rt_dev_* has been abandonned in Xenomai3, on user side we use the regular POSIX I/O calls exposed by libcobalt
/**
Network Driver for Beckhoff CCAT communication controller
Copyright (C) 2014 - 2015 Beckhoff Automation GmbH
Author: Patrick Bruenn <p.bruenn@beckhoff.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/version.h>
#ifdef CONFIG_PCI
#include <asm/dma.h>
#else
#define free_dma(X)
#define request_dma(X, Y) ((int)(-EINVAL))
#endif
#include "module.h"
/**
* EtherCAT frame to enable forwarding on EtherCAT Terminals
*/
static const u8 frameForwardEthernetFrames[] = {
0x01, 0x01, 0x05, 0x01, 0x00, 0x00,
0x00, 0x1b, 0x21, 0x36, 0x1b, 0xce,
0x88, 0xa4, 0x0e, 0x10,
0x08,
0x00,
0x00, 0x00,
0x00, 0x01,
0x02, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00
};
#define FIFO_LENGTH 64
#define POLL_TIME ktime_set(0, 50 * NSEC_PER_USEC)
#define CCAT_ALIGNMENT ((size_t)(128 * 1024))
#define CCAT_ALIGN_CHANNEL(x, c) ((typeof(x))(ALIGN((size_t)((x) + ((c) * CCAT_ALIGNMENT)), CCAT_ALIGNMENT)))
struct ccat_dma_frame_hdr {
__le32 reserved1;
__le32 rx_flags;
#define CCAT_FRAME_RECEIVED 0x1
__le16 length;
__le16 reserved3;
__le32 tx_flags;
#define CCAT_FRAME_SENT 0x1
__le64 timestamp;
};
struct ccat_eim_frame_hdr {
__le16 length;
__le16 reserved3;
__le32 tx_flags;
__le64 timestamp;
};
struct ccat_eth_frame {
u8 placeholder[0x800];
};
struct ccat_dma_frame {
struct ccat_dma_frame_hdr hdr;
u8 data[sizeof(struct ccat_eth_frame) -
sizeof(struct ccat_dma_frame_hdr)];
};
struct ccat_eim_frame {
struct ccat_eim_frame_hdr hdr;
u8 data[sizeof(struct ccat_eth_frame) -
sizeof(struct ccat_eim_frame_hdr)];
};
#define MAX_PAYLOAD_SIZE \
(sizeof(struct ccat_eth_frame) - max(sizeof(struct ccat_dma_frame_hdr), sizeof(struct ccat_eim_frame_hdr)))
/**
* struct ccat_eth_register - CCAT register addresses in the PCI BAR
* @mii: address of the CCAT management interface register
* @mac: address of the CCAT media access control register
* @rx_mem: address of the CCAT register holding the RX DMA address
* @tx_mem: address of the CCAT register holding the TX DMA address
* @misc: address of a CCAT register holding miscellaneous information
*/
struct ccat_eth_register {
void __iomem *mii;
void __iomem *mac;
void __iomem *rx_mem;
void __iomem *tx_mem;
void __iomem *misc;
};
/**
* struct ccat_dma_mem - CCAT DMA channel configuration
* @size: number of bytes in the associated DMA memory
* @phys: device-viewed address(physical) of the associated DMA memory
* @channel: CCAT DMA channel number
* @dev: valid struct device pointer
* @base: CPU-viewed address(virtual) of the associated DMA memory
*/
struct ccat_dma_mem {
size_t size;
dma_addr_t phys;
size_t channel;
struct device *dev;
void *base;
};
/**
* struct ccat_dma/eim/mem
* @next: pointer to the next frame in fifo ring buffer
* @start: aligned CPU-viewed address(virtual) of the associated memory
*/
struct ccat_dma {
struct ccat_dma_frame *next;
void *start;
};
struct ccat_eim {
struct ccat_eim_frame __iomem *next;
void __iomem *start;
};
struct ccat_mem {
struct ccat_eth_frame *next;
void *start;
};
/**
* struct ccat_eth_fifo - CCAT RX or TX fifo
* @ops: function pointer table for dma/eim and rx/tx specific fifo functions
* @reg: PCI register address of this fifo
* @rx_bytes: number of bytes processed -> reported with ndo_get_stats64()
* @rx_dropped: number of dropped frames -> reported with ndo_get_stats64()
* @mem/dma/eim: information about the associated memory
*/
struct ccat_eth_fifo {
const struct ccat_eth_fifo_operations *ops;
const struct ccat_eth_frame *end;
void __iomem *reg;
atomic64_t bytes;
atomic64_t dropped;
union {
struct ccat_mem mem;
struct ccat_dma dma;
struct ccat_eim eim;
};
};
/**
* struct ccat_eth_fifo_operations
* @ready: callback used to test the next frames ready bit
* @add: callback used to add a frame to this fifo
* @copy_to_skb: callback used to copy from rx fifos to skbs
* @skb: callback used to queue skbs into tx fifos
*/
struct ccat_eth_fifo_operations {
size_t(*ready) (struct ccat_eth_fifo *);
void (*add) (struct ccat_eth_fifo *);
union {
void (*copy_to_skb) (struct ccat_eth_fifo *, struct sk_buff *,
size_t);
void (*skb) (struct ccat_eth_fifo *, struct sk_buff *);
} queue;
};
/**
* same as: typedef struct _CCatInfoBlockOffs from CCatDefinitions.h
*/
struct ccat_mac_infoblock {
u32 reserved;
u32 mii;
u32 tx_fifo;
u32 mac;
u32 rx_mem;
u32 tx_mem;
u32 misc;
};
/**
* struct ccat_eth_priv - CCAT Ethernet/EtherCAT Master function (netdev)
* @func: pointer to the parent struct ccat_function
* @netdev: the net_device structure used by the kernel networking stack
* @reg: register addresses in PCI config space of the Ethernet/EtherCAT Master function
* @rx_fifo: fifo used for RX descriptors
* @tx_fifo: fifo used for TX descriptors
* @poll_timer: interval timer used to poll CCAT for events like link changed, rx done, tx done
*/
struct ccat_eth_priv {
struct ccat_function *func;
struct net_device *netdev;
struct ccat_eth_register reg;
struct ccat_eth_fifo rx_fifo;
struct ccat_eth_fifo tx_fifo;
struct hrtimer poll_timer;
struct ccat_dma_mem dma_mem;
ec_device_t *ecdev;
void (*carrier_off) (struct net_device * netdev);
bool(*carrier_ok) (const struct net_device * netdev);
void (*carrier_on) (struct net_device * netdev);
void (*kfree_skb_any) (struct sk_buff * skb);
void (*receive) (struct ccat_eth_priv *, size_t);
void (*start_queue) (struct net_device * netdev);
void (*stop_queue) (struct net_device * netdev);
void (*unregister) (struct net_device * netdev);
};
struct ccat_mac_register {
/** MAC error register @+0x0 */
u8 frame_len_err;
u8 rx_err;
u8 crc_err;
u8 link_lost_err;
u32 reserved1;
/** Buffer overflow errors @+0x8 */
u8 rx_mem_full;
u8 reserved2[7];
/** MAC frame counter @+0x10 */
u32 tx_frames;
u32 rx_frames;
u64 reserved3;
/** MAC fifo level @+0x20 */
u8 tx_fifo_level:7;
u8 reserved4:1;
u8 reserved5[7];
/** TX memory full error @+0x28 */
u8 tx_mem_full;
u8 reserved6[7];
u64 reserved8[9];
/** Connection @+0x78 */
u8 mii_connected;
};
static void fifo_set_end(struct ccat_eth_fifo *const fifo, size_t size)
{
fifo->end = fifo->mem.start + size - sizeof(struct ccat_eth_frame);
}
static void ccat_dma_free(struct ccat_eth_priv *const priv)
{
if (priv->dma_mem.base) {
const struct ccat_dma_mem tmp = priv->dma_mem;
memset(&priv->dma_mem, 0, sizeof(priv->dma_mem));
dma_free_coherent(tmp.dev, tmp.size, tmp.base, tmp.phys);
free_dma(priv->func->info.tx_dma_chan);
free_dma(priv->func->info.rx_dma_chan);
}
}
/**
* ccat_dma_init() - Initialize CCAT and host memory for DMA transfer
* @dma object for management data which will be initialized
* @channel number of the DMA channel
* @ioaddr of the pci bar2 configspace used to calculate the address of the pci dma configuration
* @dev which should be configured for DMA
*/
static int ccat_dma_init(struct ccat_dma_mem *const dma, size_t channel,
void __iomem * const bar2,
struct ccat_eth_fifo *const fifo)
{
void __iomem *const ioaddr = bar2 + 0x1000 + (sizeof(u64) * channel);
const dma_addr_t phys = CCAT_ALIGN_CHANNEL(dma->phys, channel);
const u32 phys_hi = (sizeof(phys) > sizeof(u32)) ? phys >> 32 : 0;
fifo->dma.start = CCAT_ALIGN_CHANNEL(dma->base, channel);
fifo_set_end(fifo, CCAT_ALIGNMENT);
if (request_dma(channel, KBUILD_MODNAME)) {
pr_info("request dma channel %llu failed\n", (u64) channel);
return -EINVAL;
}
/** bit 0 enables 64 bit mode on ccat */
iowrite32((u32) phys | ((phys_hi) > 0), ioaddr);
iowrite32(phys_hi, ioaddr + 4);
pr_info
("DMA%llu mem initialized\n base: 0x%p\n start: 0x%p\n phys: 0x%09llx\n pci addr: 0x%01x%08x\n size: %llu |%llx bytes.\n",
(u64) channel, dma->base, fifo->dma.start, (u64) dma->phys,
ioread32(ioaddr + 4), ioread32(ioaddr),
(u64) dma->size, (u64) dma->size);
return 0;
}
static void ecdev_kfree_skb_any(struct sk_buff *skb)
{
/* never release a skb in EtherCAT mode */
}
static bool ecdev_carrier_ok(const struct net_device *const netdev)
{
struct ccat_eth_priv *const priv = netdev_priv(netdev);
return ecdev_get_link(priv->ecdev);
}
static void ecdev_carrier_on(struct net_device *const netdev)
{
struct ccat_eth_priv *const priv = netdev_priv(netdev);
ecdev_set_link(priv->ecdev, 1);
}
static void ecdev_carrier_off(struct net_device *const netdev)
{
struct ccat_eth_priv *const priv = netdev_priv(netdev);
ecdev_set_link(priv->ecdev, 0);
}
static void ecdev_nop(struct net_device *const netdev)
{
/* dummy called if nothing has to be done in EtherCAT operation mode */
}
static void ecdev_receive_dma(struct ccat_eth_priv *const priv, size_t len)
{
ecdev_receive(priv->ecdev, priv->rx_fifo.dma.next->data, len);
}
static void ecdev_receive_eim(struct ccat_eth_priv *const priv, size_t len)
{
ecdev_receive(priv->ecdev, priv->rx_fifo.eim.next->data, len);
}
static void unregister_ecdev(struct net_device *const netdev)
{
struct ccat_eth_priv *const priv = netdev_priv(netdev);
ecdev_close(priv->ecdev);
ecdev_withdraw(priv->ecdev);
}
static inline size_t fifo_eim_tx_ready(struct ccat_eth_fifo *const fifo)
{
struct ccat_eth_priv *const priv =
container_of(fifo, struct ccat_eth_priv, tx_fifo);
static const size_t TX_FIFO_LEVEL_OFFSET = 0x20;
static const u8 TX_FIFO_LEVEL_MASK = 0x3F;
void __iomem *addr = priv->reg.mac + TX_FIFO_LEVEL_OFFSET;
return !(ioread8(addr) & TX_FIFO_LEVEL_MASK);
}
static inline size_t fifo_eim_rx_ready(struct ccat_eth_fifo *const fifo)
{
static const size_t OVERHEAD = sizeof(struct ccat_eim_frame_hdr);
const size_t len = ioread16(&fifo->eim.next->hdr.length);
return (len < OVERHEAD) ? 0 : len - OVERHEAD;
}
static void ccat_eth_fifo_inc(struct ccat_eth_fifo *fifo)
{
if (++fifo->mem.next > fifo->end)
fifo->mem.next = fifo->mem.start;
}
static void fifo_eim_rx_add(struct ccat_eth_fifo *const fifo)
{
struct ccat_eim_frame __iomem *frame = fifo->eim.next;
iowrite16(0, frame);
wmb();
}
static void fifo_eim_tx_add(struct ccat_eth_fifo *const fifo)
{
}
#define memcpy_from_ccat(DEST, SRC, LEN) memcpy(DEST,(__force void*)(SRC), LEN)
#define memcpy_to_ccat(DEST, SRC, LEN) memcpy((__force void*)(DEST),SRC, LEN)
static void fifo_eim_copy_to_linear_skb(struct ccat_eth_fifo *const fifo,
struct sk_buff *skb, const size_t len)
{
memcpy_from_ccat(skb->data, fifo->eim.next->data, len);
}
static void fifo_eim_queue_skb(struct ccat_eth_fifo *const fifo,
struct sk_buff *skb)
{
struct ccat_eim_frame __iomem *frame = fifo->eim.next;
const u32 addr_and_length =
(void __iomem *)frame - (void __iomem *)fifo->eim.start;
const __le16 length = cpu_to_le16(skb->len);
memcpy_to_ccat(&frame->hdr.length, &length, sizeof(length));
memcpy_to_ccat(frame->data, skb->data, skb->len);
iowrite32(addr_and_length, fifo->reg);
}
static void ccat_eth_fifo_hw_reset(struct ccat_eth_fifo *const fifo)
{
if (fifo->reg) {
iowrite32(0, fifo->reg + 0x8);
wmb();
}
}
static void ccat_eth_fifo_reset(struct ccat_eth_fifo *const fifo)
{
ccat_eth_fifo_hw_reset(fifo);
if (fifo->ops->add) {
fifo->mem.next = fifo->mem.start;
do {
fifo->ops->add(fifo);
ccat_eth_fifo_inc(fifo);
} while (fifo->mem.next != fifo->mem.start);
}
}
static inline size_t fifo_dma_tx_ready(struct ccat_eth_fifo *const fifo)
{
const struct ccat_dma_frame *frame = fifo->dma.next;
return le32_to_cpu(frame->hdr.tx_flags) & CCAT_FRAME_SENT;
}
static inline size_t fifo_dma_rx_ready(struct ccat_eth_fifo *const fifo)
{
static const size_t OVERHEAD =
offsetof(struct ccat_dma_frame_hdr, rx_flags);
const struct ccat_dma_frame *const frame = fifo->dma.next;
if (le32_to_cpu(frame->hdr.rx_flags) & CCAT_FRAME_RECEIVED) {
const size_t len = le16_to_cpu(frame->hdr.length);
return (len < OVERHEAD) ? 0 : len - OVERHEAD;
}
return 0;
}
static void ccat_eth_rx_fifo_dma_add(struct ccat_eth_fifo *const fifo)
{
struct ccat_dma_frame *const frame = fifo->dma.next;
const size_t offset = (void *)frame - fifo->dma.start;
const u32 addr_and_length = (1 << 31) | offset;
frame->hdr.rx_flags = cpu_to_le32(0);
iowrite32(addr_and_length, fifo->reg);
}
static void ccat_eth_tx_fifo_dma_add_free(struct ccat_eth_fifo *const fifo)
{
/* mark frame as ready to use for tx */
fifo->dma.next->hdr.tx_flags = cpu_to_le32(CCAT_FRAME_SENT);
}
static void fifo_dma_copy_to_linear_skb(struct ccat_eth_fifo *const fifo,
struct sk_buff *skb, const size_t len)
{
skb_copy_to_linear_data(skb, fifo->dma.next->data, len);
}
static void fifo_dma_queue_skb(struct ccat_eth_fifo *const fifo,
struct sk_buff *skb)
{
struct ccat_dma_frame *frame = fifo->dma.next;
u32 addr_and_length;
frame->hdr.tx_flags = cpu_to_le32(0);
frame->hdr.length = cpu_to_le16(skb->len);
memcpy(frame->data, skb->data, skb->len);
/* Queue frame into CCAT TX-FIFO, CCAT ignores the first 8 bytes of the tx descriptor */
addr_and_length = offsetof(struct ccat_dma_frame_hdr, length);
addr_and_length += ((void *)frame - fifo->dma.start);
addr_and_length +=
((skb->len + sizeof(struct ccat_dma_frame_hdr)) / 8) << 24;
iowrite32(addr_and_length, fifo->reg);
}
static const struct ccat_eth_fifo_operations dma_rx_fifo_ops = {
.add = ccat_eth_rx_fifo_dma_add,
.ready = fifo_dma_rx_ready,
.queue.copy_to_skb = fifo_dma_copy_to_linear_skb,
};
static const struct ccat_eth_fifo_operations dma_tx_fifo_ops = {
.add = ccat_eth_tx_fifo_dma_add_free,
.ready = fifo_dma_tx_ready,
.queue.skb = fifo_dma_queue_skb,
};
static const struct ccat_eth_fifo_operations eim_rx_fifo_ops = {
.add = fifo_eim_rx_add,
.queue.copy_to_skb = fifo_eim_copy_to_linear_skb,
.ready = fifo_eim_rx_ready,
};
static const struct ccat_eth_fifo_operations eim_tx_fifo_ops = {
.add = fifo_eim_tx_add,
.queue.skb = fifo_eim_queue_skb,
.ready = fifo_eim_tx_ready,
};
static void ccat_eth_priv_free(struct ccat_eth_priv *priv)
{
/* reset hw fifo's */
ccat_eth_fifo_hw_reset(&priv->rx_fifo);
ccat_eth_fifo_hw_reset(&priv->tx_fifo);
/* release dma */
ccat_dma_free(priv);
}
static int ccat_hw_disable_mac_filter(struct ccat_eth_priv *priv)
{
iowrite8(0, priv->reg.mii + 0x8 + 6);
wmb();
return 0;
}
/**
* Initalizes both (Rx/Tx) DMA fifo's and related management structures
*/
static int ccat_eth_priv_init_dma(struct ccat_eth_priv *priv)
{
struct ccat_dma_mem *const dma = &priv->dma_mem;
struct pci_dev *const pdev = priv->func->ccat->pdev;
void __iomem *const bar_2 = priv->func->ccat->bar_2;
const u8 rx_chan = priv->func->info.rx_dma_chan;
const u8 tx_chan = priv->func->info.tx_dma_chan;
int status = 0;
dma->dev = &pdev->dev;
dma->size = CCAT_ALIGNMENT * 3;
dma->base =
dma_zalloc_coherent(dma->dev, dma->size, &dma->phys, GFP_KERNEL);
if (!dma->base || !dma->phys) {
pr_err("init DMA memory failed.\n");
return -ENOMEM;
}
priv->rx_fifo.ops = &dma_rx_fifo_ops;
status = ccat_dma_init(dma, rx_chan, bar_2, &priv->rx_fifo);
if (status) {
pr_info("init RX DMA memory failed.\n");
ccat_dma_free(priv);
return status;
}
priv->tx_fifo.ops = &dma_tx_fifo_ops;
status = ccat_dma_init(dma, tx_chan, bar_2, &priv->tx_fifo);
if (status) {
pr_info("init TX DMA memory failed.\n");
ccat_dma_free(priv);
return status;
}
return ccat_hw_disable_mac_filter(priv);
}
static int ccat_eth_priv_init_eim(struct ccat_eth_priv *priv)
{
priv->rx_fifo.eim.start = priv->reg.rx_mem;
priv->rx_fifo.ops = &eim_rx_fifo_ops;
fifo_set_end(&priv->rx_fifo, sizeof(struct ccat_eth_frame));
priv->tx_fifo.eim.start = priv->reg.tx_mem;
priv->tx_fifo.ops = &eim_tx_fifo_ops;
fifo_set_end(&priv->tx_fifo, priv->func->info.tx_size);
return ccat_hw_disable_mac_filter(priv);
}
/**
* Initializes a struct ccat_eth_register with data from a corresponding
* CCAT function.
*/
static void ccat_eth_priv_init_reg(struct ccat_eth_priv *const priv)
{
struct ccat_mac_infoblock offsets;
struct ccat_eth_register *const reg = &priv->reg;
const struct ccat_function *const func = priv->func;
void __iomem *const func_base = func->ccat->bar_0 + func->info.addr;
/* struct ccat_eth_fifo contains a union of ccat_dma, ccat_eim and ccat_mem
* the members next and start have to overlay the exact same memory,
* to support 'polymorphic' usage of them */
BUILD_BUG_ON(offsetof(struct ccat_dma, next) !=
offsetof(struct ccat_mem, next));
BUILD_BUG_ON(offsetof(struct ccat_dma, start) !=
offsetof(struct ccat_mem, start));
BUILD_BUG_ON(offsetof(struct ccat_dma, next) !=
offsetof(struct ccat_eim, next));
BUILD_BUG_ON(offsetof(struct ccat_dma, start) !=
offsetof(struct ccat_eim, start));
memcpy_fromio(&offsets, func_base, sizeof(offsets));
reg->mii = func_base + offsets.mii;
priv->tx_fifo.reg = func_base + offsets.tx_fifo;
priv->rx_fifo.reg = func_base + offsets.tx_fifo + 0x10;
reg->mac = func_base + offsets.mac;
reg->rx_mem = func_base + offsets.rx_mem;
reg->tx_mem = func_base + offsets.tx_mem;
reg->misc = func_base + offsets.misc;
}
static netdev_tx_t ccat_eth_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ccat_eth_priv *const priv = netdev_priv(dev);
struct ccat_eth_fifo *const fifo = &priv->tx_fifo;
if (skb_is_nonlinear(skb)) {
pr_warn("Non linear skb not supported -> drop frame.\n");
atomic64_inc(&fifo->dropped);
priv->kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->len > MAX_PAYLOAD_SIZE) {
pr_warn("skb.len %llu exceeds dma buffer %llu -> drop frame.\n",
(u64) skb->len, (u64) MAX_PAYLOAD_SIZE);
atomic64_inc(&fifo->dropped);
priv->kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (!fifo->ops->ready(fifo)) {
netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
priv->stop_queue(priv->netdev);
return NETDEV_TX_BUSY;
}
/* prepare frame in DMA memory */
fifo->ops->queue.skb(fifo, skb);
/* update stats */
atomic64_add(skb->len, &fifo->bytes);
priv->kfree_skb_any(skb);
ccat_eth_fifo_inc(fifo);
/* stop queue if tx ring is full */
if (!fifo->ops->ready(fifo)) {
priv->stop_queue(priv->netdev);
}
return NETDEV_TX_OK;
}
/**
* Function to transmit a raw buffer to the network (f.e. frameForwardEthernetFrames)
* @dev a valid net_device
* @data pointer to your raw buffer
* @len number of bytes in the raw buffer to transmit
*/
static void ccat_eth_xmit_raw(struct net_device *dev, const char *const data,
size_t len)
{
struct sk_buff *skb = dev_alloc_skb(len);
skb->dev = dev;
skb_copy_to_linear_data(skb, data, len);
skb_put(skb, len);
ccat_eth_start_xmit(skb, dev);
}
static void ccat_eth_receive(struct ccat_eth_priv *const priv, const size_t len)
{
struct sk_buff *const skb = dev_alloc_skb(len + NET_IP_ALIGN);
struct ccat_eth_fifo *const fifo = &priv->rx_fifo;
struct net_device *const dev = priv->netdev;
if (!skb) {
pr_info("%s() out of memory :-(\n", __FUNCTION__);
atomic64_inc(&fifo->dropped);
return;
}
skb->dev = dev;
skb_reserve(skb, NET_IP_ALIGN);
fifo->ops->queue.copy_to_skb(fifo, skb, len);
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
atomic64_add(len, &fifo->bytes);
netif_rx(skb);
}
static void ccat_eth_link_down(struct net_device *const dev)
{
struct ccat_eth_priv *const priv = netdev_priv(dev);
priv->stop_queue(dev);
priv->carrier_off(dev);
netdev_info(dev, "NIC Link is Down\n");
}
static void ccat_eth_link_up(struct net_device *const dev)
{
struct ccat_eth_priv *const priv = netdev_priv(dev);
netdev_info(dev, "NIC Link is Up\n");
/* TODO netdev_info(dev, "NIC Link is Up %u Mbps %s Duplex\n",
speed == SPEED_100 ? 100 : 10,
cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); */
ccat_eth_fifo_reset(&priv->rx_fifo);
ccat_eth_fifo_reset(&priv->tx_fifo);
/* TODO reset CCAT MAC register */
ccat_eth_xmit_raw(dev, frameForwardEthernetFrames,
sizeof(frameForwardEthernetFrames));
priv->carrier_on(dev);
priv->start_queue(dev);
}
/**
* Read link state from CCAT hardware
* @return 1 if link is up, 0 if not
*/
inline static size_t ccat_eth_priv_read_link_state(const struct ccat_eth_priv
*const priv)
{
return ! !(ioread32(priv->reg.mii + 0x8 + 4) & (1 << 24));
}
/**
* Poll for link state changes
*/
static void poll_link(struct ccat_eth_priv *const priv)
{
const size_t link = ccat_eth_priv_read_link_state(priv);
if (link != priv->carrier_ok(priv->netdev)) {
if (link)
ccat_eth_link_up(priv->netdev);
else
ccat_eth_link_down(priv->netdev);
}
}
/**
* Poll for available rx dma descriptors in ethernet operating mode
*/
static void poll_rx(struct ccat_eth_priv *const priv)
{
struct ccat_eth_fifo *const fifo = &priv->rx_fifo;
size_t rx_per_poll = FIFO_LENGTH / 2;
size_t len = fifo->ops->ready(fifo);
while (len && --rx_per_poll) {
priv->receive(priv, len);
fifo->ops->add(fifo);
ccat_eth_fifo_inc(fifo);
len = fifo->ops->ready(fifo);
}
}
static void ec_poll(struct net_device *dev)
{
struct ccat_eth_priv *const priv = netdev_priv(dev);
poll_link(priv);
poll_rx(priv);
}
/**
* Poll for available tx dma descriptors in ethernet operating mode
*/
static void poll_tx(struct ccat_eth_priv *const priv)
{
if (priv->tx_fifo.ops->ready(&priv->tx_fifo)) {
netif_wake_queue(priv->netdev);
}
}
/**
* Since CCAT doesn't support interrupts until now, we have to poll
* some status bits to recognize things like link change etc.
*/
static enum hrtimer_restart poll_timer_callback(struct hrtimer *timer)
{
struct ccat_eth_priv *const priv =
container_of(timer, struct ccat_eth_priv, poll_timer);
poll_link(priv);
poll_rx(priv);
poll_tx(priv);
hrtimer_forward_now(timer, POLL_TIME);
return HRTIMER_RESTART;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4,11,0))
static struct rtnl_link_stats64 *ccat_eth_get_stats64(struct net_device *dev, struct rtnl_link_stats64
*storage)
#else
static void ccat_eth_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
#endif
{
struct ccat_eth_priv *const priv = netdev_priv(dev);
struct ccat_mac_register mac;
memcpy_fromio(&mac, priv->reg.mac, sizeof(mac));
storage->rx_packets = mac.rx_frames; /* total packets received */
storage->tx_packets = mac.tx_frames; /* total packets transmitted */
storage->rx_bytes = atomic64_read(&priv->rx_fifo.bytes); /* total bytes received */
storage->tx_bytes = atomic64_read(&priv->tx_fifo.bytes); /* total bytes transmitted */
storage->rx_errors = mac.frame_len_err + mac.rx_mem_full + mac.crc_err + mac.rx_err; /* bad packets received */
storage->tx_errors = mac.tx_mem_full; /* packet transmit problems */
storage->rx_dropped = atomic64_read(&priv->rx_fifo.dropped); /* no space in linux buffers */
storage->tx_dropped = atomic64_read(&priv->tx_fifo.dropped); /* no space available in linux */
//TODO __u64 multicast; /* multicast packets received */
//TODO __u64 collisions;
/* detailed rx_errors: */
storage->rx_length_errors = mac.frame_len_err;
storage->rx_over_errors = mac.rx_mem_full; /* receiver ring buff overflow */
storage->rx_crc_errors = mac.crc_err; /* recved pkt with crc error */
storage->rx_frame_errors = mac.rx_err; /* recv'd frame alignment error */
storage->rx_fifo_errors = mac.rx_mem_full; /* recv'r fifo overrun */
//TODO __u64 rx_missed_errors; /* receiver missed packet */
/* detailed tx_errors */
//TODO __u64 tx_aborted_errors;
//TODO __u64 tx_carrier_errors;
//TODO __u64 tx_fifo_errors;
//TODO __u64 tx_heartbeat_errors;
//TODO __u64 tx_window_errors;
/* for cslip etc */
//TODO __u64 rx_compressed;
//TODO __u64 tx_compressed;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4,11,0))
return storage;
#endif
}
static int ccat_eth_open(struct net_device *dev)
{
struct ccat_eth_priv *const priv = netdev_priv(dev);
if (!priv->ecdev) {
hrtimer_init(&priv->poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
priv->poll_timer.function = poll_timer_callback;
hrtimer_start(&priv->poll_timer, POLL_TIME, HRTIMER_MODE_REL);
}
return 0;
}
static int ccat_eth_stop(struct net_device *dev)
{
struct ccat_eth_priv *const priv = netdev_priv(dev);
priv->stop_queue(dev);
if (!priv->ecdev) {
hrtimer_cancel(&priv->poll_timer);
}
return 0;
}
static const struct net_device_ops ccat_eth_netdev_ops = {
.ndo_get_stats64 = ccat_eth_get_stats64,
.ndo_open = ccat_eth_open,
.ndo_start_xmit = ccat_eth_start_xmit,
.ndo_stop = ccat_eth_stop,
};
static struct ccat_eth_priv *ccat_eth_alloc_netdev(struct ccat_function *func)
{
struct ccat_eth_priv *priv = NULL;
struct net_device *const netdev = alloc_etherdev(sizeof(*priv));
if (netdev) {
priv = netdev_priv(netdev);
memset(priv, 0, sizeof(*priv));
priv->netdev = netdev;
priv->func = func;
ccat_eth_priv_init_reg(priv);
}
return priv;
}
static int ccat_eth_init_netdev(struct ccat_eth_priv *priv)
{
int status;
/* init netdev with MAC and stack callbacks */
memcpy_fromio(priv->netdev->dev_addr, priv->reg.mii + 8,
priv->netdev->addr_len);
priv->netdev->netdev_ops = &ccat_eth_netdev_ops;
/* use as EtherCAT device? */
priv->carrier_off = ecdev_carrier_off;
priv->carrier_ok = ecdev_carrier_ok;
priv->carrier_on = ecdev_carrier_on;
priv->kfree_skb_any = ecdev_kfree_skb_any;
/* It would be more intuitive to check for:
* if (priv->func->drv->type == CCATINFO_ETHERCAT_MASTER_DMA) {
* unfortunately priv->func->drv is not initialized until probe() returns.
* So we check if there is a rx dma fifo registered to determine dma/io mode */
if (&dma_rx_fifo_ops == priv->rx_fifo.ops) {
priv->receive = ecdev_receive_dma;
} else {
priv->receive = ecdev_receive_eim;
}
priv->start_queue = ecdev_nop;
priv->stop_queue = ecdev_nop;
priv->unregister = unregister_ecdev;
priv->ecdev = ecdev_offer(priv->netdev, ec_poll, THIS_MODULE);
if (priv->ecdev) {
priv->carrier_off(priv->netdev);
if (ecdev_open(priv->ecdev)) {
pr_info("unable to register network device.\n");
ecdev_withdraw(priv->ecdev);
ccat_eth_priv_free(priv);
free_netdev(priv->netdev);
return -1; // TODO return better error code
}
priv->func->private_data = priv;
return 0;
}
/* EtherCAT disabled -> prepare normal ethernet mode */
priv->carrier_off = netif_carrier_off;
priv->carrier_ok = netif_carrier_ok;
priv->carrier_on = netif_carrier_on;
priv->kfree_skb_any = dev_kfree_skb_any;
priv->receive = ccat_eth_receive;
priv->start_queue = netif_start_queue;
priv->stop_queue = netif_stop_queue;
priv->unregister = unregister_netdev;
priv->carrier_off(priv->netdev);
status = register_netdev(priv->netdev);
if (status) {
pr_info("unable to register network device.\n");
ccat_eth_priv_free(priv);
free_netdev(priv->netdev);
return status;
}
pr_info("registered %s as network device.\n", priv->netdev->name);
priv->func->private_data = priv;
return 0;
}
static int ccat_eth_dma_probe(struct ccat_function *func)
{
struct ccat_eth_priv *priv = ccat_eth_alloc_netdev(func);
int status;
if (!priv)
return -ENOMEM;
status = ccat_eth_priv_init_dma(priv);
if (status) {
pr_warn("%s(): DMA initialization failed.\n", __FUNCTION__);
free_netdev(priv->netdev);
return status;
}
return ccat_eth_init_netdev(priv);
}
static void ccat_eth_dma_remove(struct ccat_function *func)
{
struct ccat_eth_priv *const eth = func->private_data;
eth->unregister(eth->netdev);
ccat_eth_priv_free(eth);
free_netdev(eth->netdev);
}
const struct ccat_driver eth_dma_driver = {
.type = CCATINFO_ETHERCAT_MASTER_DMA,
.probe = ccat_eth_dma_probe,
.remove = ccat_eth_dma_remove,
};
static int ccat_eth_eim_probe(struct ccat_function *func)
{
struct ccat_eth_priv *priv = ccat_eth_alloc_netdev(func);
int status;
if (!priv)
return -ENOMEM;
status = ccat_eth_priv_init_eim(priv);
if (status) {
pr_warn("%s(): memory initialization failed.\n", __FUNCTION__);
free_netdev(priv->netdev);
return status;
}
return ccat_eth_init_netdev(priv);
}
static void ccat_eth_eim_remove(struct ccat_function *func)
{
struct ccat_eth_priv *const eth = func->private_data;
eth->unregister(eth->netdev);
ccat_eth_priv_free(eth);
free_netdev(eth->netdev);
}
const struct ccat_driver eth_eim_driver = {
.type = CCATINFO_ETHERCAT_NODMA,
.probe = ccat_eth_eim_probe,
.remove = ccat_eth_eim_remove,
};