = EC_READ_U8(data + 0x000B);
slave->sii.general_flags.enable_safeop = (flags >> 0) & 0x01;
slave->sii.general_flags.enable_not_lrw = (flags >> 1) & 0x01;
slave->sii.current_on_ebus = EC_READ_S16(data + 0x0C);
slave->sii.has_general = 1;
return 0;
}
/*****************************************************************************/
/** Fetches data from a SYNC MANAGER category.
*
* Appends the sync managers described in the category to the existing ones.
*
* \return 0 in case of success, else < 0
*/
int ec_slave_fetch_sii_syncs(
ec_slave_t *slave, /**< EtherCAT slave. */
const uint8_t *data, /**< Category data. */
size_t data_size /**< Number of bytes. */
)
{
unsigned int i, count, total_count;
ec_sync_t *sync;
size_t memsize;
ec_sync_t *syncs;
uint8_t index;
// one sync manager struct is 4 words long
if (data_size % 8) {
EC_SLAVE_ERR(slave, "Invalid SII sync manager category size %zu.\n",
data_size);
return -EINVAL;
}
count = data_size / 8;
if (count) {
total_count = count + slave->sii.sync_count;
if (total_count > EC_MAX_SYNC_MANAGERS) {
EC_SLAVE_ERR(slave, "Exceeded maximum number of"
" sync managers!\n");
return -EOVERFLOW;
}
memsize = sizeof(ec_sync_t) * total_count;
if (!(syncs = kmalloc(memsize, GFP_KERNEL))) {
EC_SLAVE_ERR(slave, "Failed to allocate %zu bytes"
" for sync managers.\n", memsize);
return -ENOMEM;
}
for (i = 0; i < slave->sii.sync_count; i++)
ec_sync_init_copy(syncs + i, slave->sii.syncs + i);
// initialize new sync managers
for (i = 0; i < count; i++, data += 8) {
index = i + slave->sii.sync_count;
sync = &syncs[index];
ec_sync_init(sync, slave);
sync->physical_start_address = EC_READ_U16(data);
sync->default_length = EC_READ_U16(data + 2);
sync->control_register = EC_READ_U8(data + 4);
sync->enable = EC_READ_U8(data + 6);
}
if (slave->sii.syncs)
kfree(slave->sii.syncs);
slave->sii.syncs = syncs;
slave->sii.sync_count = total_count;
}
return 0;
}
/*****************************************************************************/
/**
Fetches data from a [RT]xPDO category.
\return 0 in case of success, else < 0
*/
int ec_slave_fetch_sii_pdos(
ec_slave_t *slave, /**< EtherCAT slave */
const uint8_t *data, /**< category data */
size_t data_size, /**< number of bytes */
ec_direction_t dir /**< PDO direction. */
)
{
int ret;
ec_pdo_t *pdo;
ec_pdo_entry_t *entry;
unsigned int entry_count, i;
while (data_size >= 8) {
if (!(pdo = kmalloc(sizeof(ec_pdo_t), GFP_KERNEL))) {
EC_SLAVE_ERR(slave, "Failed to allocate PDO memory.\n");
return -ENOMEM;
}
ec_pdo_init(pdo);
pdo->index = EC_READ_U16(data);
entry_count = EC_READ_U8(data + 2);
pdo->sync_index = EC_READ_U8(data + 3);
ret = ec_pdo_set_name(pdo,
ec_slave_sii_string(slave, EC_READ_U8(data + 5)));
if (ret) {
ec_pdo_clear(pdo);
kfree(pdo);
return ret;
}
list_add_tail(&pdo->list, &slave->sii.pdos);
data_size -= 8;
data += 8;
for (i = 0; i < entry_count; i++) {
if (!(entry = kmalloc(sizeof(ec_pdo_entry_t), GFP_KERNEL))) {
EC_SLAVE_ERR(slave, "Failed to allocate PDO entry memory.\n");
return -ENOMEM;
}
ec_pdo_entry_init(entry);
entry->index = EC_READ_U16(data);
entry->subindex = EC_READ_U8(data + 2);
ret = ec_pdo_entry_set_name(entry,
ec_slave_sii_string(slave, EC_READ_U8(data + 3)));
if (ret) {
ec_pdo_entry_clear(entry);
kfree(entry);
return ret;
}
entry->bit_length = EC_READ_U8(data + 5);
list_add_tail(&entry->list, &pdo->entries);
data_size -= 8;
data += 8;
}
// if sync manager index is positive, the PDO is mapped by default
if (pdo->sync_index >= 0) {
ec_sync_t *sync;
if (!(sync = ec_slave_get_sync(slave, pdo->sync_index))) {
EC_SLAVE_ERR(slave, "Invalid SM index %i for PDO 0x%04X.",
pdo->sync_index, pdo->index);
return -ENOENT;
}
ret = ec_pdo_list_add_pdo_copy(&sync->pdos, pdo);
if (ret)
return ret;
}
}
return 0;
}
/*****************************************************************************/
/**
Searches the string list for an index.
\return 0 in case of success, else < 0
*/
char *ec_slave_sii_string(
ec_slave_t *slave, /**< EtherCAT slave */
unsigned int index /**< string index */
)
{
if (!index--)
return NULL;
if (index >= slave->sii.string_count) {
EC_SLAVE_DBG(slave, 1, "String %u not found.\n", index);
return NULL;
}
return slave->sii.strings[index];
}
/*****************************************************************************/
/** Get the sync manager given an index.
*
* \return pointer to sync manager, or NULL.
*/
ec_sync_t *ec_slave_get_sync(
ec_slave_t *slave, /**< EtherCAT slave. */
uint8_t sync_index /**< Sync manager index. */
)
{
if (sync_index < slave->sii.sync_count) {
return &slave->sii.syncs[sync_index];
} else {
return NULL;
}
}
/*****************************************************************************/
/**
Counts the total number of SDOs and entries in the dictionary.
*/
void ec_slave_sdo_dict_info(const ec_slave_t *slave, /**< EtherCAT slave */
unsigned int *sdo_count, /**< number of SDOs */
unsigned int *entry_count /**< total number of
entries */
)
{
unsigned int sdos = 0, entries = 0;
ec_sdo_t *sdo;
ec_sdo_entry_t *entry;
list_for_each_entry(sdo, &slave->sdo_dictionary, list) {
sdos++;
list_for_each_entry(entry, &sdo->entries, list) {
entries++;
}
}
*sdo_count = sdos;
*entry_count = entries;
}
/*****************************************************************************/
/**
* Get an SDO from the dictionary.
* \returns The desired SDO, or NULL.
*/
ec_sdo_t *ec_slave_get_sdo(
ec_slave_t *slave, /**< EtherCAT slave */
uint16_t index /**< SDO index */
)
{
ec_sdo_t *sdo;
list_for_each_entry(sdo, &slave->sdo_dictionary, list) {
if (sdo->index != index)
continue;
return sdo;
}
return NULL;
}
/*****************************************************************************/
/**
* Get an SDO from the dictionary.
*
* const version.
*
* \returns The desired SDO, or NULL.
*/
const ec_sdo_t *ec_slave_get_sdo_const(
const ec_slave_t *slave, /**< EtherCAT slave */
uint16_t index /**< SDO index */
)
{
const ec_sdo_t *sdo;
list_for_each_entry(sdo, &slave->sdo_dictionary, list) {
if (sdo->index != index)
continue;
return sdo;
}
return NULL;
}
/*****************************************************************************/
/** Get an SDO from the dictionary, given its position in the list.
* \returns The desired SDO, or NULL.
*/
const ec_sdo_t *ec_slave_get_sdo_by_pos_const(
const ec_slave_t *slave, /**< EtherCAT slave. */
uint16_t sdo_position /**< SDO list position. */
)
{
const ec_sdo_t *sdo;
list_for_each_entry(sdo, &slave->sdo_dictionary, list) {
if (sdo_position--)
continue;
return sdo;
}
return NULL;
}
/*****************************************************************************/
/** Get the number of SDOs in the dictionary.
* \returns SDO count.
*/
uint16_t ec_slave_sdo_count(
const ec_slave_t *slave /**< EtherCAT slave. */
)
{
const ec_sdo_t *sdo;
uint16_t count = 0;
list_for_each_entry(sdo, &slave->sdo_dictionary, list) {
count++;
}
return count;
}
/*****************************************************************************/
/** Finds a mapped PDO.
* \returns The desired PDO object, or NULL.
*/
const ec_pdo_t *ec_slave_find_pdo(
const ec_slave_t *slave, /**< Slave. */
uint16_t index /**< PDO index to find. */
)
{
unsigned int i;
const ec_sync_t *sync;
const ec_pdo_t *pdo;
for (i = 0; i < slave->sii.sync_count; i++) {
sync = &slave->sii.syncs[i];
if (!(pdo = ec_pdo_list_find_pdo_const(&sync->pdos, index)))
continue;
return pdo;
}
return NULL;
}
/*****************************************************************************/
/** Find name for a PDO and its entries.
*/
void ec_slave_find_names_for_pdo(
ec_slave_t *slave,
ec_pdo_t *pdo
)
{
const ec_sdo_t *sdo;
ec_pdo_entry_t *pdo_entry;
const ec_sdo_entry_t *sdo_entry;
list_for_each_entry(sdo, &slave->sdo_dictionary, list) {
if (sdo->index == pdo->index) {
ec_pdo_set_name(pdo, sdo->name);
} else {
list_for_each_entry(pdo_entry, &pdo->entries, list) {
if (sdo->index == pdo_entry->index) {
sdo_entry = ec_sdo_get_entry_const(
sdo, pdo_entry->subindex);
if (sdo_entry) {
ec_pdo_entry_set_name(pdo_entry,
sdo_entry->description);
}
}
}
}
}
}
/*****************************************************************************/
/** Attach PDO names.
*/
void ec_slave_attach_pdo_names(
ec_slave_t *slave
)
{
unsigned int i;
ec_sync_t *sync;
ec_pdo_t *pdo;
for (i = 0; i < slave->sii.sync_count; i++) {
sync = slave->sii.syncs + i;
list_for_each_entry(pdo, &sync->pdos.list, list) {
ec_slave_find_names_for_pdo(slave, pdo);
}
}
}
/*****************************************************************************/
/** Returns the previous connected port of a given port.
*/
unsigned int ec_slave_get_previous_port(
ec_slave_t *slave, /**< EtherCAT slave. */
unsigned int port_index /**< Port index. */
)
{
static const unsigned int prev_table[EC_MAX_PORTS] = {
2, 3, 1, 0
};
if (port_index >= EC_MAX_PORTS) {
EC_SLAVE_WARN(slave, "%s(port_index=%u): Invalid port index!\n",
__func__, port_index);
}
do {
port_index = prev_table[port_index];
if (slave->ports[port_index].next_slave) {
return port_index;
}
} while (port_index);
return 0;
}
/*****************************************************************************/
/** Returns the next connected port of a given port.
*/
unsigned int ec_slave_get_next_port(
ec_slave_t *slave, /**< EtherCAT slave. */
unsigned int port_index /**< Port index. */
)
{
static const unsigned int next_table[EC_MAX_PORTS] = {
3, 2, 0, 1
};
if (port_index >= EC_MAX_PORTS) {
EC_SLAVE_WARN(slave, "%s(port_index=%u): Invalid port index!\n",
__func__, port_index);
}
do {
port_index = next_table[port_index];
if (slave->ports[port_index].next_slave) {
return port_index;
}
} while (port_index);
return 0;
}
/*****************************************************************************/
/** Calculates the sum of round-trip-times of connected ports 1-3.
*/
uint32_t ec_slave_calc_rtt_sum(
ec_slave_t *slave /**< EtherCAT slave. */
)
{
uint32_t rtt_sum = 0, rtt;
unsigned int port_index = ec_slave_get_next_port(slave, 0);
while (port_index != 0) {
unsigned int prev_index =
ec_slave_get_previous_port(slave, port_index);
rtt = slave->ports[port_index].receive_time -
slave->ports[prev_index].receive_time;
rtt_sum += rtt;
port_index = ec_slave_get_next_port(slave, port_index);
}
return rtt_sum;
}
/*****************************************************************************/
/** Finds the next slave supporting DC delay measurement.
*/
ec_slave_t *ec_slave_find_next_dc_slave(
ec_slave_t *slave /**< EtherCAT slave. */
)
{
unsigned int port_index;
ec_slave_t *dc_slave = NULL;
if (slave->base_dc_supported) {
dc_slave = slave;
} else {
port_index = ec_slave_get_next_port(slave, 0);
while (port_index != 0) {
ec_slave_t *next = slave->ports[port_index].next_slave;
if (next) {
dc_slave = ec_slave_find_next_dc_slave(next);
if (dc_slave) {
break;
}
}
port_index = ec_slave_get_next_port(slave, port_index);
}
}
return dc_slave;
}
/*****************************************************************************/
/** Calculates the port transmission delays.
*/
void ec_slave_calc_port_delays(
ec_slave_t *slave /**< EtherCAT slave. */
)
{
unsigned int port_index;
ec_slave_t *next_slave, *next_dc;
uint32_t rtt, next_rtt_sum;
if (!slave->base_dc_supported)
return;
port_index = ec_slave_get_next_port(slave, 0);
while (port_index != 0) {
next_slave = slave->ports[port_index].next_slave;
next_dc = ec_slave_find_next_dc_slave(next_slave);
if (next_dc) {
unsigned int prev_port =
ec_slave_get_previous_port(slave, port_index);
rtt = slave->ports[port_index].receive_time -
slave->ports[prev_port].receive_time;
next_rtt_sum = ec_slave_calc_rtt_sum(next_dc);
slave->ports[port_index].delay_to_next_dc =
(rtt - next_rtt_sum) / 2; // FIXME
next_dc->ports[0].delay_to_next_dc =
(rtt - next_rtt_sum) / 2;
#if 0
EC_SLAVE_DBG(slave, 1, "delay %u:%u rtt=%u"
" next_rtt_sum=%u delay=%u\n",
slave->ring_position, port_index, rtt, next_rtt_sum,
slave->ports[port_index].delay_to_next_dc);
#endif
}
port_index = ec_slave_get_next_port(slave, port_index);
}
}
/*****************************************************************************/
/** Recursively calculates transmission delays.
*/
void ec_slave_calc_transmission_delays_rec(
ec_slave_t *slave, /**< Current slave. */
uint32_t *delay /**< Sum of delays. */
)
{
unsigned int i;
ec_slave_t *next_dc;
EC_SLAVE_DBG(slave, 1, "%s(delay = %u ns)\n", __func__, *delay);
slave->transmission_delay = *delay;
i = ec_slave_get_next_port(slave, 0);
while (i != 0) {
ec_slave_port_t *port = &slave->ports[i];
next_dc = ec_slave_find_next_dc_slave(port->next_slave);
if (next_dc) {
*delay = *delay + port->delay_to_next_dc;
#if 0
EC_SLAVE_DBG(slave, 1, "%u:%u %u\n",
slave->ring_position, i, *delay);
#endif
ec_slave_calc_transmission_delays_rec(next_dc, delay);
}
i = ec_slave_get_next_port(slave, i);
}
*delay = *delay + slave->ports[0].delay_to_next_dc;
}
/*****************************************************************************/