Layed out state change state machine.
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it
* and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* The IgH EtherCAT Master is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* The right to use EtherCAT Technology is granted and comes free of
* charge under condition of compatibility of product made by
* Licensee. People intending to distribute/sell products based on the
* code, have to sign an agreement to guarantee that products using
* software based on IgH EtherCAT master stay compatible with the actual
* EtherCAT specification (which are released themselves as an open
* standard) as the (only) precondition to have the right to use EtherCAT
* Technology, IP and trade marks.
*
*****************************************************************************/
/**
\file
Methods of an EtherCAT datagram.
*/
/*****************************************************************************/
#include <linux/slab.h>
#include "datagram.h"
#include "master.h"
/*****************************************************************************/
/** \cond */
#define EC_FUNC_HEADER \
if (unlikely(ec_datagram_prealloc(datagram, data_size))) \
return -1; \
datagram->index = 0; \
datagram->working_counter = 0; \
datagram->state = EC_DATAGRAM_INIT;
#define EC_FUNC_FOOTER \
datagram->data_size = data_size; \
memset(datagram->data, 0x00, data_size); \
return 0;
/** \endcond */
/*****************************************************************************/
/**
Datagram constructor.
*/
void ec_datagram_init(ec_datagram_t *datagram /**< EtherCAT datagram */)
{
datagram->type = EC_DATAGRAM_NONE;
datagram->address.logical = 0x00000000;
datagram->data = NULL;
datagram->mem_size = 0;
datagram->data_size = 0;
datagram->index = 0x00;
datagram->working_counter = 0x00;
datagram->state = EC_DATAGRAM_INIT;
datagram->cycles_queued = 0;
datagram->cycles_sent = 0;
datagram->jiffies_sent = 0;
datagram->cycles_received = 0;
datagram->jiffies_received = 0;
}
/*****************************************************************************/
/**
Datagram destructor.
*/
void ec_datagram_clear(ec_datagram_t *datagram /**< EtherCAT datagram */)
{
if (datagram->data) kfree(datagram->data);
}
/*****************************************************************************/
/**
Allocates datagram data memory.
If the allocated memory is already larger than requested, nothing ist done.
\return 0 in case of success, else < 0
*/
int ec_datagram_prealloc(ec_datagram_t *datagram, /**< EtherCAT datagram */
size_t size /**< New size in bytes */
)
{
if (size <= datagram->mem_size) return 0;
if (datagram->data) {
kfree(datagram->data);
datagram->data = NULL;
datagram->mem_size = 0;
}
if (!(datagram->data = kmalloc(size, GFP_KERNEL))) {
EC_ERR("Failed to allocate %i bytes of datagram memory!\n", size);
return -1;
}
datagram->mem_size = size;
return 0;
}
/*****************************************************************************/
/**
Initializes an EtherCAT NPRD datagram.
Node-adressed physical read.
\return 0 in case of success, else < 0
*/
int ec_datagram_nprd(ec_datagram_t *datagram,
/**< EtherCAT datagram */
uint16_t node_address,
/**< configured station address */
uint16_t offset,
/**< physical memory address */
size_t data_size
/**< number of bytes to read */
)
{
if (unlikely(node_address == 0x0000))
EC_WARN("Using node address 0x0000!\n");
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_NPRD;
datagram->address.physical.slave = node_address;
datagram->address.physical.mem = offset;
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/**
Initializes an EtherCAT NPWR datagram.
Node-adressed physical write.
\return 0 in case of success, else < 0
*/
int ec_datagram_npwr(ec_datagram_t *datagram,
/**< EtherCAT datagram */
uint16_t node_address,
/**< configured station address */
uint16_t offset,
/**< physical memory address */
size_t data_size
/**< number of bytes to write */
)
{
if (unlikely(node_address == 0x0000))
EC_WARN("Using node address 0x0000!\n");
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_NPWR;
datagram->address.physical.slave = node_address;
datagram->address.physical.mem = offset;
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/**
Initializes an EtherCAT APRD datagram.
Autoincrement physical read.
\return 0 in case of success, else < 0
*/
int ec_datagram_aprd(ec_datagram_t *datagram,
/**< EtherCAT datagram */
uint16_t ring_position,
/**< auto-increment position */
uint16_t offset,
/**< physical memory address */
size_t data_size
/**< number of bytes to read */
)
{
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_APRD;
datagram->address.physical.slave = (int16_t) ring_position * (-1);
datagram->address.physical.mem = offset;
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/**
Initializes an EtherCAT APWR datagram.
Autoincrement physical write.
\return 0 in case of success, else < 0
*/
int ec_datagram_apwr(ec_datagram_t *datagram,
/**< EtherCAT datagram */
uint16_t ring_position,
/**< auto-increment position */
uint16_t offset,
/**< physical memory address */
size_t data_size
/**< number of bytes to write */
)
{
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_APWR;
datagram->address.physical.slave = (int16_t) ring_position * (-1);
datagram->address.physical.mem = offset;
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/**
Initializes an EtherCAT BRD datagram.
Broadcast read.
\return 0 in case of success, else < 0
*/
int ec_datagram_brd(ec_datagram_t *datagram,
/**< EtherCAT datagram */
uint16_t offset,
/**< physical memory address */
size_t data_size
/**< number of bytes to read */
)
{
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_BRD;
datagram->address.physical.slave = 0x0000;
datagram->address.physical.mem = offset;
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/**
Initializes an EtherCAT BWR datagram.
Broadcast write.
\return 0 in case of success, else < 0
*/
int ec_datagram_bwr(ec_datagram_t *datagram,
/**< EtherCAT datagram */
uint16_t offset,
/**< physical memory address */
size_t data_size
/**< number of bytes to write */
)
{
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_BWR;
datagram->address.physical.slave = 0x0000;
datagram->address.physical.mem = offset;
EC_FUNC_FOOTER;
}
/*****************************************************************************/
/**
Initializes an EtherCAT LRW datagram.
Logical read write.
\return 0 in case of success, else < 0
*/
int ec_datagram_lrw(ec_datagram_t *datagram,
/**< EtherCAT datagram */
uint32_t offset,
/**< logical address */
size_t data_size
/**< number of bytes to read/write */
)
{
EC_FUNC_HEADER;
datagram->type = EC_DATAGRAM_LRW;
datagram->address.logical = offset;
EC_FUNC_FOOTER;
}
/*****************************************************************************/