devices/e1000e/phy-2.6.37-orig.c
branchredundancy
changeset 2135 f99b2249704c
equal deleted inserted replaced
2134:2aee73b9f63f 2135:f99b2249704c
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2010 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include <linux/delay.h>
       
    30 
       
    31 #include "e1000.h"
       
    32 
       
    33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
       
    34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
       
    35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
       
    36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
       
    37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
       
    38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
    39 					  u16 *data, bool read);
       
    40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
       
    41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
    42                                           u16 *data, bool read);
       
    43 
       
    44 /* Cable length tables */
       
    45 static const u16 e1000_m88_cable_length_table[] =
       
    46 	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
       
    47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
       
    48 		ARRAY_SIZE(e1000_m88_cable_length_table)
       
    49 
       
    50 static const u16 e1000_igp_2_cable_length_table[] =
       
    51 	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
       
    52 	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
       
    53 	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
       
    54 	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
       
    55 	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
       
    56 	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
       
    57 	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
       
    58 	  124};
       
    59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
       
    60 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
       
    61 
       
    62 #define BM_PHY_REG_PAGE(offset) \
       
    63 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
       
    64 #define BM_PHY_REG_NUM(offset) \
       
    65 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
       
    66 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
       
    67 		~MAX_PHY_REG_ADDRESS)))
       
    68 
       
    69 #define HV_INTC_FC_PAGE_START             768
       
    70 #define I82578_ADDR_REG                   29
       
    71 #define I82577_ADDR_REG                   16
       
    72 #define I82577_CFG_REG                    22
       
    73 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
       
    74 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
       
    75 #define I82577_CTRL_REG                   23
       
    76 
       
    77 /* 82577 specific PHY registers */
       
    78 #define I82577_PHY_CTRL_2            18
       
    79 #define I82577_PHY_STATUS_2          26
       
    80 #define I82577_PHY_DIAG_STATUS       31
       
    81 
       
    82 /* I82577 PHY Status 2 */
       
    83 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
       
    84 #define I82577_PHY_STATUS2_MDIX           0x0800
       
    85 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
       
    86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
       
    87 
       
    88 /* I82577 PHY Control 2 */
       
    89 #define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
       
    90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
       
    91 
       
    92 /* I82577 PHY Diagnostics Status */
       
    93 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
       
    94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
       
    95 
       
    96 /* BM PHY Copper Specific Control 1 */
       
    97 #define BM_CS_CTRL1                       16
       
    98 
       
    99 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
       
   100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
       
   101 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
       
   102 
       
   103 /**
       
   104  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
       
   105  *  @hw: pointer to the HW structure
       
   106  *
       
   107  *  Read the PHY management control register and check whether a PHY reset
       
   108  *  is blocked.  If a reset is not blocked return 0, otherwise
       
   109  *  return E1000_BLK_PHY_RESET (12).
       
   110  **/
       
   111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
       
   112 {
       
   113 	u32 manc;
       
   114 
       
   115 	manc = er32(MANC);
       
   116 
       
   117 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
       
   118 	       E1000_BLK_PHY_RESET : 0;
       
   119 }
       
   120 
       
   121 /**
       
   122  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
       
   123  *  @hw: pointer to the HW structure
       
   124  *
       
   125  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   126  *  revision in the hardware structure.
       
   127  **/
       
   128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
       
   129 {
       
   130 	struct e1000_phy_info *phy = &hw->phy;
       
   131 	s32 ret_val = 0;
       
   132 	u16 phy_id;
       
   133 	u16 retry_count = 0;
       
   134 
       
   135 	if (!(phy->ops.read_reg))
       
   136 		goto out;
       
   137 
       
   138 	while (retry_count < 2) {
       
   139 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   140 		if (ret_val)
       
   141 			goto out;
       
   142 
       
   143 		phy->id = (u32)(phy_id << 16);
       
   144 		udelay(20);
       
   145 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   146 		if (ret_val)
       
   147 			goto out;
       
   148 
       
   149 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
       
   150 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   151 
       
   152 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
       
   153 			goto out;
       
   154 
       
   155 		retry_count++;
       
   156 	}
       
   157 out:
       
   158 	return ret_val;
       
   159 }
       
   160 
       
   161 /**
       
   162  *  e1000e_phy_reset_dsp - Reset PHY DSP
       
   163  *  @hw: pointer to the HW structure
       
   164  *
       
   165  *  Reset the digital signal processor.
       
   166  **/
       
   167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
       
   168 {
       
   169 	s32 ret_val;
       
   170 
       
   171 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
       
   172 	if (ret_val)
       
   173 		return ret_val;
       
   174 
       
   175 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
       
   176 }
       
   177 
       
   178 /**
       
   179  *  e1000e_read_phy_reg_mdic - Read MDI control register
       
   180  *  @hw: pointer to the HW structure
       
   181  *  @offset: register offset to be read
       
   182  *  @data: pointer to the read data
       
   183  *
       
   184  *  Reads the MDI control register in the PHY at offset and stores the
       
   185  *  information read to data.
       
   186  **/
       
   187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
       
   188 {
       
   189 	struct e1000_phy_info *phy = &hw->phy;
       
   190 	u32 i, mdic = 0;
       
   191 
       
   192 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   193 		e_dbg("PHY Address %d is out of range\n", offset);
       
   194 		return -E1000_ERR_PARAM;
       
   195 	}
       
   196 
       
   197 	/*
       
   198 	 * Set up Op-code, Phy Address, and register offset in the MDI
       
   199 	 * Control register.  The MAC will take care of interfacing with the
       
   200 	 * PHY to retrieve the desired data.
       
   201 	 */
       
   202 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
       
   203 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   204 		(E1000_MDIC_OP_READ));
       
   205 
       
   206 	ew32(MDIC, mdic);
       
   207 
       
   208 	/*
       
   209 	 * Poll the ready bit to see if the MDI read completed
       
   210 	 * Increasing the time out as testing showed failures with
       
   211 	 * the lower time out
       
   212 	 */
       
   213 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   214 		udelay(50);
       
   215 		mdic = er32(MDIC);
       
   216 		if (mdic & E1000_MDIC_READY)
       
   217 			break;
       
   218 	}
       
   219 	if (!(mdic & E1000_MDIC_READY)) {
       
   220 		e_dbg("MDI Read did not complete\n");
       
   221 		return -E1000_ERR_PHY;
       
   222 	}
       
   223 	if (mdic & E1000_MDIC_ERROR) {
       
   224 		e_dbg("MDI Error\n");
       
   225 		return -E1000_ERR_PHY;
       
   226 	}
       
   227 	*data = (u16) mdic;
       
   228 
       
   229 	/*
       
   230 	 * Allow some time after each MDIC transaction to avoid
       
   231 	 * reading duplicate data in the next MDIC transaction.
       
   232 	 */
       
   233 	if (hw->mac.type == e1000_pch2lan)
       
   234 		udelay(100);
       
   235 
       
   236 	return 0;
       
   237 }
       
   238 
       
   239 /**
       
   240  *  e1000e_write_phy_reg_mdic - Write MDI control register
       
   241  *  @hw: pointer to the HW structure
       
   242  *  @offset: register offset to write to
       
   243  *  @data: data to write to register at offset
       
   244  *
       
   245  *  Writes data to MDI control register in the PHY at offset.
       
   246  **/
       
   247 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
       
   248 {
       
   249 	struct e1000_phy_info *phy = &hw->phy;
       
   250 	u32 i, mdic = 0;
       
   251 
       
   252 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   253 		e_dbg("PHY Address %d is out of range\n", offset);
       
   254 		return -E1000_ERR_PARAM;
       
   255 	}
       
   256 
       
   257 	/*
       
   258 	 * Set up Op-code, Phy Address, and register offset in the MDI
       
   259 	 * Control register.  The MAC will take care of interfacing with the
       
   260 	 * PHY to retrieve the desired data.
       
   261 	 */
       
   262 	mdic = (((u32)data) |
       
   263 		(offset << E1000_MDIC_REG_SHIFT) |
       
   264 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   265 		(E1000_MDIC_OP_WRITE));
       
   266 
       
   267 	ew32(MDIC, mdic);
       
   268 
       
   269 	/*
       
   270 	 * Poll the ready bit to see if the MDI read completed
       
   271 	 * Increasing the time out as testing showed failures with
       
   272 	 * the lower time out
       
   273 	 */
       
   274 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   275 		udelay(50);
       
   276 		mdic = er32(MDIC);
       
   277 		if (mdic & E1000_MDIC_READY)
       
   278 			break;
       
   279 	}
       
   280 	if (!(mdic & E1000_MDIC_READY)) {
       
   281 		e_dbg("MDI Write did not complete\n");
       
   282 		return -E1000_ERR_PHY;
       
   283 	}
       
   284 	if (mdic & E1000_MDIC_ERROR) {
       
   285 		e_dbg("MDI Error\n");
       
   286 		return -E1000_ERR_PHY;
       
   287 	}
       
   288 
       
   289 	/*
       
   290 	 * Allow some time after each MDIC transaction to avoid
       
   291 	 * reading duplicate data in the next MDIC transaction.
       
   292 	 */
       
   293 	if (hw->mac.type == e1000_pch2lan)
       
   294 		udelay(100);
       
   295 
       
   296 	return 0;
       
   297 }
       
   298 
       
   299 /**
       
   300  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
       
   301  *  @hw: pointer to the HW structure
       
   302  *  @offset: register offset to be read
       
   303  *  @data: pointer to the read data
       
   304  *
       
   305  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   306  *  and storing the retrieved information in data.  Release any acquired
       
   307  *  semaphores before exiting.
       
   308  **/
       
   309 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
       
   310 {
       
   311 	s32 ret_val;
       
   312 
       
   313 	ret_val = hw->phy.ops.acquire(hw);
       
   314 	if (ret_val)
       
   315 		return ret_val;
       
   316 
       
   317 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   318 					   data);
       
   319 
       
   320 	hw->phy.ops.release(hw);
       
   321 
       
   322 	return ret_val;
       
   323 }
       
   324 
       
   325 /**
       
   326  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
       
   327  *  @hw: pointer to the HW structure
       
   328  *  @offset: register offset to write to
       
   329  *  @data: data to write at register offset
       
   330  *
       
   331  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   332  *  at the offset.  Release any acquired semaphores before exiting.
       
   333  **/
       
   334 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
       
   335 {
       
   336 	s32 ret_val;
       
   337 
       
   338 	ret_val = hw->phy.ops.acquire(hw);
       
   339 	if (ret_val)
       
   340 		return ret_val;
       
   341 
       
   342 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   343 					    data);
       
   344 
       
   345 	hw->phy.ops.release(hw);
       
   346 
       
   347 	return ret_val;
       
   348 }
       
   349 
       
   350 /**
       
   351  *  __e1000e_read_phy_reg_igp - Read igp PHY register
       
   352  *  @hw: pointer to the HW structure
       
   353  *  @offset: register offset to be read
       
   354  *  @data: pointer to the read data
       
   355  *  @locked: semaphore has already been acquired or not
       
   356  *
       
   357  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   358  *  and stores the retrieved information in data.  Release any acquired
       
   359  *  semaphores before exiting.
       
   360  **/
       
   361 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
       
   362                                     bool locked)
       
   363 {
       
   364 	s32 ret_val = 0;
       
   365 
       
   366 	if (!locked) {
       
   367 		if (!(hw->phy.ops.acquire))
       
   368 			goto out;
       
   369 
       
   370 		ret_val = hw->phy.ops.acquire(hw);
       
   371 		if (ret_val)
       
   372 			goto out;
       
   373 	}
       
   374 
       
   375 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   376 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   377 						    IGP01E1000_PHY_PAGE_SELECT,
       
   378 						    (u16)offset);
       
   379 		if (ret_val)
       
   380 			goto release;
       
   381 	}
       
   382 
       
   383 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   384 	                                  data);
       
   385 
       
   386 release:
       
   387 	if (!locked)
       
   388 		hw->phy.ops.release(hw);
       
   389 out:
       
   390 	return ret_val;
       
   391 }
       
   392 
       
   393 /**
       
   394  *  e1000e_read_phy_reg_igp - Read igp PHY register
       
   395  *  @hw: pointer to the HW structure
       
   396  *  @offset: register offset to be read
       
   397  *  @data: pointer to the read data
       
   398  *
       
   399  *  Acquires semaphore then reads the PHY register at offset and stores the
       
   400  *  retrieved information in data.
       
   401  *  Release the acquired semaphore before exiting.
       
   402  **/
       
   403 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
       
   404 {
       
   405 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
       
   406 }
       
   407 
       
   408 /**
       
   409  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
       
   410  *  @hw: pointer to the HW structure
       
   411  *  @offset: register offset to be read
       
   412  *  @data: pointer to the read data
       
   413  *
       
   414  *  Reads the PHY register at offset and stores the retrieved information
       
   415  *  in data.  Assumes semaphore already acquired.
       
   416  **/
       
   417 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   418 {
       
   419 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
       
   420 }
       
   421 
       
   422 /**
       
   423  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   424  *  @hw: pointer to the HW structure
       
   425  *  @offset: register offset to write to
       
   426  *  @data: data to write at register offset
       
   427  *  @locked: semaphore has already been acquired or not
       
   428  *
       
   429  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   430  *  at the offset.  Release any acquired semaphores before exiting.
       
   431  **/
       
   432 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
       
   433                                      bool locked)
       
   434 {
       
   435 	s32 ret_val = 0;
       
   436 
       
   437 	if (!locked) {
       
   438 		if (!(hw->phy.ops.acquire))
       
   439 			goto out;
       
   440 
       
   441 		ret_val = hw->phy.ops.acquire(hw);
       
   442 		if (ret_val)
       
   443 			goto out;
       
   444 	}
       
   445 
       
   446 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   447 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   448 						    IGP01E1000_PHY_PAGE_SELECT,
       
   449 						    (u16)offset);
       
   450 		if (ret_val)
       
   451 			goto release;
       
   452 	}
       
   453 
       
   454 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   455 					    data);
       
   456 
       
   457 release:
       
   458 	if (!locked)
       
   459 		hw->phy.ops.release(hw);
       
   460 
       
   461 out:
       
   462 	return ret_val;
       
   463 }
       
   464 
       
   465 /**
       
   466  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   467  *  @hw: pointer to the HW structure
       
   468  *  @offset: register offset to write to
       
   469  *  @data: data to write at register offset
       
   470  *
       
   471  *  Acquires semaphore then writes the data to PHY register
       
   472  *  at the offset.  Release any acquired semaphores before exiting.
       
   473  **/
       
   474 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
       
   475 {
       
   476 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
       
   477 }
       
   478 
       
   479 /**
       
   480  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
       
   481  *  @hw: pointer to the HW structure
       
   482  *  @offset: register offset to write to
       
   483  *  @data: data to write at register offset
       
   484  *
       
   485  *  Writes the data to PHY register at the offset.
       
   486  *  Assumes semaphore already acquired.
       
   487  **/
       
   488 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   489 {
       
   490 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
       
   491 }
       
   492 
       
   493 /**
       
   494  *  __e1000_read_kmrn_reg - Read kumeran register
       
   495  *  @hw: pointer to the HW structure
       
   496  *  @offset: register offset to be read
       
   497  *  @data: pointer to the read data
       
   498  *  @locked: semaphore has already been acquired or not
       
   499  *
       
   500  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
       
   501  *  using the kumeran interface.  The information retrieved is stored in data.
       
   502  *  Release any acquired semaphores before exiting.
       
   503  **/
       
   504 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
       
   505                                  bool locked)
       
   506 {
       
   507 	u32 kmrnctrlsta;
       
   508 	s32 ret_val = 0;
       
   509 
       
   510 	if (!locked) {
       
   511 		if (!(hw->phy.ops.acquire))
       
   512 			goto out;
       
   513 
       
   514 		ret_val = hw->phy.ops.acquire(hw);
       
   515 		if (ret_val)
       
   516 			goto out;
       
   517 	}
       
   518 
       
   519 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   520 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
       
   521 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   522 
       
   523 	udelay(2);
       
   524 
       
   525 	kmrnctrlsta = er32(KMRNCTRLSTA);
       
   526 	*data = (u16)kmrnctrlsta;
       
   527 
       
   528 	if (!locked)
       
   529 		hw->phy.ops.release(hw);
       
   530 
       
   531 out:
       
   532 	return ret_val;
       
   533 }
       
   534 
       
   535 /**
       
   536  *  e1000e_read_kmrn_reg -  Read kumeran register
       
   537  *  @hw: pointer to the HW structure
       
   538  *  @offset: register offset to be read
       
   539  *  @data: pointer to the read data
       
   540  *
       
   541  *  Acquires semaphore then reads the PHY register at offset using the
       
   542  *  kumeran interface.  The information retrieved is stored in data.
       
   543  *  Release the acquired semaphore before exiting.
       
   544  **/
       
   545 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
       
   546 {
       
   547 	return __e1000_read_kmrn_reg(hw, offset, data, false);
       
   548 }
       
   549 
       
   550 /**
       
   551  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
       
   552  *  @hw: pointer to the HW structure
       
   553  *  @offset: register offset to be read
       
   554  *  @data: pointer to the read data
       
   555  *
       
   556  *  Reads the PHY register at offset using the kumeran interface.  The
       
   557  *  information retrieved is stored in data.
       
   558  *  Assumes semaphore already acquired.
       
   559  **/
       
   560 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   561 {
       
   562 	return __e1000_read_kmrn_reg(hw, offset, data, true);
       
   563 }
       
   564 
       
   565 /**
       
   566  *  __e1000_write_kmrn_reg - Write kumeran register
       
   567  *  @hw: pointer to the HW structure
       
   568  *  @offset: register offset to write to
       
   569  *  @data: data to write at register offset
       
   570  *  @locked: semaphore has already been acquired or not
       
   571  *
       
   572  *  Acquires semaphore, if necessary.  Then write the data to PHY register
       
   573  *  at the offset using the kumeran interface.  Release any acquired semaphores
       
   574  *  before exiting.
       
   575  **/
       
   576 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
       
   577                                   bool locked)
       
   578 {
       
   579 	u32 kmrnctrlsta;
       
   580 	s32 ret_val = 0;
       
   581 
       
   582 	if (!locked) {
       
   583 		if (!(hw->phy.ops.acquire))
       
   584 			goto out;
       
   585 
       
   586 		ret_val = hw->phy.ops.acquire(hw);
       
   587 		if (ret_val)
       
   588 			goto out;
       
   589 	}
       
   590 
       
   591 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   592 		       E1000_KMRNCTRLSTA_OFFSET) | data;
       
   593 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   594 
       
   595 	udelay(2);
       
   596 
       
   597 	if (!locked)
       
   598 		hw->phy.ops.release(hw);
       
   599 
       
   600 out:
       
   601 	return ret_val;
       
   602 }
       
   603 
       
   604 /**
       
   605  *  e1000e_write_kmrn_reg -  Write kumeran register
       
   606  *  @hw: pointer to the HW structure
       
   607  *  @offset: register offset to write to
       
   608  *  @data: data to write at register offset
       
   609  *
       
   610  *  Acquires semaphore then writes the data to the PHY register at the offset
       
   611  *  using the kumeran interface.  Release the acquired semaphore before exiting.
       
   612  **/
       
   613 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
       
   614 {
       
   615 	return __e1000_write_kmrn_reg(hw, offset, data, false);
       
   616 }
       
   617 
       
   618 /**
       
   619  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
       
   620  *  @hw: pointer to the HW structure
       
   621  *  @offset: register offset to write to
       
   622  *  @data: data to write at register offset
       
   623  *
       
   624  *  Write the data to PHY register at the offset using the kumeran interface.
       
   625  *  Assumes semaphore already acquired.
       
   626  **/
       
   627 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   628 {
       
   629 	return __e1000_write_kmrn_reg(hw, offset, data, true);
       
   630 }
       
   631 
       
   632 /**
       
   633  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
       
   634  *  @hw: pointer to the HW structure
       
   635  *
       
   636  *  Sets up Carrier-sense on Transmit and downshift values.
       
   637  **/
       
   638 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
       
   639 {
       
   640 	struct e1000_phy_info *phy = &hw->phy;
       
   641 	s32 ret_val;
       
   642 	u16 phy_data;
       
   643 
       
   644 	/* Enable CRS on TX. This must be set for half-duplex operation. */
       
   645 	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
       
   646 	if (ret_val)
       
   647 		goto out;
       
   648 
       
   649 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
       
   650 
       
   651 	/* Enable downshift */
       
   652 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
       
   653 
       
   654 	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
       
   655 
       
   656 out:
       
   657 	return ret_val;
       
   658 }
       
   659 
       
   660 /**
       
   661  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
       
   662  *  @hw: pointer to the HW structure
       
   663  *
       
   664  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
       
   665  *  and downshift values are set also.
       
   666  **/
       
   667 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
       
   668 {
       
   669 	struct e1000_phy_info *phy = &hw->phy;
       
   670 	s32 ret_val;
       
   671 	u16 phy_data;
       
   672 
       
   673 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   674 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   675 	if (ret_val)
       
   676 		return ret_val;
       
   677 
       
   678 	/* For BM PHY this bit is downshift enable */
       
   679 	if (phy->type != e1000_phy_bm)
       
   680 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
   681 
       
   682 	/*
       
   683 	 * Options:
       
   684 	 *   MDI/MDI-X = 0 (default)
       
   685 	 *   0 - Auto for all speeds
       
   686 	 *   1 - MDI mode
       
   687 	 *   2 - MDI-X mode
       
   688 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   689 	 */
       
   690 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
   691 
       
   692 	switch (phy->mdix) {
       
   693 	case 1:
       
   694 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
   695 		break;
       
   696 	case 2:
       
   697 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
   698 		break;
       
   699 	case 3:
       
   700 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
   701 		break;
       
   702 	case 0:
       
   703 	default:
       
   704 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
   705 		break;
       
   706 	}
       
   707 
       
   708 	/*
       
   709 	 * Options:
       
   710 	 *   disable_polarity_correction = 0 (default)
       
   711 	 *       Automatic Correction for Reversed Cable Polarity
       
   712 	 *   0 - Disabled
       
   713 	 *   1 - Enabled
       
   714 	 */
       
   715 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
   716 	if (phy->disable_polarity_correction == 1)
       
   717 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
   718 
       
   719 	/* Enable downshift on BM (disabled by default) */
       
   720 	if (phy->type == e1000_phy_bm)
       
   721 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
       
   722 
       
   723 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   724 	if (ret_val)
       
   725 		return ret_val;
       
   726 
       
   727 	if ((phy->type == e1000_phy_m88) &&
       
   728 	    (phy->revision < E1000_REVISION_4) &&
       
   729 	    (phy->id != BME1000_E_PHY_ID_R2)) {
       
   730 		/*
       
   731 		 * Force TX_CLK in the Extended PHY Specific Control Register
       
   732 		 * to 25MHz clock.
       
   733 		 */
       
   734 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   735 		if (ret_val)
       
   736 			return ret_val;
       
   737 
       
   738 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
   739 
       
   740 		if ((phy->revision == 2) &&
       
   741 		    (phy->id == M88E1111_I_PHY_ID)) {
       
   742 			/* 82573L PHY - set the downshift counter to 5x. */
       
   743 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   744 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
   745 		} else {
       
   746 			/* Configure Master and Slave downshift values */
       
   747 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
   748 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
   749 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
   750 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
   751 		}
       
   752 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   753 		if (ret_val)
       
   754 			return ret_val;
       
   755 	}
       
   756 
       
   757 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
       
   758 		/* Set PHY page 0, register 29 to 0x0003 */
       
   759 		ret_val = e1e_wphy(hw, 29, 0x0003);
       
   760 		if (ret_val)
       
   761 			return ret_val;
       
   762 
       
   763 		/* Set PHY page 0, register 30 to 0x0000 */
       
   764 		ret_val = e1e_wphy(hw, 30, 0x0000);
       
   765 		if (ret_val)
       
   766 			return ret_val;
       
   767 	}
       
   768 
       
   769 	/* Commit the changes. */
       
   770 	ret_val = e1000e_commit_phy(hw);
       
   771 	if (ret_val) {
       
   772 		e_dbg("Error committing the PHY changes\n");
       
   773 		return ret_val;
       
   774 	}
       
   775 
       
   776 	if (phy->type == e1000_phy_82578) {
       
   777 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
   778 		                            &phy_data);
       
   779 		if (ret_val)
       
   780 			return ret_val;
       
   781 
       
   782 		/* 82578 PHY - set the downshift count to 1x. */
       
   783 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
       
   784 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   785 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
   786 		                             phy_data);
       
   787 		if (ret_val)
       
   788 			return ret_val;
       
   789 	}
       
   790 
       
   791 	return 0;
       
   792 }
       
   793 
       
   794 /**
       
   795  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
       
   796  *  @hw: pointer to the HW structure
       
   797  *
       
   798  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
       
   799  *  igp PHY's.
       
   800  **/
       
   801 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
       
   802 {
       
   803 	struct e1000_phy_info *phy = &hw->phy;
       
   804 	s32 ret_val;
       
   805 	u16 data;
       
   806 
       
   807 	ret_val = e1000_phy_hw_reset(hw);
       
   808 	if (ret_val) {
       
   809 		e_dbg("Error resetting the PHY.\n");
       
   810 		return ret_val;
       
   811 	}
       
   812 
       
   813 	/*
       
   814 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
       
   815 	 * timeout issues when LFS is enabled.
       
   816 	 */
       
   817 	msleep(100);
       
   818 
       
   819 	/* disable lplu d0 during driver init */
       
   820 	ret_val = e1000_set_d0_lplu_state(hw, false);
       
   821 	if (ret_val) {
       
   822 		e_dbg("Error Disabling LPLU D0\n");
       
   823 		return ret_val;
       
   824 	}
       
   825 	/* Configure mdi-mdix settings */
       
   826 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
       
   827 	if (ret_val)
       
   828 		return ret_val;
       
   829 
       
   830 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
   831 
       
   832 	switch (phy->mdix) {
       
   833 	case 1:
       
   834 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   835 		break;
       
   836 	case 2:
       
   837 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   838 		break;
       
   839 	case 0:
       
   840 	default:
       
   841 		data |= IGP01E1000_PSCR_AUTO_MDIX;
       
   842 		break;
       
   843 	}
       
   844 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
       
   845 	if (ret_val)
       
   846 		return ret_val;
       
   847 
       
   848 	/* set auto-master slave resolution settings */
       
   849 	if (hw->mac.autoneg) {
       
   850 		/*
       
   851 		 * when autonegotiation advertisement is only 1000Mbps then we
       
   852 		 * should disable SmartSpeed and enable Auto MasterSlave
       
   853 		 * resolution as hardware default.
       
   854 		 */
       
   855 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   856 			/* Disable SmartSpeed */
       
   857 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   858 					   &data);
       
   859 			if (ret_val)
       
   860 				return ret_val;
       
   861 
       
   862 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   863 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   864 					   data);
       
   865 			if (ret_val)
       
   866 				return ret_val;
       
   867 
       
   868 			/* Set auto Master/Slave resolution process */
       
   869 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
       
   870 			if (ret_val)
       
   871 				return ret_val;
       
   872 
       
   873 			data &= ~CR_1000T_MS_ENABLE;
       
   874 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
       
   875 			if (ret_val)
       
   876 				return ret_val;
       
   877 		}
       
   878 
       
   879 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
       
   880 		if (ret_val)
       
   881 			return ret_val;
       
   882 
       
   883 		/* load defaults for future use */
       
   884 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
       
   885 			((data & CR_1000T_MS_VALUE) ?
       
   886 			e1000_ms_force_master :
       
   887 			e1000_ms_force_slave) :
       
   888 			e1000_ms_auto;
       
   889 
       
   890 		switch (phy->ms_type) {
       
   891 		case e1000_ms_force_master:
       
   892 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
   893 			break;
       
   894 		case e1000_ms_force_slave:
       
   895 			data |= CR_1000T_MS_ENABLE;
       
   896 			data &= ~(CR_1000T_MS_VALUE);
       
   897 			break;
       
   898 		case e1000_ms_auto:
       
   899 			data &= ~CR_1000T_MS_ENABLE;
       
   900 		default:
       
   901 			break;
       
   902 		}
       
   903 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
       
   904 	}
       
   905 
       
   906 	return ret_val;
       
   907 }
       
   908 
       
   909 /**
       
   910  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
       
   911  *  @hw: pointer to the HW structure
       
   912  *
       
   913  *  Reads the MII auto-neg advertisement register and/or the 1000T control
       
   914  *  register and if the PHY is already setup for auto-negotiation, then
       
   915  *  return successful.  Otherwise, setup advertisement and flow control to
       
   916  *  the appropriate values for the wanted auto-negotiation.
       
   917  **/
       
   918 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
       
   919 {
       
   920 	struct e1000_phy_info *phy = &hw->phy;
       
   921 	s32 ret_val;
       
   922 	u16 mii_autoneg_adv_reg;
       
   923 	u16 mii_1000t_ctrl_reg = 0;
       
   924 
       
   925 	phy->autoneg_advertised &= phy->autoneg_mask;
       
   926 
       
   927 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
   928 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
       
   929 	if (ret_val)
       
   930 		return ret_val;
       
   931 
       
   932 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
   933 		/* Read the MII 1000Base-T Control Register (Address 9). */
       
   934 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
       
   935 		if (ret_val)
       
   936 			return ret_val;
       
   937 	}
       
   938 
       
   939 	/*
       
   940 	 * Need to parse both autoneg_advertised and fc and set up
       
   941 	 * the appropriate PHY registers.  First we will parse for
       
   942 	 * autoneg_advertised software override.  Since we can advertise
       
   943 	 * a plethora of combinations, we need to check each bit
       
   944 	 * individually.
       
   945 	 */
       
   946 
       
   947 	/*
       
   948 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
       
   949 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
   950 	 * the  1000Base-T Control Register (Address 9).
       
   951 	 */
       
   952 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
       
   953 				 NWAY_AR_100TX_HD_CAPS |
       
   954 				 NWAY_AR_10T_FD_CAPS   |
       
   955 				 NWAY_AR_10T_HD_CAPS);
       
   956 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
       
   957 
       
   958 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
       
   959 
       
   960 	/* Do we want to advertise 10 Mb Half Duplex? */
       
   961 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
       
   962 		e_dbg("Advertise 10mb Half duplex\n");
       
   963 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
       
   964 	}
       
   965 
       
   966 	/* Do we want to advertise 10 Mb Full Duplex? */
       
   967 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
       
   968 		e_dbg("Advertise 10mb Full duplex\n");
       
   969 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
       
   970 	}
       
   971 
       
   972 	/* Do we want to advertise 100 Mb Half Duplex? */
       
   973 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
       
   974 		e_dbg("Advertise 100mb Half duplex\n");
       
   975 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
       
   976 	}
       
   977 
       
   978 	/* Do we want to advertise 100 Mb Full Duplex? */
       
   979 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
       
   980 		e_dbg("Advertise 100mb Full duplex\n");
       
   981 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
       
   982 	}
       
   983 
       
   984 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
   985 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
       
   986 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
       
   987 
       
   988 	/* Do we want to advertise 1000 Mb Full Duplex? */
       
   989 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
       
   990 		e_dbg("Advertise 1000mb Full duplex\n");
       
   991 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
       
   992 	}
       
   993 
       
   994 	/*
       
   995 	 * Check for a software override of the flow control settings, and
       
   996 	 * setup the PHY advertisement registers accordingly.  If
       
   997 	 * auto-negotiation is enabled, then software will have to set the
       
   998 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
       
   999 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
       
  1000 	 * negotiation.
       
  1001 	 *
       
  1002 	 * The possible values of the "fc" parameter are:
       
  1003 	 *      0:  Flow control is completely disabled
       
  1004 	 *      1:  Rx flow control is enabled (we can receive pause frames
       
  1005 	 *	  but not send pause frames).
       
  1006 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1007 	 *	  but we do not support receiving pause frames).
       
  1008 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
  1009 	 *  other:  No software override.  The flow control configuration
       
  1010 	 *	  in the EEPROM is used.
       
  1011 	 */
       
  1012 	switch (hw->fc.current_mode) {
       
  1013 	case e1000_fc_none:
       
  1014 		/*
       
  1015 		 * Flow control (Rx & Tx) is completely disabled by a
       
  1016 		 * software over-ride.
       
  1017 		 */
       
  1018 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1019 		break;
       
  1020 	case e1000_fc_rx_pause:
       
  1021 		/*
       
  1022 		 * Rx Flow control is enabled, and Tx Flow control is
       
  1023 		 * disabled, by a software over-ride.
       
  1024 		 *
       
  1025 		 * Since there really isn't a way to advertise that we are
       
  1026 		 * capable of Rx Pause ONLY, we will advertise that we
       
  1027 		 * support both symmetric and asymmetric Rx PAUSE.  Later
       
  1028 		 * (in e1000e_config_fc_after_link_up) we will disable the
       
  1029 		 * hw's ability to send PAUSE frames.
       
  1030 		 */
       
  1031 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1032 		break;
       
  1033 	case e1000_fc_tx_pause:
       
  1034 		/*
       
  1035 		 * Tx Flow control is enabled, and Rx Flow control is
       
  1036 		 * disabled, by a software over-ride.
       
  1037 		 */
       
  1038 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
       
  1039 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
       
  1040 		break;
       
  1041 	case e1000_fc_full:
       
  1042 		/*
       
  1043 		 * Flow control (both Rx and Tx) is enabled by a software
       
  1044 		 * over-ride.
       
  1045 		 */
       
  1046 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1047 		break;
       
  1048 	default:
       
  1049 		e_dbg("Flow control param set incorrectly\n");
       
  1050 		ret_val = -E1000_ERR_CONFIG;
       
  1051 		return ret_val;
       
  1052 	}
       
  1053 
       
  1054 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
       
  1055 	if (ret_val)
       
  1056 		return ret_val;
       
  1057 
       
  1058 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  1059 
       
  1060 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
  1061 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
       
  1062 	}
       
  1063 
       
  1064 	return ret_val;
       
  1065 }
       
  1066 
       
  1067 /**
       
  1068  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
       
  1069  *  @hw: pointer to the HW structure
       
  1070  *
       
  1071  *  Performs initial bounds checking on autoneg advertisement parameter, then
       
  1072  *  configure to advertise the full capability.  Setup the PHY to autoneg
       
  1073  *  and restart the negotiation process between the link partner.  If
       
  1074  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
       
  1075  **/
       
  1076 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
       
  1077 {
       
  1078 	struct e1000_phy_info *phy = &hw->phy;
       
  1079 	s32 ret_val;
       
  1080 	u16 phy_ctrl;
       
  1081 
       
  1082 	/*
       
  1083 	 * Perform some bounds checking on the autoneg advertisement
       
  1084 	 * parameter.
       
  1085 	 */
       
  1086 	phy->autoneg_advertised &= phy->autoneg_mask;
       
  1087 
       
  1088 	/*
       
  1089 	 * If autoneg_advertised is zero, we assume it was not defaulted
       
  1090 	 * by the calling code so we set to advertise full capability.
       
  1091 	 */
       
  1092 	if (phy->autoneg_advertised == 0)
       
  1093 		phy->autoneg_advertised = phy->autoneg_mask;
       
  1094 
       
  1095 	e_dbg("Reconfiguring auto-neg advertisement params\n");
       
  1096 	ret_val = e1000_phy_setup_autoneg(hw);
       
  1097 	if (ret_val) {
       
  1098 		e_dbg("Error Setting up Auto-Negotiation\n");
       
  1099 		return ret_val;
       
  1100 	}
       
  1101 	e_dbg("Restarting Auto-Neg\n");
       
  1102 
       
  1103 	/*
       
  1104 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
       
  1105 	 * the Auto Neg Restart bit in the PHY control register.
       
  1106 	 */
       
  1107 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  1108 	if (ret_val)
       
  1109 		return ret_val;
       
  1110 
       
  1111 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
       
  1112 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  1113 	if (ret_val)
       
  1114 		return ret_val;
       
  1115 
       
  1116 	/*
       
  1117 	 * Does the user want to wait for Auto-Neg to complete here, or
       
  1118 	 * check at a later time (for example, callback routine).
       
  1119 	 */
       
  1120 	if (phy->autoneg_wait_to_complete) {
       
  1121 		ret_val = e1000_wait_autoneg(hw);
       
  1122 		if (ret_val) {
       
  1123 			e_dbg("Error while waiting for "
       
  1124 				 "autoneg to complete\n");
       
  1125 			return ret_val;
       
  1126 		}
       
  1127 	}
       
  1128 
       
  1129 	hw->mac.get_link_status = 1;
       
  1130 
       
  1131 	return ret_val;
       
  1132 }
       
  1133 
       
  1134 /**
       
  1135  *  e1000e_setup_copper_link - Configure copper link settings
       
  1136  *  @hw: pointer to the HW structure
       
  1137  *
       
  1138  *  Calls the appropriate function to configure the link for auto-neg or forced
       
  1139  *  speed and duplex.  Then we check for link, once link is established calls
       
  1140  *  to configure collision distance and flow control are called.  If link is
       
  1141  *  not established, we return -E1000_ERR_PHY (-2).
       
  1142  **/
       
  1143 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
       
  1144 {
       
  1145 	s32 ret_val;
       
  1146 	bool link;
       
  1147 
       
  1148 	if (hw->mac.autoneg) {
       
  1149 		/*
       
  1150 		 * Setup autoneg and flow control advertisement and perform
       
  1151 		 * autonegotiation.
       
  1152 		 */
       
  1153 		ret_val = e1000_copper_link_autoneg(hw);
       
  1154 		if (ret_val)
       
  1155 			return ret_val;
       
  1156 	} else {
       
  1157 		/*
       
  1158 		 * PHY will be set to 10H, 10F, 100H or 100F
       
  1159 		 * depending on user settings.
       
  1160 		 */
       
  1161 		e_dbg("Forcing Speed and Duplex\n");
       
  1162 		ret_val = e1000_phy_force_speed_duplex(hw);
       
  1163 		if (ret_val) {
       
  1164 			e_dbg("Error Forcing Speed and Duplex\n");
       
  1165 			return ret_val;
       
  1166 		}
       
  1167 	}
       
  1168 
       
  1169 	/*
       
  1170 	 * Check link status. Wait up to 100 microseconds for link to become
       
  1171 	 * valid.
       
  1172 	 */
       
  1173 	ret_val = e1000e_phy_has_link_generic(hw,
       
  1174 					     COPPER_LINK_UP_LIMIT,
       
  1175 					     10,
       
  1176 					     &link);
       
  1177 	if (ret_val)
       
  1178 		return ret_val;
       
  1179 
       
  1180 	if (link) {
       
  1181 		e_dbg("Valid link established!!!\n");
       
  1182 		e1000e_config_collision_dist(hw);
       
  1183 		ret_val = e1000e_config_fc_after_link_up(hw);
       
  1184 	} else {
       
  1185 		e_dbg("Unable to establish link!!!\n");
       
  1186 	}
       
  1187 
       
  1188 	return ret_val;
       
  1189 }
       
  1190 
       
  1191 /**
       
  1192  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
       
  1193  *  @hw: pointer to the HW structure
       
  1194  *
       
  1195  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1196  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  1197  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  1198  **/
       
  1199 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
       
  1200 {
       
  1201 	struct e1000_phy_info *phy = &hw->phy;
       
  1202 	s32 ret_val;
       
  1203 	u16 phy_data;
       
  1204 	bool link;
       
  1205 
       
  1206 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1207 	if (ret_val)
       
  1208 		return ret_val;
       
  1209 
       
  1210 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1211 
       
  1212 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1213 	if (ret_val)
       
  1214 		return ret_val;
       
  1215 
       
  1216 	/*
       
  1217 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  1218 	 * forced whenever speed and duplex are forced.
       
  1219 	 */
       
  1220 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1221 	if (ret_val)
       
  1222 		return ret_val;
       
  1223 
       
  1224 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1225 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1226 
       
  1227 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1228 	if (ret_val)
       
  1229 		return ret_val;
       
  1230 
       
  1231 	e_dbg("IGP PSCR: %X\n", phy_data);
       
  1232 
       
  1233 	udelay(1);
       
  1234 
       
  1235 	if (phy->autoneg_wait_to_complete) {
       
  1236 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
       
  1237 
       
  1238 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1239 						     PHY_FORCE_LIMIT,
       
  1240 						     100000,
       
  1241 						     &link);
       
  1242 		if (ret_val)
       
  1243 			return ret_val;
       
  1244 
       
  1245 		if (!link)
       
  1246 			e_dbg("Link taking longer than expected.\n");
       
  1247 
       
  1248 		/* Try once more */
       
  1249 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1250 						     PHY_FORCE_LIMIT,
       
  1251 						     100000,
       
  1252 						     &link);
       
  1253 		if (ret_val)
       
  1254 			return ret_val;
       
  1255 	}
       
  1256 
       
  1257 	return ret_val;
       
  1258 }
       
  1259 
       
  1260 /**
       
  1261  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
       
  1262  *  @hw: pointer to the HW structure
       
  1263  *
       
  1264  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1265  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
       
  1266  *  changes.  If time expires while waiting for link up, we reset the DSP.
       
  1267  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
       
  1268  *  successful completion, else return corresponding error code.
       
  1269  **/
       
  1270 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
       
  1271 {
       
  1272 	struct e1000_phy_info *phy = &hw->phy;
       
  1273 	s32 ret_val;
       
  1274 	u16 phy_data;
       
  1275 	bool link;
       
  1276 
       
  1277 	/*
       
  1278 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
       
  1279 	 * forced whenever speed and duplex are forced.
       
  1280 	 */
       
  1281 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1282 	if (ret_val)
       
  1283 		return ret_val;
       
  1284 
       
  1285 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1286 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1287 	if (ret_val)
       
  1288 		return ret_val;
       
  1289 
       
  1290 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
       
  1291 
       
  1292 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1293 	if (ret_val)
       
  1294 		return ret_val;
       
  1295 
       
  1296 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1297 
       
  1298 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1299 	if (ret_val)
       
  1300 		return ret_val;
       
  1301 
       
  1302 	/* Reset the phy to commit changes. */
       
  1303 	ret_val = e1000e_commit_phy(hw);
       
  1304 	if (ret_val)
       
  1305 		return ret_val;
       
  1306 
       
  1307 	if (phy->autoneg_wait_to_complete) {
       
  1308 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
       
  1309 
       
  1310 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1311 						     100000, &link);
       
  1312 		if (ret_val)
       
  1313 			return ret_val;
       
  1314 
       
  1315 		if (!link) {
       
  1316 			if (hw->phy.type != e1000_phy_m88) {
       
  1317 				e_dbg("Link taking longer than expected.\n");
       
  1318 			} else {
       
  1319 				/*
       
  1320 				 * We didn't get link.
       
  1321 				 * Reset the DSP and cross our fingers.
       
  1322 				 */
       
  1323 				ret_val = e1e_wphy(hw,
       
  1324 						M88E1000_PHY_PAGE_SELECT,
       
  1325 						0x001d);
       
  1326 				if (ret_val)
       
  1327 					return ret_val;
       
  1328 				ret_val = e1000e_phy_reset_dsp(hw);
       
  1329 				if (ret_val)
       
  1330 					return ret_val;
       
  1331 			}
       
  1332 		}
       
  1333 
       
  1334 		/* Try once more */
       
  1335 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1336 						     100000, &link);
       
  1337 		if (ret_val)
       
  1338 			return ret_val;
       
  1339 	}
       
  1340 
       
  1341 	if (hw->phy.type != e1000_phy_m88)
       
  1342 		return 0;
       
  1343 
       
  1344 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  1345 	if (ret_val)
       
  1346 		return ret_val;
       
  1347 
       
  1348 	/*
       
  1349 	 * Resetting the phy means we need to re-force TX_CLK in the
       
  1350 	 * Extended PHY Specific Control Register to 25MHz clock from
       
  1351 	 * the reset value of 2.5MHz.
       
  1352 	 */
       
  1353 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1354 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1355 	if (ret_val)
       
  1356 		return ret_val;
       
  1357 
       
  1358 	/*
       
  1359 	 * In addition, we must re-enable CRS on Tx for both half and full
       
  1360 	 * duplex.
       
  1361 	 */
       
  1362 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1363 	if (ret_val)
       
  1364 		return ret_val;
       
  1365 
       
  1366 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1367 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1368 
       
  1369 	return ret_val;
       
  1370 }
       
  1371 
       
  1372 /**
       
  1373  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
       
  1374  *  @hw: pointer to the HW structure
       
  1375  *
       
  1376  *  Forces the speed and duplex settings of the PHY.
       
  1377  *  This is a function pointer entry point only called by
       
  1378  *  PHY setup routines.
       
  1379  **/
       
  1380 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
       
  1381 {
       
  1382 	struct e1000_phy_info *phy = &hw->phy;
       
  1383 	s32 ret_val;
       
  1384 	u16 data;
       
  1385 	bool link;
       
  1386 
       
  1387 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
       
  1388 	if (ret_val)
       
  1389 		goto out;
       
  1390 
       
  1391 	e1000e_phy_force_speed_duplex_setup(hw, &data);
       
  1392 
       
  1393 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
       
  1394 	if (ret_val)
       
  1395 		goto out;
       
  1396 
       
  1397 	/* Disable MDI-X support for 10/100 */
       
  1398 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  1399 	if (ret_val)
       
  1400 		goto out;
       
  1401 
       
  1402 	data &= ~IFE_PMC_AUTO_MDIX;
       
  1403 	data &= ~IFE_PMC_FORCE_MDIX;
       
  1404 
       
  1405 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
       
  1406 	if (ret_val)
       
  1407 		goto out;
       
  1408 
       
  1409 	e_dbg("IFE PMC: %X\n", data);
       
  1410 
       
  1411 	udelay(1);
       
  1412 
       
  1413 	if (phy->autoneg_wait_to_complete) {
       
  1414 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
       
  1415 
       
  1416 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1417 		                                     PHY_FORCE_LIMIT,
       
  1418 		                                     100000,
       
  1419 		                                     &link);
       
  1420 		if (ret_val)
       
  1421 			goto out;
       
  1422 
       
  1423 		if (!link)
       
  1424 			e_dbg("Link taking longer than expected.\n");
       
  1425 
       
  1426 		/* Try once more */
       
  1427 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1428 		                                     PHY_FORCE_LIMIT,
       
  1429 		                                     100000,
       
  1430 		                                     &link);
       
  1431 		if (ret_val)
       
  1432 			goto out;
       
  1433 	}
       
  1434 
       
  1435 out:
       
  1436 	return ret_val;
       
  1437 }
       
  1438 
       
  1439 /**
       
  1440  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
       
  1441  *  @hw: pointer to the HW structure
       
  1442  *  @phy_ctrl: pointer to current value of PHY_CONTROL
       
  1443  *
       
  1444  *  Forces speed and duplex on the PHY by doing the following: disable flow
       
  1445  *  control, force speed/duplex on the MAC, disable auto speed detection,
       
  1446  *  disable auto-negotiation, configure duplex, configure speed, configure
       
  1447  *  the collision distance, write configuration to CTRL register.  The
       
  1448  *  caller must write to the PHY_CONTROL register for these settings to
       
  1449  *  take affect.
       
  1450  **/
       
  1451 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
       
  1452 {
       
  1453 	struct e1000_mac_info *mac = &hw->mac;
       
  1454 	u32 ctrl;
       
  1455 
       
  1456 	/* Turn off flow control when forcing speed/duplex */
       
  1457 	hw->fc.current_mode = e1000_fc_none;
       
  1458 
       
  1459 	/* Force speed/duplex on the mac */
       
  1460 	ctrl = er32(CTRL);
       
  1461 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1462 	ctrl &= ~E1000_CTRL_SPD_SEL;
       
  1463 
       
  1464 	/* Disable Auto Speed Detection */
       
  1465 	ctrl &= ~E1000_CTRL_ASDE;
       
  1466 
       
  1467 	/* Disable autoneg on the phy */
       
  1468 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
       
  1469 
       
  1470 	/* Forcing Full or Half Duplex? */
       
  1471 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
       
  1472 		ctrl &= ~E1000_CTRL_FD;
       
  1473 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
       
  1474 		e_dbg("Half Duplex\n");
       
  1475 	} else {
       
  1476 		ctrl |= E1000_CTRL_FD;
       
  1477 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
       
  1478 		e_dbg("Full Duplex\n");
       
  1479 	}
       
  1480 
       
  1481 	/* Forcing 10mb or 100mb? */
       
  1482 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
       
  1483 		ctrl |= E1000_CTRL_SPD_100;
       
  1484 		*phy_ctrl |= MII_CR_SPEED_100;
       
  1485 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
       
  1486 		e_dbg("Forcing 100mb\n");
       
  1487 	} else {
       
  1488 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1489 		*phy_ctrl |= MII_CR_SPEED_10;
       
  1490 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
       
  1491 		e_dbg("Forcing 10mb\n");
       
  1492 	}
       
  1493 
       
  1494 	e1000e_config_collision_dist(hw);
       
  1495 
       
  1496 	ew32(CTRL, ctrl);
       
  1497 }
       
  1498 
       
  1499 /**
       
  1500  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
       
  1501  *  @hw: pointer to the HW structure
       
  1502  *  @active: boolean used to enable/disable lplu
       
  1503  *
       
  1504  *  Success returns 0, Failure returns 1
       
  1505  *
       
  1506  *  The low power link up (lplu) state is set to the power management level D3
       
  1507  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
       
  1508  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  1509  *  is used during Dx states where the power conservation is most important.
       
  1510  *  During driver activity, SmartSpeed should be enabled so performance is
       
  1511  *  maintained.
       
  1512  **/
       
  1513 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
       
  1514 {
       
  1515 	struct e1000_phy_info *phy = &hw->phy;
       
  1516 	s32 ret_val;
       
  1517 	u16 data;
       
  1518 
       
  1519 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
  1520 	if (ret_val)
       
  1521 		return ret_val;
       
  1522 
       
  1523 	if (!active) {
       
  1524 		data &= ~IGP02E1000_PM_D3_LPLU;
       
  1525 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1526 		if (ret_val)
       
  1527 			return ret_val;
       
  1528 		/*
       
  1529 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1530 		 * during Dx states where the power conservation is most
       
  1531 		 * important.  During driver activity we should enable
       
  1532 		 * SmartSpeed, so performance is maintained.
       
  1533 		 */
       
  1534 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1535 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1536 					   &data);
       
  1537 			if (ret_val)
       
  1538 				return ret_val;
       
  1539 
       
  1540 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1541 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1542 					   data);
       
  1543 			if (ret_val)
       
  1544 				return ret_val;
       
  1545 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1546 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1547 					   &data);
       
  1548 			if (ret_val)
       
  1549 				return ret_val;
       
  1550 
       
  1551 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1552 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1553 					   data);
       
  1554 			if (ret_val)
       
  1555 				return ret_val;
       
  1556 		}
       
  1557 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1558 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1559 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1560 		data |= IGP02E1000_PM_D3_LPLU;
       
  1561 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1562 		if (ret_val)
       
  1563 			return ret_val;
       
  1564 
       
  1565 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1566 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1567 		if (ret_val)
       
  1568 			return ret_val;
       
  1569 
       
  1570 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1571 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1572 	}
       
  1573 
       
  1574 	return ret_val;
       
  1575 }
       
  1576 
       
  1577 /**
       
  1578  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
       
  1579  *  @hw: pointer to the HW structure
       
  1580  *
       
  1581  *  Success returns 0, Failure returns 1
       
  1582  *
       
  1583  *  A downshift is detected by querying the PHY link health.
       
  1584  **/
       
  1585 s32 e1000e_check_downshift(struct e1000_hw *hw)
       
  1586 {
       
  1587 	struct e1000_phy_info *phy = &hw->phy;
       
  1588 	s32 ret_val;
       
  1589 	u16 phy_data, offset, mask;
       
  1590 
       
  1591 	switch (phy->type) {
       
  1592 	case e1000_phy_m88:
       
  1593 	case e1000_phy_gg82563:
       
  1594 	case e1000_phy_bm:
       
  1595 	case e1000_phy_82578:
       
  1596 		offset	= M88E1000_PHY_SPEC_STATUS;
       
  1597 		mask	= M88E1000_PSSR_DOWNSHIFT;
       
  1598 		break;
       
  1599 	case e1000_phy_igp_2:
       
  1600 	case e1000_phy_igp_3:
       
  1601 		offset	= IGP01E1000_PHY_LINK_HEALTH;
       
  1602 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
       
  1603 		break;
       
  1604 	default:
       
  1605 		/* speed downshift not supported */
       
  1606 		phy->speed_downgraded = false;
       
  1607 		return 0;
       
  1608 	}
       
  1609 
       
  1610 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1611 
       
  1612 	if (!ret_val)
       
  1613 		phy->speed_downgraded = (phy_data & mask);
       
  1614 
       
  1615 	return ret_val;
       
  1616 }
       
  1617 
       
  1618 /**
       
  1619  *  e1000_check_polarity_m88 - Checks the polarity.
       
  1620  *  @hw: pointer to the HW structure
       
  1621  *
       
  1622  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1623  *
       
  1624  *  Polarity is determined based on the PHY specific status register.
       
  1625  **/
       
  1626 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
       
  1627 {
       
  1628 	struct e1000_phy_info *phy = &hw->phy;
       
  1629 	s32 ret_val;
       
  1630 	u16 data;
       
  1631 
       
  1632 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
       
  1633 
       
  1634 	if (!ret_val)
       
  1635 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
       
  1636 				      ? e1000_rev_polarity_reversed
       
  1637 				      : e1000_rev_polarity_normal;
       
  1638 
       
  1639 	return ret_val;
       
  1640 }
       
  1641 
       
  1642 /**
       
  1643  *  e1000_check_polarity_igp - Checks the polarity.
       
  1644  *  @hw: pointer to the HW structure
       
  1645  *
       
  1646  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1647  *
       
  1648  *  Polarity is determined based on the PHY port status register, and the
       
  1649  *  current speed (since there is no polarity at 100Mbps).
       
  1650  **/
       
  1651 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
       
  1652 {
       
  1653 	struct e1000_phy_info *phy = &hw->phy;
       
  1654 	s32 ret_val;
       
  1655 	u16 data, offset, mask;
       
  1656 
       
  1657 	/*
       
  1658 	 * Polarity is determined based on the speed of
       
  1659 	 * our connection.
       
  1660 	 */
       
  1661 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  1662 	if (ret_val)
       
  1663 		return ret_val;
       
  1664 
       
  1665 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  1666 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  1667 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
       
  1668 		mask	= IGP01E1000_PHY_POLARITY_MASK;
       
  1669 	} else {
       
  1670 		/*
       
  1671 		 * This really only applies to 10Mbps since
       
  1672 		 * there is no polarity for 100Mbps (always 0).
       
  1673 		 */
       
  1674 		offset	= IGP01E1000_PHY_PORT_STATUS;
       
  1675 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
       
  1676 	}
       
  1677 
       
  1678 	ret_val = e1e_rphy(hw, offset, &data);
       
  1679 
       
  1680 	if (!ret_val)
       
  1681 		phy->cable_polarity = (data & mask)
       
  1682 				      ? e1000_rev_polarity_reversed
       
  1683 				      : e1000_rev_polarity_normal;
       
  1684 
       
  1685 	return ret_val;
       
  1686 }
       
  1687 
       
  1688 /**
       
  1689  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
       
  1690  *  @hw: pointer to the HW structure
       
  1691  *
       
  1692  *  Polarity is determined on the polarity reversal feature being enabled.
       
  1693  **/
       
  1694 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
       
  1695 {
       
  1696 	struct e1000_phy_info *phy = &hw->phy;
       
  1697 	s32 ret_val;
       
  1698 	u16 phy_data, offset, mask;
       
  1699 
       
  1700 	/*
       
  1701 	 * Polarity is determined based on the reversal feature being enabled.
       
  1702 	 */
       
  1703 	if (phy->polarity_correction) {
       
  1704 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
       
  1705 		mask = IFE_PESC_POLARITY_REVERSED;
       
  1706 	} else {
       
  1707 		offset = IFE_PHY_SPECIAL_CONTROL;
       
  1708 		mask = IFE_PSC_FORCE_POLARITY;
       
  1709 	}
       
  1710 
       
  1711 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1712 
       
  1713 	if (!ret_val)
       
  1714 		phy->cable_polarity = (phy_data & mask)
       
  1715 		                       ? e1000_rev_polarity_reversed
       
  1716 		                       : e1000_rev_polarity_normal;
       
  1717 
       
  1718 	return ret_val;
       
  1719 }
       
  1720 
       
  1721 /**
       
  1722  *  e1000_wait_autoneg - Wait for auto-neg completion
       
  1723  *  @hw: pointer to the HW structure
       
  1724  *
       
  1725  *  Waits for auto-negotiation to complete or for the auto-negotiation time
       
  1726  *  limit to expire, which ever happens first.
       
  1727  **/
       
  1728 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
       
  1729 {
       
  1730 	s32 ret_val = 0;
       
  1731 	u16 i, phy_status;
       
  1732 
       
  1733 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
       
  1734 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
       
  1735 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1736 		if (ret_val)
       
  1737 			break;
       
  1738 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1739 		if (ret_val)
       
  1740 			break;
       
  1741 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
       
  1742 			break;
       
  1743 		msleep(100);
       
  1744 	}
       
  1745 
       
  1746 	/*
       
  1747 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
       
  1748 	 * has completed.
       
  1749 	 */
       
  1750 	return ret_val;
       
  1751 }
       
  1752 
       
  1753 /**
       
  1754  *  e1000e_phy_has_link_generic - Polls PHY for link
       
  1755  *  @hw: pointer to the HW structure
       
  1756  *  @iterations: number of times to poll for link
       
  1757  *  @usec_interval: delay between polling attempts
       
  1758  *  @success: pointer to whether polling was successful or not
       
  1759  *
       
  1760  *  Polls the PHY status register for link, 'iterations' number of times.
       
  1761  **/
       
  1762 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
       
  1763 			       u32 usec_interval, bool *success)
       
  1764 {
       
  1765 	s32 ret_val = 0;
       
  1766 	u16 i, phy_status;
       
  1767 
       
  1768 	for (i = 0; i < iterations; i++) {
       
  1769 		/*
       
  1770 		 * Some PHYs require the PHY_STATUS register to be read
       
  1771 		 * twice due to the link bit being sticky.  No harm doing
       
  1772 		 * it across the board.
       
  1773 		 */
       
  1774 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1775 		if (ret_val)
       
  1776 			/*
       
  1777 			 * If the first read fails, another entity may have
       
  1778 			 * ownership of the resources, wait and try again to
       
  1779 			 * see if they have relinquished the resources yet.
       
  1780 			 */
       
  1781 			udelay(usec_interval);
       
  1782 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1783 		if (ret_val)
       
  1784 			break;
       
  1785 		if (phy_status & MII_SR_LINK_STATUS)
       
  1786 			break;
       
  1787 		if (usec_interval >= 1000)
       
  1788 			mdelay(usec_interval/1000);
       
  1789 		else
       
  1790 			udelay(usec_interval);
       
  1791 	}
       
  1792 
       
  1793 	*success = (i < iterations);
       
  1794 
       
  1795 	return ret_val;
       
  1796 }
       
  1797 
       
  1798 /**
       
  1799  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
       
  1800  *  @hw: pointer to the HW structure
       
  1801  *
       
  1802  *  Reads the PHY specific status register to retrieve the cable length
       
  1803  *  information.  The cable length is determined by averaging the minimum and
       
  1804  *  maximum values to get the "average" cable length.  The m88 PHY has four
       
  1805  *  possible cable length values, which are:
       
  1806  *	Register Value		Cable Length
       
  1807  *	0			< 50 meters
       
  1808  *	1			50 - 80 meters
       
  1809  *	2			80 - 110 meters
       
  1810  *	3			110 - 140 meters
       
  1811  *	4			> 140 meters
       
  1812  **/
       
  1813 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
       
  1814 {
       
  1815 	struct e1000_phy_info *phy = &hw->phy;
       
  1816 	s32 ret_val;
       
  1817 	u16 phy_data, index;
       
  1818 
       
  1819 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1820 	if (ret_val)
       
  1821 		goto out;
       
  1822 
       
  1823 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  1824 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  1825 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
       
  1826 		ret_val = -E1000_ERR_PHY;
       
  1827 		goto out;
       
  1828 	}
       
  1829 
       
  1830 	phy->min_cable_length = e1000_m88_cable_length_table[index];
       
  1831 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
       
  1832 
       
  1833 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1834 
       
  1835 out:
       
  1836 	return ret_val;
       
  1837 }
       
  1838 
       
  1839 /**
       
  1840  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
       
  1841  *  @hw: pointer to the HW structure
       
  1842  *
       
  1843  *  The automatic gain control (agc) normalizes the amplitude of the
       
  1844  *  received signal, adjusting for the attenuation produced by the
       
  1845  *  cable.  By reading the AGC registers, which represent the
       
  1846  *  combination of coarse and fine gain value, the value can be put
       
  1847  *  into a lookup table to obtain the approximate cable length
       
  1848  *  for each channel.
       
  1849  **/
       
  1850 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
       
  1851 {
       
  1852 	struct e1000_phy_info *phy = &hw->phy;
       
  1853 	s32 ret_val;
       
  1854 	u16 phy_data, i, agc_value = 0;
       
  1855 	u16 cur_agc_index, max_agc_index = 0;
       
  1856 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
       
  1857 	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
       
  1858 							 {IGP02E1000_PHY_AGC_A,
       
  1859 							  IGP02E1000_PHY_AGC_B,
       
  1860 							  IGP02E1000_PHY_AGC_C,
       
  1861 							  IGP02E1000_PHY_AGC_D};
       
  1862 
       
  1863 	/* Read the AGC registers for all channels */
       
  1864 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
       
  1865 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
       
  1866 		if (ret_val)
       
  1867 			return ret_val;
       
  1868 
       
  1869 		/*
       
  1870 		 * Getting bits 15:9, which represent the combination of
       
  1871 		 * coarse and fine gain values.  The result is a number
       
  1872 		 * that can be put into the lookup table to obtain the
       
  1873 		 * approximate cable length.
       
  1874 		 */
       
  1875 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
       
  1876 				IGP02E1000_AGC_LENGTH_MASK;
       
  1877 
       
  1878 		/* Array index bound check. */
       
  1879 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
       
  1880 		    (cur_agc_index == 0))
       
  1881 			return -E1000_ERR_PHY;
       
  1882 
       
  1883 		/* Remove min & max AGC values from calculation. */
       
  1884 		if (e1000_igp_2_cable_length_table[min_agc_index] >
       
  1885 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1886 			min_agc_index = cur_agc_index;
       
  1887 		if (e1000_igp_2_cable_length_table[max_agc_index] <
       
  1888 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1889 			max_agc_index = cur_agc_index;
       
  1890 
       
  1891 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
       
  1892 	}
       
  1893 
       
  1894 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
       
  1895 		      e1000_igp_2_cable_length_table[max_agc_index]);
       
  1896 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
       
  1897 
       
  1898 	/* Calculate cable length with the error range of +/- 10 meters. */
       
  1899 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
       
  1900 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
       
  1901 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
       
  1902 
       
  1903 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1904 
       
  1905 	return ret_val;
       
  1906 }
       
  1907 
       
  1908 /**
       
  1909  *  e1000e_get_phy_info_m88 - Retrieve PHY information
       
  1910  *  @hw: pointer to the HW structure
       
  1911  *
       
  1912  *  Valid for only copper links.  Read the PHY status register (sticky read)
       
  1913  *  to verify that link is up.  Read the PHY special control register to
       
  1914  *  determine the polarity and 10base-T extended distance.  Read the PHY
       
  1915  *  special status register to determine MDI/MDIx and current speed.  If
       
  1916  *  speed is 1000, then determine cable length, local and remote receiver.
       
  1917  **/
       
  1918 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
       
  1919 {
       
  1920 	struct e1000_phy_info *phy = &hw->phy;
       
  1921 	s32  ret_val;
       
  1922 	u16 phy_data;
       
  1923 	bool link;
       
  1924 
       
  1925 	if (phy->media_type != e1000_media_type_copper) {
       
  1926 		e_dbg("Phy info is only valid for copper media\n");
       
  1927 		return -E1000_ERR_CONFIG;
       
  1928 	}
       
  1929 
       
  1930 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1931 	if (ret_val)
       
  1932 		return ret_val;
       
  1933 
       
  1934 	if (!link) {
       
  1935 		e_dbg("Phy info is only valid if link is up\n");
       
  1936 		return -E1000_ERR_CONFIG;
       
  1937 	}
       
  1938 
       
  1939 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1940 	if (ret_val)
       
  1941 		return ret_val;
       
  1942 
       
  1943 	phy->polarity_correction = (phy_data &
       
  1944 				    M88E1000_PSCR_POLARITY_REVERSAL);
       
  1945 
       
  1946 	ret_val = e1000_check_polarity_m88(hw);
       
  1947 	if (ret_val)
       
  1948 		return ret_val;
       
  1949 
       
  1950 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1951 	if (ret_val)
       
  1952 		return ret_val;
       
  1953 
       
  1954 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
       
  1955 
       
  1956 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  1957 		ret_val = e1000_get_cable_length(hw);
       
  1958 		if (ret_val)
       
  1959 			return ret_val;
       
  1960 
       
  1961 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
  1962 		if (ret_val)
       
  1963 			return ret_val;
       
  1964 
       
  1965 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
       
  1966 				? e1000_1000t_rx_status_ok
       
  1967 				: e1000_1000t_rx_status_not_ok;
       
  1968 
       
  1969 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
       
  1970 				 ? e1000_1000t_rx_status_ok
       
  1971 				 : e1000_1000t_rx_status_not_ok;
       
  1972 	} else {
       
  1973 		/* Set values to "undefined" */
       
  1974 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  1975 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  1976 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  1977 	}
       
  1978 
       
  1979 	return ret_val;
       
  1980 }
       
  1981 
       
  1982 /**
       
  1983  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
       
  1984  *  @hw: pointer to the HW structure
       
  1985  *
       
  1986  *  Read PHY status to determine if link is up.  If link is up, then
       
  1987  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  1988  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  1989  *  determine on the cable length, local and remote receiver.
       
  1990  **/
       
  1991 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
       
  1992 {
       
  1993 	struct e1000_phy_info *phy = &hw->phy;
       
  1994 	s32 ret_val;
       
  1995 	u16 data;
       
  1996 	bool link;
       
  1997 
       
  1998 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1999 	if (ret_val)
       
  2000 		return ret_val;
       
  2001 
       
  2002 	if (!link) {
       
  2003 		e_dbg("Phy info is only valid if link is up\n");
       
  2004 		return -E1000_ERR_CONFIG;
       
  2005 	}
       
  2006 
       
  2007 	phy->polarity_correction = true;
       
  2008 
       
  2009 	ret_val = e1000_check_polarity_igp(hw);
       
  2010 	if (ret_val)
       
  2011 		return ret_val;
       
  2012 
       
  2013 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  2014 	if (ret_val)
       
  2015 		return ret_val;
       
  2016 
       
  2017 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
       
  2018 
       
  2019 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  2020 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  2021 		ret_val = e1000_get_cable_length(hw);
       
  2022 		if (ret_val)
       
  2023 			return ret_val;
       
  2024 
       
  2025 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
       
  2026 		if (ret_val)
       
  2027 			return ret_val;
       
  2028 
       
  2029 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  2030 				? e1000_1000t_rx_status_ok
       
  2031 				: e1000_1000t_rx_status_not_ok;
       
  2032 
       
  2033 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  2034 				 ? e1000_1000t_rx_status_ok
       
  2035 				 : e1000_1000t_rx_status_not_ok;
       
  2036 	} else {
       
  2037 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2038 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2039 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2040 	}
       
  2041 
       
  2042 	return ret_val;
       
  2043 }
       
  2044 
       
  2045 /**
       
  2046  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
       
  2047  *  @hw: pointer to the HW structure
       
  2048  *
       
  2049  *  Populates "phy" structure with various feature states.
       
  2050  **/
       
  2051 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
       
  2052 {
       
  2053 	struct e1000_phy_info *phy = &hw->phy;
       
  2054 	s32 ret_val;
       
  2055 	u16 data;
       
  2056 	bool link;
       
  2057 
       
  2058 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2059 	if (ret_val)
       
  2060 		goto out;
       
  2061 
       
  2062 	if (!link) {
       
  2063 		e_dbg("Phy info is only valid if link is up\n");
       
  2064 		ret_val = -E1000_ERR_CONFIG;
       
  2065 		goto out;
       
  2066 	}
       
  2067 
       
  2068 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
       
  2069 	if (ret_val)
       
  2070 		goto out;
       
  2071 	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
       
  2072 	                           ? false : true;
       
  2073 
       
  2074 	if (phy->polarity_correction) {
       
  2075 		ret_val = e1000_check_polarity_ife(hw);
       
  2076 		if (ret_val)
       
  2077 			goto out;
       
  2078 	} else {
       
  2079 		/* Polarity is forced */
       
  2080 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
       
  2081 		                      ? e1000_rev_polarity_reversed
       
  2082 		                      : e1000_rev_polarity_normal;
       
  2083 	}
       
  2084 
       
  2085 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  2086 	if (ret_val)
       
  2087 		goto out;
       
  2088 
       
  2089 	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
       
  2090 
       
  2091 	/* The following parameters are undefined for 10/100 operation. */
       
  2092 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2093 	phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2094 	phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2095 
       
  2096 out:
       
  2097 	return ret_val;
       
  2098 }
       
  2099 
       
  2100 /**
       
  2101  *  e1000e_phy_sw_reset - PHY software reset
       
  2102  *  @hw: pointer to the HW structure
       
  2103  *
       
  2104  *  Does a software reset of the PHY by reading the PHY control register and
       
  2105  *  setting/write the control register reset bit to the PHY.
       
  2106  **/
       
  2107 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
       
  2108 {
       
  2109 	s32 ret_val;
       
  2110 	u16 phy_ctrl;
       
  2111 
       
  2112 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  2113 	if (ret_val)
       
  2114 		return ret_val;
       
  2115 
       
  2116 	phy_ctrl |= MII_CR_RESET;
       
  2117 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  2118 	if (ret_val)
       
  2119 		return ret_val;
       
  2120 
       
  2121 	udelay(1);
       
  2122 
       
  2123 	return ret_val;
       
  2124 }
       
  2125 
       
  2126 /**
       
  2127  *  e1000e_phy_hw_reset_generic - PHY hardware reset
       
  2128  *  @hw: pointer to the HW structure
       
  2129  *
       
  2130  *  Verify the reset block is not blocking us from resetting.  Acquire
       
  2131  *  semaphore (if necessary) and read/set/write the device control reset
       
  2132  *  bit in the PHY.  Wait the appropriate delay time for the device to
       
  2133  *  reset and release the semaphore (if necessary).
       
  2134  **/
       
  2135 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
       
  2136 {
       
  2137 	struct e1000_phy_info *phy = &hw->phy;
       
  2138 	s32 ret_val;
       
  2139 	u32 ctrl;
       
  2140 
       
  2141 	ret_val = e1000_check_reset_block(hw);
       
  2142 	if (ret_val)
       
  2143 		return 0;
       
  2144 
       
  2145 	ret_val = phy->ops.acquire(hw);
       
  2146 	if (ret_val)
       
  2147 		return ret_val;
       
  2148 
       
  2149 	ctrl = er32(CTRL);
       
  2150 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  2151 	e1e_flush();
       
  2152 
       
  2153 	udelay(phy->reset_delay_us);
       
  2154 
       
  2155 	ew32(CTRL, ctrl);
       
  2156 	e1e_flush();
       
  2157 
       
  2158 	udelay(150);
       
  2159 
       
  2160 	phy->ops.release(hw);
       
  2161 
       
  2162 	return e1000_get_phy_cfg_done(hw);
       
  2163 }
       
  2164 
       
  2165 /**
       
  2166  *  e1000e_get_cfg_done - Generic configuration done
       
  2167  *  @hw: pointer to the HW structure
       
  2168  *
       
  2169  *  Generic function to wait 10 milli-seconds for configuration to complete
       
  2170  *  and return success.
       
  2171  **/
       
  2172 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
       
  2173 {
       
  2174 	mdelay(10);
       
  2175 	return 0;
       
  2176 }
       
  2177 
       
  2178 /**
       
  2179  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
       
  2180  *  @hw: pointer to the HW structure
       
  2181  *
       
  2182  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
       
  2183  **/
       
  2184 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
       
  2185 {
       
  2186 	e_dbg("Running IGP 3 PHY init script\n");
       
  2187 
       
  2188 	/* PHY init IGP 3 */
       
  2189 	/* Enable rise/fall, 10-mode work in class-A */
       
  2190 	e1e_wphy(hw, 0x2F5B, 0x9018);
       
  2191 	/* Remove all caps from Replica path filter */
       
  2192 	e1e_wphy(hw, 0x2F52, 0x0000);
       
  2193 	/* Bias trimming for ADC, AFE and Driver (Default) */
       
  2194 	e1e_wphy(hw, 0x2FB1, 0x8B24);
       
  2195 	/* Increase Hybrid poly bias */
       
  2196 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
       
  2197 	/* Add 4% to Tx amplitude in Gig mode */
       
  2198 	e1e_wphy(hw, 0x2010, 0x10B0);
       
  2199 	/* Disable trimming (TTT) */
       
  2200 	e1e_wphy(hw, 0x2011, 0x0000);
       
  2201 	/* Poly DC correction to 94.6% + 2% for all channels */
       
  2202 	e1e_wphy(hw, 0x20DD, 0x249A);
       
  2203 	/* ABS DC correction to 95.9% */
       
  2204 	e1e_wphy(hw, 0x20DE, 0x00D3);
       
  2205 	/* BG temp curve trim */
       
  2206 	e1e_wphy(hw, 0x28B4, 0x04CE);
       
  2207 	/* Increasing ADC OPAMP stage 1 currents to max */
       
  2208 	e1e_wphy(hw, 0x2F70, 0x29E4);
       
  2209 	/* Force 1000 ( required for enabling PHY regs configuration) */
       
  2210 	e1e_wphy(hw, 0x0000, 0x0140);
       
  2211 	/* Set upd_freq to 6 */
       
  2212 	e1e_wphy(hw, 0x1F30, 0x1606);
       
  2213 	/* Disable NPDFE */
       
  2214 	e1e_wphy(hw, 0x1F31, 0xB814);
       
  2215 	/* Disable adaptive fixed FFE (Default) */
       
  2216 	e1e_wphy(hw, 0x1F35, 0x002A);
       
  2217 	/* Enable FFE hysteresis */
       
  2218 	e1e_wphy(hw, 0x1F3E, 0x0067);
       
  2219 	/* Fixed FFE for short cable lengths */
       
  2220 	e1e_wphy(hw, 0x1F54, 0x0065);
       
  2221 	/* Fixed FFE for medium cable lengths */
       
  2222 	e1e_wphy(hw, 0x1F55, 0x002A);
       
  2223 	/* Fixed FFE for long cable lengths */
       
  2224 	e1e_wphy(hw, 0x1F56, 0x002A);
       
  2225 	/* Enable Adaptive Clip Threshold */
       
  2226 	e1e_wphy(hw, 0x1F72, 0x3FB0);
       
  2227 	/* AHT reset limit to 1 */
       
  2228 	e1e_wphy(hw, 0x1F76, 0xC0FF);
       
  2229 	/* Set AHT master delay to 127 msec */
       
  2230 	e1e_wphy(hw, 0x1F77, 0x1DEC);
       
  2231 	/* Set scan bits for AHT */
       
  2232 	e1e_wphy(hw, 0x1F78, 0xF9EF);
       
  2233 	/* Set AHT Preset bits */
       
  2234 	e1e_wphy(hw, 0x1F79, 0x0210);
       
  2235 	/* Change integ_factor of channel A to 3 */
       
  2236 	e1e_wphy(hw, 0x1895, 0x0003);
       
  2237 	/* Change prop_factor of channels BCD to 8 */
       
  2238 	e1e_wphy(hw, 0x1796, 0x0008);
       
  2239 	/* Change cg_icount + enable integbp for channels BCD */
       
  2240 	e1e_wphy(hw, 0x1798, 0xD008);
       
  2241 	/*
       
  2242 	 * Change cg_icount + enable integbp + change prop_factor_master
       
  2243 	 * to 8 for channel A
       
  2244 	 */
       
  2245 	e1e_wphy(hw, 0x1898, 0xD918);
       
  2246 	/* Disable AHT in Slave mode on channel A */
       
  2247 	e1e_wphy(hw, 0x187A, 0x0800);
       
  2248 	/*
       
  2249 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
       
  2250 	 * Enable SPD+B2B
       
  2251 	 */
       
  2252 	e1e_wphy(hw, 0x0019, 0x008D);
       
  2253 	/* Enable restart AN on an1000_dis change */
       
  2254 	e1e_wphy(hw, 0x001B, 0x2080);
       
  2255 	/* Enable wh_fifo read clock in 10/100 modes */
       
  2256 	e1e_wphy(hw, 0x0014, 0x0045);
       
  2257 	/* Restart AN, Speed selection is 1000 */
       
  2258 	e1e_wphy(hw, 0x0000, 0x1340);
       
  2259 
       
  2260 	return 0;
       
  2261 }
       
  2262 
       
  2263 /* Internal function pointers */
       
  2264 
       
  2265 /**
       
  2266  *  e1000_get_phy_cfg_done - Generic PHY configuration done
       
  2267  *  @hw: pointer to the HW structure
       
  2268  *
       
  2269  *  Return success if silicon family did not implement a family specific
       
  2270  *  get_cfg_done function.
       
  2271  **/
       
  2272 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
       
  2273 {
       
  2274 	if (hw->phy.ops.get_cfg_done)
       
  2275 		return hw->phy.ops.get_cfg_done(hw);
       
  2276 
       
  2277 	return 0;
       
  2278 }
       
  2279 
       
  2280 /**
       
  2281  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
       
  2282  *  @hw: pointer to the HW structure
       
  2283  *
       
  2284  *  When the silicon family has not implemented a forced speed/duplex
       
  2285  *  function for the PHY, simply return 0.
       
  2286  **/
       
  2287 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
       
  2288 {
       
  2289 	if (hw->phy.ops.force_speed_duplex)
       
  2290 		return hw->phy.ops.force_speed_duplex(hw);
       
  2291 
       
  2292 	return 0;
       
  2293 }
       
  2294 
       
  2295 /**
       
  2296  *  e1000e_get_phy_type_from_id - Get PHY type from id
       
  2297  *  @phy_id: phy_id read from the phy
       
  2298  *
       
  2299  *  Returns the phy type from the id.
       
  2300  **/
       
  2301 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
       
  2302 {
       
  2303 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2304 
       
  2305 	switch (phy_id) {
       
  2306 	case M88E1000_I_PHY_ID:
       
  2307 	case M88E1000_E_PHY_ID:
       
  2308 	case M88E1111_I_PHY_ID:
       
  2309 	case M88E1011_I_PHY_ID:
       
  2310 		phy_type = e1000_phy_m88;
       
  2311 		break;
       
  2312 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
       
  2313 		phy_type = e1000_phy_igp_2;
       
  2314 		break;
       
  2315 	case GG82563_E_PHY_ID:
       
  2316 		phy_type = e1000_phy_gg82563;
       
  2317 		break;
       
  2318 	case IGP03E1000_E_PHY_ID:
       
  2319 		phy_type = e1000_phy_igp_3;
       
  2320 		break;
       
  2321 	case IFE_E_PHY_ID:
       
  2322 	case IFE_PLUS_E_PHY_ID:
       
  2323 	case IFE_C_E_PHY_ID:
       
  2324 		phy_type = e1000_phy_ife;
       
  2325 		break;
       
  2326 	case BME1000_E_PHY_ID:
       
  2327 	case BME1000_E_PHY_ID_R2:
       
  2328 		phy_type = e1000_phy_bm;
       
  2329 		break;
       
  2330 	case I82578_E_PHY_ID:
       
  2331 		phy_type = e1000_phy_82578;
       
  2332 		break;
       
  2333 	case I82577_E_PHY_ID:
       
  2334 		phy_type = e1000_phy_82577;
       
  2335 		break;
       
  2336 	case I82579_E_PHY_ID:
       
  2337 		phy_type = e1000_phy_82579;
       
  2338 		break;
       
  2339 	default:
       
  2340 		phy_type = e1000_phy_unknown;
       
  2341 		break;
       
  2342 	}
       
  2343 	return phy_type;
       
  2344 }
       
  2345 
       
  2346 /**
       
  2347  *  e1000e_determine_phy_address - Determines PHY address.
       
  2348  *  @hw: pointer to the HW structure
       
  2349  *
       
  2350  *  This uses a trial and error method to loop through possible PHY
       
  2351  *  addresses. It tests each by reading the PHY ID registers and
       
  2352  *  checking for a match.
       
  2353  **/
       
  2354 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
       
  2355 {
       
  2356 	s32 ret_val = -E1000_ERR_PHY_TYPE;
       
  2357 	u32 phy_addr = 0;
       
  2358 	u32 i;
       
  2359 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2360 
       
  2361 	hw->phy.id = phy_type;
       
  2362 
       
  2363 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
       
  2364 		hw->phy.addr = phy_addr;
       
  2365 		i = 0;
       
  2366 
       
  2367 		do {
       
  2368 			e1000e_get_phy_id(hw);
       
  2369 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
       
  2370 
       
  2371 			/*
       
  2372 			 * If phy_type is valid, break - we found our
       
  2373 			 * PHY address
       
  2374 			 */
       
  2375 			if (phy_type  != e1000_phy_unknown) {
       
  2376 				ret_val = 0;
       
  2377 				goto out;
       
  2378 			}
       
  2379 			msleep(1);
       
  2380 			i++;
       
  2381 		} while (i < 10);
       
  2382 	}
       
  2383 
       
  2384 out:
       
  2385 	return ret_val;
       
  2386 }
       
  2387 
       
  2388 /**
       
  2389  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
       
  2390  *  @page: page to access
       
  2391  *
       
  2392  *  Returns the phy address for the page requested.
       
  2393  **/
       
  2394 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
       
  2395 {
       
  2396 	u32 phy_addr = 2;
       
  2397 
       
  2398 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
       
  2399 		phy_addr = 1;
       
  2400 
       
  2401 	return phy_addr;
       
  2402 }
       
  2403 
       
  2404 /**
       
  2405  *  e1000e_write_phy_reg_bm - Write BM PHY register
       
  2406  *  @hw: pointer to the HW structure
       
  2407  *  @offset: register offset to write to
       
  2408  *  @data: data to write at register offset
       
  2409  *
       
  2410  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2411  *  at the offset.  Release any acquired semaphores before exiting.
       
  2412  **/
       
  2413 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
       
  2414 {
       
  2415 	s32 ret_val;
       
  2416 	u32 page_select = 0;
       
  2417 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2418 	u32 page_shift = 0;
       
  2419 
       
  2420 	ret_val = hw->phy.ops.acquire(hw);
       
  2421 	if (ret_val)
       
  2422 		return ret_val;
       
  2423 
       
  2424 	/* Page 800 works differently than the rest so it has its own func */
       
  2425 	if (page == BM_WUC_PAGE) {
       
  2426 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2427 							 false);
       
  2428 		goto out;
       
  2429 	}
       
  2430 
       
  2431 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2432 
       
  2433 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2434 		/*
       
  2435 		 * Page select is register 31 for phy address 1 and 22 for
       
  2436 		 * phy address 2 and 3. Page select is shifted only for
       
  2437 		 * phy address 1.
       
  2438 		 */
       
  2439 		if (hw->phy.addr == 1) {
       
  2440 			page_shift = IGP_PAGE_SHIFT;
       
  2441 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2442 		} else {
       
  2443 			page_shift = 0;
       
  2444 			page_select = BM_PHY_PAGE_SELECT;
       
  2445 		}
       
  2446 
       
  2447 		/* Page is shifted left, PHY expects (page x 32) */
       
  2448 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2449 		                                    (page << page_shift));
       
  2450 		if (ret_val)
       
  2451 			goto out;
       
  2452 	}
       
  2453 
       
  2454 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2455 	                                    data);
       
  2456 
       
  2457 out:
       
  2458 	hw->phy.ops.release(hw);
       
  2459 	return ret_val;
       
  2460 }
       
  2461 
       
  2462 /**
       
  2463  *  e1000e_read_phy_reg_bm - Read BM PHY register
       
  2464  *  @hw: pointer to the HW structure
       
  2465  *  @offset: register offset to be read
       
  2466  *  @data: pointer to the read data
       
  2467  *
       
  2468  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2469  *  and storing the retrieved information in data.  Release any acquired
       
  2470  *  semaphores before exiting.
       
  2471  **/
       
  2472 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2473 {
       
  2474 	s32 ret_val;
       
  2475 	u32 page_select = 0;
       
  2476 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2477 	u32 page_shift = 0;
       
  2478 
       
  2479 	ret_val = hw->phy.ops.acquire(hw);
       
  2480 	if (ret_val)
       
  2481 		return ret_val;
       
  2482 
       
  2483 	/* Page 800 works differently than the rest so it has its own func */
       
  2484 	if (page == BM_WUC_PAGE) {
       
  2485 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2486 							 true);
       
  2487 		goto out;
       
  2488 	}
       
  2489 
       
  2490 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2491 
       
  2492 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2493 		/*
       
  2494 		 * Page select is register 31 for phy address 1 and 22 for
       
  2495 		 * phy address 2 and 3. Page select is shifted only for
       
  2496 		 * phy address 1.
       
  2497 		 */
       
  2498 		if (hw->phy.addr == 1) {
       
  2499 			page_shift = IGP_PAGE_SHIFT;
       
  2500 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2501 		} else {
       
  2502 			page_shift = 0;
       
  2503 			page_select = BM_PHY_PAGE_SELECT;
       
  2504 		}
       
  2505 
       
  2506 		/* Page is shifted left, PHY expects (page x 32) */
       
  2507 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2508 		                                    (page << page_shift));
       
  2509 		if (ret_val)
       
  2510 			goto out;
       
  2511 	}
       
  2512 
       
  2513 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2514 	                                   data);
       
  2515 out:
       
  2516 	hw->phy.ops.release(hw);
       
  2517 	return ret_val;
       
  2518 }
       
  2519 
       
  2520 /**
       
  2521  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
       
  2522  *  @hw: pointer to the HW structure
       
  2523  *  @offset: register offset to be read
       
  2524  *  @data: pointer to the read data
       
  2525  *
       
  2526  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2527  *  and storing the retrieved information in data.  Release any acquired
       
  2528  *  semaphores before exiting.
       
  2529  **/
       
  2530 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2531 {
       
  2532 	s32 ret_val;
       
  2533 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2534 
       
  2535 	ret_val = hw->phy.ops.acquire(hw);
       
  2536 	if (ret_val)
       
  2537 		return ret_val;
       
  2538 
       
  2539 	/* Page 800 works differently than the rest so it has its own func */
       
  2540 	if (page == BM_WUC_PAGE) {
       
  2541 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2542 							 true);
       
  2543 		goto out;
       
  2544 	}
       
  2545 
       
  2546 	hw->phy.addr = 1;
       
  2547 
       
  2548 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2549 
       
  2550 		/* Page is shifted left, PHY expects (page x 32) */
       
  2551 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2552 						    page);
       
  2553 
       
  2554 		if (ret_val)
       
  2555 			goto out;
       
  2556 	}
       
  2557 
       
  2558 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2559 					   data);
       
  2560 out:
       
  2561 	hw->phy.ops.release(hw);
       
  2562 	return ret_val;
       
  2563 }
       
  2564 
       
  2565 /**
       
  2566  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
       
  2567  *  @hw: pointer to the HW structure
       
  2568  *  @offset: register offset to write to
       
  2569  *  @data: data to write at register offset
       
  2570  *
       
  2571  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2572  *  at the offset.  Release any acquired semaphores before exiting.
       
  2573  **/
       
  2574 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
       
  2575 {
       
  2576 	s32 ret_val;
       
  2577 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2578 
       
  2579 	ret_val = hw->phy.ops.acquire(hw);
       
  2580 	if (ret_val)
       
  2581 		return ret_val;
       
  2582 
       
  2583 	/* Page 800 works differently than the rest so it has its own func */
       
  2584 	if (page == BM_WUC_PAGE) {
       
  2585 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2586 							 false);
       
  2587 		goto out;
       
  2588 	}
       
  2589 
       
  2590 	hw->phy.addr = 1;
       
  2591 
       
  2592 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2593 		/* Page is shifted left, PHY expects (page x 32) */
       
  2594 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2595 						    page);
       
  2596 
       
  2597 		if (ret_val)
       
  2598 			goto out;
       
  2599 	}
       
  2600 
       
  2601 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2602 					    data);
       
  2603 
       
  2604 out:
       
  2605 	hw->phy.ops.release(hw);
       
  2606 	return ret_val;
       
  2607 }
       
  2608 
       
  2609 /**
       
  2610  *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
       
  2611  *  @hw: pointer to the HW structure
       
  2612  *  @offset: register offset to be read or written
       
  2613  *  @data: pointer to the data to read or write
       
  2614  *  @read: determines if operation is read or write
       
  2615  *
       
  2616  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2617  *  and storing the retrieved information in data.  Release any acquired
       
  2618  *  semaphores before exiting. Note that procedure to read the wakeup
       
  2619  *  registers are different. It works as such:
       
  2620  *  1) Set page 769, register 17, bit 2 = 1
       
  2621  *  2) Set page to 800 for host (801 if we were manageability)
       
  2622  *  3) Write the address using the address opcode (0x11)
       
  2623  *  4) Read or write the data using the data opcode (0x12)
       
  2624  *  5) Restore 769_17.2 to its original value
       
  2625  *
       
  2626  *  Assumes semaphore already acquired.
       
  2627  **/
       
  2628 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
  2629 					  u16 *data, bool read)
       
  2630 {
       
  2631 	s32 ret_val;
       
  2632 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2633 	u16 phy_reg = 0;
       
  2634 
       
  2635 	/* Gig must be disabled for MDIO accesses to page 800 */
       
  2636 	if ((hw->mac.type == e1000_pchlan) &&
       
  2637 	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
       
  2638 		e_dbg("Attempting to access page 800 while gig enabled.\n");
       
  2639 
       
  2640 	/* All operations in this function are phy address 1 */
       
  2641 	hw->phy.addr = 1;
       
  2642 
       
  2643 	/* Set page 769 */
       
  2644 	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2645 	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
       
  2646 
       
  2647 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
       
  2648 	if (ret_val) {
       
  2649 		e_dbg("Could not read PHY page 769\n");
       
  2650 		goto out;
       
  2651 	}
       
  2652 
       
  2653 	/* First clear bit 4 to avoid a power state change */
       
  2654 	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
       
  2655 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  2656 	if (ret_val) {
       
  2657 		e_dbg("Could not clear PHY page 769 bit 4\n");
       
  2658 		goto out;
       
  2659 	}
       
  2660 
       
  2661 	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
       
  2662 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
       
  2663 	                                    phy_reg | BM_WUC_ENABLE_BIT);
       
  2664 	if (ret_val) {
       
  2665 		e_dbg("Could not write PHY page 769 bit 2\n");
       
  2666 		goto out;
       
  2667 	}
       
  2668 
       
  2669 	/* Select page 800 */
       
  2670 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2671 	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));
       
  2672 
       
  2673 	/* Write the page 800 offset value using opcode 0x11 */
       
  2674 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
       
  2675 	if (ret_val) {
       
  2676 		e_dbg("Could not write address opcode to page 800\n");
       
  2677 		goto out;
       
  2678 	}
       
  2679 
       
  2680 	if (read) {
       
  2681 	        /* Read the page 800 value using opcode 0x12 */
       
  2682 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2683 		                                   data);
       
  2684 	} else {
       
  2685 	        /* Write the page 800 value using opcode 0x12 */
       
  2686 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2687 						    *data);
       
  2688 	}
       
  2689 
       
  2690 	if (ret_val) {
       
  2691 		e_dbg("Could not access data value from page 800\n");
       
  2692 		goto out;
       
  2693 	}
       
  2694 
       
  2695 	/*
       
  2696 	 * Restore 769_17.2 to its original value
       
  2697 	 * Set page 769
       
  2698 	 */
       
  2699 	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2700 	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
       
  2701 
       
  2702 	/* Clear 769_17.2 */
       
  2703 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  2704 	if (ret_val) {
       
  2705 		e_dbg("Could not clear PHY page 769 bit 2\n");
       
  2706 		goto out;
       
  2707 	}
       
  2708 
       
  2709 out:
       
  2710 	return ret_val;
       
  2711 }
       
  2712 
       
  2713 /**
       
  2714  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
       
  2715  * @hw: pointer to the HW structure
       
  2716  *
       
  2717  * In the case of a PHY power down to save power, or to turn off link during a
       
  2718  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2719  * settings.
       
  2720  **/
       
  2721 void e1000_power_up_phy_copper(struct e1000_hw *hw)
       
  2722 {
       
  2723 	u16 mii_reg = 0;
       
  2724 
       
  2725 	/* The PHY will retain its settings across a power down/up cycle */
       
  2726 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2727 	mii_reg &= ~MII_CR_POWER_DOWN;
       
  2728 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2729 }
       
  2730 
       
  2731 /**
       
  2732  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
       
  2733  * @hw: pointer to the HW structure
       
  2734  *
       
  2735  * In the case of a PHY power down to save power, or to turn off link during a
       
  2736  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2737  * settings.
       
  2738  **/
       
  2739 void e1000_power_down_phy_copper(struct e1000_hw *hw)
       
  2740 {
       
  2741 	u16 mii_reg = 0;
       
  2742 
       
  2743 	/* The PHY will retain its settings across a power down/up cycle */
       
  2744 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2745 	mii_reg |= MII_CR_POWER_DOWN;
       
  2746 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2747 	msleep(1);
       
  2748 }
       
  2749 
       
  2750 /**
       
  2751  *  e1000e_commit_phy - Soft PHY reset
       
  2752  *  @hw: pointer to the HW structure
       
  2753  *
       
  2754  *  Performs a soft PHY reset on those that apply. This is a function pointer
       
  2755  *  entry point called by drivers.
       
  2756  **/
       
  2757 s32 e1000e_commit_phy(struct e1000_hw *hw)
       
  2758 {
       
  2759 	if (hw->phy.ops.commit)
       
  2760 		return hw->phy.ops.commit(hw);
       
  2761 
       
  2762 	return 0;
       
  2763 }
       
  2764 
       
  2765 /**
       
  2766  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
       
  2767  *  @hw: pointer to the HW structure
       
  2768  *  @active: boolean used to enable/disable lplu
       
  2769  *
       
  2770  *  Success returns 0, Failure returns 1
       
  2771  *
       
  2772  *  The low power link up (lplu) state is set to the power management level D0
       
  2773  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
       
  2774  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  2775  *  is used during Dx states where the power conservation is most important.
       
  2776  *  During driver activity, SmartSpeed should be enabled so performance is
       
  2777  *  maintained.  This is a function pointer entry point called by drivers.
       
  2778  **/
       
  2779 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
       
  2780 {
       
  2781 	if (hw->phy.ops.set_d0_lplu_state)
       
  2782 		return hw->phy.ops.set_d0_lplu_state(hw, active);
       
  2783 
       
  2784 	return 0;
       
  2785 }
       
  2786 
       
  2787 /**
       
  2788  *  __e1000_read_phy_reg_hv -  Read HV PHY register
       
  2789  *  @hw: pointer to the HW structure
       
  2790  *  @offset: register offset to be read
       
  2791  *  @data: pointer to the read data
       
  2792  *  @locked: semaphore has already been acquired or not
       
  2793  *
       
  2794  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2795  *  and stores the retrieved information in data.  Release any acquired
       
  2796  *  semaphore before exiting.
       
  2797  **/
       
  2798 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
       
  2799                                    bool locked)
       
  2800 {
       
  2801 	s32 ret_val;
       
  2802 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2803 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2804 
       
  2805 	if (!locked) {
       
  2806 		ret_val = hw->phy.ops.acquire(hw);
       
  2807 		if (ret_val)
       
  2808 			return ret_val;
       
  2809 	}
       
  2810 
       
  2811 	/* Page 800 works differently than the rest so it has its own func */
       
  2812 	if (page == BM_WUC_PAGE) {
       
  2813 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
       
  2814 		                                         data, true);
       
  2815 		goto out;
       
  2816 	}
       
  2817 
       
  2818 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2819 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2820 		                                         data, true);
       
  2821 		goto out;
       
  2822 	}
       
  2823 
       
  2824 	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2825 
       
  2826 	if (page == HV_INTC_FC_PAGE_START)
       
  2827 		page = 0;
       
  2828 
       
  2829 	if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2830 		u32 phy_addr = hw->phy.addr;
       
  2831 
       
  2832 		hw->phy.addr = 1;
       
  2833 
       
  2834 		/* Page is shifted left, PHY expects (page x 32) */
       
  2835 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
  2836 					     IGP01E1000_PHY_PAGE_SELECT,
       
  2837 					     (page << IGP_PAGE_SHIFT));
       
  2838 		hw->phy.addr = phy_addr;
       
  2839 
       
  2840 		if (ret_val)
       
  2841 			goto out;
       
  2842 	}
       
  2843 
       
  2844 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  2845 	                                  data);
       
  2846 out:
       
  2847 	if (!locked)
       
  2848 		hw->phy.ops.release(hw);
       
  2849 
       
  2850 	return ret_val;
       
  2851 }
       
  2852 
       
  2853 /**
       
  2854  *  e1000_read_phy_reg_hv -  Read HV PHY register
       
  2855  *  @hw: pointer to the HW structure
       
  2856  *  @offset: register offset to be read
       
  2857  *  @data: pointer to the read data
       
  2858  *
       
  2859  *  Acquires semaphore then reads the PHY register at offset and stores
       
  2860  *  the retrieved information in data.  Release the acquired semaphore
       
  2861  *  before exiting.
       
  2862  **/
       
  2863 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2864 {
       
  2865 	return __e1000_read_phy_reg_hv(hw, offset, data, false);
       
  2866 }
       
  2867 
       
  2868 /**
       
  2869  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
       
  2870  *  @hw: pointer to the HW structure
       
  2871  *  @offset: register offset to be read
       
  2872  *  @data: pointer to the read data
       
  2873  *
       
  2874  *  Reads the PHY register at offset and stores the retrieved information
       
  2875  *  in data.  Assumes semaphore already acquired.
       
  2876  **/
       
  2877 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2878 {
       
  2879 	return __e1000_read_phy_reg_hv(hw, offset, data, true);
       
  2880 }
       
  2881 
       
  2882 /**
       
  2883  *  __e1000_write_phy_reg_hv - Write HV PHY register
       
  2884  *  @hw: pointer to the HW structure
       
  2885  *  @offset: register offset to write to
       
  2886  *  @data: data to write at register offset
       
  2887  *  @locked: semaphore has already been acquired or not
       
  2888  *
       
  2889  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2890  *  at the offset.  Release any acquired semaphores before exiting.
       
  2891  **/
       
  2892 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
       
  2893                                     bool locked)
       
  2894 {
       
  2895 	s32 ret_val;
       
  2896 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2897 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2898 
       
  2899 	if (!locked) {
       
  2900 		ret_val = hw->phy.ops.acquire(hw);
       
  2901 		if (ret_val)
       
  2902 			return ret_val;
       
  2903 	}
       
  2904 
       
  2905 	/* Page 800 works differently than the rest so it has its own func */
       
  2906 	if (page == BM_WUC_PAGE) {
       
  2907 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
       
  2908 		                                         &data, false);
       
  2909 		goto out;
       
  2910 	}
       
  2911 
       
  2912 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2913 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2914 		                                         &data, false);
       
  2915 		goto out;
       
  2916 	}
       
  2917 
       
  2918 	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2919 
       
  2920 	if (page == HV_INTC_FC_PAGE_START)
       
  2921 		page = 0;
       
  2922 
       
  2923 	/*
       
  2924 	 * Workaround MDIO accesses being disabled after entering IEEE Power
       
  2925 	 * Down (whenever bit 11 of the PHY Control register is set)
       
  2926 	 */
       
  2927 	if ((hw->phy.type == e1000_phy_82578) &&
       
  2928 	    (hw->phy.revision >= 1) &&
       
  2929 	    (hw->phy.addr == 2) &&
       
  2930 	    ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
       
  2931 	    (data & (1 << 11))) {
       
  2932 		u16 data2 = 0x7EFF;
       
  2933 		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
       
  2934 		                                         &data2, false);
       
  2935 		if (ret_val)
       
  2936 			goto out;
       
  2937 	}
       
  2938 
       
  2939 	if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2940 		u32 phy_addr = hw->phy.addr;
       
  2941 
       
  2942 		hw->phy.addr = 1;
       
  2943 
       
  2944 		/* Page is shifted left, PHY expects (page x 32) */
       
  2945 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
  2946 					     IGP01E1000_PHY_PAGE_SELECT,
       
  2947 					     (page << IGP_PAGE_SHIFT));
       
  2948 		hw->phy.addr = phy_addr;
       
  2949 
       
  2950 		if (ret_val)
       
  2951 			goto out;
       
  2952 	}
       
  2953 
       
  2954 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  2955 	                                  data);
       
  2956 
       
  2957 out:
       
  2958 	if (!locked)
       
  2959 		hw->phy.ops.release(hw);
       
  2960 
       
  2961 	return ret_val;
       
  2962 }
       
  2963 
       
  2964 /**
       
  2965  *  e1000_write_phy_reg_hv - Write HV PHY register
       
  2966  *  @hw: pointer to the HW structure
       
  2967  *  @offset: register offset to write to
       
  2968  *  @data: data to write at register offset
       
  2969  *
       
  2970  *  Acquires semaphore then writes the data to PHY register at the offset.
       
  2971  *  Release the acquired semaphores before exiting.
       
  2972  **/
       
  2973 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  2974 {
       
  2975 	return __e1000_write_phy_reg_hv(hw, offset, data, false);
       
  2976 }
       
  2977 
       
  2978 /**
       
  2979  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
       
  2980  *  @hw: pointer to the HW structure
       
  2981  *  @offset: register offset to write to
       
  2982  *  @data: data to write at register offset
       
  2983  *
       
  2984  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  2985  *  already acquired.
       
  2986  **/
       
  2987 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
  2988 {
       
  2989 	return __e1000_write_phy_reg_hv(hw, offset, data, true);
       
  2990 }
       
  2991 
       
  2992 /**
       
  2993  *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
       
  2994  *  @page: page to be accessed
       
  2995  **/
       
  2996 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
       
  2997 {
       
  2998 	u32 phy_addr = 2;
       
  2999 
       
  3000 	if (page >= HV_INTC_FC_PAGE_START)
       
  3001 		phy_addr = 1;
       
  3002 
       
  3003 	return phy_addr;
       
  3004 }
       
  3005 
       
  3006 /**
       
  3007  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
       
  3008  *  @hw: pointer to the HW structure
       
  3009  *  @offset: register offset to be read or written
       
  3010  *  @data: pointer to the data to be read or written
       
  3011  *  @read: determines if operation is read or written
       
  3012  *
       
  3013  *  Reads the PHY register at offset and stores the retreived information
       
  3014  *  in data.  Assumes semaphore already acquired.  Note that the procedure
       
  3015  *  to read these regs uses the address port and data port to read/write.
       
  3016  **/
       
  3017 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
  3018                                           u16 *data, bool read)
       
  3019 {
       
  3020 	s32 ret_val;
       
  3021 	u32 addr_reg = 0;
       
  3022 	u32 data_reg = 0;
       
  3023 
       
  3024 	/* This takes care of the difference with desktop vs mobile phy */
       
  3025 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
       
  3026 	           I82578_ADDR_REG : I82577_ADDR_REG;
       
  3027 	data_reg = addr_reg + 1;
       
  3028 
       
  3029 	/* All operations in this function are phy address 2 */
       
  3030 	hw->phy.addr = 2;
       
  3031 
       
  3032 	/* masking with 0x3F to remove the page from offset */
       
  3033 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
       
  3034 	if (ret_val) {
       
  3035 		e_dbg("Could not write PHY the HV address register\n");
       
  3036 		goto out;
       
  3037 	}
       
  3038 
       
  3039 	/* Read or write the data value next */
       
  3040 	if (read)
       
  3041 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
       
  3042 	else
       
  3043 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
       
  3044 
       
  3045 	if (ret_val) {
       
  3046 		e_dbg("Could not read data value from HV data register\n");
       
  3047 		goto out;
       
  3048 	}
       
  3049 
       
  3050 out:
       
  3051 	return ret_val;
       
  3052 }
       
  3053 
       
  3054 /**
       
  3055  *  e1000_link_stall_workaround_hv - Si workaround
       
  3056  *  @hw: pointer to the HW structure
       
  3057  *
       
  3058  *  This function works around a Si bug where the link partner can get
       
  3059  *  a link up indication before the PHY does.  If small packets are sent
       
  3060  *  by the link partner they can be placed in the packet buffer without
       
  3061  *  being properly accounted for by the PHY and will stall preventing
       
  3062  *  further packets from being received.  The workaround is to clear the
       
  3063  *  packet buffer after the PHY detects link up.
       
  3064  **/
       
  3065 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
       
  3066 {
       
  3067 	s32 ret_val = 0;
       
  3068 	u16 data;
       
  3069 
       
  3070 	if (hw->phy.type != e1000_phy_82578)
       
  3071 		goto out;
       
  3072 
       
  3073 	/* Do not apply workaround if in PHY loopback bit 14 set */
       
  3074 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
       
  3075 	if (data & PHY_CONTROL_LB)
       
  3076 		goto out;
       
  3077 
       
  3078 	/* check if link is up and at 1Gbps */
       
  3079 	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
       
  3080 	if (ret_val)
       
  3081 		goto out;
       
  3082 
       
  3083 	data &= BM_CS_STATUS_LINK_UP |
       
  3084 	        BM_CS_STATUS_RESOLVED |
       
  3085 	        BM_CS_STATUS_SPEED_MASK;
       
  3086 
       
  3087 	if (data != (BM_CS_STATUS_LINK_UP |
       
  3088 	             BM_CS_STATUS_RESOLVED |
       
  3089 	             BM_CS_STATUS_SPEED_1000))
       
  3090 		goto out;
       
  3091 
       
  3092 	mdelay(200);
       
  3093 
       
  3094 	/* flush the packets in the fifo buffer */
       
  3095 	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
       
  3096 	                                HV_MUX_DATA_CTRL_GEN_TO_MAC |
       
  3097 	                                HV_MUX_DATA_CTRL_FORCE_SPEED);
       
  3098 	if (ret_val)
       
  3099 		goto out;
       
  3100 
       
  3101 	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
       
  3102 	                                HV_MUX_DATA_CTRL_GEN_TO_MAC);
       
  3103 
       
  3104 out:
       
  3105 	return ret_val;
       
  3106 }
       
  3107 
       
  3108 /**
       
  3109  *  e1000_check_polarity_82577 - Checks the polarity.
       
  3110  *  @hw: pointer to the HW structure
       
  3111  *
       
  3112  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  3113  *
       
  3114  *  Polarity is determined based on the PHY specific status register.
       
  3115  **/
       
  3116 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
       
  3117 {
       
  3118 	struct e1000_phy_info *phy = &hw->phy;
       
  3119 	s32 ret_val;
       
  3120 	u16 data;
       
  3121 
       
  3122 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
       
  3123 
       
  3124 	if (!ret_val)
       
  3125 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
       
  3126 		                      ? e1000_rev_polarity_reversed
       
  3127 		                      : e1000_rev_polarity_normal;
       
  3128 
       
  3129 	return ret_val;
       
  3130 }
       
  3131 
       
  3132 /**
       
  3133  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
       
  3134  *  @hw: pointer to the HW structure
       
  3135  *
       
  3136  *  Calls the PHY setup function to force speed and duplex.
       
  3137  **/
       
  3138 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
       
  3139 {
       
  3140 	struct e1000_phy_info *phy = &hw->phy;
       
  3141 	s32 ret_val;
       
  3142 	u16 phy_data;
       
  3143 	bool link;
       
  3144 
       
  3145 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
       
  3146 	if (ret_val)
       
  3147 		goto out;
       
  3148 
       
  3149 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  3150 
       
  3151 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
       
  3152 	if (ret_val)
       
  3153 		goto out;
       
  3154 
       
  3155 	udelay(1);
       
  3156 
       
  3157 	if (phy->autoneg_wait_to_complete) {
       
  3158 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
       
  3159 
       
  3160 		ret_val = e1000e_phy_has_link_generic(hw,
       
  3161 		                                     PHY_FORCE_LIMIT,
       
  3162 		                                     100000,
       
  3163 		                                     &link);
       
  3164 		if (ret_val)
       
  3165 			goto out;
       
  3166 
       
  3167 		if (!link)
       
  3168 			e_dbg("Link taking longer than expected.\n");
       
  3169 
       
  3170 		/* Try once more */
       
  3171 		ret_val = e1000e_phy_has_link_generic(hw,
       
  3172 		                                     PHY_FORCE_LIMIT,
       
  3173 		                                     100000,
       
  3174 		                                     &link);
       
  3175 		if (ret_val)
       
  3176 			goto out;
       
  3177 	}
       
  3178 
       
  3179 out:
       
  3180 	return ret_val;
       
  3181 }
       
  3182 
       
  3183 /**
       
  3184  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
       
  3185  *  @hw: pointer to the HW structure
       
  3186  *
       
  3187  *  Read PHY status to determine if link is up.  If link is up, then
       
  3188  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  3189  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  3190  *  determine on the cable length, local and remote receiver.
       
  3191  **/
       
  3192 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
       
  3193 {
       
  3194 	struct e1000_phy_info *phy = &hw->phy;
       
  3195 	s32 ret_val;
       
  3196 	u16 data;
       
  3197 	bool link;
       
  3198 
       
  3199 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  3200 	if (ret_val)
       
  3201 		goto out;
       
  3202 
       
  3203 	if (!link) {
       
  3204 		e_dbg("Phy info is only valid if link is up\n");
       
  3205 		ret_val = -E1000_ERR_CONFIG;
       
  3206 		goto out;
       
  3207 	}
       
  3208 
       
  3209 	phy->polarity_correction = true;
       
  3210 
       
  3211 	ret_val = e1000_check_polarity_82577(hw);
       
  3212 	if (ret_val)
       
  3213 		goto out;
       
  3214 
       
  3215 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
       
  3216 	if (ret_val)
       
  3217 		goto out;
       
  3218 
       
  3219 	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
       
  3220 
       
  3221 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
       
  3222 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
       
  3223 		ret_val = hw->phy.ops.get_cable_length(hw);
       
  3224 		if (ret_val)
       
  3225 			goto out;
       
  3226 
       
  3227 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
       
  3228 		if (ret_val)
       
  3229 			goto out;
       
  3230 
       
  3231 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  3232 		                ? e1000_1000t_rx_status_ok
       
  3233 		                : e1000_1000t_rx_status_not_ok;
       
  3234 
       
  3235 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  3236 		                 ? e1000_1000t_rx_status_ok
       
  3237 		                 : e1000_1000t_rx_status_not_ok;
       
  3238 	} else {
       
  3239 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  3240 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  3241 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  3242 	}
       
  3243 
       
  3244 out:
       
  3245 	return ret_val;
       
  3246 }
       
  3247 
       
  3248 /**
       
  3249  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
       
  3250  *  @hw: pointer to the HW structure
       
  3251  *
       
  3252  * Reads the diagnostic status register and verifies result is valid before
       
  3253  * placing it in the phy_cable_length field.
       
  3254  **/
       
  3255 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
       
  3256 {
       
  3257 	struct e1000_phy_info *phy = &hw->phy;
       
  3258 	s32 ret_val;
       
  3259 	u16 phy_data, length;
       
  3260 
       
  3261 	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
       
  3262 	if (ret_val)
       
  3263 		goto out;
       
  3264 
       
  3265 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
       
  3266 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
       
  3267 
       
  3268 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
       
  3269 		ret_val = -E1000_ERR_PHY;
       
  3270 
       
  3271 	phy->cable_length = length;
       
  3272 
       
  3273 out:
       
  3274 	return ret_val;
       
  3275 }