Output CCAT configuration.
/*****************************************************************************
*
* $Id$
*
* Copyright (C) 2007-2009 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* The IgH EtherCAT Master is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* ---
*
* The license mentioned above concerns the source code only. Using the
* EtherCAT technology and brand is only permitted in compliance with the
* industrial property and similar rights of Beckhoff Automation GmbH.
*
****************************************************************************/
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
/****************************************************************************/
#include "ecrt.h"
/****************************************************************************/
// Application parameters
#define FREQUENCY 100
#define PRIORITY 0
/****************************************************************************/
// EtherCAT
static ec_master_t *master = NULL;
static ec_master_state_t master_state = {};
static ec_domain_t *domain1 = NULL;
static ec_domain_state_t domain1_state = {};
static ec_slave_config_t *sc_ana_in = NULL;
static ec_slave_config_state_t sc_ana_in_state = {};
// Timer
static unsigned int sig_alarms = 0;
static unsigned int user_alarms = 0;
/****************************************************************************/
// process data
static uint8_t *domain1_pd = NULL;
#define BusCouplerPos 0, 3
#define DigOutSlavePos 0, 0
//#define Beckhoff_EK1100 0x00000002, 0x044c2c52
#define Beckhoff_EK1100 0x00000002, 0x04562c52
#define Beckhoff_EL1008 0x00000002, 0x03f03052
#define Beckhoff_EL2004 0x00000002, 0x07d43052
#define Beckhoff_EL2008 0x00000002, 0x07d83052
#define Beckhoff_EL2032 0x00000002, 0x07f03052
#define Beckhoff_EL3152 0x00000002, 0x0c503052
#define Beckhoff_EL3102 0x00000002, 0x0c1e3052
#define Beckhoff_EL4102 0x00000002, 0x10063052
// offsets for PDO entries
static unsigned int off_dig_in[1];
static unsigned int off_dig_out[2];
/*****************************************************************************/
// Digital in ------------------------
static ec_pdo_entry_info_t el1008_channels[] = {
{0x6000, 1, 1},
{0x6010, 1, 1},
{0x6020, 1, 1},
{0x6030, 1, 1},
{0x6040, 1, 1},
{0x6050, 1, 1},
{0x6060, 1, 1},
{0x6070, 1, 1},
};
static ec_pdo_info_t el1008_pdos[] = {
{0x1a00, 1, &el1008_channels[0]},
{0x1a01, 1, &el1008_channels[1]},
{0x1a02, 1, &el1008_channels[2]},
{0x1a03, 1, &el1008_channels[3]},
{0x1a04, 1, &el1008_channels[4]},
{0x1a05, 1, &el1008_channels[5]},
{0x1a06, 1, &el1008_channels[6]},
{0x1a07, 1, &el1008_channels[7]}
};
static ec_sync_info_t el1008_syncs[] = {
{2, EC_DIR_OUTPUT},
{3, EC_DIR_INPUT, 8, el1008_pdos},
{0xff}
};
// Digital out ------------------------
static ec_pdo_entry_info_t el2008_channels[] = {
{0x7000, 1, 1},
{0x7010, 1, 1},
{0x7020, 1, 1},
{0x7030, 1, 1},
{0x7040, 1, 1},
{0x7050, 1, 1},
{0x7060, 1, 1},
{0x7070, 1, 1},
};
static ec_pdo_info_t el2008_pdos[] = {
{0x1600, 1, &el2008_channels[0]},
{0x1601, 1, &el2008_channels[1]},
{0x1602, 1, &el2008_channels[2]},
{0x1603, 1, &el2008_channels[3]},
{0x1604, 1, &el2008_channels[4]},
{0x1605, 1, &el2008_channels[5]},
{0x1606, 1, &el2008_channels[6]},
{0x1607, 1, &el2008_channels[7]}
};
static ec_sync_info_t el2008_syncs[] = {
{0, EC_DIR_OUTPUT, 8, el2008_pdos},
{1, EC_DIR_INPUT},
{0xff}
};
/*****************************************************************************/
void check_domain1_state(void)
{
ec_domain_state_t ds;
ecrt_domain_state(domain1, &ds);
if (ds.working_counter != domain1_state.working_counter)
printf("Domain1: WC %u.\n", ds.working_counter);
if (ds.wc_state != domain1_state.wc_state)
printf("Domain1: State %u.\n", ds.wc_state);
domain1_state = ds;
}
/*****************************************************************************/
void check_master_state(void)
{
ec_master_state_t ms;
ecrt_master_state(master, &ms);
if (ms.slaves_responding != master_state.slaves_responding)
printf("%u slave(s).\n", ms.slaves_responding);
if (ms.al_states != master_state.al_states)
printf("AL states: 0x%02X.\n", ms.al_states);
if (ms.link_up != master_state.link_up)
printf("Link is %s.\n", ms.link_up ? "up" : "down");
master_state = ms;
}
/*****************************************************************************/
void check_slave_config_states(void)
{
ec_slave_config_state_t s;
ecrt_slave_config_state(sc_ana_in, &s);
if (s.al_state != sc_ana_in_state.al_state)
printf("AnaIn: State 0x%02X.\n", s.al_state);
if (s.online != sc_ana_in_state.online)
printf("AnaIn: %s.\n", s.online ? "online" : "offline");
if (s.operational != sc_ana_in_state.operational)
printf("AnaIn: %soperational.\n",
s.operational ? "" : "Not ");
sc_ana_in_state = s;
}
/****************************************************************************/
void cyclic_task()
{
static unsigned int counter = 10;
static uint8_t outputValue = 0;
static int numAsyncCycles = 0;
uint8_t inputValue = 0;
static uint8_t error = 0;
// receive process data
ecrt_master_receive(master);
ecrt_domain_process(domain1);
// check process data state (optional)
check_domain1_state();
inputValue = EC_READ_U8(domain1_pd + off_dig_in[0]);
if(inputValue != outputValue) {
numAsyncCycles++;
} else {
numAsyncCycles = 0;
}
if(numAsyncCycles > 2) {
if(error != 0xff) {
error++;
}
}
if (counter) {
counter--;
} else {
counter = 5; //update delay
// calculate new process data
outputValue++;
// check for master state (optional)
check_master_state();
// check for islave configuration state(s) (optional)
check_slave_config_states();
}
// write process data
EC_WRITE_U8(domain1_pd + off_dig_out[1], outputValue);
EC_WRITE_U8(domain1_pd + off_dig_out[0], error);
// send process data
ecrt_domain_queue(domain1);
ecrt_master_send(master);
}
/****************************************************************************/
void signal_handler(int signum) {
switch (signum) {
case SIGALRM:
sig_alarms++;
break;
}
}
/****************************************************************************/
int Init_EL2008(uint16_t position)
{
ec_slave_config_t *sc;
if (!(sc = ecrt_master_slave_config(master, 0, position, Beckhoff_EL2008))) {
fprintf(stderr, "Failed to get EL2008 configuration #%u.\n", position);
return -1;
}
if (ecrt_slave_config_pdos(sc, EC_END, el2008_syncs)) {
fprintf(stderr, "Failed to configure PDOs #%u.\n", position);
return -1;
}
if (0 > (off_dig_out[position] = ecrt_slave_config_reg_pdo_entry(sc, 0x7000, 1, domain1, NULL))) {
fprintf(stderr, "Failed to configure reg PDOs #%u.\n", position);
return -1;
}
fprintf(stderr, "EL2008 #%u configured offset: %d.\n", position, off_dig_out[position]);
return 0;
}
int main(int argc, char **argv)
{
ec_slave_config_t *sc;
struct sigaction sa;
struct itimerval tv;
uint16_t i;
master = ecrt_request_master(0);
if (!master)
return -1;
domain1 = ecrt_master_create_domain(master);
if (!domain1)
return -1;
printf("Configuring PDOs...\n");
if (!(sc_ana_in = ecrt_master_slave_config(master, 0, 2, Beckhoff_EL1008))) {
fprintf(stderr, "Failed to get digital in configuration.\n");
return -1;
}
if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el1008_syncs)) {
fprintf(stderr, "Failed to configure PDOs.\n");
return -1;
}
if (0 > (off_dig_in[0] = ecrt_slave_config_reg_pdo_entry(sc_ana_in, 0x6000, 1, domain1, NULL))) {
fprintf(stderr, "Failed to configure reg PDOs.\n");
return -1;
}
printf("EL1008 configured.\n");
for(i = 0; i < 2; ++i) {
if(Init_EL2008(i)) {
fprintf(stderr, "Failed to initialize EL2008 #%u.\n", i);
return -1;
}
}
// Create configuration for bus coupler
sc = ecrt_master_slave_config(master, BusCouplerPos, Beckhoff_EK1100);
if (!sc)
return -1;
fprintf(stderr, "EK1100 configured.\n");
printf("Activating master...\n");
if (ecrt_master_activate(master))
return -1;
if (!(domain1_pd = ecrt_domain_data(domain1))) {
return -1;
}
#if PRIORITY
pid_t pid = getpid();
if (setpriority(PRIO_PROCESS, pid, -19))
fprintf(stderr, "Warning: Failed to set priority: %s\n",
strerror(errno));
#endif
sa.sa_handler = signal_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGALRM, &sa, 0)) {
fprintf(stderr, "Failed to install signal handler!\n");
return -1;
}
printf("Starting timer...\n");
tv.it_interval.tv_sec = 0;
tv.it_interval.tv_usec = 1000000 / FREQUENCY;
tv.it_value.tv_sec = 0;
tv.it_value.tv_usec = 1000;
if (setitimer(ITIMER_REAL, &tv, NULL)) {
fprintf(stderr, "Failed to start timer: %s\n", strerror(errno));
return 1;
}
printf("Started.\n");
while (1) {
pause();
#if 0
struct timeval t;
gettimeofday(&t, NULL);
printf("%u.%06u\n", t.tv_sec, t.tv_usec);
#endif
while (sig_alarms != user_alarms) {
cyclic_task();
user_alarms++;
}
}
return 0;
}
/****************************************************************************/