devices/igb/e1000_mac-3.18-ethercat.c
branchstable-1.5
changeset 2685 740291442c05
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/devices/igb/e1000_mac-3.18-ethercat.c	Fri Sep 08 14:39:38 2017 +0200
@@ -0,0 +1,1606 @@
+/* Intel(R) Gigabit Ethernet Linux driver
+ * Copyright(c) 2007-2014 Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, see <http://www.gnu.org/licenses/>.
+ *
+ * The full GNU General Public License is included in this distribution in
+ * the file called "COPYING".
+ *
+ * Contact Information:
+ * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+ * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+ */
+
+#include <linux/if_ether.h>
+#include <linux/delay.h>
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+
+#include "e1000_mac-3.18-ethercat.h"
+
+#include "igb-3.18-ethercat.h"
+
+static s32 igb_set_default_fc(struct e1000_hw *hw);
+static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
+
+/**
+ *  igb_get_bus_info_pcie - Get PCIe bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+	u32 reg;
+	u16 pcie_link_status;
+
+	bus->type = e1000_bus_type_pci_express;
+
+	ret_val = igb_read_pcie_cap_reg(hw,
+					PCI_EXP_LNKSTA,
+					&pcie_link_status);
+	if (ret_val) {
+		bus->width = e1000_bus_width_unknown;
+		bus->speed = e1000_bus_speed_unknown;
+	} else {
+		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
+		case PCI_EXP_LNKSTA_CLS_2_5GB:
+			bus->speed = e1000_bus_speed_2500;
+			break;
+		case PCI_EXP_LNKSTA_CLS_5_0GB:
+			bus->speed = e1000_bus_speed_5000;
+			break;
+		default:
+			bus->speed = e1000_bus_speed_unknown;
+			break;
+		}
+
+		bus->width = (enum e1000_bus_width)((pcie_link_status &
+						     PCI_EXP_LNKSTA_NLW) >>
+						     PCI_EXP_LNKSTA_NLW_SHIFT);
+	}
+
+	reg = rd32(E1000_STATUS);
+	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+
+	return 0;
+}
+
+/**
+ *  igb_clear_vfta - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void igb_clear_vfta(struct e1000_hw *hw)
+{
+	u32 offset;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		array_wr32(E1000_VFTA, offset, 0);
+		wrfl();
+	}
+}
+
+/**
+ *  igb_write_vfta - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	array_wr32(E1000_VFTA, offset, value);
+	wrfl();
+}
+
+/* Due to a hw errata, if the host tries to  configure the VFTA register
+ * while performing queries from the BMC or DMA, then the VFTA in some
+ * cases won't be written.
+ */
+
+/**
+ *  igb_clear_vfta_i350 - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void igb_clear_vfta_i350(struct e1000_hw *hw)
+{
+	u32 offset;
+	int i;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		for (i = 0; i < 10; i++)
+			array_wr32(E1000_VFTA, offset, 0);
+
+		wrfl();
+	}
+}
+
+/**
+ *  igb_write_vfta_i350 - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	int i;
+
+	for (i = 0; i < 10; i++)
+		array_wr32(E1000_VFTA, offset, value);
+
+	wrfl();
+}
+
+/**
+ *  igb_init_rx_addrs - Initialize receive address's
+ *  @hw: pointer to the HW structure
+ *  @rar_count: receive address registers
+ *
+ *  Setups the receive address registers by setting the base receive address
+ *  register to the devices MAC address and clearing all the other receive
+ *  address registers to 0.
+ **/
+void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
+{
+	u32 i;
+	u8 mac_addr[ETH_ALEN] = {0};
+
+	/* Setup the receive address */
+	hw_dbg("Programming MAC Address into RAR[0]\n");
+
+	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
+
+	/* Zero out the other (rar_entry_count - 1) receive addresses */
+	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
+	for (i = 1; i < rar_count; i++)
+		hw->mac.ops.rar_set(hw, mac_addr, i);
+}
+
+/**
+ *  igb_vfta_set - enable or disable vlan in VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @vid: VLAN id to add or remove
+ *  @add: if true add filter, if false remove
+ *
+ *  Sets or clears a bit in the VLAN filter table array based on VLAN id
+ *  and if we are adding or removing the filter
+ **/
+s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
+{
+	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
+	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+	u32 vfta;
+	struct igb_adapter *adapter = hw->back;
+	s32 ret_val = 0;
+
+	vfta = adapter->shadow_vfta[index];
+
+	/* bit was set/cleared before we started */
+	if ((!!(vfta & mask)) == add) {
+		ret_val = -E1000_ERR_CONFIG;
+	} else {
+		if (add)
+			vfta |= mask;
+		else
+			vfta &= ~mask;
+	}
+	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
+		igb_write_vfta_i350(hw, index, vfta);
+	else
+		igb_write_vfta(hw, index, vfta);
+	adapter->shadow_vfta[index] = vfta;
+
+	return ret_val;
+}
+
+/**
+ *  igb_check_alt_mac_addr - Check for alternate MAC addr
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the nvm for an alternate MAC address.  An alternate MAC address
+ *  can be setup by pre-boot software and must be treated like a permanent
+ *  address and must override the actual permanent MAC address.  If an
+ *  alternate MAC address is found it is saved in the hw struct and
+ *  programmed into RAR0 and the function returns success, otherwise the
+ *  function returns an error.
+ **/
+s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
+{
+	u32 i;
+	s32 ret_val = 0;
+	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+	u8 alt_mac_addr[ETH_ALEN];
+
+	/* Alternate MAC address is handled by the option ROM for 82580
+	 * and newer. SW support not required.
+	 */
+	if (hw->mac.type >= e1000_82580)
+		goto out;
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+				 &nvm_alt_mac_addr_offset);
+	if (ret_val) {
+		hw_dbg("NVM Read Error\n");
+		goto out;
+	}
+
+	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
+	    (nvm_alt_mac_addr_offset == 0x0000))
+		/* There is no Alternate MAC Address */
+		goto out;
+
+	if (hw->bus.func == E1000_FUNC_1)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+	if (hw->bus.func == E1000_FUNC_2)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
+
+	if (hw->bus.func == E1000_FUNC_3)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
+	for (i = 0; i < ETH_ALEN; i += 2) {
+		offset = nvm_alt_mac_addr_offset + (i >> 1);
+		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			hw_dbg("NVM Read Error\n");
+			goto out;
+		}
+
+		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+	}
+
+	/* if multicast bit is set, the alternate address will not be used */
+	if (is_multicast_ether_addr(alt_mac_addr)) {
+		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
+		goto out;
+	}
+
+	/* We have a valid alternate MAC address, and we want to treat it the
+	 * same as the normal permanent MAC address stored by the HW into the
+	 * RAR. Do this by mapping this address into RAR0.
+	 */
+	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_rar_set - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] |
+		   ((u32) addr[1] << 8) |
+		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high)
+		rar_high |= E1000_RAH_AV;
+
+	/* Some bridges will combine consecutive 32-bit writes into
+	 * a single burst write, which will malfunction on some parts.
+	 * The flushes avoid this.
+	 */
+	wr32(E1000_RAL(index), rar_low);
+	wrfl();
+	wr32(E1000_RAH(index), rar_high);
+	wrfl();
+}
+
+/**
+ *  igb_mta_set - Set multicast filter table address
+ *  @hw: pointer to the HW structure
+ *  @hash_value: determines the MTA register and bit to set
+ *
+ *  The multicast table address is a register array of 32-bit registers.
+ *  The hash_value is used to determine what register the bit is in, the
+ *  current value is read, the new bit is OR'd in and the new value is
+ *  written back into the register.
+ **/
+void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
+{
+	u32 hash_bit, hash_reg, mta;
+
+	/* The MTA is a register array of 32-bit registers. It is
+	 * treated like an array of (32*mta_reg_count) bits.  We want to
+	 * set bit BitArray[hash_value]. So we figure out what register
+	 * the bit is in, read it, OR in the new bit, then write
+	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
+	 * mask to bits 31:5 of the hash value which gives us the
+	 * register we're modifying.  The hash bit within that register
+	 * is determined by the lower 5 bits of the hash value.
+	 */
+	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+	hash_bit = hash_value & 0x1F;
+
+	mta = array_rd32(E1000_MTA, hash_reg);
+
+	mta |= (1 << hash_bit);
+
+	array_wr32(E1000_MTA, hash_reg, mta);
+	wrfl();
+}
+
+/**
+ *  igb_hash_mc_addr - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.  See
+ *  igb_mta_set()
+ **/
+static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask.
+	 */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	/* The portion of the address that is used for the hash table
+	 * is determined by the mc_filter_type setting.
+	 * The algorithm is such that there is a total of 8 bits of shifting.
+	 * The bit_shift for a mc_filter_type of 0 represents the number of
+	 * left-shifts where the MSB of mc_addr[5] would still fall within
+	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
+	 * of 8 bits of shifting, then mc_addr[4] will shift right the
+	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
+	 * cases are a variation of this algorithm...essentially raising the
+	 * number of bits to shift mc_addr[5] left, while still keeping the
+	 * 8-bit shifting total.
+	 *
+	 * For example, given the following Destination MAC Address and an
+	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+	 * we can see that the bit_shift for case 0 is 4.  These are the hash
+	 * values resulting from each mc_filter_type...
+	 * [0] [1] [2] [3] [4] [5]
+	 * 01  AA  00  12  34  56
+	 * LSB                 MSB
+	 *
+	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+	 */
+	switch (hw->mac.mc_filter_type) {
+	default:
+	case 0:
+		break;
+	case 1:
+		bit_shift += 1;
+		break;
+	case 2:
+		bit_shift += 2;
+		break;
+	case 3:
+		bit_shift += 4;
+		break;
+	}
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+				  (((u16) mc_addr[5]) << bit_shift)));
+
+	return hash_value;
+}
+
+/**
+ *  igb_update_mc_addr_list - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates entire Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void igb_update_mc_addr_list(struct e1000_hw *hw,
+			     u8 *mc_addr_list, u32 mc_addr_count)
+{
+	u32 hash_value, hash_bit, hash_reg;
+	int i;
+
+	/* clear mta_shadow */
+	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+	/* update mta_shadow from mc_addr_list */
+	for (i = 0; (u32) i < mc_addr_count; i++) {
+		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
+
+		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+		hash_bit = hash_value & 0x1F;
+
+		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+		mc_addr_list += (ETH_ALEN);
+	}
+
+	/* replace the entire MTA table */
+	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
+	wrfl();
+}
+
+/**
+ *  igb_clear_hw_cntrs_base - Clear base hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the base hardware counters by reading the counter registers.
+ **/
+void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
+{
+	rd32(E1000_CRCERRS);
+	rd32(E1000_SYMERRS);
+	rd32(E1000_MPC);
+	rd32(E1000_SCC);
+	rd32(E1000_ECOL);
+	rd32(E1000_MCC);
+	rd32(E1000_LATECOL);
+	rd32(E1000_COLC);
+	rd32(E1000_DC);
+	rd32(E1000_SEC);
+	rd32(E1000_RLEC);
+	rd32(E1000_XONRXC);
+	rd32(E1000_XONTXC);
+	rd32(E1000_XOFFRXC);
+	rd32(E1000_XOFFTXC);
+	rd32(E1000_FCRUC);
+	rd32(E1000_GPRC);
+	rd32(E1000_BPRC);
+	rd32(E1000_MPRC);
+	rd32(E1000_GPTC);
+	rd32(E1000_GORCL);
+	rd32(E1000_GORCH);
+	rd32(E1000_GOTCL);
+	rd32(E1000_GOTCH);
+	rd32(E1000_RNBC);
+	rd32(E1000_RUC);
+	rd32(E1000_RFC);
+	rd32(E1000_ROC);
+	rd32(E1000_RJC);
+	rd32(E1000_TORL);
+	rd32(E1000_TORH);
+	rd32(E1000_TOTL);
+	rd32(E1000_TOTH);
+	rd32(E1000_TPR);
+	rd32(E1000_TPT);
+	rd32(E1000_MPTC);
+	rd32(E1000_BPTC);
+}
+
+/**
+ *  igb_check_for_copper_link - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+s32 igb_check_for_copper_link(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	/* We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = 0;
+		goto out;
+	}
+
+	/* First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = igb_phy_has_link(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = false;
+
+	/* Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	igb_check_downshift(hw);
+
+	/* If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/* Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	igb_config_collision_dist(hw);
+
+	/* Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = igb_config_fc_after_link_up(hw);
+	if (ret_val)
+		hw_dbg("Error configuring flow control\n");
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_setup_link - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+s32 igb_setup_link(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	/* In the case of the phy reset being blocked, we already have a link.
+	 * We do not need to set it up again.
+	 */
+	if (igb_check_reset_block(hw))
+		goto out;
+
+	/* If requested flow control is set to default, set flow control
+	 * based on the EEPROM flow control settings.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default) {
+		ret_val = igb_set_default_fc(hw);
+		if (ret_val)
+			goto out;
+	}
+
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
+
+	/* Call the necessary media_type subroutine to configure the link. */
+	ret_val = hw->mac.ops.setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
+	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
+	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	wr32(E1000_FCTTV, hw->fc.pause_time);
+
+	ret_val = igb_set_fc_watermarks(hw);
+
+out:
+
+	return ret_val;
+}
+
+/**
+ *  igb_config_collision_dist - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void igb_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl;
+
+	tctl = rd32(E1000_TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+	wr32(E1000_TCTL, tctl);
+	wrfl();
+}
+
+/**
+ *  igb_set_fc_watermarks - Set flow control high/low watermarks
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the flow control high/low threshold (watermark) registers.  If
+ *  flow control XON frame transmission is enabled, then set XON frame
+ *  tansmission as well.
+ **/
+static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u32 fcrtl = 0, fcrth = 0;
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames is not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (hw->fc.current_mode & e1000_fc_tx_pause) {
+		/* We need to set up the Receive Threshold high and low water
+		 * marks as well as (optionally) enabling the transmission of
+		 * XON frames.
+		 */
+		fcrtl = hw->fc.low_water;
+		if (hw->fc.send_xon)
+			fcrtl |= E1000_FCRTL_XONE;
+
+		fcrth = hw->fc.high_water;
+	}
+	wr32(E1000_FCRTL, fcrtl);
+	wr32(E1000_FCRTH, fcrth);
+
+	return ret_val;
+}
+
+/**
+ *  igb_set_default_fc - Set flow control default values
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM for the default values for flow control and store the
+ *  values.
+ **/
+static s32 igb_set_default_fc(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+	u16 lan_offset;
+	u16 nvm_data;
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (hw->mac.type == e1000_i350) {
+		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
+		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
+					   + lan_offset, 1, &nvm_data);
+	 } else {
+		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
+					   1, &nvm_data);
+	 }
+
+	if (ret_val) {
+		hw_dbg("NVM Read Error\n");
+		goto out;
+	}
+
+	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+		hw->fc.requested_mode = e1000_fc_none;
+	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+		 NVM_WORD0F_ASM_DIR)
+		hw->fc.requested_mode = e1000_fc_tx_pause;
+	else
+		hw->fc.requested_mode = e1000_fc_full;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_force_mac_fc - Force the MAC's flow control settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ *  device control register to reflect the adapter settings.  TFCE and RFCE
+ *  need to be explicitly set by software when a copper PHY is used because
+ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+ *  also configure these bits when link is forced on a fiber connection.
+ **/
+s32 igb_force_mac_fc(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = 0;
+
+	ctrl = rd32(E1000_CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc.current_mode" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		hw_dbg("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	wr32(E1000_CTRL, ctrl);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_config_fc_after_link_up - Configures flow control after link
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the status of auto-negotiation after link up to ensure that the
+ *  speed and duplex were not forced.  If the link needed to be forced, then
+ *  flow control needs to be forced also.  If auto-negotiation is enabled
+ *  and did not fail, then we configure flow control based on our link
+ *  partner.
+ **/
+s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = 0;
+	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
+	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+	u16 speed, duplex;
+
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (mac->autoneg_failed) {
+		if (hw->phy.media_type == e1000_media_type_internal_serdes)
+			ret_val = igb_force_mac_fc(hw);
+	} else {
+		if (hw->phy.media_type == e1000_media_type_copper)
+			ret_val = igb_force_mac_fc(hw);
+	}
+
+	if (ret_val) {
+		hw_dbg("Error forcing flow control settings\n");
+		goto out;
+	}
+
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
+						   &mii_status_reg);
+		if (ret_val)
+			goto out;
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
+						   &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
+			goto out;
+		}
+
+		/* The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (Address 4) and the Auto_Negotiation Base
+		 * Page Ability Register (Address 5) to determine how
+		 * flow control was negotiated.
+		 */
+		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
+					    &mii_nway_adv_reg);
+		if (ret_val)
+			goto out;
+		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
+					    &mii_nway_lp_ability_reg);
+		if (ret_val)
+			goto out;
+
+		/* Two bits in the Auto Negotiation Advertisement Register
+		 * (Address 4) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (Address 5) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
+		 *
+		 */
+		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+			/* Now we need to check if the user selected RX ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise RX
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF  the TRANSMISSION of PAUSE frames.
+			 */
+			if (hw->fc.requested_mode == e1000_fc_full) {
+				hw->fc.current_mode = e1000_fc_full;
+				hw_dbg("Flow Control = FULL.\n");
+			} else {
+				hw->fc.current_mode = e1000_fc_rx_pause;
+				hw_dbg("Flow Control = RX PAUSE frames only.\n");
+			}
+		}
+		/* For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_tx_pause;
+			hw_dbg("Flow Control = TX PAUSE frames only.\n");
+		}
+		/* For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_rx_pause;
+			hw_dbg("Flow Control = RX PAUSE frames only.\n");
+		}
+		/* Per the IEEE spec, at this point flow control should be
+		 * disabled.  However, we want to consider that we could
+		 * be connected to a legacy switch that doesn't advertise
+		 * desired flow control, but can be forced on the link
+		 * partner.  So if we advertised no flow control, that is
+		 * what we will resolve to.  If we advertised some kind of
+		 * receive capability (Rx Pause Only or Full Flow Control)
+		 * and the link partner advertised none, we will configure
+		 * ourselves to enable Rx Flow Control only.  We can do
+		 * this safely for two reasons:  If the link partner really
+		 * didn't want flow control enabled, and we enable Rx, no
+		 * harm done since we won't be receiving any PAUSE frames
+		 * anyway.  If the intent on the link partner was to have
+		 * flow control enabled, then by us enabling RX only, we
+		 * can at least receive pause frames and process them.
+		 * This is a good idea because in most cases, since we are
+		 * predominantly a server NIC, more times than not we will
+		 * be asked to delay transmission of packets than asking
+		 * our link partner to pause transmission of frames.
+		 */
+		else if ((hw->fc.requested_mode == e1000_fc_none) ||
+			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
+			 (hw->fc.strict_ieee)) {
+			hw->fc.current_mode = e1000_fc_none;
+			hw_dbg("Flow Control = NONE.\n");
+		} else {
+			hw->fc.current_mode = e1000_fc_rx_pause;
+			hw_dbg("Flow Control = RX PAUSE frames only.\n");
+		}
+
+		/* Now we need to do one last check...  If we auto-
+		 * negotiated to HALF DUPLEX, flow control should not be
+		 * enabled per IEEE 802.3 spec.
+		 */
+		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			hw_dbg("Error getting link speed and duplex\n");
+			goto out;
+		}
+
+		if (duplex == HALF_DUPLEX)
+			hw->fc.current_mode = e1000_fc_none;
+
+		/* Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		ret_val = igb_force_mac_fc(hw);
+		if (ret_val) {
+			hw_dbg("Error forcing flow control settings\n");
+			goto out;
+		}
+	}
+	/* Check for the case where we have SerDes media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
+		&& mac->autoneg) {
+		/* Read the PCS_LSTS and check to see if AutoNeg
+		 * has completed.
+		 */
+		pcs_status_reg = rd32(E1000_PCS_LSTAT);
+
+		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
+			hw_dbg("PCS Auto Neg has not completed.\n");
+			return ret_val;
+		}
+
+		/* The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (PCS_ANADV) and the Auto_Negotiation Base
+		 * Page Ability Register (PCS_LPAB) to determine how
+		 * flow control was negotiated.
+		 */
+		pcs_adv_reg = rd32(E1000_PCS_ANADV);
+		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
+
+		/* Two bits in the Auto Negotiation Advertisement Register
+		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (PCS_LPAB) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *
+		 */
+		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
+			/* Now we need to check if the user selected Rx ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise Rx
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF the TRANSMISSION of PAUSE frames.
+			 */
+			if (hw->fc.requested_mode == e1000_fc_full) {
+				hw->fc.current_mode = e1000_fc_full;
+				hw_dbg("Flow Control = FULL.\n");
+			} else {
+				hw->fc.current_mode = e1000_fc_rx_pause;
+				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
+			}
+		}
+		/* For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
+			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_tx_pause;
+			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
+		}
+		/* For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_rx_pause;
+			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
+		} else {
+			/* Per the IEEE spec, at this point flow control
+			 * should be disabled.
+			 */
+			hw->fc.current_mode = e1000_fc_none;
+			hw_dbg("Flow Control = NONE.\n");
+		}
+
+		/* Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
+		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
+
+		ret_val = igb_force_mac_fc(hw);
+		if (ret_val) {
+			hw_dbg("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Read the status register for the current speed/duplex and store the current
+ *  speed and duplex for copper connections.
+ **/
+s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
+				      u16 *duplex)
+{
+	u32 status;
+
+	status = rd32(E1000_STATUS);
+	if (status & E1000_STATUS_SPEED_1000) {
+		*speed = SPEED_1000;
+		hw_dbg("1000 Mbs, ");
+	} else if (status & E1000_STATUS_SPEED_100) {
+		*speed = SPEED_100;
+		hw_dbg("100 Mbs, ");
+	} else {
+		*speed = SPEED_10;
+		hw_dbg("10 Mbs, ");
+	}
+
+	if (status & E1000_STATUS_FD) {
+		*duplex = FULL_DUPLEX;
+		hw_dbg("Full Duplex\n");
+	} else {
+		*duplex = HALF_DUPLEX;
+		hw_dbg("Half Duplex\n");
+	}
+
+	return 0;
+}
+
+/**
+ *  igb_get_hw_semaphore - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 igb_get_hw_semaphore(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 ret_val = 0;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	/* Get the SW semaphore */
+	while (i < timeout) {
+		swsm = rd32(E1000_SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		udelay(50);
+		i++;
+	}
+
+	if (i == timeout) {
+		hw_dbg("Driver can't access device - SMBI bit is set.\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = rd32(E1000_SWSM);
+		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		udelay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		igb_put_hw_semaphore(hw);
+		hw_dbg("Driver can't access the NVM\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_put_hw_semaphore - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+void igb_put_hw_semaphore(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	swsm = rd32(E1000_SWSM);
+
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+	wr32(E1000_SWSM, swsm);
+}
+
+/**
+ *  igb_get_auto_rd_done - Check for auto read completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check EEPROM for Auto Read done bit.
+ **/
+s32 igb_get_auto_rd_done(struct e1000_hw *hw)
+{
+	s32 i = 0;
+	s32 ret_val = 0;
+
+
+	while (i < AUTO_READ_DONE_TIMEOUT) {
+		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
+			break;
+		usleep_range(1000, 2000);
+		i++;
+	}
+
+	if (i == AUTO_READ_DONE_TIMEOUT) {
+		hw_dbg("Auto read by HW from NVM has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_valid_led_default - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		hw_dbg("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+		switch (hw->phy.media_type) {
+		case e1000_media_type_internal_serdes:
+			*data = ID_LED_DEFAULT_82575_SERDES;
+			break;
+		case e1000_media_type_copper:
+		default:
+			*data = ID_LED_DEFAULT;
+			break;
+		}
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_id_led_init -
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 igb_id_led_init(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	/* i210 and i211 devices have different LED mechanism */
+	if ((hw->mac.type == e1000_i210) ||
+	    (hw->mac.type == e1000_i211))
+		ret_val = igb_valid_led_default_i210(hw, &data);
+	else
+		ret_val = igb_valid_led_default(hw, &data);
+
+	if (ret_val)
+		goto out;
+
+	mac->ledctl_default = rd32(E1000_LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_cleanup_led - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+s32 igb_cleanup_led(struct e1000_hw *hw)
+{
+	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
+	return 0;
+}
+
+/**
+ *  igb_blink_led - Blink LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Blink the led's which are set to be on.
+ **/
+s32 igb_blink_led(struct e1000_hw *hw)
+{
+	u32 ledctl_blink = 0;
+	u32 i;
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		/* always blink LED0 for PCI-E fiber */
+		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+	} else {
+		/* Set the blink bit for each LED that's "on" (0x0E)
+		 * (or "off" if inverted) in ledctl_mode2.  The blink
+		 * logic in hardware only works when mode is set to "on"
+		 * so it must be changed accordingly when the mode is
+		 * "off" and inverted.
+		 */
+		ledctl_blink = hw->mac.ledctl_mode2;
+		for (i = 0; i < 32; i += 8) {
+			u32 mode = (hw->mac.ledctl_mode2 >> i) &
+			    E1000_LEDCTL_LED0_MODE_MASK;
+			u32 led_default = hw->mac.ledctl_default >> i;
+
+			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
+			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
+			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
+			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
+				ledctl_blink &=
+				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
+				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
+						 E1000_LEDCTL_MODE_LED_ON) << i;
+			}
+		}
+	}
+
+	wr32(E1000_LEDCTL, ledctl_blink);
+
+	return 0;
+}
+
+/**
+ *  igb_led_off - Turn LED off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED off.
+ **/
+s32 igb_led_off(struct e1000_hw *hw)
+{
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+/**
+ *  igb_disable_pcie_master - Disables PCI-express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns 0 (0) if successful, else returns -10
+ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ *  the master requests to be disabled.
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests.
+ **/
+s32 igb_disable_pcie_master(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 timeout = MASTER_DISABLE_TIMEOUT;
+	s32 ret_val = 0;
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		goto out;
+
+	ctrl = rd32(E1000_CTRL);
+	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+	wr32(E1000_CTRL, ctrl);
+
+	while (timeout) {
+		if (!(rd32(E1000_STATUS) &
+		      E1000_STATUS_GIO_MASTER_ENABLE))
+			break;
+		udelay(100);
+		timeout--;
+	}
+
+	if (!timeout) {
+		hw_dbg("Master requests are pending.\n");
+		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_validate_mdi_setting - Verify MDI/MDIx settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
+ *  set, which is forced to MDI mode only.
+ **/
+s32 igb_validate_mdi_setting(struct e1000_hw *hw)
+{
+	s32 ret_val = 0;
+
+	/* All MDI settings are supported on 82580 and newer. */
+	if (hw->mac.type >= e1000_82580)
+		goto out;
+
+	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+		hw_dbg("Invalid MDI setting detected\n");
+		hw->phy.mdix = 1;
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
+ *  @hw: pointer to the HW structure
+ *  @reg: 32bit register offset such as E1000_SCTL
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes an address/data control type register.  There are several of these
+ *  and they all have the format address << 8 | data and bit 31 is polled for
+ *  completion.
+ **/
+s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
+			      u32 offset, u8 data)
+{
+	u32 i, regvalue = 0;
+	s32 ret_val = 0;
+
+	/* Set up the address and data */
+	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+	wr32(reg, regvalue);
+
+	/* Poll the ready bit to see if the MDI read completed */
+	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+		udelay(5);
+		regvalue = rd32(reg);
+		if (regvalue & E1000_GEN_CTL_READY)
+			break;
+	}
+	if (!(regvalue & E1000_GEN_CTL_READY)) {
+		hw_dbg("Reg %08x did not indicate ready\n", reg);
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  igb_enable_mng_pass_thru - Enable processing of ARP's
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies the hardware needs to leave interface enabled so that frames can
+ *  be directed to and from the management interface.
+ **/
+bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+	u32 fwsm, factps;
+	bool ret_val = false;
+
+	if (!hw->mac.asf_firmware_present)
+		goto out;
+
+	manc = rd32(E1000_MANC);
+
+	if (!(manc & E1000_MANC_RCV_TCO_EN))
+		goto out;
+
+	if (hw->mac.arc_subsystem_valid) {
+		fwsm = rd32(E1000_FWSM);
+		factps = rd32(E1000_FACTPS);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((fwsm & E1000_FWSM_MODE_MASK) ==
+		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+			ret_val = true;
+			goto out;
+		}
+	} else {
+		if ((manc & E1000_MANC_SMBUS_EN) &&
+		    !(manc & E1000_MANC_ASF_EN)) {
+			ret_val = true;
+			goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}