|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2009 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 vim: noexpandtab |
|
28 |
|
29 *******************************************************************************/ |
|
30 |
|
31 #include <linux/module.h> |
|
32 #include <linux/types.h> |
|
33 #include <linux/init.h> |
|
34 #include <linux/pci.h> |
|
35 #include <linux/vmalloc.h> |
|
36 #include <linux/pagemap.h> |
|
37 #include <linux/delay.h> |
|
38 #include <linux/netdevice.h> |
|
39 #include <linux/tcp.h> |
|
40 #include <linux/ipv6.h> |
|
41 #include <net/checksum.h> |
|
42 #include <net/ip6_checksum.h> |
|
43 #include <linux/mii.h> |
|
44 #include <linux/ethtool.h> |
|
45 #include <linux/if_vlan.h> |
|
46 #include <linux/cpu.h> |
|
47 #include <linux/smp.h> |
|
48 #include <linux/pm_qos_params.h> |
|
49 #include <linux/aer.h> |
|
50 |
|
51 #include "e1000-2.6.33-ethercat.h" |
|
52 |
|
53 #define DRV_VERSION "1.0.2-k2" |
|
54 char e1000e_driver_name[] = "ec_e1000e"; |
|
55 const char e1000e_driver_version[] = DRV_VERSION; |
|
56 |
|
57 static const struct e1000_info *e1000_info_tbl[] = { |
|
58 [board_82571] = &e1000_82571_info, |
|
59 [board_82572] = &e1000_82572_info, |
|
60 [board_82573] = &e1000_82573_info, |
|
61 [board_82574] = &e1000_82574_info, |
|
62 [board_82583] = &e1000_82583_info, |
|
63 [board_80003es2lan] = &e1000_es2_info, |
|
64 [board_ich8lan] = &e1000_ich8_info, |
|
65 [board_ich9lan] = &e1000_ich9_info, |
|
66 [board_ich10lan] = &e1000_ich10_info, |
|
67 [board_pchlan] = &e1000_pch_info, |
|
68 }; |
|
69 |
|
70 /** |
|
71 * e1000_desc_unused - calculate if we have unused descriptors |
|
72 **/ |
|
73 static int e1000_desc_unused(struct e1000_ring *ring) |
|
74 { |
|
75 if (ring->next_to_clean > ring->next_to_use) |
|
76 return ring->next_to_clean - ring->next_to_use - 1; |
|
77 |
|
78 return ring->count + ring->next_to_clean - ring->next_to_use - 1; |
|
79 } |
|
80 |
|
81 /** |
|
82 * e1000_receive_skb - helper function to handle Rx indications |
|
83 * @adapter: board private structure |
|
84 * @status: descriptor status field as written by hardware |
|
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
|
86 * @skb: pointer to sk_buff to be indicated to stack |
|
87 **/ |
|
88 static void e1000_receive_skb(struct e1000_adapter *adapter, |
|
89 struct net_device *netdev, |
|
90 struct sk_buff *skb, |
|
91 u8 status, __le16 vlan) |
|
92 { |
|
93 skb->protocol = eth_type_trans(skb, netdev); |
|
94 |
|
95 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) |
|
96 vlan_gro_receive(&adapter->napi, adapter->vlgrp, |
|
97 le16_to_cpu(vlan), skb); |
|
98 else |
|
99 napi_gro_receive(&adapter->napi, skb); |
|
100 } |
|
101 |
|
102 /** |
|
103 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
104 * @adapter: board private structure |
|
105 * @status_err: receive descriptor status and error fields |
|
106 * @csum: receive descriptor csum field |
|
107 * @sk_buff: socket buffer with received data |
|
108 **/ |
|
109 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
110 u32 csum, struct sk_buff *skb) |
|
111 { |
|
112 u16 status = (u16)status_err; |
|
113 u8 errors = (u8)(status_err >> 24); |
|
114 skb->ip_summed = CHECKSUM_NONE; |
|
115 |
|
116 /* Ignore Checksum bit is set */ |
|
117 if (status & E1000_RXD_STAT_IXSM) |
|
118 return; |
|
119 /* TCP/UDP checksum error bit is set */ |
|
120 if (errors & E1000_RXD_ERR_TCPE) { |
|
121 /* let the stack verify checksum errors */ |
|
122 adapter->hw_csum_err++; |
|
123 return; |
|
124 } |
|
125 |
|
126 /* TCP/UDP Checksum has not been calculated */ |
|
127 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
|
128 return; |
|
129 |
|
130 /* It must be a TCP or UDP packet with a valid checksum */ |
|
131 if (status & E1000_RXD_STAT_TCPCS) { |
|
132 /* TCP checksum is good */ |
|
133 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
134 } else { |
|
135 /* |
|
136 * IP fragment with UDP payload |
|
137 * Hardware complements the payload checksum, so we undo it |
|
138 * and then put the value in host order for further stack use. |
|
139 */ |
|
140 __sum16 sum = (__force __sum16)htons(csum); |
|
141 skb->csum = csum_unfold(~sum); |
|
142 skb->ip_summed = CHECKSUM_COMPLETE; |
|
143 } |
|
144 adapter->hw_csum_good++; |
|
145 } |
|
146 |
|
147 /** |
|
148 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
149 * @adapter: address of board private structure |
|
150 **/ |
|
151 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
152 int cleaned_count) |
|
153 { |
|
154 struct net_device *netdev = adapter->netdev; |
|
155 struct pci_dev *pdev = adapter->pdev; |
|
156 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
157 struct e1000_rx_desc *rx_desc; |
|
158 struct e1000_buffer *buffer_info; |
|
159 struct sk_buff *skb; |
|
160 unsigned int i; |
|
161 unsigned int bufsz = adapter->rx_buffer_len; |
|
162 |
|
163 i = rx_ring->next_to_use; |
|
164 buffer_info = &rx_ring->buffer_info[i]; |
|
165 |
|
166 while (cleaned_count--) { |
|
167 skb = buffer_info->skb; |
|
168 if (skb) { |
|
169 skb_trim(skb, 0); |
|
170 goto map_skb; |
|
171 } |
|
172 |
|
173 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
174 if (!skb) { |
|
175 /* Better luck next round */ |
|
176 adapter->alloc_rx_buff_failed++; |
|
177 break; |
|
178 } |
|
179 |
|
180 buffer_info->skb = skb; |
|
181 map_skb: |
|
182 buffer_info->dma = pci_map_single(pdev, skb->data, |
|
183 adapter->rx_buffer_len, |
|
184 PCI_DMA_FROMDEVICE); |
|
185 if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
|
186 dev_err(&pdev->dev, "RX DMA map failed\n"); |
|
187 adapter->rx_dma_failed++; |
|
188 break; |
|
189 } |
|
190 |
|
191 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
192 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
193 |
|
194 i++; |
|
195 if (i == rx_ring->count) |
|
196 i = 0; |
|
197 buffer_info = &rx_ring->buffer_info[i]; |
|
198 } |
|
199 |
|
200 if (rx_ring->next_to_use != i) { |
|
201 rx_ring->next_to_use = i; |
|
202 if (i-- == 0) |
|
203 i = (rx_ring->count - 1); |
|
204 |
|
205 /* |
|
206 * Force memory writes to complete before letting h/w |
|
207 * know there are new descriptors to fetch. (Only |
|
208 * applicable for weak-ordered memory model archs, |
|
209 * such as IA-64). |
|
210 */ |
|
211 wmb(); |
|
212 writel(i, adapter->hw.hw_addr + rx_ring->tail); |
|
213 } |
|
214 } |
|
215 |
|
216 /** |
|
217 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
|
218 * @adapter: address of board private structure |
|
219 **/ |
|
220 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
|
221 int cleaned_count) |
|
222 { |
|
223 struct net_device *netdev = adapter->netdev; |
|
224 struct pci_dev *pdev = adapter->pdev; |
|
225 union e1000_rx_desc_packet_split *rx_desc; |
|
226 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
227 struct e1000_buffer *buffer_info; |
|
228 struct e1000_ps_page *ps_page; |
|
229 struct sk_buff *skb; |
|
230 unsigned int i, j; |
|
231 |
|
232 i = rx_ring->next_to_use; |
|
233 buffer_info = &rx_ring->buffer_info[i]; |
|
234 |
|
235 while (cleaned_count--) { |
|
236 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
237 |
|
238 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
239 ps_page = &buffer_info->ps_pages[j]; |
|
240 if (j >= adapter->rx_ps_pages) { |
|
241 /* all unused desc entries get hw null ptr */ |
|
242 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
|
243 continue; |
|
244 } |
|
245 if (!ps_page->page) { |
|
246 ps_page->page = alloc_page(GFP_ATOMIC); |
|
247 if (!ps_page->page) { |
|
248 adapter->alloc_rx_buff_failed++; |
|
249 goto no_buffers; |
|
250 } |
|
251 ps_page->dma = pci_map_page(pdev, |
|
252 ps_page->page, |
|
253 0, PAGE_SIZE, |
|
254 PCI_DMA_FROMDEVICE); |
|
255 if (pci_dma_mapping_error(pdev, ps_page->dma)) { |
|
256 dev_err(&adapter->pdev->dev, |
|
257 "RX DMA page map failed\n"); |
|
258 adapter->rx_dma_failed++; |
|
259 goto no_buffers; |
|
260 } |
|
261 } |
|
262 /* |
|
263 * Refresh the desc even if buffer_addrs |
|
264 * didn't change because each write-back |
|
265 * erases this info. |
|
266 */ |
|
267 rx_desc->read.buffer_addr[j+1] = |
|
268 cpu_to_le64(ps_page->dma); |
|
269 } |
|
270 |
|
271 skb = netdev_alloc_skb_ip_align(netdev, |
|
272 adapter->rx_ps_bsize0); |
|
273 |
|
274 if (!skb) { |
|
275 adapter->alloc_rx_buff_failed++; |
|
276 break; |
|
277 } |
|
278 |
|
279 buffer_info->skb = skb; |
|
280 buffer_info->dma = pci_map_single(pdev, skb->data, |
|
281 adapter->rx_ps_bsize0, |
|
282 PCI_DMA_FROMDEVICE); |
|
283 if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
|
284 dev_err(&pdev->dev, "RX DMA map failed\n"); |
|
285 adapter->rx_dma_failed++; |
|
286 /* cleanup skb */ |
|
287 dev_kfree_skb_any(skb); |
|
288 buffer_info->skb = NULL; |
|
289 break; |
|
290 } |
|
291 |
|
292 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
|
293 |
|
294 i++; |
|
295 if (i == rx_ring->count) |
|
296 i = 0; |
|
297 buffer_info = &rx_ring->buffer_info[i]; |
|
298 } |
|
299 |
|
300 no_buffers: |
|
301 if (rx_ring->next_to_use != i) { |
|
302 rx_ring->next_to_use = i; |
|
303 |
|
304 if (!(i--)) |
|
305 i = (rx_ring->count - 1); |
|
306 |
|
307 /* |
|
308 * Force memory writes to complete before letting h/w |
|
309 * know there are new descriptors to fetch. (Only |
|
310 * applicable for weak-ordered memory model archs, |
|
311 * such as IA-64). |
|
312 */ |
|
313 wmb(); |
|
314 /* |
|
315 * Hardware increments by 16 bytes, but packet split |
|
316 * descriptors are 32 bytes...so we increment tail |
|
317 * twice as much. |
|
318 */ |
|
319 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); |
|
320 } |
|
321 } |
|
322 |
|
323 /** |
|
324 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
|
325 * @adapter: address of board private structure |
|
326 * @cleaned_count: number of buffers to allocate this pass |
|
327 **/ |
|
328 |
|
329 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
330 int cleaned_count) |
|
331 { |
|
332 struct net_device *netdev = adapter->netdev; |
|
333 struct pci_dev *pdev = adapter->pdev; |
|
334 struct e1000_rx_desc *rx_desc; |
|
335 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
336 struct e1000_buffer *buffer_info; |
|
337 struct sk_buff *skb; |
|
338 unsigned int i; |
|
339 unsigned int bufsz = 256 - 16 /* for skb_reserve */; |
|
340 |
|
341 i = rx_ring->next_to_use; |
|
342 buffer_info = &rx_ring->buffer_info[i]; |
|
343 |
|
344 while (cleaned_count--) { |
|
345 skb = buffer_info->skb; |
|
346 if (skb) { |
|
347 skb_trim(skb, 0); |
|
348 goto check_page; |
|
349 } |
|
350 |
|
351 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
352 if (unlikely(!skb)) { |
|
353 /* Better luck next round */ |
|
354 adapter->alloc_rx_buff_failed++; |
|
355 break; |
|
356 } |
|
357 |
|
358 buffer_info->skb = skb; |
|
359 check_page: |
|
360 /* allocate a new page if necessary */ |
|
361 if (!buffer_info->page) { |
|
362 buffer_info->page = alloc_page(GFP_ATOMIC); |
|
363 if (unlikely(!buffer_info->page)) { |
|
364 adapter->alloc_rx_buff_failed++; |
|
365 break; |
|
366 } |
|
367 } |
|
368 |
|
369 if (!buffer_info->dma) |
|
370 buffer_info->dma = pci_map_page(pdev, |
|
371 buffer_info->page, 0, |
|
372 PAGE_SIZE, |
|
373 PCI_DMA_FROMDEVICE); |
|
374 |
|
375 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
376 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
377 |
|
378 if (unlikely(++i == rx_ring->count)) |
|
379 i = 0; |
|
380 buffer_info = &rx_ring->buffer_info[i]; |
|
381 } |
|
382 |
|
383 if (likely(rx_ring->next_to_use != i)) { |
|
384 rx_ring->next_to_use = i; |
|
385 if (unlikely(i-- == 0)) |
|
386 i = (rx_ring->count - 1); |
|
387 |
|
388 /* Force memory writes to complete before letting h/w |
|
389 * know there are new descriptors to fetch. (Only |
|
390 * applicable for weak-ordered memory model archs, |
|
391 * such as IA-64). */ |
|
392 wmb(); |
|
393 writel(i, adapter->hw.hw_addr + rx_ring->tail); |
|
394 } |
|
395 } |
|
396 |
|
397 /** |
|
398 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
399 * @adapter: board private structure |
|
400 * |
|
401 * the return value indicates whether actual cleaning was done, there |
|
402 * is no guarantee that everything was cleaned |
|
403 **/ |
|
404 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
405 int *work_done, int work_to_do) |
|
406 { |
|
407 struct net_device *netdev = adapter->netdev; |
|
408 struct pci_dev *pdev = adapter->pdev; |
|
409 struct e1000_hw *hw = &adapter->hw; |
|
410 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
411 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
412 struct e1000_buffer *buffer_info, *next_buffer; |
|
413 u32 length; |
|
414 unsigned int i; |
|
415 int cleaned_count = 0; |
|
416 bool cleaned = 0; |
|
417 unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
|
418 |
|
419 i = rx_ring->next_to_clean; |
|
420 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
421 buffer_info = &rx_ring->buffer_info[i]; |
|
422 |
|
423 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
424 struct sk_buff *skb; |
|
425 u8 status; |
|
426 |
|
427 if (*work_done >= work_to_do) |
|
428 break; |
|
429 (*work_done)++; |
|
430 |
|
431 status = rx_desc->status; |
|
432 skb = buffer_info->skb; |
|
433 |
|
434 if (!adapter->ecdev) |
|
435 buffer_info->skb = NULL; |
|
436 |
|
437 prefetch(skb->data - NET_IP_ALIGN); |
|
438 |
|
439 i++; |
|
440 if (i == rx_ring->count) |
|
441 i = 0; |
|
442 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
443 prefetch(next_rxd); |
|
444 |
|
445 next_buffer = &rx_ring->buffer_info[i]; |
|
446 |
|
447 cleaned = 1; |
|
448 cleaned_count++; |
|
449 pci_unmap_single(pdev, |
|
450 buffer_info->dma, |
|
451 adapter->rx_buffer_len, |
|
452 PCI_DMA_FROMDEVICE); |
|
453 buffer_info->dma = 0; |
|
454 |
|
455 length = le16_to_cpu(rx_desc->length); |
|
456 |
|
457 /* |
|
458 * !EOP means multiple descriptors were used to store a single |
|
459 * packet, if that's the case we need to toss it. In fact, we |
|
460 * need to toss every packet with the EOP bit clear and the |
|
461 * next frame that _does_ have the EOP bit set, as it is by |
|
462 * definition only a frame fragment |
|
463 */ |
|
464 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
465 adapter->flags2 |= FLAG2_IS_DISCARDING; |
|
466 |
|
467 if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
|
468 /* All receives must fit into a single buffer */ |
|
469 e_dbg("Receive packet consumed multiple buffers\n"); |
|
470 /* recycle */ |
|
471 buffer_info->skb = skb; |
|
472 if (status & E1000_RXD_STAT_EOP) |
|
473 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
474 goto next_desc; |
|
475 } |
|
476 |
|
477 if (!adapter->ecdev && (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
478 /* recycle */ |
|
479 buffer_info->skb = skb; |
|
480 goto next_desc; |
|
481 } |
|
482 |
|
483 /* adjust length to remove Ethernet CRC */ |
|
484 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
485 length -= 4; |
|
486 |
|
487 total_rx_bytes += length; |
|
488 total_rx_packets++; |
|
489 |
|
490 /* |
|
491 * code added for copybreak, this should improve |
|
492 * performance for small packets with large amounts |
|
493 * of reassembly being done in the stack |
|
494 */ |
|
495 if (!adapter->ecdev && length < copybreak) { |
|
496 struct sk_buff *new_skb = |
|
497 netdev_alloc_skb_ip_align(netdev, length); |
|
498 if (new_skb) { |
|
499 skb_copy_to_linear_data_offset(new_skb, |
|
500 -NET_IP_ALIGN, |
|
501 (skb->data - |
|
502 NET_IP_ALIGN), |
|
503 (length + |
|
504 NET_IP_ALIGN)); |
|
505 /* save the skb in buffer_info as good */ |
|
506 buffer_info->skb = skb; |
|
507 skb = new_skb; |
|
508 } |
|
509 /* else just continue with the old one */ |
|
510 } |
|
511 /* end copybreak code */ |
|
512 skb_put(skb, length); |
|
513 |
|
514 /* Receive Checksum Offload */ |
|
515 e1000_rx_checksum(adapter, |
|
516 (u32)(status) | |
|
517 ((u32)(rx_desc->errors) << 24), |
|
518 le16_to_cpu(rx_desc->csum), skb); |
|
519 |
|
520 if (adapter->ecdev) { |
|
521 ecdev_receive(adapter->ecdev, skb->data, length); |
|
522 adapter->ec_watchdog_jiffies = jiffies; |
|
523 } else { |
|
524 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); |
|
525 } |
|
526 |
|
527 next_desc: |
|
528 rx_desc->status = 0; |
|
529 |
|
530 /* return some buffers to hardware, one at a time is too slow */ |
|
531 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
|
532 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
533 cleaned_count = 0; |
|
534 } |
|
535 |
|
536 /* use prefetched values */ |
|
537 rx_desc = next_rxd; |
|
538 buffer_info = next_buffer; |
|
539 } |
|
540 rx_ring->next_to_clean = i; |
|
541 |
|
542 cleaned_count = e1000_desc_unused(rx_ring); |
|
543 if (cleaned_count) |
|
544 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
545 |
|
546 adapter->total_rx_bytes += total_rx_bytes; |
|
547 adapter->total_rx_packets += total_rx_packets; |
|
548 netdev->stats.rx_bytes += total_rx_bytes; |
|
549 netdev->stats.rx_packets += total_rx_packets; |
|
550 return cleaned; |
|
551 } |
|
552 |
|
553 static void e1000_put_txbuf(struct e1000_adapter *adapter, |
|
554 struct e1000_buffer *buffer_info) |
|
555 { |
|
556 if (buffer_info->dma) { |
|
557 if (buffer_info->mapped_as_page) |
|
558 pci_unmap_page(adapter->pdev, buffer_info->dma, |
|
559 buffer_info->length, PCI_DMA_TODEVICE); |
|
560 else |
|
561 pci_unmap_single(adapter->pdev, buffer_info->dma, |
|
562 buffer_info->length, |
|
563 PCI_DMA_TODEVICE); |
|
564 buffer_info->dma = 0; |
|
565 } |
|
566 if (buffer_info->skb) { |
|
567 dev_kfree_skb_any(buffer_info->skb); |
|
568 buffer_info->skb = NULL; |
|
569 } |
|
570 buffer_info->time_stamp = 0; |
|
571 } |
|
572 |
|
573 static void e1000_print_hw_hang(struct work_struct *work) |
|
574 { |
|
575 struct e1000_adapter *adapter = container_of(work, |
|
576 struct e1000_adapter, |
|
577 print_hang_task); |
|
578 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
579 unsigned int i = tx_ring->next_to_clean; |
|
580 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; |
|
581 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
582 struct e1000_hw *hw = &adapter->hw; |
|
583 u16 phy_status, phy_1000t_status, phy_ext_status; |
|
584 u16 pci_status; |
|
585 |
|
586 e1e_rphy(hw, PHY_STATUS, &phy_status); |
|
587 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); |
|
588 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); |
|
589 |
|
590 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); |
|
591 |
|
592 /* detected Hardware unit hang */ |
|
593 e_err("Detected Hardware Unit Hang:\n" |
|
594 " TDH <%x>\n" |
|
595 " TDT <%x>\n" |
|
596 " next_to_use <%x>\n" |
|
597 " next_to_clean <%x>\n" |
|
598 "buffer_info[next_to_clean]:\n" |
|
599 " time_stamp <%lx>\n" |
|
600 " next_to_watch <%x>\n" |
|
601 " jiffies <%lx>\n" |
|
602 " next_to_watch.status <%x>\n" |
|
603 "MAC Status <%x>\n" |
|
604 "PHY Status <%x>\n" |
|
605 "PHY 1000BASE-T Status <%x>\n" |
|
606 "PHY Extended Status <%x>\n" |
|
607 "PCI Status <%x>\n", |
|
608 readl(adapter->hw.hw_addr + tx_ring->head), |
|
609 readl(adapter->hw.hw_addr + tx_ring->tail), |
|
610 tx_ring->next_to_use, |
|
611 tx_ring->next_to_clean, |
|
612 tx_ring->buffer_info[eop].time_stamp, |
|
613 eop, |
|
614 jiffies, |
|
615 eop_desc->upper.fields.status, |
|
616 er32(STATUS), |
|
617 phy_status, |
|
618 phy_1000t_status, |
|
619 phy_ext_status, |
|
620 pci_status); |
|
621 } |
|
622 |
|
623 /** |
|
624 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
625 * @adapter: board private structure |
|
626 * |
|
627 * the return value indicates whether actual cleaning was done, there |
|
628 * is no guarantee that everything was cleaned |
|
629 **/ |
|
630 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) |
|
631 { |
|
632 struct net_device *netdev = adapter->netdev; |
|
633 struct e1000_hw *hw = &adapter->hw; |
|
634 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
635 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
636 struct e1000_buffer *buffer_info; |
|
637 unsigned int i, eop; |
|
638 unsigned int count = 0; |
|
639 unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
|
640 |
|
641 i = tx_ring->next_to_clean; |
|
642 eop = tx_ring->buffer_info[i].next_to_watch; |
|
643 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
644 |
|
645 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
|
646 (count < tx_ring->count)) { |
|
647 bool cleaned = false; |
|
648 for (; !cleaned; count++) { |
|
649 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
650 buffer_info = &tx_ring->buffer_info[i]; |
|
651 cleaned = (i == eop); |
|
652 |
|
653 if (cleaned) { |
|
654 struct sk_buff *skb = buffer_info->skb; |
|
655 unsigned int segs, bytecount; |
|
656 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
657 /* multiply data chunks by size of headers */ |
|
658 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
659 skb->len; |
|
660 total_tx_packets += segs; |
|
661 total_tx_bytes += bytecount; |
|
662 } |
|
663 |
|
664 if (!adapter->ecdev) { |
|
665 e1000_put_txbuf(adapter, buffer_info); |
|
666 } |
|
667 tx_desc->upper.data = 0; |
|
668 |
|
669 i++; |
|
670 if (i == tx_ring->count) |
|
671 i = 0; |
|
672 } |
|
673 |
|
674 if (i == tx_ring->next_to_use) |
|
675 break; |
|
676 eop = tx_ring->buffer_info[i].next_to_watch; |
|
677 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
678 } |
|
679 |
|
680 tx_ring->next_to_clean = i; |
|
681 |
|
682 #define TX_WAKE_THRESHOLD 32 |
|
683 if (!adapter->ecdev && count && netif_carrier_ok(netdev) && |
|
684 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { |
|
685 /* Make sure that anybody stopping the queue after this |
|
686 * sees the new next_to_clean. |
|
687 */ |
|
688 smp_mb(); |
|
689 |
|
690 if (netif_queue_stopped(netdev) && |
|
691 !(test_bit(__E1000_DOWN, &adapter->state))) { |
|
692 netif_wake_queue(netdev); |
|
693 ++adapter->restart_queue; |
|
694 } |
|
695 } |
|
696 |
|
697 if (!adapter->ecdev && adapter->detect_tx_hung) { |
|
698 /* |
|
699 * Detect a transmit hang in hardware, this serializes the |
|
700 * check with the clearing of time_stamp and movement of i |
|
701 */ |
|
702 adapter->detect_tx_hung = 0; |
|
703 if (tx_ring->buffer_info[i].time_stamp && |
|
704 time_after(jiffies, tx_ring->buffer_info[i].time_stamp |
|
705 + (adapter->tx_timeout_factor * HZ)) && |
|
706 !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
707 schedule_work(&adapter->print_hang_task); |
|
708 netif_stop_queue(netdev); |
|
709 } |
|
710 } |
|
711 adapter->total_tx_bytes += total_tx_bytes; |
|
712 adapter->total_tx_packets += total_tx_packets; |
|
713 netdev->stats.tx_bytes += total_tx_bytes; |
|
714 netdev->stats.tx_packets += total_tx_packets; |
|
715 return (count < tx_ring->count); |
|
716 } |
|
717 |
|
718 /** |
|
719 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
|
720 * @adapter: board private structure |
|
721 * |
|
722 * the return value indicates whether actual cleaning was done, there |
|
723 * is no guarantee that everything was cleaned |
|
724 **/ |
|
725 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
|
726 int *work_done, int work_to_do) |
|
727 { |
|
728 struct e1000_hw *hw = &adapter->hw; |
|
729 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
|
730 struct net_device *netdev = adapter->netdev; |
|
731 struct pci_dev *pdev = adapter->pdev; |
|
732 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
733 struct e1000_buffer *buffer_info, *next_buffer; |
|
734 struct e1000_ps_page *ps_page; |
|
735 struct sk_buff *skb; |
|
736 unsigned int i, j; |
|
737 u32 length, staterr; |
|
738 int cleaned_count = 0; |
|
739 bool cleaned = 0; |
|
740 unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
|
741 |
|
742 i = rx_ring->next_to_clean; |
|
743 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
744 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
745 buffer_info = &rx_ring->buffer_info[i]; |
|
746 |
|
747 while (staterr & E1000_RXD_STAT_DD) { |
|
748 if (*work_done >= work_to_do) |
|
749 break; |
|
750 (*work_done)++; |
|
751 skb = buffer_info->skb; |
|
752 |
|
753 /* in the packet split case this is header only */ |
|
754 prefetch(skb->data - NET_IP_ALIGN); |
|
755 |
|
756 i++; |
|
757 if (i == rx_ring->count) |
|
758 i = 0; |
|
759 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
|
760 prefetch(next_rxd); |
|
761 |
|
762 next_buffer = &rx_ring->buffer_info[i]; |
|
763 |
|
764 cleaned = 1; |
|
765 cleaned_count++; |
|
766 pci_unmap_single(pdev, buffer_info->dma, |
|
767 adapter->rx_ps_bsize0, |
|
768 PCI_DMA_FROMDEVICE); |
|
769 buffer_info->dma = 0; |
|
770 |
|
771 /* see !EOP comment in other rx routine */ |
|
772 if (!(staterr & E1000_RXD_STAT_EOP)) |
|
773 adapter->flags2 |= FLAG2_IS_DISCARDING; |
|
774 |
|
775 if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
|
776 e_dbg("Packet Split buffers didn't pick up the full " |
|
777 "packet\n"); |
|
778 if (!adapter->ecdev) { |
|
779 dev_kfree_skb_irq(skb); |
|
780 } |
|
781 if (staterr & E1000_RXD_STAT_EOP) |
|
782 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
783 goto next_desc; |
|
784 } |
|
785 |
|
786 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { |
|
787 if (!adapter->ecdev) { |
|
788 dev_kfree_skb_irq(skb); |
|
789 } |
|
790 goto next_desc; |
|
791 } |
|
792 |
|
793 length = le16_to_cpu(rx_desc->wb.middle.length0); |
|
794 |
|
795 if (!length) { |
|
796 e_dbg("Last part of the packet spanning multiple " |
|
797 "descriptors\n"); |
|
798 if (!adapter->ecdev) { |
|
799 dev_kfree_skb_irq(skb); |
|
800 } |
|
801 goto next_desc; |
|
802 } |
|
803 |
|
804 /* Good Receive */ |
|
805 skb_put(skb, length); |
|
806 |
|
807 { |
|
808 /* |
|
809 * this looks ugly, but it seems compiler issues make it |
|
810 * more efficient than reusing j |
|
811 */ |
|
812 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
|
813 |
|
814 /* |
|
815 * page alloc/put takes too long and effects small packet |
|
816 * throughput, so unsplit small packets and save the alloc/put |
|
817 * only valid in softirq (napi) context to call kmap_* |
|
818 */ |
|
819 if (l1 && (l1 <= copybreak) && |
|
820 ((length + l1) <= adapter->rx_ps_bsize0)) { |
|
821 u8 *vaddr; |
|
822 |
|
823 ps_page = &buffer_info->ps_pages[0]; |
|
824 |
|
825 /* |
|
826 * there is no documentation about how to call |
|
827 * kmap_atomic, so we can't hold the mapping |
|
828 * very long |
|
829 */ |
|
830 pci_dma_sync_single_for_cpu(pdev, ps_page->dma, |
|
831 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
832 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); |
|
833 memcpy(skb_tail_pointer(skb), vaddr, l1); |
|
834 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); |
|
835 pci_dma_sync_single_for_device(pdev, ps_page->dma, |
|
836 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
837 |
|
838 /* remove the CRC */ |
|
839 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
840 l1 -= 4; |
|
841 |
|
842 skb_put(skb, l1); |
|
843 goto copydone; |
|
844 } /* if */ |
|
845 } |
|
846 |
|
847 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
848 length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
|
849 if (!length) |
|
850 break; |
|
851 |
|
852 ps_page = &buffer_info->ps_pages[j]; |
|
853 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, |
|
854 PCI_DMA_FROMDEVICE); |
|
855 ps_page->dma = 0; |
|
856 skb_fill_page_desc(skb, j, ps_page->page, 0, length); |
|
857 ps_page->page = NULL; |
|
858 skb->len += length; |
|
859 skb->data_len += length; |
|
860 skb->truesize += length; |
|
861 } |
|
862 |
|
863 /* strip the ethernet crc, problem is we're using pages now so |
|
864 * this whole operation can get a little cpu intensive |
|
865 */ |
|
866 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
867 pskb_trim(skb, skb->len - 4); |
|
868 |
|
869 copydone: |
|
870 total_rx_bytes += skb->len; |
|
871 total_rx_packets++; |
|
872 |
|
873 e1000_rx_checksum(adapter, staterr, le16_to_cpu( |
|
874 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
|
875 |
|
876 if (rx_desc->wb.upper.header_status & |
|
877 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) |
|
878 adapter->rx_hdr_split++; |
|
879 |
|
880 if (adapter->ecdev) { |
|
881 ecdev_receive(adapter->ecdev, skb->data, length); |
|
882 adapter->ec_watchdog_jiffies = jiffies; |
|
883 } else { |
|
884 e1000_receive_skb(adapter, netdev, skb, |
|
885 staterr, rx_desc->wb.middle.vlan); |
|
886 } |
|
887 |
|
888 next_desc: |
|
889 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
|
890 if (!adapter->ecdev) buffer_info->skb = NULL; |
|
891 |
|
892 /* return some buffers to hardware, one at a time is too slow */ |
|
893 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
|
894 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
895 cleaned_count = 0; |
|
896 } |
|
897 |
|
898 /* use prefetched values */ |
|
899 rx_desc = next_rxd; |
|
900 buffer_info = next_buffer; |
|
901 |
|
902 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
903 } |
|
904 rx_ring->next_to_clean = i; |
|
905 |
|
906 cleaned_count = e1000_desc_unused(rx_ring); |
|
907 if (cleaned_count) |
|
908 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
909 |
|
910 adapter->total_rx_bytes += total_rx_bytes; |
|
911 adapter->total_rx_packets += total_rx_packets; |
|
912 netdev->stats.rx_bytes += total_rx_bytes; |
|
913 netdev->stats.rx_packets += total_rx_packets; |
|
914 return cleaned; |
|
915 } |
|
916 |
|
917 /** |
|
918 * e1000_consume_page - helper function |
|
919 **/ |
|
920 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
|
921 u16 length) |
|
922 { |
|
923 bi->page = NULL; |
|
924 skb->len += length; |
|
925 skb->data_len += length; |
|
926 skb->truesize += length; |
|
927 } |
|
928 |
|
929 /** |
|
930 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
|
931 * @adapter: board private structure |
|
932 * |
|
933 * the return value indicates whether actual cleaning was done, there |
|
934 * is no guarantee that everything was cleaned |
|
935 **/ |
|
936 |
|
937 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
938 int *work_done, int work_to_do) |
|
939 { |
|
940 struct net_device *netdev = adapter->netdev; |
|
941 struct pci_dev *pdev = adapter->pdev; |
|
942 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
943 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
944 struct e1000_buffer *buffer_info, *next_buffer; |
|
945 u32 length; |
|
946 unsigned int i; |
|
947 int cleaned_count = 0; |
|
948 bool cleaned = false; |
|
949 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
950 |
|
951 i = rx_ring->next_to_clean; |
|
952 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
953 buffer_info = &rx_ring->buffer_info[i]; |
|
954 |
|
955 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
956 struct sk_buff *skb; |
|
957 u8 status; |
|
958 |
|
959 if (*work_done >= work_to_do) |
|
960 break; |
|
961 (*work_done)++; |
|
962 |
|
963 status = rx_desc->status; |
|
964 skb = buffer_info->skb; |
|
965 |
|
966 if (!adapter->ecdev) |
|
967 buffer_info->skb = NULL; |
|
968 |
|
969 ++i; |
|
970 if (i == rx_ring->count) |
|
971 i = 0; |
|
972 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
973 prefetch(next_rxd); |
|
974 |
|
975 next_buffer = &rx_ring->buffer_info[i]; |
|
976 |
|
977 cleaned = true; |
|
978 cleaned_count++; |
|
979 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE, |
|
980 PCI_DMA_FROMDEVICE); |
|
981 buffer_info->dma = 0; |
|
982 |
|
983 length = le16_to_cpu(rx_desc->length); |
|
984 |
|
985 /* errors is only valid for DD + EOP descriptors */ |
|
986 if (!adapter->ecdev && unlikely((status & E1000_RXD_STAT_EOP) && |
|
987 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
|
988 /* recycle both page and skb */ |
|
989 buffer_info->skb = skb; |
|
990 /* an error means any chain goes out the window |
|
991 * too */ |
|
992 if (rx_ring->rx_skb_top) |
|
993 dev_kfree_skb(rx_ring->rx_skb_top); |
|
994 rx_ring->rx_skb_top = NULL; |
|
995 goto next_desc; |
|
996 } |
|
997 |
|
998 #define rxtop rx_ring->rx_skb_top |
|
999 if (!(status & E1000_RXD_STAT_EOP)) { |
|
1000 /* this descriptor is only the beginning (or middle) */ |
|
1001 if (!rxtop) { |
|
1002 /* this is the beginning of a chain */ |
|
1003 rxtop = skb; |
|
1004 skb_fill_page_desc(rxtop, 0, buffer_info->page, |
|
1005 0, length); |
|
1006 } else { |
|
1007 /* this is the middle of a chain */ |
|
1008 skb_fill_page_desc(rxtop, |
|
1009 skb_shinfo(rxtop)->nr_frags, |
|
1010 buffer_info->page, 0, length); |
|
1011 /* re-use the skb, only consumed the page */ |
|
1012 buffer_info->skb = skb; |
|
1013 } |
|
1014 e1000_consume_page(buffer_info, rxtop, length); |
|
1015 goto next_desc; |
|
1016 } else { |
|
1017 if (rxtop) { |
|
1018 /* end of the chain */ |
|
1019 skb_fill_page_desc(rxtop, |
|
1020 skb_shinfo(rxtop)->nr_frags, |
|
1021 buffer_info->page, 0, length); |
|
1022 /* re-use the current skb, we only consumed the |
|
1023 * page */ |
|
1024 buffer_info->skb = skb; |
|
1025 skb = rxtop; |
|
1026 rxtop = NULL; |
|
1027 e1000_consume_page(buffer_info, skb, length); |
|
1028 } else { |
|
1029 /* no chain, got EOP, this buf is the packet |
|
1030 * copybreak to save the put_page/alloc_page */ |
|
1031 if (length <= copybreak && |
|
1032 skb_tailroom(skb) >= length) { |
|
1033 u8 *vaddr; |
|
1034 vaddr = kmap_atomic(buffer_info->page, |
|
1035 KM_SKB_DATA_SOFTIRQ); |
|
1036 memcpy(skb_tail_pointer(skb), vaddr, |
|
1037 length); |
|
1038 kunmap_atomic(vaddr, |
|
1039 KM_SKB_DATA_SOFTIRQ); |
|
1040 /* re-use the page, so don't erase |
|
1041 * buffer_info->page */ |
|
1042 skb_put(skb, length); |
|
1043 } else { |
|
1044 skb_fill_page_desc(skb, 0, |
|
1045 buffer_info->page, 0, |
|
1046 length); |
|
1047 e1000_consume_page(buffer_info, skb, |
|
1048 length); |
|
1049 } |
|
1050 } |
|
1051 } |
|
1052 |
|
1053 /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
|
1054 e1000_rx_checksum(adapter, |
|
1055 (u32)(status) | |
|
1056 ((u32)(rx_desc->errors) << 24), |
|
1057 le16_to_cpu(rx_desc->csum), skb); |
|
1058 |
|
1059 /* probably a little skewed due to removing CRC */ |
|
1060 total_rx_bytes += skb->len; |
|
1061 total_rx_packets++; |
|
1062 |
|
1063 /* eth type trans needs skb->data to point to something */ |
|
1064 if (!adapter->ecdev && !pskb_may_pull(skb, ETH_HLEN)) { |
|
1065 e_err("pskb_may_pull failed.\n"); |
|
1066 dev_kfree_skb(skb); |
|
1067 goto next_desc; |
|
1068 } |
|
1069 |
|
1070 if (adapter->ecdev) { |
|
1071 ecdev_receive(adapter->ecdev, skb->data, length); |
|
1072 adapter->ec_watchdog_jiffies = jiffies; |
|
1073 } else { |
|
1074 e1000_receive_skb(adapter, netdev, skb, status, |
|
1075 rx_desc->special); |
|
1076 } |
|
1077 |
|
1078 next_desc: |
|
1079 rx_desc->status = 0; |
|
1080 |
|
1081 /* return some buffers to hardware, one at a time is too slow */ |
|
1082 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
1083 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1084 cleaned_count = 0; |
|
1085 } |
|
1086 |
|
1087 /* use prefetched values */ |
|
1088 rx_desc = next_rxd; |
|
1089 buffer_info = next_buffer; |
|
1090 } |
|
1091 rx_ring->next_to_clean = i; |
|
1092 |
|
1093 cleaned_count = e1000_desc_unused(rx_ring); |
|
1094 if (cleaned_count) |
|
1095 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1096 |
|
1097 adapter->total_rx_bytes += total_rx_bytes; |
|
1098 adapter->total_rx_packets += total_rx_packets; |
|
1099 netdev->stats.rx_bytes += total_rx_bytes; |
|
1100 netdev->stats.rx_packets += total_rx_packets; |
|
1101 return cleaned; |
|
1102 } |
|
1103 |
|
1104 /** |
|
1105 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
1106 * @adapter: board private structure |
|
1107 **/ |
|
1108 static void e1000_clean_rx_ring(struct e1000_adapter *adapter) |
|
1109 { |
|
1110 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1111 struct e1000_buffer *buffer_info; |
|
1112 struct e1000_ps_page *ps_page; |
|
1113 struct pci_dev *pdev = adapter->pdev; |
|
1114 unsigned int i, j; |
|
1115 |
|
1116 /* Free all the Rx ring sk_buffs */ |
|
1117 for (i = 0; i < rx_ring->count; i++) { |
|
1118 buffer_info = &rx_ring->buffer_info[i]; |
|
1119 if (buffer_info->dma) { |
|
1120 if (adapter->clean_rx == e1000_clean_rx_irq) |
|
1121 pci_unmap_single(pdev, buffer_info->dma, |
|
1122 adapter->rx_buffer_len, |
|
1123 PCI_DMA_FROMDEVICE); |
|
1124 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
|
1125 pci_unmap_page(pdev, buffer_info->dma, |
|
1126 PAGE_SIZE, |
|
1127 PCI_DMA_FROMDEVICE); |
|
1128 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
|
1129 pci_unmap_single(pdev, buffer_info->dma, |
|
1130 adapter->rx_ps_bsize0, |
|
1131 PCI_DMA_FROMDEVICE); |
|
1132 buffer_info->dma = 0; |
|
1133 } |
|
1134 |
|
1135 if (buffer_info->page) { |
|
1136 put_page(buffer_info->page); |
|
1137 buffer_info->page = NULL; |
|
1138 } |
|
1139 |
|
1140 if (buffer_info->skb) { |
|
1141 dev_kfree_skb(buffer_info->skb); |
|
1142 buffer_info->skb = NULL; |
|
1143 } |
|
1144 |
|
1145 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
1146 ps_page = &buffer_info->ps_pages[j]; |
|
1147 if (!ps_page->page) |
|
1148 break; |
|
1149 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, |
|
1150 PCI_DMA_FROMDEVICE); |
|
1151 ps_page->dma = 0; |
|
1152 put_page(ps_page->page); |
|
1153 ps_page->page = NULL; |
|
1154 } |
|
1155 } |
|
1156 |
|
1157 /* there also may be some cached data from a chained receive */ |
|
1158 if (rx_ring->rx_skb_top) { |
|
1159 dev_kfree_skb(rx_ring->rx_skb_top); |
|
1160 rx_ring->rx_skb_top = NULL; |
|
1161 } |
|
1162 |
|
1163 /* Zero out the descriptor ring */ |
|
1164 memset(rx_ring->desc, 0, rx_ring->size); |
|
1165 |
|
1166 rx_ring->next_to_clean = 0; |
|
1167 rx_ring->next_to_use = 0; |
|
1168 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
1169 |
|
1170 writel(0, adapter->hw.hw_addr + rx_ring->head); |
|
1171 writel(0, adapter->hw.hw_addr + rx_ring->tail); |
|
1172 } |
|
1173 |
|
1174 static void e1000e_downshift_workaround(struct work_struct *work) |
|
1175 { |
|
1176 struct e1000_adapter *adapter = container_of(work, |
|
1177 struct e1000_adapter, downshift_task); |
|
1178 |
|
1179 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); |
|
1180 } |
|
1181 |
|
1182 /** |
|
1183 * e1000_intr_msi - Interrupt Handler |
|
1184 * @irq: interrupt number |
|
1185 * @data: pointer to a network interface device structure |
|
1186 **/ |
|
1187 static irqreturn_t e1000_intr_msi(int irq, void *data) |
|
1188 { |
|
1189 struct net_device *netdev = data; |
|
1190 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1191 struct e1000_hw *hw = &adapter->hw; |
|
1192 u32 icr = er32(ICR); |
|
1193 |
|
1194 if (adapter->ecdev) { |
|
1195 int ec_work_done = 0; |
|
1196 adapter->clean_rx(adapter, &ec_work_done, 100); |
|
1197 e1000_clean_tx_irq(adapter); |
|
1198 return IRQ_HANDLED; |
|
1199 } |
|
1200 /* |
|
1201 * read ICR disables interrupts using IAM |
|
1202 */ |
|
1203 |
|
1204 if (icr & E1000_ICR_LSC) { |
|
1205 hw->mac.get_link_status = 1; |
|
1206 /* |
|
1207 * ICH8 workaround-- Call gig speed drop workaround on cable |
|
1208 * disconnect (LSC) before accessing any PHY registers |
|
1209 */ |
|
1210 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
|
1211 (!(er32(STATUS) & E1000_STATUS_LU))) |
|
1212 schedule_work(&adapter->downshift_task); |
|
1213 |
|
1214 /* |
|
1215 * 80003ES2LAN workaround-- For packet buffer work-around on |
|
1216 * link down event; disable receives here in the ISR and reset |
|
1217 * adapter in watchdog |
|
1218 */ |
|
1219 if (netif_carrier_ok(netdev) && |
|
1220 adapter->flags & FLAG_RX_NEEDS_RESTART) { |
|
1221 /* disable receives */ |
|
1222 u32 rctl = er32(RCTL); |
|
1223 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1224 adapter->flags |= FLAG_RX_RESTART_NOW; |
|
1225 } |
|
1226 /* guard against interrupt when we're going down */ |
|
1227 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1228 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1229 } |
|
1230 |
|
1231 if (napi_schedule_prep(&adapter->napi)) { |
|
1232 adapter->total_tx_bytes = 0; |
|
1233 adapter->total_tx_packets = 0; |
|
1234 adapter->total_rx_bytes = 0; |
|
1235 adapter->total_rx_packets = 0; |
|
1236 __napi_schedule(&adapter->napi); |
|
1237 } |
|
1238 |
|
1239 return IRQ_HANDLED; |
|
1240 } |
|
1241 |
|
1242 /** |
|
1243 * e1000_intr - Interrupt Handler |
|
1244 * @irq: interrupt number |
|
1245 * @data: pointer to a network interface device structure |
|
1246 **/ |
|
1247 static irqreturn_t e1000_intr(int irq, void *data) |
|
1248 { |
|
1249 struct net_device *netdev = data; |
|
1250 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1251 struct e1000_hw *hw = &adapter->hw; |
|
1252 u32 rctl, icr = er32(ICR); |
|
1253 |
|
1254 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) |
|
1255 return IRQ_NONE; /* Not our interrupt */ |
|
1256 |
|
1257 /* |
|
1258 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
|
1259 * not set, then the adapter didn't send an interrupt |
|
1260 */ |
|
1261 if (!adapter->ecdev && !(icr & E1000_ICR_INT_ASSERTED)) |
|
1262 return IRQ_NONE; |
|
1263 |
|
1264 /* |
|
1265 * Interrupt Auto-Mask...upon reading ICR, |
|
1266 * interrupts are masked. No need for the |
|
1267 * IMC write |
|
1268 */ |
|
1269 |
|
1270 if (!adapter->ecdev && (icr & E1000_ICR_LSC)) { |
|
1271 hw->mac.get_link_status = 1; |
|
1272 /* |
|
1273 * ICH8 workaround-- Call gig speed drop workaround on cable |
|
1274 * disconnect (LSC) before accessing any PHY registers |
|
1275 */ |
|
1276 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
|
1277 (!(er32(STATUS) & E1000_STATUS_LU))) |
|
1278 schedule_work(&adapter->downshift_task); |
|
1279 |
|
1280 /* |
|
1281 * 80003ES2LAN workaround-- |
|
1282 * For packet buffer work-around on link down event; |
|
1283 * disable receives here in the ISR and |
|
1284 * reset adapter in watchdog |
|
1285 */ |
|
1286 if (netif_carrier_ok(netdev) && |
|
1287 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { |
|
1288 /* disable receives */ |
|
1289 rctl = er32(RCTL); |
|
1290 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1291 adapter->flags |= FLAG_RX_RESTART_NOW; |
|
1292 } |
|
1293 /* guard against interrupt when we're going down */ |
|
1294 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1295 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1296 } |
|
1297 |
|
1298 if (adapter->ecdev) { |
|
1299 int ec_work_done = 0; |
|
1300 adapter->clean_rx(adapter, &ec_work_done, 100); |
|
1301 e1000_clean_tx_irq(adapter); |
|
1302 return IRQ_HANDLED; |
|
1303 } |
|
1304 |
|
1305 if (napi_schedule_prep(&adapter->napi)) { |
|
1306 adapter->total_tx_bytes = 0; |
|
1307 adapter->total_tx_packets = 0; |
|
1308 adapter->total_rx_bytes = 0; |
|
1309 adapter->total_rx_packets = 0; |
|
1310 __napi_schedule(&adapter->napi); |
|
1311 } |
|
1312 |
|
1313 return IRQ_HANDLED; |
|
1314 } |
|
1315 |
|
1316 static irqreturn_t e1000_msix_other(int irq, void *data) |
|
1317 { |
|
1318 struct net_device *netdev = data; |
|
1319 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1320 struct e1000_hw *hw = &adapter->hw; |
|
1321 u32 icr = er32(ICR); |
|
1322 |
|
1323 if (!(icr & E1000_ICR_INT_ASSERTED)) { |
|
1324 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1325 ew32(IMS, E1000_IMS_OTHER); |
|
1326 return IRQ_NONE; |
|
1327 } |
|
1328 |
|
1329 if (icr & adapter->eiac_mask) |
|
1330 ew32(ICS, (icr & adapter->eiac_mask)); |
|
1331 |
|
1332 if (icr & E1000_ICR_OTHER) { |
|
1333 if (!(icr & E1000_ICR_LSC)) |
|
1334 goto no_link_interrupt; |
|
1335 hw->mac.get_link_status = 1; |
|
1336 /* guard against interrupt when we're going down */ |
|
1337 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
1338 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1339 } |
|
1340 |
|
1341 no_link_interrupt: |
|
1342 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1343 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); |
|
1344 |
|
1345 return IRQ_HANDLED; |
|
1346 } |
|
1347 |
|
1348 |
|
1349 static irqreturn_t e1000_intr_msix_tx(int irq, void *data) |
|
1350 { |
|
1351 struct net_device *netdev = data; |
|
1352 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1353 struct e1000_hw *hw = &adapter->hw; |
|
1354 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1355 |
|
1356 |
|
1357 adapter->total_tx_bytes = 0; |
|
1358 adapter->total_tx_packets = 0; |
|
1359 |
|
1360 if (!e1000_clean_tx_irq(adapter)) |
|
1361 /* Ring was not completely cleaned, so fire another interrupt */ |
|
1362 ew32(ICS, tx_ring->ims_val); |
|
1363 |
|
1364 return IRQ_HANDLED; |
|
1365 } |
|
1366 |
|
1367 static irqreturn_t e1000_intr_msix_rx(int irq, void *data) |
|
1368 { |
|
1369 struct net_device *netdev = data; |
|
1370 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1371 |
|
1372 /* Write the ITR value calculated at the end of the |
|
1373 * previous interrupt. |
|
1374 */ |
|
1375 if (adapter->rx_ring->set_itr) { |
|
1376 writel(1000000000 / (adapter->rx_ring->itr_val * 256), |
|
1377 adapter->hw.hw_addr + adapter->rx_ring->itr_register); |
|
1378 adapter->rx_ring->set_itr = 0; |
|
1379 } |
|
1380 |
|
1381 if (adapter->ecdev) { |
|
1382 int ec_work_done = 0; |
|
1383 adapter->clean_rx(adapter, &ec_work_done, 100); |
|
1384 } else { |
|
1385 if (napi_schedule_prep(&adapter->napi)) { |
|
1386 adapter->total_rx_bytes = 0; |
|
1387 adapter->total_rx_packets = 0; |
|
1388 __napi_schedule(&adapter->napi); |
|
1389 } |
|
1390 } |
|
1391 return IRQ_HANDLED; |
|
1392 } |
|
1393 |
|
1394 /** |
|
1395 * e1000_configure_msix - Configure MSI-X hardware |
|
1396 * |
|
1397 * e1000_configure_msix sets up the hardware to properly |
|
1398 * generate MSI-X interrupts. |
|
1399 **/ |
|
1400 static void e1000_configure_msix(struct e1000_adapter *adapter) |
|
1401 { |
|
1402 struct e1000_hw *hw = &adapter->hw; |
|
1403 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1404 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1405 int vector = 0; |
|
1406 u32 ctrl_ext, ivar = 0; |
|
1407 |
|
1408 adapter->eiac_mask = 0; |
|
1409 |
|
1410 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ |
|
1411 if (hw->mac.type == e1000_82574) { |
|
1412 u32 rfctl = er32(RFCTL); |
|
1413 rfctl |= E1000_RFCTL_ACK_DIS; |
|
1414 ew32(RFCTL, rfctl); |
|
1415 } |
|
1416 |
|
1417 #define E1000_IVAR_INT_ALLOC_VALID 0x8 |
|
1418 /* Configure Rx vector */ |
|
1419 rx_ring->ims_val = E1000_IMS_RXQ0; |
|
1420 adapter->eiac_mask |= rx_ring->ims_val; |
|
1421 if (rx_ring->itr_val) |
|
1422 writel(1000000000 / (rx_ring->itr_val * 256), |
|
1423 hw->hw_addr + rx_ring->itr_register); |
|
1424 else |
|
1425 writel(1, hw->hw_addr + rx_ring->itr_register); |
|
1426 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; |
|
1427 |
|
1428 /* Configure Tx vector */ |
|
1429 tx_ring->ims_val = E1000_IMS_TXQ0; |
|
1430 vector++; |
|
1431 if (tx_ring->itr_val) |
|
1432 writel(1000000000 / (tx_ring->itr_val * 256), |
|
1433 hw->hw_addr + tx_ring->itr_register); |
|
1434 else |
|
1435 writel(1, hw->hw_addr + tx_ring->itr_register); |
|
1436 adapter->eiac_mask |= tx_ring->ims_val; |
|
1437 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); |
|
1438 |
|
1439 /* set vector for Other Causes, e.g. link changes */ |
|
1440 vector++; |
|
1441 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); |
|
1442 if (rx_ring->itr_val) |
|
1443 writel(1000000000 / (rx_ring->itr_val * 256), |
|
1444 hw->hw_addr + E1000_EITR_82574(vector)); |
|
1445 else |
|
1446 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); |
|
1447 |
|
1448 /* Cause Tx interrupts on every write back */ |
|
1449 ivar |= (1 << 31); |
|
1450 |
|
1451 ew32(IVAR, ivar); |
|
1452 |
|
1453 /* enable MSI-X PBA support */ |
|
1454 ctrl_ext = er32(CTRL_EXT); |
|
1455 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; |
|
1456 |
|
1457 /* Auto-Mask Other interrupts upon ICR read */ |
|
1458 #define E1000_EIAC_MASK_82574 0x01F00000 |
|
1459 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); |
|
1460 ctrl_ext |= E1000_CTRL_EXT_EIAME; |
|
1461 ew32(CTRL_EXT, ctrl_ext); |
|
1462 e1e_flush(); |
|
1463 } |
|
1464 |
|
1465 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) |
|
1466 { |
|
1467 if (adapter->msix_entries) { |
|
1468 pci_disable_msix(adapter->pdev); |
|
1469 kfree(adapter->msix_entries); |
|
1470 adapter->msix_entries = NULL; |
|
1471 } else if (adapter->flags & FLAG_MSI_ENABLED) { |
|
1472 pci_disable_msi(adapter->pdev); |
|
1473 adapter->flags &= ~FLAG_MSI_ENABLED; |
|
1474 } |
|
1475 |
|
1476 return; |
|
1477 } |
|
1478 |
|
1479 /** |
|
1480 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported |
|
1481 * |
|
1482 * Attempt to configure interrupts using the best available |
|
1483 * capabilities of the hardware and kernel. |
|
1484 **/ |
|
1485 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) |
|
1486 { |
|
1487 int err; |
|
1488 int numvecs, i; |
|
1489 |
|
1490 |
|
1491 switch (adapter->int_mode) { |
|
1492 case E1000E_INT_MODE_MSIX: |
|
1493 if (adapter->flags & FLAG_HAS_MSIX) { |
|
1494 numvecs = 3; /* RxQ0, TxQ0 and other */ |
|
1495 adapter->msix_entries = kcalloc(numvecs, |
|
1496 sizeof(struct msix_entry), |
|
1497 GFP_KERNEL); |
|
1498 if (adapter->msix_entries) { |
|
1499 for (i = 0; i < numvecs; i++) |
|
1500 adapter->msix_entries[i].entry = i; |
|
1501 |
|
1502 err = pci_enable_msix(adapter->pdev, |
|
1503 adapter->msix_entries, |
|
1504 numvecs); |
|
1505 if (err == 0) |
|
1506 return; |
|
1507 } |
|
1508 /* MSI-X failed, so fall through and try MSI */ |
|
1509 e_err("Failed to initialize MSI-X interrupts. " |
|
1510 "Falling back to MSI interrupts.\n"); |
|
1511 e1000e_reset_interrupt_capability(adapter); |
|
1512 } |
|
1513 adapter->int_mode = E1000E_INT_MODE_MSI; |
|
1514 /* Fall through */ |
|
1515 case E1000E_INT_MODE_MSI: |
|
1516 if (!pci_enable_msi(adapter->pdev)) { |
|
1517 adapter->flags |= FLAG_MSI_ENABLED; |
|
1518 } else { |
|
1519 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
1520 e_err("Failed to initialize MSI interrupts. Falling " |
|
1521 "back to legacy interrupts.\n"); |
|
1522 } |
|
1523 /* Fall through */ |
|
1524 case E1000E_INT_MODE_LEGACY: |
|
1525 /* Don't do anything; this is the system default */ |
|
1526 break; |
|
1527 } |
|
1528 |
|
1529 return; |
|
1530 } |
|
1531 |
|
1532 /** |
|
1533 * e1000_request_msix - Initialize MSI-X interrupts |
|
1534 * |
|
1535 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the |
|
1536 * kernel. |
|
1537 **/ |
|
1538 static int e1000_request_msix(struct e1000_adapter *adapter) |
|
1539 { |
|
1540 struct net_device *netdev = adapter->netdev; |
|
1541 int err = 0, vector = 0; |
|
1542 |
|
1543 if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
|
1544 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); |
|
1545 else |
|
1546 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); |
|
1547 err = request_irq(adapter->msix_entries[vector].vector, |
|
1548 e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
|
1549 netdev); |
|
1550 if (err) |
|
1551 goto out; |
|
1552 adapter->rx_ring->itr_register = E1000_EITR_82574(vector); |
|
1553 adapter->rx_ring->itr_val = adapter->itr; |
|
1554 vector++; |
|
1555 |
|
1556 if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
|
1557 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); |
|
1558 else |
|
1559 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); |
|
1560 err = request_irq(adapter->msix_entries[vector].vector, |
|
1561 e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
|
1562 netdev); |
|
1563 if (err) |
|
1564 goto out; |
|
1565 adapter->tx_ring->itr_register = E1000_EITR_82574(vector); |
|
1566 adapter->tx_ring->itr_val = adapter->itr; |
|
1567 vector++; |
|
1568 |
|
1569 err = request_irq(adapter->msix_entries[vector].vector, |
|
1570 e1000_msix_other, 0, netdev->name, netdev); |
|
1571 if (err) |
|
1572 goto out; |
|
1573 |
|
1574 e1000_configure_msix(adapter); |
|
1575 return 0; |
|
1576 out: |
|
1577 return err; |
|
1578 } |
|
1579 |
|
1580 /** |
|
1581 * e1000_request_irq - initialize interrupts |
|
1582 * |
|
1583 * Attempts to configure interrupts using the best available |
|
1584 * capabilities of the hardware and kernel. |
|
1585 **/ |
|
1586 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
1587 { |
|
1588 struct net_device *netdev = adapter->netdev; |
|
1589 int err; |
|
1590 |
|
1591 if (adapter->ecdev) |
|
1592 return 0; |
|
1593 |
|
1594 if (adapter->msix_entries) { |
|
1595 err = e1000_request_msix(adapter); |
|
1596 if (!err) |
|
1597 return err; |
|
1598 /* fall back to MSI */ |
|
1599 e1000e_reset_interrupt_capability(adapter); |
|
1600 adapter->int_mode = E1000E_INT_MODE_MSI; |
|
1601 e1000e_set_interrupt_capability(adapter); |
|
1602 } |
|
1603 if (adapter->flags & FLAG_MSI_ENABLED) { |
|
1604 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, |
|
1605 netdev->name, netdev); |
|
1606 if (!err) |
|
1607 return err; |
|
1608 |
|
1609 /* fall back to legacy interrupt */ |
|
1610 e1000e_reset_interrupt_capability(adapter); |
|
1611 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
1612 } |
|
1613 |
|
1614 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, |
|
1615 netdev->name, netdev); |
|
1616 if (err) |
|
1617 e_err("Unable to allocate interrupt, Error: %d\n", err); |
|
1618 |
|
1619 return err; |
|
1620 } |
|
1621 |
|
1622 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
1623 { |
|
1624 struct net_device *netdev = adapter->netdev; |
|
1625 |
|
1626 if (adapter->ecdev) |
|
1627 return; |
|
1628 |
|
1629 if (adapter->msix_entries) { |
|
1630 int vector = 0; |
|
1631 |
|
1632 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1633 vector++; |
|
1634 |
|
1635 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1636 vector++; |
|
1637 |
|
1638 /* Other Causes interrupt vector */ |
|
1639 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1640 return; |
|
1641 } |
|
1642 |
|
1643 free_irq(adapter->pdev->irq, netdev); |
|
1644 } |
|
1645 |
|
1646 /** |
|
1647 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
1648 **/ |
|
1649 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
1650 { |
|
1651 struct e1000_hw *hw = &adapter->hw; |
|
1652 |
|
1653 if (adapter->ecdev) |
|
1654 return; |
|
1655 |
|
1656 ew32(IMC, ~0); |
|
1657 if (adapter->msix_entries) |
|
1658 ew32(EIAC_82574, 0); |
|
1659 e1e_flush(); |
|
1660 synchronize_irq(adapter->pdev->irq); |
|
1661 } |
|
1662 |
|
1663 /** |
|
1664 * e1000_irq_enable - Enable default interrupt generation settings |
|
1665 **/ |
|
1666 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
1667 { |
|
1668 struct e1000_hw *hw = &adapter->hw; |
|
1669 |
|
1670 if (adapter->ecdev) |
|
1671 return; |
|
1672 |
|
1673 if (adapter->msix_entries) { |
|
1674 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); |
|
1675 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); |
|
1676 } else { |
|
1677 ew32(IMS, IMS_ENABLE_MASK); |
|
1678 } |
|
1679 e1e_flush(); |
|
1680 } |
|
1681 |
|
1682 /** |
|
1683 * e1000_get_hw_control - get control of the h/w from f/w |
|
1684 * @adapter: address of board private structure |
|
1685 * |
|
1686 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
|
1687 * For ASF and Pass Through versions of f/w this means that |
|
1688 * the driver is loaded. For AMT version (only with 82573) |
|
1689 * of the f/w this means that the network i/f is open. |
|
1690 **/ |
|
1691 static void e1000_get_hw_control(struct e1000_adapter *adapter) |
|
1692 { |
|
1693 struct e1000_hw *hw = &adapter->hw; |
|
1694 u32 ctrl_ext; |
|
1695 u32 swsm; |
|
1696 |
|
1697 /* Let firmware know the driver has taken over */ |
|
1698 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
|
1699 swsm = er32(SWSM); |
|
1700 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
|
1701 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
|
1702 ctrl_ext = er32(CTRL_EXT); |
|
1703 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
|
1704 } |
|
1705 } |
|
1706 |
|
1707 /** |
|
1708 * e1000_release_hw_control - release control of the h/w to f/w |
|
1709 * @adapter: address of board private structure |
|
1710 * |
|
1711 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
|
1712 * For ASF and Pass Through versions of f/w this means that the |
|
1713 * driver is no longer loaded. For AMT version (only with 82573) i |
|
1714 * of the f/w this means that the network i/f is closed. |
|
1715 * |
|
1716 **/ |
|
1717 static void e1000_release_hw_control(struct e1000_adapter *adapter) |
|
1718 { |
|
1719 struct e1000_hw *hw = &adapter->hw; |
|
1720 u32 ctrl_ext; |
|
1721 u32 swsm; |
|
1722 |
|
1723 /* Let firmware taken over control of h/w */ |
|
1724 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
|
1725 swsm = er32(SWSM); |
|
1726 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
|
1727 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
|
1728 ctrl_ext = er32(CTRL_EXT); |
|
1729 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
|
1730 } |
|
1731 } |
|
1732 |
|
1733 /** |
|
1734 * @e1000_alloc_ring - allocate memory for a ring structure |
|
1735 **/ |
|
1736 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, |
|
1737 struct e1000_ring *ring) |
|
1738 { |
|
1739 struct pci_dev *pdev = adapter->pdev; |
|
1740 |
|
1741 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, |
|
1742 GFP_KERNEL); |
|
1743 if (!ring->desc) |
|
1744 return -ENOMEM; |
|
1745 |
|
1746 return 0; |
|
1747 } |
|
1748 |
|
1749 /** |
|
1750 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1751 * @adapter: board private structure |
|
1752 * |
|
1753 * Return 0 on success, negative on failure |
|
1754 **/ |
|
1755 int e1000e_setup_tx_resources(struct e1000_adapter *adapter) |
|
1756 { |
|
1757 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1758 int err = -ENOMEM, size; |
|
1759 |
|
1760 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
1761 tx_ring->buffer_info = vmalloc(size); |
|
1762 if (!tx_ring->buffer_info) |
|
1763 goto err; |
|
1764 memset(tx_ring->buffer_info, 0, size); |
|
1765 |
|
1766 /* round up to nearest 4K */ |
|
1767 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
|
1768 tx_ring->size = ALIGN(tx_ring->size, 4096); |
|
1769 |
|
1770 err = e1000_alloc_ring_dma(adapter, tx_ring); |
|
1771 if (err) |
|
1772 goto err; |
|
1773 |
|
1774 tx_ring->next_to_use = 0; |
|
1775 tx_ring->next_to_clean = 0; |
|
1776 |
|
1777 return 0; |
|
1778 err: |
|
1779 vfree(tx_ring->buffer_info); |
|
1780 e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
|
1781 return err; |
|
1782 } |
|
1783 |
|
1784 /** |
|
1785 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1786 * @adapter: board private structure |
|
1787 * |
|
1788 * Returns 0 on success, negative on failure |
|
1789 **/ |
|
1790 int e1000e_setup_rx_resources(struct e1000_adapter *adapter) |
|
1791 { |
|
1792 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1793 struct e1000_buffer *buffer_info; |
|
1794 int i, size, desc_len, err = -ENOMEM; |
|
1795 |
|
1796 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
1797 rx_ring->buffer_info = vmalloc(size); |
|
1798 if (!rx_ring->buffer_info) |
|
1799 goto err; |
|
1800 memset(rx_ring->buffer_info, 0, size); |
|
1801 |
|
1802 for (i = 0; i < rx_ring->count; i++) { |
|
1803 buffer_info = &rx_ring->buffer_info[i]; |
|
1804 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, |
|
1805 sizeof(struct e1000_ps_page), |
|
1806 GFP_KERNEL); |
|
1807 if (!buffer_info->ps_pages) |
|
1808 goto err_pages; |
|
1809 } |
|
1810 |
|
1811 desc_len = sizeof(union e1000_rx_desc_packet_split); |
|
1812 |
|
1813 /* Round up to nearest 4K */ |
|
1814 rx_ring->size = rx_ring->count * desc_len; |
|
1815 rx_ring->size = ALIGN(rx_ring->size, 4096); |
|
1816 |
|
1817 err = e1000_alloc_ring_dma(adapter, rx_ring); |
|
1818 if (err) |
|
1819 goto err_pages; |
|
1820 |
|
1821 rx_ring->next_to_clean = 0; |
|
1822 rx_ring->next_to_use = 0; |
|
1823 rx_ring->rx_skb_top = NULL; |
|
1824 |
|
1825 return 0; |
|
1826 |
|
1827 err_pages: |
|
1828 for (i = 0; i < rx_ring->count; i++) { |
|
1829 buffer_info = &rx_ring->buffer_info[i]; |
|
1830 kfree(buffer_info->ps_pages); |
|
1831 } |
|
1832 err: |
|
1833 vfree(rx_ring->buffer_info); |
|
1834 e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
|
1835 return err; |
|
1836 } |
|
1837 |
|
1838 /** |
|
1839 * e1000_clean_tx_ring - Free Tx Buffers |
|
1840 * @adapter: board private structure |
|
1841 **/ |
|
1842 static void e1000_clean_tx_ring(struct e1000_adapter *adapter) |
|
1843 { |
|
1844 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1845 struct e1000_buffer *buffer_info; |
|
1846 unsigned long size; |
|
1847 unsigned int i; |
|
1848 |
|
1849 for (i = 0; i < tx_ring->count; i++) { |
|
1850 buffer_info = &tx_ring->buffer_info[i]; |
|
1851 e1000_put_txbuf(adapter, buffer_info); |
|
1852 } |
|
1853 |
|
1854 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
1855 memset(tx_ring->buffer_info, 0, size); |
|
1856 |
|
1857 memset(tx_ring->desc, 0, tx_ring->size); |
|
1858 |
|
1859 tx_ring->next_to_use = 0; |
|
1860 tx_ring->next_to_clean = 0; |
|
1861 |
|
1862 writel(0, adapter->hw.hw_addr + tx_ring->head); |
|
1863 writel(0, adapter->hw.hw_addr + tx_ring->tail); |
|
1864 } |
|
1865 |
|
1866 /** |
|
1867 * e1000e_free_tx_resources - Free Tx Resources per Queue |
|
1868 * @adapter: board private structure |
|
1869 * |
|
1870 * Free all transmit software resources |
|
1871 **/ |
|
1872 void e1000e_free_tx_resources(struct e1000_adapter *adapter) |
|
1873 { |
|
1874 struct pci_dev *pdev = adapter->pdev; |
|
1875 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1876 |
|
1877 e1000_clean_tx_ring(adapter); |
|
1878 |
|
1879 vfree(tx_ring->buffer_info); |
|
1880 tx_ring->buffer_info = NULL; |
|
1881 |
|
1882 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
|
1883 tx_ring->dma); |
|
1884 tx_ring->desc = NULL; |
|
1885 } |
|
1886 |
|
1887 /** |
|
1888 * e1000e_free_rx_resources - Free Rx Resources |
|
1889 * @adapter: board private structure |
|
1890 * |
|
1891 * Free all receive software resources |
|
1892 **/ |
|
1893 |
|
1894 void e1000e_free_rx_resources(struct e1000_adapter *adapter) |
|
1895 { |
|
1896 struct pci_dev *pdev = adapter->pdev; |
|
1897 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1898 int i; |
|
1899 |
|
1900 e1000_clean_rx_ring(adapter); |
|
1901 |
|
1902 for (i = 0; i < rx_ring->count; i++) { |
|
1903 kfree(rx_ring->buffer_info[i].ps_pages); |
|
1904 } |
|
1905 |
|
1906 vfree(rx_ring->buffer_info); |
|
1907 rx_ring->buffer_info = NULL; |
|
1908 |
|
1909 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
|
1910 rx_ring->dma); |
|
1911 rx_ring->desc = NULL; |
|
1912 } |
|
1913 |
|
1914 /** |
|
1915 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
1916 * @adapter: pointer to adapter |
|
1917 * @itr_setting: current adapter->itr |
|
1918 * @packets: the number of packets during this measurement interval |
|
1919 * @bytes: the number of bytes during this measurement interval |
|
1920 * |
|
1921 * Stores a new ITR value based on packets and byte |
|
1922 * counts during the last interrupt. The advantage of per interrupt |
|
1923 * computation is faster updates and more accurate ITR for the current |
|
1924 * traffic pattern. Constants in this function were computed |
|
1925 * based on theoretical maximum wire speed and thresholds were set based |
|
1926 * on testing data as well as attempting to minimize response time |
|
1927 * while increasing bulk throughput. This functionality is controlled |
|
1928 * by the InterruptThrottleRate module parameter. |
|
1929 **/ |
|
1930 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
1931 u16 itr_setting, int packets, |
|
1932 int bytes) |
|
1933 { |
|
1934 unsigned int retval = itr_setting; |
|
1935 |
|
1936 if (packets == 0) |
|
1937 goto update_itr_done; |
|
1938 |
|
1939 switch (itr_setting) { |
|
1940 case lowest_latency: |
|
1941 /* handle TSO and jumbo frames */ |
|
1942 if (bytes/packets > 8000) |
|
1943 retval = bulk_latency; |
|
1944 else if ((packets < 5) && (bytes > 512)) { |
|
1945 retval = low_latency; |
|
1946 } |
|
1947 break; |
|
1948 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
1949 if (bytes > 10000) { |
|
1950 /* this if handles the TSO accounting */ |
|
1951 if (bytes/packets > 8000) { |
|
1952 retval = bulk_latency; |
|
1953 } else if ((packets < 10) || ((bytes/packets) > 1200)) { |
|
1954 retval = bulk_latency; |
|
1955 } else if ((packets > 35)) { |
|
1956 retval = lowest_latency; |
|
1957 } |
|
1958 } else if (bytes/packets > 2000) { |
|
1959 retval = bulk_latency; |
|
1960 } else if (packets <= 2 && bytes < 512) { |
|
1961 retval = lowest_latency; |
|
1962 } |
|
1963 break; |
|
1964 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
1965 if (bytes > 25000) { |
|
1966 if (packets > 35) { |
|
1967 retval = low_latency; |
|
1968 } |
|
1969 } else if (bytes < 6000) { |
|
1970 retval = low_latency; |
|
1971 } |
|
1972 break; |
|
1973 } |
|
1974 |
|
1975 update_itr_done: |
|
1976 return retval; |
|
1977 } |
|
1978 |
|
1979 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
1980 { |
|
1981 struct e1000_hw *hw = &adapter->hw; |
|
1982 u16 current_itr; |
|
1983 u32 new_itr = adapter->itr; |
|
1984 |
|
1985 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
1986 if (adapter->link_speed != SPEED_1000) { |
|
1987 current_itr = 0; |
|
1988 new_itr = 4000; |
|
1989 goto set_itr_now; |
|
1990 } |
|
1991 |
|
1992 adapter->tx_itr = e1000_update_itr(adapter, |
|
1993 adapter->tx_itr, |
|
1994 adapter->total_tx_packets, |
|
1995 adapter->total_tx_bytes); |
|
1996 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
1997 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
1998 adapter->tx_itr = low_latency; |
|
1999 |
|
2000 adapter->rx_itr = e1000_update_itr(adapter, |
|
2001 adapter->rx_itr, |
|
2002 adapter->total_rx_packets, |
|
2003 adapter->total_rx_bytes); |
|
2004 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2005 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2006 adapter->rx_itr = low_latency; |
|
2007 |
|
2008 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2009 |
|
2010 switch (current_itr) { |
|
2011 /* counts and packets in update_itr are dependent on these numbers */ |
|
2012 case lowest_latency: |
|
2013 new_itr = 70000; |
|
2014 break; |
|
2015 case low_latency: |
|
2016 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2017 break; |
|
2018 case bulk_latency: |
|
2019 new_itr = 4000; |
|
2020 break; |
|
2021 default: |
|
2022 break; |
|
2023 } |
|
2024 |
|
2025 set_itr_now: |
|
2026 if (new_itr != adapter->itr) { |
|
2027 /* |
|
2028 * this attempts to bias the interrupt rate towards Bulk |
|
2029 * by adding intermediate steps when interrupt rate is |
|
2030 * increasing |
|
2031 */ |
|
2032 new_itr = new_itr > adapter->itr ? |
|
2033 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2034 new_itr; |
|
2035 adapter->itr = new_itr; |
|
2036 adapter->rx_ring->itr_val = new_itr; |
|
2037 if (adapter->msix_entries) |
|
2038 adapter->rx_ring->set_itr = 1; |
|
2039 else |
|
2040 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2041 } |
|
2042 } |
|
2043 |
|
2044 /** |
|
2045 * e1000_alloc_queues - Allocate memory for all rings |
|
2046 * @adapter: board private structure to initialize |
|
2047 **/ |
|
2048 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
2049 { |
|
2050 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
|
2051 if (!adapter->tx_ring) |
|
2052 goto err; |
|
2053 |
|
2054 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
|
2055 if (!adapter->rx_ring) |
|
2056 goto err; |
|
2057 |
|
2058 return 0; |
|
2059 err: |
|
2060 e_err("Unable to allocate memory for queues\n"); |
|
2061 kfree(adapter->rx_ring); |
|
2062 kfree(adapter->tx_ring); |
|
2063 return -ENOMEM; |
|
2064 } |
|
2065 |
|
2066 /** |
|
2067 * e1000_clean - NAPI Rx polling callback |
|
2068 * @napi: struct associated with this polling callback |
|
2069 * @budget: amount of packets driver is allowed to process this poll |
|
2070 **/ |
|
2071 static int e1000_clean(struct napi_struct *napi, int budget) |
|
2072 { |
|
2073 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
2074 struct e1000_hw *hw = &adapter->hw; |
|
2075 struct net_device *poll_dev = adapter->netdev; |
|
2076 int tx_cleaned = 1, work_done = 0; |
|
2077 |
|
2078 adapter = netdev_priv(poll_dev); |
|
2079 |
|
2080 if (adapter->msix_entries && |
|
2081 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) |
|
2082 goto clean_rx; |
|
2083 |
|
2084 tx_cleaned = e1000_clean_tx_irq(adapter); |
|
2085 |
|
2086 clean_rx: |
|
2087 adapter->clean_rx(adapter, &work_done, budget); |
|
2088 |
|
2089 if (!tx_cleaned) |
|
2090 work_done = budget; |
|
2091 |
|
2092 /* If budget not fully consumed, exit the polling mode */ |
|
2093 if (work_done < budget) { |
|
2094 if (adapter->itr_setting & 3) |
|
2095 e1000_set_itr(adapter); |
|
2096 napi_complete(napi); |
|
2097 if (!test_bit(__E1000_DOWN, &adapter->state)) { |
|
2098 if (adapter->msix_entries) |
|
2099 ew32(IMS, adapter->rx_ring->ims_val); |
|
2100 else |
|
2101 e1000_irq_enable(adapter); |
|
2102 } |
|
2103 } |
|
2104 |
|
2105 return work_done; |
|
2106 } |
|
2107 |
|
2108 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
2109 { |
|
2110 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2111 struct e1000_hw *hw = &adapter->hw; |
|
2112 u32 vfta, index; |
|
2113 |
|
2114 /* don't update vlan cookie if already programmed */ |
|
2115 if ((adapter->hw.mng_cookie.status & |
|
2116 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
2117 (vid == adapter->mng_vlan_id)) |
|
2118 return; |
|
2119 |
|
2120 /* add VID to filter table */ |
|
2121 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2122 index = (vid >> 5) & 0x7F; |
|
2123 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
|
2124 vfta |= (1 << (vid & 0x1F)); |
|
2125 hw->mac.ops.write_vfta(hw, index, vfta); |
|
2126 } |
|
2127 } |
|
2128 |
|
2129 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
2130 { |
|
2131 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2132 struct e1000_hw *hw = &adapter->hw; |
|
2133 u32 vfta, index; |
|
2134 |
|
2135 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2136 e1000_irq_disable(adapter); |
|
2137 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
2138 |
|
2139 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2140 e1000_irq_enable(adapter); |
|
2141 |
|
2142 if ((adapter->hw.mng_cookie.status & |
|
2143 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
2144 (vid == adapter->mng_vlan_id)) { |
|
2145 /* release control to f/w */ |
|
2146 e1000_release_hw_control(adapter); |
|
2147 return; |
|
2148 } |
|
2149 |
|
2150 /* remove VID from filter table */ |
|
2151 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2152 index = (vid >> 5) & 0x7F; |
|
2153 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
|
2154 vfta &= ~(1 << (vid & 0x1F)); |
|
2155 hw->mac.ops.write_vfta(hw, index, vfta); |
|
2156 } |
|
2157 } |
|
2158 |
|
2159 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
2160 { |
|
2161 struct net_device *netdev = adapter->netdev; |
|
2162 u16 vid = adapter->hw.mng_cookie.vlan_id; |
|
2163 u16 old_vid = adapter->mng_vlan_id; |
|
2164 |
|
2165 if (!adapter->vlgrp) |
|
2166 return; |
|
2167 |
|
2168 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
2169 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
2170 if (adapter->hw.mng_cookie.status & |
|
2171 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
|
2172 e1000_vlan_rx_add_vid(netdev, vid); |
|
2173 adapter->mng_vlan_id = vid; |
|
2174 } |
|
2175 |
|
2176 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
2177 (vid != old_vid) && |
|
2178 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
2179 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
2180 } else { |
|
2181 adapter->mng_vlan_id = vid; |
|
2182 } |
|
2183 } |
|
2184 |
|
2185 |
|
2186 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
2187 struct vlan_group *grp) |
|
2188 { |
|
2189 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2190 struct e1000_hw *hw = &adapter->hw; |
|
2191 u32 ctrl, rctl; |
|
2192 |
|
2193 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2194 e1000_irq_disable(adapter); |
|
2195 adapter->vlgrp = grp; |
|
2196 |
|
2197 if (grp) { |
|
2198 /* enable VLAN tag insert/strip */ |
|
2199 ctrl = er32(CTRL); |
|
2200 ctrl |= E1000_CTRL_VME; |
|
2201 ew32(CTRL, ctrl); |
|
2202 |
|
2203 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2204 /* enable VLAN receive filtering */ |
|
2205 rctl = er32(RCTL); |
|
2206 rctl &= ~E1000_RCTL_CFIEN; |
|
2207 ew32(RCTL, rctl); |
|
2208 e1000_update_mng_vlan(adapter); |
|
2209 } |
|
2210 } else { |
|
2211 /* disable VLAN tag insert/strip */ |
|
2212 ctrl = er32(CTRL); |
|
2213 ctrl &= ~E1000_CTRL_VME; |
|
2214 ew32(CTRL, ctrl); |
|
2215 |
|
2216 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2217 if (adapter->mng_vlan_id != |
|
2218 (u16)E1000_MNG_VLAN_NONE) { |
|
2219 e1000_vlan_rx_kill_vid(netdev, |
|
2220 adapter->mng_vlan_id); |
|
2221 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
2222 } |
|
2223 } |
|
2224 } |
|
2225 |
|
2226 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2227 e1000_irq_enable(adapter); |
|
2228 } |
|
2229 |
|
2230 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
2231 { |
|
2232 u16 vid; |
|
2233 |
|
2234 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
2235 |
|
2236 if (!adapter->vlgrp) |
|
2237 return; |
|
2238 |
|
2239 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
2240 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
2241 continue; |
|
2242 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
2243 } |
|
2244 } |
|
2245 |
|
2246 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
2247 { |
|
2248 struct e1000_hw *hw = &adapter->hw; |
|
2249 u32 manc, manc2h; |
|
2250 |
|
2251 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) |
|
2252 return; |
|
2253 |
|
2254 manc = er32(MANC); |
|
2255 |
|
2256 /* |
|
2257 * enable receiving management packets to the host. this will probably |
|
2258 * generate destination unreachable messages from the host OS, but |
|
2259 * the packets will be handled on SMBUS |
|
2260 */ |
|
2261 manc |= E1000_MANC_EN_MNG2HOST; |
|
2262 manc2h = er32(MANC2H); |
|
2263 #define E1000_MNG2HOST_PORT_623 (1 << 5) |
|
2264 #define E1000_MNG2HOST_PORT_664 (1 << 6) |
|
2265 manc2h |= E1000_MNG2HOST_PORT_623; |
|
2266 manc2h |= E1000_MNG2HOST_PORT_664; |
|
2267 ew32(MANC2H, manc2h); |
|
2268 ew32(MANC, manc); |
|
2269 } |
|
2270 |
|
2271 /** |
|
2272 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
2273 * @adapter: board private structure |
|
2274 * |
|
2275 * Configure the Tx unit of the MAC after a reset. |
|
2276 **/ |
|
2277 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
2278 { |
|
2279 struct e1000_hw *hw = &adapter->hw; |
|
2280 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
2281 u64 tdba; |
|
2282 u32 tdlen, tctl, tipg, tarc; |
|
2283 u32 ipgr1, ipgr2; |
|
2284 |
|
2285 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
2286 tdba = tx_ring->dma; |
|
2287 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); |
|
2288 ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); |
|
2289 ew32(TDBAH, (tdba >> 32)); |
|
2290 ew32(TDLEN, tdlen); |
|
2291 ew32(TDH, 0); |
|
2292 ew32(TDT, 0); |
|
2293 tx_ring->head = E1000_TDH; |
|
2294 tx_ring->tail = E1000_TDT; |
|
2295 |
|
2296 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
2297 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ |
|
2298 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ |
|
2299 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ |
|
2300 |
|
2301 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) |
|
2302 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ |
|
2303 |
|
2304 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
2305 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
2306 ew32(TIPG, tipg); |
|
2307 |
|
2308 /* Set the Tx Interrupt Delay register */ |
|
2309 ew32(TIDV, adapter->tx_int_delay); |
|
2310 /* Tx irq moderation */ |
|
2311 ew32(TADV, adapter->tx_abs_int_delay); |
|
2312 |
|
2313 /* Program the Transmit Control Register */ |
|
2314 tctl = er32(TCTL); |
|
2315 tctl &= ~E1000_TCTL_CT; |
|
2316 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
2317 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
2318 |
|
2319 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { |
|
2320 tarc = er32(TARC(0)); |
|
2321 /* |
|
2322 * set the speed mode bit, we'll clear it if we're not at |
|
2323 * gigabit link later |
|
2324 */ |
|
2325 #define SPEED_MODE_BIT (1 << 21) |
|
2326 tarc |= SPEED_MODE_BIT; |
|
2327 ew32(TARC(0), tarc); |
|
2328 } |
|
2329 |
|
2330 /* errata: program both queues to unweighted RR */ |
|
2331 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { |
|
2332 tarc = er32(TARC(0)); |
|
2333 tarc |= 1; |
|
2334 ew32(TARC(0), tarc); |
|
2335 tarc = er32(TARC(1)); |
|
2336 tarc |= 1; |
|
2337 ew32(TARC(1), tarc); |
|
2338 } |
|
2339 |
|
2340 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
2341 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
2342 |
|
2343 /* only set IDE if we are delaying interrupts using the timers */ |
|
2344 if (adapter->tx_int_delay) |
|
2345 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
2346 |
|
2347 /* enable Report Status bit */ |
|
2348 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
2349 |
|
2350 ew32(TCTL, tctl); |
|
2351 |
|
2352 e1000e_config_collision_dist(hw); |
|
2353 |
|
2354 adapter->tx_queue_len = adapter->netdev->tx_queue_len; |
|
2355 } |
|
2356 |
|
2357 /** |
|
2358 * e1000_setup_rctl - configure the receive control registers |
|
2359 * @adapter: Board private structure |
|
2360 **/ |
|
2361 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
|
2362 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
|
2363 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
2364 { |
|
2365 struct e1000_hw *hw = &adapter->hw; |
|
2366 u32 rctl, rfctl; |
|
2367 u32 psrctl = 0; |
|
2368 u32 pages = 0; |
|
2369 |
|
2370 /* Program MC offset vector base */ |
|
2371 rctl = er32(RCTL); |
|
2372 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
2373 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
2374 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
2375 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
2376 |
|
2377 /* Do not Store bad packets */ |
|
2378 rctl &= ~E1000_RCTL_SBP; |
|
2379 |
|
2380 /* Enable Long Packet receive */ |
|
2381 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
2382 rctl &= ~E1000_RCTL_LPE; |
|
2383 else |
|
2384 rctl |= E1000_RCTL_LPE; |
|
2385 |
|
2386 /* Some systems expect that the CRC is included in SMBUS traffic. The |
|
2387 * hardware strips the CRC before sending to both SMBUS (BMC) and to |
|
2388 * host memory when this is enabled |
|
2389 */ |
|
2390 if (adapter->flags2 & FLAG2_CRC_STRIPPING) |
|
2391 rctl |= E1000_RCTL_SECRC; |
|
2392 |
|
2393 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ |
|
2394 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { |
|
2395 u16 phy_data; |
|
2396 |
|
2397 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); |
|
2398 phy_data &= 0xfff8; |
|
2399 phy_data |= (1 << 2); |
|
2400 e1e_wphy(hw, PHY_REG(770, 26), phy_data); |
|
2401 |
|
2402 e1e_rphy(hw, 22, &phy_data); |
|
2403 phy_data &= 0x0fff; |
|
2404 phy_data |= (1 << 14); |
|
2405 e1e_wphy(hw, 0x10, 0x2823); |
|
2406 e1e_wphy(hw, 0x11, 0x0003); |
|
2407 e1e_wphy(hw, 22, phy_data); |
|
2408 } |
|
2409 |
|
2410 /* Setup buffer sizes */ |
|
2411 rctl &= ~E1000_RCTL_SZ_4096; |
|
2412 rctl |= E1000_RCTL_BSEX; |
|
2413 switch (adapter->rx_buffer_len) { |
|
2414 case 2048: |
|
2415 default: |
|
2416 rctl |= E1000_RCTL_SZ_2048; |
|
2417 rctl &= ~E1000_RCTL_BSEX; |
|
2418 break; |
|
2419 case 4096: |
|
2420 rctl |= E1000_RCTL_SZ_4096; |
|
2421 break; |
|
2422 case 8192: |
|
2423 rctl |= E1000_RCTL_SZ_8192; |
|
2424 break; |
|
2425 case 16384: |
|
2426 rctl |= E1000_RCTL_SZ_16384; |
|
2427 break; |
|
2428 } |
|
2429 |
|
2430 /* |
|
2431 * 82571 and greater support packet-split where the protocol |
|
2432 * header is placed in skb->data and the packet data is |
|
2433 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
|
2434 * In the case of a non-split, skb->data is linearly filled, |
|
2435 * followed by the page buffers. Therefore, skb->data is |
|
2436 * sized to hold the largest protocol header. |
|
2437 * |
|
2438 * allocations using alloc_page take too long for regular MTU |
|
2439 * so only enable packet split for jumbo frames |
|
2440 * |
|
2441 * Using pages when the page size is greater than 16k wastes |
|
2442 * a lot of memory, since we allocate 3 pages at all times |
|
2443 * per packet. |
|
2444 */ |
|
2445 pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
|
2446 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && |
|
2447 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) |
|
2448 adapter->rx_ps_pages = pages; |
|
2449 else |
|
2450 adapter->rx_ps_pages = 0; |
|
2451 |
|
2452 if (adapter->rx_ps_pages) { |
|
2453 /* Configure extra packet-split registers */ |
|
2454 rfctl = er32(RFCTL); |
|
2455 rfctl |= E1000_RFCTL_EXTEN; |
|
2456 /* |
|
2457 * disable packet split support for IPv6 extension headers, |
|
2458 * because some malformed IPv6 headers can hang the Rx |
|
2459 */ |
|
2460 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
|
2461 E1000_RFCTL_NEW_IPV6_EXT_DIS); |
|
2462 |
|
2463 ew32(RFCTL, rfctl); |
|
2464 |
|
2465 /* Enable Packet split descriptors */ |
|
2466 rctl |= E1000_RCTL_DTYP_PS; |
|
2467 |
|
2468 psrctl |= adapter->rx_ps_bsize0 >> |
|
2469 E1000_PSRCTL_BSIZE0_SHIFT; |
|
2470 |
|
2471 switch (adapter->rx_ps_pages) { |
|
2472 case 3: |
|
2473 psrctl |= PAGE_SIZE << |
|
2474 E1000_PSRCTL_BSIZE3_SHIFT; |
|
2475 case 2: |
|
2476 psrctl |= PAGE_SIZE << |
|
2477 E1000_PSRCTL_BSIZE2_SHIFT; |
|
2478 case 1: |
|
2479 psrctl |= PAGE_SIZE >> |
|
2480 E1000_PSRCTL_BSIZE1_SHIFT; |
|
2481 break; |
|
2482 } |
|
2483 |
|
2484 ew32(PSRCTL, psrctl); |
|
2485 } |
|
2486 |
|
2487 ew32(RCTL, rctl); |
|
2488 /* just started the receive unit, no need to restart */ |
|
2489 adapter->flags &= ~FLAG_RX_RESTART_NOW; |
|
2490 } |
|
2491 |
|
2492 /** |
|
2493 * e1000_configure_rx - Configure Receive Unit after Reset |
|
2494 * @adapter: board private structure |
|
2495 * |
|
2496 * Configure the Rx unit of the MAC after a reset. |
|
2497 **/ |
|
2498 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
2499 { |
|
2500 struct e1000_hw *hw = &adapter->hw; |
|
2501 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
2502 u64 rdba; |
|
2503 u32 rdlen, rctl, rxcsum, ctrl_ext; |
|
2504 |
|
2505 if (adapter->rx_ps_pages) { |
|
2506 /* this is a 32 byte descriptor */ |
|
2507 rdlen = rx_ring->count * |
|
2508 sizeof(union e1000_rx_desc_packet_split); |
|
2509 adapter->clean_rx = e1000_clean_rx_irq_ps; |
|
2510 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
|
2511 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
2512 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
|
2513 adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
|
2514 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
|
2515 } else { |
|
2516 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
|
2517 adapter->clean_rx = e1000_clean_rx_irq; |
|
2518 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
2519 } |
|
2520 |
|
2521 /* disable receives while setting up the descriptors */ |
|
2522 rctl = er32(RCTL); |
|
2523 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
2524 e1e_flush(); |
|
2525 msleep(10); |
|
2526 |
|
2527 /* set the Receive Delay Timer Register */ |
|
2528 ew32(RDTR, adapter->rx_int_delay); |
|
2529 |
|
2530 /* irq moderation */ |
|
2531 ew32(RADV, adapter->rx_abs_int_delay); |
|
2532 if (adapter->itr_setting != 0) |
|
2533 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
2534 |
|
2535 ctrl_ext = er32(CTRL_EXT); |
|
2536 /* Auto-Mask interrupts upon ICR access */ |
|
2537 ctrl_ext |= E1000_CTRL_EXT_IAME; |
|
2538 ew32(IAM, 0xffffffff); |
|
2539 ew32(CTRL_EXT, ctrl_ext); |
|
2540 e1e_flush(); |
|
2541 |
|
2542 /* |
|
2543 * Setup the HW Rx Head and Tail Descriptor Pointers and |
|
2544 * the Base and Length of the Rx Descriptor Ring |
|
2545 */ |
|
2546 rdba = rx_ring->dma; |
|
2547 ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); |
|
2548 ew32(RDBAH, (rdba >> 32)); |
|
2549 ew32(RDLEN, rdlen); |
|
2550 ew32(RDH, 0); |
|
2551 ew32(RDT, 0); |
|
2552 rx_ring->head = E1000_RDH; |
|
2553 rx_ring->tail = E1000_RDT; |
|
2554 |
|
2555 /* Enable Receive Checksum Offload for TCP and UDP */ |
|
2556 rxcsum = er32(RXCSUM); |
|
2557 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { |
|
2558 rxcsum |= E1000_RXCSUM_TUOFL; |
|
2559 |
|
2560 /* |
|
2561 * IPv4 payload checksum for UDP fragments must be |
|
2562 * used in conjunction with packet-split. |
|
2563 */ |
|
2564 if (adapter->rx_ps_pages) |
|
2565 rxcsum |= E1000_RXCSUM_IPPCSE; |
|
2566 } else { |
|
2567 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
2568 /* no need to clear IPPCSE as it defaults to 0 */ |
|
2569 } |
|
2570 ew32(RXCSUM, rxcsum); |
|
2571 |
|
2572 /* |
|
2573 * Enable early receives on supported devices, only takes effect when |
|
2574 * packet size is equal or larger than the specified value (in 8 byte |
|
2575 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 |
|
2576 */ |
|
2577 if (adapter->flags & FLAG_HAS_ERT) { |
|
2578 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
2579 u32 rxdctl = er32(RXDCTL(0)); |
|
2580 ew32(RXDCTL(0), rxdctl | 0x3); |
|
2581 ew32(ERT, E1000_ERT_2048 | (1 << 13)); |
|
2582 /* |
|
2583 * With jumbo frames and early-receive enabled, |
|
2584 * excessive C-state transition latencies result in |
|
2585 * dropped transactions. |
|
2586 */ |
|
2587 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, |
|
2588 adapter->netdev->name, 55); |
|
2589 } else { |
|
2590 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, |
|
2591 adapter->netdev->name, |
|
2592 PM_QOS_DEFAULT_VALUE); |
|
2593 } |
|
2594 } |
|
2595 |
|
2596 /* Enable Receives */ |
|
2597 ew32(RCTL, rctl); |
|
2598 } |
|
2599 |
|
2600 /** |
|
2601 * e1000_update_mc_addr_list - Update Multicast addresses |
|
2602 * @hw: pointer to the HW structure |
|
2603 * @mc_addr_list: array of multicast addresses to program |
|
2604 * @mc_addr_count: number of multicast addresses to program |
|
2605 * @rar_used_count: the first RAR register free to program |
|
2606 * @rar_count: total number of supported Receive Address Registers |
|
2607 * |
|
2608 * Updates the Receive Address Registers and Multicast Table Array. |
|
2609 * The caller must have a packed mc_addr_list of multicast addresses. |
|
2610 * The parameter rar_count will usually be hw->mac.rar_entry_count |
|
2611 * unless there are workarounds that change this. Currently no func pointer |
|
2612 * exists and all implementations are handled in the generic version of this |
|
2613 * function. |
|
2614 **/ |
|
2615 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, |
|
2616 u32 mc_addr_count, u32 rar_used_count, |
|
2617 u32 rar_count) |
|
2618 { |
|
2619 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, |
|
2620 rar_used_count, rar_count); |
|
2621 } |
|
2622 |
|
2623 /** |
|
2624 * e1000_set_multi - Multicast and Promiscuous mode set |
|
2625 * @netdev: network interface device structure |
|
2626 * |
|
2627 * The set_multi entry point is called whenever the multicast address |
|
2628 * list or the network interface flags are updated. This routine is |
|
2629 * responsible for configuring the hardware for proper multicast, |
|
2630 * promiscuous mode, and all-multi behavior. |
|
2631 **/ |
|
2632 static void e1000_set_multi(struct net_device *netdev) |
|
2633 { |
|
2634 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2635 struct e1000_hw *hw = &adapter->hw; |
|
2636 struct e1000_mac_info *mac = &hw->mac; |
|
2637 struct dev_mc_list *mc_ptr; |
|
2638 u8 *mta_list; |
|
2639 u32 rctl; |
|
2640 int i; |
|
2641 |
|
2642 /* Check for Promiscuous and All Multicast modes */ |
|
2643 |
|
2644 rctl = er32(RCTL); |
|
2645 |
|
2646 if (netdev->flags & IFF_PROMISC) { |
|
2647 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2648 rctl &= ~E1000_RCTL_VFE; |
|
2649 } else { |
|
2650 if (netdev->flags & IFF_ALLMULTI) { |
|
2651 rctl |= E1000_RCTL_MPE; |
|
2652 rctl &= ~E1000_RCTL_UPE; |
|
2653 } else { |
|
2654 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2655 } |
|
2656 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
|
2657 rctl |= E1000_RCTL_VFE; |
|
2658 } |
|
2659 |
|
2660 ew32(RCTL, rctl); |
|
2661 |
|
2662 if (netdev->mc_count) { |
|
2663 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); |
|
2664 if (!mta_list) |
|
2665 return; |
|
2666 |
|
2667 /* prepare a packed array of only addresses. */ |
|
2668 mc_ptr = netdev->mc_list; |
|
2669 |
|
2670 for (i = 0; i < netdev->mc_count; i++) { |
|
2671 if (!mc_ptr) |
|
2672 break; |
|
2673 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, |
|
2674 ETH_ALEN); |
|
2675 mc_ptr = mc_ptr->next; |
|
2676 } |
|
2677 |
|
2678 e1000_update_mc_addr_list(hw, mta_list, i, 1, |
|
2679 mac->rar_entry_count); |
|
2680 kfree(mta_list); |
|
2681 } else { |
|
2682 /* |
|
2683 * if we're called from probe, we might not have |
|
2684 * anything to do here, so clear out the list |
|
2685 */ |
|
2686 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); |
|
2687 } |
|
2688 } |
|
2689 |
|
2690 /** |
|
2691 * e1000_configure - configure the hardware for Rx and Tx |
|
2692 * @adapter: private board structure |
|
2693 **/ |
|
2694 static void e1000_configure(struct e1000_adapter *adapter) |
|
2695 { |
|
2696 e1000_set_multi(adapter->netdev); |
|
2697 |
|
2698 e1000_restore_vlan(adapter); |
|
2699 e1000_init_manageability(adapter); |
|
2700 |
|
2701 e1000_configure_tx(adapter); |
|
2702 e1000_setup_rctl(adapter); |
|
2703 e1000_configure_rx(adapter); |
|
2704 |
|
2705 if (adapter->ecdev) { |
|
2706 adapter->alloc_rx_buf(adapter, adapter->rx_ring->count); |
|
2707 } else { |
|
2708 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); |
|
2709 } |
|
2710 } |
|
2711 |
|
2712 /** |
|
2713 * e1000e_power_up_phy - restore link in case the phy was powered down |
|
2714 * @adapter: address of board private structure |
|
2715 * |
|
2716 * The phy may be powered down to save power and turn off link when the |
|
2717 * driver is unloaded and wake on lan is not enabled (among others) |
|
2718 * *** this routine MUST be followed by a call to e1000e_reset *** |
|
2719 **/ |
|
2720 void e1000e_power_up_phy(struct e1000_adapter *adapter) |
|
2721 { |
|
2722 if (adapter->hw.phy.ops.power_up) |
|
2723 adapter->hw.phy.ops.power_up(&adapter->hw); |
|
2724 |
|
2725 adapter->hw.mac.ops.setup_link(&adapter->hw); |
|
2726 } |
|
2727 |
|
2728 /** |
|
2729 * e1000_power_down_phy - Power down the PHY |
|
2730 * |
|
2731 * Power down the PHY so no link is implied when interface is down. |
|
2732 * The PHY cannot be powered down if management or WoL is active. |
|
2733 */ |
|
2734 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
2735 { |
|
2736 /* WoL is enabled */ |
|
2737 if (adapter->wol) |
|
2738 return; |
|
2739 |
|
2740 if (adapter->hw.phy.ops.power_down) |
|
2741 adapter->hw.phy.ops.power_down(&adapter->hw); |
|
2742 } |
|
2743 |
|
2744 /** |
|
2745 * e1000e_reset - bring the hardware into a known good state |
|
2746 * |
|
2747 * This function boots the hardware and enables some settings that |
|
2748 * require a configuration cycle of the hardware - those cannot be |
|
2749 * set/changed during runtime. After reset the device needs to be |
|
2750 * properly configured for Rx, Tx etc. |
|
2751 */ |
|
2752 void e1000e_reset(struct e1000_adapter *adapter) |
|
2753 { |
|
2754 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
2755 struct e1000_fc_info *fc = &adapter->hw.fc; |
|
2756 struct e1000_hw *hw = &adapter->hw; |
|
2757 u32 tx_space, min_tx_space, min_rx_space; |
|
2758 u32 pba = adapter->pba; |
|
2759 u16 hwm; |
|
2760 |
|
2761 /* reset Packet Buffer Allocation to default */ |
|
2762 ew32(PBA, pba); |
|
2763 |
|
2764 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
2765 /* |
|
2766 * To maintain wire speed transmits, the Tx FIFO should be |
|
2767 * large enough to accommodate two full transmit packets, |
|
2768 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
2769 * the Rx FIFO should be large enough to accommodate at least |
|
2770 * one full receive packet and is similarly rounded up and |
|
2771 * expressed in KB. |
|
2772 */ |
|
2773 pba = er32(PBA); |
|
2774 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
2775 tx_space = pba >> 16; |
|
2776 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
2777 pba &= 0xffff; |
|
2778 /* |
|
2779 * the Tx fifo also stores 16 bytes of information about the tx |
|
2780 * but don't include ethernet FCS because hardware appends it |
|
2781 */ |
|
2782 min_tx_space = (adapter->max_frame_size + |
|
2783 sizeof(struct e1000_tx_desc) - |
|
2784 ETH_FCS_LEN) * 2; |
|
2785 min_tx_space = ALIGN(min_tx_space, 1024); |
|
2786 min_tx_space >>= 10; |
|
2787 /* software strips receive CRC, so leave room for it */ |
|
2788 min_rx_space = adapter->max_frame_size; |
|
2789 min_rx_space = ALIGN(min_rx_space, 1024); |
|
2790 min_rx_space >>= 10; |
|
2791 |
|
2792 /* |
|
2793 * If current Tx allocation is less than the min Tx FIFO size, |
|
2794 * and the min Tx FIFO size is less than the current Rx FIFO |
|
2795 * allocation, take space away from current Rx allocation |
|
2796 */ |
|
2797 if ((tx_space < min_tx_space) && |
|
2798 ((min_tx_space - tx_space) < pba)) { |
|
2799 pba -= min_tx_space - tx_space; |
|
2800 |
|
2801 /* |
|
2802 * if short on Rx space, Rx wins and must trump tx |
|
2803 * adjustment or use Early Receive if available |
|
2804 */ |
|
2805 if ((pba < min_rx_space) && |
|
2806 (!(adapter->flags & FLAG_HAS_ERT))) |
|
2807 /* ERT enabled in e1000_configure_rx */ |
|
2808 pba = min_rx_space; |
|
2809 } |
|
2810 |
|
2811 ew32(PBA, pba); |
|
2812 } |
|
2813 |
|
2814 |
|
2815 /* |
|
2816 * flow control settings |
|
2817 * |
|
2818 * The high water mark must be low enough to fit one full frame |
|
2819 * (or the size used for early receive) above it in the Rx FIFO. |
|
2820 * Set it to the lower of: |
|
2821 * - 90% of the Rx FIFO size, and |
|
2822 * - the full Rx FIFO size minus the early receive size (for parts |
|
2823 * with ERT support assuming ERT set to E1000_ERT_2048), or |
|
2824 * - the full Rx FIFO size minus one full frame |
|
2825 */ |
|
2826 if (hw->mac.type == e1000_pchlan) { |
|
2827 /* |
|
2828 * Workaround PCH LOM adapter hangs with certain network |
|
2829 * loads. If hangs persist, try disabling Tx flow control. |
|
2830 */ |
|
2831 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
2832 fc->high_water = 0x3500; |
|
2833 fc->low_water = 0x1500; |
|
2834 } else { |
|
2835 fc->high_water = 0x5000; |
|
2836 fc->low_water = 0x3000; |
|
2837 } |
|
2838 } else { |
|
2839 if ((adapter->flags & FLAG_HAS_ERT) && |
|
2840 (adapter->netdev->mtu > ETH_DATA_LEN)) |
|
2841 hwm = min(((pba << 10) * 9 / 10), |
|
2842 ((pba << 10) - (E1000_ERT_2048 << 3))); |
|
2843 else |
|
2844 hwm = min(((pba << 10) * 9 / 10), |
|
2845 ((pba << 10) - adapter->max_frame_size)); |
|
2846 |
|
2847 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ |
|
2848 fc->low_water = fc->high_water - 8; |
|
2849 } |
|
2850 |
|
2851 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) |
|
2852 fc->pause_time = 0xFFFF; |
|
2853 else |
|
2854 fc->pause_time = E1000_FC_PAUSE_TIME; |
|
2855 fc->send_xon = 1; |
|
2856 fc->current_mode = fc->requested_mode; |
|
2857 |
|
2858 /* Allow time for pending master requests to run */ |
|
2859 mac->ops.reset_hw(hw); |
|
2860 |
|
2861 /* |
|
2862 * For parts with AMT enabled, let the firmware know |
|
2863 * that the network interface is in control |
|
2864 */ |
|
2865 if (adapter->flags & FLAG_HAS_AMT) |
|
2866 e1000_get_hw_control(adapter); |
|
2867 |
|
2868 ew32(WUC, 0); |
|
2869 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) |
|
2870 e1e_wphy(&adapter->hw, BM_WUC, 0); |
|
2871 |
|
2872 if (mac->ops.init_hw(hw)) |
|
2873 e_err("Hardware Error\n"); |
|
2874 |
|
2875 /* additional part of the flow-control workaround above */ |
|
2876 if (hw->mac.type == e1000_pchlan) |
|
2877 ew32(FCRTV_PCH, 0x1000); |
|
2878 |
|
2879 e1000_update_mng_vlan(adapter); |
|
2880 |
|
2881 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
2882 ew32(VET, ETH_P_8021Q); |
|
2883 |
|
2884 e1000e_reset_adaptive(hw); |
|
2885 e1000_get_phy_info(hw); |
|
2886 |
|
2887 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && |
|
2888 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { |
|
2889 u16 phy_data = 0; |
|
2890 /* |
|
2891 * speed up time to link by disabling smart power down, ignore |
|
2892 * the return value of this function because there is nothing |
|
2893 * different we would do if it failed |
|
2894 */ |
|
2895 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
|
2896 phy_data &= ~IGP02E1000_PM_SPD; |
|
2897 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
|
2898 } |
|
2899 } |
|
2900 |
|
2901 int e1000e_up(struct e1000_adapter *adapter) |
|
2902 { |
|
2903 struct e1000_hw *hw = &adapter->hw; |
|
2904 |
|
2905 /* DMA latency requirement to workaround early-receive/jumbo issue */ |
|
2906 if (adapter->flags & FLAG_HAS_ERT) |
|
2907 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, |
|
2908 adapter->netdev->name, |
|
2909 PM_QOS_DEFAULT_VALUE); |
|
2910 |
|
2911 /* hardware has been reset, we need to reload some things */ |
|
2912 e1000_configure(adapter); |
|
2913 |
|
2914 clear_bit(__E1000_DOWN, &adapter->state); |
|
2915 |
|
2916 if (!adapter->ecdev) |
|
2917 napi_enable(&adapter->napi); |
|
2918 |
|
2919 if (adapter->msix_entries) |
|
2920 e1000_configure_msix(adapter); |
|
2921 |
|
2922 if (!adapter->ecdev) { |
|
2923 e1000_irq_enable(adapter); |
|
2924 |
|
2925 netif_wake_queue(adapter->netdev); |
|
2926 |
|
2927 /* fire a link change interrupt to start the watchdog */ |
|
2928 ew32(ICS, E1000_ICS_LSC); |
|
2929 } |
|
2930 return 0; |
|
2931 } |
|
2932 |
|
2933 void e1000e_down(struct e1000_adapter *adapter) |
|
2934 { |
|
2935 struct net_device *netdev = adapter->netdev; |
|
2936 struct e1000_hw *hw = &adapter->hw; |
|
2937 u32 tctl, rctl; |
|
2938 |
|
2939 /* |
|
2940 * signal that we're down so the interrupt handler does not |
|
2941 * reschedule our watchdog timer |
|
2942 */ |
|
2943 set_bit(__E1000_DOWN, &adapter->state); |
|
2944 |
|
2945 /* disable receives in the hardware */ |
|
2946 rctl = er32(RCTL); |
|
2947 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
2948 /* flush and sleep below */ |
|
2949 |
|
2950 if (!adapter->ecdev) |
|
2951 netif_stop_queue(netdev); |
|
2952 |
|
2953 /* disable transmits in the hardware */ |
|
2954 tctl = er32(TCTL); |
|
2955 tctl &= ~E1000_TCTL_EN; |
|
2956 ew32(TCTL, tctl); |
|
2957 /* flush both disables and wait for them to finish */ |
|
2958 e1e_flush(); |
|
2959 msleep(10); |
|
2960 |
|
2961 if (!adapter->ecdev) { |
|
2962 napi_disable(&adapter->napi); |
|
2963 e1000_irq_disable(adapter); |
|
2964 |
|
2965 del_timer_sync(&adapter->watchdog_timer); |
|
2966 del_timer_sync(&adapter->phy_info_timer); |
|
2967 |
|
2968 netdev->tx_queue_len = adapter->tx_queue_len; |
|
2969 netif_carrier_off(netdev); |
|
2970 } |
|
2971 |
|
2972 adapter->link_speed = 0; |
|
2973 adapter->link_duplex = 0; |
|
2974 |
|
2975 if (!pci_channel_offline(adapter->pdev)) |
|
2976 e1000e_reset(adapter); |
|
2977 e1000_clean_tx_ring(adapter); |
|
2978 e1000_clean_rx_ring(adapter); |
|
2979 |
|
2980 if (adapter->flags & FLAG_HAS_ERT) |
|
2981 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, |
|
2982 adapter->netdev->name); |
|
2983 |
|
2984 /* |
|
2985 * TODO: for power management, we could drop the link and |
|
2986 * pci_disable_device here. |
|
2987 */ |
|
2988 } |
|
2989 |
|
2990 void e1000e_reinit_locked(struct e1000_adapter *adapter) |
|
2991 { |
|
2992 might_sleep(); |
|
2993 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
2994 msleep(1); |
|
2995 e1000e_down(adapter); |
|
2996 e1000e_up(adapter); |
|
2997 clear_bit(__E1000_RESETTING, &adapter->state); |
|
2998 } |
|
2999 |
|
3000 /** |
|
3001 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
3002 * @adapter: board private structure to initialize |
|
3003 * |
|
3004 * e1000_sw_init initializes the Adapter private data structure. |
|
3005 * Fields are initialized based on PCI device information and |
|
3006 * OS network device settings (MTU size). |
|
3007 **/ |
|
3008 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
3009 { |
|
3010 struct net_device *netdev = adapter->netdev; |
|
3011 |
|
3012 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; |
|
3013 adapter->rx_ps_bsize0 = 128; |
|
3014 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
|
3015 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
|
3016 |
|
3017 e1000e_set_interrupt_capability(adapter); |
|
3018 |
|
3019 if (e1000_alloc_queues(adapter)) |
|
3020 return -ENOMEM; |
|
3021 |
|
3022 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
3023 e1000_irq_disable(adapter); |
|
3024 |
|
3025 set_bit(__E1000_DOWN, &adapter->state); |
|
3026 return 0; |
|
3027 } |
|
3028 |
|
3029 /** |
|
3030 * e1000_intr_msi_test - Interrupt Handler |
|
3031 * @irq: interrupt number |
|
3032 * @data: pointer to a network interface device structure |
|
3033 **/ |
|
3034 static irqreturn_t e1000_intr_msi_test(int irq, void *data) |
|
3035 { |
|
3036 struct net_device *netdev = data; |
|
3037 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3038 struct e1000_hw *hw = &adapter->hw; |
|
3039 u32 icr = er32(ICR); |
|
3040 |
|
3041 e_dbg("icr is %08X\n", icr); |
|
3042 if (icr & E1000_ICR_RXSEQ) { |
|
3043 adapter->flags &= ~FLAG_MSI_TEST_FAILED; |
|
3044 wmb(); |
|
3045 } |
|
3046 |
|
3047 return IRQ_HANDLED; |
|
3048 } |
|
3049 |
|
3050 /** |
|
3051 * e1000_test_msi_interrupt - Returns 0 for successful test |
|
3052 * @adapter: board private struct |
|
3053 * |
|
3054 * code flow taken from tg3.c |
|
3055 **/ |
|
3056 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) |
|
3057 { |
|
3058 struct net_device *netdev = adapter->netdev; |
|
3059 struct e1000_hw *hw = &adapter->hw; |
|
3060 int err; |
|
3061 |
|
3062 /* poll_enable hasn't been called yet, so don't need disable */ |
|
3063 /* clear any pending events */ |
|
3064 er32(ICR); |
|
3065 |
|
3066 /* free the real vector and request a test handler */ |
|
3067 e1000_free_irq(adapter); |
|
3068 e1000e_reset_interrupt_capability(adapter); |
|
3069 |
|
3070 /* Assume that the test fails, if it succeeds then the test |
|
3071 * MSI irq handler will unset this flag */ |
|
3072 adapter->flags |= FLAG_MSI_TEST_FAILED; |
|
3073 |
|
3074 err = pci_enable_msi(adapter->pdev); |
|
3075 if (err) |
|
3076 goto msi_test_failed; |
|
3077 |
|
3078 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, |
|
3079 netdev->name, netdev); |
|
3080 if (err) { |
|
3081 pci_disable_msi(adapter->pdev); |
|
3082 goto msi_test_failed; |
|
3083 } |
|
3084 |
|
3085 wmb(); |
|
3086 |
|
3087 e1000_irq_enable(adapter); |
|
3088 |
|
3089 /* fire an unusual interrupt on the test handler */ |
|
3090 ew32(ICS, E1000_ICS_RXSEQ); |
|
3091 e1e_flush(); |
|
3092 msleep(50); |
|
3093 |
|
3094 e1000_irq_disable(adapter); |
|
3095 |
|
3096 rmb(); |
|
3097 |
|
3098 if (adapter->flags & FLAG_MSI_TEST_FAILED) { |
|
3099 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
3100 err = -EIO; |
|
3101 e_info("MSI interrupt test failed!\n"); |
|
3102 } |
|
3103 |
|
3104 free_irq(adapter->pdev->irq, netdev); |
|
3105 pci_disable_msi(adapter->pdev); |
|
3106 |
|
3107 if (err == -EIO) |
|
3108 goto msi_test_failed; |
|
3109 |
|
3110 /* okay so the test worked, restore settings */ |
|
3111 e_dbg("MSI interrupt test succeeded!\n"); |
|
3112 msi_test_failed: |
|
3113 e1000e_set_interrupt_capability(adapter); |
|
3114 e1000_request_irq(adapter); |
|
3115 return err; |
|
3116 } |
|
3117 |
|
3118 /** |
|
3119 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored |
|
3120 * @adapter: board private struct |
|
3121 * |
|
3122 * code flow taken from tg3.c, called with e1000 interrupts disabled. |
|
3123 **/ |
|
3124 static int e1000_test_msi(struct e1000_adapter *adapter) |
|
3125 { |
|
3126 int err; |
|
3127 u16 pci_cmd; |
|
3128 |
|
3129 if (!(adapter->flags & FLAG_MSI_ENABLED)) |
|
3130 return 0; |
|
3131 |
|
3132 /* disable SERR in case the MSI write causes a master abort */ |
|
3133 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
|
3134 pci_write_config_word(adapter->pdev, PCI_COMMAND, |
|
3135 pci_cmd & ~PCI_COMMAND_SERR); |
|
3136 |
|
3137 err = e1000_test_msi_interrupt(adapter); |
|
3138 |
|
3139 /* restore previous setting of command word */ |
|
3140 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); |
|
3141 |
|
3142 /* success ! */ |
|
3143 if (!err) |
|
3144 return 0; |
|
3145 |
|
3146 /* EIO means MSI test failed */ |
|
3147 if (err != -EIO) |
|
3148 return err; |
|
3149 |
|
3150 /* back to INTx mode */ |
|
3151 e_warn("MSI interrupt test failed, using legacy interrupt.\n"); |
|
3152 |
|
3153 e1000_free_irq(adapter); |
|
3154 |
|
3155 err = e1000_request_irq(adapter); |
|
3156 |
|
3157 return err; |
|
3158 } |
|
3159 |
|
3160 /** |
|
3161 * e1000_open - Called when a network interface is made active |
|
3162 * @netdev: network interface device structure |
|
3163 * |
|
3164 * Returns 0 on success, negative value on failure |
|
3165 * |
|
3166 * The open entry point is called when a network interface is made |
|
3167 * active by the system (IFF_UP). At this point all resources needed |
|
3168 * for transmit and receive operations are allocated, the interrupt |
|
3169 * handler is registered with the OS, the watchdog timer is started, |
|
3170 * and the stack is notified that the interface is ready. |
|
3171 **/ |
|
3172 static int e1000_open(struct net_device *netdev) |
|
3173 { |
|
3174 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3175 struct e1000_hw *hw = &adapter->hw; |
|
3176 int err; |
|
3177 |
|
3178 /* disallow open during test */ |
|
3179 if (test_bit(__E1000_TESTING, &adapter->state)) |
|
3180 return -EBUSY; |
|
3181 |
|
3182 if (adapter->ecdev) { |
|
3183 ecdev_set_link(adapter->ecdev, 0); |
|
3184 } else { |
|
3185 netif_carrier_off(netdev); |
|
3186 } |
|
3187 |
|
3188 /* allocate transmit descriptors */ |
|
3189 err = e1000e_setup_tx_resources(adapter); |
|
3190 if (err) |
|
3191 goto err_setup_tx; |
|
3192 |
|
3193 /* allocate receive descriptors */ |
|
3194 err = e1000e_setup_rx_resources(adapter); |
|
3195 if (err) |
|
3196 goto err_setup_rx; |
|
3197 |
|
3198 e1000e_power_up_phy(adapter); |
|
3199 |
|
3200 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
3201 if ((adapter->hw.mng_cookie.status & |
|
3202 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) |
|
3203 e1000_update_mng_vlan(adapter); |
|
3204 |
|
3205 /* |
|
3206 * If AMT is enabled, let the firmware know that the network |
|
3207 * interface is now open |
|
3208 */ |
|
3209 if (adapter->flags & FLAG_HAS_AMT) |
|
3210 e1000_get_hw_control(adapter); |
|
3211 |
|
3212 /* |
|
3213 * before we allocate an interrupt, we must be ready to handle it. |
|
3214 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
3215 * as soon as we call pci_request_irq, so we have to setup our |
|
3216 * clean_rx handler before we do so. |
|
3217 */ |
|
3218 e1000_configure(adapter); |
|
3219 |
|
3220 err = e1000_request_irq(adapter); |
|
3221 if (err) |
|
3222 goto err_req_irq; |
|
3223 |
|
3224 /* |
|
3225 * Work around PCIe errata with MSI interrupts causing some chipsets to |
|
3226 * ignore e1000e MSI messages, which means we need to test our MSI |
|
3227 * interrupt now |
|
3228 */ |
|
3229 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
|
3230 err = e1000_test_msi(adapter); |
|
3231 if (err) { |
|
3232 e_err("Interrupt allocation failed\n"); |
|
3233 goto err_req_irq; |
|
3234 } |
|
3235 } |
|
3236 |
|
3237 /* From here on the code is the same as e1000e_up() */ |
|
3238 clear_bit(__E1000_DOWN, &adapter->state); |
|
3239 |
|
3240 napi_enable(&adapter->napi); |
|
3241 |
|
3242 e1000_irq_enable(adapter); |
|
3243 |
|
3244 netif_start_queue(netdev); |
|
3245 |
|
3246 /* fire a link status change interrupt to start the watchdog */ |
|
3247 ew32(ICS, E1000_ICS_LSC); |
|
3248 |
|
3249 return 0; |
|
3250 |
|
3251 err_req_irq: |
|
3252 e1000_release_hw_control(adapter); |
|
3253 e1000_power_down_phy(adapter); |
|
3254 e1000e_free_rx_resources(adapter); |
|
3255 err_setup_rx: |
|
3256 e1000e_free_tx_resources(adapter); |
|
3257 err_setup_tx: |
|
3258 e1000e_reset(adapter); |
|
3259 |
|
3260 return err; |
|
3261 } |
|
3262 |
|
3263 /** |
|
3264 * e1000_close - Disables a network interface |
|
3265 * @netdev: network interface device structure |
|
3266 * |
|
3267 * Returns 0, this is not allowed to fail |
|
3268 * |
|
3269 * The close entry point is called when an interface is de-activated |
|
3270 * by the OS. The hardware is still under the drivers control, but |
|
3271 * needs to be disabled. A global MAC reset is issued to stop the |
|
3272 * hardware, and all transmit and receive resources are freed. |
|
3273 **/ |
|
3274 static int e1000_close(struct net_device *netdev) |
|
3275 { |
|
3276 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3277 |
|
3278 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
|
3279 e1000e_down(adapter); |
|
3280 e1000_power_down_phy(adapter); |
|
3281 e1000_free_irq(adapter); |
|
3282 |
|
3283 e1000e_free_tx_resources(adapter); |
|
3284 e1000e_free_rx_resources(adapter); |
|
3285 |
|
3286 /* |
|
3287 * kill manageability vlan ID if supported, but not if a vlan with |
|
3288 * the same ID is registered on the host OS (let 8021q kill it) |
|
3289 */ |
|
3290 if ((adapter->hw.mng_cookie.status & |
|
3291 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
3292 !(adapter->vlgrp && |
|
3293 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) |
|
3294 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
3295 |
|
3296 /* |
|
3297 * If AMT is enabled, let the firmware know that the network |
|
3298 * interface is now closed |
|
3299 */ |
|
3300 if (adapter->flags & FLAG_HAS_AMT) |
|
3301 e1000_release_hw_control(adapter); |
|
3302 |
|
3303 return 0; |
|
3304 } |
|
3305 /** |
|
3306 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
3307 * @netdev: network interface device structure |
|
3308 * @p: pointer to an address structure |
|
3309 * |
|
3310 * Returns 0 on success, negative on failure |
|
3311 **/ |
|
3312 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
3313 { |
|
3314 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3315 struct sockaddr *addr = p; |
|
3316 |
|
3317 if (!is_valid_ether_addr(addr->sa_data)) |
|
3318 return -EADDRNOTAVAIL; |
|
3319 |
|
3320 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
3321 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); |
|
3322 |
|
3323 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); |
|
3324 |
|
3325 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { |
|
3326 /* activate the work around */ |
|
3327 e1000e_set_laa_state_82571(&adapter->hw, 1); |
|
3328 |
|
3329 /* |
|
3330 * Hold a copy of the LAA in RAR[14] This is done so that |
|
3331 * between the time RAR[0] gets clobbered and the time it |
|
3332 * gets fixed (in e1000_watchdog), the actual LAA is in one |
|
3333 * of the RARs and no incoming packets directed to this port |
|
3334 * are dropped. Eventually the LAA will be in RAR[0] and |
|
3335 * RAR[14] |
|
3336 */ |
|
3337 e1000e_rar_set(&adapter->hw, |
|
3338 adapter->hw.mac.addr, |
|
3339 adapter->hw.mac.rar_entry_count - 1); |
|
3340 } |
|
3341 |
|
3342 return 0; |
|
3343 } |
|
3344 |
|
3345 /** |
|
3346 * e1000e_update_phy_task - work thread to update phy |
|
3347 * @work: pointer to our work struct |
|
3348 * |
|
3349 * this worker thread exists because we must acquire a |
|
3350 * semaphore to read the phy, which we could msleep while |
|
3351 * waiting for it, and we can't msleep in a timer. |
|
3352 **/ |
|
3353 static void e1000e_update_phy_task(struct work_struct *work) |
|
3354 { |
|
3355 struct e1000_adapter *adapter = container_of(work, |
|
3356 struct e1000_adapter, update_phy_task); |
|
3357 e1000_get_phy_info(&adapter->hw); |
|
3358 } |
|
3359 |
|
3360 /* |
|
3361 * Need to wait a few seconds after link up to get diagnostic information from |
|
3362 * the phy |
|
3363 */ |
|
3364 static void e1000_update_phy_info(unsigned long data) |
|
3365 { |
|
3366 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
3367 schedule_work(&adapter->update_phy_task); |
|
3368 } |
|
3369 |
|
3370 /** |
|
3371 * e1000e_update_stats - Update the board statistics counters |
|
3372 * @adapter: board private structure |
|
3373 **/ |
|
3374 void e1000e_update_stats(struct e1000_adapter *adapter) |
|
3375 { |
|
3376 struct net_device *netdev = adapter->netdev; |
|
3377 struct e1000_hw *hw = &adapter->hw; |
|
3378 struct pci_dev *pdev = adapter->pdev; |
|
3379 u16 phy_data; |
|
3380 |
|
3381 /* |
|
3382 * Prevent stats update while adapter is being reset, or if the pci |
|
3383 * connection is down. |
|
3384 */ |
|
3385 if (adapter->link_speed == 0) |
|
3386 return; |
|
3387 if (pci_channel_offline(pdev)) |
|
3388 return; |
|
3389 |
|
3390 adapter->stats.crcerrs += er32(CRCERRS); |
|
3391 adapter->stats.gprc += er32(GPRC); |
|
3392 adapter->stats.gorc += er32(GORCL); |
|
3393 er32(GORCH); /* Clear gorc */ |
|
3394 adapter->stats.bprc += er32(BPRC); |
|
3395 adapter->stats.mprc += er32(MPRC); |
|
3396 adapter->stats.roc += er32(ROC); |
|
3397 |
|
3398 adapter->stats.mpc += er32(MPC); |
|
3399 if ((hw->phy.type == e1000_phy_82578) || |
|
3400 (hw->phy.type == e1000_phy_82577)) { |
|
3401 e1e_rphy(hw, HV_SCC_UPPER, &phy_data); |
|
3402 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data)) |
|
3403 adapter->stats.scc += phy_data; |
|
3404 |
|
3405 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data); |
|
3406 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data)) |
|
3407 adapter->stats.ecol += phy_data; |
|
3408 |
|
3409 e1e_rphy(hw, HV_MCC_UPPER, &phy_data); |
|
3410 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data)) |
|
3411 adapter->stats.mcc += phy_data; |
|
3412 |
|
3413 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data); |
|
3414 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data)) |
|
3415 adapter->stats.latecol += phy_data; |
|
3416 |
|
3417 e1e_rphy(hw, HV_DC_UPPER, &phy_data); |
|
3418 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data)) |
|
3419 adapter->stats.dc += phy_data; |
|
3420 } else { |
|
3421 adapter->stats.scc += er32(SCC); |
|
3422 adapter->stats.ecol += er32(ECOL); |
|
3423 adapter->stats.mcc += er32(MCC); |
|
3424 adapter->stats.latecol += er32(LATECOL); |
|
3425 adapter->stats.dc += er32(DC); |
|
3426 } |
|
3427 adapter->stats.xonrxc += er32(XONRXC); |
|
3428 adapter->stats.xontxc += er32(XONTXC); |
|
3429 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3430 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3431 adapter->stats.gptc += er32(GPTC); |
|
3432 adapter->stats.gotc += er32(GOTCL); |
|
3433 er32(GOTCH); /* Clear gotc */ |
|
3434 adapter->stats.rnbc += er32(RNBC); |
|
3435 adapter->stats.ruc += er32(RUC); |
|
3436 |
|
3437 adapter->stats.mptc += er32(MPTC); |
|
3438 adapter->stats.bptc += er32(BPTC); |
|
3439 |
|
3440 /* used for adaptive IFS */ |
|
3441 |
|
3442 hw->mac.tx_packet_delta = er32(TPT); |
|
3443 adapter->stats.tpt += hw->mac.tx_packet_delta; |
|
3444 if ((hw->phy.type == e1000_phy_82578) || |
|
3445 (hw->phy.type == e1000_phy_82577)) { |
|
3446 e1e_rphy(hw, HV_COLC_UPPER, &phy_data); |
|
3447 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data)) |
|
3448 hw->mac.collision_delta = phy_data; |
|
3449 } else { |
|
3450 hw->mac.collision_delta = er32(COLC); |
|
3451 } |
|
3452 adapter->stats.colc += hw->mac.collision_delta; |
|
3453 |
|
3454 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3455 adapter->stats.rxerrc += er32(RXERRC); |
|
3456 if ((hw->phy.type == e1000_phy_82578) || |
|
3457 (hw->phy.type == e1000_phy_82577)) { |
|
3458 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data); |
|
3459 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data)) |
|
3460 adapter->stats.tncrs += phy_data; |
|
3461 } else { |
|
3462 if ((hw->mac.type != e1000_82574) && |
|
3463 (hw->mac.type != e1000_82583)) |
|
3464 adapter->stats.tncrs += er32(TNCRS); |
|
3465 } |
|
3466 adapter->stats.cexterr += er32(CEXTERR); |
|
3467 adapter->stats.tsctc += er32(TSCTC); |
|
3468 adapter->stats.tsctfc += er32(TSCTFC); |
|
3469 |
|
3470 /* Fill out the OS statistics structure */ |
|
3471 netdev->stats.multicast = adapter->stats.mprc; |
|
3472 netdev->stats.collisions = adapter->stats.colc; |
|
3473 |
|
3474 /* Rx Errors */ |
|
3475 |
|
3476 /* |
|
3477 * RLEC on some newer hardware can be incorrect so build |
|
3478 * our own version based on RUC and ROC |
|
3479 */ |
|
3480 netdev->stats.rx_errors = adapter->stats.rxerrc + |
|
3481 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3482 adapter->stats.ruc + adapter->stats.roc + |
|
3483 adapter->stats.cexterr; |
|
3484 netdev->stats.rx_length_errors = adapter->stats.ruc + |
|
3485 adapter->stats.roc; |
|
3486 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3487 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3488 netdev->stats.rx_missed_errors = adapter->stats.mpc; |
|
3489 |
|
3490 /* Tx Errors */ |
|
3491 netdev->stats.tx_errors = adapter->stats.ecol + |
|
3492 adapter->stats.latecol; |
|
3493 netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
|
3494 netdev->stats.tx_window_errors = adapter->stats.latecol; |
|
3495 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3496 |
|
3497 /* Tx Dropped needs to be maintained elsewhere */ |
|
3498 |
|
3499 /* Management Stats */ |
|
3500 adapter->stats.mgptc += er32(MGTPTC); |
|
3501 adapter->stats.mgprc += er32(MGTPRC); |
|
3502 adapter->stats.mgpdc += er32(MGTPDC); |
|
3503 } |
|
3504 |
|
3505 /** |
|
3506 * e1000_phy_read_status - Update the PHY register status snapshot |
|
3507 * @adapter: board private structure |
|
3508 **/ |
|
3509 static void e1000_phy_read_status(struct e1000_adapter *adapter) |
|
3510 { |
|
3511 struct e1000_hw *hw = &adapter->hw; |
|
3512 struct e1000_phy_regs *phy = &adapter->phy_regs; |
|
3513 int ret_val; |
|
3514 |
|
3515 if ((er32(STATUS) & E1000_STATUS_LU) && |
|
3516 (adapter->hw.phy.media_type == e1000_media_type_copper)) { |
|
3517 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); |
|
3518 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); |
|
3519 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); |
|
3520 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); |
|
3521 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); |
|
3522 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); |
|
3523 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); |
|
3524 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); |
|
3525 if (ret_val) |
|
3526 e_warn("Error reading PHY register\n"); |
|
3527 } else { |
|
3528 /* |
|
3529 * Do not read PHY registers if link is not up |
|
3530 * Set values to typical power-on defaults |
|
3531 */ |
|
3532 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); |
|
3533 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | |
|
3534 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | |
|
3535 BMSR_ERCAP); |
|
3536 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | |
|
3537 ADVERTISE_ALL | ADVERTISE_CSMA); |
|
3538 phy->lpa = 0; |
|
3539 phy->expansion = EXPANSION_ENABLENPAGE; |
|
3540 phy->ctrl1000 = ADVERTISE_1000FULL; |
|
3541 phy->stat1000 = 0; |
|
3542 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); |
|
3543 } |
|
3544 } |
|
3545 |
|
3546 static void e1000_print_link_info(struct e1000_adapter *adapter) |
|
3547 { |
|
3548 struct e1000_hw *hw = &adapter->hw; |
|
3549 u32 ctrl = er32(CTRL); |
|
3550 |
|
3551 /* Link status message must follow this format for user tools */ |
|
3552 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " |
|
3553 "Flow Control: %s\n", |
|
3554 adapter->netdev->name, |
|
3555 adapter->link_speed, |
|
3556 (adapter->link_duplex == FULL_DUPLEX) ? |
|
3557 "Full Duplex" : "Half Duplex", |
|
3558 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? |
|
3559 "RX/TX" : |
|
3560 ((ctrl & E1000_CTRL_RFCE) ? "RX" : |
|
3561 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); |
|
3562 } |
|
3563 |
|
3564 bool e1000_has_link(struct e1000_adapter *adapter) |
|
3565 { |
|
3566 struct e1000_hw *hw = &adapter->hw; |
|
3567 bool link_active = 0; |
|
3568 s32 ret_val = 0; |
|
3569 |
|
3570 /* |
|
3571 * get_link_status is set on LSC (link status) interrupt or |
|
3572 * Rx sequence error interrupt. get_link_status will stay |
|
3573 * false until the check_for_link establishes link |
|
3574 * for copper adapters ONLY |
|
3575 */ |
|
3576 switch (hw->phy.media_type) { |
|
3577 case e1000_media_type_copper: |
|
3578 if (hw->mac.get_link_status) { |
|
3579 ret_val = hw->mac.ops.check_for_link(hw); |
|
3580 link_active = !hw->mac.get_link_status; |
|
3581 } else { |
|
3582 link_active = 1; |
|
3583 } |
|
3584 break; |
|
3585 case e1000_media_type_fiber: |
|
3586 ret_val = hw->mac.ops.check_for_link(hw); |
|
3587 link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
|
3588 break; |
|
3589 case e1000_media_type_internal_serdes: |
|
3590 ret_val = hw->mac.ops.check_for_link(hw); |
|
3591 link_active = adapter->hw.mac.serdes_has_link; |
|
3592 break; |
|
3593 default: |
|
3594 case e1000_media_type_unknown: |
|
3595 break; |
|
3596 } |
|
3597 |
|
3598 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && |
|
3599 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
|
3600 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ |
|
3601 e_info("Gigabit has been disabled, downgrading speed\n"); |
|
3602 } |
|
3603 |
|
3604 return link_active; |
|
3605 } |
|
3606 |
|
3607 static void e1000e_enable_receives(struct e1000_adapter *adapter) |
|
3608 { |
|
3609 /* make sure the receive unit is started */ |
|
3610 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && |
|
3611 (adapter->flags & FLAG_RX_RESTART_NOW)) { |
|
3612 struct e1000_hw *hw = &adapter->hw; |
|
3613 u32 rctl = er32(RCTL); |
|
3614 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
3615 adapter->flags &= ~FLAG_RX_RESTART_NOW; |
|
3616 } |
|
3617 } |
|
3618 |
|
3619 /** |
|
3620 * e1000_watchdog - Timer Call-back |
|
3621 * @data: pointer to adapter cast into an unsigned long |
|
3622 **/ |
|
3623 static void e1000_watchdog(unsigned long data) |
|
3624 { |
|
3625 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
3626 |
|
3627 /* Do the rest outside of interrupt context */ |
|
3628 schedule_work(&adapter->watchdog_task); |
|
3629 |
|
3630 /* TODO: make this use queue_delayed_work() */ |
|
3631 } |
|
3632 |
|
3633 static void e1000_watchdog_task(struct work_struct *work) |
|
3634 { |
|
3635 struct e1000_adapter *adapter = container_of(work, |
|
3636 struct e1000_adapter, watchdog_task); |
|
3637 struct net_device *netdev = adapter->netdev; |
|
3638 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
3639 struct e1000_phy_info *phy = &adapter->hw.phy; |
|
3640 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3641 struct e1000_hw *hw = &adapter->hw; |
|
3642 u32 link, tctl; |
|
3643 int tx_pending = 0; |
|
3644 |
|
3645 link = e1000_has_link(adapter); |
|
3646 if ((adapter->ecdev && (ecdev_get_link(adapter->ecdev)) && link) |
|
3647 || (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)) { |
|
3648 e1000e_enable_receives(adapter); |
|
3649 goto link_up; |
|
3650 } |
|
3651 |
|
3652 if ((e1000e_enable_tx_pkt_filtering(hw)) && |
|
3653 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) |
|
3654 e1000_update_mng_vlan(adapter); |
|
3655 |
|
3656 if (link) { |
|
3657 if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) |
|
3658 || (!adapter->ecdev && !netif_carrier_ok(netdev))) { |
|
3659 bool txb2b = 1; |
|
3660 /* update snapshot of PHY registers on LSC */ |
|
3661 e1000_phy_read_status(adapter); |
|
3662 mac->ops.get_link_up_info(&adapter->hw, |
|
3663 &adapter->link_speed, |
|
3664 &adapter->link_duplex); |
|
3665 e1000_print_link_info(adapter); |
|
3666 /* |
|
3667 * On supported PHYs, check for duplex mismatch only |
|
3668 * if link has autonegotiated at 10/100 half |
|
3669 */ |
|
3670 if ((hw->phy.type == e1000_phy_igp_3 || |
|
3671 hw->phy.type == e1000_phy_bm) && |
|
3672 (hw->mac.autoneg == true) && |
|
3673 (adapter->link_speed == SPEED_10 || |
|
3674 adapter->link_speed == SPEED_100) && |
|
3675 (adapter->link_duplex == HALF_DUPLEX)) { |
|
3676 u16 autoneg_exp; |
|
3677 |
|
3678 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); |
|
3679 |
|
3680 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) |
|
3681 e_info("Autonegotiated half duplex but" |
|
3682 " link partner cannot autoneg. " |
|
3683 " Try forcing full duplex if " |
|
3684 "link gets many collisions.\n"); |
|
3685 } |
|
3686 |
|
3687 /* |
|
3688 * tweak tx_queue_len according to speed/duplex |
|
3689 * and adjust the timeout factor |
|
3690 */ |
|
3691 netdev->tx_queue_len = adapter->tx_queue_len; |
|
3692 adapter->tx_timeout_factor = 1; |
|
3693 switch (adapter->link_speed) { |
|
3694 case SPEED_10: |
|
3695 txb2b = 0; |
|
3696 netdev->tx_queue_len = 10; |
|
3697 adapter->tx_timeout_factor = 16; |
|
3698 break; |
|
3699 case SPEED_100: |
|
3700 txb2b = 0; |
|
3701 netdev->tx_queue_len = 100; |
|
3702 adapter->tx_timeout_factor = 10; |
|
3703 break; |
|
3704 } |
|
3705 |
|
3706 /* |
|
3707 * workaround: re-program speed mode bit after |
|
3708 * link-up event |
|
3709 */ |
|
3710 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
|
3711 !txb2b) { |
|
3712 u32 tarc0; |
|
3713 tarc0 = er32(TARC(0)); |
|
3714 tarc0 &= ~SPEED_MODE_BIT; |
|
3715 ew32(TARC(0), tarc0); |
|
3716 } |
|
3717 |
|
3718 /* |
|
3719 * disable TSO for pcie and 10/100 speeds, to avoid |
|
3720 * some hardware issues |
|
3721 */ |
|
3722 if (!(adapter->flags & FLAG_TSO_FORCE)) { |
|
3723 switch (adapter->link_speed) { |
|
3724 case SPEED_10: |
|
3725 case SPEED_100: |
|
3726 e_info("10/100 speed: disabling TSO\n"); |
|
3727 netdev->features &= ~NETIF_F_TSO; |
|
3728 netdev->features &= ~NETIF_F_TSO6; |
|
3729 break; |
|
3730 case SPEED_1000: |
|
3731 netdev->features |= NETIF_F_TSO; |
|
3732 netdev->features |= NETIF_F_TSO6; |
|
3733 break; |
|
3734 default: |
|
3735 /* oops */ |
|
3736 break; |
|
3737 } |
|
3738 } |
|
3739 |
|
3740 /* |
|
3741 * enable transmits in the hardware, need to do this |
|
3742 * after setting TARC(0) |
|
3743 */ |
|
3744 tctl = er32(TCTL); |
|
3745 tctl |= E1000_TCTL_EN; |
|
3746 ew32(TCTL, tctl); |
|
3747 |
|
3748 /* |
|
3749 * Perform any post-link-up configuration before |
|
3750 * reporting link up. |
|
3751 */ |
|
3752 if (phy->ops.cfg_on_link_up) |
|
3753 phy->ops.cfg_on_link_up(hw); |
|
3754 |
|
3755 if (adapter->ecdev) |
|
3756 ecdev_set_link(adapter->ecdev, 1); |
|
3757 else |
|
3758 netif_carrier_on(netdev); |
|
3759 |
|
3760 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
3761 mod_timer(&adapter->phy_info_timer, |
|
3762 round_jiffies(jiffies + 2 * HZ)); |
|
3763 } |
|
3764 } else { |
|
3765 if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) |
|
3766 || (!adapter->ecdev && netif_carrier_ok(netdev))) { |
|
3767 adapter->link_speed = 0; |
|
3768 adapter->link_duplex = 0; |
|
3769 /* Link status message must follow this format */ |
|
3770 printk(KERN_INFO "e1000e: %s NIC Link is Down\n", |
|
3771 adapter->netdev->name); |
|
3772 if (adapter->ecdev) |
|
3773 ecdev_set_link(adapter->ecdev, 0); |
|
3774 else |
|
3775 netif_carrier_off(netdev); |
|
3776 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
3777 mod_timer(&adapter->phy_info_timer, |
|
3778 round_jiffies(jiffies + 2 * HZ)); |
|
3779 |
|
3780 if (adapter->flags & FLAG_RX_NEEDS_RESTART) |
|
3781 schedule_work(&adapter->reset_task); |
|
3782 } |
|
3783 } |
|
3784 |
|
3785 link_up: |
|
3786 e1000e_update_stats(adapter); |
|
3787 |
|
3788 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
3789 adapter->tpt_old = adapter->stats.tpt; |
|
3790 mac->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
3791 adapter->colc_old = adapter->stats.colc; |
|
3792 |
|
3793 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
|
3794 adapter->gorc_old = adapter->stats.gorc; |
|
3795 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; |
|
3796 adapter->gotc_old = adapter->stats.gotc; |
|
3797 |
|
3798 e1000e_update_adaptive(&adapter->hw); |
|
3799 |
|
3800 if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) |
|
3801 || (!adapter->ecdev && !netif_carrier_ok(netdev))) { |
|
3802 tx_pending = (e1000_desc_unused(tx_ring) + 1 < |
|
3803 tx_ring->count); |
|
3804 if (tx_pending) { |
|
3805 /* |
|
3806 * We've lost link, so the controller stops DMA, |
|
3807 * but we've got queued Tx work that's never going |
|
3808 * to get done, so reset controller to flush Tx. |
|
3809 * (Do the reset outside of interrupt context). |
|
3810 */ |
|
3811 adapter->tx_timeout_count++; |
|
3812 schedule_work(&adapter->reset_task); |
|
3813 /* return immediately since reset is imminent */ |
|
3814 return; |
|
3815 } |
|
3816 } |
|
3817 |
|
3818 /* Cause software interrupt to ensure Rx ring is cleaned */ |
|
3819 if (adapter->msix_entries) |
|
3820 ew32(ICS, adapter->rx_ring->ims_val); |
|
3821 else |
|
3822 ew32(ICS, E1000_ICS_RXDMT0); |
|
3823 |
|
3824 /* Force detection of hung controller every watchdog period */ |
|
3825 adapter->detect_tx_hung = 1; |
|
3826 |
|
3827 /* |
|
3828 * With 82571 controllers, LAA may be overwritten due to controller |
|
3829 * reset from the other port. Set the appropriate LAA in RAR[0] |
|
3830 */ |
|
3831 if (e1000e_get_laa_state_82571(hw)) |
|
3832 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); |
|
3833 |
|
3834 /* Reset the timer */ |
|
3835 if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state)) |
|
3836 mod_timer(&adapter->watchdog_timer, |
|
3837 round_jiffies(jiffies + 2 * HZ)); |
|
3838 } |
|
3839 |
|
3840 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
3841 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
3842 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
3843 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
3844 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
3845 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
3846 |
|
3847 static int e1000_tso(struct e1000_adapter *adapter, |
|
3848 struct sk_buff *skb) |
|
3849 { |
|
3850 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3851 struct e1000_context_desc *context_desc; |
|
3852 struct e1000_buffer *buffer_info; |
|
3853 unsigned int i; |
|
3854 u32 cmd_length = 0; |
|
3855 u16 ipcse = 0, tucse, mss; |
|
3856 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
3857 int err; |
|
3858 |
|
3859 if (!skb_is_gso(skb)) |
|
3860 return 0; |
|
3861 |
|
3862 if (skb_header_cloned(skb)) { |
|
3863 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
3864 if (err) |
|
3865 return err; |
|
3866 } |
|
3867 |
|
3868 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3869 mss = skb_shinfo(skb)->gso_size; |
|
3870 if (skb->protocol == htons(ETH_P_IP)) { |
|
3871 struct iphdr *iph = ip_hdr(skb); |
|
3872 iph->tot_len = 0; |
|
3873 iph->check = 0; |
|
3874 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, |
|
3875 0, IPPROTO_TCP, 0); |
|
3876 cmd_length = E1000_TXD_CMD_IP; |
|
3877 ipcse = skb_transport_offset(skb) - 1; |
|
3878 } else if (skb_is_gso_v6(skb)) { |
|
3879 ipv6_hdr(skb)->payload_len = 0; |
|
3880 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
3881 &ipv6_hdr(skb)->daddr, |
|
3882 0, IPPROTO_TCP, 0); |
|
3883 ipcse = 0; |
|
3884 } |
|
3885 ipcss = skb_network_offset(skb); |
|
3886 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
3887 tucss = skb_transport_offset(skb); |
|
3888 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
3889 tucse = 0; |
|
3890 |
|
3891 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
3892 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
3893 |
|
3894 i = tx_ring->next_to_use; |
|
3895 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
3896 buffer_info = &tx_ring->buffer_info[i]; |
|
3897 |
|
3898 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
3899 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
3900 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
3901 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
3902 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
3903 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
3904 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
3905 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
3906 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
3907 |
|
3908 buffer_info->time_stamp = jiffies; |
|
3909 buffer_info->next_to_watch = i; |
|
3910 |
|
3911 i++; |
|
3912 if (i == tx_ring->count) |
|
3913 i = 0; |
|
3914 tx_ring->next_to_use = i; |
|
3915 |
|
3916 return 1; |
|
3917 } |
|
3918 |
|
3919 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) |
|
3920 { |
|
3921 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3922 struct e1000_context_desc *context_desc; |
|
3923 struct e1000_buffer *buffer_info; |
|
3924 unsigned int i; |
|
3925 u8 css; |
|
3926 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
3927 __be16 protocol; |
|
3928 |
|
3929 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
3930 return 0; |
|
3931 |
|
3932 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) |
|
3933 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; |
|
3934 else |
|
3935 protocol = skb->protocol; |
|
3936 |
|
3937 switch (protocol) { |
|
3938 case cpu_to_be16(ETH_P_IP): |
|
3939 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
3940 cmd_len |= E1000_TXD_CMD_TCP; |
|
3941 break; |
|
3942 case cpu_to_be16(ETH_P_IPV6): |
|
3943 /* XXX not handling all IPV6 headers */ |
|
3944 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
3945 cmd_len |= E1000_TXD_CMD_TCP; |
|
3946 break; |
|
3947 default: |
|
3948 if (unlikely(net_ratelimit())) |
|
3949 e_warn("checksum_partial proto=%x!\n", |
|
3950 be16_to_cpu(protocol)); |
|
3951 break; |
|
3952 } |
|
3953 |
|
3954 css = skb_transport_offset(skb); |
|
3955 |
|
3956 i = tx_ring->next_to_use; |
|
3957 buffer_info = &tx_ring->buffer_info[i]; |
|
3958 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
3959 |
|
3960 context_desc->lower_setup.ip_config = 0; |
|
3961 context_desc->upper_setup.tcp_fields.tucss = css; |
|
3962 context_desc->upper_setup.tcp_fields.tucso = |
|
3963 css + skb->csum_offset; |
|
3964 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
3965 context_desc->tcp_seg_setup.data = 0; |
|
3966 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
3967 |
|
3968 buffer_info->time_stamp = jiffies; |
|
3969 buffer_info->next_to_watch = i; |
|
3970 |
|
3971 i++; |
|
3972 if (i == tx_ring->count) |
|
3973 i = 0; |
|
3974 tx_ring->next_to_use = i; |
|
3975 |
|
3976 return 1; |
|
3977 } |
|
3978 |
|
3979 #define E1000_MAX_PER_TXD 8192 |
|
3980 #define E1000_MAX_TXD_PWR 12 |
|
3981 |
|
3982 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
3983 struct sk_buff *skb, unsigned int first, |
|
3984 unsigned int max_per_txd, unsigned int nr_frags, |
|
3985 unsigned int mss) |
|
3986 { |
|
3987 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3988 struct pci_dev *pdev = adapter->pdev; |
|
3989 struct e1000_buffer *buffer_info; |
|
3990 unsigned int len = skb_headlen(skb); |
|
3991 unsigned int offset = 0, size, count = 0, i; |
|
3992 unsigned int f; |
|
3993 |
|
3994 i = tx_ring->next_to_use; |
|
3995 |
|
3996 while (len) { |
|
3997 buffer_info = &tx_ring->buffer_info[i]; |
|
3998 size = min(len, max_per_txd); |
|
3999 |
|
4000 buffer_info->length = size; |
|
4001 buffer_info->time_stamp = jiffies; |
|
4002 buffer_info->next_to_watch = i; |
|
4003 buffer_info->dma = pci_map_single(pdev, skb->data + offset, |
|
4004 size, PCI_DMA_TODEVICE); |
|
4005 buffer_info->mapped_as_page = false; |
|
4006 if (pci_dma_mapping_error(pdev, buffer_info->dma)) |
|
4007 goto dma_error; |
|
4008 |
|
4009 len -= size; |
|
4010 offset += size; |
|
4011 count++; |
|
4012 |
|
4013 if (len) { |
|
4014 i++; |
|
4015 if (i == tx_ring->count) |
|
4016 i = 0; |
|
4017 } |
|
4018 } |
|
4019 |
|
4020 for (f = 0; f < nr_frags; f++) { |
|
4021 struct skb_frag_struct *frag; |
|
4022 |
|
4023 frag = &skb_shinfo(skb)->frags[f]; |
|
4024 len = frag->size; |
|
4025 offset = frag->page_offset; |
|
4026 |
|
4027 while (len) { |
|
4028 i++; |
|
4029 if (i == tx_ring->count) |
|
4030 i = 0; |
|
4031 |
|
4032 buffer_info = &tx_ring->buffer_info[i]; |
|
4033 size = min(len, max_per_txd); |
|
4034 |
|
4035 buffer_info->length = size; |
|
4036 buffer_info->time_stamp = jiffies; |
|
4037 buffer_info->next_to_watch = i; |
|
4038 buffer_info->dma = pci_map_page(pdev, frag->page, |
|
4039 offset, size, |
|
4040 PCI_DMA_TODEVICE); |
|
4041 buffer_info->mapped_as_page = true; |
|
4042 if (pci_dma_mapping_error(pdev, buffer_info->dma)) |
|
4043 goto dma_error; |
|
4044 |
|
4045 len -= size; |
|
4046 offset += size; |
|
4047 count++; |
|
4048 } |
|
4049 } |
|
4050 |
|
4051 tx_ring->buffer_info[i].skb = skb; |
|
4052 tx_ring->buffer_info[first].next_to_watch = i; |
|
4053 |
|
4054 return count; |
|
4055 |
|
4056 dma_error: |
|
4057 dev_err(&pdev->dev, "TX DMA map failed\n"); |
|
4058 buffer_info->dma = 0; |
|
4059 if (count) |
|
4060 count--; |
|
4061 |
|
4062 while (count--) { |
|
4063 if (i==0) |
|
4064 i += tx_ring->count; |
|
4065 i--; |
|
4066 buffer_info = &tx_ring->buffer_info[i]; |
|
4067 e1000_put_txbuf(adapter, buffer_info);; |
|
4068 } |
|
4069 |
|
4070 return 0; |
|
4071 } |
|
4072 |
|
4073 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
4074 int tx_flags, int count) |
|
4075 { |
|
4076 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4077 struct e1000_tx_desc *tx_desc = NULL; |
|
4078 struct e1000_buffer *buffer_info; |
|
4079 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
4080 unsigned int i; |
|
4081 |
|
4082 if (tx_flags & E1000_TX_FLAGS_TSO) { |
|
4083 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
4084 E1000_TXD_CMD_TSE; |
|
4085 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
4086 |
|
4087 if (tx_flags & E1000_TX_FLAGS_IPV4) |
|
4088 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
4089 } |
|
4090 |
|
4091 if (tx_flags & E1000_TX_FLAGS_CSUM) { |
|
4092 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
4093 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
4094 } |
|
4095 |
|
4096 if (tx_flags & E1000_TX_FLAGS_VLAN) { |
|
4097 txd_lower |= E1000_TXD_CMD_VLE; |
|
4098 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
4099 } |
|
4100 |
|
4101 i = tx_ring->next_to_use; |
|
4102 |
|
4103 while (count--) { |
|
4104 buffer_info = &tx_ring->buffer_info[i]; |
|
4105 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
4106 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4107 tx_desc->lower.data = |
|
4108 cpu_to_le32(txd_lower | buffer_info->length); |
|
4109 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
4110 |
|
4111 i++; |
|
4112 if (i == tx_ring->count) |
|
4113 i = 0; |
|
4114 } |
|
4115 |
|
4116 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
4117 |
|
4118 /* |
|
4119 * Force memory writes to complete before letting h/w |
|
4120 * know there are new descriptors to fetch. (Only |
|
4121 * applicable for weak-ordered memory model archs, |
|
4122 * such as IA-64). |
|
4123 */ |
|
4124 wmb(); |
|
4125 |
|
4126 tx_ring->next_to_use = i; |
|
4127 writel(i, adapter->hw.hw_addr + tx_ring->tail); |
|
4128 /* |
|
4129 * we need this if more than one processor can write to our tail |
|
4130 * at a time, it synchronizes IO on IA64/Altix systems |
|
4131 */ |
|
4132 mmiowb(); |
|
4133 } |
|
4134 |
|
4135 #define MINIMUM_DHCP_PACKET_SIZE 282 |
|
4136 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
|
4137 struct sk_buff *skb) |
|
4138 { |
|
4139 struct e1000_hw *hw = &adapter->hw; |
|
4140 u16 length, offset; |
|
4141 |
|
4142 if (vlan_tx_tag_present(skb)) { |
|
4143 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && |
|
4144 (adapter->hw.mng_cookie.status & |
|
4145 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
|
4146 return 0; |
|
4147 } |
|
4148 |
|
4149 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) |
|
4150 return 0; |
|
4151 |
|
4152 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) |
|
4153 return 0; |
|
4154 |
|
4155 { |
|
4156 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); |
|
4157 struct udphdr *udp; |
|
4158 |
|
4159 if (ip->protocol != IPPROTO_UDP) |
|
4160 return 0; |
|
4161 |
|
4162 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); |
|
4163 if (ntohs(udp->dest) != 67) |
|
4164 return 0; |
|
4165 |
|
4166 offset = (u8 *)udp + 8 - skb->data; |
|
4167 length = skb->len - offset; |
|
4168 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); |
|
4169 } |
|
4170 |
|
4171 return 0; |
|
4172 } |
|
4173 |
|
4174 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
4175 { |
|
4176 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4177 |
|
4178 netif_stop_queue(netdev); |
|
4179 /* |
|
4180 * Herbert's original patch had: |
|
4181 * smp_mb__after_netif_stop_queue(); |
|
4182 * but since that doesn't exist yet, just open code it. |
|
4183 */ |
|
4184 smp_mb(); |
|
4185 |
|
4186 /* |
|
4187 * We need to check again in a case another CPU has just |
|
4188 * made room available. |
|
4189 */ |
|
4190 if (e1000_desc_unused(adapter->tx_ring) < size) |
|
4191 return -EBUSY; |
|
4192 |
|
4193 /* A reprieve! */ |
|
4194 netif_start_queue(netdev); |
|
4195 ++adapter->restart_queue; |
|
4196 return 0; |
|
4197 } |
|
4198 |
|
4199 static int e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
4200 { |
|
4201 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4202 |
|
4203 if (e1000_desc_unused(adapter->tx_ring) >= size) |
|
4204 return 0; |
|
4205 return __e1000_maybe_stop_tx(netdev, size); |
|
4206 } |
|
4207 |
|
4208 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
4209 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
4210 struct net_device *netdev) |
|
4211 { |
|
4212 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4213 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4214 unsigned int first; |
|
4215 unsigned int max_per_txd = E1000_MAX_PER_TXD; |
|
4216 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
4217 unsigned int tx_flags = 0; |
|
4218 unsigned int len = skb->len - skb->data_len; |
|
4219 unsigned int nr_frags; |
|
4220 unsigned int mss; |
|
4221 int count = 0; |
|
4222 int tso; |
|
4223 unsigned int f; |
|
4224 |
|
4225 if (test_bit(__E1000_DOWN, &adapter->state)) { |
|
4226 if (!adapter->ecdev) |
|
4227 dev_kfree_skb_any(skb); |
|
4228 return NETDEV_TX_OK; |
|
4229 } |
|
4230 |
|
4231 if (skb->len <= 0) { |
|
4232 if (!adapter->ecdev) |
|
4233 dev_kfree_skb_any(skb); |
|
4234 return NETDEV_TX_OK; |
|
4235 } |
|
4236 |
|
4237 mss = skb_shinfo(skb)->gso_size; |
|
4238 /* |
|
4239 * The controller does a simple calculation to |
|
4240 * make sure there is enough room in the FIFO before |
|
4241 * initiating the DMA for each buffer. The calc is: |
|
4242 * 4 = ceil(buffer len/mss). To make sure we don't |
|
4243 * overrun the FIFO, adjust the max buffer len if mss |
|
4244 * drops. |
|
4245 */ |
|
4246 if (mss) { |
|
4247 u8 hdr_len; |
|
4248 max_per_txd = min(mss << 2, max_per_txd); |
|
4249 max_txd_pwr = fls(max_per_txd) - 1; |
|
4250 |
|
4251 /* |
|
4252 * TSO Workaround for 82571/2/3 Controllers -- if skb->data |
|
4253 * points to just header, pull a few bytes of payload from |
|
4254 * frags into skb->data |
|
4255 */ |
|
4256 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
4257 /* |
|
4258 * we do this workaround for ES2LAN, but it is un-necessary, |
|
4259 * avoiding it could save a lot of cycles |
|
4260 */ |
|
4261 if (skb->data_len && (hdr_len == len)) { |
|
4262 unsigned int pull_size; |
|
4263 |
|
4264 pull_size = min((unsigned int)4, skb->data_len); |
|
4265 if (!__pskb_pull_tail(skb, pull_size)) { |
|
4266 e_err("__pskb_pull_tail failed.\n"); |
|
4267 if (!adapter->ecdev) |
|
4268 dev_kfree_skb_any(skb); |
|
4269 return NETDEV_TX_OK; |
|
4270 } |
|
4271 len = skb->len - skb->data_len; |
|
4272 } |
|
4273 } |
|
4274 |
|
4275 /* reserve a descriptor for the offload context */ |
|
4276 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
4277 count++; |
|
4278 count++; |
|
4279 |
|
4280 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
4281 |
|
4282 nr_frags = skb_shinfo(skb)->nr_frags; |
|
4283 for (f = 0; f < nr_frags; f++) |
|
4284 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
4285 max_txd_pwr); |
|
4286 |
|
4287 if (adapter->hw.mac.tx_pkt_filtering) |
|
4288 e1000_transfer_dhcp_info(adapter, skb); |
|
4289 |
|
4290 /* |
|
4291 * need: count + 2 desc gap to keep tail from touching |
|
4292 * head, otherwise try next time |
|
4293 */ |
|
4294 if (!adapter->ecdev && e1000_maybe_stop_tx(netdev, count + 2)) |
|
4295 return NETDEV_TX_BUSY; |
|
4296 |
|
4297 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { |
|
4298 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
4299 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
4300 } |
|
4301 |
|
4302 first = tx_ring->next_to_use; |
|
4303 |
|
4304 tso = e1000_tso(adapter, skb); |
|
4305 if (tso < 0) { |
|
4306 if (!adapter->ecdev) |
|
4307 dev_kfree_skb_any(skb); |
|
4308 return NETDEV_TX_OK; |
|
4309 } |
|
4310 |
|
4311 if (tso) |
|
4312 tx_flags |= E1000_TX_FLAGS_TSO; |
|
4313 else if (e1000_tx_csum(adapter, skb)) |
|
4314 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
4315 |
|
4316 /* |
|
4317 * Old method was to assume IPv4 packet by default if TSO was enabled. |
|
4318 * 82571 hardware supports TSO capabilities for IPv6 as well... |
|
4319 * no longer assume, we must. |
|
4320 */ |
|
4321 if (skb->protocol == htons(ETH_P_IP)) |
|
4322 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
4323 |
|
4324 /* if count is 0 then mapping error has occured */ |
|
4325 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); |
|
4326 if (count) { |
|
4327 e1000_tx_queue(adapter, tx_flags, count); |
|
4328 /* Make sure there is space in the ring for the next send. */ |
|
4329 if (!adapter->ecdev) |
|
4330 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); |
|
4331 |
|
4332 } else { |
|
4333 if (!adapter->ecdev) |
|
4334 dev_kfree_skb_any(skb); |
|
4335 tx_ring->buffer_info[first].time_stamp = 0; |
|
4336 tx_ring->next_to_use = first; |
|
4337 } |
|
4338 |
|
4339 return NETDEV_TX_OK; |
|
4340 } |
|
4341 |
|
4342 /** |
|
4343 * e1000_tx_timeout - Respond to a Tx Hang |
|
4344 * @netdev: network interface device structure |
|
4345 **/ |
|
4346 static void e1000_tx_timeout(struct net_device *netdev) |
|
4347 { |
|
4348 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4349 |
|
4350 /* Do the reset outside of interrupt context */ |
|
4351 adapter->tx_timeout_count++; |
|
4352 schedule_work(&adapter->reset_task); |
|
4353 } |
|
4354 |
|
4355 static void e1000_reset_task(struct work_struct *work) |
|
4356 { |
|
4357 struct e1000_adapter *adapter; |
|
4358 adapter = container_of(work, struct e1000_adapter, reset_task); |
|
4359 |
|
4360 e1000e_reinit_locked(adapter); |
|
4361 } |
|
4362 |
|
4363 /** |
|
4364 * e1000_get_stats - Get System Network Statistics |
|
4365 * @netdev: network interface device structure |
|
4366 * |
|
4367 * Returns the address of the device statistics structure. |
|
4368 * The statistics are actually updated from the timer callback. |
|
4369 **/ |
|
4370 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
4371 { |
|
4372 /* only return the current stats */ |
|
4373 return &netdev->stats; |
|
4374 } |
|
4375 |
|
4376 /** |
|
4377 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
4378 * @netdev: network interface device structure |
|
4379 * @new_mtu: new value for maximum frame size |
|
4380 * |
|
4381 * Returns 0 on success, negative on failure |
|
4382 **/ |
|
4383 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
4384 { |
|
4385 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4386 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; |
|
4387 |
|
4388 if (adapter->ecdev) |
|
4389 return -EBUSY; |
|
4390 |
|
4391 /* Jumbo frame support */ |
|
4392 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && |
|
4393 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { |
|
4394 e_err("Jumbo Frames not supported.\n"); |
|
4395 return -EINVAL; |
|
4396 } |
|
4397 |
|
4398 /* Supported frame sizes */ |
|
4399 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || |
|
4400 (max_frame > adapter->max_hw_frame_size)) { |
|
4401 e_err("Unsupported MTU setting\n"); |
|
4402 return -EINVAL; |
|
4403 } |
|
4404 |
|
4405 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
4406 msleep(1); |
|
4407 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ |
|
4408 adapter->max_frame_size = max_frame; |
|
4409 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); |
|
4410 netdev->mtu = new_mtu; |
|
4411 if (netif_running(netdev)) |
|
4412 e1000e_down(adapter); |
|
4413 |
|
4414 /* |
|
4415 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
4416 * means we reserve 2 more, this pushes us to allocate from the next |
|
4417 * larger slab size. |
|
4418 * i.e. RXBUFFER_2048 --> size-4096 slab |
|
4419 * However with the new *_jumbo_rx* routines, jumbo receives will use |
|
4420 * fragmented skbs |
|
4421 */ |
|
4422 |
|
4423 if (max_frame <= 2048) |
|
4424 adapter->rx_buffer_len = 2048; |
|
4425 else |
|
4426 adapter->rx_buffer_len = 4096; |
|
4427 |
|
4428 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
4429 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || |
|
4430 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) |
|
4431 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN |
|
4432 + ETH_FCS_LEN; |
|
4433 |
|
4434 if (netif_running(netdev)) |
|
4435 e1000e_up(adapter); |
|
4436 else |
|
4437 e1000e_reset(adapter); |
|
4438 |
|
4439 clear_bit(__E1000_RESETTING, &adapter->state); |
|
4440 |
|
4441 return 0; |
|
4442 } |
|
4443 |
|
4444 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4445 int cmd) |
|
4446 { |
|
4447 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4448 struct mii_ioctl_data *data = if_mii(ifr); |
|
4449 |
|
4450 if (adapter->hw.phy.media_type != e1000_media_type_copper) |
|
4451 return -EOPNOTSUPP; |
|
4452 |
|
4453 switch (cmd) { |
|
4454 case SIOCGMIIPHY: |
|
4455 data->phy_id = adapter->hw.phy.addr; |
|
4456 break; |
|
4457 case SIOCGMIIREG: |
|
4458 e1000_phy_read_status(adapter); |
|
4459 |
|
4460 switch (data->reg_num & 0x1F) { |
|
4461 case MII_BMCR: |
|
4462 data->val_out = adapter->phy_regs.bmcr; |
|
4463 break; |
|
4464 case MII_BMSR: |
|
4465 data->val_out = adapter->phy_regs.bmsr; |
|
4466 break; |
|
4467 case MII_PHYSID1: |
|
4468 data->val_out = (adapter->hw.phy.id >> 16); |
|
4469 break; |
|
4470 case MII_PHYSID2: |
|
4471 data->val_out = (adapter->hw.phy.id & 0xFFFF); |
|
4472 break; |
|
4473 case MII_ADVERTISE: |
|
4474 data->val_out = adapter->phy_regs.advertise; |
|
4475 break; |
|
4476 case MII_LPA: |
|
4477 data->val_out = adapter->phy_regs.lpa; |
|
4478 break; |
|
4479 case MII_EXPANSION: |
|
4480 data->val_out = adapter->phy_regs.expansion; |
|
4481 break; |
|
4482 case MII_CTRL1000: |
|
4483 data->val_out = adapter->phy_regs.ctrl1000; |
|
4484 break; |
|
4485 case MII_STAT1000: |
|
4486 data->val_out = adapter->phy_regs.stat1000; |
|
4487 break; |
|
4488 case MII_ESTATUS: |
|
4489 data->val_out = adapter->phy_regs.estatus; |
|
4490 break; |
|
4491 default: |
|
4492 return -EIO; |
|
4493 } |
|
4494 break; |
|
4495 case SIOCSMIIREG: |
|
4496 default: |
|
4497 return -EOPNOTSUPP; |
|
4498 } |
|
4499 return 0; |
|
4500 } |
|
4501 |
|
4502 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4503 { |
|
4504 switch (cmd) { |
|
4505 case SIOCGMIIPHY: |
|
4506 case SIOCGMIIREG: |
|
4507 case SIOCSMIIREG: |
|
4508 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4509 default: |
|
4510 return -EOPNOTSUPP; |
|
4511 } |
|
4512 } |
|
4513 |
|
4514 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) |
|
4515 { |
|
4516 struct e1000_hw *hw = &adapter->hw; |
|
4517 u32 i, mac_reg; |
|
4518 u16 phy_reg; |
|
4519 int retval = 0; |
|
4520 |
|
4521 /* copy MAC RARs to PHY RARs */ |
|
4522 for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) { |
|
4523 mac_reg = er32(RAL(i)); |
|
4524 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); |
|
4525 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4526 mac_reg = er32(RAH(i)); |
|
4527 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); |
|
4528 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4529 } |
|
4530 |
|
4531 /* copy MAC MTA to PHY MTA */ |
|
4532 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { |
|
4533 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); |
|
4534 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF)); |
|
4535 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4536 } |
|
4537 |
|
4538 /* configure PHY Rx Control register */ |
|
4539 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg); |
|
4540 mac_reg = er32(RCTL); |
|
4541 if (mac_reg & E1000_RCTL_UPE) |
|
4542 phy_reg |= BM_RCTL_UPE; |
|
4543 if (mac_reg & E1000_RCTL_MPE) |
|
4544 phy_reg |= BM_RCTL_MPE; |
|
4545 phy_reg &= ~(BM_RCTL_MO_MASK); |
|
4546 if (mac_reg & E1000_RCTL_MO_3) |
|
4547 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) |
|
4548 << BM_RCTL_MO_SHIFT); |
|
4549 if (mac_reg & E1000_RCTL_BAM) |
|
4550 phy_reg |= BM_RCTL_BAM; |
|
4551 if (mac_reg & E1000_RCTL_PMCF) |
|
4552 phy_reg |= BM_RCTL_PMCF; |
|
4553 mac_reg = er32(CTRL); |
|
4554 if (mac_reg & E1000_CTRL_RFCE) |
|
4555 phy_reg |= BM_RCTL_RFCE; |
|
4556 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg); |
|
4557 |
|
4558 /* enable PHY wakeup in MAC register */ |
|
4559 ew32(WUFC, wufc); |
|
4560 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); |
|
4561 |
|
4562 /* configure and enable PHY wakeup in PHY registers */ |
|
4563 e1e_wphy(&adapter->hw, BM_WUFC, wufc); |
|
4564 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); |
|
4565 |
|
4566 /* activate PHY wakeup */ |
|
4567 retval = hw->phy.ops.acquire(hw); |
|
4568 if (retval) { |
|
4569 e_err("Could not acquire PHY\n"); |
|
4570 return retval; |
|
4571 } |
|
4572 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
4573 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); |
|
4574 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); |
|
4575 if (retval) { |
|
4576 e_err("Could not read PHY page 769\n"); |
|
4577 goto out; |
|
4578 } |
|
4579 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; |
|
4580 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); |
|
4581 if (retval) |
|
4582 e_err("Could not set PHY Host Wakeup bit\n"); |
|
4583 out: |
|
4584 hw->phy.ops.release(hw); |
|
4585 |
|
4586 return retval; |
|
4587 } |
|
4588 |
|
4589 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
4590 { |
|
4591 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4592 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4593 struct e1000_hw *hw = &adapter->hw; |
|
4594 u32 ctrl, ctrl_ext, rctl, status; |
|
4595 u32 wufc = adapter->wol; |
|
4596 int retval = 0; |
|
4597 |
|
4598 netif_device_detach(netdev); |
|
4599 |
|
4600 if (netif_running(netdev)) { |
|
4601 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
|
4602 e1000e_down(adapter); |
|
4603 e1000_free_irq(adapter); |
|
4604 } |
|
4605 e1000e_reset_interrupt_capability(adapter); |
|
4606 |
|
4607 retval = pci_save_state(pdev); |
|
4608 if (retval) |
|
4609 return retval; |
|
4610 |
|
4611 status = er32(STATUS); |
|
4612 if (status & E1000_STATUS_LU) |
|
4613 wufc &= ~E1000_WUFC_LNKC; |
|
4614 |
|
4615 if (wufc) { |
|
4616 e1000_setup_rctl(adapter); |
|
4617 e1000_set_multi(netdev); |
|
4618 |
|
4619 /* turn on all-multi mode if wake on multicast is enabled */ |
|
4620 if (wufc & E1000_WUFC_MC) { |
|
4621 rctl = er32(RCTL); |
|
4622 rctl |= E1000_RCTL_MPE; |
|
4623 ew32(RCTL, rctl); |
|
4624 } |
|
4625 |
|
4626 ctrl = er32(CTRL); |
|
4627 /* advertise wake from D3Cold */ |
|
4628 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
4629 /* phy power management enable */ |
|
4630 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
4631 ctrl |= E1000_CTRL_ADVD3WUC; |
|
4632 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) |
|
4633 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; |
|
4634 ew32(CTRL, ctrl); |
|
4635 |
|
4636 if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
|
4637 adapter->hw.phy.media_type == |
|
4638 e1000_media_type_internal_serdes) { |
|
4639 /* keep the laser running in D3 */ |
|
4640 ctrl_ext = er32(CTRL_EXT); |
|
4641 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; |
|
4642 ew32(CTRL_EXT, ctrl_ext); |
|
4643 } |
|
4644 |
|
4645 if (adapter->flags & FLAG_IS_ICH) |
|
4646 e1000e_disable_gig_wol_ich8lan(&adapter->hw); |
|
4647 |
|
4648 /* Allow time for pending master requests to run */ |
|
4649 e1000e_disable_pcie_master(&adapter->hw); |
|
4650 |
|
4651 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
|
4652 /* enable wakeup by the PHY */ |
|
4653 retval = e1000_init_phy_wakeup(adapter, wufc); |
|
4654 if (retval) |
|
4655 return retval; |
|
4656 } else { |
|
4657 /* enable wakeup by the MAC */ |
|
4658 ew32(WUFC, wufc); |
|
4659 ew32(WUC, E1000_WUC_PME_EN); |
|
4660 } |
|
4661 } else { |
|
4662 ew32(WUC, 0); |
|
4663 ew32(WUFC, 0); |
|
4664 } |
|
4665 |
|
4666 *enable_wake = !!wufc; |
|
4667 |
|
4668 /* make sure adapter isn't asleep if manageability is enabled */ |
|
4669 if ((adapter->flags & FLAG_MNG_PT_ENABLED) || |
|
4670 (hw->mac.ops.check_mng_mode(hw))) |
|
4671 *enable_wake = true; |
|
4672 |
|
4673 if (adapter->hw.phy.type == e1000_phy_igp_3) |
|
4674 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); |
|
4675 |
|
4676 /* |
|
4677 * Release control of h/w to f/w. If f/w is AMT enabled, this |
|
4678 * would have already happened in close and is redundant. |
|
4679 */ |
|
4680 e1000_release_hw_control(adapter); |
|
4681 |
|
4682 pci_disable_device(pdev); |
|
4683 |
|
4684 return 0; |
|
4685 } |
|
4686 |
|
4687 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) |
|
4688 { |
|
4689 if (sleep && wake) { |
|
4690 pci_prepare_to_sleep(pdev); |
|
4691 return; |
|
4692 } |
|
4693 |
|
4694 pci_wake_from_d3(pdev, wake); |
|
4695 pci_set_power_state(pdev, PCI_D3hot); |
|
4696 } |
|
4697 |
|
4698 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, |
|
4699 bool wake) |
|
4700 { |
|
4701 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4702 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4703 |
|
4704 /* |
|
4705 * The pci-e switch on some quad port adapters will report a |
|
4706 * correctable error when the MAC transitions from D0 to D3. To |
|
4707 * prevent this we need to mask off the correctable errors on the |
|
4708 * downstream port of the pci-e switch. |
|
4709 */ |
|
4710 if (adapter->flags & FLAG_IS_QUAD_PORT) { |
|
4711 struct pci_dev *us_dev = pdev->bus->self; |
|
4712 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); |
|
4713 u16 devctl; |
|
4714 |
|
4715 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); |
|
4716 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, |
|
4717 (devctl & ~PCI_EXP_DEVCTL_CERE)); |
|
4718 |
|
4719 e1000_power_off(pdev, sleep, wake); |
|
4720 |
|
4721 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); |
|
4722 } else { |
|
4723 e1000_power_off(pdev, sleep, wake); |
|
4724 } |
|
4725 } |
|
4726 |
|
4727 static void e1000e_disable_l1aspm(struct pci_dev *pdev) |
|
4728 { |
|
4729 int pos; |
|
4730 u16 val; |
|
4731 |
|
4732 /* |
|
4733 * 82573 workaround - disable L1 ASPM on mobile chipsets |
|
4734 * |
|
4735 * L1 ASPM on various mobile (ich7) chipsets do not behave properly |
|
4736 * resulting in lost data or garbage information on the pci-e link |
|
4737 * level. This could result in (false) bad EEPROM checksum errors, |
|
4738 * long ping times (up to 2s) or even a system freeze/hang. |
|
4739 * |
|
4740 * Unfortunately this feature saves about 1W power consumption when |
|
4741 * active. |
|
4742 */ |
|
4743 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); |
|
4744 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); |
|
4745 if (val & 0x2) { |
|
4746 dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); |
|
4747 val &= ~0x2; |
|
4748 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); |
|
4749 } |
|
4750 } |
|
4751 |
|
4752 #ifdef CONFIG_PM |
|
4753 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
4754 { |
|
4755 int retval; |
|
4756 bool wake; |
|
4757 |
|
4758 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4759 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4760 |
|
4761 if (adapter->ecdev) |
|
4762 return -EBUSY; |
|
4763 |
|
4764 retval = __e1000_shutdown(pdev, &wake); |
|
4765 if (!retval) |
|
4766 e1000_complete_shutdown(pdev, true, wake); |
|
4767 |
|
4768 return retval; |
|
4769 } |
|
4770 |
|
4771 static int e1000_resume(struct pci_dev *pdev) |
|
4772 { |
|
4773 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4774 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4775 struct e1000_hw *hw = &adapter->hw; |
|
4776 u32 err; |
|
4777 |
|
4778 if (adapter->ecdev) |
|
4779 return -EBUSY; |
|
4780 |
|
4781 pci_set_power_state(pdev, PCI_D0); |
|
4782 pci_restore_state(pdev); |
|
4783 pci_save_state(pdev); |
|
4784 e1000e_disable_l1aspm(pdev); |
|
4785 |
|
4786 err = pci_enable_device_mem(pdev); |
|
4787 if (err) { |
|
4788 dev_err(&pdev->dev, |
|
4789 "Cannot enable PCI device from suspend\n"); |
|
4790 return err; |
|
4791 } |
|
4792 |
|
4793 pci_set_master(pdev); |
|
4794 |
|
4795 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4796 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4797 |
|
4798 e1000e_set_interrupt_capability(adapter); |
|
4799 if (netif_running(netdev)) { |
|
4800 err = e1000_request_irq(adapter); |
|
4801 if (err) |
|
4802 return err; |
|
4803 } |
|
4804 |
|
4805 e1000e_power_up_phy(adapter); |
|
4806 |
|
4807 /* report the system wakeup cause from S3/S4 */ |
|
4808 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
|
4809 u16 phy_data; |
|
4810 |
|
4811 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); |
|
4812 if (phy_data) { |
|
4813 e_info("PHY Wakeup cause - %s\n", |
|
4814 phy_data & E1000_WUS_EX ? "Unicast Packet" : |
|
4815 phy_data & E1000_WUS_MC ? "Multicast Packet" : |
|
4816 phy_data & E1000_WUS_BC ? "Broadcast Packet" : |
|
4817 phy_data & E1000_WUS_MAG ? "Magic Packet" : |
|
4818 phy_data & E1000_WUS_LNKC ? "Link Status " |
|
4819 " Change" : "other"); |
|
4820 } |
|
4821 e1e_wphy(&adapter->hw, BM_WUS, ~0); |
|
4822 } else { |
|
4823 u32 wus = er32(WUS); |
|
4824 if (wus) { |
|
4825 e_info("MAC Wakeup cause - %s\n", |
|
4826 wus & E1000_WUS_EX ? "Unicast Packet" : |
|
4827 wus & E1000_WUS_MC ? "Multicast Packet" : |
|
4828 wus & E1000_WUS_BC ? "Broadcast Packet" : |
|
4829 wus & E1000_WUS_MAG ? "Magic Packet" : |
|
4830 wus & E1000_WUS_LNKC ? "Link Status Change" : |
|
4831 "other"); |
|
4832 } |
|
4833 ew32(WUS, ~0); |
|
4834 } |
|
4835 |
|
4836 e1000e_reset(adapter); |
|
4837 |
|
4838 e1000_init_manageability(adapter); |
|
4839 |
|
4840 if (netif_running(netdev)) |
|
4841 e1000e_up(adapter); |
|
4842 |
|
4843 netif_device_attach(netdev); |
|
4844 |
|
4845 /* |
|
4846 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
4847 * is up. For all other cases, let the f/w know that the h/w is now |
|
4848 * under the control of the driver. |
|
4849 */ |
|
4850 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
4851 e1000_get_hw_control(adapter); |
|
4852 |
|
4853 return 0; |
|
4854 } |
|
4855 #endif |
|
4856 |
|
4857 static void e1000_shutdown(struct pci_dev *pdev) |
|
4858 { |
|
4859 bool wake = false; |
|
4860 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4861 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4862 |
|
4863 if (adapter->ecdev) |
|
4864 return; |
|
4865 |
|
4866 __e1000_shutdown(pdev, &wake); |
|
4867 |
|
4868 if (system_state == SYSTEM_POWER_OFF) |
|
4869 e1000_complete_shutdown(pdev, false, wake); |
|
4870 } |
|
4871 |
|
4872 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
4873 /* |
|
4874 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
4875 * without having to re-enable interrupts. It's not called while |
|
4876 * the interrupt routine is executing. |
|
4877 */ |
|
4878 static void e1000_netpoll(struct net_device *netdev) |
|
4879 { |
|
4880 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4881 |
|
4882 disable_irq(adapter->pdev->irq); |
|
4883 e1000_intr(adapter->pdev->irq, netdev); |
|
4884 |
|
4885 enable_irq(adapter->pdev->irq); |
|
4886 } |
|
4887 #endif |
|
4888 |
|
4889 /** |
|
4890 * e1000_io_error_detected - called when PCI error is detected |
|
4891 * @pdev: Pointer to PCI device |
|
4892 * @state: The current pci connection state |
|
4893 * |
|
4894 * This function is called after a PCI bus error affecting |
|
4895 * this device has been detected. |
|
4896 */ |
|
4897 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
4898 pci_channel_state_t state) |
|
4899 { |
|
4900 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4901 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4902 |
|
4903 netif_device_detach(netdev); |
|
4904 |
|
4905 if (state == pci_channel_io_perm_failure) |
|
4906 return PCI_ERS_RESULT_DISCONNECT; |
|
4907 |
|
4908 if (netif_running(netdev)) |
|
4909 e1000e_down(adapter); |
|
4910 pci_disable_device(pdev); |
|
4911 |
|
4912 /* Request a slot slot reset. */ |
|
4913 return PCI_ERS_RESULT_NEED_RESET; |
|
4914 } |
|
4915 |
|
4916 /** |
|
4917 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
4918 * @pdev: Pointer to PCI device |
|
4919 * |
|
4920 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
4921 * resembles the first-half of the e1000_resume routine. |
|
4922 */ |
|
4923 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
4924 { |
|
4925 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4926 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4927 struct e1000_hw *hw = &adapter->hw; |
|
4928 int err; |
|
4929 pci_ers_result_t result; |
|
4930 |
|
4931 e1000e_disable_l1aspm(pdev); |
|
4932 err = pci_enable_device_mem(pdev); |
|
4933 if (err) { |
|
4934 dev_err(&pdev->dev, |
|
4935 "Cannot re-enable PCI device after reset.\n"); |
|
4936 result = PCI_ERS_RESULT_DISCONNECT; |
|
4937 } else { |
|
4938 pci_set_master(pdev); |
|
4939 pci_restore_state(pdev); |
|
4940 pci_save_state(pdev); |
|
4941 |
|
4942 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4943 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4944 |
|
4945 e1000e_reset(adapter); |
|
4946 ew32(WUS, ~0); |
|
4947 result = PCI_ERS_RESULT_RECOVERED; |
|
4948 } |
|
4949 |
|
4950 pci_cleanup_aer_uncorrect_error_status(pdev); |
|
4951 |
|
4952 return result; |
|
4953 } |
|
4954 |
|
4955 /** |
|
4956 * e1000_io_resume - called when traffic can start flowing again. |
|
4957 * @pdev: Pointer to PCI device |
|
4958 * |
|
4959 * This callback is called when the error recovery driver tells us that |
|
4960 * its OK to resume normal operation. Implementation resembles the |
|
4961 * second-half of the e1000_resume routine. |
|
4962 */ |
|
4963 static void e1000_io_resume(struct pci_dev *pdev) |
|
4964 { |
|
4965 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4966 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4967 |
|
4968 e1000_init_manageability(adapter); |
|
4969 |
|
4970 if (netif_running(netdev)) { |
|
4971 if (e1000e_up(adapter)) { |
|
4972 dev_err(&pdev->dev, |
|
4973 "can't bring device back up after reset\n"); |
|
4974 return; |
|
4975 } |
|
4976 } |
|
4977 |
|
4978 netif_device_attach(netdev); |
|
4979 |
|
4980 /* |
|
4981 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
4982 * is up. For all other cases, let the f/w know that the h/w is now |
|
4983 * under the control of the driver. |
|
4984 */ |
|
4985 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
4986 e1000_get_hw_control(adapter); |
|
4987 |
|
4988 } |
|
4989 |
|
4990 static void e1000_print_device_info(struct e1000_adapter *adapter) |
|
4991 { |
|
4992 struct e1000_hw *hw = &adapter->hw; |
|
4993 struct net_device *netdev = adapter->netdev; |
|
4994 u32 pba_num; |
|
4995 |
|
4996 /* print bus type/speed/width info */ |
|
4997 e_info("(PCI Express:2.5GB/s:%s) %pM\n", |
|
4998 /* bus width */ |
|
4999 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
|
5000 "Width x1"), |
|
5001 /* MAC address */ |
|
5002 netdev->dev_addr); |
|
5003 e_info("Intel(R) PRO/%s Network Connection\n", |
|
5004 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); |
|
5005 e1000e_read_pba_num(hw, &pba_num); |
|
5006 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", |
|
5007 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); |
|
5008 } |
|
5009 |
|
5010 static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
|
5011 { |
|
5012 struct e1000_hw *hw = &adapter->hw; |
|
5013 int ret_val; |
|
5014 u16 buf = 0; |
|
5015 |
|
5016 if (hw->mac.type != e1000_82573) |
|
5017 return; |
|
5018 |
|
5019 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); |
|
5020 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { |
|
5021 /* Deep Smart Power Down (DSPD) */ |
|
5022 dev_warn(&adapter->pdev->dev, |
|
5023 "Warning: detected DSPD enabled in EEPROM\n"); |
|
5024 } |
|
5025 |
|
5026 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf); |
|
5027 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) { |
|
5028 /* ASPM enable */ |
|
5029 dev_warn(&adapter->pdev->dev, |
|
5030 "Warning: detected ASPM enabled in EEPROM\n"); |
|
5031 } |
|
5032 } |
|
5033 |
|
5034 static const struct net_device_ops e1000e_netdev_ops = { |
|
5035 .ndo_open = e1000_open, |
|
5036 .ndo_stop = e1000_close, |
|
5037 .ndo_start_xmit = e1000_xmit_frame, |
|
5038 .ndo_get_stats = e1000_get_stats, |
|
5039 .ndo_set_multicast_list = e1000_set_multi, |
|
5040 .ndo_set_mac_address = e1000_set_mac, |
|
5041 .ndo_change_mtu = e1000_change_mtu, |
|
5042 .ndo_do_ioctl = e1000_ioctl, |
|
5043 .ndo_tx_timeout = e1000_tx_timeout, |
|
5044 .ndo_validate_addr = eth_validate_addr, |
|
5045 |
|
5046 .ndo_vlan_rx_register = e1000_vlan_rx_register, |
|
5047 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
5048 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
5049 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
5050 .ndo_poll_controller = e1000_netpoll, |
|
5051 #endif |
|
5052 }; |
|
5053 |
|
5054 /** |
|
5055 * ec_poll - Ethercat poll Routine |
|
5056 * @netdev: net device structure |
|
5057 * |
|
5058 * This function can never fail. |
|
5059 * |
|
5060 **/ |
|
5061 void ec_poll(struct net_device *netdev) |
|
5062 { |
|
5063 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5064 |
|
5065 if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) { |
|
5066 e1000_watchdog((unsigned long) adapter); |
|
5067 adapter->ec_watchdog_jiffies = jiffies; |
|
5068 } |
|
5069 |
|
5070 #ifdef CONFIG_PCI_MSI |
|
5071 e1000_intr_msi(0,netdev); |
|
5072 #else |
|
5073 e1000_intr(0,netdev); |
|
5074 #endif |
|
5075 } |
|
5076 |
|
5077 /** |
|
5078 * e1000_probe - Device Initialization Routine |
|
5079 * @pdev: PCI device information struct |
|
5080 * @ent: entry in e1000_pci_tbl |
|
5081 * |
|
5082 * Returns 0 on success, negative on failure |
|
5083 * |
|
5084 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
5085 * The OS initialization, configuring of the adapter private structure, |
|
5086 * and a hardware reset occur. |
|
5087 **/ |
|
5088 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
5089 const struct pci_device_id *ent) |
|
5090 { |
|
5091 struct net_device *netdev; |
|
5092 struct e1000_adapter *adapter; |
|
5093 struct e1000_hw *hw; |
|
5094 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; |
|
5095 resource_size_t mmio_start, mmio_len; |
|
5096 resource_size_t flash_start, flash_len; |
|
5097 |
|
5098 static int cards_found; |
|
5099 int i, err, pci_using_dac; |
|
5100 u16 eeprom_data = 0; |
|
5101 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
5102 |
|
5103 e1000e_disable_l1aspm(pdev); |
|
5104 |
|
5105 err = pci_enable_device_mem(pdev); |
|
5106 if (err) |
|
5107 return err; |
|
5108 |
|
5109 pci_using_dac = 0; |
|
5110 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
|
5111 if (!err) { |
|
5112 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); |
|
5113 if (!err) |
|
5114 pci_using_dac = 1; |
|
5115 } else { |
|
5116 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
|
5117 if (err) { |
|
5118 err = pci_set_consistent_dma_mask(pdev, |
|
5119 DMA_BIT_MASK(32)); |
|
5120 if (err) { |
|
5121 dev_err(&pdev->dev, "No usable DMA " |
|
5122 "configuration, aborting\n"); |
|
5123 goto err_dma; |
|
5124 } |
|
5125 } |
|
5126 } |
|
5127 |
|
5128 err = pci_request_selected_regions_exclusive(pdev, |
|
5129 pci_select_bars(pdev, IORESOURCE_MEM), |
|
5130 e1000e_driver_name); |
|
5131 if (err) |
|
5132 goto err_pci_reg; |
|
5133 |
|
5134 /* AER (Advanced Error Reporting) hooks */ |
|
5135 pci_enable_pcie_error_reporting(pdev); |
|
5136 |
|
5137 pci_set_master(pdev); |
|
5138 /* PCI config space info */ |
|
5139 err = pci_save_state(pdev); |
|
5140 if (err) |
|
5141 goto err_alloc_etherdev; |
|
5142 |
|
5143 err = -ENOMEM; |
|
5144 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
5145 if (!netdev) |
|
5146 goto err_alloc_etherdev; |
|
5147 |
|
5148 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
5149 |
|
5150 pci_set_drvdata(pdev, netdev); |
|
5151 adapter = netdev_priv(netdev); |
|
5152 hw = &adapter->hw; |
|
5153 adapter->netdev = netdev; |
|
5154 adapter->pdev = pdev; |
|
5155 adapter->ei = ei; |
|
5156 adapter->pba = ei->pba; |
|
5157 adapter->flags = ei->flags; |
|
5158 adapter->flags2 = ei->flags2; |
|
5159 adapter->hw.adapter = adapter; |
|
5160 adapter->hw.mac.type = ei->mac; |
|
5161 adapter->max_hw_frame_size = ei->max_hw_frame_size; |
|
5162 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; |
|
5163 |
|
5164 mmio_start = pci_resource_start(pdev, 0); |
|
5165 mmio_len = pci_resource_len(pdev, 0); |
|
5166 |
|
5167 err = -EIO; |
|
5168 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
|
5169 if (!adapter->hw.hw_addr) |
|
5170 goto err_ioremap; |
|
5171 |
|
5172 if ((adapter->flags & FLAG_HAS_FLASH) && |
|
5173 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
|
5174 flash_start = pci_resource_start(pdev, 1); |
|
5175 flash_len = pci_resource_len(pdev, 1); |
|
5176 adapter->hw.flash_address = ioremap(flash_start, flash_len); |
|
5177 if (!adapter->hw.flash_address) |
|
5178 goto err_flashmap; |
|
5179 } |
|
5180 |
|
5181 /* construct the net_device struct */ |
|
5182 netdev->netdev_ops = &e1000e_netdev_ops; |
|
5183 e1000e_set_ethtool_ops(netdev); |
|
5184 netdev->watchdog_timeo = 5 * HZ; |
|
5185 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
5186 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
5187 |
|
5188 netdev->mem_start = mmio_start; |
|
5189 netdev->mem_end = mmio_start + mmio_len; |
|
5190 |
|
5191 adapter->bd_number = cards_found++; |
|
5192 |
|
5193 e1000e_check_options(adapter); |
|
5194 |
|
5195 /* setup adapter struct */ |
|
5196 err = e1000_sw_init(adapter); |
|
5197 if (err) |
|
5198 goto err_sw_init; |
|
5199 |
|
5200 err = -EIO; |
|
5201 |
|
5202 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
|
5203 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
|
5204 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
|
5205 |
|
5206 err = ei->get_variants(adapter); |
|
5207 if (err) |
|
5208 goto err_hw_init; |
|
5209 |
|
5210 if ((adapter->flags & FLAG_IS_ICH) && |
|
5211 (adapter->flags & FLAG_READ_ONLY_NVM)) |
|
5212 e1000e_write_protect_nvm_ich8lan(&adapter->hw); |
|
5213 |
|
5214 hw->mac.ops.get_bus_info(&adapter->hw); |
|
5215 |
|
5216 adapter->hw.phy.autoneg_wait_to_complete = 0; |
|
5217 |
|
5218 /* Copper options */ |
|
5219 if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
|
5220 adapter->hw.phy.mdix = AUTO_ALL_MODES; |
|
5221 adapter->hw.phy.disable_polarity_correction = 0; |
|
5222 adapter->hw.phy.ms_type = e1000_ms_hw_default; |
|
5223 } |
|
5224 |
|
5225 if (e1000_check_reset_block(&adapter->hw)) |
|
5226 e_info("PHY reset is blocked due to SOL/IDER session.\n"); |
|
5227 |
|
5228 netdev->features = NETIF_F_SG | |
|
5229 NETIF_F_HW_CSUM | |
|
5230 NETIF_F_HW_VLAN_TX | |
|
5231 NETIF_F_HW_VLAN_RX; |
|
5232 |
|
5233 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
|
5234 netdev->features |= NETIF_F_HW_VLAN_FILTER; |
|
5235 |
|
5236 netdev->features |= NETIF_F_TSO; |
|
5237 netdev->features |= NETIF_F_TSO6; |
|
5238 |
|
5239 netdev->vlan_features |= NETIF_F_TSO; |
|
5240 netdev->vlan_features |= NETIF_F_TSO6; |
|
5241 netdev->vlan_features |= NETIF_F_HW_CSUM; |
|
5242 netdev->vlan_features |= NETIF_F_SG; |
|
5243 |
|
5244 if (pci_using_dac) |
|
5245 netdev->features |= NETIF_F_HIGHDMA; |
|
5246 |
|
5247 if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
|
5248 adapter->flags |= FLAG_MNG_PT_ENABLED; |
|
5249 |
|
5250 /* |
|
5251 * before reading the NVM, reset the controller to |
|
5252 * put the device in a known good starting state |
|
5253 */ |
|
5254 adapter->hw.mac.ops.reset_hw(&adapter->hw); |
|
5255 |
|
5256 /* |
|
5257 * systems with ASPM and others may see the checksum fail on the first |
|
5258 * attempt. Let's give it a few tries |
|
5259 */ |
|
5260 for (i = 0;; i++) { |
|
5261 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) |
|
5262 break; |
|
5263 if (i == 2) { |
|
5264 e_err("The NVM Checksum Is Not Valid\n"); |
|
5265 err = -EIO; |
|
5266 goto err_eeprom; |
|
5267 } |
|
5268 } |
|
5269 |
|
5270 e1000_eeprom_checks(adapter); |
|
5271 |
|
5272 /* copy the MAC address out of the NVM */ |
|
5273 if (e1000e_read_mac_addr(&adapter->hw)) |
|
5274 e_err("NVM Read Error while reading MAC address\n"); |
|
5275 |
|
5276 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); |
|
5277 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); |
|
5278 |
|
5279 if (!is_valid_ether_addr(netdev->perm_addr)) { |
|
5280 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); |
|
5281 err = -EIO; |
|
5282 goto err_eeprom; |
|
5283 } |
|
5284 |
|
5285 init_timer(&adapter->watchdog_timer); |
|
5286 adapter->watchdog_timer.function = &e1000_watchdog; |
|
5287 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
5288 |
|
5289 init_timer(&adapter->phy_info_timer); |
|
5290 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
5291 adapter->phy_info_timer.data = (unsigned long) adapter; |
|
5292 |
|
5293 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
5294 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); |
|
5295 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
|
5296 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); |
|
5297 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); |
|
5298 |
|
5299 /* Initialize link parameters. User can change them with ethtool */ |
|
5300 adapter->hw.mac.autoneg = 1; |
|
5301 adapter->fc_autoneg = 1; |
|
5302 adapter->hw.fc.requested_mode = e1000_fc_default; |
|
5303 adapter->hw.fc.current_mode = e1000_fc_default; |
|
5304 adapter->hw.phy.autoneg_advertised = 0x2f; |
|
5305 |
|
5306 /* ring size defaults */ |
|
5307 adapter->rx_ring->count = 256; |
|
5308 adapter->tx_ring->count = 256; |
|
5309 |
|
5310 /* |
|
5311 * Initial Wake on LAN setting - If APM wake is enabled in |
|
5312 * the EEPROM, enable the ACPI Magic Packet filter |
|
5313 */ |
|
5314 if (adapter->flags & FLAG_APME_IN_WUC) { |
|
5315 /* APME bit in EEPROM is mapped to WUC.APME */ |
|
5316 eeprom_data = er32(WUC); |
|
5317 eeprom_apme_mask = E1000_WUC_APME; |
|
5318 if (eeprom_data & E1000_WUC_PHY_WAKE) |
|
5319 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; |
|
5320 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
|
5321 if (adapter->flags & FLAG_APME_CHECK_PORT_B && |
|
5322 (adapter->hw.bus.func == 1)) |
|
5323 e1000_read_nvm(&adapter->hw, |
|
5324 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
5325 else |
|
5326 e1000_read_nvm(&adapter->hw, |
|
5327 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
5328 } |
|
5329 |
|
5330 /* fetch WoL from EEPROM */ |
|
5331 if (eeprom_data & eeprom_apme_mask) |
|
5332 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
5333 |
|
5334 /* |
|
5335 * now that we have the eeprom settings, apply the special cases |
|
5336 * where the eeprom may be wrong or the board simply won't support |
|
5337 * wake on lan on a particular port |
|
5338 */ |
|
5339 if (!(adapter->flags & FLAG_HAS_WOL)) |
|
5340 adapter->eeprom_wol = 0; |
|
5341 |
|
5342 /* initialize the wol settings based on the eeprom settings */ |
|
5343 adapter->wol = adapter->eeprom_wol; |
|
5344 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
5345 |
|
5346 /* save off EEPROM version number */ |
|
5347 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); |
|
5348 |
|
5349 /* reset the hardware with the new settings */ |
|
5350 e1000e_reset(adapter); |
|
5351 |
|
5352 /* |
|
5353 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
5354 * is up. For all other cases, let the f/w know that the h/w is now |
|
5355 * under the control of the driver. |
|
5356 */ |
|
5357 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5358 e1000_get_hw_control(adapter); |
|
5359 |
|
5360 adapter->ecdev = ecdev_offer(netdev,ec_poll,THIS_MODULE); |
|
5361 if (adapter->ecdev) { |
|
5362 if (ecdev_open(adapter->ecdev)) { |
|
5363 ecdev_withdraw(adapter->ecdev); |
|
5364 goto err_register; |
|
5365 } |
|
5366 } else { |
|
5367 strcpy(netdev->name, "eth%d"); |
|
5368 err = register_netdev(netdev); |
|
5369 if (err) |
|
5370 goto err_register; |
|
5371 |
|
5372 /* carrier off reporting is important to ethtool even BEFORE open */ |
|
5373 netif_carrier_off(netdev); |
|
5374 } |
|
5375 |
|
5376 e1000_print_device_info(adapter); |
|
5377 |
|
5378 return 0; |
|
5379 |
|
5380 err_register: |
|
5381 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5382 e1000_release_hw_control(adapter); |
|
5383 err_eeprom: |
|
5384 if (!e1000_check_reset_block(&adapter->hw)) |
|
5385 e1000_phy_hw_reset(&adapter->hw); |
|
5386 err_hw_init: |
|
5387 |
|
5388 kfree(adapter->tx_ring); |
|
5389 kfree(adapter->rx_ring); |
|
5390 err_sw_init: |
|
5391 if (adapter->hw.flash_address) |
|
5392 iounmap(adapter->hw.flash_address); |
|
5393 e1000e_reset_interrupt_capability(adapter); |
|
5394 err_flashmap: |
|
5395 iounmap(adapter->hw.hw_addr); |
|
5396 err_ioremap: |
|
5397 free_netdev(netdev); |
|
5398 err_alloc_etherdev: |
|
5399 pci_release_selected_regions(pdev, |
|
5400 pci_select_bars(pdev, IORESOURCE_MEM)); |
|
5401 err_pci_reg: |
|
5402 err_dma: |
|
5403 pci_disable_device(pdev); |
|
5404 return err; |
|
5405 } |
|
5406 |
|
5407 /** |
|
5408 * e1000_remove - Device Removal Routine |
|
5409 * @pdev: PCI device information struct |
|
5410 * |
|
5411 * e1000_remove is called by the PCI subsystem to alert the driver |
|
5412 * that it should release a PCI device. The could be caused by a |
|
5413 * Hot-Plug event, or because the driver is going to be removed from |
|
5414 * memory. |
|
5415 **/ |
|
5416 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
5417 { |
|
5418 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5419 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5420 |
|
5421 /* |
|
5422 * flush_scheduled work may reschedule our watchdog task, so |
|
5423 * explicitly disable watchdog tasks from being rescheduled |
|
5424 */ |
|
5425 set_bit(__E1000_DOWN, &adapter->state); |
|
5426 del_timer_sync(&adapter->watchdog_timer); |
|
5427 del_timer_sync(&adapter->phy_info_timer); |
|
5428 |
|
5429 cancel_work_sync(&adapter->reset_task); |
|
5430 cancel_work_sync(&adapter->watchdog_task); |
|
5431 cancel_work_sync(&adapter->downshift_task); |
|
5432 cancel_work_sync(&adapter->update_phy_task); |
|
5433 cancel_work_sync(&adapter->print_hang_task); |
|
5434 flush_scheduled_work(); |
|
5435 |
|
5436 if (!(netdev->flags & IFF_UP)) |
|
5437 e1000_power_down_phy(adapter); |
|
5438 |
|
5439 if (adapter->ecdev) { |
|
5440 ecdev_close(adapter->ecdev); |
|
5441 ecdev_withdraw(adapter->ecdev); |
|
5442 } else { |
|
5443 unregister_netdev(netdev); |
|
5444 } |
|
5445 |
|
5446 /* |
|
5447 * Release control of h/w to f/w. If f/w is AMT enabled, this |
|
5448 * would have already happened in close and is redundant. |
|
5449 */ |
|
5450 e1000_release_hw_control(adapter); |
|
5451 |
|
5452 e1000e_reset_interrupt_capability(adapter); |
|
5453 kfree(adapter->tx_ring); |
|
5454 kfree(adapter->rx_ring); |
|
5455 |
|
5456 iounmap(adapter->hw.hw_addr); |
|
5457 if (adapter->hw.flash_address) |
|
5458 iounmap(adapter->hw.flash_address); |
|
5459 pci_release_selected_regions(pdev, |
|
5460 pci_select_bars(pdev, IORESOURCE_MEM)); |
|
5461 |
|
5462 free_netdev(netdev); |
|
5463 |
|
5464 /* AER disable */ |
|
5465 pci_disable_pcie_error_reporting(pdev); |
|
5466 |
|
5467 pci_disable_device(pdev); |
|
5468 } |
|
5469 |
|
5470 /* PCI Error Recovery (ERS) */ |
|
5471 static struct pci_error_handlers e1000_err_handler = { |
|
5472 .error_detected = e1000_io_error_detected, |
|
5473 .slot_reset = e1000_io_slot_reset, |
|
5474 .resume = e1000_io_resume, |
|
5475 }; |
|
5476 |
|
5477 static struct pci_device_id e1000_pci_tbl[] = { |
|
5478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
|
5479 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, |
|
5480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, |
|
5481 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, |
|
5482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, |
|
5483 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, |
|
5484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
|
5485 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, |
|
5486 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, |
|
5487 |
|
5488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
|
5489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, |
|
5490 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, |
|
5491 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, |
|
5492 |
|
5493 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
|
5494 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, |
|
5495 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, |
|
5496 |
|
5497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
|
5498 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, |
|
5499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, |
|
5500 |
|
5501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
|
5502 board_80003es2lan }, |
|
5503 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), |
|
5504 board_80003es2lan }, |
|
5505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), |
|
5506 board_80003es2lan }, |
|
5507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), |
|
5508 board_80003es2lan }, |
|
5509 |
|
5510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
|
5511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, |
|
5512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, |
|
5513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, |
|
5514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, |
|
5515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, |
|
5516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, |
|
5517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, |
|
5518 |
|
5519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
|
5520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, |
|
5521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, |
|
5522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, |
|
5523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, |
|
5524 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
|
5525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
|
5526 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, |
|
5527 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, |
|
5528 |
|
5529 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, |
|
5530 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, |
|
5531 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, |
|
5532 |
|
5533 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
|
5534 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, |
|
5535 |
|
5536 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, |
|
5537 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, |
|
5538 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, |
|
5539 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, |
|
5540 |
|
5541 { } /* terminate list */ |
|
5542 }; |
|
5543 //MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
5544 |
|
5545 /* PCI Device API Driver */ |
|
5546 static struct pci_driver e1000_driver = { |
|
5547 .name = e1000e_driver_name, |
|
5548 .id_table = e1000_pci_tbl, |
|
5549 .probe = e1000_probe, |
|
5550 .remove = __devexit_p(e1000_remove), |
|
5551 #ifdef CONFIG_PM |
|
5552 /* Power Management Hooks */ |
|
5553 .suspend = e1000_suspend, |
|
5554 .resume = e1000_resume, |
|
5555 #endif |
|
5556 .shutdown = e1000_shutdown, |
|
5557 .err_handler = &e1000_err_handler |
|
5558 }; |
|
5559 |
|
5560 /** |
|
5561 * e1000_init_module - Driver Registration Routine |
|
5562 * |
|
5563 * e1000_init_module is the first routine called when the driver is |
|
5564 * loaded. All it does is register with the PCI subsystem. |
|
5565 **/ |
|
5566 static int __init e1000_init_module(void) |
|
5567 { |
|
5568 int ret; |
|
5569 printk(KERN_INFO "%s: Ethercat-capable Intel(R) PRO/1000 Network Driver - %s\n", |
|
5570 e1000e_driver_name, e1000e_driver_version); |
|
5571 printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n", |
|
5572 e1000e_driver_name); |
|
5573 ret = pci_register_driver(&e1000_driver); |
|
5574 |
|
5575 return ret; |
|
5576 } |
|
5577 module_init(e1000_init_module); |
|
5578 |
|
5579 /** |
|
5580 * e1000_exit_module - Driver Exit Cleanup Routine |
|
5581 * |
|
5582 * e1000_exit_module is called just before the driver is removed |
|
5583 * from memory. |
|
5584 **/ |
|
5585 static void __exit e1000_exit_module(void) |
|
5586 { |
|
5587 pci_unregister_driver(&e1000_driver); |
|
5588 } |
|
5589 module_exit(e1000_exit_module); |
|
5590 |
|
5591 |
|
5592 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
5593 MODULE_DESCRIPTION("Ethercat-capable Intel(R) PRO/1000 Network Driver"); |
|
5594 MODULE_LICENSE("GPL"); |
|
5595 MODULE_VERSION(DRV_VERSION); |
|
5596 |
|
5597 /* e1000_main.c */ |