examples/user/main.c
author Philipp Weyer <pw@igh-essen.com>
Fri, 18 Aug 2017 12:30:16 +0200
changeset 2679 33b922ec1871
parent 2649 717c331cc227
permissions -rw-r--r--
Fixed lib include paths
/*****************************************************************************
 *
 *  $Id$
 *
 *  Copyright (C) 2007-2009  Florian Pose, Ingenieurgemeinschaft IgH
 *
 *  This file is part of the IgH EtherCAT Master.
 *
 *  The IgH EtherCAT Master is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License version 2, as
 *  published by the Free Software Foundation.
 *
 *  The IgH EtherCAT Master is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
 *  Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the IgH EtherCAT Master; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *  ---
 *
 *  The license mentioned above concerns the source code only. Using the
 *  EtherCAT technology and brand is only permitted in compliance with the
 *  industrial property and similar rights of Beckhoff Automation GmbH.
 *
 ****************************************************************************/

#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h> /* clock_gettime() */
#include <sys/mman.h> /* mlockall() */

/****************************************************************************/

#include "ecrt.h"

/****************************************************************************/

/** Task period in ns. */
#define PERIOD_NS   (1000000)

#define MAX_SAFE_STACK (8 * 1024) /* The maximum stack size which is
                                     guranteed safe to access without
                                     faulting */

/****************************************************************************/

/* Constants */
#define NSEC_PER_SEC (1000000000)
#define FREQUENCY (NSEC_PER_SEC / PERIOD_NS)

/****************************************************************************/

// EtherCAT
static ec_master_t *master = NULL;
static ec_master_state_t master_state = {};

static ec_domain_t *domain1 = NULL;
static ec_domain_state_t domain1_state = {};

static ec_slave_config_t *sc_ana_in = NULL;
static ec_slave_config_state_t sc_ana_in_state = {};

/****************************************************************************/

// process data
static uint8_t *domain1_pd = NULL;

#define BusCouplerPos  0, 0
#define DigOutSlavePos 0, 2
#define AnaInSlavePos  0, 3
#define AnaOutSlavePos 0, 4

#define Beckhoff_EK1100 0x00000002, 0x044c2c52
#define Beckhoff_EL2004 0x00000002, 0x07d43052
#define Beckhoff_EL2032 0x00000002, 0x07f03052
#define Beckhoff_EL3152 0x00000002, 0x0c503052
#define Beckhoff_EL3102 0x00000002, 0x0c1e3052
#define Beckhoff_EL4102 0x00000002, 0x10063052

// offsets for PDO entries
static unsigned int off_ana_in_status;
static unsigned int off_ana_in_value;
static unsigned int off_ana_out;
static unsigned int off_dig_out;

const static ec_pdo_entry_reg_t domain1_regs[] = {
    {AnaInSlavePos,  Beckhoff_EL3102, 0x3101, 1, &off_ana_in_status},
    {AnaInSlavePos,  Beckhoff_EL3102, 0x3101, 2, &off_ana_in_value},
    {AnaOutSlavePos, Beckhoff_EL4102, 0x3001, 1, &off_ana_out},
    {DigOutSlavePos, Beckhoff_EL2032, 0x3001, 1, &off_dig_out},
    {}
};

static unsigned int counter = 0;
static unsigned int blink = 0;

/*****************************************************************************/

// Analog in --------------------------

static ec_pdo_entry_info_t el3102_pdo_entries[] = {
    {0x3101, 1,  8}, // channel 1 status
    {0x3101, 2, 16}, // channel 1 value
    {0x3102, 1,  8}, // channel 2 status
    {0x3102, 2, 16}, // channel 2 value
    {0x6401, 1, 16}, // channel 1 value (alt.)
    {0x6401, 2, 16}  // channel 2 value (alt.)
};

static ec_pdo_info_t el3102_pdos[] = {
    {0x1A00, 2, el3102_pdo_entries},
    {0x1A01, 2, el3102_pdo_entries + 2}
};

static ec_sync_info_t el3102_syncs[] = {
    {2, EC_DIR_OUTPUT},
    {3, EC_DIR_INPUT, 2, el3102_pdos},
    {0xff}
};

// Analog out -------------------------

static ec_pdo_entry_info_t el4102_pdo_entries[] = {
    {0x3001, 1, 16}, // channel 1 value
    {0x3002, 1, 16}, // channel 2 value
};

static ec_pdo_info_t el4102_pdos[] = {
    {0x1600, 1, el4102_pdo_entries},
    {0x1601, 1, el4102_pdo_entries + 1}
};

static ec_sync_info_t el4102_syncs[] = {
    {2, EC_DIR_OUTPUT, 2, el4102_pdos},
    {3, EC_DIR_INPUT},
    {0xff}
};

// Digital out ------------------------

static ec_pdo_entry_info_t el2004_channels[] = {
    {0x3001, 1, 1}, // Value 1
    {0x3001, 2, 1}, // Value 2
    {0x3001, 3, 1}, // Value 3
    {0x3001, 4, 1}  // Value 4
};

static ec_pdo_info_t el2004_pdos[] = {
    {0x1600, 1, &el2004_channels[0]},
    {0x1601, 1, &el2004_channels[1]},
    {0x1602, 1, &el2004_channels[2]},
    {0x1603, 1, &el2004_channels[3]}
};

static ec_sync_info_t el2004_syncs[] = {
    {0, EC_DIR_OUTPUT, 4, el2004_pdos},
    {1, EC_DIR_INPUT},
    {0xff}
};

/*****************************************************************************/

void check_domain1_state(void)
{
    ec_domain_state_t ds;

    ecrt_domain_state(domain1, &ds);

    if (ds.working_counter != domain1_state.working_counter) {
        printf("Domain1: WC %u.\n", ds.working_counter);
    }
    if (ds.wc_state != domain1_state.wc_state) {
        printf("Domain1: State %u.\n", ds.wc_state);
    }

    domain1_state = ds;
}

/*****************************************************************************/

void check_master_state(void)
{
    ec_master_state_t ms;

    ecrt_master_state(master, &ms);

    if (ms.slaves_responding != master_state.slaves_responding) {
        printf("%u slave(s).\n", ms.slaves_responding);
    }
    if (ms.al_states != master_state.al_states) {
        printf("AL states: 0x%02X.\n", ms.al_states);
    }
    if (ms.link_up != master_state.link_up) {
        printf("Link is %s.\n", ms.link_up ? "up" : "down");
    }

    master_state = ms;
}

/*****************************************************************************/

void check_slave_config_states(void)
{
    ec_slave_config_state_t s;

    ecrt_slave_config_state(sc_ana_in, &s);

    if (s.al_state != sc_ana_in_state.al_state) {
        printf("AnaIn: State 0x%02X.\n", s.al_state);
    }
    if (s.online != sc_ana_in_state.online) {
        printf("AnaIn: %s.\n", s.online ? "online" : "offline");
    }
    if (s.operational != sc_ana_in_state.operational) {
        printf("AnaIn: %soperational.\n", s.operational ? "" : "Not ");
    }

    sc_ana_in_state = s;
}

/*****************************************************************************/

void cyclic_task()
{
    // receive process data
    ecrt_master_receive(master);
    ecrt_domain_process(domain1);

    // check process data state
    check_domain1_state();

    if (counter) {
        counter--;
    } else { // do this at 1 Hz
        counter = FREQUENCY;

        // calculate new process data
        blink = !blink;

        // check for master state (optional)
        check_master_state();

        // check for slave configuration state(s) (optional)
        check_slave_config_states();
    }

#if 0
    // read process data
    printf("AnaIn: state %u value %u\n",
            EC_READ_U8(domain1_pd + off_ana_in_status),
            EC_READ_U16(domain1_pd + off_ana_in_value));
#endif

#if 1
    // write process data
    EC_WRITE_U8(domain1_pd + off_dig_out, blink ? 0x06 : 0x09);
#endif

    // send process data
    ecrt_domain_queue(domain1);
    ecrt_master_send(master);
}

/****************************************************************************/

void stack_prefault(void)
{
    unsigned char dummy[MAX_SAFE_STACK];

    memset(dummy, 0, MAX_SAFE_STACK);
}

/****************************************************************************/

int main(int argc, char **argv)
{
    ec_slave_config_t *sc;
    struct timespec wakeup_time;
    int ret = 0;

    master = ecrt_request_master(0);
    if (!master) {
        return -1;
    }

    domain1 = ecrt_master_create_domain(master);
    if (!domain1) {
        return -1;
    }

    if (!(sc_ana_in = ecrt_master_slave_config(
                    master, AnaInSlavePos, Beckhoff_EL3102))) {
        fprintf(stderr, "Failed to get slave configuration.\n");
        return -1;
    }

    printf("Configuring PDOs...\n");
    if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el3102_syncs)) {
        fprintf(stderr, "Failed to configure PDOs.\n");
        return -1;
    }

    if (!(sc = ecrt_master_slave_config(
                    master, AnaOutSlavePos, Beckhoff_EL4102))) {
        fprintf(stderr, "Failed to get slave configuration.\n");
        return -1;
    }

    if (ecrt_slave_config_pdos(sc, EC_END, el4102_syncs)) {
        fprintf(stderr, "Failed to configure PDOs.\n");
        return -1;
    }

    if (!(sc = ecrt_master_slave_config(
                    master, DigOutSlavePos, Beckhoff_EL2032))) {
        fprintf(stderr, "Failed to get slave configuration.\n");
        return -1;
    }

    if (ecrt_slave_config_pdos(sc, EC_END, el2004_syncs)) {
        fprintf(stderr, "Failed to configure PDOs.\n");
        return -1;
    }

    // Create configuration for bus coupler
    sc = ecrt_master_slave_config(master, BusCouplerPos, Beckhoff_EK1100);
    if (!sc) {
        return -1;
    }

    if (ecrt_domain_reg_pdo_entry_list(domain1, domain1_regs)) {
        fprintf(stderr, "PDO entry registration failed!\n");
        return -1;
    }

    printf("Activating master...\n");
    if (ecrt_master_activate(master)) {
        return -1;
    }

    if (!(domain1_pd = ecrt_domain_data(domain1))) {
        return -1;
    }

    /* Set priority */

    pid_t pid = getpid();
    if (setpriority(PRIO_PROCESS, pid, -19)) {
        fprintf(stderr, "Warning: Failed to set priority: %s\n",
                strerror(errno));
    }

    /* Lock memory */

    if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
        fprintf(stderr, "Warning: Failed to lock memory: %s\n",
                strerror(errno));
    }

    stack_prefault();

    printf("Starting RT task with dt=%u ns.\n", PERIOD_NS);

    clock_gettime(CLOCK_MONOTONIC, &wakeup_time);
    wakeup_time.tv_sec += 1; /* start in future */
    wakeup_time.tv_nsec = 0;

    while (1) {
        ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
                &wakeup_time, NULL);
        if (ret) {
            fprintf(stderr, "clock_nanosleep(): %s\n", strerror(ret));
            break;
        }

        cyclic_task();

        wakeup_time.tv_nsec += PERIOD_NS;
        while (wakeup_time.tv_nsec >= NSEC_PER_SEC) {
            wakeup_time.tv_nsec -= NSEC_PER_SEC;
            wakeup_time.tv_sec++;
        }
    }

    return ret;
}

/****************************************************************************/