|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2010 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * 82562G 10/100 Network Connection |
|
31 * 82562G-2 10/100 Network Connection |
|
32 * 82562GT 10/100 Network Connection |
|
33 * 82562GT-2 10/100 Network Connection |
|
34 * 82562V 10/100 Network Connection |
|
35 * 82562V-2 10/100 Network Connection |
|
36 * 82566DC-2 Gigabit Network Connection |
|
37 * 82566DC Gigabit Network Connection |
|
38 * 82566DM-2 Gigabit Network Connection |
|
39 * 82566DM Gigabit Network Connection |
|
40 * 82566MC Gigabit Network Connection |
|
41 * 82566MM Gigabit Network Connection |
|
42 * 82567LM Gigabit Network Connection |
|
43 * 82567LF Gigabit Network Connection |
|
44 * 82567V Gigabit Network Connection |
|
45 * 82567LM-2 Gigabit Network Connection |
|
46 * 82567LF-2 Gigabit Network Connection |
|
47 * 82567V-2 Gigabit Network Connection |
|
48 * 82567LF-3 Gigabit Network Connection |
|
49 * 82567LM-3 Gigabit Network Connection |
|
50 * 82567LM-4 Gigabit Network Connection |
|
51 * 82577LM Gigabit Network Connection |
|
52 * 82577LC Gigabit Network Connection |
|
53 * 82578DM Gigabit Network Connection |
|
54 * 82578DC Gigabit Network Connection |
|
55 * 82579LM Gigabit Network Connection |
|
56 * 82579V Gigabit Network Connection |
|
57 */ |
|
58 |
|
59 #include "e1000.h" |
|
60 |
|
61 #define ICH_FLASH_GFPREG 0x0000 |
|
62 #define ICH_FLASH_HSFSTS 0x0004 |
|
63 #define ICH_FLASH_HSFCTL 0x0006 |
|
64 #define ICH_FLASH_FADDR 0x0008 |
|
65 #define ICH_FLASH_FDATA0 0x0010 |
|
66 #define ICH_FLASH_PR0 0x0074 |
|
67 |
|
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 |
|
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 |
|
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 |
|
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF |
|
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 |
|
73 |
|
74 #define ICH_CYCLE_READ 0 |
|
75 #define ICH_CYCLE_WRITE 2 |
|
76 #define ICH_CYCLE_ERASE 3 |
|
77 |
|
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF |
|
79 #define FLASH_SECTOR_ADDR_SHIFT 12 |
|
80 |
|
81 #define ICH_FLASH_SEG_SIZE_256 256 |
|
82 #define ICH_FLASH_SEG_SIZE_4K 4096 |
|
83 #define ICH_FLASH_SEG_SIZE_8K 8192 |
|
84 #define ICH_FLASH_SEG_SIZE_64K 65536 |
|
85 |
|
86 |
|
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ |
|
88 /* FW established a valid mode */ |
|
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000 |
|
90 |
|
91 #define E1000_ICH_MNG_IAMT_MODE 0x2 |
|
92 |
|
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ |
|
94 (ID_LED_DEF1_OFF2 << 8) | \ |
|
95 (ID_LED_DEF1_ON2 << 4) | \ |
|
96 (ID_LED_DEF1_DEF2)) |
|
97 |
|
98 #define E1000_ICH_NVM_SIG_WORD 0x13 |
|
99 #define E1000_ICH_NVM_SIG_MASK 0xC000 |
|
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 |
|
101 #define E1000_ICH_NVM_SIG_VALUE 0x80 |
|
102 |
|
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 |
|
104 |
|
105 #define E1000_FEXTNVM_SW_CONFIG 1 |
|
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ |
|
107 |
|
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 |
|
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 |
|
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 |
|
111 |
|
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL |
|
113 |
|
114 #define E1000_ICH_RAR_ENTRIES 7 |
|
115 |
|
116 #define PHY_PAGE_SHIFT 5 |
|
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ |
|
118 ((reg) & MAX_PHY_REG_ADDRESS)) |
|
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ |
|
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ |
|
121 |
|
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 |
|
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 |
|
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 |
|
125 |
|
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ |
|
127 |
|
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ |
|
129 |
|
130 /* SMBus Address Phy Register */ |
|
131 #define HV_SMB_ADDR PHY_REG(768, 26) |
|
132 #define HV_SMB_ADDR_MASK 0x007F |
|
133 #define HV_SMB_ADDR_PEC_EN 0x0200 |
|
134 #define HV_SMB_ADDR_VALID 0x0080 |
|
135 |
|
136 /* PHY Power Management Control */ |
|
137 #define HV_PM_CTRL PHY_REG(770, 17) |
|
138 |
|
139 /* PHY Low Power Idle Control */ |
|
140 #define I82579_LPI_CTRL PHY_REG(772, 20) |
|
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000 |
|
142 |
|
143 /* Strapping Option Register - RO */ |
|
144 #define E1000_STRAP 0x0000C |
|
145 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 |
|
146 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 |
|
147 |
|
148 /* OEM Bits Phy Register */ |
|
149 #define HV_OEM_BITS PHY_REG(768, 25) |
|
150 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ |
|
151 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ |
|
152 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ |
|
153 |
|
154 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ |
|
155 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ |
|
156 |
|
157 /* KMRN Mode Control */ |
|
158 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16) |
|
159 #define HV_KMRN_MDIO_SLOW 0x0400 |
|
160 |
|
161 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ |
|
162 /* Offset 04h HSFSTS */ |
|
163 union ich8_hws_flash_status { |
|
164 struct ich8_hsfsts { |
|
165 u16 flcdone :1; /* bit 0 Flash Cycle Done */ |
|
166 u16 flcerr :1; /* bit 1 Flash Cycle Error */ |
|
167 u16 dael :1; /* bit 2 Direct Access error Log */ |
|
168 u16 berasesz :2; /* bit 4:3 Sector Erase Size */ |
|
169 u16 flcinprog :1; /* bit 5 flash cycle in Progress */ |
|
170 u16 reserved1 :2; /* bit 13:6 Reserved */ |
|
171 u16 reserved2 :6; /* bit 13:6 Reserved */ |
|
172 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ |
|
173 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ |
|
174 } hsf_status; |
|
175 u16 regval; |
|
176 }; |
|
177 |
|
178 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ |
|
179 /* Offset 06h FLCTL */ |
|
180 union ich8_hws_flash_ctrl { |
|
181 struct ich8_hsflctl { |
|
182 u16 flcgo :1; /* 0 Flash Cycle Go */ |
|
183 u16 flcycle :2; /* 2:1 Flash Cycle */ |
|
184 u16 reserved :5; /* 7:3 Reserved */ |
|
185 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ |
|
186 u16 flockdn :6; /* 15:10 Reserved */ |
|
187 } hsf_ctrl; |
|
188 u16 regval; |
|
189 }; |
|
190 |
|
191 /* ICH Flash Region Access Permissions */ |
|
192 union ich8_hws_flash_regacc { |
|
193 struct ich8_flracc { |
|
194 u32 grra :8; /* 0:7 GbE region Read Access */ |
|
195 u32 grwa :8; /* 8:15 GbE region Write Access */ |
|
196 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ |
|
197 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ |
|
198 } hsf_flregacc; |
|
199 u16 regval; |
|
200 }; |
|
201 |
|
202 /* ICH Flash Protected Region */ |
|
203 union ich8_flash_protected_range { |
|
204 struct ich8_pr { |
|
205 u32 base:13; /* 0:12 Protected Range Base */ |
|
206 u32 reserved1:2; /* 13:14 Reserved */ |
|
207 u32 rpe:1; /* 15 Read Protection Enable */ |
|
208 u32 limit:13; /* 16:28 Protected Range Limit */ |
|
209 u32 reserved2:2; /* 29:30 Reserved */ |
|
210 u32 wpe:1; /* 31 Write Protection Enable */ |
|
211 } range; |
|
212 u32 regval; |
|
213 }; |
|
214 |
|
215 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); |
|
216 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); |
|
217 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); |
|
218 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); |
|
219 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
|
220 u32 offset, u8 byte); |
|
221 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
222 u8 *data); |
|
223 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
|
224 u16 *data); |
|
225 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
226 u8 size, u16 *data); |
|
227 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); |
|
228 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); |
|
229 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); |
|
230 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); |
|
231 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); |
|
232 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); |
|
233 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); |
|
234 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); |
|
235 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); |
|
236 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); |
|
237 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); |
|
238 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); |
|
239 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); |
|
240 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); |
|
241 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); |
|
242 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); |
|
243 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); |
|
244 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); |
|
245 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); |
|
246 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); |
|
247 |
|
248 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) |
|
249 { |
|
250 return readw(hw->flash_address + reg); |
|
251 } |
|
252 |
|
253 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) |
|
254 { |
|
255 return readl(hw->flash_address + reg); |
|
256 } |
|
257 |
|
258 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) |
|
259 { |
|
260 writew(val, hw->flash_address + reg); |
|
261 } |
|
262 |
|
263 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) |
|
264 { |
|
265 writel(val, hw->flash_address + reg); |
|
266 } |
|
267 |
|
268 #define er16flash(reg) __er16flash(hw, (reg)) |
|
269 #define er32flash(reg) __er32flash(hw, (reg)) |
|
270 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) |
|
271 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) |
|
272 |
|
273 /** |
|
274 * e1000_init_phy_params_pchlan - Initialize PHY function pointers |
|
275 * @hw: pointer to the HW structure |
|
276 * |
|
277 * Initialize family-specific PHY parameters and function pointers. |
|
278 **/ |
|
279 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) |
|
280 { |
|
281 struct e1000_phy_info *phy = &hw->phy; |
|
282 u32 ctrl, fwsm; |
|
283 s32 ret_val = 0; |
|
284 |
|
285 phy->addr = 1; |
|
286 phy->reset_delay_us = 100; |
|
287 |
|
288 phy->ops.read_reg = e1000_read_phy_reg_hv; |
|
289 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; |
|
290 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; |
|
291 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; |
|
292 phy->ops.write_reg = e1000_write_phy_reg_hv; |
|
293 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; |
|
294 phy->ops.power_up = e1000_power_up_phy_copper; |
|
295 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
|
296 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
297 |
|
298 /* |
|
299 * The MAC-PHY interconnect may still be in SMBus mode |
|
300 * after Sx->S0. If the manageability engine (ME) is |
|
301 * disabled, then toggle the LANPHYPC Value bit to force |
|
302 * the interconnect to PCIe mode. |
|
303 */ |
|
304 fwsm = er32(FWSM); |
|
305 if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) { |
|
306 ctrl = er32(CTRL); |
|
307 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; |
|
308 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; |
|
309 ew32(CTRL, ctrl); |
|
310 udelay(10); |
|
311 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; |
|
312 ew32(CTRL, ctrl); |
|
313 msleep(50); |
|
314 |
|
315 /* |
|
316 * Gate automatic PHY configuration by hardware on |
|
317 * non-managed 82579 |
|
318 */ |
|
319 if (hw->mac.type == e1000_pch2lan) |
|
320 e1000_gate_hw_phy_config_ich8lan(hw, true); |
|
321 } |
|
322 |
|
323 /* |
|
324 * Reset the PHY before any acccess to it. Doing so, ensures that |
|
325 * the PHY is in a known good state before we read/write PHY registers. |
|
326 * The generic reset is sufficient here, because we haven't determined |
|
327 * the PHY type yet. |
|
328 */ |
|
329 ret_val = e1000e_phy_hw_reset_generic(hw); |
|
330 if (ret_val) |
|
331 goto out; |
|
332 |
|
333 /* Ungate automatic PHY configuration on non-managed 82579 */ |
|
334 if ((hw->mac.type == e1000_pch2lan) && |
|
335 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { |
|
336 msleep(10); |
|
337 e1000_gate_hw_phy_config_ich8lan(hw, false); |
|
338 } |
|
339 |
|
340 phy->id = e1000_phy_unknown; |
|
341 switch (hw->mac.type) { |
|
342 default: |
|
343 ret_val = e1000e_get_phy_id(hw); |
|
344 if (ret_val) |
|
345 goto out; |
|
346 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) |
|
347 break; |
|
348 /* fall-through */ |
|
349 case e1000_pch2lan: |
|
350 /* |
|
351 * In case the PHY needs to be in mdio slow mode, |
|
352 * set slow mode and try to get the PHY id again. |
|
353 */ |
|
354 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
355 if (ret_val) |
|
356 goto out; |
|
357 ret_val = e1000e_get_phy_id(hw); |
|
358 if (ret_val) |
|
359 goto out; |
|
360 break; |
|
361 } |
|
362 phy->type = e1000e_get_phy_type_from_id(phy->id); |
|
363 |
|
364 switch (phy->type) { |
|
365 case e1000_phy_82577: |
|
366 case e1000_phy_82579: |
|
367 phy->ops.check_polarity = e1000_check_polarity_82577; |
|
368 phy->ops.force_speed_duplex = |
|
369 e1000_phy_force_speed_duplex_82577; |
|
370 phy->ops.get_cable_length = e1000_get_cable_length_82577; |
|
371 phy->ops.get_info = e1000_get_phy_info_82577; |
|
372 phy->ops.commit = e1000e_phy_sw_reset; |
|
373 break; |
|
374 case e1000_phy_82578: |
|
375 phy->ops.check_polarity = e1000_check_polarity_m88; |
|
376 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
|
377 phy->ops.get_cable_length = e1000e_get_cable_length_m88; |
|
378 phy->ops.get_info = e1000e_get_phy_info_m88; |
|
379 break; |
|
380 default: |
|
381 ret_val = -E1000_ERR_PHY; |
|
382 break; |
|
383 } |
|
384 |
|
385 out: |
|
386 return ret_val; |
|
387 } |
|
388 |
|
389 /** |
|
390 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers |
|
391 * @hw: pointer to the HW structure |
|
392 * |
|
393 * Initialize family-specific PHY parameters and function pointers. |
|
394 **/ |
|
395 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) |
|
396 { |
|
397 struct e1000_phy_info *phy = &hw->phy; |
|
398 s32 ret_val; |
|
399 u16 i = 0; |
|
400 |
|
401 phy->addr = 1; |
|
402 phy->reset_delay_us = 100; |
|
403 |
|
404 phy->ops.power_up = e1000_power_up_phy_copper; |
|
405 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
|
406 |
|
407 /* |
|
408 * We may need to do this twice - once for IGP and if that fails, |
|
409 * we'll set BM func pointers and try again |
|
410 */ |
|
411 ret_val = e1000e_determine_phy_address(hw); |
|
412 if (ret_val) { |
|
413 phy->ops.write_reg = e1000e_write_phy_reg_bm; |
|
414 phy->ops.read_reg = e1000e_read_phy_reg_bm; |
|
415 ret_val = e1000e_determine_phy_address(hw); |
|
416 if (ret_val) { |
|
417 e_dbg("Cannot determine PHY addr. Erroring out\n"); |
|
418 return ret_val; |
|
419 } |
|
420 } |
|
421 |
|
422 phy->id = 0; |
|
423 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && |
|
424 (i++ < 100)) { |
|
425 msleep(1); |
|
426 ret_val = e1000e_get_phy_id(hw); |
|
427 if (ret_val) |
|
428 return ret_val; |
|
429 } |
|
430 |
|
431 /* Verify phy id */ |
|
432 switch (phy->id) { |
|
433 case IGP03E1000_E_PHY_ID: |
|
434 phy->type = e1000_phy_igp_3; |
|
435 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
436 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; |
|
437 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; |
|
438 phy->ops.get_info = e1000e_get_phy_info_igp; |
|
439 phy->ops.check_polarity = e1000_check_polarity_igp; |
|
440 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; |
|
441 break; |
|
442 case IFE_E_PHY_ID: |
|
443 case IFE_PLUS_E_PHY_ID: |
|
444 case IFE_C_E_PHY_ID: |
|
445 phy->type = e1000_phy_ife; |
|
446 phy->autoneg_mask = E1000_ALL_NOT_GIG; |
|
447 phy->ops.get_info = e1000_get_phy_info_ife; |
|
448 phy->ops.check_polarity = e1000_check_polarity_ife; |
|
449 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; |
|
450 break; |
|
451 case BME1000_E_PHY_ID: |
|
452 phy->type = e1000_phy_bm; |
|
453 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
454 phy->ops.read_reg = e1000e_read_phy_reg_bm; |
|
455 phy->ops.write_reg = e1000e_write_phy_reg_bm; |
|
456 phy->ops.commit = e1000e_phy_sw_reset; |
|
457 phy->ops.get_info = e1000e_get_phy_info_m88; |
|
458 phy->ops.check_polarity = e1000_check_polarity_m88; |
|
459 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
|
460 break; |
|
461 default: |
|
462 return -E1000_ERR_PHY; |
|
463 break; |
|
464 } |
|
465 |
|
466 return 0; |
|
467 } |
|
468 |
|
469 /** |
|
470 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers |
|
471 * @hw: pointer to the HW structure |
|
472 * |
|
473 * Initialize family-specific NVM parameters and function |
|
474 * pointers. |
|
475 **/ |
|
476 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) |
|
477 { |
|
478 struct e1000_nvm_info *nvm = &hw->nvm; |
|
479 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
480 u32 gfpreg, sector_base_addr, sector_end_addr; |
|
481 u16 i; |
|
482 |
|
483 /* Can't read flash registers if the register set isn't mapped. */ |
|
484 if (!hw->flash_address) { |
|
485 e_dbg("ERROR: Flash registers not mapped\n"); |
|
486 return -E1000_ERR_CONFIG; |
|
487 } |
|
488 |
|
489 nvm->type = e1000_nvm_flash_sw; |
|
490 |
|
491 gfpreg = er32flash(ICH_FLASH_GFPREG); |
|
492 |
|
493 /* |
|
494 * sector_X_addr is a "sector"-aligned address (4096 bytes) |
|
495 * Add 1 to sector_end_addr since this sector is included in |
|
496 * the overall size. |
|
497 */ |
|
498 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; |
|
499 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; |
|
500 |
|
501 /* flash_base_addr is byte-aligned */ |
|
502 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; |
|
503 |
|
504 /* |
|
505 * find total size of the NVM, then cut in half since the total |
|
506 * size represents two separate NVM banks. |
|
507 */ |
|
508 nvm->flash_bank_size = (sector_end_addr - sector_base_addr) |
|
509 << FLASH_SECTOR_ADDR_SHIFT; |
|
510 nvm->flash_bank_size /= 2; |
|
511 /* Adjust to word count */ |
|
512 nvm->flash_bank_size /= sizeof(u16); |
|
513 |
|
514 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; |
|
515 |
|
516 /* Clear shadow ram */ |
|
517 for (i = 0; i < nvm->word_size; i++) { |
|
518 dev_spec->shadow_ram[i].modified = false; |
|
519 dev_spec->shadow_ram[i].value = 0xFFFF; |
|
520 } |
|
521 |
|
522 return 0; |
|
523 } |
|
524 |
|
525 /** |
|
526 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers |
|
527 * @hw: pointer to the HW structure |
|
528 * |
|
529 * Initialize family-specific MAC parameters and function |
|
530 * pointers. |
|
531 **/ |
|
532 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) |
|
533 { |
|
534 struct e1000_hw *hw = &adapter->hw; |
|
535 struct e1000_mac_info *mac = &hw->mac; |
|
536 |
|
537 /* Set media type function pointer */ |
|
538 hw->phy.media_type = e1000_media_type_copper; |
|
539 |
|
540 /* Set mta register count */ |
|
541 mac->mta_reg_count = 32; |
|
542 /* Set rar entry count */ |
|
543 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; |
|
544 if (mac->type == e1000_ich8lan) |
|
545 mac->rar_entry_count--; |
|
546 /* FWSM register */ |
|
547 mac->has_fwsm = true; |
|
548 /* ARC subsystem not supported */ |
|
549 mac->arc_subsystem_valid = false; |
|
550 /* Adaptive IFS supported */ |
|
551 mac->adaptive_ifs = true; |
|
552 |
|
553 /* LED operations */ |
|
554 switch (mac->type) { |
|
555 case e1000_ich8lan: |
|
556 case e1000_ich9lan: |
|
557 case e1000_ich10lan: |
|
558 /* check management mode */ |
|
559 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; |
|
560 /* ID LED init */ |
|
561 mac->ops.id_led_init = e1000e_id_led_init; |
|
562 /* setup LED */ |
|
563 mac->ops.setup_led = e1000e_setup_led_generic; |
|
564 /* cleanup LED */ |
|
565 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; |
|
566 /* turn on/off LED */ |
|
567 mac->ops.led_on = e1000_led_on_ich8lan; |
|
568 mac->ops.led_off = e1000_led_off_ich8lan; |
|
569 break; |
|
570 case e1000_pchlan: |
|
571 case e1000_pch2lan: |
|
572 /* check management mode */ |
|
573 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; |
|
574 /* ID LED init */ |
|
575 mac->ops.id_led_init = e1000_id_led_init_pchlan; |
|
576 /* setup LED */ |
|
577 mac->ops.setup_led = e1000_setup_led_pchlan; |
|
578 /* cleanup LED */ |
|
579 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; |
|
580 /* turn on/off LED */ |
|
581 mac->ops.led_on = e1000_led_on_pchlan; |
|
582 mac->ops.led_off = e1000_led_off_pchlan; |
|
583 break; |
|
584 default: |
|
585 break; |
|
586 } |
|
587 |
|
588 /* Enable PCS Lock-loss workaround for ICH8 */ |
|
589 if (mac->type == e1000_ich8lan) |
|
590 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); |
|
591 |
|
592 /* Gate automatic PHY configuration by hardware on managed 82579 */ |
|
593 if ((mac->type == e1000_pch2lan) && |
|
594 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
|
595 e1000_gate_hw_phy_config_ich8lan(hw, true); |
|
596 |
|
597 return 0; |
|
598 } |
|
599 |
|
600 /** |
|
601 * e1000_set_eee_pchlan - Enable/disable EEE support |
|
602 * @hw: pointer to the HW structure |
|
603 * |
|
604 * Enable/disable EEE based on setting in dev_spec structure. The bits in |
|
605 * the LPI Control register will remain set only if/when link is up. |
|
606 **/ |
|
607 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) |
|
608 { |
|
609 s32 ret_val = 0; |
|
610 u16 phy_reg; |
|
611 |
|
612 if (hw->phy.type != e1000_phy_82579) |
|
613 goto out; |
|
614 |
|
615 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); |
|
616 if (ret_val) |
|
617 goto out; |
|
618 |
|
619 if (hw->dev_spec.ich8lan.eee_disable) |
|
620 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; |
|
621 else |
|
622 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; |
|
623 |
|
624 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); |
|
625 out: |
|
626 return ret_val; |
|
627 } |
|
628 |
|
629 /** |
|
630 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) |
|
631 * @hw: pointer to the HW structure |
|
632 * |
|
633 * Checks to see of the link status of the hardware has changed. If a |
|
634 * change in link status has been detected, then we read the PHY registers |
|
635 * to get the current speed/duplex if link exists. |
|
636 **/ |
|
637 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) |
|
638 { |
|
639 struct e1000_mac_info *mac = &hw->mac; |
|
640 s32 ret_val; |
|
641 bool link; |
|
642 |
|
643 /* |
|
644 * We only want to go out to the PHY registers to see if Auto-Neg |
|
645 * has completed and/or if our link status has changed. The |
|
646 * get_link_status flag is set upon receiving a Link Status |
|
647 * Change or Rx Sequence Error interrupt. |
|
648 */ |
|
649 if (!mac->get_link_status) { |
|
650 ret_val = 0; |
|
651 goto out; |
|
652 } |
|
653 |
|
654 /* |
|
655 * First we want to see if the MII Status Register reports |
|
656 * link. If so, then we want to get the current speed/duplex |
|
657 * of the PHY. |
|
658 */ |
|
659 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
|
660 if (ret_val) |
|
661 goto out; |
|
662 |
|
663 if (hw->mac.type == e1000_pchlan) { |
|
664 ret_val = e1000_k1_gig_workaround_hv(hw, link); |
|
665 if (ret_val) |
|
666 goto out; |
|
667 } |
|
668 |
|
669 if (!link) |
|
670 goto out; /* No link detected */ |
|
671 |
|
672 mac->get_link_status = false; |
|
673 |
|
674 if (hw->phy.type == e1000_phy_82578) { |
|
675 ret_val = e1000_link_stall_workaround_hv(hw); |
|
676 if (ret_val) |
|
677 goto out; |
|
678 } |
|
679 |
|
680 if (hw->mac.type == e1000_pch2lan) { |
|
681 ret_val = e1000_k1_workaround_lv(hw); |
|
682 if (ret_val) |
|
683 goto out; |
|
684 } |
|
685 |
|
686 /* |
|
687 * Check if there was DownShift, must be checked |
|
688 * immediately after link-up |
|
689 */ |
|
690 e1000e_check_downshift(hw); |
|
691 |
|
692 /* Enable/Disable EEE after link up */ |
|
693 ret_val = e1000_set_eee_pchlan(hw); |
|
694 if (ret_val) |
|
695 goto out; |
|
696 |
|
697 /* |
|
698 * If we are forcing speed/duplex, then we simply return since |
|
699 * we have already determined whether we have link or not. |
|
700 */ |
|
701 if (!mac->autoneg) { |
|
702 ret_val = -E1000_ERR_CONFIG; |
|
703 goto out; |
|
704 } |
|
705 |
|
706 /* |
|
707 * Auto-Neg is enabled. Auto Speed Detection takes care |
|
708 * of MAC speed/duplex configuration. So we only need to |
|
709 * configure Collision Distance in the MAC. |
|
710 */ |
|
711 e1000e_config_collision_dist(hw); |
|
712 |
|
713 /* |
|
714 * Configure Flow Control now that Auto-Neg has completed. |
|
715 * First, we need to restore the desired flow control |
|
716 * settings because we may have had to re-autoneg with a |
|
717 * different link partner. |
|
718 */ |
|
719 ret_val = e1000e_config_fc_after_link_up(hw); |
|
720 if (ret_val) |
|
721 e_dbg("Error configuring flow control\n"); |
|
722 |
|
723 out: |
|
724 return ret_val; |
|
725 } |
|
726 |
|
727 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) |
|
728 { |
|
729 struct e1000_hw *hw = &adapter->hw; |
|
730 s32 rc; |
|
731 |
|
732 rc = e1000_init_mac_params_ich8lan(adapter); |
|
733 if (rc) |
|
734 return rc; |
|
735 |
|
736 rc = e1000_init_nvm_params_ich8lan(hw); |
|
737 if (rc) |
|
738 return rc; |
|
739 |
|
740 switch (hw->mac.type) { |
|
741 case e1000_ich8lan: |
|
742 case e1000_ich9lan: |
|
743 case e1000_ich10lan: |
|
744 rc = e1000_init_phy_params_ich8lan(hw); |
|
745 break; |
|
746 case e1000_pchlan: |
|
747 case e1000_pch2lan: |
|
748 rc = e1000_init_phy_params_pchlan(hw); |
|
749 break; |
|
750 default: |
|
751 break; |
|
752 } |
|
753 if (rc) |
|
754 return rc; |
|
755 |
|
756 if (adapter->hw.phy.type == e1000_phy_ife) { |
|
757 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; |
|
758 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; |
|
759 } |
|
760 |
|
761 if ((adapter->hw.mac.type == e1000_ich8lan) && |
|
762 (adapter->hw.phy.type == e1000_phy_igp_3)) |
|
763 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; |
|
764 |
|
765 /* Disable EEE by default until IEEE802.3az spec is finalized */ |
|
766 if (adapter->flags2 & FLAG2_HAS_EEE) |
|
767 adapter->hw.dev_spec.ich8lan.eee_disable = true; |
|
768 |
|
769 return 0; |
|
770 } |
|
771 |
|
772 static DEFINE_MUTEX(nvm_mutex); |
|
773 |
|
774 /** |
|
775 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex |
|
776 * @hw: pointer to the HW structure |
|
777 * |
|
778 * Acquires the mutex for performing NVM operations. |
|
779 **/ |
|
780 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) |
|
781 { |
|
782 mutex_lock(&nvm_mutex); |
|
783 |
|
784 return 0; |
|
785 } |
|
786 |
|
787 /** |
|
788 * e1000_release_nvm_ich8lan - Release NVM mutex |
|
789 * @hw: pointer to the HW structure |
|
790 * |
|
791 * Releases the mutex used while performing NVM operations. |
|
792 **/ |
|
793 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) |
|
794 { |
|
795 mutex_unlock(&nvm_mutex); |
|
796 } |
|
797 |
|
798 static DEFINE_MUTEX(swflag_mutex); |
|
799 |
|
800 /** |
|
801 * e1000_acquire_swflag_ich8lan - Acquire software control flag |
|
802 * @hw: pointer to the HW structure |
|
803 * |
|
804 * Acquires the software control flag for performing PHY and select |
|
805 * MAC CSR accesses. |
|
806 **/ |
|
807 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) |
|
808 { |
|
809 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; |
|
810 s32 ret_val = 0; |
|
811 |
|
812 mutex_lock(&swflag_mutex); |
|
813 |
|
814 while (timeout) { |
|
815 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
816 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) |
|
817 break; |
|
818 |
|
819 mdelay(1); |
|
820 timeout--; |
|
821 } |
|
822 |
|
823 if (!timeout) { |
|
824 e_dbg("SW/FW/HW has locked the resource for too long.\n"); |
|
825 ret_val = -E1000_ERR_CONFIG; |
|
826 goto out; |
|
827 } |
|
828 |
|
829 timeout = SW_FLAG_TIMEOUT; |
|
830 |
|
831 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
|
832 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
833 |
|
834 while (timeout) { |
|
835 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
836 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
|
837 break; |
|
838 |
|
839 mdelay(1); |
|
840 timeout--; |
|
841 } |
|
842 |
|
843 if (!timeout) { |
|
844 e_dbg("Failed to acquire the semaphore.\n"); |
|
845 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
|
846 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
847 ret_val = -E1000_ERR_CONFIG; |
|
848 goto out; |
|
849 } |
|
850 |
|
851 out: |
|
852 if (ret_val) |
|
853 mutex_unlock(&swflag_mutex); |
|
854 |
|
855 return ret_val; |
|
856 } |
|
857 |
|
858 /** |
|
859 * e1000_release_swflag_ich8lan - Release software control flag |
|
860 * @hw: pointer to the HW structure |
|
861 * |
|
862 * Releases the software control flag for performing PHY and select |
|
863 * MAC CSR accesses. |
|
864 **/ |
|
865 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) |
|
866 { |
|
867 u32 extcnf_ctrl; |
|
868 |
|
869 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
870 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
|
871 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
872 |
|
873 mutex_unlock(&swflag_mutex); |
|
874 } |
|
875 |
|
876 /** |
|
877 * e1000_check_mng_mode_ich8lan - Checks management mode |
|
878 * @hw: pointer to the HW structure |
|
879 * |
|
880 * This checks if the adapter has any manageability enabled. |
|
881 * This is a function pointer entry point only called by read/write |
|
882 * routines for the PHY and NVM parts. |
|
883 **/ |
|
884 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) |
|
885 { |
|
886 u32 fwsm; |
|
887 |
|
888 fwsm = er32(FWSM); |
|
889 return (fwsm & E1000_ICH_FWSM_FW_VALID) && |
|
890 ((fwsm & E1000_FWSM_MODE_MASK) == |
|
891 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); |
|
892 } |
|
893 |
|
894 /** |
|
895 * e1000_check_mng_mode_pchlan - Checks management mode |
|
896 * @hw: pointer to the HW structure |
|
897 * |
|
898 * This checks if the adapter has iAMT enabled. |
|
899 * This is a function pointer entry point only called by read/write |
|
900 * routines for the PHY and NVM parts. |
|
901 **/ |
|
902 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) |
|
903 { |
|
904 u32 fwsm; |
|
905 |
|
906 fwsm = er32(FWSM); |
|
907 return (fwsm & E1000_ICH_FWSM_FW_VALID) && |
|
908 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); |
|
909 } |
|
910 |
|
911 /** |
|
912 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked |
|
913 * @hw: pointer to the HW structure |
|
914 * |
|
915 * Checks if firmware is blocking the reset of the PHY. |
|
916 * This is a function pointer entry point only called by |
|
917 * reset routines. |
|
918 **/ |
|
919 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) |
|
920 { |
|
921 u32 fwsm; |
|
922 |
|
923 fwsm = er32(FWSM); |
|
924 |
|
925 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; |
|
926 } |
|
927 |
|
928 /** |
|
929 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states |
|
930 * @hw: pointer to the HW structure |
|
931 * |
|
932 * Assumes semaphore already acquired. |
|
933 * |
|
934 **/ |
|
935 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) |
|
936 { |
|
937 u16 phy_data; |
|
938 u32 strap = er32(STRAP); |
|
939 s32 ret_val = 0; |
|
940 |
|
941 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; |
|
942 |
|
943 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); |
|
944 if (ret_val) |
|
945 goto out; |
|
946 |
|
947 phy_data &= ~HV_SMB_ADDR_MASK; |
|
948 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); |
|
949 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; |
|
950 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); |
|
951 |
|
952 out: |
|
953 return ret_val; |
|
954 } |
|
955 |
|
956 /** |
|
957 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration |
|
958 * @hw: pointer to the HW structure |
|
959 * |
|
960 * SW should configure the LCD from the NVM extended configuration region |
|
961 * as a workaround for certain parts. |
|
962 **/ |
|
963 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) |
|
964 { |
|
965 struct e1000_phy_info *phy = &hw->phy; |
|
966 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; |
|
967 s32 ret_val = 0; |
|
968 u16 word_addr, reg_data, reg_addr, phy_page = 0; |
|
969 |
|
970 /* |
|
971 * Initialize the PHY from the NVM on ICH platforms. This |
|
972 * is needed due to an issue where the NVM configuration is |
|
973 * not properly autoloaded after power transitions. |
|
974 * Therefore, after each PHY reset, we will load the |
|
975 * configuration data out of the NVM manually. |
|
976 */ |
|
977 switch (hw->mac.type) { |
|
978 case e1000_ich8lan: |
|
979 if (phy->type != e1000_phy_igp_3) |
|
980 return ret_val; |
|
981 |
|
982 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || |
|
983 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { |
|
984 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; |
|
985 break; |
|
986 } |
|
987 /* Fall-thru */ |
|
988 case e1000_pchlan: |
|
989 case e1000_pch2lan: |
|
990 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; |
|
991 break; |
|
992 default: |
|
993 return ret_val; |
|
994 } |
|
995 |
|
996 ret_val = hw->phy.ops.acquire(hw); |
|
997 if (ret_val) |
|
998 return ret_val; |
|
999 |
|
1000 data = er32(FEXTNVM); |
|
1001 if (!(data & sw_cfg_mask)) |
|
1002 goto out; |
|
1003 |
|
1004 /* |
|
1005 * Make sure HW does not configure LCD from PHY |
|
1006 * extended configuration before SW configuration |
|
1007 */ |
|
1008 data = er32(EXTCNF_CTRL); |
|
1009 if (!(hw->mac.type == e1000_pch2lan)) { |
|
1010 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) |
|
1011 goto out; |
|
1012 } |
|
1013 |
|
1014 cnf_size = er32(EXTCNF_SIZE); |
|
1015 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; |
|
1016 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; |
|
1017 if (!cnf_size) |
|
1018 goto out; |
|
1019 |
|
1020 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; |
|
1021 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; |
|
1022 |
|
1023 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && |
|
1024 (hw->mac.type == e1000_pchlan)) || |
|
1025 (hw->mac.type == e1000_pch2lan)) { |
|
1026 /* |
|
1027 * HW configures the SMBus address and LEDs when the |
|
1028 * OEM and LCD Write Enable bits are set in the NVM. |
|
1029 * When both NVM bits are cleared, SW will configure |
|
1030 * them instead. |
|
1031 */ |
|
1032 ret_val = e1000_write_smbus_addr(hw); |
|
1033 if (ret_val) |
|
1034 goto out; |
|
1035 |
|
1036 data = er32(LEDCTL); |
|
1037 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, |
|
1038 (u16)data); |
|
1039 if (ret_val) |
|
1040 goto out; |
|
1041 } |
|
1042 |
|
1043 /* Configure LCD from extended configuration region. */ |
|
1044 |
|
1045 /* cnf_base_addr is in DWORD */ |
|
1046 word_addr = (u16)(cnf_base_addr << 1); |
|
1047 |
|
1048 for (i = 0; i < cnf_size; i++) { |
|
1049 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, |
|
1050 ®_data); |
|
1051 if (ret_val) |
|
1052 goto out; |
|
1053 |
|
1054 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), |
|
1055 1, ®_addr); |
|
1056 if (ret_val) |
|
1057 goto out; |
|
1058 |
|
1059 /* Save off the PHY page for future writes. */ |
|
1060 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { |
|
1061 phy_page = reg_data; |
|
1062 continue; |
|
1063 } |
|
1064 |
|
1065 reg_addr &= PHY_REG_MASK; |
|
1066 reg_addr |= phy_page; |
|
1067 |
|
1068 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, |
|
1069 reg_data); |
|
1070 if (ret_val) |
|
1071 goto out; |
|
1072 } |
|
1073 |
|
1074 out: |
|
1075 hw->phy.ops.release(hw); |
|
1076 return ret_val; |
|
1077 } |
|
1078 |
|
1079 /** |
|
1080 * e1000_k1_gig_workaround_hv - K1 Si workaround |
|
1081 * @hw: pointer to the HW structure |
|
1082 * @link: link up bool flag |
|
1083 * |
|
1084 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning |
|
1085 * from a lower speed. This workaround disables K1 whenever link is at 1Gig |
|
1086 * If link is down, the function will restore the default K1 setting located |
|
1087 * in the NVM. |
|
1088 **/ |
|
1089 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) |
|
1090 { |
|
1091 s32 ret_val = 0; |
|
1092 u16 status_reg = 0; |
|
1093 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; |
|
1094 |
|
1095 if (hw->mac.type != e1000_pchlan) |
|
1096 goto out; |
|
1097 |
|
1098 /* Wrap the whole flow with the sw flag */ |
|
1099 ret_val = hw->phy.ops.acquire(hw); |
|
1100 if (ret_val) |
|
1101 goto out; |
|
1102 |
|
1103 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ |
|
1104 if (link) { |
|
1105 if (hw->phy.type == e1000_phy_82578) { |
|
1106 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, |
|
1107 &status_reg); |
|
1108 if (ret_val) |
|
1109 goto release; |
|
1110 |
|
1111 status_reg &= BM_CS_STATUS_LINK_UP | |
|
1112 BM_CS_STATUS_RESOLVED | |
|
1113 BM_CS_STATUS_SPEED_MASK; |
|
1114 |
|
1115 if (status_reg == (BM_CS_STATUS_LINK_UP | |
|
1116 BM_CS_STATUS_RESOLVED | |
|
1117 BM_CS_STATUS_SPEED_1000)) |
|
1118 k1_enable = false; |
|
1119 } |
|
1120 |
|
1121 if (hw->phy.type == e1000_phy_82577) { |
|
1122 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, |
|
1123 &status_reg); |
|
1124 if (ret_val) |
|
1125 goto release; |
|
1126 |
|
1127 status_reg &= HV_M_STATUS_LINK_UP | |
|
1128 HV_M_STATUS_AUTONEG_COMPLETE | |
|
1129 HV_M_STATUS_SPEED_MASK; |
|
1130 |
|
1131 if (status_reg == (HV_M_STATUS_LINK_UP | |
|
1132 HV_M_STATUS_AUTONEG_COMPLETE | |
|
1133 HV_M_STATUS_SPEED_1000)) |
|
1134 k1_enable = false; |
|
1135 } |
|
1136 |
|
1137 /* Link stall fix for link up */ |
|
1138 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), |
|
1139 0x0100); |
|
1140 if (ret_val) |
|
1141 goto release; |
|
1142 |
|
1143 } else { |
|
1144 /* Link stall fix for link down */ |
|
1145 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), |
|
1146 0x4100); |
|
1147 if (ret_val) |
|
1148 goto release; |
|
1149 } |
|
1150 |
|
1151 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); |
|
1152 |
|
1153 release: |
|
1154 hw->phy.ops.release(hw); |
|
1155 out: |
|
1156 return ret_val; |
|
1157 } |
|
1158 |
|
1159 /** |
|
1160 * e1000_configure_k1_ich8lan - Configure K1 power state |
|
1161 * @hw: pointer to the HW structure |
|
1162 * @enable: K1 state to configure |
|
1163 * |
|
1164 * Configure the K1 power state based on the provided parameter. |
|
1165 * Assumes semaphore already acquired. |
|
1166 * |
|
1167 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
|
1168 **/ |
|
1169 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) |
|
1170 { |
|
1171 s32 ret_val = 0; |
|
1172 u32 ctrl_reg = 0; |
|
1173 u32 ctrl_ext = 0; |
|
1174 u32 reg = 0; |
|
1175 u16 kmrn_reg = 0; |
|
1176 |
|
1177 ret_val = e1000e_read_kmrn_reg_locked(hw, |
|
1178 E1000_KMRNCTRLSTA_K1_CONFIG, |
|
1179 &kmrn_reg); |
|
1180 if (ret_val) |
|
1181 goto out; |
|
1182 |
|
1183 if (k1_enable) |
|
1184 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; |
|
1185 else |
|
1186 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; |
|
1187 |
|
1188 ret_val = e1000e_write_kmrn_reg_locked(hw, |
|
1189 E1000_KMRNCTRLSTA_K1_CONFIG, |
|
1190 kmrn_reg); |
|
1191 if (ret_val) |
|
1192 goto out; |
|
1193 |
|
1194 udelay(20); |
|
1195 ctrl_ext = er32(CTRL_EXT); |
|
1196 ctrl_reg = er32(CTRL); |
|
1197 |
|
1198 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
|
1199 reg |= E1000_CTRL_FRCSPD; |
|
1200 ew32(CTRL, reg); |
|
1201 |
|
1202 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); |
|
1203 udelay(20); |
|
1204 ew32(CTRL, ctrl_reg); |
|
1205 ew32(CTRL_EXT, ctrl_ext); |
|
1206 udelay(20); |
|
1207 |
|
1208 out: |
|
1209 return ret_val; |
|
1210 } |
|
1211 |
|
1212 /** |
|
1213 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration |
|
1214 * @hw: pointer to the HW structure |
|
1215 * @d0_state: boolean if entering d0 or d3 device state |
|
1216 * |
|
1217 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are |
|
1218 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit |
|
1219 * in NVM determines whether HW should configure LPLU and Gbe Disable. |
|
1220 **/ |
|
1221 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) |
|
1222 { |
|
1223 s32 ret_val = 0; |
|
1224 u32 mac_reg; |
|
1225 u16 oem_reg; |
|
1226 |
|
1227 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) |
|
1228 return ret_val; |
|
1229 |
|
1230 ret_val = hw->phy.ops.acquire(hw); |
|
1231 if (ret_val) |
|
1232 return ret_val; |
|
1233 |
|
1234 if (!(hw->mac.type == e1000_pch2lan)) { |
|
1235 mac_reg = er32(EXTCNF_CTRL); |
|
1236 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) |
|
1237 goto out; |
|
1238 } |
|
1239 |
|
1240 mac_reg = er32(FEXTNVM); |
|
1241 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) |
|
1242 goto out; |
|
1243 |
|
1244 mac_reg = er32(PHY_CTRL); |
|
1245 |
|
1246 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); |
|
1247 if (ret_val) |
|
1248 goto out; |
|
1249 |
|
1250 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); |
|
1251 |
|
1252 if (d0_state) { |
|
1253 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) |
|
1254 oem_reg |= HV_OEM_BITS_GBE_DIS; |
|
1255 |
|
1256 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) |
|
1257 oem_reg |= HV_OEM_BITS_LPLU; |
|
1258 } else { |
|
1259 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE) |
|
1260 oem_reg |= HV_OEM_BITS_GBE_DIS; |
|
1261 |
|
1262 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU) |
|
1263 oem_reg |= HV_OEM_BITS_LPLU; |
|
1264 } |
|
1265 /* Restart auto-neg to activate the bits */ |
|
1266 if (!e1000_check_reset_block(hw)) |
|
1267 oem_reg |= HV_OEM_BITS_RESTART_AN; |
|
1268 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); |
|
1269 |
|
1270 out: |
|
1271 hw->phy.ops.release(hw); |
|
1272 |
|
1273 return ret_val; |
|
1274 } |
|
1275 |
|
1276 |
|
1277 /** |
|
1278 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode |
|
1279 * @hw: pointer to the HW structure |
|
1280 **/ |
|
1281 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) |
|
1282 { |
|
1283 s32 ret_val; |
|
1284 u16 data; |
|
1285 |
|
1286 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); |
|
1287 if (ret_val) |
|
1288 return ret_val; |
|
1289 |
|
1290 data |= HV_KMRN_MDIO_SLOW; |
|
1291 |
|
1292 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); |
|
1293 |
|
1294 return ret_val; |
|
1295 } |
|
1296 |
|
1297 /** |
|
1298 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
|
1299 * done after every PHY reset. |
|
1300 **/ |
|
1301 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
|
1302 { |
|
1303 s32 ret_val = 0; |
|
1304 u16 phy_data; |
|
1305 |
|
1306 if (hw->mac.type != e1000_pchlan) |
|
1307 return ret_val; |
|
1308 |
|
1309 /* Set MDIO slow mode before any other MDIO access */ |
|
1310 if (hw->phy.type == e1000_phy_82577) { |
|
1311 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
1312 if (ret_val) |
|
1313 goto out; |
|
1314 } |
|
1315 |
|
1316 if (((hw->phy.type == e1000_phy_82577) && |
|
1317 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || |
|
1318 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { |
|
1319 /* Disable generation of early preamble */ |
|
1320 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); |
|
1321 if (ret_val) |
|
1322 return ret_val; |
|
1323 |
|
1324 /* Preamble tuning for SSC */ |
|
1325 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204); |
|
1326 if (ret_val) |
|
1327 return ret_val; |
|
1328 } |
|
1329 |
|
1330 if (hw->phy.type == e1000_phy_82578) { |
|
1331 /* |
|
1332 * Return registers to default by doing a soft reset then |
|
1333 * writing 0x3140 to the control register. |
|
1334 */ |
|
1335 if (hw->phy.revision < 2) { |
|
1336 e1000e_phy_sw_reset(hw); |
|
1337 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); |
|
1338 } |
|
1339 } |
|
1340 |
|
1341 /* Select page 0 */ |
|
1342 ret_val = hw->phy.ops.acquire(hw); |
|
1343 if (ret_val) |
|
1344 return ret_val; |
|
1345 |
|
1346 hw->phy.addr = 1; |
|
1347 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); |
|
1348 hw->phy.ops.release(hw); |
|
1349 if (ret_val) |
|
1350 goto out; |
|
1351 |
|
1352 /* |
|
1353 * Configure the K1 Si workaround during phy reset assuming there is |
|
1354 * link so that it disables K1 if link is in 1Gbps. |
|
1355 */ |
|
1356 ret_val = e1000_k1_gig_workaround_hv(hw, true); |
|
1357 if (ret_val) |
|
1358 goto out; |
|
1359 |
|
1360 /* Workaround for link disconnects on a busy hub in half duplex */ |
|
1361 ret_val = hw->phy.ops.acquire(hw); |
|
1362 if (ret_val) |
|
1363 goto out; |
|
1364 ret_val = hw->phy.ops.read_reg_locked(hw, |
|
1365 PHY_REG(BM_PORT_CTRL_PAGE, 17), |
|
1366 &phy_data); |
|
1367 if (ret_val) |
|
1368 goto release; |
|
1369 ret_val = hw->phy.ops.write_reg_locked(hw, |
|
1370 PHY_REG(BM_PORT_CTRL_PAGE, 17), |
|
1371 phy_data & 0x00FF); |
|
1372 release: |
|
1373 hw->phy.ops.release(hw); |
|
1374 out: |
|
1375 return ret_val; |
|
1376 } |
|
1377 |
|
1378 /** |
|
1379 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY |
|
1380 * @hw: pointer to the HW structure |
|
1381 **/ |
|
1382 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) |
|
1383 { |
|
1384 u32 mac_reg; |
|
1385 u16 i; |
|
1386 |
|
1387 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ |
|
1388 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { |
|
1389 mac_reg = er32(RAL(i)); |
|
1390 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); |
|
1391 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); |
|
1392 mac_reg = er32(RAH(i)); |
|
1393 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); |
|
1394 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000)); |
|
1395 } |
|
1396 } |
|
1397 |
|
1398 static u32 e1000_calc_rx_da_crc(u8 mac[]) |
|
1399 { |
|
1400 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ |
|
1401 u32 i, j, mask, crc; |
|
1402 |
|
1403 crc = 0xffffffff; |
|
1404 for (i = 0; i < 6; i++) { |
|
1405 crc = crc ^ mac[i]; |
|
1406 for (j = 8; j > 0; j--) { |
|
1407 mask = (crc & 1) * (-1); |
|
1408 crc = (crc >> 1) ^ (poly & mask); |
|
1409 } |
|
1410 } |
|
1411 return ~crc; |
|
1412 } |
|
1413 |
|
1414 /** |
|
1415 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation |
|
1416 * with 82579 PHY |
|
1417 * @hw: pointer to the HW structure |
|
1418 * @enable: flag to enable/disable workaround when enabling/disabling jumbos |
|
1419 **/ |
|
1420 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) |
|
1421 { |
|
1422 s32 ret_val = 0; |
|
1423 u16 phy_reg, data; |
|
1424 u32 mac_reg; |
|
1425 u16 i; |
|
1426 |
|
1427 if (hw->mac.type != e1000_pch2lan) |
|
1428 goto out; |
|
1429 |
|
1430 /* disable Rx path while enabling/disabling workaround */ |
|
1431 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); |
|
1432 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); |
|
1433 if (ret_val) |
|
1434 goto out; |
|
1435 |
|
1436 if (enable) { |
|
1437 /* |
|
1438 * Write Rx addresses (rar_entry_count for RAL/H, +4 for |
|
1439 * SHRAL/H) and initial CRC values to the MAC |
|
1440 */ |
|
1441 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { |
|
1442 u8 mac_addr[ETH_ALEN] = {0}; |
|
1443 u32 addr_high, addr_low; |
|
1444 |
|
1445 addr_high = er32(RAH(i)); |
|
1446 if (!(addr_high & E1000_RAH_AV)) |
|
1447 continue; |
|
1448 addr_low = er32(RAL(i)); |
|
1449 mac_addr[0] = (addr_low & 0xFF); |
|
1450 mac_addr[1] = ((addr_low >> 8) & 0xFF); |
|
1451 mac_addr[2] = ((addr_low >> 16) & 0xFF); |
|
1452 mac_addr[3] = ((addr_low >> 24) & 0xFF); |
|
1453 mac_addr[4] = (addr_high & 0xFF); |
|
1454 mac_addr[5] = ((addr_high >> 8) & 0xFF); |
|
1455 |
|
1456 ew32(PCH_RAICC(i), |
|
1457 e1000_calc_rx_da_crc(mac_addr)); |
|
1458 } |
|
1459 |
|
1460 /* Write Rx addresses to the PHY */ |
|
1461 e1000_copy_rx_addrs_to_phy_ich8lan(hw); |
|
1462 |
|
1463 /* Enable jumbo frame workaround in the MAC */ |
|
1464 mac_reg = er32(FFLT_DBG); |
|
1465 mac_reg &= ~(1 << 14); |
|
1466 mac_reg |= (7 << 15); |
|
1467 ew32(FFLT_DBG, mac_reg); |
|
1468 |
|
1469 mac_reg = er32(RCTL); |
|
1470 mac_reg |= E1000_RCTL_SECRC; |
|
1471 ew32(RCTL, mac_reg); |
|
1472 |
|
1473 ret_val = e1000e_read_kmrn_reg(hw, |
|
1474 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
1475 &data); |
|
1476 if (ret_val) |
|
1477 goto out; |
|
1478 ret_val = e1000e_write_kmrn_reg(hw, |
|
1479 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
1480 data | (1 << 0)); |
|
1481 if (ret_val) |
|
1482 goto out; |
|
1483 ret_val = e1000e_read_kmrn_reg(hw, |
|
1484 E1000_KMRNCTRLSTA_HD_CTRL, |
|
1485 &data); |
|
1486 if (ret_val) |
|
1487 goto out; |
|
1488 data &= ~(0xF << 8); |
|
1489 data |= (0xB << 8); |
|
1490 ret_val = e1000e_write_kmrn_reg(hw, |
|
1491 E1000_KMRNCTRLSTA_HD_CTRL, |
|
1492 data); |
|
1493 if (ret_val) |
|
1494 goto out; |
|
1495 |
|
1496 /* Enable jumbo frame workaround in the PHY */ |
|
1497 e1e_rphy(hw, PHY_REG(769, 23), &data); |
|
1498 data &= ~(0x7F << 5); |
|
1499 data |= (0x37 << 5); |
|
1500 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); |
|
1501 if (ret_val) |
|
1502 goto out; |
|
1503 e1e_rphy(hw, PHY_REG(769, 16), &data); |
|
1504 data &= ~(1 << 13); |
|
1505 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); |
|
1506 if (ret_val) |
|
1507 goto out; |
|
1508 e1e_rphy(hw, PHY_REG(776, 20), &data); |
|
1509 data &= ~(0x3FF << 2); |
|
1510 data |= (0x1A << 2); |
|
1511 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); |
|
1512 if (ret_val) |
|
1513 goto out; |
|
1514 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00); |
|
1515 if (ret_val) |
|
1516 goto out; |
|
1517 e1e_rphy(hw, HV_PM_CTRL, &data); |
|
1518 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); |
|
1519 if (ret_val) |
|
1520 goto out; |
|
1521 } else { |
|
1522 /* Write MAC register values back to h/w defaults */ |
|
1523 mac_reg = er32(FFLT_DBG); |
|
1524 mac_reg &= ~(0xF << 14); |
|
1525 ew32(FFLT_DBG, mac_reg); |
|
1526 |
|
1527 mac_reg = er32(RCTL); |
|
1528 mac_reg &= ~E1000_RCTL_SECRC; |
|
1529 ew32(RCTL, mac_reg); |
|
1530 |
|
1531 ret_val = e1000e_read_kmrn_reg(hw, |
|
1532 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
1533 &data); |
|
1534 if (ret_val) |
|
1535 goto out; |
|
1536 ret_val = e1000e_write_kmrn_reg(hw, |
|
1537 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
1538 data & ~(1 << 0)); |
|
1539 if (ret_val) |
|
1540 goto out; |
|
1541 ret_val = e1000e_read_kmrn_reg(hw, |
|
1542 E1000_KMRNCTRLSTA_HD_CTRL, |
|
1543 &data); |
|
1544 if (ret_val) |
|
1545 goto out; |
|
1546 data &= ~(0xF << 8); |
|
1547 data |= (0xB << 8); |
|
1548 ret_val = e1000e_write_kmrn_reg(hw, |
|
1549 E1000_KMRNCTRLSTA_HD_CTRL, |
|
1550 data); |
|
1551 if (ret_val) |
|
1552 goto out; |
|
1553 |
|
1554 /* Write PHY register values back to h/w defaults */ |
|
1555 e1e_rphy(hw, PHY_REG(769, 23), &data); |
|
1556 data &= ~(0x7F << 5); |
|
1557 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); |
|
1558 if (ret_val) |
|
1559 goto out; |
|
1560 e1e_rphy(hw, PHY_REG(769, 16), &data); |
|
1561 data |= (1 << 13); |
|
1562 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); |
|
1563 if (ret_val) |
|
1564 goto out; |
|
1565 e1e_rphy(hw, PHY_REG(776, 20), &data); |
|
1566 data &= ~(0x3FF << 2); |
|
1567 data |= (0x8 << 2); |
|
1568 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); |
|
1569 if (ret_val) |
|
1570 goto out; |
|
1571 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); |
|
1572 if (ret_val) |
|
1573 goto out; |
|
1574 e1e_rphy(hw, HV_PM_CTRL, &data); |
|
1575 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); |
|
1576 if (ret_val) |
|
1577 goto out; |
|
1578 } |
|
1579 |
|
1580 /* re-enable Rx path after enabling/disabling workaround */ |
|
1581 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); |
|
1582 |
|
1583 out: |
|
1584 return ret_val; |
|
1585 } |
|
1586 |
|
1587 /** |
|
1588 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
|
1589 * done after every PHY reset. |
|
1590 **/ |
|
1591 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
|
1592 { |
|
1593 s32 ret_val = 0; |
|
1594 |
|
1595 if (hw->mac.type != e1000_pch2lan) |
|
1596 goto out; |
|
1597 |
|
1598 /* Set MDIO slow mode before any other MDIO access */ |
|
1599 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
1600 |
|
1601 out: |
|
1602 return ret_val; |
|
1603 } |
|
1604 |
|
1605 /** |
|
1606 * e1000_k1_gig_workaround_lv - K1 Si workaround |
|
1607 * @hw: pointer to the HW structure |
|
1608 * |
|
1609 * Workaround to set the K1 beacon duration for 82579 parts |
|
1610 **/ |
|
1611 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) |
|
1612 { |
|
1613 s32 ret_val = 0; |
|
1614 u16 status_reg = 0; |
|
1615 u32 mac_reg; |
|
1616 |
|
1617 if (hw->mac.type != e1000_pch2lan) |
|
1618 goto out; |
|
1619 |
|
1620 /* Set K1 beacon duration based on 1Gbps speed or otherwise */ |
|
1621 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); |
|
1622 if (ret_val) |
|
1623 goto out; |
|
1624 |
|
1625 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) |
|
1626 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { |
|
1627 mac_reg = er32(FEXTNVM4); |
|
1628 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; |
|
1629 |
|
1630 if (status_reg & HV_M_STATUS_SPEED_1000) |
|
1631 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; |
|
1632 else |
|
1633 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; |
|
1634 |
|
1635 ew32(FEXTNVM4, mac_reg); |
|
1636 } |
|
1637 |
|
1638 out: |
|
1639 return ret_val; |
|
1640 } |
|
1641 |
|
1642 /** |
|
1643 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware |
|
1644 * @hw: pointer to the HW structure |
|
1645 * @gate: boolean set to true to gate, false to ungate |
|
1646 * |
|
1647 * Gate/ungate the automatic PHY configuration via hardware; perform |
|
1648 * the configuration via software instead. |
|
1649 **/ |
|
1650 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) |
|
1651 { |
|
1652 u32 extcnf_ctrl; |
|
1653 |
|
1654 if (hw->mac.type != e1000_pch2lan) |
|
1655 return; |
|
1656 |
|
1657 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
1658 |
|
1659 if (gate) |
|
1660 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; |
|
1661 else |
|
1662 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; |
|
1663 |
|
1664 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
1665 return; |
|
1666 } |
|
1667 |
|
1668 /** |
|
1669 * e1000_lan_init_done_ich8lan - Check for PHY config completion |
|
1670 * @hw: pointer to the HW structure |
|
1671 * |
|
1672 * Check the appropriate indication the MAC has finished configuring the |
|
1673 * PHY after a software reset. |
|
1674 **/ |
|
1675 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) |
|
1676 { |
|
1677 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; |
|
1678 |
|
1679 /* Wait for basic configuration completes before proceeding */ |
|
1680 do { |
|
1681 data = er32(STATUS); |
|
1682 data &= E1000_STATUS_LAN_INIT_DONE; |
|
1683 udelay(100); |
|
1684 } while ((!data) && --loop); |
|
1685 |
|
1686 /* |
|
1687 * If basic configuration is incomplete before the above loop |
|
1688 * count reaches 0, loading the configuration from NVM will |
|
1689 * leave the PHY in a bad state possibly resulting in no link. |
|
1690 */ |
|
1691 if (loop == 0) |
|
1692 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); |
|
1693 |
|
1694 /* Clear the Init Done bit for the next init event */ |
|
1695 data = er32(STATUS); |
|
1696 data &= ~E1000_STATUS_LAN_INIT_DONE; |
|
1697 ew32(STATUS, data); |
|
1698 } |
|
1699 |
|
1700 /** |
|
1701 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset |
|
1702 * @hw: pointer to the HW structure |
|
1703 **/ |
|
1704 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) |
|
1705 { |
|
1706 s32 ret_val = 0; |
|
1707 u16 reg; |
|
1708 |
|
1709 if (e1000_check_reset_block(hw)) |
|
1710 goto out; |
|
1711 |
|
1712 /* Allow time for h/w to get to quiescent state after reset */ |
|
1713 msleep(10); |
|
1714 |
|
1715 /* Perform any necessary post-reset workarounds */ |
|
1716 switch (hw->mac.type) { |
|
1717 case e1000_pchlan: |
|
1718 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); |
|
1719 if (ret_val) |
|
1720 goto out; |
|
1721 break; |
|
1722 case e1000_pch2lan: |
|
1723 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); |
|
1724 if (ret_val) |
|
1725 goto out; |
|
1726 break; |
|
1727 default: |
|
1728 break; |
|
1729 } |
|
1730 |
|
1731 /* Dummy read to clear the phy wakeup bit after lcd reset */ |
|
1732 if (hw->mac.type >= e1000_pchlan) |
|
1733 e1e_rphy(hw, BM_WUC, ®); |
|
1734 |
|
1735 /* Configure the LCD with the extended configuration region in NVM */ |
|
1736 ret_val = e1000_sw_lcd_config_ich8lan(hw); |
|
1737 if (ret_val) |
|
1738 goto out; |
|
1739 |
|
1740 /* Configure the LCD with the OEM bits in NVM */ |
|
1741 ret_val = e1000_oem_bits_config_ich8lan(hw, true); |
|
1742 |
|
1743 /* Ungate automatic PHY configuration on non-managed 82579 */ |
|
1744 if ((hw->mac.type == e1000_pch2lan) && |
|
1745 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
|
1746 msleep(10); |
|
1747 e1000_gate_hw_phy_config_ich8lan(hw, false); |
|
1748 } |
|
1749 |
|
1750 out: |
|
1751 return ret_val; |
|
1752 } |
|
1753 |
|
1754 /** |
|
1755 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset |
|
1756 * @hw: pointer to the HW structure |
|
1757 * |
|
1758 * Resets the PHY |
|
1759 * This is a function pointer entry point called by drivers |
|
1760 * or other shared routines. |
|
1761 **/ |
|
1762 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) |
|
1763 { |
|
1764 s32 ret_val = 0; |
|
1765 |
|
1766 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ |
|
1767 if ((hw->mac.type == e1000_pch2lan) && |
|
1768 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
|
1769 e1000_gate_hw_phy_config_ich8lan(hw, true); |
|
1770 |
|
1771 ret_val = e1000e_phy_hw_reset_generic(hw); |
|
1772 if (ret_val) |
|
1773 goto out; |
|
1774 |
|
1775 ret_val = e1000_post_phy_reset_ich8lan(hw); |
|
1776 |
|
1777 out: |
|
1778 return ret_val; |
|
1779 } |
|
1780 |
|
1781 /** |
|
1782 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state |
|
1783 * @hw: pointer to the HW structure |
|
1784 * @active: true to enable LPLU, false to disable |
|
1785 * |
|
1786 * Sets the LPLU state according to the active flag. For PCH, if OEM write |
|
1787 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set |
|
1788 * the phy speed. This function will manually set the LPLU bit and restart |
|
1789 * auto-neg as hw would do. D3 and D0 LPLU will call the same function |
|
1790 * since it configures the same bit. |
|
1791 **/ |
|
1792 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) |
|
1793 { |
|
1794 s32 ret_val = 0; |
|
1795 u16 oem_reg; |
|
1796 |
|
1797 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); |
|
1798 if (ret_val) |
|
1799 goto out; |
|
1800 |
|
1801 if (active) |
|
1802 oem_reg |= HV_OEM_BITS_LPLU; |
|
1803 else |
|
1804 oem_reg &= ~HV_OEM_BITS_LPLU; |
|
1805 |
|
1806 oem_reg |= HV_OEM_BITS_RESTART_AN; |
|
1807 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg); |
|
1808 |
|
1809 out: |
|
1810 return ret_val; |
|
1811 } |
|
1812 |
|
1813 /** |
|
1814 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state |
|
1815 * @hw: pointer to the HW structure |
|
1816 * @active: true to enable LPLU, false to disable |
|
1817 * |
|
1818 * Sets the LPLU D0 state according to the active flag. When |
|
1819 * activating LPLU this function also disables smart speed |
|
1820 * and vice versa. LPLU will not be activated unless the |
|
1821 * device autonegotiation advertisement meets standards of |
|
1822 * either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
1823 * This is a function pointer entry point only called by |
|
1824 * PHY setup routines. |
|
1825 **/ |
|
1826 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
|
1827 { |
|
1828 struct e1000_phy_info *phy = &hw->phy; |
|
1829 u32 phy_ctrl; |
|
1830 s32 ret_val = 0; |
|
1831 u16 data; |
|
1832 |
|
1833 if (phy->type == e1000_phy_ife) |
|
1834 return ret_val; |
|
1835 |
|
1836 phy_ctrl = er32(PHY_CTRL); |
|
1837 |
|
1838 if (active) { |
|
1839 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
|
1840 ew32(PHY_CTRL, phy_ctrl); |
|
1841 |
|
1842 if (phy->type != e1000_phy_igp_3) |
|
1843 return 0; |
|
1844 |
|
1845 /* |
|
1846 * Call gig speed drop workaround on LPLU before accessing |
|
1847 * any PHY registers |
|
1848 */ |
|
1849 if (hw->mac.type == e1000_ich8lan) |
|
1850 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
1851 |
|
1852 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
1853 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
1854 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1855 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
1856 if (ret_val) |
|
1857 return ret_val; |
|
1858 } else { |
|
1859 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
|
1860 ew32(PHY_CTRL, phy_ctrl); |
|
1861 |
|
1862 if (phy->type != e1000_phy_igp_3) |
|
1863 return 0; |
|
1864 |
|
1865 /* |
|
1866 * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
1867 * during Dx states where the power conservation is most |
|
1868 * important. During driver activity we should enable |
|
1869 * SmartSpeed, so performance is maintained. |
|
1870 */ |
|
1871 if (phy->smart_speed == e1000_smart_speed_on) { |
|
1872 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1873 &data); |
|
1874 if (ret_val) |
|
1875 return ret_val; |
|
1876 |
|
1877 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
1878 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1879 data); |
|
1880 if (ret_val) |
|
1881 return ret_val; |
|
1882 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
1883 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1884 &data); |
|
1885 if (ret_val) |
|
1886 return ret_val; |
|
1887 |
|
1888 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1889 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1890 data); |
|
1891 if (ret_val) |
|
1892 return ret_val; |
|
1893 } |
|
1894 } |
|
1895 |
|
1896 return 0; |
|
1897 } |
|
1898 |
|
1899 /** |
|
1900 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state |
|
1901 * @hw: pointer to the HW structure |
|
1902 * @active: true to enable LPLU, false to disable |
|
1903 * |
|
1904 * Sets the LPLU D3 state according to the active flag. When |
|
1905 * activating LPLU this function also disables smart speed |
|
1906 * and vice versa. LPLU will not be activated unless the |
|
1907 * device autonegotiation advertisement meets standards of |
|
1908 * either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
1909 * This is a function pointer entry point only called by |
|
1910 * PHY setup routines. |
|
1911 **/ |
|
1912 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
|
1913 { |
|
1914 struct e1000_phy_info *phy = &hw->phy; |
|
1915 u32 phy_ctrl; |
|
1916 s32 ret_val; |
|
1917 u16 data; |
|
1918 |
|
1919 phy_ctrl = er32(PHY_CTRL); |
|
1920 |
|
1921 if (!active) { |
|
1922 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
|
1923 ew32(PHY_CTRL, phy_ctrl); |
|
1924 |
|
1925 if (phy->type != e1000_phy_igp_3) |
|
1926 return 0; |
|
1927 |
|
1928 /* |
|
1929 * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
1930 * during Dx states where the power conservation is most |
|
1931 * important. During driver activity we should enable |
|
1932 * SmartSpeed, so performance is maintained. |
|
1933 */ |
|
1934 if (phy->smart_speed == e1000_smart_speed_on) { |
|
1935 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1936 &data); |
|
1937 if (ret_val) |
|
1938 return ret_val; |
|
1939 |
|
1940 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
1941 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1942 data); |
|
1943 if (ret_val) |
|
1944 return ret_val; |
|
1945 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
1946 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1947 &data); |
|
1948 if (ret_val) |
|
1949 return ret_val; |
|
1950 |
|
1951 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1952 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1953 data); |
|
1954 if (ret_val) |
|
1955 return ret_val; |
|
1956 } |
|
1957 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
|
1958 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
|
1959 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
|
1960 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
|
1961 ew32(PHY_CTRL, phy_ctrl); |
|
1962 |
|
1963 if (phy->type != e1000_phy_igp_3) |
|
1964 return 0; |
|
1965 |
|
1966 /* |
|
1967 * Call gig speed drop workaround on LPLU before accessing |
|
1968 * any PHY registers |
|
1969 */ |
|
1970 if (hw->mac.type == e1000_ich8lan) |
|
1971 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
1972 |
|
1973 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
1974 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
1975 if (ret_val) |
|
1976 return ret_val; |
|
1977 |
|
1978 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1979 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
1980 } |
|
1981 |
|
1982 return 0; |
|
1983 } |
|
1984 |
|
1985 /** |
|
1986 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 |
|
1987 * @hw: pointer to the HW structure |
|
1988 * @bank: pointer to the variable that returns the active bank |
|
1989 * |
|
1990 * Reads signature byte from the NVM using the flash access registers. |
|
1991 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. |
|
1992 **/ |
|
1993 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) |
|
1994 { |
|
1995 u32 eecd; |
|
1996 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1997 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); |
|
1998 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; |
|
1999 u8 sig_byte = 0; |
|
2000 s32 ret_val = 0; |
|
2001 |
|
2002 switch (hw->mac.type) { |
|
2003 case e1000_ich8lan: |
|
2004 case e1000_ich9lan: |
|
2005 eecd = er32(EECD); |
|
2006 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == |
|
2007 E1000_EECD_SEC1VAL_VALID_MASK) { |
|
2008 if (eecd & E1000_EECD_SEC1VAL) |
|
2009 *bank = 1; |
|
2010 else |
|
2011 *bank = 0; |
|
2012 |
|
2013 return 0; |
|
2014 } |
|
2015 e_dbg("Unable to determine valid NVM bank via EEC - " |
|
2016 "reading flash signature\n"); |
|
2017 /* fall-thru */ |
|
2018 default: |
|
2019 /* set bank to 0 in case flash read fails */ |
|
2020 *bank = 0; |
|
2021 |
|
2022 /* Check bank 0 */ |
|
2023 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, |
|
2024 &sig_byte); |
|
2025 if (ret_val) |
|
2026 return ret_val; |
|
2027 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
|
2028 E1000_ICH_NVM_SIG_VALUE) { |
|
2029 *bank = 0; |
|
2030 return 0; |
|
2031 } |
|
2032 |
|
2033 /* Check bank 1 */ |
|
2034 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + |
|
2035 bank1_offset, |
|
2036 &sig_byte); |
|
2037 if (ret_val) |
|
2038 return ret_val; |
|
2039 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
|
2040 E1000_ICH_NVM_SIG_VALUE) { |
|
2041 *bank = 1; |
|
2042 return 0; |
|
2043 } |
|
2044 |
|
2045 e_dbg("ERROR: No valid NVM bank present\n"); |
|
2046 return -E1000_ERR_NVM; |
|
2047 } |
|
2048 |
|
2049 return 0; |
|
2050 } |
|
2051 |
|
2052 /** |
|
2053 * e1000_read_nvm_ich8lan - Read word(s) from the NVM |
|
2054 * @hw: pointer to the HW structure |
|
2055 * @offset: The offset (in bytes) of the word(s) to read. |
|
2056 * @words: Size of data to read in words |
|
2057 * @data: Pointer to the word(s) to read at offset. |
|
2058 * |
|
2059 * Reads a word(s) from the NVM using the flash access registers. |
|
2060 **/ |
|
2061 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
|
2062 u16 *data) |
|
2063 { |
|
2064 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2065 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2066 u32 act_offset; |
|
2067 s32 ret_val = 0; |
|
2068 u32 bank = 0; |
|
2069 u16 i, word; |
|
2070 |
|
2071 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
|
2072 (words == 0)) { |
|
2073 e_dbg("nvm parameter(s) out of bounds\n"); |
|
2074 ret_val = -E1000_ERR_NVM; |
|
2075 goto out; |
|
2076 } |
|
2077 |
|
2078 nvm->ops.acquire(hw); |
|
2079 |
|
2080 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
|
2081 if (ret_val) { |
|
2082 e_dbg("Could not detect valid bank, assuming bank 0\n"); |
|
2083 bank = 0; |
|
2084 } |
|
2085 |
|
2086 act_offset = (bank) ? nvm->flash_bank_size : 0; |
|
2087 act_offset += offset; |
|
2088 |
|
2089 ret_val = 0; |
|
2090 for (i = 0; i < words; i++) { |
|
2091 if ((dev_spec->shadow_ram) && |
|
2092 (dev_spec->shadow_ram[offset+i].modified)) { |
|
2093 data[i] = dev_spec->shadow_ram[offset+i].value; |
|
2094 } else { |
|
2095 ret_val = e1000_read_flash_word_ich8lan(hw, |
|
2096 act_offset + i, |
|
2097 &word); |
|
2098 if (ret_val) |
|
2099 break; |
|
2100 data[i] = word; |
|
2101 } |
|
2102 } |
|
2103 |
|
2104 nvm->ops.release(hw); |
|
2105 |
|
2106 out: |
|
2107 if (ret_val) |
|
2108 e_dbg("NVM read error: %d\n", ret_val); |
|
2109 |
|
2110 return ret_val; |
|
2111 } |
|
2112 |
|
2113 /** |
|
2114 * e1000_flash_cycle_init_ich8lan - Initialize flash |
|
2115 * @hw: pointer to the HW structure |
|
2116 * |
|
2117 * This function does initial flash setup so that a new read/write/erase cycle |
|
2118 * can be started. |
|
2119 **/ |
|
2120 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) |
|
2121 { |
|
2122 union ich8_hws_flash_status hsfsts; |
|
2123 s32 ret_val = -E1000_ERR_NVM; |
|
2124 s32 i = 0; |
|
2125 |
|
2126 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2127 |
|
2128 /* Check if the flash descriptor is valid */ |
|
2129 if (hsfsts.hsf_status.fldesvalid == 0) { |
|
2130 e_dbg("Flash descriptor invalid. " |
|
2131 "SW Sequencing must be used.\n"); |
|
2132 return -E1000_ERR_NVM; |
|
2133 } |
|
2134 |
|
2135 /* Clear FCERR and DAEL in hw status by writing 1 */ |
|
2136 hsfsts.hsf_status.flcerr = 1; |
|
2137 hsfsts.hsf_status.dael = 1; |
|
2138 |
|
2139 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2140 |
|
2141 /* |
|
2142 * Either we should have a hardware SPI cycle in progress |
|
2143 * bit to check against, in order to start a new cycle or |
|
2144 * FDONE bit should be changed in the hardware so that it |
|
2145 * is 1 after hardware reset, which can then be used as an |
|
2146 * indication whether a cycle is in progress or has been |
|
2147 * completed. |
|
2148 */ |
|
2149 |
|
2150 if (hsfsts.hsf_status.flcinprog == 0) { |
|
2151 /* |
|
2152 * There is no cycle running at present, |
|
2153 * so we can start a cycle. |
|
2154 * Begin by setting Flash Cycle Done. |
|
2155 */ |
|
2156 hsfsts.hsf_status.flcdone = 1; |
|
2157 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2158 ret_val = 0; |
|
2159 } else { |
|
2160 /* |
|
2161 * Otherwise poll for sometime so the current |
|
2162 * cycle has a chance to end before giving up. |
|
2163 */ |
|
2164 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { |
|
2165 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); |
|
2166 if (hsfsts.hsf_status.flcinprog == 0) { |
|
2167 ret_val = 0; |
|
2168 break; |
|
2169 } |
|
2170 udelay(1); |
|
2171 } |
|
2172 if (ret_val == 0) { |
|
2173 /* |
|
2174 * Successful in waiting for previous cycle to timeout, |
|
2175 * now set the Flash Cycle Done. |
|
2176 */ |
|
2177 hsfsts.hsf_status.flcdone = 1; |
|
2178 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2179 } else { |
|
2180 e_dbg("Flash controller busy, cannot get access\n"); |
|
2181 } |
|
2182 } |
|
2183 |
|
2184 return ret_val; |
|
2185 } |
|
2186 |
|
2187 /** |
|
2188 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) |
|
2189 * @hw: pointer to the HW structure |
|
2190 * @timeout: maximum time to wait for completion |
|
2191 * |
|
2192 * This function starts a flash cycle and waits for its completion. |
|
2193 **/ |
|
2194 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) |
|
2195 { |
|
2196 union ich8_hws_flash_ctrl hsflctl; |
|
2197 union ich8_hws_flash_status hsfsts; |
|
2198 s32 ret_val = -E1000_ERR_NVM; |
|
2199 u32 i = 0; |
|
2200 |
|
2201 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
|
2202 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2203 hsflctl.hsf_ctrl.flcgo = 1; |
|
2204 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2205 |
|
2206 /* wait till FDONE bit is set to 1 */ |
|
2207 do { |
|
2208 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2209 if (hsfsts.hsf_status.flcdone == 1) |
|
2210 break; |
|
2211 udelay(1); |
|
2212 } while (i++ < timeout); |
|
2213 |
|
2214 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) |
|
2215 return 0; |
|
2216 |
|
2217 return ret_val; |
|
2218 } |
|
2219 |
|
2220 /** |
|
2221 * e1000_read_flash_word_ich8lan - Read word from flash |
|
2222 * @hw: pointer to the HW structure |
|
2223 * @offset: offset to data location |
|
2224 * @data: pointer to the location for storing the data |
|
2225 * |
|
2226 * Reads the flash word at offset into data. Offset is converted |
|
2227 * to bytes before read. |
|
2228 **/ |
|
2229 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2230 u16 *data) |
|
2231 { |
|
2232 /* Must convert offset into bytes. */ |
|
2233 offset <<= 1; |
|
2234 |
|
2235 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); |
|
2236 } |
|
2237 |
|
2238 /** |
|
2239 * e1000_read_flash_byte_ich8lan - Read byte from flash |
|
2240 * @hw: pointer to the HW structure |
|
2241 * @offset: The offset of the byte to read. |
|
2242 * @data: Pointer to a byte to store the value read. |
|
2243 * |
|
2244 * Reads a single byte from the NVM using the flash access registers. |
|
2245 **/ |
|
2246 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2247 u8 *data) |
|
2248 { |
|
2249 s32 ret_val; |
|
2250 u16 word = 0; |
|
2251 |
|
2252 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); |
|
2253 if (ret_val) |
|
2254 return ret_val; |
|
2255 |
|
2256 *data = (u8)word; |
|
2257 |
|
2258 return 0; |
|
2259 } |
|
2260 |
|
2261 /** |
|
2262 * e1000_read_flash_data_ich8lan - Read byte or word from NVM |
|
2263 * @hw: pointer to the HW structure |
|
2264 * @offset: The offset (in bytes) of the byte or word to read. |
|
2265 * @size: Size of data to read, 1=byte 2=word |
|
2266 * @data: Pointer to the word to store the value read. |
|
2267 * |
|
2268 * Reads a byte or word from the NVM using the flash access registers. |
|
2269 **/ |
|
2270 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2271 u8 size, u16 *data) |
|
2272 { |
|
2273 union ich8_hws_flash_status hsfsts; |
|
2274 union ich8_hws_flash_ctrl hsflctl; |
|
2275 u32 flash_linear_addr; |
|
2276 u32 flash_data = 0; |
|
2277 s32 ret_val = -E1000_ERR_NVM; |
|
2278 u8 count = 0; |
|
2279 |
|
2280 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
|
2281 return -E1000_ERR_NVM; |
|
2282 |
|
2283 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
|
2284 hw->nvm.flash_base_addr; |
|
2285 |
|
2286 do { |
|
2287 udelay(1); |
|
2288 /* Steps */ |
|
2289 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
2290 if (ret_val != 0) |
|
2291 break; |
|
2292 |
|
2293 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2294 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
2295 hsflctl.hsf_ctrl.fldbcount = size - 1; |
|
2296 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
|
2297 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2298 |
|
2299 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
2300 |
|
2301 ret_val = e1000_flash_cycle_ich8lan(hw, |
|
2302 ICH_FLASH_READ_COMMAND_TIMEOUT); |
|
2303 |
|
2304 /* |
|
2305 * Check if FCERR is set to 1, if set to 1, clear it |
|
2306 * and try the whole sequence a few more times, else |
|
2307 * read in (shift in) the Flash Data0, the order is |
|
2308 * least significant byte first msb to lsb |
|
2309 */ |
|
2310 if (ret_val == 0) { |
|
2311 flash_data = er32flash(ICH_FLASH_FDATA0); |
|
2312 if (size == 1) { |
|
2313 *data = (u8)(flash_data & 0x000000FF); |
|
2314 } else if (size == 2) { |
|
2315 *data = (u16)(flash_data & 0x0000FFFF); |
|
2316 } |
|
2317 break; |
|
2318 } else { |
|
2319 /* |
|
2320 * If we've gotten here, then things are probably |
|
2321 * completely hosed, but if the error condition is |
|
2322 * detected, it won't hurt to give it another try... |
|
2323 * ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
2324 */ |
|
2325 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2326 if (hsfsts.hsf_status.flcerr == 1) { |
|
2327 /* Repeat for some time before giving up. */ |
|
2328 continue; |
|
2329 } else if (hsfsts.hsf_status.flcdone == 0) { |
|
2330 e_dbg("Timeout error - flash cycle " |
|
2331 "did not complete.\n"); |
|
2332 break; |
|
2333 } |
|
2334 } |
|
2335 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
2336 |
|
2337 return ret_val; |
|
2338 } |
|
2339 |
|
2340 /** |
|
2341 * e1000_write_nvm_ich8lan - Write word(s) to the NVM |
|
2342 * @hw: pointer to the HW structure |
|
2343 * @offset: The offset (in bytes) of the word(s) to write. |
|
2344 * @words: Size of data to write in words |
|
2345 * @data: Pointer to the word(s) to write at offset. |
|
2346 * |
|
2347 * Writes a byte or word to the NVM using the flash access registers. |
|
2348 **/ |
|
2349 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
|
2350 u16 *data) |
|
2351 { |
|
2352 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2353 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2354 u16 i; |
|
2355 |
|
2356 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
|
2357 (words == 0)) { |
|
2358 e_dbg("nvm parameter(s) out of bounds\n"); |
|
2359 return -E1000_ERR_NVM; |
|
2360 } |
|
2361 |
|
2362 nvm->ops.acquire(hw); |
|
2363 |
|
2364 for (i = 0; i < words; i++) { |
|
2365 dev_spec->shadow_ram[offset+i].modified = true; |
|
2366 dev_spec->shadow_ram[offset+i].value = data[i]; |
|
2367 } |
|
2368 |
|
2369 nvm->ops.release(hw); |
|
2370 |
|
2371 return 0; |
|
2372 } |
|
2373 |
|
2374 /** |
|
2375 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM |
|
2376 * @hw: pointer to the HW structure |
|
2377 * |
|
2378 * The NVM checksum is updated by calling the generic update_nvm_checksum, |
|
2379 * which writes the checksum to the shadow ram. The changes in the shadow |
|
2380 * ram are then committed to the EEPROM by processing each bank at a time |
|
2381 * checking for the modified bit and writing only the pending changes. |
|
2382 * After a successful commit, the shadow ram is cleared and is ready for |
|
2383 * future writes. |
|
2384 **/ |
|
2385 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) |
|
2386 { |
|
2387 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2388 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2389 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; |
|
2390 s32 ret_val; |
|
2391 u16 data; |
|
2392 |
|
2393 ret_val = e1000e_update_nvm_checksum_generic(hw); |
|
2394 if (ret_val) |
|
2395 goto out; |
|
2396 |
|
2397 if (nvm->type != e1000_nvm_flash_sw) |
|
2398 goto out; |
|
2399 |
|
2400 nvm->ops.acquire(hw); |
|
2401 |
|
2402 /* |
|
2403 * We're writing to the opposite bank so if we're on bank 1, |
|
2404 * write to bank 0 etc. We also need to erase the segment that |
|
2405 * is going to be written |
|
2406 */ |
|
2407 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
|
2408 if (ret_val) { |
|
2409 e_dbg("Could not detect valid bank, assuming bank 0\n"); |
|
2410 bank = 0; |
|
2411 } |
|
2412 |
|
2413 if (bank == 0) { |
|
2414 new_bank_offset = nvm->flash_bank_size; |
|
2415 old_bank_offset = 0; |
|
2416 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); |
|
2417 if (ret_val) |
|
2418 goto release; |
|
2419 } else { |
|
2420 old_bank_offset = nvm->flash_bank_size; |
|
2421 new_bank_offset = 0; |
|
2422 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); |
|
2423 if (ret_val) |
|
2424 goto release; |
|
2425 } |
|
2426 |
|
2427 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
|
2428 /* |
|
2429 * Determine whether to write the value stored |
|
2430 * in the other NVM bank or a modified value stored |
|
2431 * in the shadow RAM |
|
2432 */ |
|
2433 if (dev_spec->shadow_ram[i].modified) { |
|
2434 data = dev_spec->shadow_ram[i].value; |
|
2435 } else { |
|
2436 ret_val = e1000_read_flash_word_ich8lan(hw, i + |
|
2437 old_bank_offset, |
|
2438 &data); |
|
2439 if (ret_val) |
|
2440 break; |
|
2441 } |
|
2442 |
|
2443 /* |
|
2444 * If the word is 0x13, then make sure the signature bits |
|
2445 * (15:14) are 11b until the commit has completed. |
|
2446 * This will allow us to write 10b which indicates the |
|
2447 * signature is valid. We want to do this after the write |
|
2448 * has completed so that we don't mark the segment valid |
|
2449 * while the write is still in progress |
|
2450 */ |
|
2451 if (i == E1000_ICH_NVM_SIG_WORD) |
|
2452 data |= E1000_ICH_NVM_SIG_MASK; |
|
2453 |
|
2454 /* Convert offset to bytes. */ |
|
2455 act_offset = (i + new_bank_offset) << 1; |
|
2456 |
|
2457 udelay(100); |
|
2458 /* Write the bytes to the new bank. */ |
|
2459 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
2460 act_offset, |
|
2461 (u8)data); |
|
2462 if (ret_val) |
|
2463 break; |
|
2464 |
|
2465 udelay(100); |
|
2466 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
2467 act_offset + 1, |
|
2468 (u8)(data >> 8)); |
|
2469 if (ret_val) |
|
2470 break; |
|
2471 } |
|
2472 |
|
2473 /* |
|
2474 * Don't bother writing the segment valid bits if sector |
|
2475 * programming failed. |
|
2476 */ |
|
2477 if (ret_val) { |
|
2478 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ |
|
2479 e_dbg("Flash commit failed.\n"); |
|
2480 goto release; |
|
2481 } |
|
2482 |
|
2483 /* |
|
2484 * Finally validate the new segment by setting bit 15:14 |
|
2485 * to 10b in word 0x13 , this can be done without an |
|
2486 * erase as well since these bits are 11 to start with |
|
2487 * and we need to change bit 14 to 0b |
|
2488 */ |
|
2489 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; |
|
2490 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); |
|
2491 if (ret_val) |
|
2492 goto release; |
|
2493 |
|
2494 data &= 0xBFFF; |
|
2495 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
2496 act_offset * 2 + 1, |
|
2497 (u8)(data >> 8)); |
|
2498 if (ret_val) |
|
2499 goto release; |
|
2500 |
|
2501 /* |
|
2502 * And invalidate the previously valid segment by setting |
|
2503 * its signature word (0x13) high_byte to 0b. This can be |
|
2504 * done without an erase because flash erase sets all bits |
|
2505 * to 1's. We can write 1's to 0's without an erase |
|
2506 */ |
|
2507 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; |
|
2508 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); |
|
2509 if (ret_val) |
|
2510 goto release; |
|
2511 |
|
2512 /* Great! Everything worked, we can now clear the cached entries. */ |
|
2513 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
|
2514 dev_spec->shadow_ram[i].modified = false; |
|
2515 dev_spec->shadow_ram[i].value = 0xFFFF; |
|
2516 } |
|
2517 |
|
2518 release: |
|
2519 nvm->ops.release(hw); |
|
2520 |
|
2521 /* |
|
2522 * Reload the EEPROM, or else modifications will not appear |
|
2523 * until after the next adapter reset. |
|
2524 */ |
|
2525 if (!ret_val) { |
|
2526 e1000e_reload_nvm(hw); |
|
2527 msleep(10); |
|
2528 } |
|
2529 |
|
2530 out: |
|
2531 if (ret_val) |
|
2532 e_dbg("NVM update error: %d\n", ret_val); |
|
2533 |
|
2534 return ret_val; |
|
2535 } |
|
2536 |
|
2537 /** |
|
2538 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum |
|
2539 * @hw: pointer to the HW structure |
|
2540 * |
|
2541 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. |
|
2542 * If the bit is 0, that the EEPROM had been modified, but the checksum was not |
|
2543 * calculated, in which case we need to calculate the checksum and set bit 6. |
|
2544 **/ |
|
2545 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) |
|
2546 { |
|
2547 s32 ret_val; |
|
2548 u16 data; |
|
2549 |
|
2550 /* |
|
2551 * Read 0x19 and check bit 6. If this bit is 0, the checksum |
|
2552 * needs to be fixed. This bit is an indication that the NVM |
|
2553 * was prepared by OEM software and did not calculate the |
|
2554 * checksum...a likely scenario. |
|
2555 */ |
|
2556 ret_val = e1000_read_nvm(hw, 0x19, 1, &data); |
|
2557 if (ret_val) |
|
2558 return ret_val; |
|
2559 |
|
2560 if ((data & 0x40) == 0) { |
|
2561 data |= 0x40; |
|
2562 ret_val = e1000_write_nvm(hw, 0x19, 1, &data); |
|
2563 if (ret_val) |
|
2564 return ret_val; |
|
2565 ret_val = e1000e_update_nvm_checksum(hw); |
|
2566 if (ret_val) |
|
2567 return ret_val; |
|
2568 } |
|
2569 |
|
2570 return e1000e_validate_nvm_checksum_generic(hw); |
|
2571 } |
|
2572 |
|
2573 /** |
|
2574 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only |
|
2575 * @hw: pointer to the HW structure |
|
2576 * |
|
2577 * To prevent malicious write/erase of the NVM, set it to be read-only |
|
2578 * so that the hardware ignores all write/erase cycles of the NVM via |
|
2579 * the flash control registers. The shadow-ram copy of the NVM will |
|
2580 * still be updated, however any updates to this copy will not stick |
|
2581 * across driver reloads. |
|
2582 **/ |
|
2583 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) |
|
2584 { |
|
2585 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2586 union ich8_flash_protected_range pr0; |
|
2587 union ich8_hws_flash_status hsfsts; |
|
2588 u32 gfpreg; |
|
2589 |
|
2590 nvm->ops.acquire(hw); |
|
2591 |
|
2592 gfpreg = er32flash(ICH_FLASH_GFPREG); |
|
2593 |
|
2594 /* Write-protect GbE Sector of NVM */ |
|
2595 pr0.regval = er32flash(ICH_FLASH_PR0); |
|
2596 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; |
|
2597 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); |
|
2598 pr0.range.wpe = true; |
|
2599 ew32flash(ICH_FLASH_PR0, pr0.regval); |
|
2600 |
|
2601 /* |
|
2602 * Lock down a subset of GbE Flash Control Registers, e.g. |
|
2603 * PR0 to prevent the write-protection from being lifted. |
|
2604 * Once FLOCKDN is set, the registers protected by it cannot |
|
2605 * be written until FLOCKDN is cleared by a hardware reset. |
|
2606 */ |
|
2607 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2608 hsfsts.hsf_status.flockdn = true; |
|
2609 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2610 |
|
2611 nvm->ops.release(hw); |
|
2612 } |
|
2613 |
|
2614 /** |
|
2615 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM |
|
2616 * @hw: pointer to the HW structure |
|
2617 * @offset: The offset (in bytes) of the byte/word to read. |
|
2618 * @size: Size of data to read, 1=byte 2=word |
|
2619 * @data: The byte(s) to write to the NVM. |
|
2620 * |
|
2621 * Writes one/two bytes to the NVM using the flash access registers. |
|
2622 **/ |
|
2623 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2624 u8 size, u16 data) |
|
2625 { |
|
2626 union ich8_hws_flash_status hsfsts; |
|
2627 union ich8_hws_flash_ctrl hsflctl; |
|
2628 u32 flash_linear_addr; |
|
2629 u32 flash_data = 0; |
|
2630 s32 ret_val; |
|
2631 u8 count = 0; |
|
2632 |
|
2633 if (size < 1 || size > 2 || data > size * 0xff || |
|
2634 offset > ICH_FLASH_LINEAR_ADDR_MASK) |
|
2635 return -E1000_ERR_NVM; |
|
2636 |
|
2637 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
|
2638 hw->nvm.flash_base_addr; |
|
2639 |
|
2640 do { |
|
2641 udelay(1); |
|
2642 /* Steps */ |
|
2643 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
2644 if (ret_val) |
|
2645 break; |
|
2646 |
|
2647 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2648 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
2649 hsflctl.hsf_ctrl.fldbcount = size -1; |
|
2650 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
|
2651 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2652 |
|
2653 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
2654 |
|
2655 if (size == 1) |
|
2656 flash_data = (u32)data & 0x00FF; |
|
2657 else |
|
2658 flash_data = (u32)data; |
|
2659 |
|
2660 ew32flash(ICH_FLASH_FDATA0, flash_data); |
|
2661 |
|
2662 /* |
|
2663 * check if FCERR is set to 1 , if set to 1, clear it |
|
2664 * and try the whole sequence a few more times else done |
|
2665 */ |
|
2666 ret_val = e1000_flash_cycle_ich8lan(hw, |
|
2667 ICH_FLASH_WRITE_COMMAND_TIMEOUT); |
|
2668 if (!ret_val) |
|
2669 break; |
|
2670 |
|
2671 /* |
|
2672 * If we're here, then things are most likely |
|
2673 * completely hosed, but if the error condition |
|
2674 * is detected, it won't hurt to give it another |
|
2675 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
2676 */ |
|
2677 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2678 if (hsfsts.hsf_status.flcerr == 1) |
|
2679 /* Repeat for some time before giving up. */ |
|
2680 continue; |
|
2681 if (hsfsts.hsf_status.flcdone == 0) { |
|
2682 e_dbg("Timeout error - flash cycle " |
|
2683 "did not complete."); |
|
2684 break; |
|
2685 } |
|
2686 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
2687 |
|
2688 return ret_val; |
|
2689 } |
|
2690 |
|
2691 /** |
|
2692 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM |
|
2693 * @hw: pointer to the HW structure |
|
2694 * @offset: The index of the byte to read. |
|
2695 * @data: The byte to write to the NVM. |
|
2696 * |
|
2697 * Writes a single byte to the NVM using the flash access registers. |
|
2698 **/ |
|
2699 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2700 u8 data) |
|
2701 { |
|
2702 u16 word = (u16)data; |
|
2703 |
|
2704 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); |
|
2705 } |
|
2706 |
|
2707 /** |
|
2708 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM |
|
2709 * @hw: pointer to the HW structure |
|
2710 * @offset: The offset of the byte to write. |
|
2711 * @byte: The byte to write to the NVM. |
|
2712 * |
|
2713 * Writes a single byte to the NVM using the flash access registers. |
|
2714 * Goes through a retry algorithm before giving up. |
|
2715 **/ |
|
2716 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
|
2717 u32 offset, u8 byte) |
|
2718 { |
|
2719 s32 ret_val; |
|
2720 u16 program_retries; |
|
2721 |
|
2722 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
|
2723 if (!ret_val) |
|
2724 return ret_val; |
|
2725 |
|
2726 for (program_retries = 0; program_retries < 100; program_retries++) { |
|
2727 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); |
|
2728 udelay(100); |
|
2729 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
|
2730 if (!ret_val) |
|
2731 break; |
|
2732 } |
|
2733 if (program_retries == 100) |
|
2734 return -E1000_ERR_NVM; |
|
2735 |
|
2736 return 0; |
|
2737 } |
|
2738 |
|
2739 /** |
|
2740 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM |
|
2741 * @hw: pointer to the HW structure |
|
2742 * @bank: 0 for first bank, 1 for second bank, etc. |
|
2743 * |
|
2744 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. |
|
2745 * bank N is 4096 * N + flash_reg_addr. |
|
2746 **/ |
|
2747 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) |
|
2748 { |
|
2749 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2750 union ich8_hws_flash_status hsfsts; |
|
2751 union ich8_hws_flash_ctrl hsflctl; |
|
2752 u32 flash_linear_addr; |
|
2753 /* bank size is in 16bit words - adjust to bytes */ |
|
2754 u32 flash_bank_size = nvm->flash_bank_size * 2; |
|
2755 s32 ret_val; |
|
2756 s32 count = 0; |
|
2757 s32 j, iteration, sector_size; |
|
2758 |
|
2759 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2760 |
|
2761 /* |
|
2762 * Determine HW Sector size: Read BERASE bits of hw flash status |
|
2763 * register |
|
2764 * 00: The Hw sector is 256 bytes, hence we need to erase 16 |
|
2765 * consecutive sectors. The start index for the nth Hw sector |
|
2766 * can be calculated as = bank * 4096 + n * 256 |
|
2767 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
|
2768 * The start index for the nth Hw sector can be calculated |
|
2769 * as = bank * 4096 |
|
2770 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 |
|
2771 * (ich9 only, otherwise error condition) |
|
2772 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 |
|
2773 */ |
|
2774 switch (hsfsts.hsf_status.berasesz) { |
|
2775 case 0: |
|
2776 /* Hw sector size 256 */ |
|
2777 sector_size = ICH_FLASH_SEG_SIZE_256; |
|
2778 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; |
|
2779 break; |
|
2780 case 1: |
|
2781 sector_size = ICH_FLASH_SEG_SIZE_4K; |
|
2782 iteration = 1; |
|
2783 break; |
|
2784 case 2: |
|
2785 sector_size = ICH_FLASH_SEG_SIZE_8K; |
|
2786 iteration = 1; |
|
2787 break; |
|
2788 case 3: |
|
2789 sector_size = ICH_FLASH_SEG_SIZE_64K; |
|
2790 iteration = 1; |
|
2791 break; |
|
2792 default: |
|
2793 return -E1000_ERR_NVM; |
|
2794 } |
|
2795 |
|
2796 /* Start with the base address, then add the sector offset. */ |
|
2797 flash_linear_addr = hw->nvm.flash_base_addr; |
|
2798 flash_linear_addr += (bank) ? flash_bank_size : 0; |
|
2799 |
|
2800 for (j = 0; j < iteration ; j++) { |
|
2801 do { |
|
2802 /* Steps */ |
|
2803 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
2804 if (ret_val) |
|
2805 return ret_val; |
|
2806 |
|
2807 /* |
|
2808 * Write a value 11 (block Erase) in Flash |
|
2809 * Cycle field in hw flash control |
|
2810 */ |
|
2811 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2812 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
|
2813 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2814 |
|
2815 /* |
|
2816 * Write the last 24 bits of an index within the |
|
2817 * block into Flash Linear address field in Flash |
|
2818 * Address. |
|
2819 */ |
|
2820 flash_linear_addr += (j * sector_size); |
|
2821 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
2822 |
|
2823 ret_val = e1000_flash_cycle_ich8lan(hw, |
|
2824 ICH_FLASH_ERASE_COMMAND_TIMEOUT); |
|
2825 if (ret_val == 0) |
|
2826 break; |
|
2827 |
|
2828 /* |
|
2829 * Check if FCERR is set to 1. If 1, |
|
2830 * clear it and try the whole sequence |
|
2831 * a few more times else Done |
|
2832 */ |
|
2833 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2834 if (hsfsts.hsf_status.flcerr == 1) |
|
2835 /* repeat for some time before giving up */ |
|
2836 continue; |
|
2837 else if (hsfsts.hsf_status.flcdone == 0) |
|
2838 return ret_val; |
|
2839 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
2840 } |
|
2841 |
|
2842 return 0; |
|
2843 } |
|
2844 |
|
2845 /** |
|
2846 * e1000_valid_led_default_ich8lan - Set the default LED settings |
|
2847 * @hw: pointer to the HW structure |
|
2848 * @data: Pointer to the LED settings |
|
2849 * |
|
2850 * Reads the LED default settings from the NVM to data. If the NVM LED |
|
2851 * settings is all 0's or F's, set the LED default to a valid LED default |
|
2852 * setting. |
|
2853 **/ |
|
2854 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) |
|
2855 { |
|
2856 s32 ret_val; |
|
2857 |
|
2858 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
|
2859 if (ret_val) { |
|
2860 e_dbg("NVM Read Error\n"); |
|
2861 return ret_val; |
|
2862 } |
|
2863 |
|
2864 if (*data == ID_LED_RESERVED_0000 || |
|
2865 *data == ID_LED_RESERVED_FFFF) |
|
2866 *data = ID_LED_DEFAULT_ICH8LAN; |
|
2867 |
|
2868 return 0; |
|
2869 } |
|
2870 |
|
2871 /** |
|
2872 * e1000_id_led_init_pchlan - store LED configurations |
|
2873 * @hw: pointer to the HW structure |
|
2874 * |
|
2875 * PCH does not control LEDs via the LEDCTL register, rather it uses |
|
2876 * the PHY LED configuration register. |
|
2877 * |
|
2878 * PCH also does not have an "always on" or "always off" mode which |
|
2879 * complicates the ID feature. Instead of using the "on" mode to indicate |
|
2880 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()), |
|
2881 * use "link_up" mode. The LEDs will still ID on request if there is no |
|
2882 * link based on logic in e1000_led_[on|off]_pchlan(). |
|
2883 **/ |
|
2884 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) |
|
2885 { |
|
2886 struct e1000_mac_info *mac = &hw->mac; |
|
2887 s32 ret_val; |
|
2888 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; |
|
2889 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; |
|
2890 u16 data, i, temp, shift; |
|
2891 |
|
2892 /* Get default ID LED modes */ |
|
2893 ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
|
2894 if (ret_val) |
|
2895 goto out; |
|
2896 |
|
2897 mac->ledctl_default = er32(LEDCTL); |
|
2898 mac->ledctl_mode1 = mac->ledctl_default; |
|
2899 mac->ledctl_mode2 = mac->ledctl_default; |
|
2900 |
|
2901 for (i = 0; i < 4; i++) { |
|
2902 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; |
|
2903 shift = (i * 5); |
|
2904 switch (temp) { |
|
2905 case ID_LED_ON1_DEF2: |
|
2906 case ID_LED_ON1_ON2: |
|
2907 case ID_LED_ON1_OFF2: |
|
2908 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2909 mac->ledctl_mode1 |= (ledctl_on << shift); |
|
2910 break; |
|
2911 case ID_LED_OFF1_DEF2: |
|
2912 case ID_LED_OFF1_ON2: |
|
2913 case ID_LED_OFF1_OFF2: |
|
2914 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2915 mac->ledctl_mode1 |= (ledctl_off << shift); |
|
2916 break; |
|
2917 default: |
|
2918 /* Do nothing */ |
|
2919 break; |
|
2920 } |
|
2921 switch (temp) { |
|
2922 case ID_LED_DEF1_ON2: |
|
2923 case ID_LED_ON1_ON2: |
|
2924 case ID_LED_OFF1_ON2: |
|
2925 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2926 mac->ledctl_mode2 |= (ledctl_on << shift); |
|
2927 break; |
|
2928 case ID_LED_DEF1_OFF2: |
|
2929 case ID_LED_ON1_OFF2: |
|
2930 case ID_LED_OFF1_OFF2: |
|
2931 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
|
2932 mac->ledctl_mode2 |= (ledctl_off << shift); |
|
2933 break; |
|
2934 default: |
|
2935 /* Do nothing */ |
|
2936 break; |
|
2937 } |
|
2938 } |
|
2939 |
|
2940 out: |
|
2941 return ret_val; |
|
2942 } |
|
2943 |
|
2944 /** |
|
2945 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width |
|
2946 * @hw: pointer to the HW structure |
|
2947 * |
|
2948 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability |
|
2949 * register, so the the bus width is hard coded. |
|
2950 **/ |
|
2951 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) |
|
2952 { |
|
2953 struct e1000_bus_info *bus = &hw->bus; |
|
2954 s32 ret_val; |
|
2955 |
|
2956 ret_val = e1000e_get_bus_info_pcie(hw); |
|
2957 |
|
2958 /* |
|
2959 * ICH devices are "PCI Express"-ish. They have |
|
2960 * a configuration space, but do not contain |
|
2961 * PCI Express Capability registers, so bus width |
|
2962 * must be hardcoded. |
|
2963 */ |
|
2964 if (bus->width == e1000_bus_width_unknown) |
|
2965 bus->width = e1000_bus_width_pcie_x1; |
|
2966 |
|
2967 return ret_val; |
|
2968 } |
|
2969 |
|
2970 /** |
|
2971 * e1000_reset_hw_ich8lan - Reset the hardware |
|
2972 * @hw: pointer to the HW structure |
|
2973 * |
|
2974 * Does a full reset of the hardware which includes a reset of the PHY and |
|
2975 * MAC. |
|
2976 **/ |
|
2977 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) |
|
2978 { |
|
2979 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2980 u16 reg; |
|
2981 u32 ctrl, icr, kab; |
|
2982 s32 ret_val; |
|
2983 |
|
2984 /* |
|
2985 * Prevent the PCI-E bus from sticking if there is no TLP connection |
|
2986 * on the last TLP read/write transaction when MAC is reset. |
|
2987 */ |
|
2988 ret_val = e1000e_disable_pcie_master(hw); |
|
2989 if (ret_val) |
|
2990 e_dbg("PCI-E Master disable polling has failed.\n"); |
|
2991 |
|
2992 e_dbg("Masking off all interrupts\n"); |
|
2993 ew32(IMC, 0xffffffff); |
|
2994 |
|
2995 /* |
|
2996 * Disable the Transmit and Receive units. Then delay to allow |
|
2997 * any pending transactions to complete before we hit the MAC |
|
2998 * with the global reset. |
|
2999 */ |
|
3000 ew32(RCTL, 0); |
|
3001 ew32(TCTL, E1000_TCTL_PSP); |
|
3002 e1e_flush(); |
|
3003 |
|
3004 msleep(10); |
|
3005 |
|
3006 /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
|
3007 if (hw->mac.type == e1000_ich8lan) { |
|
3008 /* Set Tx and Rx buffer allocation to 8k apiece. */ |
|
3009 ew32(PBA, E1000_PBA_8K); |
|
3010 /* Set Packet Buffer Size to 16k. */ |
|
3011 ew32(PBS, E1000_PBS_16K); |
|
3012 } |
|
3013 |
|
3014 if (hw->mac.type == e1000_pchlan) { |
|
3015 /* Save the NVM K1 bit setting*/ |
|
3016 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); |
|
3017 if (ret_val) |
|
3018 return ret_val; |
|
3019 |
|
3020 if (reg & E1000_NVM_K1_ENABLE) |
|
3021 dev_spec->nvm_k1_enabled = true; |
|
3022 else |
|
3023 dev_spec->nvm_k1_enabled = false; |
|
3024 } |
|
3025 |
|
3026 ctrl = er32(CTRL); |
|
3027 |
|
3028 if (!e1000_check_reset_block(hw)) { |
|
3029 /* |
|
3030 * Full-chip reset requires MAC and PHY reset at the same |
|
3031 * time to make sure the interface between MAC and the |
|
3032 * external PHY is reset. |
|
3033 */ |
|
3034 ctrl |= E1000_CTRL_PHY_RST; |
|
3035 |
|
3036 /* |
|
3037 * Gate automatic PHY configuration by hardware on |
|
3038 * non-managed 82579 |
|
3039 */ |
|
3040 if ((hw->mac.type == e1000_pch2lan) && |
|
3041 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
|
3042 e1000_gate_hw_phy_config_ich8lan(hw, true); |
|
3043 } |
|
3044 ret_val = e1000_acquire_swflag_ich8lan(hw); |
|
3045 e_dbg("Issuing a global reset to ich8lan\n"); |
|
3046 ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
|
3047 msleep(20); |
|
3048 |
|
3049 if (!ret_val) |
|
3050 e1000_release_swflag_ich8lan(hw); |
|
3051 |
|
3052 if (ctrl & E1000_CTRL_PHY_RST) { |
|
3053 ret_val = hw->phy.ops.get_cfg_done(hw); |
|
3054 if (ret_val) |
|
3055 goto out; |
|
3056 |
|
3057 ret_val = e1000_post_phy_reset_ich8lan(hw); |
|
3058 if (ret_val) |
|
3059 goto out; |
|
3060 } |
|
3061 |
|
3062 /* |
|
3063 * For PCH, this write will make sure that any noise |
|
3064 * will be detected as a CRC error and be dropped rather than show up |
|
3065 * as a bad packet to the DMA engine. |
|
3066 */ |
|
3067 if (hw->mac.type == e1000_pchlan) |
|
3068 ew32(CRC_OFFSET, 0x65656565); |
|
3069 |
|
3070 ew32(IMC, 0xffffffff); |
|
3071 icr = er32(ICR); |
|
3072 |
|
3073 kab = er32(KABGTXD); |
|
3074 kab |= E1000_KABGTXD_BGSQLBIAS; |
|
3075 ew32(KABGTXD, kab); |
|
3076 |
|
3077 out: |
|
3078 return ret_val; |
|
3079 } |
|
3080 |
|
3081 /** |
|
3082 * e1000_init_hw_ich8lan - Initialize the hardware |
|
3083 * @hw: pointer to the HW structure |
|
3084 * |
|
3085 * Prepares the hardware for transmit and receive by doing the following: |
|
3086 * - initialize hardware bits |
|
3087 * - initialize LED identification |
|
3088 * - setup receive address registers |
|
3089 * - setup flow control |
|
3090 * - setup transmit descriptors |
|
3091 * - clear statistics |
|
3092 **/ |
|
3093 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) |
|
3094 { |
|
3095 struct e1000_mac_info *mac = &hw->mac; |
|
3096 u32 ctrl_ext, txdctl, snoop; |
|
3097 s32 ret_val; |
|
3098 u16 i; |
|
3099 |
|
3100 e1000_initialize_hw_bits_ich8lan(hw); |
|
3101 |
|
3102 /* Initialize identification LED */ |
|
3103 ret_val = mac->ops.id_led_init(hw); |
|
3104 if (ret_val) |
|
3105 e_dbg("Error initializing identification LED\n"); |
|
3106 /* This is not fatal and we should not stop init due to this */ |
|
3107 |
|
3108 /* Setup the receive address. */ |
|
3109 e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
|
3110 |
|
3111 /* Zero out the Multicast HASH table */ |
|
3112 e_dbg("Zeroing the MTA\n"); |
|
3113 for (i = 0; i < mac->mta_reg_count; i++) |
|
3114 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
3115 |
|
3116 /* |
|
3117 * The 82578 Rx buffer will stall if wakeup is enabled in host and |
|
3118 * the ME. Reading the BM_WUC register will clear the host wakeup bit. |
|
3119 * Reset the phy after disabling host wakeup to reset the Rx buffer. |
|
3120 */ |
|
3121 if (hw->phy.type == e1000_phy_82578) { |
|
3122 hw->phy.ops.read_reg(hw, BM_WUC, &i); |
|
3123 ret_val = e1000_phy_hw_reset_ich8lan(hw); |
|
3124 if (ret_val) |
|
3125 return ret_val; |
|
3126 } |
|
3127 |
|
3128 /* Setup link and flow control */ |
|
3129 ret_val = e1000_setup_link_ich8lan(hw); |
|
3130 |
|
3131 /* Set the transmit descriptor write-back policy for both queues */ |
|
3132 txdctl = er32(TXDCTL(0)); |
|
3133 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
|
3134 E1000_TXDCTL_FULL_TX_DESC_WB; |
|
3135 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
|
3136 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
|
3137 ew32(TXDCTL(0), txdctl); |
|
3138 txdctl = er32(TXDCTL(1)); |
|
3139 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
|
3140 E1000_TXDCTL_FULL_TX_DESC_WB; |
|
3141 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
|
3142 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
|
3143 ew32(TXDCTL(1), txdctl); |
|
3144 |
|
3145 /* |
|
3146 * ICH8 has opposite polarity of no_snoop bits. |
|
3147 * By default, we should use snoop behavior. |
|
3148 */ |
|
3149 if (mac->type == e1000_ich8lan) |
|
3150 snoop = PCIE_ICH8_SNOOP_ALL; |
|
3151 else |
|
3152 snoop = (u32) ~(PCIE_NO_SNOOP_ALL); |
|
3153 e1000e_set_pcie_no_snoop(hw, snoop); |
|
3154 |
|
3155 ctrl_ext = er32(CTRL_EXT); |
|
3156 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
|
3157 ew32(CTRL_EXT, ctrl_ext); |
|
3158 |
|
3159 /* |
|
3160 * Clear all of the statistics registers (clear on read). It is |
|
3161 * important that we do this after we have tried to establish link |
|
3162 * because the symbol error count will increment wildly if there |
|
3163 * is no link. |
|
3164 */ |
|
3165 e1000_clear_hw_cntrs_ich8lan(hw); |
|
3166 |
|
3167 return 0; |
|
3168 } |
|
3169 /** |
|
3170 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits |
|
3171 * @hw: pointer to the HW structure |
|
3172 * |
|
3173 * Sets/Clears required hardware bits necessary for correctly setting up the |
|
3174 * hardware for transmit and receive. |
|
3175 **/ |
|
3176 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) |
|
3177 { |
|
3178 u32 reg; |
|
3179 |
|
3180 /* Extended Device Control */ |
|
3181 reg = er32(CTRL_EXT); |
|
3182 reg |= (1 << 22); |
|
3183 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ |
|
3184 if (hw->mac.type >= e1000_pchlan) |
|
3185 reg |= E1000_CTRL_EXT_PHYPDEN; |
|
3186 ew32(CTRL_EXT, reg); |
|
3187 |
|
3188 /* Transmit Descriptor Control 0 */ |
|
3189 reg = er32(TXDCTL(0)); |
|
3190 reg |= (1 << 22); |
|
3191 ew32(TXDCTL(0), reg); |
|
3192 |
|
3193 /* Transmit Descriptor Control 1 */ |
|
3194 reg = er32(TXDCTL(1)); |
|
3195 reg |= (1 << 22); |
|
3196 ew32(TXDCTL(1), reg); |
|
3197 |
|
3198 /* Transmit Arbitration Control 0 */ |
|
3199 reg = er32(TARC(0)); |
|
3200 if (hw->mac.type == e1000_ich8lan) |
|
3201 reg |= (1 << 28) | (1 << 29); |
|
3202 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); |
|
3203 ew32(TARC(0), reg); |
|
3204 |
|
3205 /* Transmit Arbitration Control 1 */ |
|
3206 reg = er32(TARC(1)); |
|
3207 if (er32(TCTL) & E1000_TCTL_MULR) |
|
3208 reg &= ~(1 << 28); |
|
3209 else |
|
3210 reg |= (1 << 28); |
|
3211 reg |= (1 << 24) | (1 << 26) | (1 << 30); |
|
3212 ew32(TARC(1), reg); |
|
3213 |
|
3214 /* Device Status */ |
|
3215 if (hw->mac.type == e1000_ich8lan) { |
|
3216 reg = er32(STATUS); |
|
3217 reg &= ~(1 << 31); |
|
3218 ew32(STATUS, reg); |
|
3219 } |
|
3220 |
|
3221 /* |
|
3222 * work-around descriptor data corruption issue during nfs v2 udp |
|
3223 * traffic, just disable the nfs filtering capability |
|
3224 */ |
|
3225 reg = er32(RFCTL); |
|
3226 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); |
|
3227 ew32(RFCTL, reg); |
|
3228 } |
|
3229 |
|
3230 /** |
|
3231 * e1000_setup_link_ich8lan - Setup flow control and link settings |
|
3232 * @hw: pointer to the HW structure |
|
3233 * |
|
3234 * Determines which flow control settings to use, then configures flow |
|
3235 * control. Calls the appropriate media-specific link configuration |
|
3236 * function. Assuming the adapter has a valid link partner, a valid link |
|
3237 * should be established. Assumes the hardware has previously been reset |
|
3238 * and the transmitter and receiver are not enabled. |
|
3239 **/ |
|
3240 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) |
|
3241 { |
|
3242 s32 ret_val; |
|
3243 |
|
3244 if (e1000_check_reset_block(hw)) |
|
3245 return 0; |
|
3246 |
|
3247 /* |
|
3248 * ICH parts do not have a word in the NVM to determine |
|
3249 * the default flow control setting, so we explicitly |
|
3250 * set it to full. |
|
3251 */ |
|
3252 if (hw->fc.requested_mode == e1000_fc_default) { |
|
3253 /* Workaround h/w hang when Tx flow control enabled */ |
|
3254 if (hw->mac.type == e1000_pchlan) |
|
3255 hw->fc.requested_mode = e1000_fc_rx_pause; |
|
3256 else |
|
3257 hw->fc.requested_mode = e1000_fc_full; |
|
3258 } |
|
3259 |
|
3260 /* |
|
3261 * Save off the requested flow control mode for use later. Depending |
|
3262 * on the link partner's capabilities, we may or may not use this mode. |
|
3263 */ |
|
3264 hw->fc.current_mode = hw->fc.requested_mode; |
|
3265 |
|
3266 e_dbg("After fix-ups FlowControl is now = %x\n", |
|
3267 hw->fc.current_mode); |
|
3268 |
|
3269 /* Continue to configure the copper link. */ |
|
3270 ret_val = e1000_setup_copper_link_ich8lan(hw); |
|
3271 if (ret_val) |
|
3272 return ret_val; |
|
3273 |
|
3274 ew32(FCTTV, hw->fc.pause_time); |
|
3275 if ((hw->phy.type == e1000_phy_82578) || |
|
3276 (hw->phy.type == e1000_phy_82579) || |
|
3277 (hw->phy.type == e1000_phy_82577)) { |
|
3278 ew32(FCRTV_PCH, hw->fc.refresh_time); |
|
3279 |
|
3280 ret_val = hw->phy.ops.write_reg(hw, |
|
3281 PHY_REG(BM_PORT_CTRL_PAGE, 27), |
|
3282 hw->fc.pause_time); |
|
3283 if (ret_val) |
|
3284 return ret_val; |
|
3285 } |
|
3286 |
|
3287 return e1000e_set_fc_watermarks(hw); |
|
3288 } |
|
3289 |
|
3290 /** |
|
3291 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface |
|
3292 * @hw: pointer to the HW structure |
|
3293 * |
|
3294 * Configures the kumeran interface to the PHY to wait the appropriate time |
|
3295 * when polling the PHY, then call the generic setup_copper_link to finish |
|
3296 * configuring the copper link. |
|
3297 **/ |
|
3298 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) |
|
3299 { |
|
3300 u32 ctrl; |
|
3301 s32 ret_val; |
|
3302 u16 reg_data; |
|
3303 |
|
3304 ctrl = er32(CTRL); |
|
3305 ctrl |= E1000_CTRL_SLU; |
|
3306 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
3307 ew32(CTRL, ctrl); |
|
3308 |
|
3309 /* |
|
3310 * Set the mac to wait the maximum time between each iteration |
|
3311 * and increase the max iterations when polling the phy; |
|
3312 * this fixes erroneous timeouts at 10Mbps. |
|
3313 */ |
|
3314 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); |
|
3315 if (ret_val) |
|
3316 return ret_val; |
|
3317 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
|
3318 ®_data); |
|
3319 if (ret_val) |
|
3320 return ret_val; |
|
3321 reg_data |= 0x3F; |
|
3322 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
|
3323 reg_data); |
|
3324 if (ret_val) |
|
3325 return ret_val; |
|
3326 |
|
3327 switch (hw->phy.type) { |
|
3328 case e1000_phy_igp_3: |
|
3329 ret_val = e1000e_copper_link_setup_igp(hw); |
|
3330 if (ret_val) |
|
3331 return ret_val; |
|
3332 break; |
|
3333 case e1000_phy_bm: |
|
3334 case e1000_phy_82578: |
|
3335 ret_val = e1000e_copper_link_setup_m88(hw); |
|
3336 if (ret_val) |
|
3337 return ret_val; |
|
3338 break; |
|
3339 case e1000_phy_82577: |
|
3340 case e1000_phy_82579: |
|
3341 ret_val = e1000_copper_link_setup_82577(hw); |
|
3342 if (ret_val) |
|
3343 return ret_val; |
|
3344 break; |
|
3345 case e1000_phy_ife: |
|
3346 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, |
|
3347 ®_data); |
|
3348 if (ret_val) |
|
3349 return ret_val; |
|
3350 |
|
3351 reg_data &= ~IFE_PMC_AUTO_MDIX; |
|
3352 |
|
3353 switch (hw->phy.mdix) { |
|
3354 case 1: |
|
3355 reg_data &= ~IFE_PMC_FORCE_MDIX; |
|
3356 break; |
|
3357 case 2: |
|
3358 reg_data |= IFE_PMC_FORCE_MDIX; |
|
3359 break; |
|
3360 case 0: |
|
3361 default: |
|
3362 reg_data |= IFE_PMC_AUTO_MDIX; |
|
3363 break; |
|
3364 } |
|
3365 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, |
|
3366 reg_data); |
|
3367 if (ret_val) |
|
3368 return ret_val; |
|
3369 break; |
|
3370 default: |
|
3371 break; |
|
3372 } |
|
3373 return e1000e_setup_copper_link(hw); |
|
3374 } |
|
3375 |
|
3376 /** |
|
3377 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex |
|
3378 * @hw: pointer to the HW structure |
|
3379 * @speed: pointer to store current link speed |
|
3380 * @duplex: pointer to store the current link duplex |
|
3381 * |
|
3382 * Calls the generic get_speed_and_duplex to retrieve the current link |
|
3383 * information and then calls the Kumeran lock loss workaround for links at |
|
3384 * gigabit speeds. |
|
3385 **/ |
|
3386 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, |
|
3387 u16 *duplex) |
|
3388 { |
|
3389 s32 ret_val; |
|
3390 |
|
3391 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); |
|
3392 if (ret_val) |
|
3393 return ret_val; |
|
3394 |
|
3395 if ((hw->mac.type == e1000_ich8lan) && |
|
3396 (hw->phy.type == e1000_phy_igp_3) && |
|
3397 (*speed == SPEED_1000)) { |
|
3398 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); |
|
3399 } |
|
3400 |
|
3401 return ret_val; |
|
3402 } |
|
3403 |
|
3404 /** |
|
3405 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround |
|
3406 * @hw: pointer to the HW structure |
|
3407 * |
|
3408 * Work-around for 82566 Kumeran PCS lock loss: |
|
3409 * On link status change (i.e. PCI reset, speed change) and link is up and |
|
3410 * speed is gigabit- |
|
3411 * 0) if workaround is optionally disabled do nothing |
|
3412 * 1) wait 1ms for Kumeran link to come up |
|
3413 * 2) check Kumeran Diagnostic register PCS lock loss bit |
|
3414 * 3) if not set the link is locked (all is good), otherwise... |
|
3415 * 4) reset the PHY |
|
3416 * 5) repeat up to 10 times |
|
3417 * Note: this is only called for IGP3 copper when speed is 1gb. |
|
3418 **/ |
|
3419 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) |
|
3420 { |
|
3421 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
3422 u32 phy_ctrl; |
|
3423 s32 ret_val; |
|
3424 u16 i, data; |
|
3425 bool link; |
|
3426 |
|
3427 if (!dev_spec->kmrn_lock_loss_workaround_enabled) |
|
3428 return 0; |
|
3429 |
|
3430 /* |
|
3431 * Make sure link is up before proceeding. If not just return. |
|
3432 * Attempting this while link is negotiating fouled up link |
|
3433 * stability |
|
3434 */ |
|
3435 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
|
3436 if (!link) |
|
3437 return 0; |
|
3438 |
|
3439 for (i = 0; i < 10; i++) { |
|
3440 /* read once to clear */ |
|
3441 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
|
3442 if (ret_val) |
|
3443 return ret_val; |
|
3444 /* and again to get new status */ |
|
3445 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
|
3446 if (ret_val) |
|
3447 return ret_val; |
|
3448 |
|
3449 /* check for PCS lock */ |
|
3450 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
|
3451 return 0; |
|
3452 |
|
3453 /* Issue PHY reset */ |
|
3454 e1000_phy_hw_reset(hw); |
|
3455 mdelay(5); |
|
3456 } |
|
3457 /* Disable GigE link negotiation */ |
|
3458 phy_ctrl = er32(PHY_CTRL); |
|
3459 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | |
|
3460 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
3461 ew32(PHY_CTRL, phy_ctrl); |
|
3462 |
|
3463 /* |
|
3464 * Call gig speed drop workaround on Gig disable before accessing |
|
3465 * any PHY registers |
|
3466 */ |
|
3467 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
3468 |
|
3469 /* unable to acquire PCS lock */ |
|
3470 return -E1000_ERR_PHY; |
|
3471 } |
|
3472 |
|
3473 /** |
|
3474 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state |
|
3475 * @hw: pointer to the HW structure |
|
3476 * @state: boolean value used to set the current Kumeran workaround state |
|
3477 * |
|
3478 * If ICH8, set the current Kumeran workaround state (enabled - true |
|
3479 * /disabled - false). |
|
3480 **/ |
|
3481 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, |
|
3482 bool state) |
|
3483 { |
|
3484 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
3485 |
|
3486 if (hw->mac.type != e1000_ich8lan) { |
|
3487 e_dbg("Workaround applies to ICH8 only.\n"); |
|
3488 return; |
|
3489 } |
|
3490 |
|
3491 dev_spec->kmrn_lock_loss_workaround_enabled = state; |
|
3492 } |
|
3493 |
|
3494 /** |
|
3495 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 |
|
3496 * @hw: pointer to the HW structure |
|
3497 * |
|
3498 * Workaround for 82566 power-down on D3 entry: |
|
3499 * 1) disable gigabit link |
|
3500 * 2) write VR power-down enable |
|
3501 * 3) read it back |
|
3502 * Continue if successful, else issue LCD reset and repeat |
|
3503 **/ |
|
3504 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) |
|
3505 { |
|
3506 u32 reg; |
|
3507 u16 data; |
|
3508 u8 retry = 0; |
|
3509 |
|
3510 if (hw->phy.type != e1000_phy_igp_3) |
|
3511 return; |
|
3512 |
|
3513 /* Try the workaround twice (if needed) */ |
|
3514 do { |
|
3515 /* Disable link */ |
|
3516 reg = er32(PHY_CTRL); |
|
3517 reg |= (E1000_PHY_CTRL_GBE_DISABLE | |
|
3518 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
3519 ew32(PHY_CTRL, reg); |
|
3520 |
|
3521 /* |
|
3522 * Call gig speed drop workaround on Gig disable before |
|
3523 * accessing any PHY registers |
|
3524 */ |
|
3525 if (hw->mac.type == e1000_ich8lan) |
|
3526 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
3527 |
|
3528 /* Write VR power-down enable */ |
|
3529 e1e_rphy(hw, IGP3_VR_CTRL, &data); |
|
3530 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
|
3531 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); |
|
3532 |
|
3533 /* Read it back and test */ |
|
3534 e1e_rphy(hw, IGP3_VR_CTRL, &data); |
|
3535 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
|
3536 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) |
|
3537 break; |
|
3538 |
|
3539 /* Issue PHY reset and repeat at most one more time */ |
|
3540 reg = er32(CTRL); |
|
3541 ew32(CTRL, reg | E1000_CTRL_PHY_RST); |
|
3542 retry++; |
|
3543 } while (retry); |
|
3544 } |
|
3545 |
|
3546 /** |
|
3547 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working |
|
3548 * @hw: pointer to the HW structure |
|
3549 * |
|
3550 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), |
|
3551 * LPLU, Gig disable, MDIC PHY reset): |
|
3552 * 1) Set Kumeran Near-end loopback |
|
3553 * 2) Clear Kumeran Near-end loopback |
|
3554 * Should only be called for ICH8[m] devices with IGP_3 Phy. |
|
3555 **/ |
|
3556 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) |
|
3557 { |
|
3558 s32 ret_val; |
|
3559 u16 reg_data; |
|
3560 |
|
3561 if ((hw->mac.type != e1000_ich8lan) || |
|
3562 (hw->phy.type != e1000_phy_igp_3)) |
|
3563 return; |
|
3564 |
|
3565 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
3566 ®_data); |
|
3567 if (ret_val) |
|
3568 return; |
|
3569 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; |
|
3570 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
3571 reg_data); |
|
3572 if (ret_val) |
|
3573 return; |
|
3574 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; |
|
3575 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
3576 reg_data); |
|
3577 } |
|
3578 |
|
3579 /** |
|
3580 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL |
|
3581 * @hw: pointer to the HW structure |
|
3582 * |
|
3583 * During S0 to Sx transition, it is possible the link remains at gig |
|
3584 * instead of negotiating to a lower speed. Before going to Sx, set |
|
3585 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation |
|
3586 * to a lower speed. |
|
3587 * |
|
3588 * Should only be called for applicable parts. |
|
3589 **/ |
|
3590 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw) |
|
3591 { |
|
3592 u32 phy_ctrl; |
|
3593 s32 ret_val; |
|
3594 |
|
3595 phy_ctrl = er32(PHY_CTRL); |
|
3596 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE; |
|
3597 ew32(PHY_CTRL, phy_ctrl); |
|
3598 |
|
3599 if (hw->mac.type >= e1000_pchlan) { |
|
3600 e1000_oem_bits_config_ich8lan(hw, true); |
|
3601 ret_val = hw->phy.ops.acquire(hw); |
|
3602 if (ret_val) |
|
3603 return; |
|
3604 e1000_write_smbus_addr(hw); |
|
3605 hw->phy.ops.release(hw); |
|
3606 } |
|
3607 } |
|
3608 |
|
3609 /** |
|
3610 * e1000_cleanup_led_ich8lan - Restore the default LED operation |
|
3611 * @hw: pointer to the HW structure |
|
3612 * |
|
3613 * Return the LED back to the default configuration. |
|
3614 **/ |
|
3615 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) |
|
3616 { |
|
3617 if (hw->phy.type == e1000_phy_ife) |
|
3618 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
|
3619 |
|
3620 ew32(LEDCTL, hw->mac.ledctl_default); |
|
3621 return 0; |
|
3622 } |
|
3623 |
|
3624 /** |
|
3625 * e1000_led_on_ich8lan - Turn LEDs on |
|
3626 * @hw: pointer to the HW structure |
|
3627 * |
|
3628 * Turn on the LEDs. |
|
3629 **/ |
|
3630 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) |
|
3631 { |
|
3632 if (hw->phy.type == e1000_phy_ife) |
|
3633 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
3634 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
|
3635 |
|
3636 ew32(LEDCTL, hw->mac.ledctl_mode2); |
|
3637 return 0; |
|
3638 } |
|
3639 |
|
3640 /** |
|
3641 * e1000_led_off_ich8lan - Turn LEDs off |
|
3642 * @hw: pointer to the HW structure |
|
3643 * |
|
3644 * Turn off the LEDs. |
|
3645 **/ |
|
3646 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) |
|
3647 { |
|
3648 if (hw->phy.type == e1000_phy_ife) |
|
3649 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
3650 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); |
|
3651 |
|
3652 ew32(LEDCTL, hw->mac.ledctl_mode1); |
|
3653 return 0; |
|
3654 } |
|
3655 |
|
3656 /** |
|
3657 * e1000_setup_led_pchlan - Configures SW controllable LED |
|
3658 * @hw: pointer to the HW structure |
|
3659 * |
|
3660 * This prepares the SW controllable LED for use. |
|
3661 **/ |
|
3662 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) |
|
3663 { |
|
3664 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, |
|
3665 (u16)hw->mac.ledctl_mode1); |
|
3666 } |
|
3667 |
|
3668 /** |
|
3669 * e1000_cleanup_led_pchlan - Restore the default LED operation |
|
3670 * @hw: pointer to the HW structure |
|
3671 * |
|
3672 * Return the LED back to the default configuration. |
|
3673 **/ |
|
3674 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) |
|
3675 { |
|
3676 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, |
|
3677 (u16)hw->mac.ledctl_default); |
|
3678 } |
|
3679 |
|
3680 /** |
|
3681 * e1000_led_on_pchlan - Turn LEDs on |
|
3682 * @hw: pointer to the HW structure |
|
3683 * |
|
3684 * Turn on the LEDs. |
|
3685 **/ |
|
3686 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) |
|
3687 { |
|
3688 u16 data = (u16)hw->mac.ledctl_mode2; |
|
3689 u32 i, led; |
|
3690 |
|
3691 /* |
|
3692 * If no link, then turn LED on by setting the invert bit |
|
3693 * for each LED that's mode is "link_up" in ledctl_mode2. |
|
3694 */ |
|
3695 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
3696 for (i = 0; i < 3; i++) { |
|
3697 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
|
3698 if ((led & E1000_PHY_LED0_MODE_MASK) != |
|
3699 E1000_LEDCTL_MODE_LINK_UP) |
|
3700 continue; |
|
3701 if (led & E1000_PHY_LED0_IVRT) |
|
3702 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
|
3703 else |
|
3704 data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
|
3705 } |
|
3706 } |
|
3707 |
|
3708 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); |
|
3709 } |
|
3710 |
|
3711 /** |
|
3712 * e1000_led_off_pchlan - Turn LEDs off |
|
3713 * @hw: pointer to the HW structure |
|
3714 * |
|
3715 * Turn off the LEDs. |
|
3716 **/ |
|
3717 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) |
|
3718 { |
|
3719 u16 data = (u16)hw->mac.ledctl_mode1; |
|
3720 u32 i, led; |
|
3721 |
|
3722 /* |
|
3723 * If no link, then turn LED off by clearing the invert bit |
|
3724 * for each LED that's mode is "link_up" in ledctl_mode1. |
|
3725 */ |
|
3726 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
3727 for (i = 0; i < 3; i++) { |
|
3728 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
|
3729 if ((led & E1000_PHY_LED0_MODE_MASK) != |
|
3730 E1000_LEDCTL_MODE_LINK_UP) |
|
3731 continue; |
|
3732 if (led & E1000_PHY_LED0_IVRT) |
|
3733 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
|
3734 else |
|
3735 data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
|
3736 } |
|
3737 } |
|
3738 |
|
3739 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); |
|
3740 } |
|
3741 |
|
3742 /** |
|
3743 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset |
|
3744 * @hw: pointer to the HW structure |
|
3745 * |
|
3746 * Read appropriate register for the config done bit for completion status |
|
3747 * and configure the PHY through s/w for EEPROM-less parts. |
|
3748 * |
|
3749 * NOTE: some silicon which is EEPROM-less will fail trying to read the |
|
3750 * config done bit, so only an error is logged and continues. If we were |
|
3751 * to return with error, EEPROM-less silicon would not be able to be reset |
|
3752 * or change link. |
|
3753 **/ |
|
3754 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) |
|
3755 { |
|
3756 s32 ret_val = 0; |
|
3757 u32 bank = 0; |
|
3758 u32 status; |
|
3759 |
|
3760 e1000e_get_cfg_done(hw); |
|
3761 |
|
3762 /* Wait for indication from h/w that it has completed basic config */ |
|
3763 if (hw->mac.type >= e1000_ich10lan) { |
|
3764 e1000_lan_init_done_ich8lan(hw); |
|
3765 } else { |
|
3766 ret_val = e1000e_get_auto_rd_done(hw); |
|
3767 if (ret_val) { |
|
3768 /* |
|
3769 * When auto config read does not complete, do not |
|
3770 * return with an error. This can happen in situations |
|
3771 * where there is no eeprom and prevents getting link. |
|
3772 */ |
|
3773 e_dbg("Auto Read Done did not complete\n"); |
|
3774 ret_val = 0; |
|
3775 } |
|
3776 } |
|
3777 |
|
3778 /* Clear PHY Reset Asserted bit */ |
|
3779 status = er32(STATUS); |
|
3780 if (status & E1000_STATUS_PHYRA) |
|
3781 ew32(STATUS, status & ~E1000_STATUS_PHYRA); |
|
3782 else |
|
3783 e_dbg("PHY Reset Asserted not set - needs delay\n"); |
|
3784 |
|
3785 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ |
|
3786 if (hw->mac.type <= e1000_ich9lan) { |
|
3787 if (((er32(EECD) & E1000_EECD_PRES) == 0) && |
|
3788 (hw->phy.type == e1000_phy_igp_3)) { |
|
3789 e1000e_phy_init_script_igp3(hw); |
|
3790 } |
|
3791 } else { |
|
3792 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { |
|
3793 /* Maybe we should do a basic PHY config */ |
|
3794 e_dbg("EEPROM not present\n"); |
|
3795 ret_val = -E1000_ERR_CONFIG; |
|
3796 } |
|
3797 } |
|
3798 |
|
3799 return ret_val; |
|
3800 } |
|
3801 |
|
3802 /** |
|
3803 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down |
|
3804 * @hw: pointer to the HW structure |
|
3805 * |
|
3806 * In the case of a PHY power down to save power, or to turn off link during a |
|
3807 * driver unload, or wake on lan is not enabled, remove the link. |
|
3808 **/ |
|
3809 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) |
|
3810 { |
|
3811 /* If the management interface is not enabled, then power down */ |
|
3812 if (!(hw->mac.ops.check_mng_mode(hw) || |
|
3813 hw->phy.ops.check_reset_block(hw))) |
|
3814 e1000_power_down_phy_copper(hw); |
|
3815 } |
|
3816 |
|
3817 /** |
|
3818 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters |
|
3819 * @hw: pointer to the HW structure |
|
3820 * |
|
3821 * Clears hardware counters specific to the silicon family and calls |
|
3822 * clear_hw_cntrs_generic to clear all general purpose counters. |
|
3823 **/ |
|
3824 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) |
|
3825 { |
|
3826 u16 phy_data; |
|
3827 |
|
3828 e1000e_clear_hw_cntrs_base(hw); |
|
3829 |
|
3830 er32(ALGNERRC); |
|
3831 er32(RXERRC); |
|
3832 er32(TNCRS); |
|
3833 er32(CEXTERR); |
|
3834 er32(TSCTC); |
|
3835 er32(TSCTFC); |
|
3836 |
|
3837 er32(MGTPRC); |
|
3838 er32(MGTPDC); |
|
3839 er32(MGTPTC); |
|
3840 |
|
3841 er32(IAC); |
|
3842 er32(ICRXOC); |
|
3843 |
|
3844 /* Clear PHY statistics registers */ |
|
3845 if ((hw->phy.type == e1000_phy_82578) || |
|
3846 (hw->phy.type == e1000_phy_82579) || |
|
3847 (hw->phy.type == e1000_phy_82577)) { |
|
3848 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data); |
|
3849 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data); |
|
3850 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data); |
|
3851 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data); |
|
3852 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data); |
|
3853 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data); |
|
3854 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data); |
|
3855 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data); |
|
3856 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data); |
|
3857 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data); |
|
3858 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data); |
|
3859 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data); |
|
3860 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data); |
|
3861 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data); |
|
3862 } |
|
3863 } |
|
3864 |
|
3865 static struct e1000_mac_operations ich8_mac_ops = { |
|
3866 .id_led_init = e1000e_id_led_init, |
|
3867 /* check_mng_mode dependent on mac type */ |
|
3868 .check_for_link = e1000_check_for_copper_link_ich8lan, |
|
3869 /* cleanup_led dependent on mac type */ |
|
3870 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, |
|
3871 .get_bus_info = e1000_get_bus_info_ich8lan, |
|
3872 .set_lan_id = e1000_set_lan_id_single_port, |
|
3873 .get_link_up_info = e1000_get_link_up_info_ich8lan, |
|
3874 /* led_on dependent on mac type */ |
|
3875 /* led_off dependent on mac type */ |
|
3876 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
3877 .reset_hw = e1000_reset_hw_ich8lan, |
|
3878 .init_hw = e1000_init_hw_ich8lan, |
|
3879 .setup_link = e1000_setup_link_ich8lan, |
|
3880 .setup_physical_interface= e1000_setup_copper_link_ich8lan, |
|
3881 /* id_led_init dependent on mac type */ |
|
3882 }; |
|
3883 |
|
3884 static struct e1000_phy_operations ich8_phy_ops = { |
|
3885 .acquire = e1000_acquire_swflag_ich8lan, |
|
3886 .check_reset_block = e1000_check_reset_block_ich8lan, |
|
3887 .commit = NULL, |
|
3888 .get_cfg_done = e1000_get_cfg_done_ich8lan, |
|
3889 .get_cable_length = e1000e_get_cable_length_igp_2, |
|
3890 .read_reg = e1000e_read_phy_reg_igp, |
|
3891 .release = e1000_release_swflag_ich8lan, |
|
3892 .reset = e1000_phy_hw_reset_ich8lan, |
|
3893 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, |
|
3894 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, |
|
3895 .write_reg = e1000e_write_phy_reg_igp, |
|
3896 }; |
|
3897 |
|
3898 static struct e1000_nvm_operations ich8_nvm_ops = { |
|
3899 .acquire = e1000_acquire_nvm_ich8lan, |
|
3900 .read = e1000_read_nvm_ich8lan, |
|
3901 .release = e1000_release_nvm_ich8lan, |
|
3902 .update = e1000_update_nvm_checksum_ich8lan, |
|
3903 .valid_led_default = e1000_valid_led_default_ich8lan, |
|
3904 .validate = e1000_validate_nvm_checksum_ich8lan, |
|
3905 .write = e1000_write_nvm_ich8lan, |
|
3906 }; |
|
3907 |
|
3908 struct e1000_info e1000_ich8_info = { |
|
3909 .mac = e1000_ich8lan, |
|
3910 .flags = FLAG_HAS_WOL |
|
3911 | FLAG_IS_ICH |
|
3912 | FLAG_RX_CSUM_ENABLED |
|
3913 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3914 | FLAG_HAS_AMT |
|
3915 | FLAG_HAS_FLASH |
|
3916 | FLAG_APME_IN_WUC, |
|
3917 .pba = 8, |
|
3918 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
3919 .get_variants = e1000_get_variants_ich8lan, |
|
3920 .mac_ops = &ich8_mac_ops, |
|
3921 .phy_ops = &ich8_phy_ops, |
|
3922 .nvm_ops = &ich8_nvm_ops, |
|
3923 }; |
|
3924 |
|
3925 struct e1000_info e1000_ich9_info = { |
|
3926 .mac = e1000_ich9lan, |
|
3927 .flags = FLAG_HAS_JUMBO_FRAMES |
|
3928 | FLAG_IS_ICH |
|
3929 | FLAG_HAS_WOL |
|
3930 | FLAG_RX_CSUM_ENABLED |
|
3931 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3932 | FLAG_HAS_AMT |
|
3933 | FLAG_HAS_ERT |
|
3934 | FLAG_HAS_FLASH |
|
3935 | FLAG_APME_IN_WUC, |
|
3936 .pba = 10, |
|
3937 .max_hw_frame_size = DEFAULT_JUMBO, |
|
3938 .get_variants = e1000_get_variants_ich8lan, |
|
3939 .mac_ops = &ich8_mac_ops, |
|
3940 .phy_ops = &ich8_phy_ops, |
|
3941 .nvm_ops = &ich8_nvm_ops, |
|
3942 }; |
|
3943 |
|
3944 struct e1000_info e1000_ich10_info = { |
|
3945 .mac = e1000_ich10lan, |
|
3946 .flags = FLAG_HAS_JUMBO_FRAMES |
|
3947 | FLAG_IS_ICH |
|
3948 | FLAG_HAS_WOL |
|
3949 | FLAG_RX_CSUM_ENABLED |
|
3950 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3951 | FLAG_HAS_AMT |
|
3952 | FLAG_HAS_ERT |
|
3953 | FLAG_HAS_FLASH |
|
3954 | FLAG_APME_IN_WUC, |
|
3955 .pba = 10, |
|
3956 .max_hw_frame_size = DEFAULT_JUMBO, |
|
3957 .get_variants = e1000_get_variants_ich8lan, |
|
3958 .mac_ops = &ich8_mac_ops, |
|
3959 .phy_ops = &ich8_phy_ops, |
|
3960 .nvm_ops = &ich8_nvm_ops, |
|
3961 }; |
|
3962 |
|
3963 struct e1000_info e1000_pch_info = { |
|
3964 .mac = e1000_pchlan, |
|
3965 .flags = FLAG_IS_ICH |
|
3966 | FLAG_HAS_WOL |
|
3967 | FLAG_RX_CSUM_ENABLED |
|
3968 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3969 | FLAG_HAS_AMT |
|
3970 | FLAG_HAS_FLASH |
|
3971 | FLAG_HAS_JUMBO_FRAMES |
|
3972 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
|
3973 | FLAG_APME_IN_WUC, |
|
3974 .flags2 = FLAG2_HAS_PHY_STATS, |
|
3975 .pba = 26, |
|
3976 .max_hw_frame_size = 4096, |
|
3977 .get_variants = e1000_get_variants_ich8lan, |
|
3978 .mac_ops = &ich8_mac_ops, |
|
3979 .phy_ops = &ich8_phy_ops, |
|
3980 .nvm_ops = &ich8_nvm_ops, |
|
3981 }; |
|
3982 |
|
3983 struct e1000_info e1000_pch2_info = { |
|
3984 .mac = e1000_pch2lan, |
|
3985 .flags = FLAG_IS_ICH |
|
3986 | FLAG_HAS_WOL |
|
3987 | FLAG_RX_CSUM_ENABLED |
|
3988 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
3989 | FLAG_HAS_AMT |
|
3990 | FLAG_HAS_FLASH |
|
3991 | FLAG_HAS_JUMBO_FRAMES |
|
3992 | FLAG_APME_IN_WUC, |
|
3993 .flags2 = FLAG2_HAS_PHY_STATS |
|
3994 | FLAG2_HAS_EEE, |
|
3995 .pba = 26, |
|
3996 .max_hw_frame_size = DEFAULT_JUMBO, |
|
3997 .get_variants = e1000_get_variants_ich8lan, |
|
3998 .mac_ops = &ich8_mac_ops, |
|
3999 .phy_ops = &ich8_phy_ops, |
|
4000 .nvm_ops = &ich8_nvm_ops, |
|
4001 }; |