devices/e1000e/netdev-2.6.37-orig.c
branchredundancy
changeset 2135 f99b2249704c
equal deleted inserted replaced
2134:2aee73b9f63f 2135:f99b2249704c
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2010 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
       
    30 
       
    31 #include <linux/module.h>
       
    32 #include <linux/types.h>
       
    33 #include <linux/init.h>
       
    34 #include <linux/pci.h>
       
    35 #include <linux/vmalloc.h>
       
    36 #include <linux/pagemap.h>
       
    37 #include <linux/delay.h>
       
    38 #include <linux/netdevice.h>
       
    39 #include <linux/tcp.h>
       
    40 #include <linux/ipv6.h>
       
    41 #include <linux/slab.h>
       
    42 #include <net/checksum.h>
       
    43 #include <net/ip6_checksum.h>
       
    44 #include <linux/mii.h>
       
    45 #include <linux/ethtool.h>
       
    46 #include <linux/if_vlan.h>
       
    47 #include <linux/cpu.h>
       
    48 #include <linux/smp.h>
       
    49 #include <linux/pm_qos_params.h>
       
    50 #include <linux/pm_runtime.h>
       
    51 #include <linux/aer.h>
       
    52 
       
    53 #include "e1000.h"
       
    54 
       
    55 #define DRV_EXTRAVERSION "-k2"
       
    56 
       
    57 #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
       
    58 char e1000e_driver_name[] = "e1000e";
       
    59 const char e1000e_driver_version[] = DRV_VERSION;
       
    60 
       
    61 static const struct e1000_info *e1000_info_tbl[] = {
       
    62 	[board_82571]		= &e1000_82571_info,
       
    63 	[board_82572]		= &e1000_82572_info,
       
    64 	[board_82573]		= &e1000_82573_info,
       
    65 	[board_82574]		= &e1000_82574_info,
       
    66 	[board_82583]		= &e1000_82583_info,
       
    67 	[board_80003es2lan]	= &e1000_es2_info,
       
    68 	[board_ich8lan]		= &e1000_ich8_info,
       
    69 	[board_ich9lan]		= &e1000_ich9_info,
       
    70 	[board_ich10lan]	= &e1000_ich10_info,
       
    71 	[board_pchlan]		= &e1000_pch_info,
       
    72 	[board_pch2lan]		= &e1000_pch2_info,
       
    73 };
       
    74 
       
    75 struct e1000_reg_info {
       
    76 	u32 ofs;
       
    77 	char *name;
       
    78 };
       
    79 
       
    80 #define E1000_RDFH	0x02410 /* Rx Data FIFO Head - RW */
       
    81 #define E1000_RDFT	0x02418 /* Rx Data FIFO Tail - RW */
       
    82 #define E1000_RDFHS	0x02420 /* Rx Data FIFO Head Saved - RW */
       
    83 #define E1000_RDFTS	0x02428 /* Rx Data FIFO Tail Saved - RW */
       
    84 #define E1000_RDFPC	0x02430 /* Rx Data FIFO Packet Count - RW */
       
    85 
       
    86 #define E1000_TDFH	0x03410 /* Tx Data FIFO Head - RW */
       
    87 #define E1000_TDFT	0x03418 /* Tx Data FIFO Tail - RW */
       
    88 #define E1000_TDFHS	0x03420 /* Tx Data FIFO Head Saved - RW */
       
    89 #define E1000_TDFTS	0x03428 /* Tx Data FIFO Tail Saved - RW */
       
    90 #define E1000_TDFPC	0x03430 /* Tx Data FIFO Packet Count - RW */
       
    91 
       
    92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
       
    93 
       
    94 	/* General Registers */
       
    95 	{E1000_CTRL, "CTRL"},
       
    96 	{E1000_STATUS, "STATUS"},
       
    97 	{E1000_CTRL_EXT, "CTRL_EXT"},
       
    98 
       
    99 	/* Interrupt Registers */
       
   100 	{E1000_ICR, "ICR"},
       
   101 
       
   102 	/* RX Registers */
       
   103 	{E1000_RCTL, "RCTL"},
       
   104 	{E1000_RDLEN, "RDLEN"},
       
   105 	{E1000_RDH, "RDH"},
       
   106 	{E1000_RDT, "RDT"},
       
   107 	{E1000_RDTR, "RDTR"},
       
   108 	{E1000_RXDCTL(0), "RXDCTL"},
       
   109 	{E1000_ERT, "ERT"},
       
   110 	{E1000_RDBAL, "RDBAL"},
       
   111 	{E1000_RDBAH, "RDBAH"},
       
   112 	{E1000_RDFH, "RDFH"},
       
   113 	{E1000_RDFT, "RDFT"},
       
   114 	{E1000_RDFHS, "RDFHS"},
       
   115 	{E1000_RDFTS, "RDFTS"},
       
   116 	{E1000_RDFPC, "RDFPC"},
       
   117 
       
   118 	/* TX Registers */
       
   119 	{E1000_TCTL, "TCTL"},
       
   120 	{E1000_TDBAL, "TDBAL"},
       
   121 	{E1000_TDBAH, "TDBAH"},
       
   122 	{E1000_TDLEN, "TDLEN"},
       
   123 	{E1000_TDH, "TDH"},
       
   124 	{E1000_TDT, "TDT"},
       
   125 	{E1000_TIDV, "TIDV"},
       
   126 	{E1000_TXDCTL(0), "TXDCTL"},
       
   127 	{E1000_TADV, "TADV"},
       
   128 	{E1000_TARC(0), "TARC"},
       
   129 	{E1000_TDFH, "TDFH"},
       
   130 	{E1000_TDFT, "TDFT"},
       
   131 	{E1000_TDFHS, "TDFHS"},
       
   132 	{E1000_TDFTS, "TDFTS"},
       
   133 	{E1000_TDFPC, "TDFPC"},
       
   134 
       
   135 	/* List Terminator */
       
   136 	{}
       
   137 };
       
   138 
       
   139 /*
       
   140  * e1000_regdump - register printout routine
       
   141  */
       
   142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
       
   143 {
       
   144 	int n = 0;
       
   145 	char rname[16];
       
   146 	u32 regs[8];
       
   147 
       
   148 	switch (reginfo->ofs) {
       
   149 	case E1000_RXDCTL(0):
       
   150 		for (n = 0; n < 2; n++)
       
   151 			regs[n] = __er32(hw, E1000_RXDCTL(n));
       
   152 		break;
       
   153 	case E1000_TXDCTL(0):
       
   154 		for (n = 0; n < 2; n++)
       
   155 			regs[n] = __er32(hw, E1000_TXDCTL(n));
       
   156 		break;
       
   157 	case E1000_TARC(0):
       
   158 		for (n = 0; n < 2; n++)
       
   159 			regs[n] = __er32(hw, E1000_TARC(n));
       
   160 		break;
       
   161 	default:
       
   162 		printk(KERN_INFO "%-15s %08x\n",
       
   163 			reginfo->name, __er32(hw, reginfo->ofs));
       
   164 		return;
       
   165 	}
       
   166 
       
   167 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
       
   168 	printk(KERN_INFO "%-15s ", rname);
       
   169 	for (n = 0; n < 2; n++)
       
   170 		printk(KERN_CONT "%08x ", regs[n]);
       
   171 	printk(KERN_CONT "\n");
       
   172 }
       
   173 
       
   174 
       
   175 /*
       
   176  * e1000e_dump - Print registers, tx-ring and rx-ring
       
   177  */
       
   178 static void e1000e_dump(struct e1000_adapter *adapter)
       
   179 {
       
   180 	struct net_device *netdev = adapter->netdev;
       
   181 	struct e1000_hw *hw = &adapter->hw;
       
   182 	struct e1000_reg_info *reginfo;
       
   183 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   184 	struct e1000_tx_desc *tx_desc;
       
   185 	struct my_u0 { u64 a; u64 b; } *u0;
       
   186 	struct e1000_buffer *buffer_info;
       
   187 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   188 	union e1000_rx_desc_packet_split *rx_desc_ps;
       
   189 	struct e1000_rx_desc *rx_desc;
       
   190 	struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
       
   191 	u32 staterr;
       
   192 	int i = 0;
       
   193 
       
   194 	if (!netif_msg_hw(adapter))
       
   195 		return;
       
   196 
       
   197 	/* Print netdevice Info */
       
   198 	if (netdev) {
       
   199 		dev_info(&adapter->pdev->dev, "Net device Info\n");
       
   200 		printk(KERN_INFO "Device Name     state            "
       
   201 			"trans_start      last_rx\n");
       
   202 		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
       
   203 			netdev->name,
       
   204 			netdev->state,
       
   205 			netdev->trans_start,
       
   206 			netdev->last_rx);
       
   207 	}
       
   208 
       
   209 	/* Print Registers */
       
   210 	dev_info(&adapter->pdev->dev, "Register Dump\n");
       
   211 	printk(KERN_INFO " Register Name   Value\n");
       
   212 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
       
   213 	     reginfo->name; reginfo++) {
       
   214 		e1000_regdump(hw, reginfo);
       
   215 	}
       
   216 
       
   217 	/* Print TX Ring Summary */
       
   218 	if (!netdev || !netif_running(netdev))
       
   219 		goto exit;
       
   220 
       
   221 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
       
   222 	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
       
   223 		" leng ntw timestamp\n");
       
   224 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
       
   225 	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
       
   226 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
       
   227 		(unsigned long long)buffer_info->dma,
       
   228 		buffer_info->length,
       
   229 		buffer_info->next_to_watch,
       
   230 		(unsigned long long)buffer_info->time_stamp);
       
   231 
       
   232 	/* Print TX Rings */
       
   233 	if (!netif_msg_tx_done(adapter))
       
   234 		goto rx_ring_summary;
       
   235 
       
   236 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
       
   237 
       
   238 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
       
   239 	 *
       
   240 	 * Legacy Transmit Descriptor
       
   241 	 *   +--------------------------------------------------------------+
       
   242 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
       
   243 	 *   +--------------------------------------------------------------+
       
   244 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
       
   245 	 *   +--------------------------------------------------------------+
       
   246 	 *   63       48 47        36 35    32 31     24 23    16 15        0
       
   247 	 *
       
   248 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
       
   249 	 *   63      48 47    40 39       32 31             16 15    8 7      0
       
   250 	 *   +----------------------------------------------------------------+
       
   251 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
       
   252 	 *   +----------------------------------------------------------------+
       
   253 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
       
   254 	 *   +----------------------------------------------------------------+
       
   255 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
       
   256 	 *
       
   257 	 * Extended Data Descriptor (DTYP=0x1)
       
   258 	 *   +----------------------------------------------------------------+
       
   259 	 * 0 |                     Buffer Address [63:0]                      |
       
   260 	 *   +----------------------------------------------------------------+
       
   261 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
       
   262 	 *   +----------------------------------------------------------------+
       
   263 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
       
   264 	 */
       
   265 	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
       
   266 		" [bi->dma       ] leng  ntw timestamp        bi->skb "
       
   267 		"<-- Legacy format\n");
       
   268 	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
       
   269 		" [bi->dma       ] leng  ntw timestamp        bi->skb "
       
   270 		"<-- Ext Context format\n");
       
   271 	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
       
   272 		" [bi->dma       ] leng  ntw timestamp        bi->skb "
       
   273 		"<-- Ext Data format\n");
       
   274 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
       
   275 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
   276 		buffer_info = &tx_ring->buffer_info[i];
       
   277 		u0 = (struct my_u0 *)tx_desc;
       
   278 		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
       
   279 			"%04X  %3X %016llX %p",
       
   280 		       (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
       
   281 			((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
       
   282 		       (unsigned long long)le64_to_cpu(u0->a),
       
   283 		       (unsigned long long)le64_to_cpu(u0->b),
       
   284 		       (unsigned long long)buffer_info->dma,
       
   285 		       buffer_info->length, buffer_info->next_to_watch,
       
   286 		       (unsigned long long)buffer_info->time_stamp,
       
   287 		       buffer_info->skb);
       
   288 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
       
   289 			printk(KERN_CONT " NTC/U\n");
       
   290 		else if (i == tx_ring->next_to_use)
       
   291 			printk(KERN_CONT " NTU\n");
       
   292 		else if (i == tx_ring->next_to_clean)
       
   293 			printk(KERN_CONT " NTC\n");
       
   294 		else
       
   295 			printk(KERN_CONT "\n");
       
   296 
       
   297 		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
       
   298 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
       
   299 					16, 1, phys_to_virt(buffer_info->dma),
       
   300 					buffer_info->length, true);
       
   301 	}
       
   302 
       
   303 	/* Print RX Rings Summary */
       
   304 rx_ring_summary:
       
   305 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
       
   306 	printk(KERN_INFO "Queue [NTU] [NTC]\n");
       
   307 	printk(KERN_INFO " %5d %5X %5X\n", 0,
       
   308 		rx_ring->next_to_use, rx_ring->next_to_clean);
       
   309 
       
   310 	/* Print RX Rings */
       
   311 	if (!netif_msg_rx_status(adapter))
       
   312 		goto exit;
       
   313 
       
   314 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
       
   315 	switch (adapter->rx_ps_pages) {
       
   316 	case 1:
       
   317 	case 2:
       
   318 	case 3:
       
   319 		/* [Extended] Packet Split Receive Descriptor Format
       
   320 		 *
       
   321 		 *    +-----------------------------------------------------+
       
   322 		 *  0 |                Buffer Address 0 [63:0]              |
       
   323 		 *    +-----------------------------------------------------+
       
   324 		 *  8 |                Buffer Address 1 [63:0]              |
       
   325 		 *    +-----------------------------------------------------+
       
   326 		 * 16 |                Buffer Address 2 [63:0]              |
       
   327 		 *    +-----------------------------------------------------+
       
   328 		 * 24 |                Buffer Address 3 [63:0]              |
       
   329 		 *    +-----------------------------------------------------+
       
   330 		 */
       
   331 		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
       
   332 			"[buffer 1 63:0 ] "
       
   333 		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
       
   334 		       "[bi->skb] <-- Ext Pkt Split format\n");
       
   335 		/* [Extended] Receive Descriptor (Write-Back) Format
       
   336 		 *
       
   337 		 *   63       48 47    32 31     13 12    8 7    4 3        0
       
   338 		 *   +------------------------------------------------------+
       
   339 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
       
   340 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
       
   341 		 *   +------------------------------------------------------+
       
   342 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
       
   343 		 *   +------------------------------------------------------+
       
   344 		 *   63       48 47    32 31            20 19               0
       
   345 		 */
       
   346 		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
       
   347 			"[vl   l0 ee  es] "
       
   348 		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
       
   349 		       "[bi->skb] <-- Ext Rx Write-Back format\n");
       
   350 		for (i = 0; i < rx_ring->count; i++) {
       
   351 			buffer_info = &rx_ring->buffer_info[i];
       
   352 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
       
   353 			u1 = (struct my_u1 *)rx_desc_ps;
       
   354 			staterr =
       
   355 				le32_to_cpu(rx_desc_ps->wb.middle.status_error);
       
   356 			if (staterr & E1000_RXD_STAT_DD) {
       
   357 				/* Descriptor Done */
       
   358 				printk(KERN_INFO "RWB[0x%03X]     %016llX "
       
   359 					"%016llX %016llX %016llX "
       
   360 					"---------------- %p", i,
       
   361 					(unsigned long long)le64_to_cpu(u1->a),
       
   362 					(unsigned long long)le64_to_cpu(u1->b),
       
   363 					(unsigned long long)le64_to_cpu(u1->c),
       
   364 					(unsigned long long)le64_to_cpu(u1->d),
       
   365 					buffer_info->skb);
       
   366 			} else {
       
   367 				printk(KERN_INFO "R  [0x%03X]     %016llX "
       
   368 					"%016llX %016llX %016llX %016llX %p", i,
       
   369 					(unsigned long long)le64_to_cpu(u1->a),
       
   370 					(unsigned long long)le64_to_cpu(u1->b),
       
   371 					(unsigned long long)le64_to_cpu(u1->c),
       
   372 					(unsigned long long)le64_to_cpu(u1->d),
       
   373 					(unsigned long long)buffer_info->dma,
       
   374 					buffer_info->skb);
       
   375 
       
   376 				if (netif_msg_pktdata(adapter))
       
   377 					print_hex_dump(KERN_INFO, "",
       
   378 						DUMP_PREFIX_ADDRESS, 16, 1,
       
   379 						phys_to_virt(buffer_info->dma),
       
   380 						adapter->rx_ps_bsize0, true);
       
   381 			}
       
   382 
       
   383 			if (i == rx_ring->next_to_use)
       
   384 				printk(KERN_CONT " NTU\n");
       
   385 			else if (i == rx_ring->next_to_clean)
       
   386 				printk(KERN_CONT " NTC\n");
       
   387 			else
       
   388 				printk(KERN_CONT "\n");
       
   389 		}
       
   390 		break;
       
   391 	default:
       
   392 	case 0:
       
   393 		/* Legacy Receive Descriptor Format
       
   394 		 *
       
   395 		 * +-----------------------------------------------------+
       
   396 		 * |                Buffer Address [63:0]                |
       
   397 		 * +-----------------------------------------------------+
       
   398 		 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
       
   399 		 * +-----------------------------------------------------+
       
   400 		 * 63       48 47    40 39      32 31         16 15      0
       
   401 		 */
       
   402 		printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
       
   403 			"[vl er S cks ln] [bi->dma       ] [bi->skb] "
       
   404 			"<-- Legacy format\n");
       
   405 		for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
       
   406 			rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   407 			buffer_info = &rx_ring->buffer_info[i];
       
   408 			u0 = (struct my_u0 *)rx_desc;
       
   409 			printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
       
   410 				"%016llX %p", i,
       
   411 				(unsigned long long)le64_to_cpu(u0->a),
       
   412 				(unsigned long long)le64_to_cpu(u0->b),
       
   413 				(unsigned long long)buffer_info->dma,
       
   414 				buffer_info->skb);
       
   415 			if (i == rx_ring->next_to_use)
       
   416 				printk(KERN_CONT " NTU\n");
       
   417 			else if (i == rx_ring->next_to_clean)
       
   418 				printk(KERN_CONT " NTC\n");
       
   419 			else
       
   420 				printk(KERN_CONT "\n");
       
   421 
       
   422 			if (netif_msg_pktdata(adapter))
       
   423 				print_hex_dump(KERN_INFO, "",
       
   424 					DUMP_PREFIX_ADDRESS,
       
   425 					16, 1, phys_to_virt(buffer_info->dma),
       
   426 					adapter->rx_buffer_len, true);
       
   427 		}
       
   428 	}
       
   429 
       
   430 exit:
       
   431 	return;
       
   432 }
       
   433 
       
   434 /**
       
   435  * e1000_desc_unused - calculate if we have unused descriptors
       
   436  **/
       
   437 static int e1000_desc_unused(struct e1000_ring *ring)
       
   438 {
       
   439 	if (ring->next_to_clean > ring->next_to_use)
       
   440 		return ring->next_to_clean - ring->next_to_use - 1;
       
   441 
       
   442 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
       
   443 }
       
   444 
       
   445 /**
       
   446  * e1000_receive_skb - helper function to handle Rx indications
       
   447  * @adapter: board private structure
       
   448  * @status: descriptor status field as written by hardware
       
   449  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
       
   450  * @skb: pointer to sk_buff to be indicated to stack
       
   451  **/
       
   452 static void e1000_receive_skb(struct e1000_adapter *adapter,
       
   453 			      struct net_device *netdev,
       
   454 			      struct sk_buff *skb,
       
   455 			      u8 status, __le16 vlan)
       
   456 {
       
   457 	skb->protocol = eth_type_trans(skb, netdev);
       
   458 
       
   459 	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
       
   460 		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
       
   461 				 le16_to_cpu(vlan), skb);
       
   462 	else
       
   463 		napi_gro_receive(&adapter->napi, skb);
       
   464 }
       
   465 
       
   466 /**
       
   467  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
   468  * @adapter:     board private structure
       
   469  * @status_err:  receive descriptor status and error fields
       
   470  * @csum:	receive descriptor csum field
       
   471  * @sk_buff:     socket buffer with received data
       
   472  **/
       
   473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
   474 			      u32 csum, struct sk_buff *skb)
       
   475 {
       
   476 	u16 status = (u16)status_err;
       
   477 	u8 errors = (u8)(status_err >> 24);
       
   478 
       
   479 	skb_checksum_none_assert(skb);
       
   480 
       
   481 	/* Ignore Checksum bit is set */
       
   482 	if (status & E1000_RXD_STAT_IXSM)
       
   483 		return;
       
   484 	/* TCP/UDP checksum error bit is set */
       
   485 	if (errors & E1000_RXD_ERR_TCPE) {
       
   486 		/* let the stack verify checksum errors */
       
   487 		adapter->hw_csum_err++;
       
   488 		return;
       
   489 	}
       
   490 
       
   491 	/* TCP/UDP Checksum has not been calculated */
       
   492 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
   493 		return;
       
   494 
       
   495 	/* It must be a TCP or UDP packet with a valid checksum */
       
   496 	if (status & E1000_RXD_STAT_TCPCS) {
       
   497 		/* TCP checksum is good */
       
   498 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
   499 	} else {
       
   500 		/*
       
   501 		 * IP fragment with UDP payload
       
   502 		 * Hardware complements the payload checksum, so we undo it
       
   503 		 * and then put the value in host order for further stack use.
       
   504 		 */
       
   505 		__sum16 sum = (__force __sum16)htons(csum);
       
   506 		skb->csum = csum_unfold(~sum);
       
   507 		skb->ip_summed = CHECKSUM_COMPLETE;
       
   508 	}
       
   509 	adapter->hw_csum_good++;
       
   510 }
       
   511 
       
   512 /**
       
   513  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
   514  * @adapter: address of board private structure
       
   515  **/
       
   516 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   517 				   int cleaned_count)
       
   518 {
       
   519 	struct net_device *netdev = adapter->netdev;
       
   520 	struct pci_dev *pdev = adapter->pdev;
       
   521 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   522 	struct e1000_rx_desc *rx_desc;
       
   523 	struct e1000_buffer *buffer_info;
       
   524 	struct sk_buff *skb;
       
   525 	unsigned int i;
       
   526 	unsigned int bufsz = adapter->rx_buffer_len;
       
   527 
       
   528 	i = rx_ring->next_to_use;
       
   529 	buffer_info = &rx_ring->buffer_info[i];
       
   530 
       
   531 	while (cleaned_count--) {
       
   532 		skb = buffer_info->skb;
       
   533 		if (skb) {
       
   534 			skb_trim(skb, 0);
       
   535 			goto map_skb;
       
   536 		}
       
   537 
       
   538 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
   539 		if (!skb) {
       
   540 			/* Better luck next round */
       
   541 			adapter->alloc_rx_buff_failed++;
       
   542 			break;
       
   543 		}
       
   544 
       
   545 		buffer_info->skb = skb;
       
   546 map_skb:
       
   547 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
       
   548 						  adapter->rx_buffer_len,
       
   549 						  DMA_FROM_DEVICE);
       
   550 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
   551 			dev_err(&pdev->dev, "RX DMA map failed\n");
       
   552 			adapter->rx_dma_failed++;
       
   553 			break;
       
   554 		}
       
   555 
       
   556 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   557 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
   558 
       
   559 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
       
   560 			/*
       
   561 			 * Force memory writes to complete before letting h/w
       
   562 			 * know there are new descriptors to fetch.  (Only
       
   563 			 * applicable for weak-ordered memory model archs,
       
   564 			 * such as IA-64).
       
   565 			 */
       
   566 			wmb();
       
   567 			writel(i, adapter->hw.hw_addr + rx_ring->tail);
       
   568 		}
       
   569 		i++;
       
   570 		if (i == rx_ring->count)
       
   571 			i = 0;
       
   572 		buffer_info = &rx_ring->buffer_info[i];
       
   573 	}
       
   574 
       
   575 	rx_ring->next_to_use = i;
       
   576 }
       
   577 
       
   578 /**
       
   579  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
   580  * @adapter: address of board private structure
       
   581  **/
       
   582 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   583 				      int cleaned_count)
       
   584 {
       
   585 	struct net_device *netdev = adapter->netdev;
       
   586 	struct pci_dev *pdev = adapter->pdev;
       
   587 	union e1000_rx_desc_packet_split *rx_desc;
       
   588 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   589 	struct e1000_buffer *buffer_info;
       
   590 	struct e1000_ps_page *ps_page;
       
   591 	struct sk_buff *skb;
       
   592 	unsigned int i, j;
       
   593 
       
   594 	i = rx_ring->next_to_use;
       
   595 	buffer_info = &rx_ring->buffer_info[i];
       
   596 
       
   597 	while (cleaned_count--) {
       
   598 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
   599 
       
   600 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
   601 			ps_page = &buffer_info->ps_pages[j];
       
   602 			if (j >= adapter->rx_ps_pages) {
       
   603 				/* all unused desc entries get hw null ptr */
       
   604 				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
       
   605 				continue;
       
   606 			}
       
   607 			if (!ps_page->page) {
       
   608 				ps_page->page = netdev_alloc_page(netdev);
       
   609 				if (!ps_page->page) {
       
   610 					adapter->alloc_rx_buff_failed++;
       
   611 					goto no_buffers;
       
   612 				}
       
   613 				ps_page->dma = dma_map_page(&pdev->dev,
       
   614 							    ps_page->page,
       
   615 							    0, PAGE_SIZE,
       
   616 							    DMA_FROM_DEVICE);
       
   617 				if (dma_mapping_error(&pdev->dev,
       
   618 						      ps_page->dma)) {
       
   619 					dev_err(&adapter->pdev->dev,
       
   620 					  "RX DMA page map failed\n");
       
   621 					adapter->rx_dma_failed++;
       
   622 					goto no_buffers;
       
   623 				}
       
   624 			}
       
   625 			/*
       
   626 			 * Refresh the desc even if buffer_addrs
       
   627 			 * didn't change because each write-back
       
   628 			 * erases this info.
       
   629 			 */
       
   630 			rx_desc->read.buffer_addr[j+1] =
       
   631 			     cpu_to_le64(ps_page->dma);
       
   632 		}
       
   633 
       
   634 		skb = netdev_alloc_skb_ip_align(netdev,
       
   635 						adapter->rx_ps_bsize0);
       
   636 
       
   637 		if (!skb) {
       
   638 			adapter->alloc_rx_buff_failed++;
       
   639 			break;
       
   640 		}
       
   641 
       
   642 		buffer_info->skb = skb;
       
   643 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
       
   644 						  adapter->rx_ps_bsize0,
       
   645 						  DMA_FROM_DEVICE);
       
   646 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
   647 			dev_err(&pdev->dev, "RX DMA map failed\n");
       
   648 			adapter->rx_dma_failed++;
       
   649 			/* cleanup skb */
       
   650 			dev_kfree_skb_any(skb);
       
   651 			buffer_info->skb = NULL;
       
   652 			break;
       
   653 		}
       
   654 
       
   655 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
   656 
       
   657 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
       
   658 			/*
       
   659 			 * Force memory writes to complete before letting h/w
       
   660 			 * know there are new descriptors to fetch.  (Only
       
   661 			 * applicable for weak-ordered memory model archs,
       
   662 			 * such as IA-64).
       
   663 			 */
       
   664 			wmb();
       
   665 			writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
       
   666 		}
       
   667 
       
   668 		i++;
       
   669 		if (i == rx_ring->count)
       
   670 			i = 0;
       
   671 		buffer_info = &rx_ring->buffer_info[i];
       
   672 	}
       
   673 
       
   674 no_buffers:
       
   675 	rx_ring->next_to_use = i;
       
   676 }
       
   677 
       
   678 /**
       
   679  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
       
   680  * @adapter: address of board private structure
       
   681  * @cleaned_count: number of buffers to allocate this pass
       
   682  **/
       
   683 
       
   684 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
       
   685                                          int cleaned_count)
       
   686 {
       
   687 	struct net_device *netdev = adapter->netdev;
       
   688 	struct pci_dev *pdev = adapter->pdev;
       
   689 	struct e1000_rx_desc *rx_desc;
       
   690 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   691 	struct e1000_buffer *buffer_info;
       
   692 	struct sk_buff *skb;
       
   693 	unsigned int i;
       
   694 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
       
   695 
       
   696 	i = rx_ring->next_to_use;
       
   697 	buffer_info = &rx_ring->buffer_info[i];
       
   698 
       
   699 	while (cleaned_count--) {
       
   700 		skb = buffer_info->skb;
       
   701 		if (skb) {
       
   702 			skb_trim(skb, 0);
       
   703 			goto check_page;
       
   704 		}
       
   705 
       
   706 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
   707 		if (unlikely(!skb)) {
       
   708 			/* Better luck next round */
       
   709 			adapter->alloc_rx_buff_failed++;
       
   710 			break;
       
   711 		}
       
   712 
       
   713 		buffer_info->skb = skb;
       
   714 check_page:
       
   715 		/* allocate a new page if necessary */
       
   716 		if (!buffer_info->page) {
       
   717 			buffer_info->page = alloc_page(GFP_ATOMIC);
       
   718 			if (unlikely(!buffer_info->page)) {
       
   719 				adapter->alloc_rx_buff_failed++;
       
   720 				break;
       
   721 			}
       
   722 		}
       
   723 
       
   724 		if (!buffer_info->dma)
       
   725 			buffer_info->dma = dma_map_page(&pdev->dev,
       
   726 			                                buffer_info->page, 0,
       
   727 			                                PAGE_SIZE,
       
   728 							DMA_FROM_DEVICE);
       
   729 
       
   730 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   731 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
   732 
       
   733 		if (unlikely(++i == rx_ring->count))
       
   734 			i = 0;
       
   735 		buffer_info = &rx_ring->buffer_info[i];
       
   736 	}
       
   737 
       
   738 	if (likely(rx_ring->next_to_use != i)) {
       
   739 		rx_ring->next_to_use = i;
       
   740 		if (unlikely(i-- == 0))
       
   741 			i = (rx_ring->count - 1);
       
   742 
       
   743 		/* Force memory writes to complete before letting h/w
       
   744 		 * know there are new descriptors to fetch.  (Only
       
   745 		 * applicable for weak-ordered memory model archs,
       
   746 		 * such as IA-64). */
       
   747 		wmb();
       
   748 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
       
   749 	}
       
   750 }
       
   751 
       
   752 /**
       
   753  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
   754  * @adapter: board private structure
       
   755  *
       
   756  * the return value indicates whether actual cleaning was done, there
       
   757  * is no guarantee that everything was cleaned
       
   758  **/
       
   759 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   760 			       int *work_done, int work_to_do)
       
   761 {
       
   762 	struct net_device *netdev = adapter->netdev;
       
   763 	struct pci_dev *pdev = adapter->pdev;
       
   764 	struct e1000_hw *hw = &adapter->hw;
       
   765 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   766 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
   767 	struct e1000_buffer *buffer_info, *next_buffer;
       
   768 	u32 length;
       
   769 	unsigned int i;
       
   770 	int cleaned_count = 0;
       
   771 	bool cleaned = 0;
       
   772 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
   773 
       
   774 	i = rx_ring->next_to_clean;
       
   775 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   776 	buffer_info = &rx_ring->buffer_info[i];
       
   777 
       
   778 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
   779 		struct sk_buff *skb;
       
   780 		u8 status;
       
   781 
       
   782 		if (*work_done >= work_to_do)
       
   783 			break;
       
   784 		(*work_done)++;
       
   785 		rmb();	/* read descriptor and rx_buffer_info after status DD */
       
   786 
       
   787 		status = rx_desc->status;
       
   788 		skb = buffer_info->skb;
       
   789 		buffer_info->skb = NULL;
       
   790 
       
   791 		prefetch(skb->data - NET_IP_ALIGN);
       
   792 
       
   793 		i++;
       
   794 		if (i == rx_ring->count)
       
   795 			i = 0;
       
   796 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
   797 		prefetch(next_rxd);
       
   798 
       
   799 		next_buffer = &rx_ring->buffer_info[i];
       
   800 
       
   801 		cleaned = 1;
       
   802 		cleaned_count++;
       
   803 		dma_unmap_single(&pdev->dev,
       
   804 				 buffer_info->dma,
       
   805 				 adapter->rx_buffer_len,
       
   806 				 DMA_FROM_DEVICE);
       
   807 		buffer_info->dma = 0;
       
   808 
       
   809 		length = le16_to_cpu(rx_desc->length);
       
   810 
       
   811 		/*
       
   812 		 * !EOP means multiple descriptors were used to store a single
       
   813 		 * packet, if that's the case we need to toss it.  In fact, we
       
   814 		 * need to toss every packet with the EOP bit clear and the
       
   815 		 * next frame that _does_ have the EOP bit set, as it is by
       
   816 		 * definition only a frame fragment
       
   817 		 */
       
   818 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
       
   819 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
   820 
       
   821 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
   822 			/* All receives must fit into a single buffer */
       
   823 			e_dbg("Receive packet consumed multiple buffers\n");
       
   824 			/* recycle */
       
   825 			buffer_info->skb = skb;
       
   826 			if (status & E1000_RXD_STAT_EOP)
       
   827 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
   828 			goto next_desc;
       
   829 		}
       
   830 
       
   831 		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
       
   832 			/* recycle */
       
   833 			buffer_info->skb = skb;
       
   834 			goto next_desc;
       
   835 		}
       
   836 
       
   837 		/* adjust length to remove Ethernet CRC */
       
   838 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
   839 			length -= 4;
       
   840 
       
   841 		total_rx_bytes += length;
       
   842 		total_rx_packets++;
       
   843 
       
   844 		/*
       
   845 		 * code added for copybreak, this should improve
       
   846 		 * performance for small packets with large amounts
       
   847 		 * of reassembly being done in the stack
       
   848 		 */
       
   849 		if (length < copybreak) {
       
   850 			struct sk_buff *new_skb =
       
   851 			    netdev_alloc_skb_ip_align(netdev, length);
       
   852 			if (new_skb) {
       
   853 				skb_copy_to_linear_data_offset(new_skb,
       
   854 							       -NET_IP_ALIGN,
       
   855 							       (skb->data -
       
   856 								NET_IP_ALIGN),
       
   857 							       (length +
       
   858 								NET_IP_ALIGN));
       
   859 				/* save the skb in buffer_info as good */
       
   860 				buffer_info->skb = skb;
       
   861 				skb = new_skb;
       
   862 			}
       
   863 			/* else just continue with the old one */
       
   864 		}
       
   865 		/* end copybreak code */
       
   866 		skb_put(skb, length);
       
   867 
       
   868 		/* Receive Checksum Offload */
       
   869 		e1000_rx_checksum(adapter,
       
   870 				  (u32)(status) |
       
   871 				  ((u32)(rx_desc->errors) << 24),
       
   872 				  le16_to_cpu(rx_desc->csum), skb);
       
   873 
       
   874 		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
       
   875 
       
   876 next_desc:
       
   877 		rx_desc->status = 0;
       
   878 
       
   879 		/* return some buffers to hardware, one at a time is too slow */
       
   880 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
   881 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
   882 			cleaned_count = 0;
       
   883 		}
       
   884 
       
   885 		/* use prefetched values */
       
   886 		rx_desc = next_rxd;
       
   887 		buffer_info = next_buffer;
       
   888 	}
       
   889 	rx_ring->next_to_clean = i;
       
   890 
       
   891 	cleaned_count = e1000_desc_unused(rx_ring);
       
   892 	if (cleaned_count)
       
   893 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
   894 
       
   895 	adapter->total_rx_bytes += total_rx_bytes;
       
   896 	adapter->total_rx_packets += total_rx_packets;
       
   897 	netdev->stats.rx_bytes += total_rx_bytes;
       
   898 	netdev->stats.rx_packets += total_rx_packets;
       
   899 	return cleaned;
       
   900 }
       
   901 
       
   902 static void e1000_put_txbuf(struct e1000_adapter *adapter,
       
   903 			     struct e1000_buffer *buffer_info)
       
   904 {
       
   905 	if (buffer_info->dma) {
       
   906 		if (buffer_info->mapped_as_page)
       
   907 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
       
   908 				       buffer_info->length, DMA_TO_DEVICE);
       
   909 		else
       
   910 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
       
   911 					 buffer_info->length, DMA_TO_DEVICE);
       
   912 		buffer_info->dma = 0;
       
   913 	}
       
   914 	if (buffer_info->skb) {
       
   915 		dev_kfree_skb_any(buffer_info->skb);
       
   916 		buffer_info->skb = NULL;
       
   917 	}
       
   918 	buffer_info->time_stamp = 0;
       
   919 }
       
   920 
       
   921 static void e1000_print_hw_hang(struct work_struct *work)
       
   922 {
       
   923 	struct e1000_adapter *adapter = container_of(work,
       
   924 	                                             struct e1000_adapter,
       
   925 	                                             print_hang_task);
       
   926 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   927 	unsigned int i = tx_ring->next_to_clean;
       
   928 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
       
   929 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   930 	struct e1000_hw *hw = &adapter->hw;
       
   931 	u16 phy_status, phy_1000t_status, phy_ext_status;
       
   932 	u16 pci_status;
       
   933 
       
   934 	e1e_rphy(hw, PHY_STATUS, &phy_status);
       
   935 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
       
   936 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
       
   937 
       
   938 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
       
   939 
       
   940 	/* detected Hardware unit hang */
       
   941 	e_err("Detected Hardware Unit Hang:\n"
       
   942 	      "  TDH                  <%x>\n"
       
   943 	      "  TDT                  <%x>\n"
       
   944 	      "  next_to_use          <%x>\n"
       
   945 	      "  next_to_clean        <%x>\n"
       
   946 	      "buffer_info[next_to_clean]:\n"
       
   947 	      "  time_stamp           <%lx>\n"
       
   948 	      "  next_to_watch        <%x>\n"
       
   949 	      "  jiffies              <%lx>\n"
       
   950 	      "  next_to_watch.status <%x>\n"
       
   951 	      "MAC Status             <%x>\n"
       
   952 	      "PHY Status             <%x>\n"
       
   953 	      "PHY 1000BASE-T Status  <%x>\n"
       
   954 	      "PHY Extended Status    <%x>\n"
       
   955 	      "PCI Status             <%x>\n",
       
   956 	      readl(adapter->hw.hw_addr + tx_ring->head),
       
   957 	      readl(adapter->hw.hw_addr + tx_ring->tail),
       
   958 	      tx_ring->next_to_use,
       
   959 	      tx_ring->next_to_clean,
       
   960 	      tx_ring->buffer_info[eop].time_stamp,
       
   961 	      eop,
       
   962 	      jiffies,
       
   963 	      eop_desc->upper.fields.status,
       
   964 	      er32(STATUS),
       
   965 	      phy_status,
       
   966 	      phy_1000t_status,
       
   967 	      phy_ext_status,
       
   968 	      pci_status);
       
   969 }
       
   970 
       
   971 /**
       
   972  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
   973  * @adapter: board private structure
       
   974  *
       
   975  * the return value indicates whether actual cleaning was done, there
       
   976  * is no guarantee that everything was cleaned
       
   977  **/
       
   978 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
       
   979 {
       
   980 	struct net_device *netdev = adapter->netdev;
       
   981 	struct e1000_hw *hw = &adapter->hw;
       
   982 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   983 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
   984 	struct e1000_buffer *buffer_info;
       
   985 	unsigned int i, eop;
       
   986 	unsigned int count = 0;
       
   987 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
       
   988 
       
   989 	i = tx_ring->next_to_clean;
       
   990 	eop = tx_ring->buffer_info[i].next_to_watch;
       
   991 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   992 
       
   993 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
       
   994 	       (count < tx_ring->count)) {
       
   995 		bool cleaned = false;
       
   996 		rmb(); /* read buffer_info after eop_desc */
       
   997 		for (; !cleaned; count++) {
       
   998 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
   999 			buffer_info = &tx_ring->buffer_info[i];
       
  1000 			cleaned = (i == eop);
       
  1001 
       
  1002 			if (cleaned) {
       
  1003 				total_tx_packets += buffer_info->segs;
       
  1004 				total_tx_bytes += buffer_info->bytecount;
       
  1005 			}
       
  1006 
       
  1007 			e1000_put_txbuf(adapter, buffer_info);
       
  1008 			tx_desc->upper.data = 0;
       
  1009 
       
  1010 			i++;
       
  1011 			if (i == tx_ring->count)
       
  1012 				i = 0;
       
  1013 		}
       
  1014 
       
  1015 		if (i == tx_ring->next_to_use)
       
  1016 			break;
       
  1017 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  1018 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  1019 	}
       
  1020 
       
  1021 	tx_ring->next_to_clean = i;
       
  1022 
       
  1023 #define TX_WAKE_THRESHOLD 32
       
  1024 	if (count && netif_carrier_ok(netdev) &&
       
  1025 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
       
  1026 		/* Make sure that anybody stopping the queue after this
       
  1027 		 * sees the new next_to_clean.
       
  1028 		 */
       
  1029 		smp_mb();
       
  1030 
       
  1031 		if (netif_queue_stopped(netdev) &&
       
  1032 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
       
  1033 			netif_wake_queue(netdev);
       
  1034 			++adapter->restart_queue;
       
  1035 		}
       
  1036 	}
       
  1037 
       
  1038 	if (adapter->detect_tx_hung) {
       
  1039 		/*
       
  1040 		 * Detect a transmit hang in hardware, this serializes the
       
  1041 		 * check with the clearing of time_stamp and movement of i
       
  1042 		 */
       
  1043 		adapter->detect_tx_hung = 0;
       
  1044 		if (tx_ring->buffer_info[i].time_stamp &&
       
  1045 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
       
  1046 			       + (adapter->tx_timeout_factor * HZ)) &&
       
  1047 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
       
  1048 			schedule_work(&adapter->print_hang_task);
       
  1049 			netif_stop_queue(netdev);
       
  1050 		}
       
  1051 	}
       
  1052 	adapter->total_tx_bytes += total_tx_bytes;
       
  1053 	adapter->total_tx_packets += total_tx_packets;
       
  1054 	netdev->stats.tx_bytes += total_tx_bytes;
       
  1055 	netdev->stats.tx_packets += total_tx_packets;
       
  1056 	return count < tx_ring->count;
       
  1057 }
       
  1058 
       
  1059 /**
       
  1060  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  1061  * @adapter: board private structure
       
  1062  *
       
  1063  * the return value indicates whether actual cleaning was done, there
       
  1064  * is no guarantee that everything was cleaned
       
  1065  **/
       
  1066 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  1067 				  int *work_done, int work_to_do)
       
  1068 {
       
  1069 	struct e1000_hw *hw = &adapter->hw;
       
  1070 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
  1071 	struct net_device *netdev = adapter->netdev;
       
  1072 	struct pci_dev *pdev = adapter->pdev;
       
  1073 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1074 	struct e1000_buffer *buffer_info, *next_buffer;
       
  1075 	struct e1000_ps_page *ps_page;
       
  1076 	struct sk_buff *skb;
       
  1077 	unsigned int i, j;
       
  1078 	u32 length, staterr;
       
  1079 	int cleaned_count = 0;
       
  1080 	bool cleaned = 0;
       
  1081 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
  1082 
       
  1083 	i = rx_ring->next_to_clean;
       
  1084 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  1085 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  1086 	buffer_info = &rx_ring->buffer_info[i];
       
  1087 
       
  1088 	while (staterr & E1000_RXD_STAT_DD) {
       
  1089 		if (*work_done >= work_to_do)
       
  1090 			break;
       
  1091 		(*work_done)++;
       
  1092 		skb = buffer_info->skb;
       
  1093 		rmb();	/* read descriptor and rx_buffer_info after status DD */
       
  1094 
       
  1095 		/* in the packet split case this is header only */
       
  1096 		prefetch(skb->data - NET_IP_ALIGN);
       
  1097 
       
  1098 		i++;
       
  1099 		if (i == rx_ring->count)
       
  1100 			i = 0;
       
  1101 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
  1102 		prefetch(next_rxd);
       
  1103 
       
  1104 		next_buffer = &rx_ring->buffer_info[i];
       
  1105 
       
  1106 		cleaned = 1;
       
  1107 		cleaned_count++;
       
  1108 		dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  1109 				 adapter->rx_ps_bsize0,
       
  1110 				 DMA_FROM_DEVICE);
       
  1111 		buffer_info->dma = 0;
       
  1112 
       
  1113 		/* see !EOP comment in other rx routine */
       
  1114 		if (!(staterr & E1000_RXD_STAT_EOP))
       
  1115 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
  1116 
       
  1117 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
  1118 			e_dbg("Packet Split buffers didn't pick up the full "
       
  1119 			      "packet\n");
       
  1120 			dev_kfree_skb_irq(skb);
       
  1121 			if (staterr & E1000_RXD_STAT_EOP)
       
  1122 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
  1123 			goto next_desc;
       
  1124 		}
       
  1125 
       
  1126 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
       
  1127 			dev_kfree_skb_irq(skb);
       
  1128 			goto next_desc;
       
  1129 		}
       
  1130 
       
  1131 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  1132 
       
  1133 		if (!length) {
       
  1134 			e_dbg("Last part of the packet spanning multiple "
       
  1135 			      "descriptors\n");
       
  1136 			dev_kfree_skb_irq(skb);
       
  1137 			goto next_desc;
       
  1138 		}
       
  1139 
       
  1140 		/* Good Receive */
       
  1141 		skb_put(skb, length);
       
  1142 
       
  1143 		{
       
  1144 		/*
       
  1145 		 * this looks ugly, but it seems compiler issues make it
       
  1146 		 * more efficient than reusing j
       
  1147 		 */
       
  1148 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
  1149 
       
  1150 		/*
       
  1151 		 * page alloc/put takes too long and effects small packet
       
  1152 		 * throughput, so unsplit small packets and save the alloc/put
       
  1153 		 * only valid in softirq (napi) context to call kmap_*
       
  1154 		 */
       
  1155 		if (l1 && (l1 <= copybreak) &&
       
  1156 		    ((length + l1) <= adapter->rx_ps_bsize0)) {
       
  1157 			u8 *vaddr;
       
  1158 
       
  1159 			ps_page = &buffer_info->ps_pages[0];
       
  1160 
       
  1161 			/*
       
  1162 			 * there is no documentation about how to call
       
  1163 			 * kmap_atomic, so we can't hold the mapping
       
  1164 			 * very long
       
  1165 			 */
       
  1166 			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
       
  1167 						PAGE_SIZE, DMA_FROM_DEVICE);
       
  1168 			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
       
  1169 			memcpy(skb_tail_pointer(skb), vaddr, l1);
       
  1170 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
  1171 			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
       
  1172 						   PAGE_SIZE, DMA_FROM_DEVICE);
       
  1173 
       
  1174 			/* remove the CRC */
       
  1175 			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
  1176 				l1 -= 4;
       
  1177 
       
  1178 			skb_put(skb, l1);
       
  1179 			goto copydone;
       
  1180 		} /* if */
       
  1181 		}
       
  1182 
       
  1183 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  1184 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
       
  1185 			if (!length)
       
  1186 				break;
       
  1187 
       
  1188 			ps_page = &buffer_info->ps_pages[j];
       
  1189 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
       
  1190 				       DMA_FROM_DEVICE);
       
  1191 			ps_page->dma = 0;
       
  1192 			skb_add_rx_frag(skb, j, ps_page->page, 0, length);
       
  1193 			ps_page->page = NULL;
       
  1194 		}
       
  1195 
       
  1196 		/* strip the ethernet crc, problem is we're using pages now so
       
  1197 		 * this whole operation can get a little cpu intensive
       
  1198 		 */
       
  1199 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
  1200 			pskb_trim(skb, skb->len - 4);
       
  1201 
       
  1202 copydone:
       
  1203 		total_rx_bytes += skb->len;
       
  1204 		total_rx_packets++;
       
  1205 
       
  1206 		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
       
  1207 			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
  1208 
       
  1209 		if (rx_desc->wb.upper.header_status &
       
  1210 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
       
  1211 			adapter->rx_hdr_split++;
       
  1212 
       
  1213 		e1000_receive_skb(adapter, netdev, skb,
       
  1214 				  staterr, rx_desc->wb.middle.vlan);
       
  1215 
       
  1216 next_desc:
       
  1217 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
  1218 		buffer_info->skb = NULL;
       
  1219 
       
  1220 		/* return some buffers to hardware, one at a time is too slow */
       
  1221 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
  1222 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1223 			cleaned_count = 0;
       
  1224 		}
       
  1225 
       
  1226 		/* use prefetched values */
       
  1227 		rx_desc = next_rxd;
       
  1228 		buffer_info = next_buffer;
       
  1229 
       
  1230 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  1231 	}
       
  1232 	rx_ring->next_to_clean = i;
       
  1233 
       
  1234 	cleaned_count = e1000_desc_unused(rx_ring);
       
  1235 	if (cleaned_count)
       
  1236 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1237 
       
  1238 	adapter->total_rx_bytes += total_rx_bytes;
       
  1239 	adapter->total_rx_packets += total_rx_packets;
       
  1240 	netdev->stats.rx_bytes += total_rx_bytes;
       
  1241 	netdev->stats.rx_packets += total_rx_packets;
       
  1242 	return cleaned;
       
  1243 }
       
  1244 
       
  1245 /**
       
  1246  * e1000_consume_page - helper function
       
  1247  **/
       
  1248 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
       
  1249                                u16 length)
       
  1250 {
       
  1251 	bi->page = NULL;
       
  1252 	skb->len += length;
       
  1253 	skb->data_len += length;
       
  1254 	skb->truesize += length;
       
  1255 }
       
  1256 
       
  1257 /**
       
  1258  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
       
  1259  * @adapter: board private structure
       
  1260  *
       
  1261  * the return value indicates whether actual cleaning was done, there
       
  1262  * is no guarantee that everything was cleaned
       
  1263  **/
       
  1264 
       
  1265 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
       
  1266                                      int *work_done, int work_to_do)
       
  1267 {
       
  1268 	struct net_device *netdev = adapter->netdev;
       
  1269 	struct pci_dev *pdev = adapter->pdev;
       
  1270 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1271 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  1272 	struct e1000_buffer *buffer_info, *next_buffer;
       
  1273 	u32 length;
       
  1274 	unsigned int i;
       
  1275 	int cleaned_count = 0;
       
  1276 	bool cleaned = false;
       
  1277 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  1278 
       
  1279 	i = rx_ring->next_to_clean;
       
  1280 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  1281 	buffer_info = &rx_ring->buffer_info[i];
       
  1282 
       
  1283 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  1284 		struct sk_buff *skb;
       
  1285 		u8 status;
       
  1286 
       
  1287 		if (*work_done >= work_to_do)
       
  1288 			break;
       
  1289 		(*work_done)++;
       
  1290 		rmb();	/* read descriptor and rx_buffer_info after status DD */
       
  1291 
       
  1292 		status = rx_desc->status;
       
  1293 		skb = buffer_info->skb;
       
  1294 		buffer_info->skb = NULL;
       
  1295 
       
  1296 		++i;
       
  1297 		if (i == rx_ring->count)
       
  1298 			i = 0;
       
  1299 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  1300 		prefetch(next_rxd);
       
  1301 
       
  1302 		next_buffer = &rx_ring->buffer_info[i];
       
  1303 
       
  1304 		cleaned = true;
       
  1305 		cleaned_count++;
       
  1306 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
       
  1307 			       DMA_FROM_DEVICE);
       
  1308 		buffer_info->dma = 0;
       
  1309 
       
  1310 		length = le16_to_cpu(rx_desc->length);
       
  1311 
       
  1312 		/* errors is only valid for DD + EOP descriptors */
       
  1313 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
       
  1314 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
       
  1315 				/* recycle both page and skb */
       
  1316 				buffer_info->skb = skb;
       
  1317 				/* an error means any chain goes out the window
       
  1318 				 * too */
       
  1319 				if (rx_ring->rx_skb_top)
       
  1320 					dev_kfree_skb(rx_ring->rx_skb_top);
       
  1321 				rx_ring->rx_skb_top = NULL;
       
  1322 				goto next_desc;
       
  1323 		}
       
  1324 
       
  1325 #define rxtop rx_ring->rx_skb_top
       
  1326 		if (!(status & E1000_RXD_STAT_EOP)) {
       
  1327 			/* this descriptor is only the beginning (or middle) */
       
  1328 			if (!rxtop) {
       
  1329 				/* this is the beginning of a chain */
       
  1330 				rxtop = skb;
       
  1331 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
       
  1332 				                   0, length);
       
  1333 			} else {
       
  1334 				/* this is the middle of a chain */
       
  1335 				skb_fill_page_desc(rxtop,
       
  1336 				    skb_shinfo(rxtop)->nr_frags,
       
  1337 				    buffer_info->page, 0, length);
       
  1338 				/* re-use the skb, only consumed the page */
       
  1339 				buffer_info->skb = skb;
       
  1340 			}
       
  1341 			e1000_consume_page(buffer_info, rxtop, length);
       
  1342 			goto next_desc;
       
  1343 		} else {
       
  1344 			if (rxtop) {
       
  1345 				/* end of the chain */
       
  1346 				skb_fill_page_desc(rxtop,
       
  1347 				    skb_shinfo(rxtop)->nr_frags,
       
  1348 				    buffer_info->page, 0, length);
       
  1349 				/* re-use the current skb, we only consumed the
       
  1350 				 * page */
       
  1351 				buffer_info->skb = skb;
       
  1352 				skb = rxtop;
       
  1353 				rxtop = NULL;
       
  1354 				e1000_consume_page(buffer_info, skb, length);
       
  1355 			} else {
       
  1356 				/* no chain, got EOP, this buf is the packet
       
  1357 				 * copybreak to save the put_page/alloc_page */
       
  1358 				if (length <= copybreak &&
       
  1359 				    skb_tailroom(skb) >= length) {
       
  1360 					u8 *vaddr;
       
  1361 					vaddr = kmap_atomic(buffer_info->page,
       
  1362 					                   KM_SKB_DATA_SOFTIRQ);
       
  1363 					memcpy(skb_tail_pointer(skb), vaddr,
       
  1364 					       length);
       
  1365 					kunmap_atomic(vaddr,
       
  1366 					              KM_SKB_DATA_SOFTIRQ);
       
  1367 					/* re-use the page, so don't erase
       
  1368 					 * buffer_info->page */
       
  1369 					skb_put(skb, length);
       
  1370 				} else {
       
  1371 					skb_fill_page_desc(skb, 0,
       
  1372 					                   buffer_info->page, 0,
       
  1373 				                           length);
       
  1374 					e1000_consume_page(buffer_info, skb,
       
  1375 					                   length);
       
  1376 				}
       
  1377 			}
       
  1378 		}
       
  1379 
       
  1380 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
       
  1381 		e1000_rx_checksum(adapter,
       
  1382 		                  (u32)(status) |
       
  1383 		                  ((u32)(rx_desc->errors) << 24),
       
  1384 		                  le16_to_cpu(rx_desc->csum), skb);
       
  1385 
       
  1386 		/* probably a little skewed due to removing CRC */
       
  1387 		total_rx_bytes += skb->len;
       
  1388 		total_rx_packets++;
       
  1389 
       
  1390 		/* eth type trans needs skb->data to point to something */
       
  1391 		if (!pskb_may_pull(skb, ETH_HLEN)) {
       
  1392 			e_err("pskb_may_pull failed.\n");
       
  1393 			dev_kfree_skb(skb);
       
  1394 			goto next_desc;
       
  1395 		}
       
  1396 
       
  1397 		e1000_receive_skb(adapter, netdev, skb, status,
       
  1398 		                  rx_desc->special);
       
  1399 
       
  1400 next_desc:
       
  1401 		rx_desc->status = 0;
       
  1402 
       
  1403 		/* return some buffers to hardware, one at a time is too slow */
       
  1404 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  1405 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1406 			cleaned_count = 0;
       
  1407 		}
       
  1408 
       
  1409 		/* use prefetched values */
       
  1410 		rx_desc = next_rxd;
       
  1411 		buffer_info = next_buffer;
       
  1412 	}
       
  1413 	rx_ring->next_to_clean = i;
       
  1414 
       
  1415 	cleaned_count = e1000_desc_unused(rx_ring);
       
  1416 	if (cleaned_count)
       
  1417 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1418 
       
  1419 	adapter->total_rx_bytes += total_rx_bytes;
       
  1420 	adapter->total_rx_packets += total_rx_packets;
       
  1421 	netdev->stats.rx_bytes += total_rx_bytes;
       
  1422 	netdev->stats.rx_packets += total_rx_packets;
       
  1423 	return cleaned;
       
  1424 }
       
  1425 
       
  1426 /**
       
  1427  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  1428  * @adapter: board private structure
       
  1429  **/
       
  1430 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
       
  1431 {
       
  1432 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1433 	struct e1000_buffer *buffer_info;
       
  1434 	struct e1000_ps_page *ps_page;
       
  1435 	struct pci_dev *pdev = adapter->pdev;
       
  1436 	unsigned int i, j;
       
  1437 
       
  1438 	/* Free all the Rx ring sk_buffs */
       
  1439 	for (i = 0; i < rx_ring->count; i++) {
       
  1440 		buffer_info = &rx_ring->buffer_info[i];
       
  1441 		if (buffer_info->dma) {
       
  1442 			if (adapter->clean_rx == e1000_clean_rx_irq)
       
  1443 				dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  1444 						 adapter->rx_buffer_len,
       
  1445 						 DMA_FROM_DEVICE);
       
  1446 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
       
  1447 				dma_unmap_page(&pdev->dev, buffer_info->dma,
       
  1448 				               PAGE_SIZE,
       
  1449 					       DMA_FROM_DEVICE);
       
  1450 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
       
  1451 				dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  1452 						 adapter->rx_ps_bsize0,
       
  1453 						 DMA_FROM_DEVICE);
       
  1454 			buffer_info->dma = 0;
       
  1455 		}
       
  1456 
       
  1457 		if (buffer_info->page) {
       
  1458 			put_page(buffer_info->page);
       
  1459 			buffer_info->page = NULL;
       
  1460 		}
       
  1461 
       
  1462 		if (buffer_info->skb) {
       
  1463 			dev_kfree_skb(buffer_info->skb);
       
  1464 			buffer_info->skb = NULL;
       
  1465 		}
       
  1466 
       
  1467 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  1468 			ps_page = &buffer_info->ps_pages[j];
       
  1469 			if (!ps_page->page)
       
  1470 				break;
       
  1471 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
       
  1472 				       DMA_FROM_DEVICE);
       
  1473 			ps_page->dma = 0;
       
  1474 			put_page(ps_page->page);
       
  1475 			ps_page->page = NULL;
       
  1476 		}
       
  1477 	}
       
  1478 
       
  1479 	/* there also may be some cached data from a chained receive */
       
  1480 	if (rx_ring->rx_skb_top) {
       
  1481 		dev_kfree_skb(rx_ring->rx_skb_top);
       
  1482 		rx_ring->rx_skb_top = NULL;
       
  1483 	}
       
  1484 
       
  1485 	/* Zero out the descriptor ring */
       
  1486 	memset(rx_ring->desc, 0, rx_ring->size);
       
  1487 
       
  1488 	rx_ring->next_to_clean = 0;
       
  1489 	rx_ring->next_to_use = 0;
       
  1490 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
  1491 
       
  1492 	writel(0, adapter->hw.hw_addr + rx_ring->head);
       
  1493 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
       
  1494 }
       
  1495 
       
  1496 static void e1000e_downshift_workaround(struct work_struct *work)
       
  1497 {
       
  1498 	struct e1000_adapter *adapter = container_of(work,
       
  1499 					struct e1000_adapter, downshift_task);
       
  1500 
       
  1501 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
       
  1502 }
       
  1503 
       
  1504 /**
       
  1505  * e1000_intr_msi - Interrupt Handler
       
  1506  * @irq: interrupt number
       
  1507  * @data: pointer to a network interface device structure
       
  1508  **/
       
  1509 static irqreturn_t e1000_intr_msi(int irq, void *data)
       
  1510 {
       
  1511 	struct net_device *netdev = data;
       
  1512 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1513 	struct e1000_hw *hw = &adapter->hw;
       
  1514 	u32 icr = er32(ICR);
       
  1515 
       
  1516 	/*
       
  1517 	 * read ICR disables interrupts using IAM
       
  1518 	 */
       
  1519 
       
  1520 	if (icr & E1000_ICR_LSC) {
       
  1521 		hw->mac.get_link_status = 1;
       
  1522 		/*
       
  1523 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1524 		 * disconnect (LSC) before accessing any PHY registers
       
  1525 		 */
       
  1526 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1527 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1528 			schedule_work(&adapter->downshift_task);
       
  1529 
       
  1530 		/*
       
  1531 		 * 80003ES2LAN workaround-- For packet buffer work-around on
       
  1532 		 * link down event; disable receives here in the ISR and reset
       
  1533 		 * adapter in watchdog
       
  1534 		 */
       
  1535 		if (netif_carrier_ok(netdev) &&
       
  1536 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
       
  1537 			/* disable receives */
       
  1538 			u32 rctl = er32(RCTL);
       
  1539 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1540 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1541 		}
       
  1542 		/* guard against interrupt when we're going down */
       
  1543 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1544 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1545 	}
       
  1546 
       
  1547 	if (napi_schedule_prep(&adapter->napi)) {
       
  1548 		adapter->total_tx_bytes = 0;
       
  1549 		adapter->total_tx_packets = 0;
       
  1550 		adapter->total_rx_bytes = 0;
       
  1551 		adapter->total_rx_packets = 0;
       
  1552 		__napi_schedule(&adapter->napi);
       
  1553 	}
       
  1554 
       
  1555 	return IRQ_HANDLED;
       
  1556 }
       
  1557 
       
  1558 /**
       
  1559  * e1000_intr - Interrupt Handler
       
  1560  * @irq: interrupt number
       
  1561  * @data: pointer to a network interface device structure
       
  1562  **/
       
  1563 static irqreturn_t e1000_intr(int irq, void *data)
       
  1564 {
       
  1565 	struct net_device *netdev = data;
       
  1566 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1567 	struct e1000_hw *hw = &adapter->hw;
       
  1568 	u32 rctl, icr = er32(ICR);
       
  1569 
       
  1570 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
       
  1571 		return IRQ_NONE;  /* Not our interrupt */
       
  1572 
       
  1573 	/*
       
  1574 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  1575 	 * not set, then the adapter didn't send an interrupt
       
  1576 	 */
       
  1577 	if (!(icr & E1000_ICR_INT_ASSERTED))
       
  1578 		return IRQ_NONE;
       
  1579 
       
  1580 	/*
       
  1581 	 * Interrupt Auto-Mask...upon reading ICR,
       
  1582 	 * interrupts are masked.  No need for the
       
  1583 	 * IMC write
       
  1584 	 */
       
  1585 
       
  1586 	if (icr & E1000_ICR_LSC) {
       
  1587 		hw->mac.get_link_status = 1;
       
  1588 		/*
       
  1589 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1590 		 * disconnect (LSC) before accessing any PHY registers
       
  1591 		 */
       
  1592 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1593 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1594 			schedule_work(&adapter->downshift_task);
       
  1595 
       
  1596 		/*
       
  1597 		 * 80003ES2LAN workaround--
       
  1598 		 * For packet buffer work-around on link down event;
       
  1599 		 * disable receives here in the ISR and
       
  1600 		 * reset adapter in watchdog
       
  1601 		 */
       
  1602 		if (netif_carrier_ok(netdev) &&
       
  1603 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
       
  1604 			/* disable receives */
       
  1605 			rctl = er32(RCTL);
       
  1606 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1607 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1608 		}
       
  1609 		/* guard against interrupt when we're going down */
       
  1610 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1611 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1612 	}
       
  1613 
       
  1614 	if (napi_schedule_prep(&adapter->napi)) {
       
  1615 		adapter->total_tx_bytes = 0;
       
  1616 		adapter->total_tx_packets = 0;
       
  1617 		adapter->total_rx_bytes = 0;
       
  1618 		adapter->total_rx_packets = 0;
       
  1619 		__napi_schedule(&adapter->napi);
       
  1620 	}
       
  1621 
       
  1622 	return IRQ_HANDLED;
       
  1623 }
       
  1624 
       
  1625 static irqreturn_t e1000_msix_other(int irq, void *data)
       
  1626 {
       
  1627 	struct net_device *netdev = data;
       
  1628 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1629 	struct e1000_hw *hw = &adapter->hw;
       
  1630 	u32 icr = er32(ICR);
       
  1631 
       
  1632 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
       
  1633 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1634 			ew32(IMS, E1000_IMS_OTHER);
       
  1635 		return IRQ_NONE;
       
  1636 	}
       
  1637 
       
  1638 	if (icr & adapter->eiac_mask)
       
  1639 		ew32(ICS, (icr & adapter->eiac_mask));
       
  1640 
       
  1641 	if (icr & E1000_ICR_OTHER) {
       
  1642 		if (!(icr & E1000_ICR_LSC))
       
  1643 			goto no_link_interrupt;
       
  1644 		hw->mac.get_link_status = 1;
       
  1645 		/* guard against interrupt when we're going down */
       
  1646 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1647 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1648 	}
       
  1649 
       
  1650 no_link_interrupt:
       
  1651 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1652 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
       
  1653 
       
  1654 	return IRQ_HANDLED;
       
  1655 }
       
  1656 
       
  1657 
       
  1658 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
       
  1659 {
       
  1660 	struct net_device *netdev = data;
       
  1661 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1662 	struct e1000_hw *hw = &adapter->hw;
       
  1663 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1664 
       
  1665 
       
  1666 	adapter->total_tx_bytes = 0;
       
  1667 	adapter->total_tx_packets = 0;
       
  1668 
       
  1669 	if (!e1000_clean_tx_irq(adapter))
       
  1670 		/* Ring was not completely cleaned, so fire another interrupt */
       
  1671 		ew32(ICS, tx_ring->ims_val);
       
  1672 
       
  1673 	return IRQ_HANDLED;
       
  1674 }
       
  1675 
       
  1676 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
       
  1677 {
       
  1678 	struct net_device *netdev = data;
       
  1679 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1680 
       
  1681 	/* Write the ITR value calculated at the end of the
       
  1682 	 * previous interrupt.
       
  1683 	 */
       
  1684 	if (adapter->rx_ring->set_itr) {
       
  1685 		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
       
  1686 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
       
  1687 		adapter->rx_ring->set_itr = 0;
       
  1688 	}
       
  1689 
       
  1690 	if (napi_schedule_prep(&adapter->napi)) {
       
  1691 		adapter->total_rx_bytes = 0;
       
  1692 		adapter->total_rx_packets = 0;
       
  1693 		__napi_schedule(&adapter->napi);
       
  1694 	}
       
  1695 	return IRQ_HANDLED;
       
  1696 }
       
  1697 
       
  1698 /**
       
  1699  * e1000_configure_msix - Configure MSI-X hardware
       
  1700  *
       
  1701  * e1000_configure_msix sets up the hardware to properly
       
  1702  * generate MSI-X interrupts.
       
  1703  **/
       
  1704 static void e1000_configure_msix(struct e1000_adapter *adapter)
       
  1705 {
       
  1706 	struct e1000_hw *hw = &adapter->hw;
       
  1707 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1708 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1709 	int vector = 0;
       
  1710 	u32 ctrl_ext, ivar = 0;
       
  1711 
       
  1712 	adapter->eiac_mask = 0;
       
  1713 
       
  1714 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
       
  1715 	if (hw->mac.type == e1000_82574) {
       
  1716 		u32 rfctl = er32(RFCTL);
       
  1717 		rfctl |= E1000_RFCTL_ACK_DIS;
       
  1718 		ew32(RFCTL, rfctl);
       
  1719 	}
       
  1720 
       
  1721 #define E1000_IVAR_INT_ALLOC_VALID	0x8
       
  1722 	/* Configure Rx vector */
       
  1723 	rx_ring->ims_val = E1000_IMS_RXQ0;
       
  1724 	adapter->eiac_mask |= rx_ring->ims_val;
       
  1725 	if (rx_ring->itr_val)
       
  1726 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1727 		       hw->hw_addr + rx_ring->itr_register);
       
  1728 	else
       
  1729 		writel(1, hw->hw_addr + rx_ring->itr_register);
       
  1730 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
       
  1731 
       
  1732 	/* Configure Tx vector */
       
  1733 	tx_ring->ims_val = E1000_IMS_TXQ0;
       
  1734 	vector++;
       
  1735 	if (tx_ring->itr_val)
       
  1736 		writel(1000000000 / (tx_ring->itr_val * 256),
       
  1737 		       hw->hw_addr + tx_ring->itr_register);
       
  1738 	else
       
  1739 		writel(1, hw->hw_addr + tx_ring->itr_register);
       
  1740 	adapter->eiac_mask |= tx_ring->ims_val;
       
  1741 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
       
  1742 
       
  1743 	/* set vector for Other Causes, e.g. link changes */
       
  1744 	vector++;
       
  1745 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
       
  1746 	if (rx_ring->itr_val)
       
  1747 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1748 		       hw->hw_addr + E1000_EITR_82574(vector));
       
  1749 	else
       
  1750 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
       
  1751 
       
  1752 	/* Cause Tx interrupts on every write back */
       
  1753 	ivar |= (1 << 31);
       
  1754 
       
  1755 	ew32(IVAR, ivar);
       
  1756 
       
  1757 	/* enable MSI-X PBA support */
       
  1758 	ctrl_ext = er32(CTRL_EXT);
       
  1759 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
       
  1760 
       
  1761 	/* Auto-Mask Other interrupts upon ICR read */
       
  1762 #define E1000_EIAC_MASK_82574   0x01F00000
       
  1763 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
       
  1764 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
       
  1765 	ew32(CTRL_EXT, ctrl_ext);
       
  1766 	e1e_flush();
       
  1767 }
       
  1768 
       
  1769 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
       
  1770 {
       
  1771 	if (adapter->msix_entries) {
       
  1772 		pci_disable_msix(adapter->pdev);
       
  1773 		kfree(adapter->msix_entries);
       
  1774 		adapter->msix_entries = NULL;
       
  1775 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
       
  1776 		pci_disable_msi(adapter->pdev);
       
  1777 		adapter->flags &= ~FLAG_MSI_ENABLED;
       
  1778 	}
       
  1779 }
       
  1780 
       
  1781 /**
       
  1782  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
       
  1783  *
       
  1784  * Attempt to configure interrupts using the best available
       
  1785  * capabilities of the hardware and kernel.
       
  1786  **/
       
  1787 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
       
  1788 {
       
  1789 	int err;
       
  1790 	int i;
       
  1791 
       
  1792 	switch (adapter->int_mode) {
       
  1793 	case E1000E_INT_MODE_MSIX:
       
  1794 		if (adapter->flags & FLAG_HAS_MSIX) {
       
  1795 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
       
  1796 			adapter->msix_entries = kcalloc(adapter->num_vectors,
       
  1797 						      sizeof(struct msix_entry),
       
  1798 						      GFP_KERNEL);
       
  1799 			if (adapter->msix_entries) {
       
  1800 				for (i = 0; i < adapter->num_vectors; i++)
       
  1801 					adapter->msix_entries[i].entry = i;
       
  1802 
       
  1803 				err = pci_enable_msix(adapter->pdev,
       
  1804 						      adapter->msix_entries,
       
  1805 						      adapter->num_vectors);
       
  1806 				if (err == 0) {
       
  1807 					return;
       
  1808 				}
       
  1809 			}
       
  1810 			/* MSI-X failed, so fall through and try MSI */
       
  1811 			e_err("Failed to initialize MSI-X interrupts.  "
       
  1812 			      "Falling back to MSI interrupts.\n");
       
  1813 			e1000e_reset_interrupt_capability(adapter);
       
  1814 		}
       
  1815 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  1816 		/* Fall through */
       
  1817 	case E1000E_INT_MODE_MSI:
       
  1818 		if (!pci_enable_msi(adapter->pdev)) {
       
  1819 			adapter->flags |= FLAG_MSI_ENABLED;
       
  1820 		} else {
       
  1821 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  1822 			e_err("Failed to initialize MSI interrupts.  Falling "
       
  1823 			      "back to legacy interrupts.\n");
       
  1824 		}
       
  1825 		/* Fall through */
       
  1826 	case E1000E_INT_MODE_LEGACY:
       
  1827 		/* Don't do anything; this is the system default */
       
  1828 		break;
       
  1829 	}
       
  1830 
       
  1831 	/* store the number of vectors being used */
       
  1832 	adapter->num_vectors = 1;
       
  1833 }
       
  1834 
       
  1835 /**
       
  1836  * e1000_request_msix - Initialize MSI-X interrupts
       
  1837  *
       
  1838  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
       
  1839  * kernel.
       
  1840  **/
       
  1841 static int e1000_request_msix(struct e1000_adapter *adapter)
       
  1842 {
       
  1843 	struct net_device *netdev = adapter->netdev;
       
  1844 	int err = 0, vector = 0;
       
  1845 
       
  1846 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  1847 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
       
  1848 	else
       
  1849 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
       
  1850 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1851 			  e1000_intr_msix_rx, entropy ? IRQF_SAMPLE_RANDOM : 0,
       
  1852 			  adapter->rx_ring->name, netdev);
       
  1853 	if (err)
       
  1854 		goto out;
       
  1855 	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
       
  1856 	adapter->rx_ring->itr_val = adapter->itr;
       
  1857 	vector++;
       
  1858 
       
  1859 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  1860 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
       
  1861 	else
       
  1862 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
       
  1863 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1864 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
       
  1865 			  netdev);
       
  1866 	if (err)
       
  1867 		goto out;
       
  1868 	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
       
  1869 	adapter->tx_ring->itr_val = adapter->itr;
       
  1870 	vector++;
       
  1871 
       
  1872 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1873 			  e1000_msix_other, 0, netdev->name, netdev);
       
  1874 	if (err)
       
  1875 		goto out;
       
  1876 
       
  1877 	e1000_configure_msix(adapter);
       
  1878 	return 0;
       
  1879 out:
       
  1880 	return err;
       
  1881 }
       
  1882 
       
  1883 /**
       
  1884  * e1000_request_irq - initialize interrupts
       
  1885  *
       
  1886  * Attempts to configure interrupts using the best available
       
  1887  * capabilities of the hardware and kernel.
       
  1888  **/
       
  1889 static int e1000_request_irq(struct e1000_adapter *adapter)
       
  1890 {
       
  1891 	struct net_device *netdev = adapter->netdev;
       
  1892 	int err;
       
  1893 	int irq_flags = 0;
       
  1894 
       
  1895 	if (adapter->msix_entries) {
       
  1896 		err = e1000_request_msix(adapter);
       
  1897 		if (!err)
       
  1898 			return err;
       
  1899 		/* fall back to MSI */
       
  1900 		e1000e_reset_interrupt_capability(adapter);
       
  1901 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  1902 		e1000e_set_interrupt_capability(adapter);
       
  1903 	}
       
  1904 	if (adapter->flags & FLAG_MSI_ENABLED) {
       
  1905 		err = request_irq(adapter->pdev->irq, e1000_intr_msi,
       
  1906 				  entropy ? IRQF_SAMPLE_RANDOM : 0,
       
  1907 				  netdev->name, netdev);
       
  1908 		if (!err)
       
  1909 			return err;
       
  1910 
       
  1911 		/* fall back to legacy interrupt */
       
  1912 		e1000e_reset_interrupt_capability(adapter);
       
  1913 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  1914 	}
       
  1915 
       
  1916 	if (entropy)
       
  1917 		irq_flags |= IRQF_SAMPLE_RANDOM;
       
  1918 	err = request_irq(adapter->pdev->irq, e1000_intr,
       
  1919 			  irq_flags | IRQF_SHARED, netdev->name, netdev);
       
  1920 	if (err)
       
  1921 		e_err("Unable to allocate interrupt, Error: %d\n", err);
       
  1922 
       
  1923 	return err;
       
  1924 }
       
  1925 
       
  1926 static void e1000_free_irq(struct e1000_adapter *adapter)
       
  1927 {
       
  1928 	struct net_device *netdev = adapter->netdev;
       
  1929 
       
  1930 	if (adapter->msix_entries) {
       
  1931 		int vector = 0;
       
  1932 
       
  1933 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1934 		vector++;
       
  1935 
       
  1936 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1937 		vector++;
       
  1938 
       
  1939 		/* Other Causes interrupt vector */
       
  1940 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1941 		return;
       
  1942 	}
       
  1943 
       
  1944 	free_irq(adapter->pdev->irq, netdev);
       
  1945 }
       
  1946 
       
  1947 /**
       
  1948  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
  1949  **/
       
  1950 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
  1951 {
       
  1952 	struct e1000_hw *hw = &adapter->hw;
       
  1953 
       
  1954 	ew32(IMC, ~0);
       
  1955 	if (adapter->msix_entries)
       
  1956 		ew32(EIAC_82574, 0);
       
  1957 	e1e_flush();
       
  1958 
       
  1959 	if (adapter->msix_entries) {
       
  1960 		int i;
       
  1961 		for (i = 0; i < adapter->num_vectors; i++)
       
  1962 			synchronize_irq(adapter->msix_entries[i].vector);
       
  1963 	} else {
       
  1964 		synchronize_irq(adapter->pdev->irq);
       
  1965 	}
       
  1966 }
       
  1967 
       
  1968 /**
       
  1969  * e1000_irq_enable - Enable default interrupt generation settings
       
  1970  **/
       
  1971 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
  1972 {
       
  1973 	struct e1000_hw *hw = &adapter->hw;
       
  1974 
       
  1975 	if (adapter->msix_entries) {
       
  1976 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
       
  1977 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
       
  1978 	} else {
       
  1979 		ew32(IMS, IMS_ENABLE_MASK);
       
  1980 	}
       
  1981 	e1e_flush();
       
  1982 }
       
  1983 
       
  1984 /**
       
  1985  * e1000_get_hw_control - get control of the h/w from f/w
       
  1986  * @adapter: address of board private structure
       
  1987  *
       
  1988  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  1989  * For ASF and Pass Through versions of f/w this means that
       
  1990  * the driver is loaded. For AMT version (only with 82573)
       
  1991  * of the f/w this means that the network i/f is open.
       
  1992  **/
       
  1993 static void e1000_get_hw_control(struct e1000_adapter *adapter)
       
  1994 {
       
  1995 	struct e1000_hw *hw = &adapter->hw;
       
  1996 	u32 ctrl_ext;
       
  1997 	u32 swsm;
       
  1998 
       
  1999 	/* Let firmware know the driver has taken over */
       
  2000 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  2001 		swsm = er32(SWSM);
       
  2002 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
       
  2003 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  2004 		ctrl_ext = er32(CTRL_EXT);
       
  2005 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
  2006 	}
       
  2007 }
       
  2008 
       
  2009 /**
       
  2010  * e1000_release_hw_control - release control of the h/w to f/w
       
  2011  * @adapter: address of board private structure
       
  2012  *
       
  2013  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  2014  * For ASF and Pass Through versions of f/w this means that the
       
  2015  * driver is no longer loaded. For AMT version (only with 82573) i
       
  2016  * of the f/w this means that the network i/f is closed.
       
  2017  *
       
  2018  **/
       
  2019 static void e1000_release_hw_control(struct e1000_adapter *adapter)
       
  2020 {
       
  2021 	struct e1000_hw *hw = &adapter->hw;
       
  2022 	u32 ctrl_ext;
       
  2023 	u32 swsm;
       
  2024 
       
  2025 	/* Let firmware taken over control of h/w */
       
  2026 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  2027 		swsm = er32(SWSM);
       
  2028 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
       
  2029 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  2030 		ctrl_ext = er32(CTRL_EXT);
       
  2031 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
  2032 	}
       
  2033 }
       
  2034 
       
  2035 /**
       
  2036  * @e1000_alloc_ring - allocate memory for a ring structure
       
  2037  **/
       
  2038 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
       
  2039 				struct e1000_ring *ring)
       
  2040 {
       
  2041 	struct pci_dev *pdev = adapter->pdev;
       
  2042 
       
  2043 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
       
  2044 					GFP_KERNEL);
       
  2045 	if (!ring->desc)
       
  2046 		return -ENOMEM;
       
  2047 
       
  2048 	return 0;
       
  2049 }
       
  2050 
       
  2051 /**
       
  2052  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
       
  2053  * @adapter: board private structure
       
  2054  *
       
  2055  * Return 0 on success, negative on failure
       
  2056  **/
       
  2057 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
       
  2058 {
       
  2059 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  2060 	int err = -ENOMEM, size;
       
  2061 
       
  2062 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2063 	tx_ring->buffer_info = vmalloc(size);
       
  2064 	if (!tx_ring->buffer_info)
       
  2065 		goto err;
       
  2066 	memset(tx_ring->buffer_info, 0, size);
       
  2067 
       
  2068 	/* round up to nearest 4K */
       
  2069 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  2070 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  2071 
       
  2072 	err = e1000_alloc_ring_dma(adapter, tx_ring);
       
  2073 	if (err)
       
  2074 		goto err;
       
  2075 
       
  2076 	tx_ring->next_to_use = 0;
       
  2077 	tx_ring->next_to_clean = 0;
       
  2078 
       
  2079 	return 0;
       
  2080 err:
       
  2081 	vfree(tx_ring->buffer_info);
       
  2082 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
       
  2083 	return err;
       
  2084 }
       
  2085 
       
  2086 /**
       
  2087  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
       
  2088  * @adapter: board private structure
       
  2089  *
       
  2090  * Returns 0 on success, negative on failure
       
  2091  **/
       
  2092 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
       
  2093 {
       
  2094 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  2095 	struct e1000_buffer *buffer_info;
       
  2096 	int i, size, desc_len, err = -ENOMEM;
       
  2097 
       
  2098 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2099 	rx_ring->buffer_info = vmalloc(size);
       
  2100 	if (!rx_ring->buffer_info)
       
  2101 		goto err;
       
  2102 	memset(rx_ring->buffer_info, 0, size);
       
  2103 
       
  2104 	for (i = 0; i < rx_ring->count; i++) {
       
  2105 		buffer_info = &rx_ring->buffer_info[i];
       
  2106 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
       
  2107 						sizeof(struct e1000_ps_page),
       
  2108 						GFP_KERNEL);
       
  2109 		if (!buffer_info->ps_pages)
       
  2110 			goto err_pages;
       
  2111 	}
       
  2112 
       
  2113 	desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  2114 
       
  2115 	/* Round up to nearest 4K */
       
  2116 	rx_ring->size = rx_ring->count * desc_len;
       
  2117 	rx_ring->size = ALIGN(rx_ring->size, 4096);
       
  2118 
       
  2119 	err = e1000_alloc_ring_dma(adapter, rx_ring);
       
  2120 	if (err)
       
  2121 		goto err_pages;
       
  2122 
       
  2123 	rx_ring->next_to_clean = 0;
       
  2124 	rx_ring->next_to_use = 0;
       
  2125 	rx_ring->rx_skb_top = NULL;
       
  2126 
       
  2127 	return 0;
       
  2128 
       
  2129 err_pages:
       
  2130 	for (i = 0; i < rx_ring->count; i++) {
       
  2131 		buffer_info = &rx_ring->buffer_info[i];
       
  2132 		kfree(buffer_info->ps_pages);
       
  2133 	}
       
  2134 err:
       
  2135 	vfree(rx_ring->buffer_info);
       
  2136 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
       
  2137 	return err;
       
  2138 }
       
  2139 
       
  2140 /**
       
  2141  * e1000_clean_tx_ring - Free Tx Buffers
       
  2142  * @adapter: board private structure
       
  2143  **/
       
  2144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
       
  2145 {
       
  2146 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  2147 	struct e1000_buffer *buffer_info;
       
  2148 	unsigned long size;
       
  2149 	unsigned int i;
       
  2150 
       
  2151 	for (i = 0; i < tx_ring->count; i++) {
       
  2152 		buffer_info = &tx_ring->buffer_info[i];
       
  2153 		e1000_put_txbuf(adapter, buffer_info);
       
  2154 	}
       
  2155 
       
  2156 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2157 	memset(tx_ring->buffer_info, 0, size);
       
  2158 
       
  2159 	memset(tx_ring->desc, 0, tx_ring->size);
       
  2160 
       
  2161 	tx_ring->next_to_use = 0;
       
  2162 	tx_ring->next_to_clean = 0;
       
  2163 
       
  2164 	writel(0, adapter->hw.hw_addr + tx_ring->head);
       
  2165 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
       
  2166 }
       
  2167 
       
  2168 /**
       
  2169  * e1000e_free_tx_resources - Free Tx Resources per Queue
       
  2170  * @adapter: board private structure
       
  2171  *
       
  2172  * Free all transmit software resources
       
  2173  **/
       
  2174 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
       
  2175 {
       
  2176 	struct pci_dev *pdev = adapter->pdev;
       
  2177 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  2178 
       
  2179 	e1000_clean_tx_ring(adapter);
       
  2180 
       
  2181 	vfree(tx_ring->buffer_info);
       
  2182 	tx_ring->buffer_info = NULL;
       
  2183 
       
  2184 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  2185 			  tx_ring->dma);
       
  2186 	tx_ring->desc = NULL;
       
  2187 }
       
  2188 
       
  2189 /**
       
  2190  * e1000e_free_rx_resources - Free Rx Resources
       
  2191  * @adapter: board private structure
       
  2192  *
       
  2193  * Free all receive software resources
       
  2194  **/
       
  2195 
       
  2196 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
       
  2197 {
       
  2198 	struct pci_dev *pdev = adapter->pdev;
       
  2199 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  2200 	int i;
       
  2201 
       
  2202 	e1000_clean_rx_ring(adapter);
       
  2203 
       
  2204 	for (i = 0; i < rx_ring->count; i++) {
       
  2205 		kfree(rx_ring->buffer_info[i].ps_pages);
       
  2206 	}
       
  2207 
       
  2208 	vfree(rx_ring->buffer_info);
       
  2209 	rx_ring->buffer_info = NULL;
       
  2210 
       
  2211 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  2212 			  rx_ring->dma);
       
  2213 	rx_ring->desc = NULL;
       
  2214 }
       
  2215 
       
  2216 /**
       
  2217  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2218  * @adapter: pointer to adapter
       
  2219  * @itr_setting: current adapter->itr
       
  2220  * @packets: the number of packets during this measurement interval
       
  2221  * @bytes: the number of bytes during this measurement interval
       
  2222  *
       
  2223  *      Stores a new ITR value based on packets and byte
       
  2224  *      counts during the last interrupt.  The advantage of per interrupt
       
  2225  *      computation is faster updates and more accurate ITR for the current
       
  2226  *      traffic pattern.  Constants in this function were computed
       
  2227  *      based on theoretical maximum wire speed and thresholds were set based
       
  2228  *      on testing data as well as attempting to minimize response time
       
  2229  *      while increasing bulk throughput.  This functionality is controlled
       
  2230  *      by the InterruptThrottleRate module parameter.
       
  2231  **/
       
  2232 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2233 				     u16 itr_setting, int packets,
       
  2234 				     int bytes)
       
  2235 {
       
  2236 	unsigned int retval = itr_setting;
       
  2237 
       
  2238 	if (packets == 0)
       
  2239 		goto update_itr_done;
       
  2240 
       
  2241 	switch (itr_setting) {
       
  2242 	case lowest_latency:
       
  2243 		/* handle TSO and jumbo frames */
       
  2244 		if (bytes/packets > 8000)
       
  2245 			retval = bulk_latency;
       
  2246 		else if ((packets < 5) && (bytes > 512)) {
       
  2247 			retval = low_latency;
       
  2248 		}
       
  2249 		break;
       
  2250 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2251 		if (bytes > 10000) {
       
  2252 			/* this if handles the TSO accounting */
       
  2253 			if (bytes/packets > 8000) {
       
  2254 				retval = bulk_latency;
       
  2255 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
       
  2256 				retval = bulk_latency;
       
  2257 			} else if ((packets > 35)) {
       
  2258 				retval = lowest_latency;
       
  2259 			}
       
  2260 		} else if (bytes/packets > 2000) {
       
  2261 			retval = bulk_latency;
       
  2262 		} else if (packets <= 2 && bytes < 512) {
       
  2263 			retval = lowest_latency;
       
  2264 		}
       
  2265 		break;
       
  2266 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2267 		if (bytes > 25000) {
       
  2268 			if (packets > 35) {
       
  2269 				retval = low_latency;
       
  2270 			}
       
  2271 		} else if (bytes < 6000) {
       
  2272 			retval = low_latency;
       
  2273 		}
       
  2274 		break;
       
  2275 	}
       
  2276 
       
  2277 update_itr_done:
       
  2278 	return retval;
       
  2279 }
       
  2280 
       
  2281 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2282 {
       
  2283 	struct e1000_hw *hw = &adapter->hw;
       
  2284 	u16 current_itr;
       
  2285 	u32 new_itr = adapter->itr;
       
  2286 
       
  2287 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2288 	if (adapter->link_speed != SPEED_1000) {
       
  2289 		current_itr = 0;
       
  2290 		new_itr = 4000;
       
  2291 		goto set_itr_now;
       
  2292 	}
       
  2293 
       
  2294 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
       
  2295 		new_itr = 0;
       
  2296 		goto set_itr_now;
       
  2297 	}
       
  2298 
       
  2299 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2300 				    adapter->tx_itr,
       
  2301 				    adapter->total_tx_packets,
       
  2302 				    adapter->total_tx_bytes);
       
  2303 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2304 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2305 		adapter->tx_itr = low_latency;
       
  2306 
       
  2307 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2308 				    adapter->rx_itr,
       
  2309 				    adapter->total_rx_packets,
       
  2310 				    adapter->total_rx_bytes);
       
  2311 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2312 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2313 		adapter->rx_itr = low_latency;
       
  2314 
       
  2315 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2316 
       
  2317 	switch (current_itr) {
       
  2318 	/* counts and packets in update_itr are dependent on these numbers */
       
  2319 	case lowest_latency:
       
  2320 		new_itr = 70000;
       
  2321 		break;
       
  2322 	case low_latency:
       
  2323 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2324 		break;
       
  2325 	case bulk_latency:
       
  2326 		new_itr = 4000;
       
  2327 		break;
       
  2328 	default:
       
  2329 		break;
       
  2330 	}
       
  2331 
       
  2332 set_itr_now:
       
  2333 	if (new_itr != adapter->itr) {
       
  2334 		/*
       
  2335 		 * this attempts to bias the interrupt rate towards Bulk
       
  2336 		 * by adding intermediate steps when interrupt rate is
       
  2337 		 * increasing
       
  2338 		 */
       
  2339 		new_itr = new_itr > adapter->itr ?
       
  2340 			     min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2341 			     new_itr;
       
  2342 		adapter->itr = new_itr;
       
  2343 		adapter->rx_ring->itr_val = new_itr;
       
  2344 		if (adapter->msix_entries)
       
  2345 			adapter->rx_ring->set_itr = 1;
       
  2346 		else
       
  2347 			if (new_itr)
       
  2348 				ew32(ITR, 1000000000 / (new_itr * 256));
       
  2349 			else
       
  2350 				ew32(ITR, 0);
       
  2351 	}
       
  2352 }
       
  2353 
       
  2354 /**
       
  2355  * e1000_alloc_queues - Allocate memory for all rings
       
  2356  * @adapter: board private structure to initialize
       
  2357  **/
       
  2358 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  2359 {
       
  2360 	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
  2361 	if (!adapter->tx_ring)
       
  2362 		goto err;
       
  2363 
       
  2364 	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
  2365 	if (!adapter->rx_ring)
       
  2366 		goto err;
       
  2367 
       
  2368 	return 0;
       
  2369 err:
       
  2370 	e_err("Unable to allocate memory for queues\n");
       
  2371 	kfree(adapter->rx_ring);
       
  2372 	kfree(adapter->tx_ring);
       
  2373 	return -ENOMEM;
       
  2374 }
       
  2375 
       
  2376 /**
       
  2377  * e1000_clean - NAPI Rx polling callback
       
  2378  * @napi: struct associated with this polling callback
       
  2379  * @budget: amount of packets driver is allowed to process this poll
       
  2380  **/
       
  2381 static int e1000_clean(struct napi_struct *napi, int budget)
       
  2382 {
       
  2383 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  2384 	struct e1000_hw *hw = &adapter->hw;
       
  2385 	struct net_device *poll_dev = adapter->netdev;
       
  2386 	int tx_cleaned = 1, work_done = 0;
       
  2387 
       
  2388 	adapter = netdev_priv(poll_dev);
       
  2389 
       
  2390 	if (adapter->msix_entries &&
       
  2391 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
       
  2392 		goto clean_rx;
       
  2393 
       
  2394 	tx_cleaned = e1000_clean_tx_irq(adapter);
       
  2395 
       
  2396 clean_rx:
       
  2397 	adapter->clean_rx(adapter, &work_done, budget);
       
  2398 
       
  2399 	if (!tx_cleaned)
       
  2400 		work_done = budget;
       
  2401 
       
  2402 	/* If budget not fully consumed, exit the polling mode */
       
  2403 	if (work_done < budget) {
       
  2404 		if (adapter->itr_setting & 3)
       
  2405 			e1000_set_itr(adapter);
       
  2406 		napi_complete(napi);
       
  2407 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
       
  2408 			if (adapter->msix_entries)
       
  2409 				ew32(IMS, adapter->rx_ring->ims_val);
       
  2410 			else
       
  2411 				e1000_irq_enable(adapter);
       
  2412 		}
       
  2413 	}
       
  2414 
       
  2415 	return work_done;
       
  2416 }
       
  2417 
       
  2418 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  2419 {
       
  2420 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2421 	struct e1000_hw *hw = &adapter->hw;
       
  2422 	u32 vfta, index;
       
  2423 
       
  2424 	/* don't update vlan cookie if already programmed */
       
  2425 	if ((adapter->hw.mng_cookie.status &
       
  2426 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2427 	    (vid == adapter->mng_vlan_id))
       
  2428 		return;
       
  2429 
       
  2430 	/* add VID to filter table */
       
  2431 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2432 		index = (vid >> 5) & 0x7F;
       
  2433 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2434 		vfta |= (1 << (vid & 0x1F));
       
  2435 		hw->mac.ops.write_vfta(hw, index, vfta);
       
  2436 	}
       
  2437 }
       
  2438 
       
  2439 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  2440 {
       
  2441 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2442 	struct e1000_hw *hw = &adapter->hw;
       
  2443 	u32 vfta, index;
       
  2444 
       
  2445 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2446 		e1000_irq_disable(adapter);
       
  2447 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  2448 
       
  2449 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2450 		e1000_irq_enable(adapter);
       
  2451 
       
  2452 	if ((adapter->hw.mng_cookie.status &
       
  2453 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2454 	    (vid == adapter->mng_vlan_id)) {
       
  2455 		/* release control to f/w */
       
  2456 		e1000_release_hw_control(adapter);
       
  2457 		return;
       
  2458 	}
       
  2459 
       
  2460 	/* remove VID from filter table */
       
  2461 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2462 		index = (vid >> 5) & 0x7F;
       
  2463 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2464 		vfta &= ~(1 << (vid & 0x1F));
       
  2465 		hw->mac.ops.write_vfta(hw, index, vfta);
       
  2466 	}
       
  2467 }
       
  2468 
       
  2469 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
  2470 {
       
  2471 	struct net_device *netdev = adapter->netdev;
       
  2472 	u16 vid = adapter->hw.mng_cookie.vlan_id;
       
  2473 	u16 old_vid = adapter->mng_vlan_id;
       
  2474 
       
  2475 	if (!adapter->vlgrp)
       
  2476 		return;
       
  2477 
       
  2478 	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
  2479 		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  2480 		if (adapter->hw.mng_cookie.status &
       
  2481 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
       
  2482 			e1000_vlan_rx_add_vid(netdev, vid);
       
  2483 			adapter->mng_vlan_id = vid;
       
  2484 		}
       
  2485 
       
  2486 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
  2487 				(vid != old_vid) &&
       
  2488 		    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
  2489 			e1000_vlan_rx_kill_vid(netdev, old_vid);
       
  2490 	} else {
       
  2491 		adapter->mng_vlan_id = vid;
       
  2492 	}
       
  2493 }
       
  2494 
       
  2495 
       
  2496 static void e1000_vlan_rx_register(struct net_device *netdev,
       
  2497 				   struct vlan_group *grp)
       
  2498 {
       
  2499 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2500 	struct e1000_hw *hw = &adapter->hw;
       
  2501 	u32 ctrl, rctl;
       
  2502 
       
  2503 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2504 		e1000_irq_disable(adapter);
       
  2505 	adapter->vlgrp = grp;
       
  2506 
       
  2507 	if (grp) {
       
  2508 		/* enable VLAN tag insert/strip */
       
  2509 		ctrl = er32(CTRL);
       
  2510 		ctrl |= E1000_CTRL_VME;
       
  2511 		ew32(CTRL, ctrl);
       
  2512 
       
  2513 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2514 			/* enable VLAN receive filtering */
       
  2515 			rctl = er32(RCTL);
       
  2516 			rctl &= ~E1000_RCTL_CFIEN;
       
  2517 			ew32(RCTL, rctl);
       
  2518 			e1000_update_mng_vlan(adapter);
       
  2519 		}
       
  2520 	} else {
       
  2521 		/* disable VLAN tag insert/strip */
       
  2522 		ctrl = er32(CTRL);
       
  2523 		ctrl &= ~E1000_CTRL_VME;
       
  2524 		ew32(CTRL, ctrl);
       
  2525 
       
  2526 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2527 			if (adapter->mng_vlan_id !=
       
  2528 			    (u16)E1000_MNG_VLAN_NONE) {
       
  2529 				e1000_vlan_rx_kill_vid(netdev,
       
  2530 						       adapter->mng_vlan_id);
       
  2531 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  2532 			}
       
  2533 		}
       
  2534 	}
       
  2535 
       
  2536 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2537 		e1000_irq_enable(adapter);
       
  2538 }
       
  2539 
       
  2540 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  2541 {
       
  2542 	u16 vid;
       
  2543 
       
  2544 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  2545 
       
  2546 	if (!adapter->vlgrp)
       
  2547 		return;
       
  2548 
       
  2549 	for (vid = 0; vid < VLAN_N_VID; vid++) {
       
  2550 		if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  2551 			continue;
       
  2552 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  2553 	}
       
  2554 }
       
  2555 
       
  2556 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
       
  2557 {
       
  2558 	struct e1000_hw *hw = &adapter->hw;
       
  2559 	u32 manc, manc2h, mdef, i, j;
       
  2560 
       
  2561 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
       
  2562 		return;
       
  2563 
       
  2564 	manc = er32(MANC);
       
  2565 
       
  2566 	/*
       
  2567 	 * enable receiving management packets to the host. this will probably
       
  2568 	 * generate destination unreachable messages from the host OS, but
       
  2569 	 * the packets will be handled on SMBUS
       
  2570 	 */
       
  2571 	manc |= E1000_MANC_EN_MNG2HOST;
       
  2572 	manc2h = er32(MANC2H);
       
  2573 
       
  2574 	switch (hw->mac.type) {
       
  2575 	default:
       
  2576 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
       
  2577 		break;
       
  2578 	case e1000_82574:
       
  2579 	case e1000_82583:
       
  2580 		/*
       
  2581 		 * Check if IPMI pass-through decision filter already exists;
       
  2582 		 * if so, enable it.
       
  2583 		 */
       
  2584 		for (i = 0, j = 0; i < 8; i++) {
       
  2585 			mdef = er32(MDEF(i));
       
  2586 
       
  2587 			/* Ignore filters with anything other than IPMI ports */
       
  2588 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
       
  2589 				continue;
       
  2590 
       
  2591 			/* Enable this decision filter in MANC2H */
       
  2592 			if (mdef)
       
  2593 				manc2h |= (1 << i);
       
  2594 
       
  2595 			j |= mdef;
       
  2596 		}
       
  2597 
       
  2598 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
       
  2599 			break;
       
  2600 
       
  2601 		/* Create new decision filter in an empty filter */
       
  2602 		for (i = 0, j = 0; i < 8; i++)
       
  2603 			if (er32(MDEF(i)) == 0) {
       
  2604 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
       
  2605 					       E1000_MDEF_PORT_664));
       
  2606 				manc2h |= (1 << 1);
       
  2607 				j++;
       
  2608 				break;
       
  2609 			}
       
  2610 
       
  2611 		if (!j)
       
  2612 			e_warn("Unable to create IPMI pass-through filter\n");
       
  2613 		break;
       
  2614 	}
       
  2615 
       
  2616 	ew32(MANC2H, manc2h);
       
  2617 	ew32(MANC, manc);
       
  2618 }
       
  2619 
       
  2620 /**
       
  2621  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  2622  * @adapter: board private structure
       
  2623  *
       
  2624  * Configure the Tx unit of the MAC after a reset.
       
  2625  **/
       
  2626 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  2627 {
       
  2628 	struct e1000_hw *hw = &adapter->hw;
       
  2629 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  2630 	u64 tdba;
       
  2631 	u32 tdlen, tctl, tipg, tarc;
       
  2632 	u32 ipgr1, ipgr2;
       
  2633 
       
  2634 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  2635 	tdba = tx_ring->dma;
       
  2636 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  2637 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
       
  2638 	ew32(TDBAH, (tdba >> 32));
       
  2639 	ew32(TDLEN, tdlen);
       
  2640 	ew32(TDH, 0);
       
  2641 	ew32(TDT, 0);
       
  2642 	tx_ring->head = E1000_TDH;
       
  2643 	tx_ring->tail = E1000_TDT;
       
  2644 
       
  2645 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  2646 	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
       
  2647 	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
       
  2648 	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
       
  2649 
       
  2650 	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
       
  2651 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
       
  2652 
       
  2653 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  2654 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  2655 	ew32(TIPG, tipg);
       
  2656 
       
  2657 	/* Set the Tx Interrupt Delay register */
       
  2658 	ew32(TIDV, adapter->tx_int_delay);
       
  2659 	/* Tx irq moderation */
       
  2660 	ew32(TADV, adapter->tx_abs_int_delay);
       
  2661 
       
  2662 	if (adapter->flags2 & FLAG2_DMA_BURST) {
       
  2663 		u32 txdctl = er32(TXDCTL(0));
       
  2664 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
       
  2665 			    E1000_TXDCTL_WTHRESH);
       
  2666 		/*
       
  2667 		 * set up some performance related parameters to encourage the
       
  2668 		 * hardware to use the bus more efficiently in bursts, depends
       
  2669 		 * on the tx_int_delay to be enabled,
       
  2670 		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
       
  2671 		 * hthresh = 1 ==> prefetch when one or more available
       
  2672 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
       
  2673 		 * BEWARE: this seems to work but should be considered first if
       
  2674 		 * there are tx hangs or other tx related bugs
       
  2675 		 */
       
  2676 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
       
  2677 		ew32(TXDCTL(0), txdctl);
       
  2678 		/* erratum work around: set txdctl the same for both queues */
       
  2679 		ew32(TXDCTL(1), txdctl);
       
  2680 	}
       
  2681 
       
  2682 	/* Program the Transmit Control Register */
       
  2683 	tctl = er32(TCTL);
       
  2684 	tctl &= ~E1000_TCTL_CT;
       
  2685 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  2686 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  2687 
       
  2688 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
       
  2689 		tarc = er32(TARC(0));
       
  2690 		/*
       
  2691 		 * set the speed mode bit, we'll clear it if we're not at
       
  2692 		 * gigabit link later
       
  2693 		 */
       
  2694 #define SPEED_MODE_BIT (1 << 21)
       
  2695 		tarc |= SPEED_MODE_BIT;
       
  2696 		ew32(TARC(0), tarc);
       
  2697 	}
       
  2698 
       
  2699 	/* errata: program both queues to unweighted RR */
       
  2700 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
       
  2701 		tarc = er32(TARC(0));
       
  2702 		tarc |= 1;
       
  2703 		ew32(TARC(0), tarc);
       
  2704 		tarc = er32(TARC(1));
       
  2705 		tarc |= 1;
       
  2706 		ew32(TARC(1), tarc);
       
  2707 	}
       
  2708 
       
  2709 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  2710 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  2711 
       
  2712 	/* only set IDE if we are delaying interrupts using the timers */
       
  2713 	if (adapter->tx_int_delay)
       
  2714 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  2715 
       
  2716 	/* enable Report Status bit */
       
  2717 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  2718 
       
  2719 	ew32(TCTL, tctl);
       
  2720 
       
  2721 	e1000e_config_collision_dist(hw);
       
  2722 }
       
  2723 
       
  2724 /**
       
  2725  * e1000_setup_rctl - configure the receive control registers
       
  2726  * @adapter: Board private structure
       
  2727  **/
       
  2728 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  2729 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  2730 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  2731 {
       
  2732 	struct e1000_hw *hw = &adapter->hw;
       
  2733 	u32 rctl, rfctl;
       
  2734 	u32 psrctl = 0;
       
  2735 	u32 pages = 0;
       
  2736 
       
  2737 	/* Workaround Si errata on 82579 - configure jumbo frame flow */
       
  2738 	if (hw->mac.type == e1000_pch2lan) {
       
  2739 		s32 ret_val;
       
  2740 
       
  2741 		if (adapter->netdev->mtu > ETH_DATA_LEN)
       
  2742 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
       
  2743 		else
       
  2744 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
       
  2745 	}
       
  2746 
       
  2747 	/* Program MC offset vector base */
       
  2748 	rctl = er32(RCTL);
       
  2749 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  2750 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  2751 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  2752 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  2753 
       
  2754 	/* Do not Store bad packets */
       
  2755 	rctl &= ~E1000_RCTL_SBP;
       
  2756 
       
  2757 	/* Enable Long Packet receive */
       
  2758 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  2759 		rctl &= ~E1000_RCTL_LPE;
       
  2760 	else
       
  2761 		rctl |= E1000_RCTL_LPE;
       
  2762 
       
  2763 	/* Some systems expect that the CRC is included in SMBUS traffic. The
       
  2764 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
       
  2765 	 * host memory when this is enabled
       
  2766 	 */
       
  2767 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
       
  2768 		rctl |= E1000_RCTL_SECRC;
       
  2769 
       
  2770 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
       
  2771 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
       
  2772 		u16 phy_data;
       
  2773 
       
  2774 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
       
  2775 		phy_data &= 0xfff8;
       
  2776 		phy_data |= (1 << 2);
       
  2777 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
       
  2778 
       
  2779 		e1e_rphy(hw, 22, &phy_data);
       
  2780 		phy_data &= 0x0fff;
       
  2781 		phy_data |= (1 << 14);
       
  2782 		e1e_wphy(hw, 0x10, 0x2823);
       
  2783 		e1e_wphy(hw, 0x11, 0x0003);
       
  2784 		e1e_wphy(hw, 22, phy_data);
       
  2785 	}
       
  2786 
       
  2787 	/* Setup buffer sizes */
       
  2788 	rctl &= ~E1000_RCTL_SZ_4096;
       
  2789 	rctl |= E1000_RCTL_BSEX;
       
  2790 	switch (adapter->rx_buffer_len) {
       
  2791 	case 2048:
       
  2792 	default:
       
  2793 		rctl |= E1000_RCTL_SZ_2048;
       
  2794 		rctl &= ~E1000_RCTL_BSEX;
       
  2795 		break;
       
  2796 	case 4096:
       
  2797 		rctl |= E1000_RCTL_SZ_4096;
       
  2798 		break;
       
  2799 	case 8192:
       
  2800 		rctl |= E1000_RCTL_SZ_8192;
       
  2801 		break;
       
  2802 	case 16384:
       
  2803 		rctl |= E1000_RCTL_SZ_16384;
       
  2804 		break;
       
  2805 	}
       
  2806 
       
  2807 	/*
       
  2808 	 * 82571 and greater support packet-split where the protocol
       
  2809 	 * header is placed in skb->data and the packet data is
       
  2810 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  2811 	 * In the case of a non-split, skb->data is linearly filled,
       
  2812 	 * followed by the page buffers.  Therefore, skb->data is
       
  2813 	 * sized to hold the largest protocol header.
       
  2814 	 *
       
  2815 	 * allocations using alloc_page take too long for regular MTU
       
  2816 	 * so only enable packet split for jumbo frames
       
  2817 	 *
       
  2818 	 * Using pages when the page size is greater than 16k wastes
       
  2819 	 * a lot of memory, since we allocate 3 pages at all times
       
  2820 	 * per packet.
       
  2821 	 */
       
  2822 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  2823 	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
       
  2824 	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
       
  2825 		adapter->rx_ps_pages = pages;
       
  2826 	else
       
  2827 		adapter->rx_ps_pages = 0;
       
  2828 
       
  2829 	if (adapter->rx_ps_pages) {
       
  2830 		/* Configure extra packet-split registers */
       
  2831 		rfctl = er32(RFCTL);
       
  2832 		rfctl |= E1000_RFCTL_EXTEN;
       
  2833 		/*
       
  2834 		 * disable packet split support for IPv6 extension headers,
       
  2835 		 * because some malformed IPv6 headers can hang the Rx
       
  2836 		 */
       
  2837 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
       
  2838 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  2839 
       
  2840 		ew32(RFCTL, rfctl);
       
  2841 
       
  2842 		/* Enable Packet split descriptors */
       
  2843 		rctl |= E1000_RCTL_DTYP_PS;
       
  2844 
       
  2845 		psrctl |= adapter->rx_ps_bsize0 >>
       
  2846 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  2847 
       
  2848 		switch (adapter->rx_ps_pages) {
       
  2849 		case 3:
       
  2850 			psrctl |= PAGE_SIZE <<
       
  2851 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  2852 		case 2:
       
  2853 			psrctl |= PAGE_SIZE <<
       
  2854 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  2855 		case 1:
       
  2856 			psrctl |= PAGE_SIZE >>
       
  2857 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  2858 			break;
       
  2859 		}
       
  2860 
       
  2861 		ew32(PSRCTL, psrctl);
       
  2862 	}
       
  2863 
       
  2864 	ew32(RCTL, rctl);
       
  2865 	/* just started the receive unit, no need to restart */
       
  2866 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  2867 }
       
  2868 
       
  2869 /**
       
  2870  * e1000_configure_rx - Configure Receive Unit after Reset
       
  2871  * @adapter: board private structure
       
  2872  *
       
  2873  * Configure the Rx unit of the MAC after a reset.
       
  2874  **/
       
  2875 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  2876 {
       
  2877 	struct e1000_hw *hw = &adapter->hw;
       
  2878 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  2879 	u64 rdba;
       
  2880 	u32 rdlen, rctl, rxcsum, ctrl_ext;
       
  2881 
       
  2882 	if (adapter->rx_ps_pages) {
       
  2883 		/* this is a 32 byte descriptor */
       
  2884 		rdlen = rx_ring->count *
       
  2885 			sizeof(union e1000_rx_desc_packet_split);
       
  2886 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  2887 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  2888 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  2889 		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  2890 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
       
  2891 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
       
  2892 	} else {
       
  2893 		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  2894 		adapter->clean_rx = e1000_clean_rx_irq;
       
  2895 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  2896 	}
       
  2897 
       
  2898 	/* disable receives while setting up the descriptors */
       
  2899 	rctl = er32(RCTL);
       
  2900 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  2901 	e1e_flush();
       
  2902 	msleep(10);
       
  2903 
       
  2904 	if (adapter->flags2 & FLAG2_DMA_BURST) {
       
  2905 		/*
       
  2906 		 * set the writeback threshold (only takes effect if the RDTR
       
  2907 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
       
  2908 		 * enable prefetching of 0x20 rx descriptors
       
  2909 		 * granularity = 01
       
  2910 		 * wthresh = 04,
       
  2911 		 * hthresh = 04,
       
  2912 		 * pthresh = 0x20
       
  2913 		 */
       
  2914 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
       
  2915 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
       
  2916 
       
  2917 		/*
       
  2918 		 * override the delay timers for enabling bursting, only if
       
  2919 		 * the value was not set by the user via module options
       
  2920 		 */
       
  2921 		if (adapter->rx_int_delay == DEFAULT_RDTR)
       
  2922 			adapter->rx_int_delay = BURST_RDTR;
       
  2923 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
       
  2924 			adapter->rx_abs_int_delay = BURST_RADV;
       
  2925 	}
       
  2926 
       
  2927 	/* set the Receive Delay Timer Register */
       
  2928 	ew32(RDTR, adapter->rx_int_delay);
       
  2929 
       
  2930 	/* irq moderation */
       
  2931 	ew32(RADV, adapter->rx_abs_int_delay);
       
  2932 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
       
  2933 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  2934 
       
  2935 	ctrl_ext = er32(CTRL_EXT);
       
  2936 	/* Auto-Mask interrupts upon ICR access */
       
  2937 	ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  2938 	ew32(IAM, 0xffffffff);
       
  2939 	ew32(CTRL_EXT, ctrl_ext);
       
  2940 	e1e_flush();
       
  2941 
       
  2942 	/*
       
  2943 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
       
  2944 	 * the Base and Length of the Rx Descriptor Ring
       
  2945 	 */
       
  2946 	rdba = rx_ring->dma;
       
  2947 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
       
  2948 	ew32(RDBAH, (rdba >> 32));
       
  2949 	ew32(RDLEN, rdlen);
       
  2950 	ew32(RDH, 0);
       
  2951 	ew32(RDT, 0);
       
  2952 	rx_ring->head = E1000_RDH;
       
  2953 	rx_ring->tail = E1000_RDT;
       
  2954 
       
  2955 	/* Enable Receive Checksum Offload for TCP and UDP */
       
  2956 	rxcsum = er32(RXCSUM);
       
  2957 	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
       
  2958 		rxcsum |= E1000_RXCSUM_TUOFL;
       
  2959 
       
  2960 		/*
       
  2961 		 * IPv4 payload checksum for UDP fragments must be
       
  2962 		 * used in conjunction with packet-split.
       
  2963 		 */
       
  2964 		if (adapter->rx_ps_pages)
       
  2965 			rxcsum |= E1000_RXCSUM_IPPCSE;
       
  2966 	} else {
       
  2967 		rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  2968 		/* no need to clear IPPCSE as it defaults to 0 */
       
  2969 	}
       
  2970 	ew32(RXCSUM, rxcsum);
       
  2971 
       
  2972 	/*
       
  2973 	 * Enable early receives on supported devices, only takes effect when
       
  2974 	 * packet size is equal or larger than the specified value (in 8 byte
       
  2975 	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
       
  2976 	 */
       
  2977 	if ((adapter->flags & FLAG_HAS_ERT) ||
       
  2978 	    (adapter->hw.mac.type == e1000_pch2lan)) {
       
  2979 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  2980 			u32 rxdctl = er32(RXDCTL(0));
       
  2981 			ew32(RXDCTL(0), rxdctl | 0x3);
       
  2982 			if (adapter->flags & FLAG_HAS_ERT)
       
  2983 				ew32(ERT, E1000_ERT_2048 | (1 << 13));
       
  2984 			/*
       
  2985 			 * With jumbo frames and early-receive enabled,
       
  2986 			 * excessive C-state transition latencies result in
       
  2987 			 * dropped transactions.
       
  2988 			 */
       
  2989 			pm_qos_update_request(
       
  2990 				&adapter->netdev->pm_qos_req, 55);
       
  2991 		} else {
       
  2992 			pm_qos_update_request(
       
  2993 				&adapter->netdev->pm_qos_req,
       
  2994 				PM_QOS_DEFAULT_VALUE);
       
  2995 		}
       
  2996 	}
       
  2997 
       
  2998 	/* Enable Receives */
       
  2999 	ew32(RCTL, rctl);
       
  3000 }
       
  3001 
       
  3002 /**
       
  3003  *  e1000_update_mc_addr_list - Update Multicast addresses
       
  3004  *  @hw: pointer to the HW structure
       
  3005  *  @mc_addr_list: array of multicast addresses to program
       
  3006  *  @mc_addr_count: number of multicast addresses to program
       
  3007  *
       
  3008  *  Updates the Multicast Table Array.
       
  3009  *  The caller must have a packed mc_addr_list of multicast addresses.
       
  3010  **/
       
  3011 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
       
  3012 				      u32 mc_addr_count)
       
  3013 {
       
  3014 	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
       
  3015 }
       
  3016 
       
  3017 /**
       
  3018  * e1000_set_multi - Multicast and Promiscuous mode set
       
  3019  * @netdev: network interface device structure
       
  3020  *
       
  3021  * The set_multi entry point is called whenever the multicast address
       
  3022  * list or the network interface flags are updated.  This routine is
       
  3023  * responsible for configuring the hardware for proper multicast,
       
  3024  * promiscuous mode, and all-multi behavior.
       
  3025  **/
       
  3026 static void e1000_set_multi(struct net_device *netdev)
       
  3027 {
       
  3028 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3029 	struct e1000_hw *hw = &adapter->hw;
       
  3030 	struct netdev_hw_addr *ha;
       
  3031 	u8  *mta_list;
       
  3032 	u32 rctl;
       
  3033 	int i;
       
  3034 
       
  3035 	/* Check for Promiscuous and All Multicast modes */
       
  3036 
       
  3037 	rctl = er32(RCTL);
       
  3038 
       
  3039 	if (netdev->flags & IFF_PROMISC) {
       
  3040 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  3041 		rctl &= ~E1000_RCTL_VFE;
       
  3042 	} else {
       
  3043 		if (netdev->flags & IFF_ALLMULTI) {
       
  3044 			rctl |= E1000_RCTL_MPE;
       
  3045 			rctl &= ~E1000_RCTL_UPE;
       
  3046 		} else {
       
  3047 			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  3048 		}
       
  3049 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
       
  3050 			rctl |= E1000_RCTL_VFE;
       
  3051 	}
       
  3052 
       
  3053 	ew32(RCTL, rctl);
       
  3054 
       
  3055 	if (!netdev_mc_empty(netdev)) {
       
  3056 		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
       
  3057 		if (!mta_list)
       
  3058 			return;
       
  3059 
       
  3060 		/* prepare a packed array of only addresses. */
       
  3061 		i = 0;
       
  3062 		netdev_for_each_mc_addr(ha, netdev)
       
  3063 			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
       
  3064 
       
  3065 		e1000_update_mc_addr_list(hw, mta_list, i);
       
  3066 		kfree(mta_list);
       
  3067 	} else {
       
  3068 		/*
       
  3069 		 * if we're called from probe, we might not have
       
  3070 		 * anything to do here, so clear out the list
       
  3071 		 */
       
  3072 		e1000_update_mc_addr_list(hw, NULL, 0);
       
  3073 	}
       
  3074 }
       
  3075 
       
  3076 /**
       
  3077  * e1000_configure - configure the hardware for Rx and Tx
       
  3078  * @adapter: private board structure
       
  3079  **/
       
  3080 static void e1000_configure(struct e1000_adapter *adapter)
       
  3081 {
       
  3082 	e1000_set_multi(adapter->netdev);
       
  3083 
       
  3084 	e1000_restore_vlan(adapter);
       
  3085 	e1000_init_manageability_pt(adapter);
       
  3086 
       
  3087 	e1000_configure_tx(adapter);
       
  3088 	e1000_setup_rctl(adapter);
       
  3089 	e1000_configure_rx(adapter);
       
  3090 	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
       
  3091 }
       
  3092 
       
  3093 /**
       
  3094  * e1000e_power_up_phy - restore link in case the phy was powered down
       
  3095  * @adapter: address of board private structure
       
  3096  *
       
  3097  * The phy may be powered down to save power and turn off link when the
       
  3098  * driver is unloaded and wake on lan is not enabled (among others)
       
  3099  * *** this routine MUST be followed by a call to e1000e_reset ***
       
  3100  **/
       
  3101 void e1000e_power_up_phy(struct e1000_adapter *adapter)
       
  3102 {
       
  3103 	if (adapter->hw.phy.ops.power_up)
       
  3104 		adapter->hw.phy.ops.power_up(&adapter->hw);
       
  3105 
       
  3106 	adapter->hw.mac.ops.setup_link(&adapter->hw);
       
  3107 }
       
  3108 
       
  3109 /**
       
  3110  * e1000_power_down_phy - Power down the PHY
       
  3111  *
       
  3112  * Power down the PHY so no link is implied when interface is down.
       
  3113  * The PHY cannot be powered down if management or WoL is active.
       
  3114  */
       
  3115 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
  3116 {
       
  3117 	/* WoL is enabled */
       
  3118 	if (adapter->wol)
       
  3119 		return;
       
  3120 
       
  3121 	if (adapter->hw.phy.ops.power_down)
       
  3122 		adapter->hw.phy.ops.power_down(&adapter->hw);
       
  3123 }
       
  3124 
       
  3125 /**
       
  3126  * e1000e_reset - bring the hardware into a known good state
       
  3127  *
       
  3128  * This function boots the hardware and enables some settings that
       
  3129  * require a configuration cycle of the hardware - those cannot be
       
  3130  * set/changed during runtime. After reset the device needs to be
       
  3131  * properly configured for Rx, Tx etc.
       
  3132  */
       
  3133 void e1000e_reset(struct e1000_adapter *adapter)
       
  3134 {
       
  3135 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  3136 	struct e1000_fc_info *fc = &adapter->hw.fc;
       
  3137 	struct e1000_hw *hw = &adapter->hw;
       
  3138 	u32 tx_space, min_tx_space, min_rx_space;
       
  3139 	u32 pba = adapter->pba;
       
  3140 	u16 hwm;
       
  3141 
       
  3142 	/* reset Packet Buffer Allocation to default */
       
  3143 	ew32(PBA, pba);
       
  3144 
       
  3145 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  3146 		/*
       
  3147 		 * To maintain wire speed transmits, the Tx FIFO should be
       
  3148 		 * large enough to accommodate two full transmit packets,
       
  3149 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
  3150 		 * the Rx FIFO should be large enough to accommodate at least
       
  3151 		 * one full receive packet and is similarly rounded up and
       
  3152 		 * expressed in KB.
       
  3153 		 */
       
  3154 		pba = er32(PBA);
       
  3155 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
  3156 		tx_space = pba >> 16;
       
  3157 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
  3158 		pba &= 0xffff;
       
  3159 		/*
       
  3160 		 * the Tx fifo also stores 16 bytes of information about the tx
       
  3161 		 * but don't include ethernet FCS because hardware appends it
       
  3162 		 */
       
  3163 		min_tx_space = (adapter->max_frame_size +
       
  3164 				sizeof(struct e1000_tx_desc) -
       
  3165 				ETH_FCS_LEN) * 2;
       
  3166 		min_tx_space = ALIGN(min_tx_space, 1024);
       
  3167 		min_tx_space >>= 10;
       
  3168 		/* software strips receive CRC, so leave room for it */
       
  3169 		min_rx_space = adapter->max_frame_size;
       
  3170 		min_rx_space = ALIGN(min_rx_space, 1024);
       
  3171 		min_rx_space >>= 10;
       
  3172 
       
  3173 		/*
       
  3174 		 * If current Tx allocation is less than the min Tx FIFO size,
       
  3175 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
  3176 		 * allocation, take space away from current Rx allocation
       
  3177 		 */
       
  3178 		if ((tx_space < min_tx_space) &&
       
  3179 		    ((min_tx_space - tx_space) < pba)) {
       
  3180 			pba -= min_tx_space - tx_space;
       
  3181 
       
  3182 			/*
       
  3183 			 * if short on Rx space, Rx wins and must trump tx
       
  3184 			 * adjustment or use Early Receive if available
       
  3185 			 */
       
  3186 			if ((pba < min_rx_space) &&
       
  3187 			    (!(adapter->flags & FLAG_HAS_ERT)))
       
  3188 				/* ERT enabled in e1000_configure_rx */
       
  3189 				pba = min_rx_space;
       
  3190 		}
       
  3191 
       
  3192 		ew32(PBA, pba);
       
  3193 	}
       
  3194 
       
  3195 
       
  3196 	/*
       
  3197 	 * flow control settings
       
  3198 	 *
       
  3199 	 * The high water mark must be low enough to fit one full frame
       
  3200 	 * (or the size used for early receive) above it in the Rx FIFO.
       
  3201 	 * Set it to the lower of:
       
  3202 	 * - 90% of the Rx FIFO size, and
       
  3203 	 * - the full Rx FIFO size minus the early receive size (for parts
       
  3204 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
       
  3205 	 * - the full Rx FIFO size minus one full frame
       
  3206 	 */
       
  3207 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
       
  3208 		fc->pause_time = 0xFFFF;
       
  3209 	else
       
  3210 		fc->pause_time = E1000_FC_PAUSE_TIME;
       
  3211 	fc->send_xon = 1;
       
  3212 	fc->current_mode = fc->requested_mode;
       
  3213 
       
  3214 	switch (hw->mac.type) {
       
  3215 	default:
       
  3216 		if ((adapter->flags & FLAG_HAS_ERT) &&
       
  3217 		    (adapter->netdev->mtu > ETH_DATA_LEN))
       
  3218 			hwm = min(((pba << 10) * 9 / 10),
       
  3219 				  ((pba << 10) - (E1000_ERT_2048 << 3)));
       
  3220 		else
       
  3221 			hwm = min(((pba << 10) * 9 / 10),
       
  3222 				  ((pba << 10) - adapter->max_frame_size));
       
  3223 
       
  3224 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
       
  3225 		fc->low_water = fc->high_water - 8;
       
  3226 		break;
       
  3227 	case e1000_pchlan:
       
  3228 		/*
       
  3229 		 * Workaround PCH LOM adapter hangs with certain network
       
  3230 		 * loads.  If hangs persist, try disabling Tx flow control.
       
  3231 		 */
       
  3232 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  3233 			fc->high_water = 0x3500;
       
  3234 			fc->low_water  = 0x1500;
       
  3235 		} else {
       
  3236 			fc->high_water = 0x5000;
       
  3237 			fc->low_water  = 0x3000;
       
  3238 		}
       
  3239 		fc->refresh_time = 0x1000;
       
  3240 		break;
       
  3241 	case e1000_pch2lan:
       
  3242 		fc->high_water = 0x05C20;
       
  3243 		fc->low_water = 0x05048;
       
  3244 		fc->pause_time = 0x0650;
       
  3245 		fc->refresh_time = 0x0400;
       
  3246 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  3247 			pba = 14;
       
  3248 			ew32(PBA, pba);
       
  3249 		}
       
  3250 		break;
       
  3251 	}
       
  3252 
       
  3253 	/*
       
  3254 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
       
  3255 	 * fit in receive buffer and early-receive not supported.
       
  3256 	 */
       
  3257 	if (adapter->itr_setting & 0x3) {
       
  3258 		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
       
  3259 		    !(adapter->flags & FLAG_HAS_ERT)) {
       
  3260 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
       
  3261 				dev_info(&adapter->pdev->dev,
       
  3262 					"Interrupt Throttle Rate turned off\n");
       
  3263 				adapter->flags2 |= FLAG2_DISABLE_AIM;
       
  3264 				ew32(ITR, 0);
       
  3265 			}
       
  3266 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
       
  3267 			dev_info(&adapter->pdev->dev,
       
  3268 				 "Interrupt Throttle Rate turned on\n");
       
  3269 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
       
  3270 			adapter->itr = 20000;
       
  3271 			ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  3272 		}
       
  3273 	}
       
  3274 
       
  3275 	/* Allow time for pending master requests to run */
       
  3276 	mac->ops.reset_hw(hw);
       
  3277 
       
  3278 	/*
       
  3279 	 * For parts with AMT enabled, let the firmware know
       
  3280 	 * that the network interface is in control
       
  3281 	 */
       
  3282 	if (adapter->flags & FLAG_HAS_AMT)
       
  3283 		e1000_get_hw_control(adapter);
       
  3284 
       
  3285 	ew32(WUC, 0);
       
  3286 
       
  3287 	if (mac->ops.init_hw(hw))
       
  3288 		e_err("Hardware Error\n");
       
  3289 
       
  3290 	e1000_update_mng_vlan(adapter);
       
  3291 
       
  3292 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
  3293 	ew32(VET, ETH_P_8021Q);
       
  3294 
       
  3295 	e1000e_reset_adaptive(hw);
       
  3296 	e1000_get_phy_info(hw);
       
  3297 
       
  3298 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
       
  3299 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
       
  3300 		u16 phy_data = 0;
       
  3301 		/*
       
  3302 		 * speed up time to link by disabling smart power down, ignore
       
  3303 		 * the return value of this function because there is nothing
       
  3304 		 * different we would do if it failed
       
  3305 		 */
       
  3306 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
       
  3307 		phy_data &= ~IGP02E1000_PM_SPD;
       
  3308 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
       
  3309 	}
       
  3310 }
       
  3311 
       
  3312 int e1000e_up(struct e1000_adapter *adapter)
       
  3313 {
       
  3314 	struct e1000_hw *hw = &adapter->hw;
       
  3315 
       
  3316 	/* hardware has been reset, we need to reload some things */
       
  3317 	e1000_configure(adapter);
       
  3318 
       
  3319 	clear_bit(__E1000_DOWN, &adapter->state);
       
  3320 
       
  3321 	napi_enable(&adapter->napi);
       
  3322 	if (adapter->msix_entries)
       
  3323 		e1000_configure_msix(adapter);
       
  3324 	e1000_irq_enable(adapter);
       
  3325 
       
  3326 	netif_wake_queue(adapter->netdev);
       
  3327 
       
  3328 	/* fire a link change interrupt to start the watchdog */
       
  3329 	if (adapter->msix_entries)
       
  3330 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
       
  3331 	else
       
  3332 		ew32(ICS, E1000_ICS_LSC);
       
  3333 
       
  3334 	return 0;
       
  3335 }
       
  3336 
       
  3337 void e1000e_down(struct e1000_adapter *adapter)
       
  3338 {
       
  3339 	struct net_device *netdev = adapter->netdev;
       
  3340 	struct e1000_hw *hw = &adapter->hw;
       
  3341 	u32 tctl, rctl;
       
  3342 
       
  3343 	/*
       
  3344 	 * signal that we're down so the interrupt handler does not
       
  3345 	 * reschedule our watchdog timer
       
  3346 	 */
       
  3347 	set_bit(__E1000_DOWN, &adapter->state);
       
  3348 
       
  3349 	/* disable receives in the hardware */
       
  3350 	rctl = er32(RCTL);
       
  3351 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  3352 	/* flush and sleep below */
       
  3353 
       
  3354 	netif_stop_queue(netdev);
       
  3355 
       
  3356 	/* disable transmits in the hardware */
       
  3357 	tctl = er32(TCTL);
       
  3358 	tctl &= ~E1000_TCTL_EN;
       
  3359 	ew32(TCTL, tctl);
       
  3360 	/* flush both disables and wait for them to finish */
       
  3361 	e1e_flush();
       
  3362 	msleep(10);
       
  3363 
       
  3364 	napi_disable(&adapter->napi);
       
  3365 	e1000_irq_disable(adapter);
       
  3366 
       
  3367 	del_timer_sync(&adapter->watchdog_timer);
       
  3368 	del_timer_sync(&adapter->phy_info_timer);
       
  3369 
       
  3370 	netif_carrier_off(netdev);
       
  3371 	adapter->link_speed = 0;
       
  3372 	adapter->link_duplex = 0;
       
  3373 
       
  3374 	if (!pci_channel_offline(adapter->pdev))
       
  3375 		e1000e_reset(adapter);
       
  3376 	e1000_clean_tx_ring(adapter);
       
  3377 	e1000_clean_rx_ring(adapter);
       
  3378 
       
  3379 	/*
       
  3380 	 * TODO: for power management, we could drop the link and
       
  3381 	 * pci_disable_device here.
       
  3382 	 */
       
  3383 }
       
  3384 
       
  3385 void e1000e_reinit_locked(struct e1000_adapter *adapter)
       
  3386 {
       
  3387 	might_sleep();
       
  3388 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  3389 		msleep(1);
       
  3390 	e1000e_down(adapter);
       
  3391 	e1000e_up(adapter);
       
  3392 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  3393 }
       
  3394 
       
  3395 /**
       
  3396  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  3397  * @adapter: board private structure to initialize
       
  3398  *
       
  3399  * e1000_sw_init initializes the Adapter private data structure.
       
  3400  * Fields are initialized based on PCI device information and
       
  3401  * OS network device settings (MTU size).
       
  3402  **/
       
  3403 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  3404 {
       
  3405 	struct net_device *netdev = adapter->netdev;
       
  3406 
       
  3407 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
       
  3408 	adapter->rx_ps_bsize0 = 128;
       
  3409 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
       
  3410 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
       
  3411 
       
  3412 	e1000e_set_interrupt_capability(adapter);
       
  3413 
       
  3414 	if (e1000_alloc_queues(adapter))
       
  3415 		return -ENOMEM;
       
  3416 
       
  3417 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  3418 	e1000_irq_disable(adapter);
       
  3419 
       
  3420 	set_bit(__E1000_DOWN, &adapter->state);
       
  3421 	return 0;
       
  3422 }
       
  3423 
       
  3424 /**
       
  3425  * e1000_intr_msi_test - Interrupt Handler
       
  3426  * @irq: interrupt number
       
  3427  * @data: pointer to a network interface device structure
       
  3428  **/
       
  3429 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
       
  3430 {
       
  3431 	struct net_device *netdev = data;
       
  3432 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3433 	struct e1000_hw *hw = &adapter->hw;
       
  3434 	u32 icr = er32(ICR);
       
  3435 
       
  3436 	e_dbg("icr is %08X\n", icr);
       
  3437 	if (icr & E1000_ICR_RXSEQ) {
       
  3438 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
       
  3439 		wmb();
       
  3440 	}
       
  3441 
       
  3442 	return IRQ_HANDLED;
       
  3443 }
       
  3444 
       
  3445 /**
       
  3446  * e1000_test_msi_interrupt - Returns 0 for successful test
       
  3447  * @adapter: board private struct
       
  3448  *
       
  3449  * code flow taken from tg3.c
       
  3450  **/
       
  3451 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
       
  3452 {
       
  3453 	struct net_device *netdev = adapter->netdev;
       
  3454 	struct e1000_hw *hw = &adapter->hw;
       
  3455 	int err;
       
  3456 
       
  3457 	/* poll_enable hasn't been called yet, so don't need disable */
       
  3458 	/* clear any pending events */
       
  3459 	er32(ICR);
       
  3460 
       
  3461 	/* free the real vector and request a test handler */
       
  3462 	e1000_free_irq(adapter);
       
  3463 	e1000e_reset_interrupt_capability(adapter);
       
  3464 
       
  3465 	/* Assume that the test fails, if it succeeds then the test
       
  3466 	 * MSI irq handler will unset this flag */
       
  3467 	adapter->flags |= FLAG_MSI_TEST_FAILED;
       
  3468 
       
  3469 	err = pci_enable_msi(adapter->pdev);
       
  3470 	if (err)
       
  3471 		goto msi_test_failed;
       
  3472 
       
  3473 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
       
  3474 			  netdev->name, netdev);
       
  3475 	if (err) {
       
  3476 		pci_disable_msi(adapter->pdev);
       
  3477 		goto msi_test_failed;
       
  3478 	}
       
  3479 
       
  3480 	wmb();
       
  3481 
       
  3482 	e1000_irq_enable(adapter);
       
  3483 
       
  3484 	/* fire an unusual interrupt on the test handler */
       
  3485 	ew32(ICS, E1000_ICS_RXSEQ);
       
  3486 	e1e_flush();
       
  3487 	msleep(50);
       
  3488 
       
  3489 	e1000_irq_disable(adapter);
       
  3490 
       
  3491 	rmb();
       
  3492 
       
  3493 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
       
  3494 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  3495 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
       
  3496 	} else
       
  3497 		e_dbg("MSI interrupt test succeeded!\n");
       
  3498 
       
  3499 	free_irq(adapter->pdev->irq, netdev);
       
  3500 	pci_disable_msi(adapter->pdev);
       
  3501 
       
  3502 msi_test_failed:
       
  3503 	e1000e_set_interrupt_capability(adapter);
       
  3504 	return e1000_request_irq(adapter);
       
  3505 }
       
  3506 
       
  3507 /**
       
  3508  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
       
  3509  * @adapter: board private struct
       
  3510  *
       
  3511  * code flow taken from tg3.c, called with e1000 interrupts disabled.
       
  3512  **/
       
  3513 static int e1000_test_msi(struct e1000_adapter *adapter)
       
  3514 {
       
  3515 	int err;
       
  3516 	u16 pci_cmd;
       
  3517 
       
  3518 	if (!(adapter->flags & FLAG_MSI_ENABLED))
       
  3519 		return 0;
       
  3520 
       
  3521 	/* disable SERR in case the MSI write causes a master abort */
       
  3522 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
       
  3523 	if (pci_cmd & PCI_COMMAND_SERR)
       
  3524 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
       
  3525 				      pci_cmd & ~PCI_COMMAND_SERR);
       
  3526 
       
  3527 	err = e1000_test_msi_interrupt(adapter);
       
  3528 
       
  3529 	/* re-enable SERR */
       
  3530 	if (pci_cmd & PCI_COMMAND_SERR) {
       
  3531 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
       
  3532 		pci_cmd |= PCI_COMMAND_SERR;
       
  3533 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
       
  3534 	}
       
  3535 
       
  3536 	return err;
       
  3537 }
       
  3538 
       
  3539 /**
       
  3540  * e1000_open - Called when a network interface is made active
       
  3541  * @netdev: network interface device structure
       
  3542  *
       
  3543  * Returns 0 on success, negative value on failure
       
  3544  *
       
  3545  * The open entry point is called when a network interface is made
       
  3546  * active by the system (IFF_UP).  At this point all resources needed
       
  3547  * for transmit and receive operations are allocated, the interrupt
       
  3548  * handler is registered with the OS, the watchdog timer is started,
       
  3549  * and the stack is notified that the interface is ready.
       
  3550  **/
       
  3551 static int e1000_open(struct net_device *netdev)
       
  3552 {
       
  3553 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3554 	struct e1000_hw *hw = &adapter->hw;
       
  3555 	struct pci_dev *pdev = adapter->pdev;
       
  3556 	int err;
       
  3557 
       
  3558 	/* disallow open during test */
       
  3559 	if (test_bit(__E1000_TESTING, &adapter->state))
       
  3560 		return -EBUSY;
       
  3561 
       
  3562 	pm_runtime_get_sync(&pdev->dev);
       
  3563 
       
  3564 	netif_carrier_off(netdev);
       
  3565 
       
  3566 	/* allocate transmit descriptors */
       
  3567 	err = e1000e_setup_tx_resources(adapter);
       
  3568 	if (err)
       
  3569 		goto err_setup_tx;
       
  3570 
       
  3571 	/* allocate receive descriptors */
       
  3572 	err = e1000e_setup_rx_resources(adapter);
       
  3573 	if (err)
       
  3574 		goto err_setup_rx;
       
  3575 
       
  3576 	/*
       
  3577 	 * If AMT is enabled, let the firmware know that the network
       
  3578 	 * interface is now open and reset the part to a known state.
       
  3579 	 */
       
  3580 	if (adapter->flags & FLAG_HAS_AMT) {
       
  3581 		e1000_get_hw_control(adapter);
       
  3582 		e1000e_reset(adapter);
       
  3583 	}
       
  3584 
       
  3585 	e1000e_power_up_phy(adapter);
       
  3586 
       
  3587 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  3588 	if ((adapter->hw.mng_cookie.status &
       
  3589 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
       
  3590 		e1000_update_mng_vlan(adapter);
       
  3591 
       
  3592 	/* DMA latency requirement to workaround early-receive/jumbo issue */
       
  3593 	if ((adapter->flags & FLAG_HAS_ERT) ||
       
  3594 	    (adapter->hw.mac.type == e1000_pch2lan))
       
  3595 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
       
  3596 				   PM_QOS_CPU_DMA_LATENCY,
       
  3597 				   PM_QOS_DEFAULT_VALUE);
       
  3598 
       
  3599 	/*
       
  3600 	 * before we allocate an interrupt, we must be ready to handle it.
       
  3601 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  3602 	 * as soon as we call pci_request_irq, so we have to setup our
       
  3603 	 * clean_rx handler before we do so.
       
  3604 	 */
       
  3605 	e1000_configure(adapter);
       
  3606 
       
  3607 	err = e1000_request_irq(adapter);
       
  3608 	if (err)
       
  3609 		goto err_req_irq;
       
  3610 
       
  3611 	/*
       
  3612 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
       
  3613 	 * ignore e1000e MSI messages, which means we need to test our MSI
       
  3614 	 * interrupt now
       
  3615 	 */
       
  3616 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
       
  3617 		err = e1000_test_msi(adapter);
       
  3618 		if (err) {
       
  3619 			e_err("Interrupt allocation failed\n");
       
  3620 			goto err_req_irq;
       
  3621 		}
       
  3622 	}
       
  3623 
       
  3624 	/* From here on the code is the same as e1000e_up() */
       
  3625 	clear_bit(__E1000_DOWN, &adapter->state);
       
  3626 
       
  3627 	napi_enable(&adapter->napi);
       
  3628 
       
  3629 	e1000_irq_enable(adapter);
       
  3630 
       
  3631 	netif_start_queue(netdev);
       
  3632 
       
  3633 	adapter->idle_check = true;
       
  3634 	pm_runtime_put(&pdev->dev);
       
  3635 
       
  3636 	/* fire a link status change interrupt to start the watchdog */
       
  3637 	if (adapter->msix_entries)
       
  3638 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
       
  3639 	else
       
  3640 		ew32(ICS, E1000_ICS_LSC);
       
  3641 
       
  3642 	return 0;
       
  3643 
       
  3644 err_req_irq:
       
  3645 	e1000_release_hw_control(adapter);
       
  3646 	e1000_power_down_phy(adapter);
       
  3647 	e1000e_free_rx_resources(adapter);
       
  3648 err_setup_rx:
       
  3649 	e1000e_free_tx_resources(adapter);
       
  3650 err_setup_tx:
       
  3651 	e1000e_reset(adapter);
       
  3652 	pm_runtime_put_sync(&pdev->dev);
       
  3653 
       
  3654 	return err;
       
  3655 }
       
  3656 
       
  3657 /**
       
  3658  * e1000_close - Disables a network interface
       
  3659  * @netdev: network interface device structure
       
  3660  *
       
  3661  * Returns 0, this is not allowed to fail
       
  3662  *
       
  3663  * The close entry point is called when an interface is de-activated
       
  3664  * by the OS.  The hardware is still under the drivers control, but
       
  3665  * needs to be disabled.  A global MAC reset is issued to stop the
       
  3666  * hardware, and all transmit and receive resources are freed.
       
  3667  **/
       
  3668 static int e1000_close(struct net_device *netdev)
       
  3669 {
       
  3670 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3671 	struct pci_dev *pdev = adapter->pdev;
       
  3672 
       
  3673 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  3674 
       
  3675 	pm_runtime_get_sync(&pdev->dev);
       
  3676 
       
  3677 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
       
  3678 		e1000e_down(adapter);
       
  3679 		e1000_free_irq(adapter);
       
  3680 	}
       
  3681 	e1000_power_down_phy(adapter);
       
  3682 
       
  3683 	e1000e_free_tx_resources(adapter);
       
  3684 	e1000e_free_rx_resources(adapter);
       
  3685 
       
  3686 	/*
       
  3687 	 * kill manageability vlan ID if supported, but not if a vlan with
       
  3688 	 * the same ID is registered on the host OS (let 8021q kill it)
       
  3689 	 */
       
  3690 	if ((adapter->hw.mng_cookie.status &
       
  3691 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  3692 	     !(adapter->vlgrp &&
       
  3693 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
       
  3694 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  3695 
       
  3696 	/*
       
  3697 	 * If AMT is enabled, let the firmware know that the network
       
  3698 	 * interface is now closed
       
  3699 	 */
       
  3700 	if (adapter->flags & FLAG_HAS_AMT)
       
  3701 		e1000_release_hw_control(adapter);
       
  3702 
       
  3703 	if ((adapter->flags & FLAG_HAS_ERT) ||
       
  3704 	    (adapter->hw.mac.type == e1000_pch2lan))
       
  3705 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
       
  3706 
       
  3707 	pm_runtime_put_sync(&pdev->dev);
       
  3708 
       
  3709 	return 0;
       
  3710 }
       
  3711 /**
       
  3712  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  3713  * @netdev: network interface device structure
       
  3714  * @p: pointer to an address structure
       
  3715  *
       
  3716  * Returns 0 on success, negative on failure
       
  3717  **/
       
  3718 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  3719 {
       
  3720 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3721 	struct sockaddr *addr = p;
       
  3722 
       
  3723 	if (!is_valid_ether_addr(addr->sa_data))
       
  3724 		return -EADDRNOTAVAIL;
       
  3725 
       
  3726 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  3727 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
       
  3728 
       
  3729 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
       
  3730 
       
  3731 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
       
  3732 		/* activate the work around */
       
  3733 		e1000e_set_laa_state_82571(&adapter->hw, 1);
       
  3734 
       
  3735 		/*
       
  3736 		 * Hold a copy of the LAA in RAR[14] This is done so that
       
  3737 		 * between the time RAR[0] gets clobbered  and the time it
       
  3738 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  3739 		 * of the RARs and no incoming packets directed to this port
       
  3740 		 * are dropped. Eventually the LAA will be in RAR[0] and
       
  3741 		 * RAR[14]
       
  3742 		 */
       
  3743 		e1000e_rar_set(&adapter->hw,
       
  3744 			      adapter->hw.mac.addr,
       
  3745 			      adapter->hw.mac.rar_entry_count - 1);
       
  3746 	}
       
  3747 
       
  3748 	return 0;
       
  3749 }
       
  3750 
       
  3751 /**
       
  3752  * e1000e_update_phy_task - work thread to update phy
       
  3753  * @work: pointer to our work struct
       
  3754  *
       
  3755  * this worker thread exists because we must acquire a
       
  3756  * semaphore to read the phy, which we could msleep while
       
  3757  * waiting for it, and we can't msleep in a timer.
       
  3758  **/
       
  3759 static void e1000e_update_phy_task(struct work_struct *work)
       
  3760 {
       
  3761 	struct e1000_adapter *adapter = container_of(work,
       
  3762 					struct e1000_adapter, update_phy_task);
       
  3763 	e1000_get_phy_info(&adapter->hw);
       
  3764 }
       
  3765 
       
  3766 /*
       
  3767  * Need to wait a few seconds after link up to get diagnostic information from
       
  3768  * the phy
       
  3769  */
       
  3770 static void e1000_update_phy_info(unsigned long data)
       
  3771 {
       
  3772 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  3773 	schedule_work(&adapter->update_phy_task);
       
  3774 }
       
  3775 
       
  3776 /**
       
  3777  * e1000e_update_phy_stats - Update the PHY statistics counters
       
  3778  * @adapter: board private structure
       
  3779  **/
       
  3780 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
       
  3781 {
       
  3782 	struct e1000_hw *hw = &adapter->hw;
       
  3783 	s32 ret_val;
       
  3784 	u16 phy_data;
       
  3785 
       
  3786 	ret_val = hw->phy.ops.acquire(hw);
       
  3787 	if (ret_val)
       
  3788 		return;
       
  3789 
       
  3790 	hw->phy.addr = 1;
       
  3791 
       
  3792 #define HV_PHY_STATS_PAGE	778
       
  3793 	/*
       
  3794 	 * A page set is expensive so check if already on desired page.
       
  3795 	 * If not, set to the page with the PHY status registers.
       
  3796 	 */
       
  3797 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  3798 					   &phy_data);
       
  3799 	if (ret_val)
       
  3800 		goto release;
       
  3801 	if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
       
  3802 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
  3803 						    IGP01E1000_PHY_PAGE_SELECT,
       
  3804 						    (HV_PHY_STATS_PAGE <<
       
  3805 						     IGP_PAGE_SHIFT));
       
  3806 		if (ret_val)
       
  3807 			goto release;
       
  3808 	}
       
  3809 
       
  3810 	/* Read/clear the upper 16-bit registers and read/accumulate lower */
       
  3811 
       
  3812 	/* Single Collision Count */
       
  3813 	e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
       
  3814 				 &phy_data);
       
  3815 	ret_val = e1000e_read_phy_reg_mdic(hw,
       
  3816 					   HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
       
  3817 					   &phy_data);
       
  3818 	if (!ret_val)
       
  3819 		adapter->stats.scc += phy_data;
       
  3820 
       
  3821 	/* Excessive Collision Count */
       
  3822 	e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
       
  3823 				 &phy_data);
       
  3824 	ret_val = e1000e_read_phy_reg_mdic(hw,
       
  3825 					   HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
       
  3826 					   &phy_data);
       
  3827 	if (!ret_val)
       
  3828 		adapter->stats.ecol += phy_data;
       
  3829 
       
  3830 	/* Multiple Collision Count */
       
  3831 	e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
       
  3832 				 &phy_data);
       
  3833 	ret_val = e1000e_read_phy_reg_mdic(hw,
       
  3834 					   HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
       
  3835 					   &phy_data);
       
  3836 	if (!ret_val)
       
  3837 		adapter->stats.mcc += phy_data;
       
  3838 
       
  3839 	/* Late Collision Count */
       
  3840 	e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
       
  3841 				 &phy_data);
       
  3842 	ret_val = e1000e_read_phy_reg_mdic(hw,
       
  3843 					   HV_LATECOL_LOWER &
       
  3844 					   MAX_PHY_REG_ADDRESS,
       
  3845 					   &phy_data);
       
  3846 	if (!ret_val)
       
  3847 		adapter->stats.latecol += phy_data;
       
  3848 
       
  3849 	/* Collision Count - also used for adaptive IFS */
       
  3850 	e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
       
  3851 				 &phy_data);
       
  3852 	ret_val = e1000e_read_phy_reg_mdic(hw,
       
  3853 					   HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
       
  3854 					   &phy_data);
       
  3855 	if (!ret_val)
       
  3856 		hw->mac.collision_delta = phy_data;
       
  3857 
       
  3858 	/* Defer Count */
       
  3859 	e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
       
  3860 				 &phy_data);
       
  3861 	ret_val = e1000e_read_phy_reg_mdic(hw,
       
  3862 					   HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
       
  3863 					   &phy_data);
       
  3864 	if (!ret_val)
       
  3865 		adapter->stats.dc += phy_data;
       
  3866 
       
  3867 	/* Transmit with no CRS */
       
  3868 	e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
       
  3869 				 &phy_data);
       
  3870 	ret_val = e1000e_read_phy_reg_mdic(hw,
       
  3871 					   HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
       
  3872 					   &phy_data);
       
  3873 	if (!ret_val)
       
  3874 		adapter->stats.tncrs += phy_data;
       
  3875 
       
  3876 release:
       
  3877 	hw->phy.ops.release(hw);
       
  3878 }
       
  3879 
       
  3880 /**
       
  3881  * e1000e_update_stats - Update the board statistics counters
       
  3882  * @adapter: board private structure
       
  3883  **/
       
  3884 void e1000e_update_stats(struct e1000_adapter *adapter)
       
  3885 {
       
  3886 	struct net_device *netdev = adapter->netdev;
       
  3887 	struct e1000_hw *hw = &adapter->hw;
       
  3888 	struct pci_dev *pdev = adapter->pdev;
       
  3889 
       
  3890 	/*
       
  3891 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3892 	 * connection is down.
       
  3893 	 */
       
  3894 	if (adapter->link_speed == 0)
       
  3895 		return;
       
  3896 	if (pci_channel_offline(pdev))
       
  3897 		return;
       
  3898 
       
  3899 	adapter->stats.crcerrs += er32(CRCERRS);
       
  3900 	adapter->stats.gprc += er32(GPRC);
       
  3901 	adapter->stats.gorc += er32(GORCL);
       
  3902 	er32(GORCH); /* Clear gorc */
       
  3903 	adapter->stats.bprc += er32(BPRC);
       
  3904 	adapter->stats.mprc += er32(MPRC);
       
  3905 	adapter->stats.roc += er32(ROC);
       
  3906 
       
  3907 	adapter->stats.mpc += er32(MPC);
       
  3908 
       
  3909 	/* Half-duplex statistics */
       
  3910 	if (adapter->link_duplex == HALF_DUPLEX) {
       
  3911 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
       
  3912 			e1000e_update_phy_stats(adapter);
       
  3913 		} else {
       
  3914 			adapter->stats.scc += er32(SCC);
       
  3915 			adapter->stats.ecol += er32(ECOL);
       
  3916 			adapter->stats.mcc += er32(MCC);
       
  3917 			adapter->stats.latecol += er32(LATECOL);
       
  3918 			adapter->stats.dc += er32(DC);
       
  3919 
       
  3920 			hw->mac.collision_delta = er32(COLC);
       
  3921 
       
  3922 			if ((hw->mac.type != e1000_82574) &&
       
  3923 			    (hw->mac.type != e1000_82583))
       
  3924 				adapter->stats.tncrs += er32(TNCRS);
       
  3925 		}
       
  3926 		adapter->stats.colc += hw->mac.collision_delta;
       
  3927 	}
       
  3928 
       
  3929 	adapter->stats.xonrxc += er32(XONRXC);
       
  3930 	adapter->stats.xontxc += er32(XONTXC);
       
  3931 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  3932 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  3933 	adapter->stats.gptc += er32(GPTC);
       
  3934 	adapter->stats.gotc += er32(GOTCL);
       
  3935 	er32(GOTCH); /* Clear gotc */
       
  3936 	adapter->stats.rnbc += er32(RNBC);
       
  3937 	adapter->stats.ruc += er32(RUC);
       
  3938 
       
  3939 	adapter->stats.mptc += er32(MPTC);
       
  3940 	adapter->stats.bptc += er32(BPTC);
       
  3941 
       
  3942 	/* used for adaptive IFS */
       
  3943 
       
  3944 	hw->mac.tx_packet_delta = er32(TPT);
       
  3945 	adapter->stats.tpt += hw->mac.tx_packet_delta;
       
  3946 
       
  3947 	adapter->stats.algnerrc += er32(ALGNERRC);
       
  3948 	adapter->stats.rxerrc += er32(RXERRC);
       
  3949 	adapter->stats.cexterr += er32(CEXTERR);
       
  3950 	adapter->stats.tsctc += er32(TSCTC);
       
  3951 	adapter->stats.tsctfc += er32(TSCTFC);
       
  3952 
       
  3953 	/* Fill out the OS statistics structure */
       
  3954 	netdev->stats.multicast = adapter->stats.mprc;
       
  3955 	netdev->stats.collisions = adapter->stats.colc;
       
  3956 
       
  3957 	/* Rx Errors */
       
  3958 
       
  3959 	/*
       
  3960 	 * RLEC on some newer hardware can be incorrect so build
       
  3961 	 * our own version based on RUC and ROC
       
  3962 	 */
       
  3963 	netdev->stats.rx_errors = adapter->stats.rxerrc +
       
  3964 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3965 		adapter->stats.ruc + adapter->stats.roc +
       
  3966 		adapter->stats.cexterr;
       
  3967 	netdev->stats.rx_length_errors = adapter->stats.ruc +
       
  3968 					      adapter->stats.roc;
       
  3969 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3970 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3971 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
       
  3972 
       
  3973 	/* Tx Errors */
       
  3974 	netdev->stats.tx_errors = adapter->stats.ecol +
       
  3975 				       adapter->stats.latecol;
       
  3976 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
       
  3977 	netdev->stats.tx_window_errors = adapter->stats.latecol;
       
  3978 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3979 
       
  3980 	/* Tx Dropped needs to be maintained elsewhere */
       
  3981 
       
  3982 	/* Management Stats */
       
  3983 	adapter->stats.mgptc += er32(MGTPTC);
       
  3984 	adapter->stats.mgprc += er32(MGTPRC);
       
  3985 	adapter->stats.mgpdc += er32(MGTPDC);
       
  3986 }
       
  3987 
       
  3988 /**
       
  3989  * e1000_phy_read_status - Update the PHY register status snapshot
       
  3990  * @adapter: board private structure
       
  3991  **/
       
  3992 static void e1000_phy_read_status(struct e1000_adapter *adapter)
       
  3993 {
       
  3994 	struct e1000_hw *hw = &adapter->hw;
       
  3995 	struct e1000_phy_regs *phy = &adapter->phy_regs;
       
  3996 	int ret_val;
       
  3997 
       
  3998 	if ((er32(STATUS) & E1000_STATUS_LU) &&
       
  3999 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
       
  4000 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
       
  4001 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
       
  4002 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
       
  4003 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
       
  4004 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
       
  4005 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
       
  4006 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
       
  4007 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
       
  4008 		if (ret_val)
       
  4009 			e_warn("Error reading PHY register\n");
       
  4010 	} else {
       
  4011 		/*
       
  4012 		 * Do not read PHY registers if link is not up
       
  4013 		 * Set values to typical power-on defaults
       
  4014 		 */
       
  4015 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
       
  4016 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
       
  4017 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
       
  4018 			     BMSR_ERCAP);
       
  4019 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
       
  4020 				  ADVERTISE_ALL | ADVERTISE_CSMA);
       
  4021 		phy->lpa = 0;
       
  4022 		phy->expansion = EXPANSION_ENABLENPAGE;
       
  4023 		phy->ctrl1000 = ADVERTISE_1000FULL;
       
  4024 		phy->stat1000 = 0;
       
  4025 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
       
  4026 	}
       
  4027 }
       
  4028 
       
  4029 static void e1000_print_link_info(struct e1000_adapter *adapter)
       
  4030 {
       
  4031 	struct e1000_hw *hw = &adapter->hw;
       
  4032 	u32 ctrl = er32(CTRL);
       
  4033 
       
  4034 	/* Link status message must follow this format for user tools */
       
  4035 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
       
  4036 	       "Flow Control: %s\n",
       
  4037 	       adapter->netdev->name,
       
  4038 	       adapter->link_speed,
       
  4039 	       (adapter->link_duplex == FULL_DUPLEX) ?
       
  4040 	                        "Full Duplex" : "Half Duplex",
       
  4041 	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
       
  4042 	                        "RX/TX" :
       
  4043 	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
       
  4044 	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
       
  4045 }
       
  4046 
       
  4047 static bool e1000e_has_link(struct e1000_adapter *adapter)
       
  4048 {
       
  4049 	struct e1000_hw *hw = &adapter->hw;
       
  4050 	bool link_active = 0;
       
  4051 	s32 ret_val = 0;
       
  4052 
       
  4053 	/*
       
  4054 	 * get_link_status is set on LSC (link status) interrupt or
       
  4055 	 * Rx sequence error interrupt.  get_link_status will stay
       
  4056 	 * false until the check_for_link establishes link
       
  4057 	 * for copper adapters ONLY
       
  4058 	 */
       
  4059 	switch (hw->phy.media_type) {
       
  4060 	case e1000_media_type_copper:
       
  4061 		if (hw->mac.get_link_status) {
       
  4062 			ret_val = hw->mac.ops.check_for_link(hw);
       
  4063 			link_active = !hw->mac.get_link_status;
       
  4064 		} else {
       
  4065 			link_active = 1;
       
  4066 		}
       
  4067 		break;
       
  4068 	case e1000_media_type_fiber:
       
  4069 		ret_val = hw->mac.ops.check_for_link(hw);
       
  4070 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
       
  4071 		break;
       
  4072 	case e1000_media_type_internal_serdes:
       
  4073 		ret_val = hw->mac.ops.check_for_link(hw);
       
  4074 		link_active = adapter->hw.mac.serdes_has_link;
       
  4075 		break;
       
  4076 	default:
       
  4077 	case e1000_media_type_unknown:
       
  4078 		break;
       
  4079 	}
       
  4080 
       
  4081 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
       
  4082 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  4083 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
       
  4084 		e_info("Gigabit has been disabled, downgrading speed\n");
       
  4085 	}
       
  4086 
       
  4087 	return link_active;
       
  4088 }
       
  4089 
       
  4090 static void e1000e_enable_receives(struct e1000_adapter *adapter)
       
  4091 {
       
  4092 	/* make sure the receive unit is started */
       
  4093 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
       
  4094 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
       
  4095 		struct e1000_hw *hw = &adapter->hw;
       
  4096 		u32 rctl = er32(RCTL);
       
  4097 		ew32(RCTL, rctl | E1000_RCTL_EN);
       
  4098 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  4099 	}
       
  4100 }
       
  4101 
       
  4102 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
       
  4103 {
       
  4104 	struct e1000_hw *hw = &adapter->hw;
       
  4105 
       
  4106 	/*
       
  4107 	 * With 82574 controllers, PHY needs to be checked periodically
       
  4108 	 * for hung state and reset, if two calls return true
       
  4109 	 */
       
  4110 	if (e1000_check_phy_82574(hw))
       
  4111 		adapter->phy_hang_count++;
       
  4112 	else
       
  4113 		adapter->phy_hang_count = 0;
       
  4114 
       
  4115 	if (adapter->phy_hang_count > 1) {
       
  4116 		adapter->phy_hang_count = 0;
       
  4117 		schedule_work(&adapter->reset_task);
       
  4118 	}
       
  4119 }
       
  4120 
       
  4121 /**
       
  4122  * e1000_watchdog - Timer Call-back
       
  4123  * @data: pointer to adapter cast into an unsigned long
       
  4124  **/
       
  4125 static void e1000_watchdog(unsigned long data)
       
  4126 {
       
  4127 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  4128 
       
  4129 	/* Do the rest outside of interrupt context */
       
  4130 	schedule_work(&adapter->watchdog_task);
       
  4131 
       
  4132 	/* TODO: make this use queue_delayed_work() */
       
  4133 }
       
  4134 
       
  4135 static void e1000_watchdog_task(struct work_struct *work)
       
  4136 {
       
  4137 	struct e1000_adapter *adapter = container_of(work,
       
  4138 					struct e1000_adapter, watchdog_task);
       
  4139 	struct net_device *netdev = adapter->netdev;
       
  4140 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  4141 	struct e1000_phy_info *phy = &adapter->hw.phy;
       
  4142 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4143 	struct e1000_hw *hw = &adapter->hw;
       
  4144 	u32 link, tctl;
       
  4145 	int tx_pending = 0;
       
  4146 
       
  4147 	link = e1000e_has_link(adapter);
       
  4148 	if ((netif_carrier_ok(netdev)) && link) {
       
  4149 		/* Cancel scheduled suspend requests. */
       
  4150 		pm_runtime_resume(netdev->dev.parent);
       
  4151 
       
  4152 		e1000e_enable_receives(adapter);
       
  4153 		goto link_up;
       
  4154 	}
       
  4155 
       
  4156 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
       
  4157 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
       
  4158 		e1000_update_mng_vlan(adapter);
       
  4159 
       
  4160 	if (link) {
       
  4161 		if (!netif_carrier_ok(netdev)) {
       
  4162 			bool txb2b = 1;
       
  4163 
       
  4164 			/* Cancel scheduled suspend requests. */
       
  4165 			pm_runtime_resume(netdev->dev.parent);
       
  4166 
       
  4167 			/* update snapshot of PHY registers on LSC */
       
  4168 			e1000_phy_read_status(adapter);
       
  4169 			mac->ops.get_link_up_info(&adapter->hw,
       
  4170 						   &adapter->link_speed,
       
  4171 						   &adapter->link_duplex);
       
  4172 			e1000_print_link_info(adapter);
       
  4173 			/*
       
  4174 			 * On supported PHYs, check for duplex mismatch only
       
  4175 			 * if link has autonegotiated at 10/100 half
       
  4176 			 */
       
  4177 			if ((hw->phy.type == e1000_phy_igp_3 ||
       
  4178 			     hw->phy.type == e1000_phy_bm) &&
       
  4179 			    (hw->mac.autoneg == true) &&
       
  4180 			    (adapter->link_speed == SPEED_10 ||
       
  4181 			     adapter->link_speed == SPEED_100) &&
       
  4182 			    (adapter->link_duplex == HALF_DUPLEX)) {
       
  4183 				u16 autoneg_exp;
       
  4184 
       
  4185 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
       
  4186 
       
  4187 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
       
  4188 					e_info("Autonegotiated half duplex but"
       
  4189 					       " link partner cannot autoneg. "
       
  4190 					       " Try forcing full duplex if "
       
  4191 					       "link gets many collisions.\n");
       
  4192 			}
       
  4193 
       
  4194 			/* adjust timeout factor according to speed/duplex */
       
  4195 			adapter->tx_timeout_factor = 1;
       
  4196 			switch (adapter->link_speed) {
       
  4197 			case SPEED_10:
       
  4198 				txb2b = 0;
       
  4199 				adapter->tx_timeout_factor = 16;
       
  4200 				break;
       
  4201 			case SPEED_100:
       
  4202 				txb2b = 0;
       
  4203 				adapter->tx_timeout_factor = 10;
       
  4204 				break;
       
  4205 			}
       
  4206 
       
  4207 			/*
       
  4208 			 * workaround: re-program speed mode bit after
       
  4209 			 * link-up event
       
  4210 			 */
       
  4211 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
       
  4212 			    !txb2b) {
       
  4213 				u32 tarc0;
       
  4214 				tarc0 = er32(TARC(0));
       
  4215 				tarc0 &= ~SPEED_MODE_BIT;
       
  4216 				ew32(TARC(0), tarc0);
       
  4217 			}
       
  4218 
       
  4219 			/*
       
  4220 			 * disable TSO for pcie and 10/100 speeds, to avoid
       
  4221 			 * some hardware issues
       
  4222 			 */
       
  4223 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
       
  4224 				switch (adapter->link_speed) {
       
  4225 				case SPEED_10:
       
  4226 				case SPEED_100:
       
  4227 					e_info("10/100 speed: disabling TSO\n");
       
  4228 					netdev->features &= ~NETIF_F_TSO;
       
  4229 					netdev->features &= ~NETIF_F_TSO6;
       
  4230 					break;
       
  4231 				case SPEED_1000:
       
  4232 					netdev->features |= NETIF_F_TSO;
       
  4233 					netdev->features |= NETIF_F_TSO6;
       
  4234 					break;
       
  4235 				default:
       
  4236 					/* oops */
       
  4237 					break;
       
  4238 				}
       
  4239 			}
       
  4240 
       
  4241 			/*
       
  4242 			 * enable transmits in the hardware, need to do this
       
  4243 			 * after setting TARC(0)
       
  4244 			 */
       
  4245 			tctl = er32(TCTL);
       
  4246 			tctl |= E1000_TCTL_EN;
       
  4247 			ew32(TCTL, tctl);
       
  4248 
       
  4249                         /*
       
  4250 			 * Perform any post-link-up configuration before
       
  4251 			 * reporting link up.
       
  4252 			 */
       
  4253 			if (phy->ops.cfg_on_link_up)
       
  4254 				phy->ops.cfg_on_link_up(hw);
       
  4255 
       
  4256 			netif_carrier_on(netdev);
       
  4257 
       
  4258 			if (!test_bit(__E1000_DOWN, &adapter->state))
       
  4259 				mod_timer(&adapter->phy_info_timer,
       
  4260 					  round_jiffies(jiffies + 2 * HZ));
       
  4261 		}
       
  4262 	} else {
       
  4263 		if (netif_carrier_ok(netdev)) {
       
  4264 			adapter->link_speed = 0;
       
  4265 			adapter->link_duplex = 0;
       
  4266 			/* Link status message must follow this format */
       
  4267 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
       
  4268 			       adapter->netdev->name);
       
  4269 			netif_carrier_off(netdev);
       
  4270 			if (!test_bit(__E1000_DOWN, &adapter->state))
       
  4271 				mod_timer(&adapter->phy_info_timer,
       
  4272 					  round_jiffies(jiffies + 2 * HZ));
       
  4273 
       
  4274 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
       
  4275 				schedule_work(&adapter->reset_task);
       
  4276 			else
       
  4277 				pm_schedule_suspend(netdev->dev.parent,
       
  4278 							LINK_TIMEOUT);
       
  4279 		}
       
  4280 	}
       
  4281 
       
  4282 link_up:
       
  4283 	e1000e_update_stats(adapter);
       
  4284 
       
  4285 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  4286 	adapter->tpt_old = adapter->stats.tpt;
       
  4287 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  4288 	adapter->colc_old = adapter->stats.colc;
       
  4289 
       
  4290 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
       
  4291 	adapter->gorc_old = adapter->stats.gorc;
       
  4292 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
       
  4293 	adapter->gotc_old = adapter->stats.gotc;
       
  4294 
       
  4295 	e1000e_update_adaptive(&adapter->hw);
       
  4296 
       
  4297 	if (!netif_carrier_ok(netdev)) {
       
  4298 		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
       
  4299 			       tx_ring->count);
       
  4300 		if (tx_pending) {
       
  4301 			/*
       
  4302 			 * We've lost link, so the controller stops DMA,
       
  4303 			 * but we've got queued Tx work that's never going
       
  4304 			 * to get done, so reset controller to flush Tx.
       
  4305 			 * (Do the reset outside of interrupt context).
       
  4306 			 */
       
  4307 			adapter->tx_timeout_count++;
       
  4308 			schedule_work(&adapter->reset_task);
       
  4309 			/* return immediately since reset is imminent */
       
  4310 			return;
       
  4311 		}
       
  4312 	}
       
  4313 
       
  4314 	/* Simple mode for Interrupt Throttle Rate (ITR) */
       
  4315 	if (adapter->itr_setting == 4) {
       
  4316 		/*
       
  4317 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
       
  4318 		 * Total asymmetrical Tx or Rx gets ITR=8000;
       
  4319 		 * everyone else is between 2000-8000.
       
  4320 		 */
       
  4321 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
       
  4322 		u32 dif = (adapter->gotc > adapter->gorc ?
       
  4323 			    adapter->gotc - adapter->gorc :
       
  4324 			    adapter->gorc - adapter->gotc) / 10000;
       
  4325 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
       
  4326 
       
  4327 		ew32(ITR, 1000000000 / (itr * 256));
       
  4328 	}
       
  4329 
       
  4330 	/* Cause software interrupt to ensure Rx ring is cleaned */
       
  4331 	if (adapter->msix_entries)
       
  4332 		ew32(ICS, adapter->rx_ring->ims_val);
       
  4333 	else
       
  4334 		ew32(ICS, E1000_ICS_RXDMT0);
       
  4335 
       
  4336 	/* Force detection of hung controller every watchdog period */
       
  4337 	adapter->detect_tx_hung = 1;
       
  4338 
       
  4339 	/* flush partial descriptors to memory before detecting tx hang */
       
  4340 	if (adapter->flags2 & FLAG2_DMA_BURST) {
       
  4341 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
       
  4342 		ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
       
  4343 		/*
       
  4344 		 * no need to flush the writes because the timeout code does
       
  4345 		 * an er32 first thing
       
  4346 		 */
       
  4347 	}
       
  4348 
       
  4349 	/*
       
  4350 	 * With 82571 controllers, LAA may be overwritten due to controller
       
  4351 	 * reset from the other port. Set the appropriate LAA in RAR[0]
       
  4352 	 */
       
  4353 	if (e1000e_get_laa_state_82571(hw))
       
  4354 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
       
  4355 
       
  4356 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
       
  4357 		e1000e_check_82574_phy_workaround(adapter);
       
  4358 
       
  4359 	/* Reset the timer */
       
  4360 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  4361 		mod_timer(&adapter->watchdog_timer,
       
  4362 			  round_jiffies(jiffies + 2 * HZ));
       
  4363 }
       
  4364 
       
  4365 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  4366 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  4367 #define E1000_TX_FLAGS_TSO		0x00000004
       
  4368 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  4369 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  4370 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  4371 
       
  4372 static int e1000_tso(struct e1000_adapter *adapter,
       
  4373 		     struct sk_buff *skb)
       
  4374 {
       
  4375 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4376 	struct e1000_context_desc *context_desc;
       
  4377 	struct e1000_buffer *buffer_info;
       
  4378 	unsigned int i;
       
  4379 	u32 cmd_length = 0;
       
  4380 	u16 ipcse = 0, tucse, mss;
       
  4381 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  4382 	int err;
       
  4383 
       
  4384 	if (!skb_is_gso(skb))
       
  4385 		return 0;
       
  4386 
       
  4387 	if (skb_header_cloned(skb)) {
       
  4388 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  4389 		if (err)
       
  4390 			return err;
       
  4391 	}
       
  4392 
       
  4393 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  4394 	mss = skb_shinfo(skb)->gso_size;
       
  4395 	if (skb->protocol == htons(ETH_P_IP)) {
       
  4396 		struct iphdr *iph = ip_hdr(skb);
       
  4397 		iph->tot_len = 0;
       
  4398 		iph->check = 0;
       
  4399 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
       
  4400 		                                         0, IPPROTO_TCP, 0);
       
  4401 		cmd_length = E1000_TXD_CMD_IP;
       
  4402 		ipcse = skb_transport_offset(skb) - 1;
       
  4403 	} else if (skb_is_gso_v6(skb)) {
       
  4404 		ipv6_hdr(skb)->payload_len = 0;
       
  4405 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  4406 		                                       &ipv6_hdr(skb)->daddr,
       
  4407 		                                       0, IPPROTO_TCP, 0);
       
  4408 		ipcse = 0;
       
  4409 	}
       
  4410 	ipcss = skb_network_offset(skb);
       
  4411 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  4412 	tucss = skb_transport_offset(skb);
       
  4413 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  4414 	tucse = 0;
       
  4415 
       
  4416 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  4417 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  4418 
       
  4419 	i = tx_ring->next_to_use;
       
  4420 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  4421 	buffer_info = &tx_ring->buffer_info[i];
       
  4422 
       
  4423 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  4424 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  4425 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  4426 	context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  4427 	context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  4428 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  4429 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  4430 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  4431 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  4432 
       
  4433 	buffer_info->time_stamp = jiffies;
       
  4434 	buffer_info->next_to_watch = i;
       
  4435 
       
  4436 	i++;
       
  4437 	if (i == tx_ring->count)
       
  4438 		i = 0;
       
  4439 	tx_ring->next_to_use = i;
       
  4440 
       
  4441 	return 1;
       
  4442 }
       
  4443 
       
  4444 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  4445 {
       
  4446 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4447 	struct e1000_context_desc *context_desc;
       
  4448 	struct e1000_buffer *buffer_info;
       
  4449 	unsigned int i;
       
  4450 	u8 css;
       
  4451 	u32 cmd_len = E1000_TXD_CMD_DEXT;
       
  4452 	__be16 protocol;
       
  4453 
       
  4454 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  4455 		return 0;
       
  4456 
       
  4457 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
       
  4458 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
       
  4459 	else
       
  4460 		protocol = skb->protocol;
       
  4461 
       
  4462 	switch (protocol) {
       
  4463 	case cpu_to_be16(ETH_P_IP):
       
  4464 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
       
  4465 			cmd_len |= E1000_TXD_CMD_TCP;
       
  4466 		break;
       
  4467 	case cpu_to_be16(ETH_P_IPV6):
       
  4468 		/* XXX not handling all IPV6 headers */
       
  4469 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
       
  4470 			cmd_len |= E1000_TXD_CMD_TCP;
       
  4471 		break;
       
  4472 	default:
       
  4473 		if (unlikely(net_ratelimit()))
       
  4474 			e_warn("checksum_partial proto=%x!\n",
       
  4475 			       be16_to_cpu(protocol));
       
  4476 		break;
       
  4477 	}
       
  4478 
       
  4479 	css = skb_transport_offset(skb);
       
  4480 
       
  4481 	i = tx_ring->next_to_use;
       
  4482 	buffer_info = &tx_ring->buffer_info[i];
       
  4483 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  4484 
       
  4485 	context_desc->lower_setup.ip_config = 0;
       
  4486 	context_desc->upper_setup.tcp_fields.tucss = css;
       
  4487 	context_desc->upper_setup.tcp_fields.tucso =
       
  4488 				css + skb->csum_offset;
       
  4489 	context_desc->upper_setup.tcp_fields.tucse = 0;
       
  4490 	context_desc->tcp_seg_setup.data = 0;
       
  4491 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
       
  4492 
       
  4493 	buffer_info->time_stamp = jiffies;
       
  4494 	buffer_info->next_to_watch = i;
       
  4495 
       
  4496 	i++;
       
  4497 	if (i == tx_ring->count)
       
  4498 		i = 0;
       
  4499 	tx_ring->next_to_use = i;
       
  4500 
       
  4501 	return 1;
       
  4502 }
       
  4503 
       
  4504 #define E1000_MAX_PER_TXD	8192
       
  4505 #define E1000_MAX_TXD_PWR	12
       
  4506 
       
  4507 static int e1000_tx_map(struct e1000_adapter *adapter,
       
  4508 			struct sk_buff *skb, unsigned int first,
       
  4509 			unsigned int max_per_txd, unsigned int nr_frags,
       
  4510 			unsigned int mss)
       
  4511 {
       
  4512 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4513 	struct pci_dev *pdev = adapter->pdev;
       
  4514 	struct e1000_buffer *buffer_info;
       
  4515 	unsigned int len = skb_headlen(skb);
       
  4516 	unsigned int offset = 0, size, count = 0, i;
       
  4517 	unsigned int f, bytecount, segs;
       
  4518 
       
  4519 	i = tx_ring->next_to_use;
       
  4520 
       
  4521 	while (len) {
       
  4522 		buffer_info = &tx_ring->buffer_info[i];
       
  4523 		size = min(len, max_per_txd);
       
  4524 
       
  4525 		buffer_info->length = size;
       
  4526 		buffer_info->time_stamp = jiffies;
       
  4527 		buffer_info->next_to_watch = i;
       
  4528 		buffer_info->dma = dma_map_single(&pdev->dev,
       
  4529 						  skb->data + offset,
       
  4530 						  size,	DMA_TO_DEVICE);
       
  4531 		buffer_info->mapped_as_page = false;
       
  4532 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  4533 			goto dma_error;
       
  4534 
       
  4535 		len -= size;
       
  4536 		offset += size;
       
  4537 		count++;
       
  4538 
       
  4539 		if (len) {
       
  4540 			i++;
       
  4541 			if (i == tx_ring->count)
       
  4542 				i = 0;
       
  4543 		}
       
  4544 	}
       
  4545 
       
  4546 	for (f = 0; f < nr_frags; f++) {
       
  4547 		struct skb_frag_struct *frag;
       
  4548 
       
  4549 		frag = &skb_shinfo(skb)->frags[f];
       
  4550 		len = frag->size;
       
  4551 		offset = frag->page_offset;
       
  4552 
       
  4553 		while (len) {
       
  4554 			i++;
       
  4555 			if (i == tx_ring->count)
       
  4556 				i = 0;
       
  4557 
       
  4558 			buffer_info = &tx_ring->buffer_info[i];
       
  4559 			size = min(len, max_per_txd);
       
  4560 
       
  4561 			buffer_info->length = size;
       
  4562 			buffer_info->time_stamp = jiffies;
       
  4563 			buffer_info->next_to_watch = i;
       
  4564 			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
       
  4565 							offset, size,
       
  4566 							DMA_TO_DEVICE);
       
  4567 			buffer_info->mapped_as_page = true;
       
  4568 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  4569 				goto dma_error;
       
  4570 
       
  4571 			len -= size;
       
  4572 			offset += size;
       
  4573 			count++;
       
  4574 		}
       
  4575 	}
       
  4576 
       
  4577 	segs = skb_shinfo(skb)->gso_segs ?: 1;
       
  4578 	/* multiply data chunks by size of headers */
       
  4579 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
       
  4580 
       
  4581 	tx_ring->buffer_info[i].skb = skb;
       
  4582 	tx_ring->buffer_info[i].segs = segs;
       
  4583 	tx_ring->buffer_info[i].bytecount = bytecount;
       
  4584 	tx_ring->buffer_info[first].next_to_watch = i;
       
  4585 
       
  4586 	return count;
       
  4587 
       
  4588 dma_error:
       
  4589 	dev_err(&pdev->dev, "TX DMA map failed\n");
       
  4590 	buffer_info->dma = 0;
       
  4591 	if (count)
       
  4592 		count--;
       
  4593 
       
  4594 	while (count--) {
       
  4595 		if (i==0)
       
  4596 			i += tx_ring->count;
       
  4597 		i--;
       
  4598 		buffer_info = &tx_ring->buffer_info[i];
       
  4599 		e1000_put_txbuf(adapter, buffer_info);;
       
  4600 	}
       
  4601 
       
  4602 	return 0;
       
  4603 }
       
  4604 
       
  4605 static void e1000_tx_queue(struct e1000_adapter *adapter,
       
  4606 			   int tx_flags, int count)
       
  4607 {
       
  4608 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4609 	struct e1000_tx_desc *tx_desc = NULL;
       
  4610 	struct e1000_buffer *buffer_info;
       
  4611 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  4612 	unsigned int i;
       
  4613 
       
  4614 	if (tx_flags & E1000_TX_FLAGS_TSO) {
       
  4615 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  4616 			     E1000_TXD_CMD_TSE;
       
  4617 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  4618 
       
  4619 		if (tx_flags & E1000_TX_FLAGS_IPV4)
       
  4620 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  4621 	}
       
  4622 
       
  4623 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
       
  4624 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  4625 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  4626 	}
       
  4627 
       
  4628 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
       
  4629 		txd_lower |= E1000_TXD_CMD_VLE;
       
  4630 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  4631 	}
       
  4632 
       
  4633 	i = tx_ring->next_to_use;
       
  4634 
       
  4635 	while (count--) {
       
  4636 		buffer_info = &tx_ring->buffer_info[i];
       
  4637 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  4638 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4639 		tx_desc->lower.data =
       
  4640 			cpu_to_le32(txd_lower | buffer_info->length);
       
  4641 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  4642 
       
  4643 		i++;
       
  4644 		if (i == tx_ring->count)
       
  4645 			i = 0;
       
  4646 	}
       
  4647 
       
  4648 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  4649 
       
  4650 	/*
       
  4651 	 * Force memory writes to complete before letting h/w
       
  4652 	 * know there are new descriptors to fetch.  (Only
       
  4653 	 * applicable for weak-ordered memory model archs,
       
  4654 	 * such as IA-64).
       
  4655 	 */
       
  4656 	wmb();
       
  4657 
       
  4658 	tx_ring->next_to_use = i;
       
  4659 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
       
  4660 	/*
       
  4661 	 * we need this if more than one processor can write to our tail
       
  4662 	 * at a time, it synchronizes IO on IA64/Altix systems
       
  4663 	 */
       
  4664 	mmiowb();
       
  4665 }
       
  4666 
       
  4667 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  4668 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
       
  4669 				    struct sk_buff *skb)
       
  4670 {
       
  4671 	struct e1000_hw *hw =  &adapter->hw;
       
  4672 	u16 length, offset;
       
  4673 
       
  4674 	if (vlan_tx_tag_present(skb)) {
       
  4675 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  4676 		    (adapter->hw.mng_cookie.status &
       
  4677 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
       
  4678 			return 0;
       
  4679 	}
       
  4680 
       
  4681 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
       
  4682 		return 0;
       
  4683 
       
  4684 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
       
  4685 		return 0;
       
  4686 
       
  4687 	{
       
  4688 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
       
  4689 		struct udphdr *udp;
       
  4690 
       
  4691 		if (ip->protocol != IPPROTO_UDP)
       
  4692 			return 0;
       
  4693 
       
  4694 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
       
  4695 		if (ntohs(udp->dest) != 67)
       
  4696 			return 0;
       
  4697 
       
  4698 		offset = (u8 *)udp + 8 - skb->data;
       
  4699 		length = skb->len - offset;
       
  4700 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
       
  4701 	}
       
  4702 
       
  4703 	return 0;
       
  4704 }
       
  4705 
       
  4706 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  4707 {
       
  4708 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4709 
       
  4710 	netif_stop_queue(netdev);
       
  4711 	/*
       
  4712 	 * Herbert's original patch had:
       
  4713 	 *  smp_mb__after_netif_stop_queue();
       
  4714 	 * but since that doesn't exist yet, just open code it.
       
  4715 	 */
       
  4716 	smp_mb();
       
  4717 
       
  4718 	/*
       
  4719 	 * We need to check again in a case another CPU has just
       
  4720 	 * made room available.
       
  4721 	 */
       
  4722 	if (e1000_desc_unused(adapter->tx_ring) < size)
       
  4723 		return -EBUSY;
       
  4724 
       
  4725 	/* A reprieve! */
       
  4726 	netif_start_queue(netdev);
       
  4727 	++adapter->restart_queue;
       
  4728 	return 0;
       
  4729 }
       
  4730 
       
  4731 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  4732 {
       
  4733 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4734 
       
  4735 	if (e1000_desc_unused(adapter->tx_ring) >= size)
       
  4736 		return 0;
       
  4737 	return __e1000_maybe_stop_tx(netdev, size);
       
  4738 }
       
  4739 
       
  4740 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  4741 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
  4742 				    struct net_device *netdev)
       
  4743 {
       
  4744 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4745 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4746 	unsigned int first;
       
  4747 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
       
  4748 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  4749 	unsigned int tx_flags = 0;
       
  4750 	unsigned int len = skb_headlen(skb);
       
  4751 	unsigned int nr_frags;
       
  4752 	unsigned int mss;
       
  4753 	int count = 0;
       
  4754 	int tso;
       
  4755 	unsigned int f;
       
  4756 
       
  4757 	if (test_bit(__E1000_DOWN, &adapter->state)) {
       
  4758 		dev_kfree_skb_any(skb);
       
  4759 		return NETDEV_TX_OK;
       
  4760 	}
       
  4761 
       
  4762 	if (skb->len <= 0) {
       
  4763 		dev_kfree_skb_any(skb);
       
  4764 		return NETDEV_TX_OK;
       
  4765 	}
       
  4766 
       
  4767 	mss = skb_shinfo(skb)->gso_size;
       
  4768 	/*
       
  4769 	 * The controller does a simple calculation to
       
  4770 	 * make sure there is enough room in the FIFO before
       
  4771 	 * initiating the DMA for each buffer.  The calc is:
       
  4772 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  4773 	 * overrun the FIFO, adjust the max buffer len if mss
       
  4774 	 * drops.
       
  4775 	 */
       
  4776 	if (mss) {
       
  4777 		u8 hdr_len;
       
  4778 		max_per_txd = min(mss << 2, max_per_txd);
       
  4779 		max_txd_pwr = fls(max_per_txd) - 1;
       
  4780 
       
  4781 		/*
       
  4782 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  4783 		 * points to just header, pull a few bytes of payload from
       
  4784 		 * frags into skb->data
       
  4785 		 */
       
  4786 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  4787 		/*
       
  4788 		 * we do this workaround for ES2LAN, but it is un-necessary,
       
  4789 		 * avoiding it could save a lot of cycles
       
  4790 		 */
       
  4791 		if (skb->data_len && (hdr_len == len)) {
       
  4792 			unsigned int pull_size;
       
  4793 
       
  4794 			pull_size = min((unsigned int)4, skb->data_len);
       
  4795 			if (!__pskb_pull_tail(skb, pull_size)) {
       
  4796 				e_err("__pskb_pull_tail failed.\n");
       
  4797 				dev_kfree_skb_any(skb);
       
  4798 				return NETDEV_TX_OK;
       
  4799 			}
       
  4800 			len = skb_headlen(skb);
       
  4801 		}
       
  4802 	}
       
  4803 
       
  4804 	/* reserve a descriptor for the offload context */
       
  4805 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  4806 		count++;
       
  4807 	count++;
       
  4808 
       
  4809 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  4810 
       
  4811 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  4812 	for (f = 0; f < nr_frags; f++)
       
  4813 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  4814 				       max_txd_pwr);
       
  4815 
       
  4816 	if (adapter->hw.mac.tx_pkt_filtering)
       
  4817 		e1000_transfer_dhcp_info(adapter, skb);
       
  4818 
       
  4819 	/*
       
  4820 	 * need: count + 2 desc gap to keep tail from touching
       
  4821 	 * head, otherwise try next time
       
  4822 	 */
       
  4823 	if (e1000_maybe_stop_tx(netdev, count + 2))
       
  4824 		return NETDEV_TX_BUSY;
       
  4825 
       
  4826 	if (vlan_tx_tag_present(skb)) {
       
  4827 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  4828 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  4829 	}
       
  4830 
       
  4831 	first = tx_ring->next_to_use;
       
  4832 
       
  4833 	tso = e1000_tso(adapter, skb);
       
  4834 	if (tso < 0) {
       
  4835 		dev_kfree_skb_any(skb);
       
  4836 		return NETDEV_TX_OK;
       
  4837 	}
       
  4838 
       
  4839 	if (tso)
       
  4840 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  4841 	else if (e1000_tx_csum(adapter, skb))
       
  4842 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  4843 
       
  4844 	/*
       
  4845 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
       
  4846 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  4847 	 * no longer assume, we must.
       
  4848 	 */
       
  4849 	if (skb->protocol == htons(ETH_P_IP))
       
  4850 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  4851 
       
  4852 	/* if count is 0 then mapping error has occured */
       
  4853 	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
       
  4854 	if (count) {
       
  4855 		e1000_tx_queue(adapter, tx_flags, count);
       
  4856 		/* Make sure there is space in the ring for the next send. */
       
  4857 		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
       
  4858 
       
  4859 	} else {
       
  4860 		dev_kfree_skb_any(skb);
       
  4861 		tx_ring->buffer_info[first].time_stamp = 0;
       
  4862 		tx_ring->next_to_use = first;
       
  4863 	}
       
  4864 
       
  4865 	return NETDEV_TX_OK;
       
  4866 }
       
  4867 
       
  4868 /**
       
  4869  * e1000_tx_timeout - Respond to a Tx Hang
       
  4870  * @netdev: network interface device structure
       
  4871  **/
       
  4872 static void e1000_tx_timeout(struct net_device *netdev)
       
  4873 {
       
  4874 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4875 
       
  4876 	/* Do the reset outside of interrupt context */
       
  4877 	adapter->tx_timeout_count++;
       
  4878 	schedule_work(&adapter->reset_task);
       
  4879 }
       
  4880 
       
  4881 static void e1000_reset_task(struct work_struct *work)
       
  4882 {
       
  4883 	struct e1000_adapter *adapter;
       
  4884 	adapter = container_of(work, struct e1000_adapter, reset_task);
       
  4885 
       
  4886 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
       
  4887 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
       
  4888 		e1000e_dump(adapter);
       
  4889 		e_err("Reset adapter\n");
       
  4890 	}
       
  4891 	e1000e_reinit_locked(adapter);
       
  4892 }
       
  4893 
       
  4894 /**
       
  4895  * e1000_get_stats - Get System Network Statistics
       
  4896  * @netdev: network interface device structure
       
  4897  *
       
  4898  * Returns the address of the device statistics structure.
       
  4899  * The statistics are actually updated from the timer callback.
       
  4900  **/
       
  4901 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
       
  4902 {
       
  4903 	/* only return the current stats */
       
  4904 	return &netdev->stats;
       
  4905 }
       
  4906 
       
  4907 /**
       
  4908  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  4909  * @netdev: network interface device structure
       
  4910  * @new_mtu: new value for maximum frame size
       
  4911  *
       
  4912  * Returns 0 on success, negative on failure
       
  4913  **/
       
  4914 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  4915 {
       
  4916 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4917 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
       
  4918 
       
  4919 	/* Jumbo frame support */
       
  4920 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
       
  4921 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
       
  4922 		e_err("Jumbo Frames not supported.\n");
       
  4923 		return -EINVAL;
       
  4924 	}
       
  4925 
       
  4926 	/* Supported frame sizes */
       
  4927 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
       
  4928 	    (max_frame > adapter->max_hw_frame_size)) {
       
  4929 		e_err("Unsupported MTU setting\n");
       
  4930 		return -EINVAL;
       
  4931 	}
       
  4932 
       
  4933 	/* Jumbo frame workaround on 82579 requires CRC be stripped */
       
  4934 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
       
  4935 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
       
  4936 	    (new_mtu > ETH_DATA_LEN)) {
       
  4937 		e_err("Jumbo Frames not supported on 82579 when CRC "
       
  4938 		      "stripping is disabled.\n");
       
  4939 		return -EINVAL;
       
  4940 	}
       
  4941 
       
  4942 	/* 82573 Errata 17 */
       
  4943 	if (((adapter->hw.mac.type == e1000_82573) ||
       
  4944 	     (adapter->hw.mac.type == e1000_82574)) &&
       
  4945 	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
       
  4946 		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
       
  4947 		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
       
  4948 	}
       
  4949 
       
  4950 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  4951 		msleep(1);
       
  4952 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
       
  4953 	adapter->max_frame_size = max_frame;
       
  4954 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
       
  4955 	netdev->mtu = new_mtu;
       
  4956 	if (netif_running(netdev))
       
  4957 		e1000e_down(adapter);
       
  4958 
       
  4959 	/*
       
  4960 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  4961 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  4962 	 * larger slab size.
       
  4963 	 * i.e. RXBUFFER_2048 --> size-4096 slab
       
  4964 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
       
  4965 	 * fragmented skbs
       
  4966 	 */
       
  4967 
       
  4968 	if (max_frame <= 2048)
       
  4969 		adapter->rx_buffer_len = 2048;
       
  4970 	else
       
  4971 		adapter->rx_buffer_len = 4096;
       
  4972 
       
  4973 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  4974 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
       
  4975 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
       
  4976 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
       
  4977 					 + ETH_FCS_LEN;
       
  4978 
       
  4979 	if (netif_running(netdev))
       
  4980 		e1000e_up(adapter);
       
  4981 	else
       
  4982 		e1000e_reset(adapter);
       
  4983 
       
  4984 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  4985 
       
  4986 	return 0;
       
  4987 }
       
  4988 
       
  4989 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  4990 			   int cmd)
       
  4991 {
       
  4992 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4993 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4994 
       
  4995 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
       
  4996 		return -EOPNOTSUPP;
       
  4997 
       
  4998 	switch (cmd) {
       
  4999 	case SIOCGMIIPHY:
       
  5000 		data->phy_id = adapter->hw.phy.addr;
       
  5001 		break;
       
  5002 	case SIOCGMIIREG:
       
  5003 		e1000_phy_read_status(adapter);
       
  5004 
       
  5005 		switch (data->reg_num & 0x1F) {
       
  5006 		case MII_BMCR:
       
  5007 			data->val_out = adapter->phy_regs.bmcr;
       
  5008 			break;
       
  5009 		case MII_BMSR:
       
  5010 			data->val_out = adapter->phy_regs.bmsr;
       
  5011 			break;
       
  5012 		case MII_PHYSID1:
       
  5013 			data->val_out = (adapter->hw.phy.id >> 16);
       
  5014 			break;
       
  5015 		case MII_PHYSID2:
       
  5016 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
       
  5017 			break;
       
  5018 		case MII_ADVERTISE:
       
  5019 			data->val_out = adapter->phy_regs.advertise;
       
  5020 			break;
       
  5021 		case MII_LPA:
       
  5022 			data->val_out = adapter->phy_regs.lpa;
       
  5023 			break;
       
  5024 		case MII_EXPANSION:
       
  5025 			data->val_out = adapter->phy_regs.expansion;
       
  5026 			break;
       
  5027 		case MII_CTRL1000:
       
  5028 			data->val_out = adapter->phy_regs.ctrl1000;
       
  5029 			break;
       
  5030 		case MII_STAT1000:
       
  5031 			data->val_out = adapter->phy_regs.stat1000;
       
  5032 			break;
       
  5033 		case MII_ESTATUS:
       
  5034 			data->val_out = adapter->phy_regs.estatus;
       
  5035 			break;
       
  5036 		default:
       
  5037 			return -EIO;
       
  5038 		}
       
  5039 		break;
       
  5040 	case SIOCSMIIREG:
       
  5041 	default:
       
  5042 		return -EOPNOTSUPP;
       
  5043 	}
       
  5044 	return 0;
       
  5045 }
       
  5046 
       
  5047 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  5048 {
       
  5049 	switch (cmd) {
       
  5050 	case SIOCGMIIPHY:
       
  5051 	case SIOCGMIIREG:
       
  5052 	case SIOCSMIIREG:
       
  5053 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  5054 	default:
       
  5055 		return -EOPNOTSUPP;
       
  5056 	}
       
  5057 }
       
  5058 
       
  5059 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
       
  5060 {
       
  5061 	struct e1000_hw *hw = &adapter->hw;
       
  5062 	u32 i, mac_reg;
       
  5063 	u16 phy_reg;
       
  5064 	int retval = 0;
       
  5065 
       
  5066 	/* copy MAC RARs to PHY RARs */
       
  5067 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
       
  5068 
       
  5069 	/* copy MAC MTA to PHY MTA */
       
  5070 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
       
  5071 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
       
  5072 		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
       
  5073 		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
       
  5074 	}
       
  5075 
       
  5076 	/* configure PHY Rx Control register */
       
  5077 	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
       
  5078 	mac_reg = er32(RCTL);
       
  5079 	if (mac_reg & E1000_RCTL_UPE)
       
  5080 		phy_reg |= BM_RCTL_UPE;
       
  5081 	if (mac_reg & E1000_RCTL_MPE)
       
  5082 		phy_reg |= BM_RCTL_MPE;
       
  5083 	phy_reg &= ~(BM_RCTL_MO_MASK);
       
  5084 	if (mac_reg & E1000_RCTL_MO_3)
       
  5085 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
       
  5086 				<< BM_RCTL_MO_SHIFT);
       
  5087 	if (mac_reg & E1000_RCTL_BAM)
       
  5088 		phy_reg |= BM_RCTL_BAM;
       
  5089 	if (mac_reg & E1000_RCTL_PMCF)
       
  5090 		phy_reg |= BM_RCTL_PMCF;
       
  5091 	mac_reg = er32(CTRL);
       
  5092 	if (mac_reg & E1000_CTRL_RFCE)
       
  5093 		phy_reg |= BM_RCTL_RFCE;
       
  5094 	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
       
  5095 
       
  5096 	/* enable PHY wakeup in MAC register */
       
  5097 	ew32(WUFC, wufc);
       
  5098 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
       
  5099 
       
  5100 	/* configure and enable PHY wakeup in PHY registers */
       
  5101 	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
       
  5102 	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
       
  5103 
       
  5104 	/* activate PHY wakeup */
       
  5105 	retval = hw->phy.ops.acquire(hw);
       
  5106 	if (retval) {
       
  5107 		e_err("Could not acquire PHY\n");
       
  5108 		return retval;
       
  5109 	}
       
  5110 	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  5111 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
       
  5112 	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
       
  5113 	if (retval) {
       
  5114 		e_err("Could not read PHY page 769\n");
       
  5115 		goto out;
       
  5116 	}
       
  5117 	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
       
  5118 	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  5119 	if (retval)
       
  5120 		e_err("Could not set PHY Host Wakeup bit\n");
       
  5121 out:
       
  5122 	hw->phy.ops.release(hw);
       
  5123 
       
  5124 	return retval;
       
  5125 }
       
  5126 
       
  5127 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
       
  5128 			    bool runtime)
       
  5129 {
       
  5130 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5131 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5132 	struct e1000_hw *hw = &adapter->hw;
       
  5133 	u32 ctrl, ctrl_ext, rctl, status;
       
  5134 	/* Runtime suspend should only enable wakeup for link changes */
       
  5135 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
       
  5136 	int retval = 0;
       
  5137 
       
  5138 	netif_device_detach(netdev);
       
  5139 
       
  5140 	if (netif_running(netdev)) {
       
  5141 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  5142 		e1000e_down(adapter);
       
  5143 		e1000_free_irq(adapter);
       
  5144 	}
       
  5145 	e1000e_reset_interrupt_capability(adapter);
       
  5146 
       
  5147 	retval = pci_save_state(pdev);
       
  5148 	if (retval)
       
  5149 		return retval;
       
  5150 
       
  5151 	status = er32(STATUS);
       
  5152 	if (status & E1000_STATUS_LU)
       
  5153 		wufc &= ~E1000_WUFC_LNKC;
       
  5154 
       
  5155 	if (wufc) {
       
  5156 		e1000_setup_rctl(adapter);
       
  5157 		e1000_set_multi(netdev);
       
  5158 
       
  5159 		/* turn on all-multi mode if wake on multicast is enabled */
       
  5160 		if (wufc & E1000_WUFC_MC) {
       
  5161 			rctl = er32(RCTL);
       
  5162 			rctl |= E1000_RCTL_MPE;
       
  5163 			ew32(RCTL, rctl);
       
  5164 		}
       
  5165 
       
  5166 		ctrl = er32(CTRL);
       
  5167 		/* advertise wake from D3Cold */
       
  5168 		#define E1000_CTRL_ADVD3WUC 0x00100000
       
  5169 		/* phy power management enable */
       
  5170 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  5171 		ctrl |= E1000_CTRL_ADVD3WUC;
       
  5172 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
       
  5173 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
       
  5174 		ew32(CTRL, ctrl);
       
  5175 
       
  5176 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
       
  5177 		    adapter->hw.phy.media_type ==
       
  5178 		    e1000_media_type_internal_serdes) {
       
  5179 			/* keep the laser running in D3 */
       
  5180 			ctrl_ext = er32(CTRL_EXT);
       
  5181 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
       
  5182 			ew32(CTRL_EXT, ctrl_ext);
       
  5183 		}
       
  5184 
       
  5185 		if (adapter->flags & FLAG_IS_ICH)
       
  5186 			e1000e_disable_gig_wol_ich8lan(&adapter->hw);
       
  5187 
       
  5188 		/* Allow time for pending master requests to run */
       
  5189 		e1000e_disable_pcie_master(&adapter->hw);
       
  5190 
       
  5191 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  5192 			/* enable wakeup by the PHY */
       
  5193 			retval = e1000_init_phy_wakeup(adapter, wufc);
       
  5194 			if (retval)
       
  5195 				return retval;
       
  5196 		} else {
       
  5197 			/* enable wakeup by the MAC */
       
  5198 			ew32(WUFC, wufc);
       
  5199 			ew32(WUC, E1000_WUC_PME_EN);
       
  5200 		}
       
  5201 	} else {
       
  5202 		ew32(WUC, 0);
       
  5203 		ew32(WUFC, 0);
       
  5204 	}
       
  5205 
       
  5206 	*enable_wake = !!wufc;
       
  5207 
       
  5208 	/* make sure adapter isn't asleep if manageability is enabled */
       
  5209 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
       
  5210 	    (hw->mac.ops.check_mng_mode(hw)))
       
  5211 		*enable_wake = true;
       
  5212 
       
  5213 	if (adapter->hw.phy.type == e1000_phy_igp_3)
       
  5214 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
       
  5215 
       
  5216 	/*
       
  5217 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  5218 	 * would have already happened in close and is redundant.
       
  5219 	 */
       
  5220 	e1000_release_hw_control(adapter);
       
  5221 
       
  5222 	pci_disable_device(pdev);
       
  5223 
       
  5224 	return 0;
       
  5225 }
       
  5226 
       
  5227 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
       
  5228 {
       
  5229 	if (sleep && wake) {
       
  5230 		pci_prepare_to_sleep(pdev);
       
  5231 		return;
       
  5232 	}
       
  5233 
       
  5234 	pci_wake_from_d3(pdev, wake);
       
  5235 	pci_set_power_state(pdev, PCI_D3hot);
       
  5236 }
       
  5237 
       
  5238 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
       
  5239                                     bool wake)
       
  5240 {
       
  5241 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5242 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5243 
       
  5244 	/*
       
  5245 	 * The pci-e switch on some quad port adapters will report a
       
  5246 	 * correctable error when the MAC transitions from D0 to D3.  To
       
  5247 	 * prevent this we need to mask off the correctable errors on the
       
  5248 	 * downstream port of the pci-e switch.
       
  5249 	 */
       
  5250 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
       
  5251 		struct pci_dev *us_dev = pdev->bus->self;
       
  5252 		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
       
  5253 		u16 devctl;
       
  5254 
       
  5255 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
       
  5256 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
       
  5257 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
       
  5258 
       
  5259 		e1000_power_off(pdev, sleep, wake);
       
  5260 
       
  5261 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
       
  5262 	} else {
       
  5263 		e1000_power_off(pdev, sleep, wake);
       
  5264 	}
       
  5265 }
       
  5266 
       
  5267 #ifdef CONFIG_PCIEASPM
       
  5268 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
       
  5269 {
       
  5270 	pci_disable_link_state(pdev, state);
       
  5271 }
       
  5272 #else
       
  5273 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
       
  5274 {
       
  5275 	int pos;
       
  5276 	u16 reg16;
       
  5277 
       
  5278 	/*
       
  5279 	 * Both device and parent should have the same ASPM setting.
       
  5280 	 * Disable ASPM in downstream component first and then upstream.
       
  5281 	 */
       
  5282 	pos = pci_pcie_cap(pdev);
       
  5283 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
       
  5284 	reg16 &= ~state;
       
  5285 	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
       
  5286 
       
  5287 	if (!pdev->bus->self)
       
  5288 		return;
       
  5289 
       
  5290 	pos = pci_pcie_cap(pdev->bus->self);
       
  5291 	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
       
  5292 	reg16 &= ~state;
       
  5293 	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
       
  5294 }
       
  5295 #endif
       
  5296 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
       
  5297 {
       
  5298 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
       
  5299 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
       
  5300 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
       
  5301 
       
  5302 	__e1000e_disable_aspm(pdev, state);
       
  5303 }
       
  5304 
       
  5305 #ifdef CONFIG_PM_OPS
       
  5306 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
       
  5307 {
       
  5308 	return !!adapter->tx_ring->buffer_info;
       
  5309 }
       
  5310 
       
  5311 static int __e1000_resume(struct pci_dev *pdev)
       
  5312 {
       
  5313 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5314 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5315 	struct e1000_hw *hw = &adapter->hw;
       
  5316 	u32 err;
       
  5317 
       
  5318 	pci_set_power_state(pdev, PCI_D0);
       
  5319 	pci_restore_state(pdev);
       
  5320 	pci_save_state(pdev);
       
  5321 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
       
  5322 		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
       
  5323 
       
  5324 	e1000e_set_interrupt_capability(adapter);
       
  5325 	if (netif_running(netdev)) {
       
  5326 		err = e1000_request_irq(adapter);
       
  5327 		if (err)
       
  5328 			return err;
       
  5329 	}
       
  5330 
       
  5331 	e1000e_power_up_phy(adapter);
       
  5332 
       
  5333 	/* report the system wakeup cause from S3/S4 */
       
  5334 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  5335 		u16 phy_data;
       
  5336 
       
  5337 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
       
  5338 		if (phy_data) {
       
  5339 			e_info("PHY Wakeup cause - %s\n",
       
  5340 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
       
  5341 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
       
  5342 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
       
  5343 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
       
  5344 				phy_data & E1000_WUS_LNKC ? "Link Status "
       
  5345 				" Change" : "other");
       
  5346 		}
       
  5347 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
       
  5348 	} else {
       
  5349 		u32 wus = er32(WUS);
       
  5350 		if (wus) {
       
  5351 			e_info("MAC Wakeup cause - %s\n",
       
  5352 				wus & E1000_WUS_EX ? "Unicast Packet" :
       
  5353 				wus & E1000_WUS_MC ? "Multicast Packet" :
       
  5354 				wus & E1000_WUS_BC ? "Broadcast Packet" :
       
  5355 				wus & E1000_WUS_MAG ? "Magic Packet" :
       
  5356 				wus & E1000_WUS_LNKC ? "Link Status Change" :
       
  5357 				"other");
       
  5358 		}
       
  5359 		ew32(WUS, ~0);
       
  5360 	}
       
  5361 
       
  5362 	e1000e_reset(adapter);
       
  5363 
       
  5364 	e1000_init_manageability_pt(adapter);
       
  5365 
       
  5366 	if (netif_running(netdev))
       
  5367 		e1000e_up(adapter);
       
  5368 
       
  5369 	netif_device_attach(netdev);
       
  5370 
       
  5371 	/*
       
  5372 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  5373 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  5374 	 * under the control of the driver.
       
  5375 	 */
       
  5376 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5377 		e1000_get_hw_control(adapter);
       
  5378 
       
  5379 	return 0;
       
  5380 }
       
  5381 
       
  5382 #ifdef CONFIG_PM_SLEEP
       
  5383 static int e1000_suspend(struct device *dev)
       
  5384 {
       
  5385 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5386 	int retval;
       
  5387 	bool wake;
       
  5388 
       
  5389 	retval = __e1000_shutdown(pdev, &wake, false);
       
  5390 	if (!retval)
       
  5391 		e1000_complete_shutdown(pdev, true, wake);
       
  5392 
       
  5393 	return retval;
       
  5394 }
       
  5395 
       
  5396 static int e1000_resume(struct device *dev)
       
  5397 {
       
  5398 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5399 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5400 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5401 
       
  5402 	if (e1000e_pm_ready(adapter))
       
  5403 		adapter->idle_check = true;
       
  5404 
       
  5405 	return __e1000_resume(pdev);
       
  5406 }
       
  5407 #endif /* CONFIG_PM_SLEEP */
       
  5408 
       
  5409 #ifdef CONFIG_PM_RUNTIME
       
  5410 static int e1000_runtime_suspend(struct device *dev)
       
  5411 {
       
  5412 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5413 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5414 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5415 
       
  5416 	if (e1000e_pm_ready(adapter)) {
       
  5417 		bool wake;
       
  5418 
       
  5419 		__e1000_shutdown(pdev, &wake, true);
       
  5420 	}
       
  5421 
       
  5422 	return 0;
       
  5423 }
       
  5424 
       
  5425 static int e1000_idle(struct device *dev)
       
  5426 {
       
  5427 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5428 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5429 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5430 
       
  5431 	if (!e1000e_pm_ready(adapter))
       
  5432 		return 0;
       
  5433 
       
  5434 	if (adapter->idle_check) {
       
  5435 		adapter->idle_check = false;
       
  5436 		if (!e1000e_has_link(adapter))
       
  5437 			pm_schedule_suspend(dev, MSEC_PER_SEC);
       
  5438 	}
       
  5439 
       
  5440 	return -EBUSY;
       
  5441 }
       
  5442 
       
  5443 static int e1000_runtime_resume(struct device *dev)
       
  5444 {
       
  5445 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5446 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5447 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5448 
       
  5449 	if (!e1000e_pm_ready(adapter))
       
  5450 		return 0;
       
  5451 
       
  5452 	adapter->idle_check = !dev->power.runtime_auto;
       
  5453 	return __e1000_resume(pdev);
       
  5454 }
       
  5455 #endif /* CONFIG_PM_RUNTIME */
       
  5456 #endif /* CONFIG_PM_OPS */
       
  5457 
       
  5458 static void e1000_shutdown(struct pci_dev *pdev)
       
  5459 {
       
  5460 	bool wake = false;
       
  5461 
       
  5462 	__e1000_shutdown(pdev, &wake, false);
       
  5463 
       
  5464 	if (system_state == SYSTEM_POWER_OFF)
       
  5465 		e1000_complete_shutdown(pdev, false, wake);
       
  5466 }
       
  5467 
       
  5468 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5469 /*
       
  5470  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  5471  * without having to re-enable interrupts. It's not called while
       
  5472  * the interrupt routine is executing.
       
  5473  */
       
  5474 static void e1000_netpoll(struct net_device *netdev)
       
  5475 {
       
  5476 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5477 
       
  5478 	disable_irq(adapter->pdev->irq);
       
  5479 	e1000_intr(adapter->pdev->irq, netdev);
       
  5480 
       
  5481 	enable_irq(adapter->pdev->irq);
       
  5482 }
       
  5483 #endif
       
  5484 
       
  5485 /**
       
  5486  * e1000_io_error_detected - called when PCI error is detected
       
  5487  * @pdev: Pointer to PCI device
       
  5488  * @state: The current pci connection state
       
  5489  *
       
  5490  * This function is called after a PCI bus error affecting
       
  5491  * this device has been detected.
       
  5492  */
       
  5493 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  5494 						pci_channel_state_t state)
       
  5495 {
       
  5496 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5497 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5498 
       
  5499 	netif_device_detach(netdev);
       
  5500 
       
  5501 	if (state == pci_channel_io_perm_failure)
       
  5502 		return PCI_ERS_RESULT_DISCONNECT;
       
  5503 
       
  5504 	if (netif_running(netdev))
       
  5505 		e1000e_down(adapter);
       
  5506 	pci_disable_device(pdev);
       
  5507 
       
  5508 	/* Request a slot slot reset. */
       
  5509 	return PCI_ERS_RESULT_NEED_RESET;
       
  5510 }
       
  5511 
       
  5512 /**
       
  5513  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  5514  * @pdev: Pointer to PCI device
       
  5515  *
       
  5516  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  5517  * resembles the first-half of the e1000_resume routine.
       
  5518  */
       
  5519 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  5520 {
       
  5521 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5522 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5523 	struct e1000_hw *hw = &adapter->hw;
       
  5524 	int err;
       
  5525 	pci_ers_result_t result;
       
  5526 
       
  5527 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
       
  5528 		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
       
  5529 	err = pci_enable_device_mem(pdev);
       
  5530 	if (err) {
       
  5531 		dev_err(&pdev->dev,
       
  5532 			"Cannot re-enable PCI device after reset.\n");
       
  5533 		result = PCI_ERS_RESULT_DISCONNECT;
       
  5534 	} else {
       
  5535 		pci_set_master(pdev);
       
  5536 		pdev->state_saved = true;
       
  5537 		pci_restore_state(pdev);
       
  5538 
       
  5539 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5540 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5541 
       
  5542 		e1000e_reset(adapter);
       
  5543 		ew32(WUS, ~0);
       
  5544 		result = PCI_ERS_RESULT_RECOVERED;
       
  5545 	}
       
  5546 
       
  5547 	pci_cleanup_aer_uncorrect_error_status(pdev);
       
  5548 
       
  5549 	return result;
       
  5550 }
       
  5551 
       
  5552 /**
       
  5553  * e1000_io_resume - called when traffic can start flowing again.
       
  5554  * @pdev: Pointer to PCI device
       
  5555  *
       
  5556  * This callback is called when the error recovery driver tells us that
       
  5557  * its OK to resume normal operation. Implementation resembles the
       
  5558  * second-half of the e1000_resume routine.
       
  5559  */
       
  5560 static void e1000_io_resume(struct pci_dev *pdev)
       
  5561 {
       
  5562 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5563 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5564 
       
  5565 	e1000_init_manageability_pt(adapter);
       
  5566 
       
  5567 	if (netif_running(netdev)) {
       
  5568 		if (e1000e_up(adapter)) {
       
  5569 			dev_err(&pdev->dev,
       
  5570 				"can't bring device back up after reset\n");
       
  5571 			return;
       
  5572 		}
       
  5573 	}
       
  5574 
       
  5575 	netif_device_attach(netdev);
       
  5576 
       
  5577 	/*
       
  5578 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  5579 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  5580 	 * under the control of the driver.
       
  5581 	 */
       
  5582 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5583 		e1000_get_hw_control(adapter);
       
  5584 
       
  5585 }
       
  5586 
       
  5587 static void e1000_print_device_info(struct e1000_adapter *adapter)
       
  5588 {
       
  5589 	struct e1000_hw *hw = &adapter->hw;
       
  5590 	struct net_device *netdev = adapter->netdev;
       
  5591 	u32 pba_num;
       
  5592 
       
  5593 	/* print bus type/speed/width info */
       
  5594 	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
       
  5595 	       /* bus width */
       
  5596 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
       
  5597 	        "Width x1"),
       
  5598 	       /* MAC address */
       
  5599 	       netdev->dev_addr);
       
  5600 	e_info("Intel(R) PRO/%s Network Connection\n",
       
  5601 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
       
  5602 	e1000e_read_pba_num(hw, &pba_num);
       
  5603 	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
       
  5604 	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
       
  5605 }
       
  5606 
       
  5607 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
       
  5608 {
       
  5609 	struct e1000_hw *hw = &adapter->hw;
       
  5610 	int ret_val;
       
  5611 	u16 buf = 0;
       
  5612 
       
  5613 	if (hw->mac.type != e1000_82573)
       
  5614 		return;
       
  5615 
       
  5616 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
       
  5617 	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
       
  5618 		/* Deep Smart Power Down (DSPD) */
       
  5619 		dev_warn(&adapter->pdev->dev,
       
  5620 			 "Warning: detected DSPD enabled in EEPROM\n");
       
  5621 	}
       
  5622 }
       
  5623 
       
  5624 static const struct net_device_ops e1000e_netdev_ops = {
       
  5625 	.ndo_open		= e1000_open,
       
  5626 	.ndo_stop		= e1000_close,
       
  5627 	.ndo_start_xmit		= e1000_xmit_frame,
       
  5628 	.ndo_get_stats		= e1000_get_stats,
       
  5629 	.ndo_set_multicast_list	= e1000_set_multi,
       
  5630 	.ndo_set_mac_address	= e1000_set_mac,
       
  5631 	.ndo_change_mtu		= e1000_change_mtu,
       
  5632 	.ndo_do_ioctl		= e1000_ioctl,
       
  5633 	.ndo_tx_timeout		= e1000_tx_timeout,
       
  5634 	.ndo_validate_addr	= eth_validate_addr,
       
  5635 
       
  5636 	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
       
  5637 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
       
  5638 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
       
  5639 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5640 	.ndo_poll_controller	= e1000_netpoll,
       
  5641 #endif
       
  5642 };
       
  5643 
       
  5644 /**
       
  5645  * e1000_probe - Device Initialization Routine
       
  5646  * @pdev: PCI device information struct
       
  5647  * @ent: entry in e1000_pci_tbl
       
  5648  *
       
  5649  * Returns 0 on success, negative on failure
       
  5650  *
       
  5651  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
  5652  * The OS initialization, configuring of the adapter private structure,
       
  5653  * and a hardware reset occur.
       
  5654  **/
       
  5655 static int __devinit e1000_probe(struct pci_dev *pdev,
       
  5656 				 const struct pci_device_id *ent)
       
  5657 {
       
  5658 	struct net_device *netdev;
       
  5659 	struct e1000_adapter *adapter;
       
  5660 	struct e1000_hw *hw;
       
  5661 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
       
  5662 	resource_size_t mmio_start, mmio_len;
       
  5663 	resource_size_t flash_start, flash_len;
       
  5664 
       
  5665 	static int cards_found;
       
  5666 	int i, err, pci_using_dac;
       
  5667 	u16 eeprom_data = 0;
       
  5668 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
  5669 
       
  5670 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
       
  5671 		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
       
  5672 
       
  5673 	err = pci_enable_device_mem(pdev);
       
  5674 	if (err)
       
  5675 		return err;
       
  5676 
       
  5677 	pci_using_dac = 0;
       
  5678 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
       
  5679 	if (!err) {
       
  5680 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
       
  5681 		if (!err)
       
  5682 			pci_using_dac = 1;
       
  5683 	} else {
       
  5684 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
       
  5685 		if (err) {
       
  5686 			err = dma_set_coherent_mask(&pdev->dev,
       
  5687 						    DMA_BIT_MASK(32));
       
  5688 			if (err) {
       
  5689 				dev_err(&pdev->dev, "No usable DMA "
       
  5690 					"configuration, aborting\n");
       
  5691 				goto err_dma;
       
  5692 			}
       
  5693 		}
       
  5694 	}
       
  5695 
       
  5696 	err = pci_request_selected_regions_exclusive(pdev,
       
  5697 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
       
  5698 	                                  e1000e_driver_name);
       
  5699 	if (err)
       
  5700 		goto err_pci_reg;
       
  5701 
       
  5702 	/* AER (Advanced Error Reporting) hooks */
       
  5703 	pci_enable_pcie_error_reporting(pdev);
       
  5704 
       
  5705 	pci_set_master(pdev);
       
  5706 	/* PCI config space info */
       
  5707 	err = pci_save_state(pdev);
       
  5708 	if (err)
       
  5709 		goto err_alloc_etherdev;
       
  5710 
       
  5711 	err = -ENOMEM;
       
  5712 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
  5713 	if (!netdev)
       
  5714 		goto err_alloc_etherdev;
       
  5715 
       
  5716 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
  5717 
       
  5718 	netdev->irq = pdev->irq;
       
  5719 
       
  5720 	pci_set_drvdata(pdev, netdev);
       
  5721 	adapter = netdev_priv(netdev);
       
  5722 	hw = &adapter->hw;
       
  5723 	adapter->netdev = netdev;
       
  5724 	adapter->pdev = pdev;
       
  5725 	adapter->ei = ei;
       
  5726 	adapter->pba = ei->pba;
       
  5727 	adapter->flags = ei->flags;
       
  5728 	adapter->flags2 = ei->flags2;
       
  5729 	adapter->hw.adapter = adapter;
       
  5730 	adapter->hw.mac.type = ei->mac;
       
  5731 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
       
  5732 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
       
  5733 
       
  5734 	mmio_start = pci_resource_start(pdev, 0);
       
  5735 	mmio_len = pci_resource_len(pdev, 0);
       
  5736 
       
  5737 	err = -EIO;
       
  5738 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
  5739 	if (!adapter->hw.hw_addr)
       
  5740 		goto err_ioremap;
       
  5741 
       
  5742 	if ((adapter->flags & FLAG_HAS_FLASH) &&
       
  5743 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
  5744 		flash_start = pci_resource_start(pdev, 1);
       
  5745 		flash_len = pci_resource_len(pdev, 1);
       
  5746 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
       
  5747 		if (!adapter->hw.flash_address)
       
  5748 			goto err_flashmap;
       
  5749 	}
       
  5750 
       
  5751 	/* construct the net_device struct */
       
  5752 	netdev->netdev_ops		= &e1000e_netdev_ops;
       
  5753 	e1000e_set_ethtool_ops(netdev);
       
  5754 	netdev->watchdog_timeo		= 5 * HZ;
       
  5755 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
  5756 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  5757 
       
  5758 	netdev->mem_start = mmio_start;
       
  5759 	netdev->mem_end = mmio_start + mmio_len;
       
  5760 
       
  5761 	adapter->bd_number = cards_found++;
       
  5762 
       
  5763 	e1000e_check_options(adapter);
       
  5764 
       
  5765 	/* setup adapter struct */
       
  5766 	err = e1000_sw_init(adapter);
       
  5767 	if (err)
       
  5768 		goto err_sw_init;
       
  5769 
       
  5770 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
       
  5771 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
       
  5772 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
       
  5773 
       
  5774 	err = ei->get_variants(adapter);
       
  5775 	if (err)
       
  5776 		goto err_hw_init;
       
  5777 
       
  5778 	if ((adapter->flags & FLAG_IS_ICH) &&
       
  5779 	    (adapter->flags & FLAG_READ_ONLY_NVM))
       
  5780 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
       
  5781 
       
  5782 	hw->mac.ops.get_bus_info(&adapter->hw);
       
  5783 
       
  5784 	adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  5785 
       
  5786 	/* Copper options */
       
  5787 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
       
  5788 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
       
  5789 		adapter->hw.phy.disable_polarity_correction = 0;
       
  5790 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
       
  5791 	}
       
  5792 
       
  5793 	if (e1000_check_reset_block(&adapter->hw))
       
  5794 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
       
  5795 
       
  5796 	netdev->features = NETIF_F_SG |
       
  5797 			   NETIF_F_HW_CSUM |
       
  5798 			   NETIF_F_HW_VLAN_TX |
       
  5799 			   NETIF_F_HW_VLAN_RX;
       
  5800 
       
  5801 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
       
  5802 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
       
  5803 
       
  5804 	netdev->features |= NETIF_F_TSO;
       
  5805 	netdev->features |= NETIF_F_TSO6;
       
  5806 
       
  5807 	netdev->vlan_features |= NETIF_F_TSO;
       
  5808 	netdev->vlan_features |= NETIF_F_TSO6;
       
  5809 	netdev->vlan_features |= NETIF_F_HW_CSUM;
       
  5810 	netdev->vlan_features |= NETIF_F_SG;
       
  5811 
       
  5812 	if (pci_using_dac) {
       
  5813 		netdev->features |= NETIF_F_HIGHDMA;
       
  5814 		netdev->vlan_features |= NETIF_F_HIGHDMA;
       
  5815 	}
       
  5816 
       
  5817 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
       
  5818 		adapter->flags |= FLAG_MNG_PT_ENABLED;
       
  5819 
       
  5820 	/*
       
  5821 	 * before reading the NVM, reset the controller to
       
  5822 	 * put the device in a known good starting state
       
  5823 	 */
       
  5824 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
       
  5825 
       
  5826 	/*
       
  5827 	 * systems with ASPM and others may see the checksum fail on the first
       
  5828 	 * attempt. Let's give it a few tries
       
  5829 	 */
       
  5830 	for (i = 0;; i++) {
       
  5831 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
       
  5832 			break;
       
  5833 		if (i == 2) {
       
  5834 			e_err("The NVM Checksum Is Not Valid\n");
       
  5835 			err = -EIO;
       
  5836 			goto err_eeprom;
       
  5837 		}
       
  5838 	}
       
  5839 
       
  5840 	e1000_eeprom_checks(adapter);
       
  5841 
       
  5842 	/* copy the MAC address */
       
  5843 	if (e1000e_read_mac_addr(&adapter->hw))
       
  5844 		e_err("NVM Read Error while reading MAC address\n");
       
  5845 
       
  5846 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  5847 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  5848 
       
  5849 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
  5850 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
       
  5851 		err = -EIO;
       
  5852 		goto err_eeprom;
       
  5853 	}
       
  5854 
       
  5855 	init_timer(&adapter->watchdog_timer);
       
  5856 	adapter->watchdog_timer.function = e1000_watchdog;
       
  5857 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  5858 
       
  5859 	init_timer(&adapter->phy_info_timer);
       
  5860 	adapter->phy_info_timer.function = e1000_update_phy_info;
       
  5861 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
  5862 
       
  5863 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  5864 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
       
  5865 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
       
  5866 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
       
  5867 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
       
  5868 
       
  5869 	/* Initialize link parameters. User can change them with ethtool */
       
  5870 	adapter->hw.mac.autoneg = 1;
       
  5871 	adapter->fc_autoneg = 1;
       
  5872 	adapter->hw.fc.requested_mode = e1000_fc_default;
       
  5873 	adapter->hw.fc.current_mode = e1000_fc_default;
       
  5874 	adapter->hw.phy.autoneg_advertised = 0x2f;
       
  5875 
       
  5876 	/* ring size defaults */
       
  5877 	adapter->rx_ring->count = 256;
       
  5878 	adapter->tx_ring->count = 256;
       
  5879 
       
  5880 	/*
       
  5881 	 * Initial Wake on LAN setting - If APM wake is enabled in
       
  5882 	 * the EEPROM, enable the ACPI Magic Packet filter
       
  5883 	 */
       
  5884 	if (adapter->flags & FLAG_APME_IN_WUC) {
       
  5885 		/* APME bit in EEPROM is mapped to WUC.APME */
       
  5886 		eeprom_data = er32(WUC);
       
  5887 		eeprom_apme_mask = E1000_WUC_APME;
       
  5888 		if ((hw->mac.type > e1000_ich10lan) &&
       
  5889 		    (eeprom_data & E1000_WUC_PHY_WAKE))
       
  5890 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
       
  5891 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
       
  5892 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
       
  5893 		    (adapter->hw.bus.func == 1))
       
  5894 			e1000_read_nvm(&adapter->hw,
       
  5895 				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  5896 		else
       
  5897 			e1000_read_nvm(&adapter->hw,
       
  5898 				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  5899 	}
       
  5900 
       
  5901 	/* fetch WoL from EEPROM */
       
  5902 	if (eeprom_data & eeprom_apme_mask)
       
  5903 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  5904 
       
  5905 	/*
       
  5906 	 * now that we have the eeprom settings, apply the special cases
       
  5907 	 * where the eeprom may be wrong or the board simply won't support
       
  5908 	 * wake on lan on a particular port
       
  5909 	 */
       
  5910 	if (!(adapter->flags & FLAG_HAS_WOL))
       
  5911 		adapter->eeprom_wol = 0;
       
  5912 
       
  5913 	/* initialize the wol settings based on the eeprom settings */
       
  5914 	adapter->wol = adapter->eeprom_wol;
       
  5915 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  5916 
       
  5917 	/* save off EEPROM version number */
       
  5918 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
       
  5919 
       
  5920 	/* reset the hardware with the new settings */
       
  5921 	e1000e_reset(adapter);
       
  5922 
       
  5923 	/*
       
  5924 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  5925 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  5926 	 * under the control of the driver.
       
  5927 	 */
       
  5928 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5929 		e1000_get_hw_control(adapter);
       
  5930 
       
  5931 	strcpy(netdev->name, "eth%d");
       
  5932 	err = register_netdev(netdev);
       
  5933 	if (err)
       
  5934 		goto err_register;
       
  5935 
       
  5936 	/* carrier off reporting is important to ethtool even BEFORE open */
       
  5937 	netif_carrier_off(netdev);
       
  5938 
       
  5939 	e1000_print_device_info(adapter);
       
  5940 
       
  5941 	if (pci_dev_run_wake(pdev))
       
  5942 		pm_runtime_put_noidle(&pdev->dev);
       
  5943 
       
  5944 	return 0;
       
  5945 
       
  5946 err_register:
       
  5947 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5948 		e1000_release_hw_control(adapter);
       
  5949 err_eeprom:
       
  5950 	if (!e1000_check_reset_block(&adapter->hw))
       
  5951 		e1000_phy_hw_reset(&adapter->hw);
       
  5952 err_hw_init:
       
  5953 
       
  5954 	kfree(adapter->tx_ring);
       
  5955 	kfree(adapter->rx_ring);
       
  5956 err_sw_init:
       
  5957 	if (adapter->hw.flash_address)
       
  5958 		iounmap(adapter->hw.flash_address);
       
  5959 	e1000e_reset_interrupt_capability(adapter);
       
  5960 err_flashmap:
       
  5961 	iounmap(adapter->hw.hw_addr);
       
  5962 err_ioremap:
       
  5963 	free_netdev(netdev);
       
  5964 err_alloc_etherdev:
       
  5965 	pci_release_selected_regions(pdev,
       
  5966 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  5967 err_pci_reg:
       
  5968 err_dma:
       
  5969 	pci_disable_device(pdev);
       
  5970 	return err;
       
  5971 }
       
  5972 
       
  5973 /**
       
  5974  * e1000_remove - Device Removal Routine
       
  5975  * @pdev: PCI device information struct
       
  5976  *
       
  5977  * e1000_remove is called by the PCI subsystem to alert the driver
       
  5978  * that it should release a PCI device.  The could be caused by a
       
  5979  * Hot-Plug event, or because the driver is going to be removed from
       
  5980  * memory.
       
  5981  **/
       
  5982 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  5983 {
       
  5984 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5985 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5986 	bool down = test_bit(__E1000_DOWN, &adapter->state);
       
  5987 
       
  5988 	/*
       
  5989 	 * flush_scheduled work may reschedule our watchdog task, so
       
  5990 	 * explicitly disable watchdog tasks from being rescheduled
       
  5991 	 */
       
  5992 	if (!down)
       
  5993 		set_bit(__E1000_DOWN, &adapter->state);
       
  5994 	del_timer_sync(&adapter->watchdog_timer);
       
  5995 	del_timer_sync(&adapter->phy_info_timer);
       
  5996 
       
  5997 	cancel_work_sync(&adapter->reset_task);
       
  5998 	cancel_work_sync(&adapter->watchdog_task);
       
  5999 	cancel_work_sync(&adapter->downshift_task);
       
  6000 	cancel_work_sync(&adapter->update_phy_task);
       
  6001 	cancel_work_sync(&adapter->print_hang_task);
       
  6002 	flush_scheduled_work();
       
  6003 
       
  6004 	if (!(netdev->flags & IFF_UP))
       
  6005 		e1000_power_down_phy(adapter);
       
  6006 
       
  6007 	/* Don't lie to e1000_close() down the road. */
       
  6008 	if (!down)
       
  6009 		clear_bit(__E1000_DOWN, &adapter->state);
       
  6010 	unregister_netdev(netdev);
       
  6011 
       
  6012 	if (pci_dev_run_wake(pdev))
       
  6013 		pm_runtime_get_noresume(&pdev->dev);
       
  6014 
       
  6015 	/*
       
  6016 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  6017 	 * would have already happened in close and is redundant.
       
  6018 	 */
       
  6019 	e1000_release_hw_control(adapter);
       
  6020 
       
  6021 	e1000e_reset_interrupt_capability(adapter);
       
  6022 	kfree(adapter->tx_ring);
       
  6023 	kfree(adapter->rx_ring);
       
  6024 
       
  6025 	iounmap(adapter->hw.hw_addr);
       
  6026 	if (adapter->hw.flash_address)
       
  6027 		iounmap(adapter->hw.flash_address);
       
  6028 	pci_release_selected_regions(pdev,
       
  6029 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  6030 
       
  6031 	free_netdev(netdev);
       
  6032 
       
  6033 	/* AER disable */
       
  6034 	pci_disable_pcie_error_reporting(pdev);
       
  6035 
       
  6036 	pci_disable_device(pdev);
       
  6037 }
       
  6038 
       
  6039 /* PCI Error Recovery (ERS) */
       
  6040 static struct pci_error_handlers e1000_err_handler = {
       
  6041 	.error_detected = e1000_io_error_detected,
       
  6042 	.slot_reset = e1000_io_slot_reset,
       
  6043 	.resume = e1000_io_resume,
       
  6044 };
       
  6045 
       
  6046 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
       
  6047 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
       
  6048 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
       
  6049 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
       
  6050 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
       
  6051 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
       
  6052 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
       
  6053 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
       
  6054 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
       
  6055 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
       
  6056 
       
  6057 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
       
  6058 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
       
  6059 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
       
  6060 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
       
  6061 
       
  6062 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
       
  6063 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
       
  6064 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
       
  6065 
       
  6066 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
       
  6067 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
       
  6068 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
       
  6069 
       
  6070 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
       
  6071 	  board_80003es2lan },
       
  6072 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
       
  6073 	  board_80003es2lan },
       
  6074 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
       
  6075 	  board_80003es2lan },
       
  6076 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
       
  6077 	  board_80003es2lan },
       
  6078 
       
  6079 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
       
  6080 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
       
  6081 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
       
  6082 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
       
  6083 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
       
  6084 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
       
  6085 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
       
  6086 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
       
  6087 
       
  6088 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
       
  6089 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
       
  6090 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
       
  6091 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
       
  6092 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
       
  6093 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
       
  6094 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
       
  6095 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
       
  6096 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
       
  6097 
       
  6098 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
       
  6099 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
       
  6100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
       
  6101 
       
  6102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
       
  6103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
       
  6104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
       
  6105 
       
  6106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
       
  6107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
       
  6108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
       
  6109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
       
  6110 
       
  6111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
       
  6112 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
       
  6113 
       
  6114 	{ }	/* terminate list */
       
  6115 };
       
  6116 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
  6117 
       
  6118 #ifdef CONFIG_PM_OPS
       
  6119 static const struct dev_pm_ops e1000_pm_ops = {
       
  6120 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
       
  6121 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
       
  6122 				e1000_runtime_resume, e1000_idle)
       
  6123 };
       
  6124 #endif
       
  6125 
       
  6126 /* PCI Device API Driver */
       
  6127 static struct pci_driver e1000_driver = {
       
  6128 	.name     = e1000e_driver_name,
       
  6129 	.id_table = e1000_pci_tbl,
       
  6130 	.probe    = e1000_probe,
       
  6131 	.remove   = __devexit_p(e1000_remove),
       
  6132 #ifdef CONFIG_PM_OPS
       
  6133 	.driver.pm = &e1000_pm_ops,
       
  6134 #endif
       
  6135 	.shutdown = e1000_shutdown,
       
  6136 	.err_handler = &e1000_err_handler
       
  6137 };
       
  6138 
       
  6139 /**
       
  6140  * e1000_init_module - Driver Registration Routine
       
  6141  *
       
  6142  * e1000_init_module is the first routine called when the driver is
       
  6143  * loaded. All it does is register with the PCI subsystem.
       
  6144  **/
       
  6145 static int __init e1000_init_module(void)
       
  6146 {
       
  6147 	int ret;
       
  6148 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
       
  6149 		e1000e_driver_version);
       
  6150 	pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
       
  6151 	ret = pci_register_driver(&e1000_driver);
       
  6152 
       
  6153 	return ret;
       
  6154 }
       
  6155 module_init(e1000_init_module);
       
  6156 
       
  6157 /**
       
  6158  * e1000_exit_module - Driver Exit Cleanup Routine
       
  6159  *
       
  6160  * e1000_exit_module is called just before the driver is removed
       
  6161  * from memory.
       
  6162  **/
       
  6163 static void __exit e1000_exit_module(void)
       
  6164 {
       
  6165 	pci_unregister_driver(&e1000_driver);
       
  6166 }
       
  6167 module_exit(e1000_exit_module);
       
  6168 
       
  6169 
       
  6170 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
  6171 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
  6172 MODULE_LICENSE("GPL");
       
  6173 MODULE_VERSION(DRV_VERSION);
       
  6174 
       
  6175 /* e1000_main.c */