devices/e1000e/netdev-2.6.33-ethercat.c
branchredundancy
changeset 2324 eb87b65d995b
child 2421 bc2d4bf9cbe5
child 2589 2b9c78543663
equal deleted inserted replaced
2323:3a4ea6393c7c 2324:eb87b65d995b
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27   vim: noexpandtab
       
    28 
       
    29 *******************************************************************************/
       
    30 
       
    31 #include <linux/module.h>
       
    32 #include <linux/types.h>
       
    33 #include <linux/init.h>
       
    34 #include <linux/pci.h>
       
    35 #include <linux/vmalloc.h>
       
    36 #include <linux/pagemap.h>
       
    37 #include <linux/delay.h>
       
    38 #include <linux/netdevice.h>
       
    39 #include <linux/tcp.h>
       
    40 #include <linux/ipv6.h>
       
    41 #include <net/checksum.h>
       
    42 #include <net/ip6_checksum.h>
       
    43 #include <linux/mii.h>
       
    44 #include <linux/ethtool.h>
       
    45 #include <linux/if_vlan.h>
       
    46 #include <linux/cpu.h>
       
    47 #include <linux/smp.h>
       
    48 #include <linux/pm_qos_params.h>
       
    49 #include <linux/aer.h>
       
    50 
       
    51 #include "e1000-2.6.33-ethercat.h"
       
    52 
       
    53 #define DRV_VERSION "1.0.2-k2"
       
    54 char e1000e_driver_name[] = "ec_e1000e";
       
    55 const char e1000e_driver_version[] = DRV_VERSION;
       
    56 
       
    57 static const struct e1000_info *e1000_info_tbl[] = {
       
    58 	[board_82571]		= &e1000_82571_info,
       
    59 	[board_82572]		= &e1000_82572_info,
       
    60 	[board_82573]		= &e1000_82573_info,
       
    61 	[board_82574]		= &e1000_82574_info,
       
    62 	[board_82583]		= &e1000_82583_info,
       
    63 	[board_80003es2lan]	= &e1000_es2_info,
       
    64 	[board_ich8lan]		= &e1000_ich8_info,
       
    65 	[board_ich9lan]		= &e1000_ich9_info,
       
    66 	[board_ich10lan]	= &e1000_ich10_info,
       
    67 	[board_pchlan]		= &e1000_pch_info,
       
    68 };
       
    69 
       
    70 /**
       
    71  * e1000_desc_unused - calculate if we have unused descriptors
       
    72  **/
       
    73 static int e1000_desc_unused(struct e1000_ring *ring)
       
    74 {
       
    75 	if (ring->next_to_clean > ring->next_to_use)
       
    76 		return ring->next_to_clean - ring->next_to_use - 1;
       
    77 
       
    78 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
       
    79 }
       
    80 
       
    81 /**
       
    82  * e1000_receive_skb - helper function to handle Rx indications
       
    83  * @adapter: board private structure
       
    84  * @status: descriptor status field as written by hardware
       
    85  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
       
    86  * @skb: pointer to sk_buff to be indicated to stack
       
    87  **/
       
    88 static void e1000_receive_skb(struct e1000_adapter *adapter,
       
    89 			      struct net_device *netdev,
       
    90 			      struct sk_buff *skb,
       
    91 			      u8 status, __le16 vlan)
       
    92 {
       
    93 	skb->protocol = eth_type_trans(skb, netdev);
       
    94 
       
    95 	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
       
    96 		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
       
    97 				 le16_to_cpu(vlan), skb);
       
    98 	else
       
    99 		napi_gro_receive(&adapter->napi, skb);
       
   100 }
       
   101 
       
   102 /**
       
   103  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
   104  * @adapter:     board private structure
       
   105  * @status_err:  receive descriptor status and error fields
       
   106  * @csum:	receive descriptor csum field
       
   107  * @sk_buff:     socket buffer with received data
       
   108  **/
       
   109 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
   110 			      u32 csum, struct sk_buff *skb)
       
   111 {
       
   112 	u16 status = (u16)status_err;
       
   113 	u8 errors = (u8)(status_err >> 24);
       
   114 	skb->ip_summed = CHECKSUM_NONE;
       
   115 
       
   116 	/* Ignore Checksum bit is set */
       
   117 	if (status & E1000_RXD_STAT_IXSM)
       
   118 		return;
       
   119 	/* TCP/UDP checksum error bit is set */
       
   120 	if (errors & E1000_RXD_ERR_TCPE) {
       
   121 		/* let the stack verify checksum errors */
       
   122 		adapter->hw_csum_err++;
       
   123 		return;
       
   124 	}
       
   125 
       
   126 	/* TCP/UDP Checksum has not been calculated */
       
   127 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
   128 		return;
       
   129 
       
   130 	/* It must be a TCP or UDP packet with a valid checksum */
       
   131 	if (status & E1000_RXD_STAT_TCPCS) {
       
   132 		/* TCP checksum is good */
       
   133 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
   134 	} else {
       
   135 		/*
       
   136 		 * IP fragment with UDP payload
       
   137 		 * Hardware complements the payload checksum, so we undo it
       
   138 		 * and then put the value in host order for further stack use.
       
   139 		 */
       
   140 		__sum16 sum = (__force __sum16)htons(csum);
       
   141 		skb->csum = csum_unfold(~sum);
       
   142 		skb->ip_summed = CHECKSUM_COMPLETE;
       
   143 	}
       
   144 	adapter->hw_csum_good++;
       
   145 }
       
   146 
       
   147 /**
       
   148  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
   149  * @adapter: address of board private structure
       
   150  **/
       
   151 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   152 				   int cleaned_count)
       
   153 {
       
   154 	struct net_device *netdev = adapter->netdev;
       
   155 	struct pci_dev *pdev = adapter->pdev;
       
   156 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   157 	struct e1000_rx_desc *rx_desc;
       
   158 	struct e1000_buffer *buffer_info;
       
   159 	struct sk_buff *skb;
       
   160 	unsigned int i;
       
   161 	unsigned int bufsz = adapter->rx_buffer_len;
       
   162 
       
   163 	i = rx_ring->next_to_use;
       
   164 	buffer_info = &rx_ring->buffer_info[i];
       
   165 
       
   166 	while (cleaned_count--) {
       
   167 		skb = buffer_info->skb;
       
   168 		if (skb) {
       
   169 			skb_trim(skb, 0);
       
   170 			goto map_skb;
       
   171 		}
       
   172 
       
   173 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
   174 		if (!skb) {
       
   175 			/* Better luck next round */
       
   176 			adapter->alloc_rx_buff_failed++;
       
   177 			break;
       
   178 		}
       
   179 
       
   180 		buffer_info->skb = skb;
       
   181 map_skb:
       
   182 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
   183 						  adapter->rx_buffer_len,
       
   184 						  PCI_DMA_FROMDEVICE);
       
   185 		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
       
   186 			dev_err(&pdev->dev, "RX DMA map failed\n");
       
   187 			adapter->rx_dma_failed++;
       
   188 			break;
       
   189 		}
       
   190 
       
   191 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   192 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
   193 
       
   194 		i++;
       
   195 		if (i == rx_ring->count)
       
   196 			i = 0;
       
   197 		buffer_info = &rx_ring->buffer_info[i];
       
   198 	}
       
   199 
       
   200 	if (rx_ring->next_to_use != i) {
       
   201 		rx_ring->next_to_use = i;
       
   202 		if (i-- == 0)
       
   203 			i = (rx_ring->count - 1);
       
   204 
       
   205 		/*
       
   206 		 * Force memory writes to complete before letting h/w
       
   207 		 * know there are new descriptors to fetch.  (Only
       
   208 		 * applicable for weak-ordered memory model archs,
       
   209 		 * such as IA-64).
       
   210 		 */
       
   211 		wmb();
       
   212 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
       
   213 	}
       
   214 }
       
   215 
       
   216 /**
       
   217  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
   218  * @adapter: address of board private structure
       
   219  **/
       
   220 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   221 				      int cleaned_count)
       
   222 {
       
   223 	struct net_device *netdev = adapter->netdev;
       
   224 	struct pci_dev *pdev = adapter->pdev;
       
   225 	union e1000_rx_desc_packet_split *rx_desc;
       
   226 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   227 	struct e1000_buffer *buffer_info;
       
   228 	struct e1000_ps_page *ps_page;
       
   229 	struct sk_buff *skb;
       
   230 	unsigned int i, j;
       
   231 
       
   232 	i = rx_ring->next_to_use;
       
   233 	buffer_info = &rx_ring->buffer_info[i];
       
   234 
       
   235 	while (cleaned_count--) {
       
   236 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
   237 
       
   238 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
   239 			ps_page = &buffer_info->ps_pages[j];
       
   240 			if (j >= adapter->rx_ps_pages) {
       
   241 				/* all unused desc entries get hw null ptr */
       
   242 				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
       
   243 				continue;
       
   244 			}
       
   245 			if (!ps_page->page) {
       
   246 				ps_page->page = alloc_page(GFP_ATOMIC);
       
   247 				if (!ps_page->page) {
       
   248 					adapter->alloc_rx_buff_failed++;
       
   249 					goto no_buffers;
       
   250 				}
       
   251 				ps_page->dma = pci_map_page(pdev,
       
   252 						   ps_page->page,
       
   253 						   0, PAGE_SIZE,
       
   254 						   PCI_DMA_FROMDEVICE);
       
   255 				if (pci_dma_mapping_error(pdev, ps_page->dma)) {
       
   256 					dev_err(&adapter->pdev->dev,
       
   257 					  "RX DMA page map failed\n");
       
   258 					adapter->rx_dma_failed++;
       
   259 					goto no_buffers;
       
   260 				}
       
   261 			}
       
   262 			/*
       
   263 			 * Refresh the desc even if buffer_addrs
       
   264 			 * didn't change because each write-back
       
   265 			 * erases this info.
       
   266 			 */
       
   267 			rx_desc->read.buffer_addr[j+1] =
       
   268 			     cpu_to_le64(ps_page->dma);
       
   269 		}
       
   270 
       
   271 		skb = netdev_alloc_skb_ip_align(netdev,
       
   272 						adapter->rx_ps_bsize0);
       
   273 
       
   274 		if (!skb) {
       
   275 			adapter->alloc_rx_buff_failed++;
       
   276 			break;
       
   277 		}
       
   278 
       
   279 		buffer_info->skb = skb;
       
   280 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
   281 						  adapter->rx_ps_bsize0,
       
   282 						  PCI_DMA_FROMDEVICE);
       
   283 		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
       
   284 			dev_err(&pdev->dev, "RX DMA map failed\n");
       
   285 			adapter->rx_dma_failed++;
       
   286 			/* cleanup skb */
       
   287 			dev_kfree_skb_any(skb);
       
   288 			buffer_info->skb = NULL;
       
   289 			break;
       
   290 		}
       
   291 
       
   292 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
   293 
       
   294 		i++;
       
   295 		if (i == rx_ring->count)
       
   296 			i = 0;
       
   297 		buffer_info = &rx_ring->buffer_info[i];
       
   298 	}
       
   299 
       
   300 no_buffers:
       
   301 	if (rx_ring->next_to_use != i) {
       
   302 		rx_ring->next_to_use = i;
       
   303 
       
   304 		if (!(i--))
       
   305 			i = (rx_ring->count - 1);
       
   306 
       
   307 		/*
       
   308 		 * Force memory writes to complete before letting h/w
       
   309 		 * know there are new descriptors to fetch.  (Only
       
   310 		 * applicable for weak-ordered memory model archs,
       
   311 		 * such as IA-64).
       
   312 		 */
       
   313 		wmb();
       
   314 		/*
       
   315 		 * Hardware increments by 16 bytes, but packet split
       
   316 		 * descriptors are 32 bytes...so we increment tail
       
   317 		 * twice as much.
       
   318 		 */
       
   319 		writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
       
   320 	}
       
   321 }
       
   322 
       
   323 /**
       
   324  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
       
   325  * @adapter: address of board private structure
       
   326  * @cleaned_count: number of buffers to allocate this pass
       
   327  **/
       
   328 
       
   329 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
       
   330                                          int cleaned_count)
       
   331 {
       
   332 	struct net_device *netdev = adapter->netdev;
       
   333 	struct pci_dev *pdev = adapter->pdev;
       
   334 	struct e1000_rx_desc *rx_desc;
       
   335 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   336 	struct e1000_buffer *buffer_info;
       
   337 	struct sk_buff *skb;
       
   338 	unsigned int i;
       
   339 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
       
   340 
       
   341 	i = rx_ring->next_to_use;
       
   342 	buffer_info = &rx_ring->buffer_info[i];
       
   343 
       
   344 	while (cleaned_count--) {
       
   345 		skb = buffer_info->skb;
       
   346 		if (skb) {
       
   347 			skb_trim(skb, 0);
       
   348 			goto check_page;
       
   349 		}
       
   350 
       
   351 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
   352 		if (unlikely(!skb)) {
       
   353 			/* Better luck next round */
       
   354 			adapter->alloc_rx_buff_failed++;
       
   355 			break;
       
   356 		}
       
   357 
       
   358 		buffer_info->skb = skb;
       
   359 check_page:
       
   360 		/* allocate a new page if necessary */
       
   361 		if (!buffer_info->page) {
       
   362 			buffer_info->page = alloc_page(GFP_ATOMIC);
       
   363 			if (unlikely(!buffer_info->page)) {
       
   364 				adapter->alloc_rx_buff_failed++;
       
   365 				break;
       
   366 			}
       
   367 		}
       
   368 
       
   369 		if (!buffer_info->dma)
       
   370 			buffer_info->dma = pci_map_page(pdev,
       
   371 			                                buffer_info->page, 0,
       
   372 			                                PAGE_SIZE,
       
   373 			                                PCI_DMA_FROMDEVICE);
       
   374 
       
   375 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   376 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
   377 
       
   378 		if (unlikely(++i == rx_ring->count))
       
   379 			i = 0;
       
   380 		buffer_info = &rx_ring->buffer_info[i];
       
   381 	}
       
   382 
       
   383 	if (likely(rx_ring->next_to_use != i)) {
       
   384 		rx_ring->next_to_use = i;
       
   385 		if (unlikely(i-- == 0))
       
   386 			i = (rx_ring->count - 1);
       
   387 
       
   388 		/* Force memory writes to complete before letting h/w
       
   389 		 * know there are new descriptors to fetch.  (Only
       
   390 		 * applicable for weak-ordered memory model archs,
       
   391 		 * such as IA-64). */
       
   392 		wmb();
       
   393 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
       
   394 	}
       
   395 }
       
   396 
       
   397 /**
       
   398  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
   399  * @adapter: board private structure
       
   400  *
       
   401  * the return value indicates whether actual cleaning was done, there
       
   402  * is no guarantee that everything was cleaned
       
   403  **/
       
   404 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   405 			       int *work_done, int work_to_do)
       
   406 {
       
   407 	struct net_device *netdev = adapter->netdev;
       
   408 	struct pci_dev *pdev = adapter->pdev;
       
   409 	struct e1000_hw *hw = &adapter->hw;
       
   410 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   411 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
   412 	struct e1000_buffer *buffer_info, *next_buffer;
       
   413 	u32 length;
       
   414 	unsigned int i;
       
   415 	int cleaned_count = 0;
       
   416 	bool cleaned = 0;
       
   417 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
   418 
       
   419 	i = rx_ring->next_to_clean;
       
   420 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   421 	buffer_info = &rx_ring->buffer_info[i];
       
   422 
       
   423 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
   424 		struct sk_buff *skb;
       
   425 		u8 status;
       
   426 
       
   427 		if (*work_done >= work_to_do)
       
   428 			break;
       
   429 		(*work_done)++;
       
   430 
       
   431 		status = rx_desc->status;
       
   432 		skb = buffer_info->skb;
       
   433 
       
   434 		if (!adapter->ecdev)
       
   435 			buffer_info->skb = NULL;
       
   436 
       
   437 		prefetch(skb->data - NET_IP_ALIGN);
       
   438 
       
   439 		i++;
       
   440 		if (i == rx_ring->count)
       
   441 			i = 0;
       
   442 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
   443 		prefetch(next_rxd);
       
   444 
       
   445 		next_buffer = &rx_ring->buffer_info[i];
       
   446 
       
   447 		cleaned = 1;
       
   448 		cleaned_count++;
       
   449 		pci_unmap_single(pdev,
       
   450 				 buffer_info->dma,
       
   451 				 adapter->rx_buffer_len,
       
   452 				 PCI_DMA_FROMDEVICE);
       
   453 		buffer_info->dma = 0;
       
   454 
       
   455 		length = le16_to_cpu(rx_desc->length);
       
   456 
       
   457 		/*
       
   458 		 * !EOP means multiple descriptors were used to store a single
       
   459 		 * packet, if that's the case we need to toss it.  In fact, we
       
   460 		 * need to toss every packet with the EOP bit clear and the
       
   461 		 * next frame that _does_ have the EOP bit set, as it is by
       
   462 		 * definition only a frame fragment
       
   463 		 */
       
   464 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
       
   465 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
   466 
       
   467 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
   468 			/* All receives must fit into a single buffer */
       
   469 			e_dbg("Receive packet consumed multiple buffers\n");
       
   470 			/* recycle */
       
   471 			buffer_info->skb = skb;
       
   472 			if (status & E1000_RXD_STAT_EOP)
       
   473 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
   474 			goto next_desc;
       
   475 		}
       
   476 
       
   477 		if (!adapter->ecdev && (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
   478 			/* recycle */
       
   479 			buffer_info->skb = skb;
       
   480 			goto next_desc;
       
   481 		}
       
   482 
       
   483 		/* adjust length to remove Ethernet CRC */
       
   484 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
   485 			length -= 4;
       
   486 
       
   487 		total_rx_bytes += length;
       
   488 		total_rx_packets++;
       
   489 
       
   490 		/*
       
   491 		 * code added for copybreak, this should improve
       
   492 		 * performance for small packets with large amounts
       
   493 		 * of reassembly being done in the stack
       
   494 		 */
       
   495 		if (!adapter->ecdev && length < copybreak) {
       
   496 			struct sk_buff *new_skb =
       
   497 			    netdev_alloc_skb_ip_align(netdev, length);
       
   498 			if (new_skb) {
       
   499 				skb_copy_to_linear_data_offset(new_skb,
       
   500 							       -NET_IP_ALIGN,
       
   501 							       (skb->data -
       
   502 								NET_IP_ALIGN),
       
   503 							       (length +
       
   504 								NET_IP_ALIGN));
       
   505 				/* save the skb in buffer_info as good */
       
   506 				buffer_info->skb = skb;
       
   507 				skb = new_skb;
       
   508 			}
       
   509 			/* else just continue with the old one */
       
   510 		}
       
   511 		/* end copybreak code */
       
   512 		skb_put(skb, length);
       
   513 
       
   514 		/* Receive Checksum Offload */
       
   515 		e1000_rx_checksum(adapter,
       
   516 				  (u32)(status) |
       
   517 				  ((u32)(rx_desc->errors) << 24),
       
   518 				  le16_to_cpu(rx_desc->csum), skb);
       
   519 
       
   520 		if (adapter->ecdev) {
       
   521 			ecdev_receive(adapter->ecdev, skb->data, length);
       
   522 			adapter->ec_watchdog_jiffies = jiffies;
       
   523 		} else {
       
   524 			e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
       
   525 		}
       
   526 
       
   527 next_desc:
       
   528 		rx_desc->status = 0;
       
   529 
       
   530 		/* return some buffers to hardware, one at a time is too slow */
       
   531 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
   532 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
   533 			cleaned_count = 0;
       
   534 		}
       
   535 
       
   536 		/* use prefetched values */
       
   537 		rx_desc = next_rxd;
       
   538 		buffer_info = next_buffer;
       
   539 	}
       
   540 	rx_ring->next_to_clean = i;
       
   541 
       
   542 	cleaned_count = e1000_desc_unused(rx_ring);
       
   543 	if (cleaned_count)
       
   544 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
   545 
       
   546 	adapter->total_rx_bytes += total_rx_bytes;
       
   547 	adapter->total_rx_packets += total_rx_packets;
       
   548 	netdev->stats.rx_bytes += total_rx_bytes;
       
   549 	netdev->stats.rx_packets += total_rx_packets;
       
   550 	return cleaned;
       
   551 }
       
   552 
       
   553 static void e1000_put_txbuf(struct e1000_adapter *adapter,
       
   554 			     struct e1000_buffer *buffer_info)
       
   555 {
       
   556 	if (buffer_info->dma) {
       
   557 		if (buffer_info->mapped_as_page)
       
   558 			pci_unmap_page(adapter->pdev, buffer_info->dma,
       
   559 				       buffer_info->length, PCI_DMA_TODEVICE);
       
   560 		else
       
   561 			pci_unmap_single(adapter->pdev,	buffer_info->dma,
       
   562 					 buffer_info->length,
       
   563 					 PCI_DMA_TODEVICE);
       
   564 		buffer_info->dma = 0;
       
   565 	}
       
   566 	if (buffer_info->skb) {
       
   567 		dev_kfree_skb_any(buffer_info->skb);
       
   568 		buffer_info->skb = NULL;
       
   569 	}
       
   570 	buffer_info->time_stamp = 0;
       
   571 }
       
   572 
       
   573 static void e1000_print_hw_hang(struct work_struct *work)
       
   574 {
       
   575 	struct e1000_adapter *adapter = container_of(work,
       
   576 	                                             struct e1000_adapter,
       
   577 	                                             print_hang_task);
       
   578 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   579 	unsigned int i = tx_ring->next_to_clean;
       
   580 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
       
   581 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   582 	struct e1000_hw *hw = &adapter->hw;
       
   583 	u16 phy_status, phy_1000t_status, phy_ext_status;
       
   584 	u16 pci_status;
       
   585 
       
   586 	e1e_rphy(hw, PHY_STATUS, &phy_status);
       
   587 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
       
   588 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
       
   589 
       
   590 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
       
   591 
       
   592 	/* detected Hardware unit hang */
       
   593 	e_err("Detected Hardware Unit Hang:\n"
       
   594 	      "  TDH                  <%x>\n"
       
   595 	      "  TDT                  <%x>\n"
       
   596 	      "  next_to_use          <%x>\n"
       
   597 	      "  next_to_clean        <%x>\n"
       
   598 	      "buffer_info[next_to_clean]:\n"
       
   599 	      "  time_stamp           <%lx>\n"
       
   600 	      "  next_to_watch        <%x>\n"
       
   601 	      "  jiffies              <%lx>\n"
       
   602 	      "  next_to_watch.status <%x>\n"
       
   603 	      "MAC Status             <%x>\n"
       
   604 	      "PHY Status             <%x>\n"
       
   605 	      "PHY 1000BASE-T Status  <%x>\n"
       
   606 	      "PHY Extended Status    <%x>\n"
       
   607 	      "PCI Status             <%x>\n",
       
   608 	      readl(adapter->hw.hw_addr + tx_ring->head),
       
   609 	      readl(adapter->hw.hw_addr + tx_ring->tail),
       
   610 	      tx_ring->next_to_use,
       
   611 	      tx_ring->next_to_clean,
       
   612 	      tx_ring->buffer_info[eop].time_stamp,
       
   613 	      eop,
       
   614 	      jiffies,
       
   615 	      eop_desc->upper.fields.status,
       
   616 	      er32(STATUS),
       
   617 	      phy_status,
       
   618 	      phy_1000t_status,
       
   619 	      phy_ext_status,
       
   620 	      pci_status);
       
   621 }
       
   622 
       
   623 /**
       
   624  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
   625  * @adapter: board private structure
       
   626  *
       
   627  * the return value indicates whether actual cleaning was done, there
       
   628  * is no guarantee that everything was cleaned
       
   629  **/
       
   630 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
       
   631 {
       
   632 	struct net_device *netdev = adapter->netdev;
       
   633 	struct e1000_hw *hw = &adapter->hw;
       
   634 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   635 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
   636 	struct e1000_buffer *buffer_info;
       
   637 	unsigned int i, eop;
       
   638 	unsigned int count = 0;
       
   639 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
       
   640 
       
   641 	i = tx_ring->next_to_clean;
       
   642 	eop = tx_ring->buffer_info[i].next_to_watch;
       
   643 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   644 
       
   645 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
       
   646 	       (count < tx_ring->count)) {
       
   647 		bool cleaned = false;
       
   648 		for (; !cleaned; count++) {
       
   649 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
   650 			buffer_info = &tx_ring->buffer_info[i];
       
   651 			cleaned = (i == eop);
       
   652 
       
   653 			if (cleaned) {
       
   654 				struct sk_buff *skb = buffer_info->skb;
       
   655 				unsigned int segs, bytecount;
       
   656 				segs = skb_shinfo(skb)->gso_segs ?: 1;
       
   657 				/* multiply data chunks by size of headers */
       
   658 				bytecount = ((segs - 1) * skb_headlen(skb)) +
       
   659 					    skb->len;
       
   660 				total_tx_packets += segs;
       
   661 				total_tx_bytes += bytecount;
       
   662 			}
       
   663 
       
   664 			if (!adapter->ecdev) {
       
   665 				e1000_put_txbuf(adapter, buffer_info);
       
   666 			}
       
   667 			tx_desc->upper.data = 0;
       
   668 
       
   669 			i++;
       
   670 			if (i == tx_ring->count)
       
   671 				i = 0;
       
   672 		}
       
   673 
       
   674 		if (i == tx_ring->next_to_use)
       
   675 			break;
       
   676 		eop = tx_ring->buffer_info[i].next_to_watch;
       
   677 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   678 	}
       
   679 
       
   680 	tx_ring->next_to_clean = i;
       
   681 
       
   682 #define TX_WAKE_THRESHOLD 32
       
   683 	if (!adapter->ecdev && count && netif_carrier_ok(netdev) &&
       
   684 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
       
   685 		/* Make sure that anybody stopping the queue after this
       
   686 		 * sees the new next_to_clean.
       
   687 		 */
       
   688 		smp_mb();
       
   689 
       
   690 		if (netif_queue_stopped(netdev) &&
       
   691 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
       
   692 			netif_wake_queue(netdev);
       
   693 			++adapter->restart_queue;
       
   694 		}
       
   695 	}
       
   696 
       
   697 	if (!adapter->ecdev && adapter->detect_tx_hung) {
       
   698 		/*
       
   699 		 * Detect a transmit hang in hardware, this serializes the
       
   700 		 * check with the clearing of time_stamp and movement of i
       
   701 		 */
       
   702 		adapter->detect_tx_hung = 0;
       
   703 		if (tx_ring->buffer_info[i].time_stamp &&
       
   704 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
       
   705 			       + (adapter->tx_timeout_factor * HZ)) &&
       
   706 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
       
   707 			schedule_work(&adapter->print_hang_task);
       
   708 			netif_stop_queue(netdev);
       
   709 		}
       
   710 	}
       
   711 	adapter->total_tx_bytes += total_tx_bytes;
       
   712 	adapter->total_tx_packets += total_tx_packets;
       
   713 	netdev->stats.tx_bytes += total_tx_bytes;
       
   714 	netdev->stats.tx_packets += total_tx_packets;
       
   715 	return (count < tx_ring->count);
       
   716 }
       
   717 
       
   718 /**
       
   719  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
   720  * @adapter: board private structure
       
   721  *
       
   722  * the return value indicates whether actual cleaning was done, there
       
   723  * is no guarantee that everything was cleaned
       
   724  **/
       
   725 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   726 				  int *work_done, int work_to_do)
       
   727 {
       
   728 	struct e1000_hw *hw = &adapter->hw;
       
   729 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
   730 	struct net_device *netdev = adapter->netdev;
       
   731 	struct pci_dev *pdev = adapter->pdev;
       
   732 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   733 	struct e1000_buffer *buffer_info, *next_buffer;
       
   734 	struct e1000_ps_page *ps_page;
       
   735 	struct sk_buff *skb;
       
   736 	unsigned int i, j;
       
   737 	u32 length, staterr;
       
   738 	int cleaned_count = 0;
       
   739 	bool cleaned = 0;
       
   740 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
   741 
       
   742 	i = rx_ring->next_to_clean;
       
   743 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
   744 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
   745 	buffer_info = &rx_ring->buffer_info[i];
       
   746 
       
   747 	while (staterr & E1000_RXD_STAT_DD) {
       
   748 		if (*work_done >= work_to_do)
       
   749 			break;
       
   750 		(*work_done)++;
       
   751 		skb = buffer_info->skb;
       
   752 
       
   753 		/* in the packet split case this is header only */
       
   754 		prefetch(skb->data - NET_IP_ALIGN);
       
   755 
       
   756 		i++;
       
   757 		if (i == rx_ring->count)
       
   758 			i = 0;
       
   759 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
   760 		prefetch(next_rxd);
       
   761 
       
   762 		next_buffer = &rx_ring->buffer_info[i];
       
   763 
       
   764 		cleaned = 1;
       
   765 		cleaned_count++;
       
   766 		pci_unmap_single(pdev, buffer_info->dma,
       
   767 				 adapter->rx_ps_bsize0,
       
   768 				 PCI_DMA_FROMDEVICE);
       
   769 		buffer_info->dma = 0;
       
   770 
       
   771 		/* see !EOP comment in other rx routine */
       
   772 		if (!(staterr & E1000_RXD_STAT_EOP))
       
   773 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
   774 
       
   775 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
   776 			e_dbg("Packet Split buffers didn't pick up the full "
       
   777 			      "packet\n");
       
   778 			if (!adapter->ecdev) {
       
   779 				dev_kfree_skb_irq(skb);
       
   780 			}
       
   781 			if (staterr & E1000_RXD_STAT_EOP)
       
   782 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
   783 			goto next_desc;
       
   784 		}
       
   785 
       
   786 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
       
   787 			if (!adapter->ecdev) {
       
   788 				dev_kfree_skb_irq(skb);
       
   789 			}
       
   790 			goto next_desc;
       
   791 		}
       
   792 
       
   793 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
   794 
       
   795 		if (!length) {
       
   796 			e_dbg("Last part of the packet spanning multiple "
       
   797 			      "descriptors\n");
       
   798 			if (!adapter->ecdev) {
       
   799 				dev_kfree_skb_irq(skb);
       
   800 			}
       
   801 			goto next_desc;
       
   802 		}
       
   803 
       
   804 		/* Good Receive */
       
   805 		skb_put(skb, length);
       
   806 
       
   807 		{
       
   808 		/*
       
   809 		 * this looks ugly, but it seems compiler issues make it
       
   810 		 * more efficient than reusing j
       
   811 		 */
       
   812 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
   813 
       
   814 		/*
       
   815 		 * page alloc/put takes too long and effects small packet
       
   816 		 * throughput, so unsplit small packets and save the alloc/put
       
   817 		 * only valid in softirq (napi) context to call kmap_*
       
   818 		 */
       
   819 		if (l1 && (l1 <= copybreak) &&
       
   820 		    ((length + l1) <= adapter->rx_ps_bsize0)) {
       
   821 			u8 *vaddr;
       
   822 
       
   823 			ps_page = &buffer_info->ps_pages[0];
       
   824 
       
   825 			/*
       
   826 			 * there is no documentation about how to call
       
   827 			 * kmap_atomic, so we can't hold the mapping
       
   828 			 * very long
       
   829 			 */
       
   830 			pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
       
   831 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
   832 			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
       
   833 			memcpy(skb_tail_pointer(skb), vaddr, l1);
       
   834 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
   835 			pci_dma_sync_single_for_device(pdev, ps_page->dma,
       
   836 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
   837 
       
   838 			/* remove the CRC */
       
   839 			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
   840 				l1 -= 4;
       
   841 
       
   842 			skb_put(skb, l1);
       
   843 			goto copydone;
       
   844 		} /* if */
       
   845 		}
       
   846 
       
   847 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
   848 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
       
   849 			if (!length)
       
   850 				break;
       
   851 
       
   852 			ps_page = &buffer_info->ps_pages[j];
       
   853 			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
       
   854 				       PCI_DMA_FROMDEVICE);
       
   855 			ps_page->dma = 0;
       
   856 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
       
   857 			ps_page->page = NULL;
       
   858 			skb->len += length;
       
   859 			skb->data_len += length;
       
   860 			skb->truesize += length;
       
   861 		}
       
   862 
       
   863 		/* strip the ethernet crc, problem is we're using pages now so
       
   864 		 * this whole operation can get a little cpu intensive
       
   865 		 */
       
   866 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
   867 			pskb_trim(skb, skb->len - 4);
       
   868 
       
   869 copydone:
       
   870 		total_rx_bytes += skb->len;
       
   871 		total_rx_packets++;
       
   872 
       
   873 		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
       
   874 			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
   875 
       
   876 		if (rx_desc->wb.upper.header_status &
       
   877 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
       
   878 			adapter->rx_hdr_split++;
       
   879 
       
   880 		if (adapter->ecdev) {
       
   881 			ecdev_receive(adapter->ecdev, skb->data, length);
       
   882 			adapter->ec_watchdog_jiffies = jiffies;
       
   883 		} else {
       
   884 			e1000_receive_skb(adapter, netdev, skb,
       
   885 					  staterr, rx_desc->wb.middle.vlan);
       
   886 		}
       
   887 
       
   888 next_desc:
       
   889 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
   890 		if (!adapter->ecdev) buffer_info->skb = NULL;
       
   891 
       
   892 		/* return some buffers to hardware, one at a time is too slow */
       
   893 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
   894 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
   895 			cleaned_count = 0;
       
   896 		}
       
   897 
       
   898 		/* use prefetched values */
       
   899 		rx_desc = next_rxd;
       
   900 		buffer_info = next_buffer;
       
   901 
       
   902 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
   903 	}
       
   904 	rx_ring->next_to_clean = i;
       
   905 
       
   906 	cleaned_count = e1000_desc_unused(rx_ring);
       
   907 	if (cleaned_count)
       
   908 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
   909 
       
   910 	adapter->total_rx_bytes += total_rx_bytes;
       
   911 	adapter->total_rx_packets += total_rx_packets;
       
   912 	netdev->stats.rx_bytes += total_rx_bytes;
       
   913 	netdev->stats.rx_packets += total_rx_packets;
       
   914 	return cleaned;
       
   915 }
       
   916 
       
   917 /**
       
   918  * e1000_consume_page - helper function
       
   919  **/
       
   920 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
       
   921                                u16 length)
       
   922 {
       
   923 	bi->page = NULL;
       
   924 	skb->len += length;
       
   925 	skb->data_len += length;
       
   926 	skb->truesize += length;
       
   927 }
       
   928 
       
   929 /**
       
   930  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
       
   931  * @adapter: board private structure
       
   932  *
       
   933  * the return value indicates whether actual cleaning was done, there
       
   934  * is no guarantee that everything was cleaned
       
   935  **/
       
   936 
       
   937 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
       
   938                                      int *work_done, int work_to_do)
       
   939 {
       
   940 	struct net_device *netdev = adapter->netdev;
       
   941 	struct pci_dev *pdev = adapter->pdev;
       
   942 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   943 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
   944 	struct e1000_buffer *buffer_info, *next_buffer;
       
   945 	u32 length;
       
   946 	unsigned int i;
       
   947 	int cleaned_count = 0;
       
   948 	bool cleaned = false;
       
   949 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
   950 
       
   951 	i = rx_ring->next_to_clean;
       
   952 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   953 	buffer_info = &rx_ring->buffer_info[i];
       
   954 
       
   955 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
   956 		struct sk_buff *skb;
       
   957 		u8 status;
       
   958 
       
   959 		if (*work_done >= work_to_do)
       
   960 			break;
       
   961 		(*work_done)++;
       
   962 
       
   963 		status = rx_desc->status;
       
   964 		skb = buffer_info->skb;
       
   965 
       
   966 		if (!adapter->ecdev)
       
   967 			buffer_info->skb = NULL;
       
   968 
       
   969 		++i;
       
   970 		if (i == rx_ring->count)
       
   971 			i = 0;
       
   972 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
   973 		prefetch(next_rxd);
       
   974 
       
   975 		next_buffer = &rx_ring->buffer_info[i];
       
   976 
       
   977 		cleaned = true;
       
   978 		cleaned_count++;
       
   979 		pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
       
   980 		               PCI_DMA_FROMDEVICE);
       
   981 		buffer_info->dma = 0;
       
   982 
       
   983 		length = le16_to_cpu(rx_desc->length);
       
   984 
       
   985 		/* errors is only valid for DD + EOP descriptors */
       
   986 		if (!adapter->ecdev && unlikely((status & E1000_RXD_STAT_EOP) &&
       
   987 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
       
   988 				/* recycle both page and skb */
       
   989 				buffer_info->skb = skb;
       
   990 				/* an error means any chain goes out the window
       
   991 				 * too */
       
   992 				if (rx_ring->rx_skb_top)
       
   993 					dev_kfree_skb(rx_ring->rx_skb_top);
       
   994 				rx_ring->rx_skb_top = NULL;
       
   995 				goto next_desc;
       
   996 		}
       
   997 
       
   998 #define rxtop rx_ring->rx_skb_top
       
   999 		if (!(status & E1000_RXD_STAT_EOP)) {
       
  1000 			/* this descriptor is only the beginning (or middle) */
       
  1001 			if (!rxtop) {
       
  1002 				/* this is the beginning of a chain */
       
  1003 				rxtop = skb;
       
  1004 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
       
  1005 				                   0, length);
       
  1006 			} else {
       
  1007 				/* this is the middle of a chain */
       
  1008 				skb_fill_page_desc(rxtop,
       
  1009 				    skb_shinfo(rxtop)->nr_frags,
       
  1010 				    buffer_info->page, 0, length);
       
  1011 				/* re-use the skb, only consumed the page */
       
  1012 				buffer_info->skb = skb;
       
  1013 			}
       
  1014 			e1000_consume_page(buffer_info, rxtop, length);
       
  1015 			goto next_desc;
       
  1016 		} else {
       
  1017 			if (rxtop) {
       
  1018 				/* end of the chain */
       
  1019 				skb_fill_page_desc(rxtop,
       
  1020 				    skb_shinfo(rxtop)->nr_frags,
       
  1021 				    buffer_info->page, 0, length);
       
  1022 				/* re-use the current skb, we only consumed the
       
  1023 				 * page */
       
  1024 				buffer_info->skb = skb;
       
  1025 				skb = rxtop;
       
  1026 				rxtop = NULL;
       
  1027 				e1000_consume_page(buffer_info, skb, length);
       
  1028 			} else {
       
  1029 				/* no chain, got EOP, this buf is the packet
       
  1030 				 * copybreak to save the put_page/alloc_page */
       
  1031 				if (length <= copybreak &&
       
  1032 				    skb_tailroom(skb) >= length) {
       
  1033 					u8 *vaddr;
       
  1034 					vaddr = kmap_atomic(buffer_info->page,
       
  1035 					                   KM_SKB_DATA_SOFTIRQ);
       
  1036 					memcpy(skb_tail_pointer(skb), vaddr,
       
  1037 					       length);
       
  1038 					kunmap_atomic(vaddr,
       
  1039 					              KM_SKB_DATA_SOFTIRQ);
       
  1040 					/* re-use the page, so don't erase
       
  1041 					 * buffer_info->page */
       
  1042 					skb_put(skb, length);
       
  1043 				} else {
       
  1044 					skb_fill_page_desc(skb, 0,
       
  1045 					                   buffer_info->page, 0,
       
  1046 				                           length);
       
  1047 					e1000_consume_page(buffer_info, skb,
       
  1048 					                   length);
       
  1049 				}
       
  1050 			}
       
  1051 		}
       
  1052 
       
  1053 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
       
  1054 		e1000_rx_checksum(adapter,
       
  1055 		                  (u32)(status) |
       
  1056 		                  ((u32)(rx_desc->errors) << 24),
       
  1057 		                  le16_to_cpu(rx_desc->csum), skb);
       
  1058 
       
  1059 		/* probably a little skewed due to removing CRC */
       
  1060 		total_rx_bytes += skb->len;
       
  1061 		total_rx_packets++;
       
  1062 
       
  1063 		/* eth type trans needs skb->data to point to something */
       
  1064 		if (!adapter->ecdev && !pskb_may_pull(skb, ETH_HLEN)) {
       
  1065 			e_err("pskb_may_pull failed.\n");
       
  1066 			dev_kfree_skb(skb);
       
  1067 			goto next_desc;
       
  1068 		}
       
  1069 
       
  1070 		if (adapter->ecdev) {
       
  1071 			ecdev_receive(adapter->ecdev, skb->data, length);
       
  1072 			adapter->ec_watchdog_jiffies = jiffies;
       
  1073 		} else {
       
  1074 			e1000_receive_skb(adapter, netdev, skb, status,
       
  1075 			                  rx_desc->special);
       
  1076 		}
       
  1077 
       
  1078 next_desc:
       
  1079 		rx_desc->status = 0;
       
  1080 
       
  1081 		/* return some buffers to hardware, one at a time is too slow */
       
  1082 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  1083 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1084 			cleaned_count = 0;
       
  1085 		}
       
  1086 
       
  1087 		/* use prefetched values */
       
  1088 		rx_desc = next_rxd;
       
  1089 		buffer_info = next_buffer;
       
  1090 	}
       
  1091 	rx_ring->next_to_clean = i;
       
  1092 
       
  1093 	cleaned_count = e1000_desc_unused(rx_ring);
       
  1094 	if (cleaned_count)
       
  1095 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1096 
       
  1097 	adapter->total_rx_bytes += total_rx_bytes;
       
  1098 	adapter->total_rx_packets += total_rx_packets;
       
  1099 	netdev->stats.rx_bytes += total_rx_bytes;
       
  1100 	netdev->stats.rx_packets += total_rx_packets;
       
  1101 	return cleaned;
       
  1102 }
       
  1103 
       
  1104 /**
       
  1105  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  1106  * @adapter: board private structure
       
  1107  **/
       
  1108 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
       
  1109 {
       
  1110 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1111 	struct e1000_buffer *buffer_info;
       
  1112 	struct e1000_ps_page *ps_page;
       
  1113 	struct pci_dev *pdev = adapter->pdev;
       
  1114 	unsigned int i, j;
       
  1115 
       
  1116 	/* Free all the Rx ring sk_buffs */
       
  1117 	for (i = 0; i < rx_ring->count; i++) {
       
  1118 		buffer_info = &rx_ring->buffer_info[i];
       
  1119 		if (buffer_info->dma) {
       
  1120 			if (adapter->clean_rx == e1000_clean_rx_irq)
       
  1121 				pci_unmap_single(pdev, buffer_info->dma,
       
  1122 						 adapter->rx_buffer_len,
       
  1123 						 PCI_DMA_FROMDEVICE);
       
  1124 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
       
  1125 				pci_unmap_page(pdev, buffer_info->dma,
       
  1126 				               PAGE_SIZE,
       
  1127 				               PCI_DMA_FROMDEVICE);
       
  1128 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
       
  1129 				pci_unmap_single(pdev, buffer_info->dma,
       
  1130 						 adapter->rx_ps_bsize0,
       
  1131 						 PCI_DMA_FROMDEVICE);
       
  1132 			buffer_info->dma = 0;
       
  1133 		}
       
  1134 
       
  1135 		if (buffer_info->page) {
       
  1136 			put_page(buffer_info->page);
       
  1137 			buffer_info->page = NULL;
       
  1138 		}
       
  1139 
       
  1140 		if (buffer_info->skb) {
       
  1141 			dev_kfree_skb(buffer_info->skb);
       
  1142 			buffer_info->skb = NULL;
       
  1143 		}
       
  1144 
       
  1145 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  1146 			ps_page = &buffer_info->ps_pages[j];
       
  1147 			if (!ps_page->page)
       
  1148 				break;
       
  1149 			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
       
  1150 				       PCI_DMA_FROMDEVICE);
       
  1151 			ps_page->dma = 0;
       
  1152 			put_page(ps_page->page);
       
  1153 			ps_page->page = NULL;
       
  1154 		}
       
  1155 	}
       
  1156 
       
  1157 	/* there also may be some cached data from a chained receive */
       
  1158 	if (rx_ring->rx_skb_top) {
       
  1159 		dev_kfree_skb(rx_ring->rx_skb_top);
       
  1160 		rx_ring->rx_skb_top = NULL;
       
  1161 	}
       
  1162 
       
  1163 	/* Zero out the descriptor ring */
       
  1164 	memset(rx_ring->desc, 0, rx_ring->size);
       
  1165 
       
  1166 	rx_ring->next_to_clean = 0;
       
  1167 	rx_ring->next_to_use = 0;
       
  1168 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
  1169 
       
  1170 	writel(0, adapter->hw.hw_addr + rx_ring->head);
       
  1171 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
       
  1172 }
       
  1173 
       
  1174 static void e1000e_downshift_workaround(struct work_struct *work)
       
  1175 {
       
  1176 	struct e1000_adapter *adapter = container_of(work,
       
  1177 					struct e1000_adapter, downshift_task);
       
  1178 
       
  1179 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
       
  1180 }
       
  1181 
       
  1182 /**
       
  1183  * e1000_intr_msi - Interrupt Handler
       
  1184  * @irq: interrupt number
       
  1185  * @data: pointer to a network interface device structure
       
  1186  **/
       
  1187 static irqreturn_t e1000_intr_msi(int irq, void *data)
       
  1188 {
       
  1189 	struct net_device *netdev = data;
       
  1190 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1191 	struct e1000_hw *hw = &adapter->hw;
       
  1192 	u32 icr = er32(ICR);
       
  1193 
       
  1194 	if (adapter->ecdev) {
       
  1195 		int ec_work_done = 0;
       
  1196 		adapter->clean_rx(adapter, &ec_work_done, 100);
       
  1197 		e1000_clean_tx_irq(adapter);
       
  1198 		return IRQ_HANDLED;
       
  1199 	}
       
  1200 	/*
       
  1201 	 * read ICR disables interrupts using IAM
       
  1202 	 */
       
  1203 
       
  1204 	if (icr & E1000_ICR_LSC) {
       
  1205 		hw->mac.get_link_status = 1;
       
  1206 		/*
       
  1207 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1208 		 * disconnect (LSC) before accessing any PHY registers
       
  1209 		 */
       
  1210 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1211 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1212 			schedule_work(&adapter->downshift_task);
       
  1213 
       
  1214 		/*
       
  1215 		 * 80003ES2LAN workaround-- For packet buffer work-around on
       
  1216 		 * link down event; disable receives here in the ISR and reset
       
  1217 		 * adapter in watchdog
       
  1218 		 */
       
  1219 		if (netif_carrier_ok(netdev) &&
       
  1220 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
       
  1221 			/* disable receives */
       
  1222 			u32 rctl = er32(RCTL);
       
  1223 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1224 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1225 		}
       
  1226 		/* guard against interrupt when we're going down */
       
  1227 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1228 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1229 	}
       
  1230 
       
  1231 	if (napi_schedule_prep(&adapter->napi)) {
       
  1232 		adapter->total_tx_bytes = 0;
       
  1233 		adapter->total_tx_packets = 0;
       
  1234 		adapter->total_rx_bytes = 0;
       
  1235 		adapter->total_rx_packets = 0;
       
  1236 		__napi_schedule(&adapter->napi);
       
  1237 	}
       
  1238 
       
  1239 	return IRQ_HANDLED;
       
  1240 }
       
  1241 
       
  1242 /**
       
  1243  * e1000_intr - Interrupt Handler
       
  1244  * @irq: interrupt number
       
  1245  * @data: pointer to a network interface device structure
       
  1246  **/
       
  1247 static irqreturn_t e1000_intr(int irq, void *data)
       
  1248 {
       
  1249 	struct net_device *netdev = data;
       
  1250 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1251 	struct e1000_hw *hw = &adapter->hw;
       
  1252 	u32 rctl, icr = er32(ICR);
       
  1253 
       
  1254 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
       
  1255 		return IRQ_NONE;  /* Not our interrupt */
       
  1256 
       
  1257 	/*
       
  1258 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  1259 	 * not set, then the adapter didn't send an interrupt
       
  1260 	 */
       
  1261 	if (!adapter->ecdev && !(icr & E1000_ICR_INT_ASSERTED))
       
  1262 		return IRQ_NONE;
       
  1263 
       
  1264 	/*
       
  1265 	 * Interrupt Auto-Mask...upon reading ICR,
       
  1266 	 * interrupts are masked.  No need for the
       
  1267 	 * IMC write
       
  1268 	 */
       
  1269 
       
  1270 	if (!adapter->ecdev && (icr & E1000_ICR_LSC)) {
       
  1271 		hw->mac.get_link_status = 1;
       
  1272 		/*
       
  1273 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1274 		 * disconnect (LSC) before accessing any PHY registers
       
  1275 		 */
       
  1276 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1277 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1278 			schedule_work(&adapter->downshift_task);
       
  1279 
       
  1280 		/*
       
  1281 		 * 80003ES2LAN workaround--
       
  1282 		 * For packet buffer work-around on link down event;
       
  1283 		 * disable receives here in the ISR and
       
  1284 		 * reset adapter in watchdog
       
  1285 		 */
       
  1286 		if (netif_carrier_ok(netdev) &&
       
  1287 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
       
  1288 			/* disable receives */
       
  1289 			rctl = er32(RCTL);
       
  1290 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1291 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1292 		}
       
  1293 		/* guard against interrupt when we're going down */
       
  1294 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1295 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1296 	}
       
  1297 
       
  1298 	if (adapter->ecdev) {
       
  1299 		int ec_work_done = 0;
       
  1300 		adapter->clean_rx(adapter, &ec_work_done, 100);
       
  1301 		e1000_clean_tx_irq(adapter);
       
  1302 		return IRQ_HANDLED;
       
  1303 	}
       
  1304 
       
  1305 	if (napi_schedule_prep(&adapter->napi)) {
       
  1306 		adapter->total_tx_bytes = 0;
       
  1307 		adapter->total_tx_packets = 0;
       
  1308 		adapter->total_rx_bytes = 0;
       
  1309 		adapter->total_rx_packets = 0;
       
  1310 		__napi_schedule(&adapter->napi);
       
  1311 	}
       
  1312 
       
  1313 	return IRQ_HANDLED;
       
  1314 }
       
  1315 
       
  1316 static irqreturn_t e1000_msix_other(int irq, void *data)
       
  1317 {
       
  1318 	struct net_device *netdev = data;
       
  1319 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1320 	struct e1000_hw *hw = &adapter->hw;
       
  1321 	u32 icr = er32(ICR);
       
  1322 
       
  1323 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
       
  1324 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1325 			ew32(IMS, E1000_IMS_OTHER);
       
  1326 		return IRQ_NONE;
       
  1327 	}
       
  1328 
       
  1329 	if (icr & adapter->eiac_mask)
       
  1330 		ew32(ICS, (icr & adapter->eiac_mask));
       
  1331 
       
  1332 	if (icr & E1000_ICR_OTHER) {
       
  1333 		if (!(icr & E1000_ICR_LSC))
       
  1334 			goto no_link_interrupt;
       
  1335 		hw->mac.get_link_status = 1;
       
  1336 		/* guard against interrupt when we're going down */
       
  1337 		if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
       
  1338 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1339 	}
       
  1340 
       
  1341 no_link_interrupt:
       
  1342 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1343 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
       
  1344 
       
  1345 	return IRQ_HANDLED;
       
  1346 }
       
  1347 
       
  1348 
       
  1349 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
       
  1350 {
       
  1351 	struct net_device *netdev = data;
       
  1352 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1353 	struct e1000_hw *hw = &adapter->hw;
       
  1354 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1355 
       
  1356 
       
  1357 	adapter->total_tx_bytes = 0;
       
  1358 	adapter->total_tx_packets = 0;
       
  1359 
       
  1360 	if (!e1000_clean_tx_irq(adapter))
       
  1361 		/* Ring was not completely cleaned, so fire another interrupt */
       
  1362 		ew32(ICS, tx_ring->ims_val);
       
  1363 
       
  1364 	return IRQ_HANDLED;
       
  1365 }
       
  1366 
       
  1367 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
       
  1368 {
       
  1369 	struct net_device *netdev = data;
       
  1370 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1371 
       
  1372 	/* Write the ITR value calculated at the end of the
       
  1373 	 * previous interrupt.
       
  1374 	 */
       
  1375 	if (adapter->rx_ring->set_itr) {
       
  1376 		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
       
  1377 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
       
  1378 		adapter->rx_ring->set_itr = 0;
       
  1379 	}
       
  1380 
       
  1381 	if (adapter->ecdev) {
       
  1382 		int ec_work_done = 0;
       
  1383 		adapter->clean_rx(adapter, &ec_work_done, 100);
       
  1384 	} else {
       
  1385 		if (napi_schedule_prep(&adapter->napi)) {
       
  1386 			adapter->total_rx_bytes = 0;
       
  1387 			adapter->total_rx_packets = 0;
       
  1388 			__napi_schedule(&adapter->napi);
       
  1389 		}
       
  1390 	}
       
  1391 	return IRQ_HANDLED;
       
  1392 }
       
  1393 
       
  1394 /**
       
  1395  * e1000_configure_msix - Configure MSI-X hardware
       
  1396  *
       
  1397  * e1000_configure_msix sets up the hardware to properly
       
  1398  * generate MSI-X interrupts.
       
  1399  **/
       
  1400 static void e1000_configure_msix(struct e1000_adapter *adapter)
       
  1401 {
       
  1402 	struct e1000_hw *hw = &adapter->hw;
       
  1403 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1404 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1405 	int vector = 0;
       
  1406 	u32 ctrl_ext, ivar = 0;
       
  1407 
       
  1408 	adapter->eiac_mask = 0;
       
  1409 
       
  1410 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
       
  1411 	if (hw->mac.type == e1000_82574) {
       
  1412 		u32 rfctl = er32(RFCTL);
       
  1413 		rfctl |= E1000_RFCTL_ACK_DIS;
       
  1414 		ew32(RFCTL, rfctl);
       
  1415 	}
       
  1416 
       
  1417 #define E1000_IVAR_INT_ALLOC_VALID	0x8
       
  1418 	/* Configure Rx vector */
       
  1419 	rx_ring->ims_val = E1000_IMS_RXQ0;
       
  1420 	adapter->eiac_mask |= rx_ring->ims_val;
       
  1421 	if (rx_ring->itr_val)
       
  1422 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1423 		       hw->hw_addr + rx_ring->itr_register);
       
  1424 	else
       
  1425 		writel(1, hw->hw_addr + rx_ring->itr_register);
       
  1426 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
       
  1427 
       
  1428 	/* Configure Tx vector */
       
  1429 	tx_ring->ims_val = E1000_IMS_TXQ0;
       
  1430 	vector++;
       
  1431 	if (tx_ring->itr_val)
       
  1432 		writel(1000000000 / (tx_ring->itr_val * 256),
       
  1433 		       hw->hw_addr + tx_ring->itr_register);
       
  1434 	else
       
  1435 		writel(1, hw->hw_addr + tx_ring->itr_register);
       
  1436 	adapter->eiac_mask |= tx_ring->ims_val;
       
  1437 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
       
  1438 
       
  1439 	/* set vector for Other Causes, e.g. link changes */
       
  1440 	vector++;
       
  1441 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
       
  1442 	if (rx_ring->itr_val)
       
  1443 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1444 		       hw->hw_addr + E1000_EITR_82574(vector));
       
  1445 	else
       
  1446 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
       
  1447 
       
  1448 	/* Cause Tx interrupts on every write back */
       
  1449 	ivar |= (1 << 31);
       
  1450 
       
  1451 	ew32(IVAR, ivar);
       
  1452 
       
  1453 	/* enable MSI-X PBA support */
       
  1454 	ctrl_ext = er32(CTRL_EXT);
       
  1455 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
       
  1456 
       
  1457 	/* Auto-Mask Other interrupts upon ICR read */
       
  1458 #define E1000_EIAC_MASK_82574   0x01F00000
       
  1459 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
       
  1460 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
       
  1461 	ew32(CTRL_EXT, ctrl_ext);
       
  1462 	e1e_flush();
       
  1463 }
       
  1464 
       
  1465 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
       
  1466 {
       
  1467 	if (adapter->msix_entries) {
       
  1468 		pci_disable_msix(adapter->pdev);
       
  1469 		kfree(adapter->msix_entries);
       
  1470 		adapter->msix_entries = NULL;
       
  1471 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
       
  1472 		pci_disable_msi(adapter->pdev);
       
  1473 		adapter->flags &= ~FLAG_MSI_ENABLED;
       
  1474 	}
       
  1475 
       
  1476 	return;
       
  1477 }
       
  1478 
       
  1479 /**
       
  1480  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
       
  1481  *
       
  1482  * Attempt to configure interrupts using the best available
       
  1483  * capabilities of the hardware and kernel.
       
  1484  **/
       
  1485 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
       
  1486 {
       
  1487 	int err;
       
  1488 	int numvecs, i;
       
  1489 
       
  1490 
       
  1491 	switch (adapter->int_mode) {
       
  1492 	case E1000E_INT_MODE_MSIX:
       
  1493 		if (adapter->flags & FLAG_HAS_MSIX) {
       
  1494 			numvecs = 3; /* RxQ0, TxQ0 and other */
       
  1495 			adapter->msix_entries = kcalloc(numvecs,
       
  1496 						      sizeof(struct msix_entry),
       
  1497 						      GFP_KERNEL);
       
  1498 			if (adapter->msix_entries) {
       
  1499 				for (i = 0; i < numvecs; i++)
       
  1500 					adapter->msix_entries[i].entry = i;
       
  1501 
       
  1502 				err = pci_enable_msix(adapter->pdev,
       
  1503 						      adapter->msix_entries,
       
  1504 						      numvecs);
       
  1505 				if (err == 0)
       
  1506 					return;
       
  1507 			}
       
  1508 			/* MSI-X failed, so fall through and try MSI */
       
  1509 			e_err("Failed to initialize MSI-X interrupts.  "
       
  1510 			      "Falling back to MSI interrupts.\n");
       
  1511 			e1000e_reset_interrupt_capability(adapter);
       
  1512 		}
       
  1513 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  1514 		/* Fall through */
       
  1515 	case E1000E_INT_MODE_MSI:
       
  1516 		if (!pci_enable_msi(adapter->pdev)) {
       
  1517 			adapter->flags |= FLAG_MSI_ENABLED;
       
  1518 		} else {
       
  1519 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  1520 			e_err("Failed to initialize MSI interrupts.  Falling "
       
  1521 			      "back to legacy interrupts.\n");
       
  1522 		}
       
  1523 		/* Fall through */
       
  1524 	case E1000E_INT_MODE_LEGACY:
       
  1525 		/* Don't do anything; this is the system default */
       
  1526 		break;
       
  1527 	}
       
  1528 
       
  1529 	return;
       
  1530 }
       
  1531 
       
  1532 /**
       
  1533  * e1000_request_msix - Initialize MSI-X interrupts
       
  1534  *
       
  1535  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
       
  1536  * kernel.
       
  1537  **/
       
  1538 static int e1000_request_msix(struct e1000_adapter *adapter)
       
  1539 {
       
  1540 	struct net_device *netdev = adapter->netdev;
       
  1541 	int err = 0, vector = 0;
       
  1542 
       
  1543 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  1544 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
       
  1545 	else
       
  1546 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
       
  1547 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1548 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
       
  1549 			  netdev);
       
  1550 	if (err)
       
  1551 		goto out;
       
  1552 	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
       
  1553 	adapter->rx_ring->itr_val = adapter->itr;
       
  1554 	vector++;
       
  1555 
       
  1556 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  1557 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
       
  1558 	else
       
  1559 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
       
  1560 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1561 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
       
  1562 			  netdev);
       
  1563 	if (err)
       
  1564 		goto out;
       
  1565 	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
       
  1566 	adapter->tx_ring->itr_val = adapter->itr;
       
  1567 	vector++;
       
  1568 
       
  1569 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1570 			  e1000_msix_other, 0, netdev->name, netdev);
       
  1571 	if (err)
       
  1572 		goto out;
       
  1573 
       
  1574 	e1000_configure_msix(adapter);
       
  1575 	return 0;
       
  1576 out:
       
  1577 	return err;
       
  1578 }
       
  1579 
       
  1580 /**
       
  1581  * e1000_request_irq - initialize interrupts
       
  1582  *
       
  1583  * Attempts to configure interrupts using the best available
       
  1584  * capabilities of the hardware and kernel.
       
  1585  **/
       
  1586 static int e1000_request_irq(struct e1000_adapter *adapter)
       
  1587 {
       
  1588 	struct net_device *netdev = adapter->netdev;
       
  1589 	int err;
       
  1590 
       
  1591 	if (adapter->ecdev)
       
  1592 		return 0;
       
  1593 
       
  1594 	if (adapter->msix_entries) {
       
  1595 		err = e1000_request_msix(adapter);
       
  1596 		if (!err)
       
  1597 			return err;
       
  1598 		/* fall back to MSI */
       
  1599 		e1000e_reset_interrupt_capability(adapter);
       
  1600 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  1601 		e1000e_set_interrupt_capability(adapter);
       
  1602 	}
       
  1603 	if (adapter->flags & FLAG_MSI_ENABLED) {
       
  1604 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
       
  1605 				  netdev->name, netdev);
       
  1606 		if (!err)
       
  1607 			return err;
       
  1608 
       
  1609 		/* fall back to legacy interrupt */
       
  1610 		e1000e_reset_interrupt_capability(adapter);
       
  1611 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  1612 	}
       
  1613 
       
  1614 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
       
  1615 			  netdev->name, netdev);
       
  1616 	if (err)
       
  1617 		e_err("Unable to allocate interrupt, Error: %d\n", err);
       
  1618 
       
  1619 	return err;
       
  1620 }
       
  1621 
       
  1622 static void e1000_free_irq(struct e1000_adapter *adapter)
       
  1623 {
       
  1624 	struct net_device *netdev = adapter->netdev;
       
  1625 
       
  1626 	if (adapter->ecdev)
       
  1627 		return;
       
  1628 
       
  1629 	if (adapter->msix_entries) {
       
  1630 		int vector = 0;
       
  1631 
       
  1632 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1633 		vector++;
       
  1634 
       
  1635 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1636 		vector++;
       
  1637 
       
  1638 		/* Other Causes interrupt vector */
       
  1639 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1640 		return;
       
  1641 	}
       
  1642 
       
  1643 	free_irq(adapter->pdev->irq, netdev);
       
  1644 }
       
  1645 
       
  1646 /**
       
  1647  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
  1648  **/
       
  1649 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
  1650 {
       
  1651 	struct e1000_hw *hw = &adapter->hw;
       
  1652 
       
  1653 	if (adapter->ecdev)
       
  1654 		return;
       
  1655 
       
  1656 	ew32(IMC, ~0);
       
  1657 	if (adapter->msix_entries)
       
  1658 		ew32(EIAC_82574, 0);
       
  1659 	e1e_flush();
       
  1660 	synchronize_irq(adapter->pdev->irq);
       
  1661 }
       
  1662 
       
  1663 /**
       
  1664  * e1000_irq_enable - Enable default interrupt generation settings
       
  1665  **/
       
  1666 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
  1667 {
       
  1668 	struct e1000_hw *hw = &adapter->hw;
       
  1669 
       
  1670 	if (adapter->ecdev)
       
  1671 		return;
       
  1672 
       
  1673 	if (adapter->msix_entries) {
       
  1674 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
       
  1675 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
       
  1676 	} else {
       
  1677 		ew32(IMS, IMS_ENABLE_MASK);
       
  1678 	}
       
  1679 	e1e_flush();
       
  1680 }
       
  1681 
       
  1682 /**
       
  1683  * e1000_get_hw_control - get control of the h/w from f/w
       
  1684  * @adapter: address of board private structure
       
  1685  *
       
  1686  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  1687  * For ASF and Pass Through versions of f/w this means that
       
  1688  * the driver is loaded. For AMT version (only with 82573)
       
  1689  * of the f/w this means that the network i/f is open.
       
  1690  **/
       
  1691 static void e1000_get_hw_control(struct e1000_adapter *adapter)
       
  1692 {
       
  1693 	struct e1000_hw *hw = &adapter->hw;
       
  1694 	u32 ctrl_ext;
       
  1695 	u32 swsm;
       
  1696 
       
  1697 	/* Let firmware know the driver has taken over */
       
  1698 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  1699 		swsm = er32(SWSM);
       
  1700 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
       
  1701 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  1702 		ctrl_ext = er32(CTRL_EXT);
       
  1703 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
  1704 	}
       
  1705 }
       
  1706 
       
  1707 /**
       
  1708  * e1000_release_hw_control - release control of the h/w to f/w
       
  1709  * @adapter: address of board private structure
       
  1710  *
       
  1711  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  1712  * For ASF and Pass Through versions of f/w this means that the
       
  1713  * driver is no longer loaded. For AMT version (only with 82573) i
       
  1714  * of the f/w this means that the network i/f is closed.
       
  1715  *
       
  1716  **/
       
  1717 static void e1000_release_hw_control(struct e1000_adapter *adapter)
       
  1718 {
       
  1719 	struct e1000_hw *hw = &adapter->hw;
       
  1720 	u32 ctrl_ext;
       
  1721 	u32 swsm;
       
  1722 
       
  1723 	/* Let firmware taken over control of h/w */
       
  1724 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  1725 		swsm = er32(SWSM);
       
  1726 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
       
  1727 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  1728 		ctrl_ext = er32(CTRL_EXT);
       
  1729 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
  1730 	}
       
  1731 }
       
  1732 
       
  1733 /**
       
  1734  * @e1000_alloc_ring - allocate memory for a ring structure
       
  1735  **/
       
  1736 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
       
  1737 				struct e1000_ring *ring)
       
  1738 {
       
  1739 	struct pci_dev *pdev = adapter->pdev;
       
  1740 
       
  1741 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
       
  1742 					GFP_KERNEL);
       
  1743 	if (!ring->desc)
       
  1744 		return -ENOMEM;
       
  1745 
       
  1746 	return 0;
       
  1747 }
       
  1748 
       
  1749 /**
       
  1750  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1751  * @adapter: board private structure
       
  1752  *
       
  1753  * Return 0 on success, negative on failure
       
  1754  **/
       
  1755 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
       
  1756 {
       
  1757 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1758 	int err = -ENOMEM, size;
       
  1759 
       
  1760 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1761 	tx_ring->buffer_info = vmalloc(size);
       
  1762 	if (!tx_ring->buffer_info)
       
  1763 		goto err;
       
  1764 	memset(tx_ring->buffer_info, 0, size);
       
  1765 
       
  1766 	/* round up to nearest 4K */
       
  1767 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  1768 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  1769 
       
  1770 	err = e1000_alloc_ring_dma(adapter, tx_ring);
       
  1771 	if (err)
       
  1772 		goto err;
       
  1773 
       
  1774 	tx_ring->next_to_use = 0;
       
  1775 	tx_ring->next_to_clean = 0;
       
  1776 
       
  1777 	return 0;
       
  1778 err:
       
  1779 	vfree(tx_ring->buffer_info);
       
  1780 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
       
  1781 	return err;
       
  1782 }
       
  1783 
       
  1784 /**
       
  1785  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1786  * @adapter: board private structure
       
  1787  *
       
  1788  * Returns 0 on success, negative on failure
       
  1789  **/
       
  1790 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
       
  1791 {
       
  1792 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1793 	struct e1000_buffer *buffer_info;
       
  1794 	int i, size, desc_len, err = -ENOMEM;
       
  1795 
       
  1796 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  1797 	rx_ring->buffer_info = vmalloc(size);
       
  1798 	if (!rx_ring->buffer_info)
       
  1799 		goto err;
       
  1800 	memset(rx_ring->buffer_info, 0, size);
       
  1801 
       
  1802 	for (i = 0; i < rx_ring->count; i++) {
       
  1803 		buffer_info = &rx_ring->buffer_info[i];
       
  1804 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
       
  1805 						sizeof(struct e1000_ps_page),
       
  1806 						GFP_KERNEL);
       
  1807 		if (!buffer_info->ps_pages)
       
  1808 			goto err_pages;
       
  1809 	}
       
  1810 
       
  1811 	desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1812 
       
  1813 	/* Round up to nearest 4K */
       
  1814 	rx_ring->size = rx_ring->count * desc_len;
       
  1815 	rx_ring->size = ALIGN(rx_ring->size, 4096);
       
  1816 
       
  1817 	err = e1000_alloc_ring_dma(adapter, rx_ring);
       
  1818 	if (err)
       
  1819 		goto err_pages;
       
  1820 
       
  1821 	rx_ring->next_to_clean = 0;
       
  1822 	rx_ring->next_to_use = 0;
       
  1823 	rx_ring->rx_skb_top = NULL;
       
  1824 
       
  1825 	return 0;
       
  1826 
       
  1827 err_pages:
       
  1828 	for (i = 0; i < rx_ring->count; i++) {
       
  1829 		buffer_info = &rx_ring->buffer_info[i];
       
  1830 		kfree(buffer_info->ps_pages);
       
  1831 	}
       
  1832 err:
       
  1833 	vfree(rx_ring->buffer_info);
       
  1834 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
       
  1835 	return err;
       
  1836 }
       
  1837 
       
  1838 /**
       
  1839  * e1000_clean_tx_ring - Free Tx Buffers
       
  1840  * @adapter: board private structure
       
  1841  **/
       
  1842 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
       
  1843 {
       
  1844 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1845 	struct e1000_buffer *buffer_info;
       
  1846 	unsigned long size;
       
  1847 	unsigned int i;
       
  1848 
       
  1849 	for (i = 0; i < tx_ring->count; i++) {
       
  1850 		buffer_info = &tx_ring->buffer_info[i];
       
  1851 		e1000_put_txbuf(adapter, buffer_info);
       
  1852 	}
       
  1853 
       
  1854 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1855 	memset(tx_ring->buffer_info, 0, size);
       
  1856 
       
  1857 	memset(tx_ring->desc, 0, tx_ring->size);
       
  1858 
       
  1859 	tx_ring->next_to_use = 0;
       
  1860 	tx_ring->next_to_clean = 0;
       
  1861 
       
  1862 	writel(0, adapter->hw.hw_addr + tx_ring->head);
       
  1863 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
       
  1864 }
       
  1865 
       
  1866 /**
       
  1867  * e1000e_free_tx_resources - Free Tx Resources per Queue
       
  1868  * @adapter: board private structure
       
  1869  *
       
  1870  * Free all transmit software resources
       
  1871  **/
       
  1872 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
       
  1873 {
       
  1874 	struct pci_dev *pdev = adapter->pdev;
       
  1875 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1876 
       
  1877 	e1000_clean_tx_ring(adapter);
       
  1878 
       
  1879 	vfree(tx_ring->buffer_info);
       
  1880 	tx_ring->buffer_info = NULL;
       
  1881 
       
  1882 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1883 			  tx_ring->dma);
       
  1884 	tx_ring->desc = NULL;
       
  1885 }
       
  1886 
       
  1887 /**
       
  1888  * e1000e_free_rx_resources - Free Rx Resources
       
  1889  * @adapter: board private structure
       
  1890  *
       
  1891  * Free all receive software resources
       
  1892  **/
       
  1893 
       
  1894 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
       
  1895 {
       
  1896 	struct pci_dev *pdev = adapter->pdev;
       
  1897 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1898 	int i;
       
  1899 
       
  1900 	e1000_clean_rx_ring(adapter);
       
  1901 
       
  1902 	for (i = 0; i < rx_ring->count; i++) {
       
  1903 		kfree(rx_ring->buffer_info[i].ps_pages);
       
  1904 	}
       
  1905 
       
  1906 	vfree(rx_ring->buffer_info);
       
  1907 	rx_ring->buffer_info = NULL;
       
  1908 
       
  1909 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1910 			  rx_ring->dma);
       
  1911 	rx_ring->desc = NULL;
       
  1912 }
       
  1913 
       
  1914 /**
       
  1915  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  1916  * @adapter: pointer to adapter
       
  1917  * @itr_setting: current adapter->itr
       
  1918  * @packets: the number of packets during this measurement interval
       
  1919  * @bytes: the number of bytes during this measurement interval
       
  1920  *
       
  1921  *      Stores a new ITR value based on packets and byte
       
  1922  *      counts during the last interrupt.  The advantage of per interrupt
       
  1923  *      computation is faster updates and more accurate ITR for the current
       
  1924  *      traffic pattern.  Constants in this function were computed
       
  1925  *      based on theoretical maximum wire speed and thresholds were set based
       
  1926  *      on testing data as well as attempting to minimize response time
       
  1927  *      while increasing bulk throughput.  This functionality is controlled
       
  1928  *      by the InterruptThrottleRate module parameter.
       
  1929  **/
       
  1930 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  1931 				     u16 itr_setting, int packets,
       
  1932 				     int bytes)
       
  1933 {
       
  1934 	unsigned int retval = itr_setting;
       
  1935 
       
  1936 	if (packets == 0)
       
  1937 		goto update_itr_done;
       
  1938 
       
  1939 	switch (itr_setting) {
       
  1940 	case lowest_latency:
       
  1941 		/* handle TSO and jumbo frames */
       
  1942 		if (bytes/packets > 8000)
       
  1943 			retval = bulk_latency;
       
  1944 		else if ((packets < 5) && (bytes > 512)) {
       
  1945 			retval = low_latency;
       
  1946 		}
       
  1947 		break;
       
  1948 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  1949 		if (bytes > 10000) {
       
  1950 			/* this if handles the TSO accounting */
       
  1951 			if (bytes/packets > 8000) {
       
  1952 				retval = bulk_latency;
       
  1953 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
       
  1954 				retval = bulk_latency;
       
  1955 			} else if ((packets > 35)) {
       
  1956 				retval = lowest_latency;
       
  1957 			}
       
  1958 		} else if (bytes/packets > 2000) {
       
  1959 			retval = bulk_latency;
       
  1960 		} else if (packets <= 2 && bytes < 512) {
       
  1961 			retval = lowest_latency;
       
  1962 		}
       
  1963 		break;
       
  1964 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  1965 		if (bytes > 25000) {
       
  1966 			if (packets > 35) {
       
  1967 				retval = low_latency;
       
  1968 			}
       
  1969 		} else if (bytes < 6000) {
       
  1970 			retval = low_latency;
       
  1971 		}
       
  1972 		break;
       
  1973 	}
       
  1974 
       
  1975 update_itr_done:
       
  1976 	return retval;
       
  1977 }
       
  1978 
       
  1979 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  1980 {
       
  1981 	struct e1000_hw *hw = &adapter->hw;
       
  1982 	u16 current_itr;
       
  1983 	u32 new_itr = adapter->itr;
       
  1984 
       
  1985 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  1986 	if (adapter->link_speed != SPEED_1000) {
       
  1987 		current_itr = 0;
       
  1988 		new_itr = 4000;
       
  1989 		goto set_itr_now;
       
  1990 	}
       
  1991 
       
  1992 	adapter->tx_itr = e1000_update_itr(adapter,
       
  1993 				    adapter->tx_itr,
       
  1994 				    adapter->total_tx_packets,
       
  1995 				    adapter->total_tx_bytes);
       
  1996 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  1997 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  1998 		adapter->tx_itr = low_latency;
       
  1999 
       
  2000 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2001 				    adapter->rx_itr,
       
  2002 				    adapter->total_rx_packets,
       
  2003 				    adapter->total_rx_bytes);
       
  2004 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2005 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2006 		adapter->rx_itr = low_latency;
       
  2007 
       
  2008 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2009 
       
  2010 	switch (current_itr) {
       
  2011 	/* counts and packets in update_itr are dependent on these numbers */
       
  2012 	case lowest_latency:
       
  2013 		new_itr = 70000;
       
  2014 		break;
       
  2015 	case low_latency:
       
  2016 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2017 		break;
       
  2018 	case bulk_latency:
       
  2019 		new_itr = 4000;
       
  2020 		break;
       
  2021 	default:
       
  2022 		break;
       
  2023 	}
       
  2024 
       
  2025 set_itr_now:
       
  2026 	if (new_itr != adapter->itr) {
       
  2027 		/*
       
  2028 		 * this attempts to bias the interrupt rate towards Bulk
       
  2029 		 * by adding intermediate steps when interrupt rate is
       
  2030 		 * increasing
       
  2031 		 */
       
  2032 		new_itr = new_itr > adapter->itr ?
       
  2033 			     min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2034 			     new_itr;
       
  2035 		adapter->itr = new_itr;
       
  2036 		adapter->rx_ring->itr_val = new_itr;
       
  2037 		if (adapter->msix_entries)
       
  2038 			adapter->rx_ring->set_itr = 1;
       
  2039 		else
       
  2040 			ew32(ITR, 1000000000 / (new_itr * 256));
       
  2041 	}
       
  2042 }
       
  2043 
       
  2044 /**
       
  2045  * e1000_alloc_queues - Allocate memory for all rings
       
  2046  * @adapter: board private structure to initialize
       
  2047  **/
       
  2048 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  2049 {
       
  2050 	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
  2051 	if (!adapter->tx_ring)
       
  2052 		goto err;
       
  2053 
       
  2054 	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
  2055 	if (!adapter->rx_ring)
       
  2056 		goto err;
       
  2057 
       
  2058 	return 0;
       
  2059 err:
       
  2060 	e_err("Unable to allocate memory for queues\n");
       
  2061 	kfree(adapter->rx_ring);
       
  2062 	kfree(adapter->tx_ring);
       
  2063 	return -ENOMEM;
       
  2064 }
       
  2065 
       
  2066 /**
       
  2067  * e1000_clean - NAPI Rx polling callback
       
  2068  * @napi: struct associated with this polling callback
       
  2069  * @budget: amount of packets driver is allowed to process this poll
       
  2070  **/
       
  2071 static int e1000_clean(struct napi_struct *napi, int budget)
       
  2072 {
       
  2073 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  2074 	struct e1000_hw *hw = &adapter->hw;
       
  2075 	struct net_device *poll_dev = adapter->netdev;
       
  2076 	int tx_cleaned = 1, work_done = 0;
       
  2077 
       
  2078 	adapter = netdev_priv(poll_dev);
       
  2079 
       
  2080 	if (adapter->msix_entries &&
       
  2081 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
       
  2082 		goto clean_rx;
       
  2083 
       
  2084 	tx_cleaned = e1000_clean_tx_irq(adapter);
       
  2085 
       
  2086 clean_rx:
       
  2087 	adapter->clean_rx(adapter, &work_done, budget);
       
  2088 
       
  2089 	if (!tx_cleaned)
       
  2090 		work_done = budget;
       
  2091 
       
  2092 	/* If budget not fully consumed, exit the polling mode */
       
  2093 	if (work_done < budget) {
       
  2094 		if (adapter->itr_setting & 3)
       
  2095 			e1000_set_itr(adapter);
       
  2096 		napi_complete(napi);
       
  2097 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
       
  2098 			if (adapter->msix_entries)
       
  2099 				ew32(IMS, adapter->rx_ring->ims_val);
       
  2100 			else
       
  2101 				e1000_irq_enable(adapter);
       
  2102 		}
       
  2103 	}
       
  2104 
       
  2105 	return work_done;
       
  2106 }
       
  2107 
       
  2108 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  2109 {
       
  2110 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2111 	struct e1000_hw *hw = &adapter->hw;
       
  2112 	u32 vfta, index;
       
  2113 
       
  2114 	/* don't update vlan cookie if already programmed */
       
  2115 	if ((adapter->hw.mng_cookie.status &
       
  2116 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2117 	    (vid == adapter->mng_vlan_id))
       
  2118 		return;
       
  2119 
       
  2120 	/* add VID to filter table */
       
  2121 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2122 		index = (vid >> 5) & 0x7F;
       
  2123 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2124 		vfta |= (1 << (vid & 0x1F));
       
  2125 		hw->mac.ops.write_vfta(hw, index, vfta);
       
  2126 	}
       
  2127 }
       
  2128 
       
  2129 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  2130 {
       
  2131 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2132 	struct e1000_hw *hw = &adapter->hw;
       
  2133 	u32 vfta, index;
       
  2134 
       
  2135 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2136 		e1000_irq_disable(adapter);
       
  2137 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  2138 
       
  2139 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2140 		e1000_irq_enable(adapter);
       
  2141 
       
  2142 	if ((adapter->hw.mng_cookie.status &
       
  2143 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2144 	    (vid == adapter->mng_vlan_id)) {
       
  2145 		/* release control to f/w */
       
  2146 		e1000_release_hw_control(adapter);
       
  2147 		return;
       
  2148 	}
       
  2149 
       
  2150 	/* remove VID from filter table */
       
  2151 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2152 		index = (vid >> 5) & 0x7F;
       
  2153 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2154 		vfta &= ~(1 << (vid & 0x1F));
       
  2155 		hw->mac.ops.write_vfta(hw, index, vfta);
       
  2156 	}
       
  2157 }
       
  2158 
       
  2159 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
  2160 {
       
  2161 	struct net_device *netdev = adapter->netdev;
       
  2162 	u16 vid = adapter->hw.mng_cookie.vlan_id;
       
  2163 	u16 old_vid = adapter->mng_vlan_id;
       
  2164 
       
  2165 	if (!adapter->vlgrp)
       
  2166 		return;
       
  2167 
       
  2168 	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
  2169 		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  2170 		if (adapter->hw.mng_cookie.status &
       
  2171 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
       
  2172 			e1000_vlan_rx_add_vid(netdev, vid);
       
  2173 			adapter->mng_vlan_id = vid;
       
  2174 		}
       
  2175 
       
  2176 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
  2177 				(vid != old_vid) &&
       
  2178 		    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
  2179 			e1000_vlan_rx_kill_vid(netdev, old_vid);
       
  2180 	} else {
       
  2181 		adapter->mng_vlan_id = vid;
       
  2182 	}
       
  2183 }
       
  2184 
       
  2185 
       
  2186 static void e1000_vlan_rx_register(struct net_device *netdev,
       
  2187 				   struct vlan_group *grp)
       
  2188 {
       
  2189 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2190 	struct e1000_hw *hw = &adapter->hw;
       
  2191 	u32 ctrl, rctl;
       
  2192 
       
  2193 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2194 		e1000_irq_disable(adapter);
       
  2195 	adapter->vlgrp = grp;
       
  2196 
       
  2197 	if (grp) {
       
  2198 		/* enable VLAN tag insert/strip */
       
  2199 		ctrl = er32(CTRL);
       
  2200 		ctrl |= E1000_CTRL_VME;
       
  2201 		ew32(CTRL, ctrl);
       
  2202 
       
  2203 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2204 			/* enable VLAN receive filtering */
       
  2205 			rctl = er32(RCTL);
       
  2206 			rctl &= ~E1000_RCTL_CFIEN;
       
  2207 			ew32(RCTL, rctl);
       
  2208 			e1000_update_mng_vlan(adapter);
       
  2209 		}
       
  2210 	} else {
       
  2211 		/* disable VLAN tag insert/strip */
       
  2212 		ctrl = er32(CTRL);
       
  2213 		ctrl &= ~E1000_CTRL_VME;
       
  2214 		ew32(CTRL, ctrl);
       
  2215 
       
  2216 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2217 			if (adapter->mng_vlan_id !=
       
  2218 			    (u16)E1000_MNG_VLAN_NONE) {
       
  2219 				e1000_vlan_rx_kill_vid(netdev,
       
  2220 						       adapter->mng_vlan_id);
       
  2221 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  2222 			}
       
  2223 		}
       
  2224 	}
       
  2225 
       
  2226 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2227 		e1000_irq_enable(adapter);
       
  2228 }
       
  2229 
       
  2230 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  2231 {
       
  2232 	u16 vid;
       
  2233 
       
  2234 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  2235 
       
  2236 	if (!adapter->vlgrp)
       
  2237 		return;
       
  2238 
       
  2239 	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  2240 		if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  2241 			continue;
       
  2242 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  2243 	}
       
  2244 }
       
  2245 
       
  2246 static void e1000_init_manageability(struct e1000_adapter *adapter)
       
  2247 {
       
  2248 	struct e1000_hw *hw = &adapter->hw;
       
  2249 	u32 manc, manc2h;
       
  2250 
       
  2251 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
       
  2252 		return;
       
  2253 
       
  2254 	manc = er32(MANC);
       
  2255 
       
  2256 	/*
       
  2257 	 * enable receiving management packets to the host. this will probably
       
  2258 	 * generate destination unreachable messages from the host OS, but
       
  2259 	 * the packets will be handled on SMBUS
       
  2260 	 */
       
  2261 	manc |= E1000_MANC_EN_MNG2HOST;
       
  2262 	manc2h = er32(MANC2H);
       
  2263 #define E1000_MNG2HOST_PORT_623 (1 << 5)
       
  2264 #define E1000_MNG2HOST_PORT_664 (1 << 6)
       
  2265 	manc2h |= E1000_MNG2HOST_PORT_623;
       
  2266 	manc2h |= E1000_MNG2HOST_PORT_664;
       
  2267 	ew32(MANC2H, manc2h);
       
  2268 	ew32(MANC, manc);
       
  2269 }
       
  2270 
       
  2271 /**
       
  2272  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  2273  * @adapter: board private structure
       
  2274  *
       
  2275  * Configure the Tx unit of the MAC after a reset.
       
  2276  **/
       
  2277 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  2278 {
       
  2279 	struct e1000_hw *hw = &adapter->hw;
       
  2280 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  2281 	u64 tdba;
       
  2282 	u32 tdlen, tctl, tipg, tarc;
       
  2283 	u32 ipgr1, ipgr2;
       
  2284 
       
  2285 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  2286 	tdba = tx_ring->dma;
       
  2287 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  2288 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
       
  2289 	ew32(TDBAH, (tdba >> 32));
       
  2290 	ew32(TDLEN, tdlen);
       
  2291 	ew32(TDH, 0);
       
  2292 	ew32(TDT, 0);
       
  2293 	tx_ring->head = E1000_TDH;
       
  2294 	tx_ring->tail = E1000_TDT;
       
  2295 
       
  2296 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  2297 	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
       
  2298 	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
       
  2299 	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
       
  2300 
       
  2301 	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
       
  2302 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
       
  2303 
       
  2304 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  2305 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  2306 	ew32(TIPG, tipg);
       
  2307 
       
  2308 	/* Set the Tx Interrupt Delay register */
       
  2309 	ew32(TIDV, adapter->tx_int_delay);
       
  2310 	/* Tx irq moderation */
       
  2311 	ew32(TADV, adapter->tx_abs_int_delay);
       
  2312 
       
  2313 	/* Program the Transmit Control Register */
       
  2314 	tctl = er32(TCTL);
       
  2315 	tctl &= ~E1000_TCTL_CT;
       
  2316 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  2317 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  2318 
       
  2319 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
       
  2320 		tarc = er32(TARC(0));
       
  2321 		/*
       
  2322 		 * set the speed mode bit, we'll clear it if we're not at
       
  2323 		 * gigabit link later
       
  2324 		 */
       
  2325 #define SPEED_MODE_BIT (1 << 21)
       
  2326 		tarc |= SPEED_MODE_BIT;
       
  2327 		ew32(TARC(0), tarc);
       
  2328 	}
       
  2329 
       
  2330 	/* errata: program both queues to unweighted RR */
       
  2331 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
       
  2332 		tarc = er32(TARC(0));
       
  2333 		tarc |= 1;
       
  2334 		ew32(TARC(0), tarc);
       
  2335 		tarc = er32(TARC(1));
       
  2336 		tarc |= 1;
       
  2337 		ew32(TARC(1), tarc);
       
  2338 	}
       
  2339 
       
  2340 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  2341 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  2342 
       
  2343 	/* only set IDE if we are delaying interrupts using the timers */
       
  2344 	if (adapter->tx_int_delay)
       
  2345 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  2346 
       
  2347 	/* enable Report Status bit */
       
  2348 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  2349 
       
  2350 	ew32(TCTL, tctl);
       
  2351 
       
  2352 	e1000e_config_collision_dist(hw);
       
  2353 
       
  2354 	adapter->tx_queue_len = adapter->netdev->tx_queue_len;
       
  2355 }
       
  2356 
       
  2357 /**
       
  2358  * e1000_setup_rctl - configure the receive control registers
       
  2359  * @adapter: Board private structure
       
  2360  **/
       
  2361 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  2362 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  2363 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  2364 {
       
  2365 	struct e1000_hw *hw = &adapter->hw;
       
  2366 	u32 rctl, rfctl;
       
  2367 	u32 psrctl = 0;
       
  2368 	u32 pages = 0;
       
  2369 
       
  2370 	/* Program MC offset vector base */
       
  2371 	rctl = er32(RCTL);
       
  2372 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  2373 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  2374 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  2375 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  2376 
       
  2377 	/* Do not Store bad packets */
       
  2378 	rctl &= ~E1000_RCTL_SBP;
       
  2379 
       
  2380 	/* Enable Long Packet receive */
       
  2381 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  2382 		rctl &= ~E1000_RCTL_LPE;
       
  2383 	else
       
  2384 		rctl |= E1000_RCTL_LPE;
       
  2385 
       
  2386 	/* Some systems expect that the CRC is included in SMBUS traffic. The
       
  2387 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
       
  2388 	 * host memory when this is enabled
       
  2389 	 */
       
  2390 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
       
  2391 		rctl |= E1000_RCTL_SECRC;
       
  2392 
       
  2393 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
       
  2394 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
       
  2395 		u16 phy_data;
       
  2396 
       
  2397 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
       
  2398 		phy_data &= 0xfff8;
       
  2399 		phy_data |= (1 << 2);
       
  2400 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
       
  2401 
       
  2402 		e1e_rphy(hw, 22, &phy_data);
       
  2403 		phy_data &= 0x0fff;
       
  2404 		phy_data |= (1 << 14);
       
  2405 		e1e_wphy(hw, 0x10, 0x2823);
       
  2406 		e1e_wphy(hw, 0x11, 0x0003);
       
  2407 		e1e_wphy(hw, 22, phy_data);
       
  2408 	}
       
  2409 
       
  2410 	/* Setup buffer sizes */
       
  2411 	rctl &= ~E1000_RCTL_SZ_4096;
       
  2412 	rctl |= E1000_RCTL_BSEX;
       
  2413 	switch (adapter->rx_buffer_len) {
       
  2414 	case 2048:
       
  2415 	default:
       
  2416 		rctl |= E1000_RCTL_SZ_2048;
       
  2417 		rctl &= ~E1000_RCTL_BSEX;
       
  2418 		break;
       
  2419 	case 4096:
       
  2420 		rctl |= E1000_RCTL_SZ_4096;
       
  2421 		break;
       
  2422 	case 8192:
       
  2423 		rctl |= E1000_RCTL_SZ_8192;
       
  2424 		break;
       
  2425 	case 16384:
       
  2426 		rctl |= E1000_RCTL_SZ_16384;
       
  2427 		break;
       
  2428 	}
       
  2429 
       
  2430 	/*
       
  2431 	 * 82571 and greater support packet-split where the protocol
       
  2432 	 * header is placed in skb->data and the packet data is
       
  2433 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  2434 	 * In the case of a non-split, skb->data is linearly filled,
       
  2435 	 * followed by the page buffers.  Therefore, skb->data is
       
  2436 	 * sized to hold the largest protocol header.
       
  2437 	 *
       
  2438 	 * allocations using alloc_page take too long for regular MTU
       
  2439 	 * so only enable packet split for jumbo frames
       
  2440 	 *
       
  2441 	 * Using pages when the page size is greater than 16k wastes
       
  2442 	 * a lot of memory, since we allocate 3 pages at all times
       
  2443 	 * per packet.
       
  2444 	 */
       
  2445 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  2446 	if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
       
  2447 	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
       
  2448 		adapter->rx_ps_pages = pages;
       
  2449 	else
       
  2450 		adapter->rx_ps_pages = 0;
       
  2451 
       
  2452 	if (adapter->rx_ps_pages) {
       
  2453 		/* Configure extra packet-split registers */
       
  2454 		rfctl = er32(RFCTL);
       
  2455 		rfctl |= E1000_RFCTL_EXTEN;
       
  2456 		/*
       
  2457 		 * disable packet split support for IPv6 extension headers,
       
  2458 		 * because some malformed IPv6 headers can hang the Rx
       
  2459 		 */
       
  2460 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
       
  2461 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  2462 
       
  2463 		ew32(RFCTL, rfctl);
       
  2464 
       
  2465 		/* Enable Packet split descriptors */
       
  2466 		rctl |= E1000_RCTL_DTYP_PS;
       
  2467 
       
  2468 		psrctl |= adapter->rx_ps_bsize0 >>
       
  2469 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  2470 
       
  2471 		switch (adapter->rx_ps_pages) {
       
  2472 		case 3:
       
  2473 			psrctl |= PAGE_SIZE <<
       
  2474 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  2475 		case 2:
       
  2476 			psrctl |= PAGE_SIZE <<
       
  2477 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  2478 		case 1:
       
  2479 			psrctl |= PAGE_SIZE >>
       
  2480 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  2481 			break;
       
  2482 		}
       
  2483 
       
  2484 		ew32(PSRCTL, psrctl);
       
  2485 	}
       
  2486 
       
  2487 	ew32(RCTL, rctl);
       
  2488 	/* just started the receive unit, no need to restart */
       
  2489 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  2490 }
       
  2491 
       
  2492 /**
       
  2493  * e1000_configure_rx - Configure Receive Unit after Reset
       
  2494  * @adapter: board private structure
       
  2495  *
       
  2496  * Configure the Rx unit of the MAC after a reset.
       
  2497  **/
       
  2498 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  2499 {
       
  2500 	struct e1000_hw *hw = &adapter->hw;
       
  2501 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  2502 	u64 rdba;
       
  2503 	u32 rdlen, rctl, rxcsum, ctrl_ext;
       
  2504 
       
  2505 	if (adapter->rx_ps_pages) {
       
  2506 		/* this is a 32 byte descriptor */
       
  2507 		rdlen = rx_ring->count *
       
  2508 			sizeof(union e1000_rx_desc_packet_split);
       
  2509 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  2510 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  2511 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  2512 		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  2513 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
       
  2514 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
       
  2515 	} else {
       
  2516 		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  2517 		adapter->clean_rx = e1000_clean_rx_irq;
       
  2518 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  2519 	}
       
  2520 
       
  2521 	/* disable receives while setting up the descriptors */
       
  2522 	rctl = er32(RCTL);
       
  2523 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  2524 	e1e_flush();
       
  2525 	msleep(10);
       
  2526 
       
  2527 	/* set the Receive Delay Timer Register */
       
  2528 	ew32(RDTR, adapter->rx_int_delay);
       
  2529 
       
  2530 	/* irq moderation */
       
  2531 	ew32(RADV, adapter->rx_abs_int_delay);
       
  2532 	if (adapter->itr_setting != 0)
       
  2533 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  2534 
       
  2535 	ctrl_ext = er32(CTRL_EXT);
       
  2536 	/* Auto-Mask interrupts upon ICR access */
       
  2537 	ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  2538 	ew32(IAM, 0xffffffff);
       
  2539 	ew32(CTRL_EXT, ctrl_ext);
       
  2540 	e1e_flush();
       
  2541 
       
  2542 	/*
       
  2543 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
       
  2544 	 * the Base and Length of the Rx Descriptor Ring
       
  2545 	 */
       
  2546 	rdba = rx_ring->dma;
       
  2547 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
       
  2548 	ew32(RDBAH, (rdba >> 32));
       
  2549 	ew32(RDLEN, rdlen);
       
  2550 	ew32(RDH, 0);
       
  2551 	ew32(RDT, 0);
       
  2552 	rx_ring->head = E1000_RDH;
       
  2553 	rx_ring->tail = E1000_RDT;
       
  2554 
       
  2555 	/* Enable Receive Checksum Offload for TCP and UDP */
       
  2556 	rxcsum = er32(RXCSUM);
       
  2557 	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
       
  2558 		rxcsum |= E1000_RXCSUM_TUOFL;
       
  2559 
       
  2560 		/*
       
  2561 		 * IPv4 payload checksum for UDP fragments must be
       
  2562 		 * used in conjunction with packet-split.
       
  2563 		 */
       
  2564 		if (adapter->rx_ps_pages)
       
  2565 			rxcsum |= E1000_RXCSUM_IPPCSE;
       
  2566 	} else {
       
  2567 		rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  2568 		/* no need to clear IPPCSE as it defaults to 0 */
       
  2569 	}
       
  2570 	ew32(RXCSUM, rxcsum);
       
  2571 
       
  2572 	/*
       
  2573 	 * Enable early receives on supported devices, only takes effect when
       
  2574 	 * packet size is equal or larger than the specified value (in 8 byte
       
  2575 	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
       
  2576 	 */
       
  2577 	if (adapter->flags & FLAG_HAS_ERT) {
       
  2578 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  2579 			u32 rxdctl = er32(RXDCTL(0));
       
  2580 			ew32(RXDCTL(0), rxdctl | 0x3);
       
  2581 			ew32(ERT, E1000_ERT_2048 | (1 << 13));
       
  2582 			/*
       
  2583 			 * With jumbo frames and early-receive enabled,
       
  2584 			 * excessive C-state transition latencies result in
       
  2585 			 * dropped transactions.
       
  2586 			 */
       
  2587 			pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
       
  2588 						  adapter->netdev->name, 55);
       
  2589 		} else {
       
  2590 			pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
       
  2591 						  adapter->netdev->name,
       
  2592 						  PM_QOS_DEFAULT_VALUE);
       
  2593 		}
       
  2594 	}
       
  2595 
       
  2596 	/* Enable Receives */
       
  2597 	ew32(RCTL, rctl);
       
  2598 }
       
  2599 
       
  2600 /**
       
  2601  *  e1000_update_mc_addr_list - Update Multicast addresses
       
  2602  *  @hw: pointer to the HW structure
       
  2603  *  @mc_addr_list: array of multicast addresses to program
       
  2604  *  @mc_addr_count: number of multicast addresses to program
       
  2605  *  @rar_used_count: the first RAR register free to program
       
  2606  *  @rar_count: total number of supported Receive Address Registers
       
  2607  *
       
  2608  *  Updates the Receive Address Registers and Multicast Table Array.
       
  2609  *  The caller must have a packed mc_addr_list of multicast addresses.
       
  2610  *  The parameter rar_count will usually be hw->mac.rar_entry_count
       
  2611  *  unless there are workarounds that change this.  Currently no func pointer
       
  2612  *  exists and all implementations are handled in the generic version of this
       
  2613  *  function.
       
  2614  **/
       
  2615 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
       
  2616 				      u32 mc_addr_count, u32 rar_used_count,
       
  2617 				      u32 rar_count)
       
  2618 {
       
  2619 	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
       
  2620 				        rar_used_count, rar_count);
       
  2621 }
       
  2622 
       
  2623 /**
       
  2624  * e1000_set_multi - Multicast and Promiscuous mode set
       
  2625  * @netdev: network interface device structure
       
  2626  *
       
  2627  * The set_multi entry point is called whenever the multicast address
       
  2628  * list or the network interface flags are updated.  This routine is
       
  2629  * responsible for configuring the hardware for proper multicast,
       
  2630  * promiscuous mode, and all-multi behavior.
       
  2631  **/
       
  2632 static void e1000_set_multi(struct net_device *netdev)
       
  2633 {
       
  2634 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2635 	struct e1000_hw *hw = &adapter->hw;
       
  2636 	struct e1000_mac_info *mac = &hw->mac;
       
  2637 	struct dev_mc_list *mc_ptr;
       
  2638 	u8  *mta_list;
       
  2639 	u32 rctl;
       
  2640 	int i;
       
  2641 
       
  2642 	/* Check for Promiscuous and All Multicast modes */
       
  2643 
       
  2644 	rctl = er32(RCTL);
       
  2645 
       
  2646 	if (netdev->flags & IFF_PROMISC) {
       
  2647 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2648 		rctl &= ~E1000_RCTL_VFE;
       
  2649 	} else {
       
  2650 		if (netdev->flags & IFF_ALLMULTI) {
       
  2651 			rctl |= E1000_RCTL_MPE;
       
  2652 			rctl &= ~E1000_RCTL_UPE;
       
  2653 		} else {
       
  2654 			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2655 		}
       
  2656 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
       
  2657 			rctl |= E1000_RCTL_VFE;
       
  2658 	}
       
  2659 
       
  2660 	ew32(RCTL, rctl);
       
  2661 
       
  2662 	if (netdev->mc_count) {
       
  2663 		mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
       
  2664 		if (!mta_list)
       
  2665 			return;
       
  2666 
       
  2667 		/* prepare a packed array of only addresses. */
       
  2668 		mc_ptr = netdev->mc_list;
       
  2669 
       
  2670 		for (i = 0; i < netdev->mc_count; i++) {
       
  2671 			if (!mc_ptr)
       
  2672 				break;
       
  2673 			memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
       
  2674 			       ETH_ALEN);
       
  2675 			mc_ptr = mc_ptr->next;
       
  2676 		}
       
  2677 
       
  2678 		e1000_update_mc_addr_list(hw, mta_list, i, 1,
       
  2679 					  mac->rar_entry_count);
       
  2680 		kfree(mta_list);
       
  2681 	} else {
       
  2682 		/*
       
  2683 		 * if we're called from probe, we might not have
       
  2684 		 * anything to do here, so clear out the list
       
  2685 		 */
       
  2686 		e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
       
  2687 	}
       
  2688 }
       
  2689 
       
  2690 /**
       
  2691  * e1000_configure - configure the hardware for Rx and Tx
       
  2692  * @adapter: private board structure
       
  2693  **/
       
  2694 static void e1000_configure(struct e1000_adapter *adapter)
       
  2695 {
       
  2696 	e1000_set_multi(adapter->netdev);
       
  2697 
       
  2698 	e1000_restore_vlan(adapter);
       
  2699 	e1000_init_manageability(adapter);
       
  2700 
       
  2701 	e1000_configure_tx(adapter);
       
  2702 	e1000_setup_rctl(adapter);
       
  2703 	e1000_configure_rx(adapter);
       
  2704 
       
  2705 	if (adapter->ecdev) {
       
  2706 		adapter->alloc_rx_buf(adapter, adapter->rx_ring->count);
       
  2707 	} else {
       
  2708 		adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
       
  2709 	}
       
  2710 }
       
  2711 
       
  2712 /**
       
  2713  * e1000e_power_up_phy - restore link in case the phy was powered down
       
  2714  * @adapter: address of board private structure
       
  2715  *
       
  2716  * The phy may be powered down to save power and turn off link when the
       
  2717  * driver is unloaded and wake on lan is not enabled (among others)
       
  2718  * *** this routine MUST be followed by a call to e1000e_reset ***
       
  2719  **/
       
  2720 void e1000e_power_up_phy(struct e1000_adapter *adapter)
       
  2721 {
       
  2722 	if (adapter->hw.phy.ops.power_up)
       
  2723 		adapter->hw.phy.ops.power_up(&adapter->hw);
       
  2724 
       
  2725 	adapter->hw.mac.ops.setup_link(&adapter->hw);
       
  2726 }
       
  2727 
       
  2728 /**
       
  2729  * e1000_power_down_phy - Power down the PHY
       
  2730  *
       
  2731  * Power down the PHY so no link is implied when interface is down.
       
  2732  * The PHY cannot be powered down if management or WoL is active.
       
  2733  */
       
  2734 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
  2735 {
       
  2736 	/* WoL is enabled */
       
  2737 	if (adapter->wol)
       
  2738 		return;
       
  2739 
       
  2740 	if (adapter->hw.phy.ops.power_down)
       
  2741 		adapter->hw.phy.ops.power_down(&adapter->hw);
       
  2742 }
       
  2743 
       
  2744 /**
       
  2745  * e1000e_reset - bring the hardware into a known good state
       
  2746  *
       
  2747  * This function boots the hardware and enables some settings that
       
  2748  * require a configuration cycle of the hardware - those cannot be
       
  2749  * set/changed during runtime. After reset the device needs to be
       
  2750  * properly configured for Rx, Tx etc.
       
  2751  */
       
  2752 void e1000e_reset(struct e1000_adapter *adapter)
       
  2753 {
       
  2754 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  2755 	struct e1000_fc_info *fc = &adapter->hw.fc;
       
  2756 	struct e1000_hw *hw = &adapter->hw;
       
  2757 	u32 tx_space, min_tx_space, min_rx_space;
       
  2758 	u32 pba = adapter->pba;
       
  2759 	u16 hwm;
       
  2760 
       
  2761 	/* reset Packet Buffer Allocation to default */
       
  2762 	ew32(PBA, pba);
       
  2763 
       
  2764 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  2765 		/*
       
  2766 		 * To maintain wire speed transmits, the Tx FIFO should be
       
  2767 		 * large enough to accommodate two full transmit packets,
       
  2768 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
  2769 		 * the Rx FIFO should be large enough to accommodate at least
       
  2770 		 * one full receive packet and is similarly rounded up and
       
  2771 		 * expressed in KB.
       
  2772 		 */
       
  2773 		pba = er32(PBA);
       
  2774 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
  2775 		tx_space = pba >> 16;
       
  2776 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
  2777 		pba &= 0xffff;
       
  2778 		/*
       
  2779 		 * the Tx fifo also stores 16 bytes of information about the tx
       
  2780 		 * but don't include ethernet FCS because hardware appends it
       
  2781 		 */
       
  2782 		min_tx_space = (adapter->max_frame_size +
       
  2783 				sizeof(struct e1000_tx_desc) -
       
  2784 				ETH_FCS_LEN) * 2;
       
  2785 		min_tx_space = ALIGN(min_tx_space, 1024);
       
  2786 		min_tx_space >>= 10;
       
  2787 		/* software strips receive CRC, so leave room for it */
       
  2788 		min_rx_space = adapter->max_frame_size;
       
  2789 		min_rx_space = ALIGN(min_rx_space, 1024);
       
  2790 		min_rx_space >>= 10;
       
  2791 
       
  2792 		/*
       
  2793 		 * If current Tx allocation is less than the min Tx FIFO size,
       
  2794 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
  2795 		 * allocation, take space away from current Rx allocation
       
  2796 		 */
       
  2797 		if ((tx_space < min_tx_space) &&
       
  2798 		    ((min_tx_space - tx_space) < pba)) {
       
  2799 			pba -= min_tx_space - tx_space;
       
  2800 
       
  2801 			/*
       
  2802 			 * if short on Rx space, Rx wins and must trump tx
       
  2803 			 * adjustment or use Early Receive if available
       
  2804 			 */
       
  2805 			if ((pba < min_rx_space) &&
       
  2806 			    (!(adapter->flags & FLAG_HAS_ERT)))
       
  2807 				/* ERT enabled in e1000_configure_rx */
       
  2808 				pba = min_rx_space;
       
  2809 		}
       
  2810 
       
  2811 		ew32(PBA, pba);
       
  2812 	}
       
  2813 
       
  2814 
       
  2815 	/*
       
  2816 	 * flow control settings
       
  2817 	 *
       
  2818 	 * The high water mark must be low enough to fit one full frame
       
  2819 	 * (or the size used for early receive) above it in the Rx FIFO.
       
  2820 	 * Set it to the lower of:
       
  2821 	 * - 90% of the Rx FIFO size, and
       
  2822 	 * - the full Rx FIFO size minus the early receive size (for parts
       
  2823 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
       
  2824 	 * - the full Rx FIFO size minus one full frame
       
  2825 	 */
       
  2826 	if (hw->mac.type == e1000_pchlan) {
       
  2827 		/*
       
  2828 		 * Workaround PCH LOM adapter hangs with certain network
       
  2829 		 * loads.  If hangs persist, try disabling Tx flow control.
       
  2830 		 */
       
  2831 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  2832 			fc->high_water = 0x3500;
       
  2833 			fc->low_water  = 0x1500;
       
  2834 		} else {
       
  2835 			fc->high_water = 0x5000;
       
  2836 			fc->low_water  = 0x3000;
       
  2837 		}
       
  2838 	} else {
       
  2839 		if ((adapter->flags & FLAG_HAS_ERT) &&
       
  2840 		    (adapter->netdev->mtu > ETH_DATA_LEN))
       
  2841 			hwm = min(((pba << 10) * 9 / 10),
       
  2842 				  ((pba << 10) - (E1000_ERT_2048 << 3)));
       
  2843 		else
       
  2844 			hwm = min(((pba << 10) * 9 / 10),
       
  2845 				  ((pba << 10) - adapter->max_frame_size));
       
  2846 
       
  2847 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
       
  2848 		fc->low_water = fc->high_water - 8;
       
  2849 	}
       
  2850 
       
  2851 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
       
  2852 		fc->pause_time = 0xFFFF;
       
  2853 	else
       
  2854 		fc->pause_time = E1000_FC_PAUSE_TIME;
       
  2855 	fc->send_xon = 1;
       
  2856 	fc->current_mode = fc->requested_mode;
       
  2857 
       
  2858 	/* Allow time for pending master requests to run */
       
  2859 	mac->ops.reset_hw(hw);
       
  2860 
       
  2861 	/*
       
  2862 	 * For parts with AMT enabled, let the firmware know
       
  2863 	 * that the network interface is in control
       
  2864 	 */
       
  2865 	if (adapter->flags & FLAG_HAS_AMT)
       
  2866 		e1000_get_hw_control(adapter);
       
  2867 
       
  2868 	ew32(WUC, 0);
       
  2869 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
       
  2870 		e1e_wphy(&adapter->hw, BM_WUC, 0);
       
  2871 
       
  2872 	if (mac->ops.init_hw(hw))
       
  2873 		e_err("Hardware Error\n");
       
  2874 
       
  2875 	/* additional part of the flow-control workaround above */
       
  2876 	if (hw->mac.type == e1000_pchlan)
       
  2877 		ew32(FCRTV_PCH, 0x1000);
       
  2878 
       
  2879 	e1000_update_mng_vlan(adapter);
       
  2880 
       
  2881 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
  2882 	ew32(VET, ETH_P_8021Q);
       
  2883 
       
  2884 	e1000e_reset_adaptive(hw);
       
  2885 	e1000_get_phy_info(hw);
       
  2886 
       
  2887 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
       
  2888 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
       
  2889 		u16 phy_data = 0;
       
  2890 		/*
       
  2891 		 * speed up time to link by disabling smart power down, ignore
       
  2892 		 * the return value of this function because there is nothing
       
  2893 		 * different we would do if it failed
       
  2894 		 */
       
  2895 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
       
  2896 		phy_data &= ~IGP02E1000_PM_SPD;
       
  2897 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
       
  2898 	}
       
  2899 }
       
  2900 
       
  2901 int e1000e_up(struct e1000_adapter *adapter)
       
  2902 {
       
  2903 	struct e1000_hw *hw = &adapter->hw;
       
  2904 
       
  2905 	/* DMA latency requirement to workaround early-receive/jumbo issue */
       
  2906 	if (adapter->flags & FLAG_HAS_ERT)
       
  2907 		pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
       
  2908 		                       adapter->netdev->name,
       
  2909 				       PM_QOS_DEFAULT_VALUE);
       
  2910 
       
  2911 	/* hardware has been reset, we need to reload some things */
       
  2912 	e1000_configure(adapter);
       
  2913 
       
  2914 	clear_bit(__E1000_DOWN, &adapter->state);
       
  2915 
       
  2916 	if (!adapter->ecdev) 
       
  2917 		napi_enable(&adapter->napi);
       
  2918 
       
  2919 	if (adapter->msix_entries)
       
  2920 		e1000_configure_msix(adapter);
       
  2921 
       
  2922 	if (!adapter->ecdev) {
       
  2923 		e1000_irq_enable(adapter);
       
  2924 
       
  2925 		netif_wake_queue(adapter->netdev);
       
  2926 
       
  2927 		/* fire a link change interrupt to start the watchdog */
       
  2928 		ew32(ICS, E1000_ICS_LSC);
       
  2929 	}
       
  2930 	return 0;
       
  2931 }
       
  2932 
       
  2933 void e1000e_down(struct e1000_adapter *adapter)
       
  2934 {
       
  2935 	struct net_device *netdev = adapter->netdev;
       
  2936 	struct e1000_hw *hw = &adapter->hw;
       
  2937 	u32 tctl, rctl;
       
  2938 
       
  2939 	/*
       
  2940 	 * signal that we're down so the interrupt handler does not
       
  2941 	 * reschedule our watchdog timer
       
  2942 	 */
       
  2943 	set_bit(__E1000_DOWN, &adapter->state);
       
  2944 
       
  2945 	/* disable receives in the hardware */
       
  2946 	rctl = er32(RCTL);
       
  2947 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  2948 	/* flush and sleep below */
       
  2949 
       
  2950 	if (!adapter->ecdev) 
       
  2951 		netif_stop_queue(netdev);
       
  2952 
       
  2953 	/* disable transmits in the hardware */
       
  2954 	tctl = er32(TCTL);
       
  2955 	tctl &= ~E1000_TCTL_EN;
       
  2956 	ew32(TCTL, tctl);
       
  2957 	/* flush both disables and wait for them to finish */
       
  2958 	e1e_flush();
       
  2959 	msleep(10);
       
  2960 
       
  2961 	if (!adapter->ecdev) {
       
  2962 		napi_disable(&adapter->napi);
       
  2963 		e1000_irq_disable(adapter);
       
  2964 
       
  2965 		del_timer_sync(&adapter->watchdog_timer);
       
  2966 		del_timer_sync(&adapter->phy_info_timer);
       
  2967 
       
  2968 		netdev->tx_queue_len = adapter->tx_queue_len;
       
  2969 		netif_carrier_off(netdev);
       
  2970 	}
       
  2971 
       
  2972 	adapter->link_speed = 0;
       
  2973 	adapter->link_duplex = 0;
       
  2974 
       
  2975 	if (!pci_channel_offline(adapter->pdev))
       
  2976 		e1000e_reset(adapter);
       
  2977 	e1000_clean_tx_ring(adapter);
       
  2978 	e1000_clean_rx_ring(adapter);
       
  2979 
       
  2980 	if (adapter->flags & FLAG_HAS_ERT)
       
  2981 		pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
       
  2982 		                          adapter->netdev->name);
       
  2983 
       
  2984 	/*
       
  2985 	 * TODO: for power management, we could drop the link and
       
  2986 	 * pci_disable_device here.
       
  2987 	 */
       
  2988 }
       
  2989 
       
  2990 void e1000e_reinit_locked(struct e1000_adapter *adapter)
       
  2991 {
       
  2992 	might_sleep();
       
  2993 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  2994 		msleep(1);
       
  2995 	e1000e_down(adapter);
       
  2996 	e1000e_up(adapter);
       
  2997 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  2998 }
       
  2999 
       
  3000 /**
       
  3001  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  3002  * @adapter: board private structure to initialize
       
  3003  *
       
  3004  * e1000_sw_init initializes the Adapter private data structure.
       
  3005  * Fields are initialized based on PCI device information and
       
  3006  * OS network device settings (MTU size).
       
  3007  **/
       
  3008 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  3009 {
       
  3010 	struct net_device *netdev = adapter->netdev;
       
  3011 
       
  3012 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
       
  3013 	adapter->rx_ps_bsize0 = 128;
       
  3014 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
       
  3015 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
       
  3016 
       
  3017 	e1000e_set_interrupt_capability(adapter);
       
  3018 
       
  3019 	if (e1000_alloc_queues(adapter))
       
  3020 		return -ENOMEM;
       
  3021 
       
  3022 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  3023 	e1000_irq_disable(adapter);
       
  3024 
       
  3025 	set_bit(__E1000_DOWN, &adapter->state);
       
  3026 	return 0;
       
  3027 }
       
  3028 
       
  3029 /**
       
  3030  * e1000_intr_msi_test - Interrupt Handler
       
  3031  * @irq: interrupt number
       
  3032  * @data: pointer to a network interface device structure
       
  3033  **/
       
  3034 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
       
  3035 {
       
  3036 	struct net_device *netdev = data;
       
  3037 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3038 	struct e1000_hw *hw = &adapter->hw;
       
  3039 	u32 icr = er32(ICR);
       
  3040 
       
  3041 	e_dbg("icr is %08X\n", icr);
       
  3042 	if (icr & E1000_ICR_RXSEQ) {
       
  3043 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
       
  3044 		wmb();
       
  3045 	}
       
  3046 
       
  3047 	return IRQ_HANDLED;
       
  3048 }
       
  3049 
       
  3050 /**
       
  3051  * e1000_test_msi_interrupt - Returns 0 for successful test
       
  3052  * @adapter: board private struct
       
  3053  *
       
  3054  * code flow taken from tg3.c
       
  3055  **/
       
  3056 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
       
  3057 {
       
  3058 	struct net_device *netdev = adapter->netdev;
       
  3059 	struct e1000_hw *hw = &adapter->hw;
       
  3060 	int err;
       
  3061 
       
  3062 	/* poll_enable hasn't been called yet, so don't need disable */
       
  3063 	/* clear any pending events */
       
  3064 	er32(ICR);
       
  3065 
       
  3066 	/* free the real vector and request a test handler */
       
  3067 	e1000_free_irq(adapter);
       
  3068 	e1000e_reset_interrupt_capability(adapter);
       
  3069 
       
  3070 	/* Assume that the test fails, if it succeeds then the test
       
  3071 	 * MSI irq handler will unset this flag */
       
  3072 	adapter->flags |= FLAG_MSI_TEST_FAILED;
       
  3073 
       
  3074 	err = pci_enable_msi(adapter->pdev);
       
  3075 	if (err)
       
  3076 		goto msi_test_failed;
       
  3077 
       
  3078 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
       
  3079 			  netdev->name, netdev);
       
  3080 	if (err) {
       
  3081 		pci_disable_msi(adapter->pdev);
       
  3082 		goto msi_test_failed;
       
  3083 	}
       
  3084 
       
  3085 	wmb();
       
  3086 
       
  3087 	e1000_irq_enable(adapter);
       
  3088 
       
  3089 	/* fire an unusual interrupt on the test handler */
       
  3090 	ew32(ICS, E1000_ICS_RXSEQ);
       
  3091 	e1e_flush();
       
  3092 	msleep(50);
       
  3093 
       
  3094 	e1000_irq_disable(adapter);
       
  3095 
       
  3096 	rmb();
       
  3097 
       
  3098 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
       
  3099 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  3100 		err = -EIO;
       
  3101 		e_info("MSI interrupt test failed!\n");
       
  3102 	}
       
  3103 
       
  3104 	free_irq(adapter->pdev->irq, netdev);
       
  3105 	pci_disable_msi(adapter->pdev);
       
  3106 
       
  3107 	if (err == -EIO)
       
  3108 		goto msi_test_failed;
       
  3109 
       
  3110 	/* okay so the test worked, restore settings */
       
  3111 	e_dbg("MSI interrupt test succeeded!\n");
       
  3112 msi_test_failed:
       
  3113 	e1000e_set_interrupt_capability(adapter);
       
  3114 	e1000_request_irq(adapter);
       
  3115 	return err;
       
  3116 }
       
  3117 
       
  3118 /**
       
  3119  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
       
  3120  * @adapter: board private struct
       
  3121  *
       
  3122  * code flow taken from tg3.c, called with e1000 interrupts disabled.
       
  3123  **/
       
  3124 static int e1000_test_msi(struct e1000_adapter *adapter)
       
  3125 {
       
  3126 	int err;
       
  3127 	u16 pci_cmd;
       
  3128 
       
  3129 	if (!(adapter->flags & FLAG_MSI_ENABLED))
       
  3130 		return 0;
       
  3131 
       
  3132 	/* disable SERR in case the MSI write causes a master abort */
       
  3133 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
       
  3134 	pci_write_config_word(adapter->pdev, PCI_COMMAND,
       
  3135 			      pci_cmd & ~PCI_COMMAND_SERR);
       
  3136 
       
  3137 	err = e1000_test_msi_interrupt(adapter);
       
  3138 
       
  3139 	/* restore previous setting of command word */
       
  3140 	pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
       
  3141 
       
  3142 	/* success ! */
       
  3143 	if (!err)
       
  3144 		return 0;
       
  3145 
       
  3146 	/* EIO means MSI test failed */
       
  3147 	if (err != -EIO)
       
  3148 		return err;
       
  3149 
       
  3150 	/* back to INTx mode */
       
  3151 	e_warn("MSI interrupt test failed, using legacy interrupt.\n");
       
  3152 
       
  3153 	e1000_free_irq(adapter);
       
  3154 
       
  3155 	err = e1000_request_irq(adapter);
       
  3156 
       
  3157 	return err;
       
  3158 }
       
  3159 
       
  3160 /**
       
  3161  * e1000_open - Called when a network interface is made active
       
  3162  * @netdev: network interface device structure
       
  3163  *
       
  3164  * Returns 0 on success, negative value on failure
       
  3165  *
       
  3166  * The open entry point is called when a network interface is made
       
  3167  * active by the system (IFF_UP).  At this point all resources needed
       
  3168  * for transmit and receive operations are allocated, the interrupt
       
  3169  * handler is registered with the OS, the watchdog timer is started,
       
  3170  * and the stack is notified that the interface is ready.
       
  3171  **/
       
  3172 static int e1000_open(struct net_device *netdev)
       
  3173 {
       
  3174 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3175 	struct e1000_hw *hw = &adapter->hw;
       
  3176 	int err;
       
  3177 
       
  3178 	/* disallow open during test */
       
  3179 	if (test_bit(__E1000_TESTING, &adapter->state))
       
  3180 		return -EBUSY;
       
  3181 
       
  3182 	if (adapter->ecdev) {
       
  3183 		ecdev_set_link(adapter->ecdev, 0);
       
  3184 	} else {
       
  3185 		netif_carrier_off(netdev);
       
  3186 	}
       
  3187 
       
  3188 	/* allocate transmit descriptors */
       
  3189 	err = e1000e_setup_tx_resources(adapter);
       
  3190 	if (err)
       
  3191 		goto err_setup_tx;
       
  3192 
       
  3193 	/* allocate receive descriptors */
       
  3194 	err = e1000e_setup_rx_resources(adapter);
       
  3195 	if (err)
       
  3196 		goto err_setup_rx;
       
  3197 
       
  3198 	e1000e_power_up_phy(adapter);
       
  3199 
       
  3200 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  3201 	if ((adapter->hw.mng_cookie.status &
       
  3202 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
       
  3203 		e1000_update_mng_vlan(adapter);
       
  3204 
       
  3205 	/*
       
  3206 	 * If AMT is enabled, let the firmware know that the network
       
  3207 	 * interface is now open
       
  3208 	 */
       
  3209 	if (adapter->flags & FLAG_HAS_AMT)
       
  3210 		e1000_get_hw_control(adapter);
       
  3211 
       
  3212 	/*
       
  3213 	 * before we allocate an interrupt, we must be ready to handle it.
       
  3214 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  3215 	 * as soon as we call pci_request_irq, so we have to setup our
       
  3216 	 * clean_rx handler before we do so.
       
  3217 	 */
       
  3218 	e1000_configure(adapter);
       
  3219 
       
  3220 	err = e1000_request_irq(adapter);
       
  3221 	if (err)
       
  3222 		goto err_req_irq;
       
  3223 
       
  3224 	/*
       
  3225 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
       
  3226 	 * ignore e1000e MSI messages, which means we need to test our MSI
       
  3227 	 * interrupt now
       
  3228 	 */
       
  3229 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
       
  3230 		err = e1000_test_msi(adapter);
       
  3231 		if (err) {
       
  3232 			e_err("Interrupt allocation failed\n");
       
  3233 			goto err_req_irq;
       
  3234 		}
       
  3235 	}
       
  3236 
       
  3237 	/* From here on the code is the same as e1000e_up() */
       
  3238 	clear_bit(__E1000_DOWN, &adapter->state);
       
  3239 
       
  3240 	napi_enable(&adapter->napi);
       
  3241 
       
  3242 	e1000_irq_enable(adapter);
       
  3243 
       
  3244 	netif_start_queue(netdev);
       
  3245 
       
  3246 	/* fire a link status change interrupt to start the watchdog */
       
  3247 	ew32(ICS, E1000_ICS_LSC);
       
  3248 
       
  3249 	return 0;
       
  3250 
       
  3251 err_req_irq:
       
  3252 	e1000_release_hw_control(adapter);
       
  3253 	e1000_power_down_phy(adapter);
       
  3254 	e1000e_free_rx_resources(adapter);
       
  3255 err_setup_rx:
       
  3256 	e1000e_free_tx_resources(adapter);
       
  3257 err_setup_tx:
       
  3258 	e1000e_reset(adapter);
       
  3259 
       
  3260 	return err;
       
  3261 }
       
  3262 
       
  3263 /**
       
  3264  * e1000_close - Disables a network interface
       
  3265  * @netdev: network interface device structure
       
  3266  *
       
  3267  * Returns 0, this is not allowed to fail
       
  3268  *
       
  3269  * The close entry point is called when an interface is de-activated
       
  3270  * by the OS.  The hardware is still under the drivers control, but
       
  3271  * needs to be disabled.  A global MAC reset is issued to stop the
       
  3272  * hardware, and all transmit and receive resources are freed.
       
  3273  **/
       
  3274 static int e1000_close(struct net_device *netdev)
       
  3275 {
       
  3276 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3277 
       
  3278 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  3279 	e1000e_down(adapter);
       
  3280 	e1000_power_down_phy(adapter);
       
  3281 	e1000_free_irq(adapter);
       
  3282 
       
  3283 	e1000e_free_tx_resources(adapter);
       
  3284 	e1000e_free_rx_resources(adapter);
       
  3285 
       
  3286 	/*
       
  3287 	 * kill manageability vlan ID if supported, but not if a vlan with
       
  3288 	 * the same ID is registered on the host OS (let 8021q kill it)
       
  3289 	 */
       
  3290 	if ((adapter->hw.mng_cookie.status &
       
  3291 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  3292 	     !(adapter->vlgrp &&
       
  3293 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
       
  3294 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  3295 
       
  3296 	/*
       
  3297 	 * If AMT is enabled, let the firmware know that the network
       
  3298 	 * interface is now closed
       
  3299 	 */
       
  3300 	if (adapter->flags & FLAG_HAS_AMT)
       
  3301 		e1000_release_hw_control(adapter);
       
  3302 
       
  3303 	return 0;
       
  3304 }
       
  3305 /**
       
  3306  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  3307  * @netdev: network interface device structure
       
  3308  * @p: pointer to an address structure
       
  3309  *
       
  3310  * Returns 0 on success, negative on failure
       
  3311  **/
       
  3312 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  3313 {
       
  3314 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3315 	struct sockaddr *addr = p;
       
  3316 
       
  3317 	if (!is_valid_ether_addr(addr->sa_data))
       
  3318 		return -EADDRNOTAVAIL;
       
  3319 
       
  3320 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  3321 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
       
  3322 
       
  3323 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
       
  3324 
       
  3325 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
       
  3326 		/* activate the work around */
       
  3327 		e1000e_set_laa_state_82571(&adapter->hw, 1);
       
  3328 
       
  3329 		/*
       
  3330 		 * Hold a copy of the LAA in RAR[14] This is done so that
       
  3331 		 * between the time RAR[0] gets clobbered  and the time it
       
  3332 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  3333 		 * of the RARs and no incoming packets directed to this port
       
  3334 		 * are dropped. Eventually the LAA will be in RAR[0] and
       
  3335 		 * RAR[14]
       
  3336 		 */
       
  3337 		e1000e_rar_set(&adapter->hw,
       
  3338 			      adapter->hw.mac.addr,
       
  3339 			      adapter->hw.mac.rar_entry_count - 1);
       
  3340 	}
       
  3341 
       
  3342 	return 0;
       
  3343 }
       
  3344 
       
  3345 /**
       
  3346  * e1000e_update_phy_task - work thread to update phy
       
  3347  * @work: pointer to our work struct
       
  3348  *
       
  3349  * this worker thread exists because we must acquire a
       
  3350  * semaphore to read the phy, which we could msleep while
       
  3351  * waiting for it, and we can't msleep in a timer.
       
  3352  **/
       
  3353 static void e1000e_update_phy_task(struct work_struct *work)
       
  3354 {
       
  3355 	struct e1000_adapter *adapter = container_of(work,
       
  3356 					struct e1000_adapter, update_phy_task);
       
  3357 	e1000_get_phy_info(&adapter->hw);
       
  3358 }
       
  3359 
       
  3360 /*
       
  3361  * Need to wait a few seconds after link up to get diagnostic information from
       
  3362  * the phy
       
  3363  */
       
  3364 static void e1000_update_phy_info(unsigned long data)
       
  3365 {
       
  3366 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  3367 	schedule_work(&adapter->update_phy_task);
       
  3368 }
       
  3369 
       
  3370 /**
       
  3371  * e1000e_update_stats - Update the board statistics counters
       
  3372  * @adapter: board private structure
       
  3373  **/
       
  3374 void e1000e_update_stats(struct e1000_adapter *adapter)
       
  3375 {
       
  3376 	struct net_device *netdev = adapter->netdev;
       
  3377 	struct e1000_hw *hw = &adapter->hw;
       
  3378 	struct pci_dev *pdev = adapter->pdev;
       
  3379 	u16 phy_data;
       
  3380 
       
  3381 	/*
       
  3382 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3383 	 * connection is down.
       
  3384 	 */
       
  3385 	if (adapter->link_speed == 0)
       
  3386 		return;
       
  3387 	if (pci_channel_offline(pdev))
       
  3388 		return;
       
  3389 
       
  3390 	adapter->stats.crcerrs += er32(CRCERRS);
       
  3391 	adapter->stats.gprc += er32(GPRC);
       
  3392 	adapter->stats.gorc += er32(GORCL);
       
  3393 	er32(GORCH); /* Clear gorc */
       
  3394 	adapter->stats.bprc += er32(BPRC);
       
  3395 	adapter->stats.mprc += er32(MPRC);
       
  3396 	adapter->stats.roc += er32(ROC);
       
  3397 
       
  3398 	adapter->stats.mpc += er32(MPC);
       
  3399 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3400 	    (hw->phy.type == e1000_phy_82577)) {
       
  3401 		e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
       
  3402 		if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
       
  3403 			adapter->stats.scc += phy_data;
       
  3404 
       
  3405 		e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
       
  3406 		if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
       
  3407 			adapter->stats.ecol += phy_data;
       
  3408 
       
  3409 		e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
       
  3410 		if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
       
  3411 			adapter->stats.mcc += phy_data;
       
  3412 
       
  3413 		e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
       
  3414 		if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
       
  3415 			adapter->stats.latecol += phy_data;
       
  3416 
       
  3417 		e1e_rphy(hw, HV_DC_UPPER, &phy_data);
       
  3418 		if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
       
  3419 			adapter->stats.dc += phy_data;
       
  3420 	} else {
       
  3421 		adapter->stats.scc += er32(SCC);
       
  3422 		adapter->stats.ecol += er32(ECOL);
       
  3423 		adapter->stats.mcc += er32(MCC);
       
  3424 		adapter->stats.latecol += er32(LATECOL);
       
  3425 		adapter->stats.dc += er32(DC);
       
  3426 	}
       
  3427 	adapter->stats.xonrxc += er32(XONRXC);
       
  3428 	adapter->stats.xontxc += er32(XONTXC);
       
  3429 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  3430 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  3431 	adapter->stats.gptc += er32(GPTC);
       
  3432 	adapter->stats.gotc += er32(GOTCL);
       
  3433 	er32(GOTCH); /* Clear gotc */
       
  3434 	adapter->stats.rnbc += er32(RNBC);
       
  3435 	adapter->stats.ruc += er32(RUC);
       
  3436 
       
  3437 	adapter->stats.mptc += er32(MPTC);
       
  3438 	adapter->stats.bptc += er32(BPTC);
       
  3439 
       
  3440 	/* used for adaptive IFS */
       
  3441 
       
  3442 	hw->mac.tx_packet_delta = er32(TPT);
       
  3443 	adapter->stats.tpt += hw->mac.tx_packet_delta;
       
  3444 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3445 	    (hw->phy.type == e1000_phy_82577)) {
       
  3446 		e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
       
  3447 		if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
       
  3448 			hw->mac.collision_delta = phy_data;
       
  3449 	} else {
       
  3450 		hw->mac.collision_delta = er32(COLC);
       
  3451 	}
       
  3452 	adapter->stats.colc += hw->mac.collision_delta;
       
  3453 
       
  3454 	adapter->stats.algnerrc += er32(ALGNERRC);
       
  3455 	adapter->stats.rxerrc += er32(RXERRC);
       
  3456 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3457 	    (hw->phy.type == e1000_phy_82577)) {
       
  3458 		e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
       
  3459 		if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
       
  3460 			adapter->stats.tncrs += phy_data;
       
  3461 	} else {
       
  3462 		if ((hw->mac.type != e1000_82574) &&
       
  3463 		    (hw->mac.type != e1000_82583))
       
  3464 			adapter->stats.tncrs += er32(TNCRS);
       
  3465 	}
       
  3466 	adapter->stats.cexterr += er32(CEXTERR);
       
  3467 	adapter->stats.tsctc += er32(TSCTC);
       
  3468 	adapter->stats.tsctfc += er32(TSCTFC);
       
  3469 
       
  3470 	/* Fill out the OS statistics structure */
       
  3471 	netdev->stats.multicast = adapter->stats.mprc;
       
  3472 	netdev->stats.collisions = adapter->stats.colc;
       
  3473 
       
  3474 	/* Rx Errors */
       
  3475 
       
  3476 	/*
       
  3477 	 * RLEC on some newer hardware can be incorrect so build
       
  3478 	 * our own version based on RUC and ROC
       
  3479 	 */
       
  3480 	netdev->stats.rx_errors = adapter->stats.rxerrc +
       
  3481 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3482 		adapter->stats.ruc + adapter->stats.roc +
       
  3483 		adapter->stats.cexterr;
       
  3484 	netdev->stats.rx_length_errors = adapter->stats.ruc +
       
  3485 					      adapter->stats.roc;
       
  3486 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3487 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3488 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
       
  3489 
       
  3490 	/* Tx Errors */
       
  3491 	netdev->stats.tx_errors = adapter->stats.ecol +
       
  3492 				       adapter->stats.latecol;
       
  3493 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
       
  3494 	netdev->stats.tx_window_errors = adapter->stats.latecol;
       
  3495 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3496 
       
  3497 	/* Tx Dropped needs to be maintained elsewhere */
       
  3498 
       
  3499 	/* Management Stats */
       
  3500 	adapter->stats.mgptc += er32(MGTPTC);
       
  3501 	adapter->stats.mgprc += er32(MGTPRC);
       
  3502 	adapter->stats.mgpdc += er32(MGTPDC);
       
  3503 }
       
  3504 
       
  3505 /**
       
  3506  * e1000_phy_read_status - Update the PHY register status snapshot
       
  3507  * @adapter: board private structure
       
  3508  **/
       
  3509 static void e1000_phy_read_status(struct e1000_adapter *adapter)
       
  3510 {
       
  3511 	struct e1000_hw *hw = &adapter->hw;
       
  3512 	struct e1000_phy_regs *phy = &adapter->phy_regs;
       
  3513 	int ret_val;
       
  3514 
       
  3515 	if ((er32(STATUS) & E1000_STATUS_LU) &&
       
  3516 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
       
  3517 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
       
  3518 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
       
  3519 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
       
  3520 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
       
  3521 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
       
  3522 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
       
  3523 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
       
  3524 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
       
  3525 		if (ret_val)
       
  3526 			e_warn("Error reading PHY register\n");
       
  3527 	} else {
       
  3528 		/*
       
  3529 		 * Do not read PHY registers if link is not up
       
  3530 		 * Set values to typical power-on defaults
       
  3531 		 */
       
  3532 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
       
  3533 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
       
  3534 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
       
  3535 			     BMSR_ERCAP);
       
  3536 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
       
  3537 				  ADVERTISE_ALL | ADVERTISE_CSMA);
       
  3538 		phy->lpa = 0;
       
  3539 		phy->expansion = EXPANSION_ENABLENPAGE;
       
  3540 		phy->ctrl1000 = ADVERTISE_1000FULL;
       
  3541 		phy->stat1000 = 0;
       
  3542 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
       
  3543 	}
       
  3544 }
       
  3545 
       
  3546 static void e1000_print_link_info(struct e1000_adapter *adapter)
       
  3547 {
       
  3548 	struct e1000_hw *hw = &adapter->hw;
       
  3549 	u32 ctrl = er32(CTRL);
       
  3550 
       
  3551 	/* Link status message must follow this format for user tools */
       
  3552 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
       
  3553 	       "Flow Control: %s\n",
       
  3554 	       adapter->netdev->name,
       
  3555 	       adapter->link_speed,
       
  3556 	       (adapter->link_duplex == FULL_DUPLEX) ?
       
  3557 	                        "Full Duplex" : "Half Duplex",
       
  3558 	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
       
  3559 	                        "RX/TX" :
       
  3560 	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
       
  3561 	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
       
  3562 }
       
  3563 
       
  3564 bool e1000_has_link(struct e1000_adapter *adapter)
       
  3565 {
       
  3566 	struct e1000_hw *hw = &adapter->hw;
       
  3567 	bool link_active = 0;
       
  3568 	s32 ret_val = 0;
       
  3569 
       
  3570 	/*
       
  3571 	 * get_link_status is set on LSC (link status) interrupt or
       
  3572 	 * Rx sequence error interrupt.  get_link_status will stay
       
  3573 	 * false until the check_for_link establishes link
       
  3574 	 * for copper adapters ONLY
       
  3575 	 */
       
  3576 	switch (hw->phy.media_type) {
       
  3577 	case e1000_media_type_copper:
       
  3578 		if (hw->mac.get_link_status) {
       
  3579 			ret_val = hw->mac.ops.check_for_link(hw);
       
  3580 			link_active = !hw->mac.get_link_status;
       
  3581 		} else {
       
  3582 			link_active = 1;
       
  3583 		}
       
  3584 		break;
       
  3585 	case e1000_media_type_fiber:
       
  3586 		ret_val = hw->mac.ops.check_for_link(hw);
       
  3587 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
       
  3588 		break;
       
  3589 	case e1000_media_type_internal_serdes:
       
  3590 		ret_val = hw->mac.ops.check_for_link(hw);
       
  3591 		link_active = adapter->hw.mac.serdes_has_link;
       
  3592 		break;
       
  3593 	default:
       
  3594 	case e1000_media_type_unknown:
       
  3595 		break;
       
  3596 	}
       
  3597 
       
  3598 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
       
  3599 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  3600 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
       
  3601 		e_info("Gigabit has been disabled, downgrading speed\n");
       
  3602 	}
       
  3603 
       
  3604 	return link_active;
       
  3605 }
       
  3606 
       
  3607 static void e1000e_enable_receives(struct e1000_adapter *adapter)
       
  3608 {
       
  3609 	/* make sure the receive unit is started */
       
  3610 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
       
  3611 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
       
  3612 		struct e1000_hw *hw = &adapter->hw;
       
  3613 		u32 rctl = er32(RCTL);
       
  3614 		ew32(RCTL, rctl | E1000_RCTL_EN);
       
  3615 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  3616 	}
       
  3617 }
       
  3618 
       
  3619 /**
       
  3620  * e1000_watchdog - Timer Call-back
       
  3621  * @data: pointer to adapter cast into an unsigned long
       
  3622  **/
       
  3623 static void e1000_watchdog(unsigned long data)
       
  3624 {
       
  3625 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  3626 
       
  3627 	/* Do the rest outside of interrupt context */
       
  3628 	schedule_work(&adapter->watchdog_task);
       
  3629 
       
  3630 	/* TODO: make this use queue_delayed_work() */
       
  3631 }
       
  3632 
       
  3633 static void e1000_watchdog_task(struct work_struct *work)
       
  3634 {
       
  3635 	struct e1000_adapter *adapter = container_of(work,
       
  3636 					struct e1000_adapter, watchdog_task);
       
  3637 	struct net_device *netdev = adapter->netdev;
       
  3638 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  3639 	struct e1000_phy_info *phy = &adapter->hw.phy;
       
  3640 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3641 	struct e1000_hw *hw = &adapter->hw;
       
  3642 	u32 link, tctl;
       
  3643 	int tx_pending = 0;
       
  3644 
       
  3645 	link = e1000_has_link(adapter);
       
  3646 	if ((adapter->ecdev && (ecdev_get_link(adapter->ecdev)) && link)
       
  3647 			|| (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)) {
       
  3648 		e1000e_enable_receives(adapter);
       
  3649 		goto link_up;
       
  3650 	}
       
  3651 
       
  3652 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
       
  3653 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
       
  3654 		e1000_update_mng_vlan(adapter);
       
  3655 
       
  3656 	if (link) {
       
  3657 		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) 
       
  3658 				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
       
  3659 			bool txb2b = 1;
       
  3660 			/* update snapshot of PHY registers on LSC */
       
  3661 			e1000_phy_read_status(adapter);
       
  3662 			mac->ops.get_link_up_info(&adapter->hw,
       
  3663 						   &adapter->link_speed,
       
  3664 						   &adapter->link_duplex);
       
  3665 			e1000_print_link_info(adapter);
       
  3666 			/*
       
  3667 			 * On supported PHYs, check for duplex mismatch only
       
  3668 			 * if link has autonegotiated at 10/100 half
       
  3669 			 */
       
  3670 			if ((hw->phy.type == e1000_phy_igp_3 ||
       
  3671 			     hw->phy.type == e1000_phy_bm) &&
       
  3672 			    (hw->mac.autoneg == true) &&
       
  3673 			    (adapter->link_speed == SPEED_10 ||
       
  3674 			     adapter->link_speed == SPEED_100) &&
       
  3675 			    (adapter->link_duplex == HALF_DUPLEX)) {
       
  3676 				u16 autoneg_exp;
       
  3677 
       
  3678 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
       
  3679 
       
  3680 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
       
  3681 					e_info("Autonegotiated half duplex but"
       
  3682 					       " link partner cannot autoneg. "
       
  3683 					       " Try forcing full duplex if "
       
  3684 					       "link gets many collisions.\n");
       
  3685 			}
       
  3686 
       
  3687 			/*
       
  3688 			 * tweak tx_queue_len according to speed/duplex
       
  3689 			 * and adjust the timeout factor
       
  3690 			 */
       
  3691 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  3692 			adapter->tx_timeout_factor = 1;
       
  3693 			switch (adapter->link_speed) {
       
  3694 			case SPEED_10:
       
  3695 				txb2b = 0;
       
  3696 				netdev->tx_queue_len = 10;
       
  3697 				adapter->tx_timeout_factor = 16;
       
  3698 				break;
       
  3699 			case SPEED_100:
       
  3700 				txb2b = 0;
       
  3701 				netdev->tx_queue_len = 100;
       
  3702 				adapter->tx_timeout_factor = 10;
       
  3703 				break;
       
  3704 			}
       
  3705 
       
  3706 			/*
       
  3707 			 * workaround: re-program speed mode bit after
       
  3708 			 * link-up event
       
  3709 			 */
       
  3710 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
       
  3711 			    !txb2b) {
       
  3712 				u32 tarc0;
       
  3713 				tarc0 = er32(TARC(0));
       
  3714 				tarc0 &= ~SPEED_MODE_BIT;
       
  3715 				ew32(TARC(0), tarc0);
       
  3716 			}
       
  3717 
       
  3718 			/*
       
  3719 			 * disable TSO for pcie and 10/100 speeds, to avoid
       
  3720 			 * some hardware issues
       
  3721 			 */
       
  3722 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
       
  3723 				switch (adapter->link_speed) {
       
  3724 				case SPEED_10:
       
  3725 				case SPEED_100:
       
  3726 					e_info("10/100 speed: disabling TSO\n");
       
  3727 					netdev->features &= ~NETIF_F_TSO;
       
  3728 					netdev->features &= ~NETIF_F_TSO6;
       
  3729 					break;
       
  3730 				case SPEED_1000:
       
  3731 					netdev->features |= NETIF_F_TSO;
       
  3732 					netdev->features |= NETIF_F_TSO6;
       
  3733 					break;
       
  3734 				default:
       
  3735 					/* oops */
       
  3736 					break;
       
  3737 				}
       
  3738 			}
       
  3739 
       
  3740 			/*
       
  3741 			 * enable transmits in the hardware, need to do this
       
  3742 			 * after setting TARC(0)
       
  3743 			 */
       
  3744 			tctl = er32(TCTL);
       
  3745 			tctl |= E1000_TCTL_EN;
       
  3746 			ew32(TCTL, tctl);
       
  3747 
       
  3748                         /*
       
  3749 			 * Perform any post-link-up configuration before
       
  3750 			 * reporting link up.
       
  3751 			 */
       
  3752 			if (phy->ops.cfg_on_link_up)
       
  3753 				phy->ops.cfg_on_link_up(hw);
       
  3754 
       
  3755 			if (adapter->ecdev)
       
  3756 				ecdev_set_link(adapter->ecdev, 1);
       
  3757 			else 
       
  3758 				netif_carrier_on(netdev);
       
  3759 
       
  3760 			if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
       
  3761 				mod_timer(&adapter->phy_info_timer,
       
  3762 					  round_jiffies(jiffies + 2 * HZ));
       
  3763 		}
       
  3764 	} else {
       
  3765 		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) 
       
  3766 				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
       
  3767 			adapter->link_speed = 0;
       
  3768 			adapter->link_duplex = 0;
       
  3769 			/* Link status message must follow this format */
       
  3770 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
       
  3771 			       adapter->netdev->name);
       
  3772 			if (adapter->ecdev)
       
  3773 				ecdev_set_link(adapter->ecdev, 0);
       
  3774 			else
       
  3775 				netif_carrier_off(netdev);
       
  3776 			if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
       
  3777 				mod_timer(&adapter->phy_info_timer,
       
  3778 					  round_jiffies(jiffies + 2 * HZ));
       
  3779 
       
  3780 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
       
  3781 				schedule_work(&adapter->reset_task);
       
  3782 		}
       
  3783 	}
       
  3784 
       
  3785 link_up:
       
  3786 	e1000e_update_stats(adapter);
       
  3787 
       
  3788 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  3789 	adapter->tpt_old = adapter->stats.tpt;
       
  3790 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  3791 	adapter->colc_old = adapter->stats.colc;
       
  3792 
       
  3793 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
       
  3794 	adapter->gorc_old = adapter->stats.gorc;
       
  3795 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
       
  3796 	adapter->gotc_old = adapter->stats.gotc;
       
  3797 
       
  3798 	e1000e_update_adaptive(&adapter->hw);
       
  3799 
       
  3800 	if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) 
       
  3801 			|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
       
  3802 		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
       
  3803 			       tx_ring->count);
       
  3804 		if (tx_pending) {
       
  3805 			/*
       
  3806 			 * We've lost link, so the controller stops DMA,
       
  3807 			 * but we've got queued Tx work that's never going
       
  3808 			 * to get done, so reset controller to flush Tx.
       
  3809 			 * (Do the reset outside of interrupt context).
       
  3810 			 */
       
  3811 			adapter->tx_timeout_count++;
       
  3812 			schedule_work(&adapter->reset_task);
       
  3813 			/* return immediately since reset is imminent */
       
  3814 			return;
       
  3815 		}
       
  3816 	}
       
  3817 
       
  3818 	/* Cause software interrupt to ensure Rx ring is cleaned */
       
  3819 	if (adapter->msix_entries)
       
  3820 		ew32(ICS, adapter->rx_ring->ims_val);
       
  3821 	else
       
  3822 		ew32(ICS, E1000_ICS_RXDMT0);
       
  3823 
       
  3824 	/* Force detection of hung controller every watchdog period */
       
  3825 	adapter->detect_tx_hung = 1;
       
  3826 
       
  3827 	/*
       
  3828 	 * With 82571 controllers, LAA may be overwritten due to controller
       
  3829 	 * reset from the other port. Set the appropriate LAA in RAR[0]
       
  3830 	 */
       
  3831 	if (e1000e_get_laa_state_82571(hw))
       
  3832 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
       
  3833 
       
  3834 	/* Reset the timer */
       
  3835 	if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
       
  3836 		mod_timer(&adapter->watchdog_timer,
       
  3837 			  round_jiffies(jiffies + 2 * HZ));
       
  3838 }
       
  3839 
       
  3840 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  3841 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  3842 #define E1000_TX_FLAGS_TSO		0x00000004
       
  3843 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  3844 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  3845 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  3846 
       
  3847 static int e1000_tso(struct e1000_adapter *adapter,
       
  3848 		     struct sk_buff *skb)
       
  3849 {
       
  3850 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3851 	struct e1000_context_desc *context_desc;
       
  3852 	struct e1000_buffer *buffer_info;
       
  3853 	unsigned int i;
       
  3854 	u32 cmd_length = 0;
       
  3855 	u16 ipcse = 0, tucse, mss;
       
  3856 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  3857 	int err;
       
  3858 
       
  3859 	if (!skb_is_gso(skb))
       
  3860 		return 0;
       
  3861 
       
  3862 	if (skb_header_cloned(skb)) {
       
  3863 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  3864 		if (err)
       
  3865 			return err;
       
  3866 	}
       
  3867 
       
  3868 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  3869 	mss = skb_shinfo(skb)->gso_size;
       
  3870 	if (skb->protocol == htons(ETH_P_IP)) {
       
  3871 		struct iphdr *iph = ip_hdr(skb);
       
  3872 		iph->tot_len = 0;
       
  3873 		iph->check = 0;
       
  3874 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
       
  3875 		                                         0, IPPROTO_TCP, 0);
       
  3876 		cmd_length = E1000_TXD_CMD_IP;
       
  3877 		ipcse = skb_transport_offset(skb) - 1;
       
  3878 	} else if (skb_is_gso_v6(skb)) {
       
  3879 		ipv6_hdr(skb)->payload_len = 0;
       
  3880 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  3881 		                                       &ipv6_hdr(skb)->daddr,
       
  3882 		                                       0, IPPROTO_TCP, 0);
       
  3883 		ipcse = 0;
       
  3884 	}
       
  3885 	ipcss = skb_network_offset(skb);
       
  3886 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  3887 	tucss = skb_transport_offset(skb);
       
  3888 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  3889 	tucse = 0;
       
  3890 
       
  3891 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  3892 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  3893 
       
  3894 	i = tx_ring->next_to_use;
       
  3895 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  3896 	buffer_info = &tx_ring->buffer_info[i];
       
  3897 
       
  3898 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  3899 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  3900 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  3901 	context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  3902 	context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  3903 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  3904 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  3905 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  3906 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  3907 
       
  3908 	buffer_info->time_stamp = jiffies;
       
  3909 	buffer_info->next_to_watch = i;
       
  3910 
       
  3911 	i++;
       
  3912 	if (i == tx_ring->count)
       
  3913 		i = 0;
       
  3914 	tx_ring->next_to_use = i;
       
  3915 
       
  3916 	return 1;
       
  3917 }
       
  3918 
       
  3919 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  3920 {
       
  3921 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3922 	struct e1000_context_desc *context_desc;
       
  3923 	struct e1000_buffer *buffer_info;
       
  3924 	unsigned int i;
       
  3925 	u8 css;
       
  3926 	u32 cmd_len = E1000_TXD_CMD_DEXT;
       
  3927 	__be16 protocol;
       
  3928 
       
  3929 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  3930 		return 0;
       
  3931 
       
  3932 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
       
  3933 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
       
  3934 	else
       
  3935 		protocol = skb->protocol;
       
  3936 
       
  3937 	switch (protocol) {
       
  3938 	case cpu_to_be16(ETH_P_IP):
       
  3939 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
       
  3940 			cmd_len |= E1000_TXD_CMD_TCP;
       
  3941 		break;
       
  3942 	case cpu_to_be16(ETH_P_IPV6):
       
  3943 		/* XXX not handling all IPV6 headers */
       
  3944 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
       
  3945 			cmd_len |= E1000_TXD_CMD_TCP;
       
  3946 		break;
       
  3947 	default:
       
  3948 		if (unlikely(net_ratelimit()))
       
  3949 			e_warn("checksum_partial proto=%x!\n",
       
  3950 			       be16_to_cpu(protocol));
       
  3951 		break;
       
  3952 	}
       
  3953 
       
  3954 	css = skb_transport_offset(skb);
       
  3955 
       
  3956 	i = tx_ring->next_to_use;
       
  3957 	buffer_info = &tx_ring->buffer_info[i];
       
  3958 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  3959 
       
  3960 	context_desc->lower_setup.ip_config = 0;
       
  3961 	context_desc->upper_setup.tcp_fields.tucss = css;
       
  3962 	context_desc->upper_setup.tcp_fields.tucso =
       
  3963 				css + skb->csum_offset;
       
  3964 	context_desc->upper_setup.tcp_fields.tucse = 0;
       
  3965 	context_desc->tcp_seg_setup.data = 0;
       
  3966 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
       
  3967 
       
  3968 	buffer_info->time_stamp = jiffies;
       
  3969 	buffer_info->next_to_watch = i;
       
  3970 
       
  3971 	i++;
       
  3972 	if (i == tx_ring->count)
       
  3973 		i = 0;
       
  3974 	tx_ring->next_to_use = i;
       
  3975 
       
  3976 	return 1;
       
  3977 }
       
  3978 
       
  3979 #define E1000_MAX_PER_TXD	8192
       
  3980 #define E1000_MAX_TXD_PWR	12
       
  3981 
       
  3982 static int e1000_tx_map(struct e1000_adapter *adapter,
       
  3983 			struct sk_buff *skb, unsigned int first,
       
  3984 			unsigned int max_per_txd, unsigned int nr_frags,
       
  3985 			unsigned int mss)
       
  3986 {
       
  3987 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3988 	struct pci_dev *pdev = adapter->pdev;
       
  3989 	struct e1000_buffer *buffer_info;
       
  3990 	unsigned int len = skb_headlen(skb);
       
  3991 	unsigned int offset = 0, size, count = 0, i;
       
  3992 	unsigned int f;
       
  3993 
       
  3994 	i = tx_ring->next_to_use;
       
  3995 
       
  3996 	while (len) {
       
  3997 		buffer_info = &tx_ring->buffer_info[i];
       
  3998 		size = min(len, max_per_txd);
       
  3999 
       
  4000 		buffer_info->length = size;
       
  4001 		buffer_info->time_stamp = jiffies;
       
  4002 		buffer_info->next_to_watch = i;
       
  4003 		buffer_info->dma = pci_map_single(pdev,	skb->data + offset,
       
  4004 						  size,	PCI_DMA_TODEVICE);
       
  4005 		buffer_info->mapped_as_page = false;
       
  4006 		if (pci_dma_mapping_error(pdev, buffer_info->dma))
       
  4007 			goto dma_error;
       
  4008 
       
  4009 		len -= size;
       
  4010 		offset += size;
       
  4011 		count++;
       
  4012 
       
  4013 		if (len) {
       
  4014 			i++;
       
  4015 			if (i == tx_ring->count)
       
  4016 				i = 0;
       
  4017 		}
       
  4018 	}
       
  4019 
       
  4020 	for (f = 0; f < nr_frags; f++) {
       
  4021 		struct skb_frag_struct *frag;
       
  4022 
       
  4023 		frag = &skb_shinfo(skb)->frags[f];
       
  4024 		len = frag->size;
       
  4025 		offset = frag->page_offset;
       
  4026 
       
  4027 		while (len) {
       
  4028 			i++;
       
  4029 			if (i == tx_ring->count)
       
  4030 				i = 0;
       
  4031 
       
  4032 			buffer_info = &tx_ring->buffer_info[i];
       
  4033 			size = min(len, max_per_txd);
       
  4034 
       
  4035 			buffer_info->length = size;
       
  4036 			buffer_info->time_stamp = jiffies;
       
  4037 			buffer_info->next_to_watch = i;
       
  4038 			buffer_info->dma = pci_map_page(pdev, frag->page,
       
  4039 							offset, size,
       
  4040 							PCI_DMA_TODEVICE);
       
  4041 			buffer_info->mapped_as_page = true;
       
  4042 			if (pci_dma_mapping_error(pdev, buffer_info->dma))
       
  4043 				goto dma_error;
       
  4044 
       
  4045 			len -= size;
       
  4046 			offset += size;
       
  4047 			count++;
       
  4048 		}
       
  4049 	}
       
  4050 
       
  4051 	tx_ring->buffer_info[i].skb = skb;
       
  4052 	tx_ring->buffer_info[first].next_to_watch = i;
       
  4053 
       
  4054 	return count;
       
  4055 
       
  4056 dma_error:
       
  4057 	dev_err(&pdev->dev, "TX DMA map failed\n");
       
  4058 	buffer_info->dma = 0;
       
  4059 	if (count)
       
  4060 		count--;
       
  4061 
       
  4062 	while (count--) {
       
  4063 		if (i==0)
       
  4064 			i += tx_ring->count;
       
  4065 		i--;
       
  4066 		buffer_info = &tx_ring->buffer_info[i];
       
  4067 		e1000_put_txbuf(adapter, buffer_info);;
       
  4068 	}
       
  4069 
       
  4070 	return 0;
       
  4071 }
       
  4072 
       
  4073 static void e1000_tx_queue(struct e1000_adapter *adapter,
       
  4074 			   int tx_flags, int count)
       
  4075 {
       
  4076 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4077 	struct e1000_tx_desc *tx_desc = NULL;
       
  4078 	struct e1000_buffer *buffer_info;
       
  4079 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  4080 	unsigned int i;
       
  4081 
       
  4082 	if (tx_flags & E1000_TX_FLAGS_TSO) {
       
  4083 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  4084 			     E1000_TXD_CMD_TSE;
       
  4085 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  4086 
       
  4087 		if (tx_flags & E1000_TX_FLAGS_IPV4)
       
  4088 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  4089 	}
       
  4090 
       
  4091 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
       
  4092 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  4093 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  4094 	}
       
  4095 
       
  4096 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
       
  4097 		txd_lower |= E1000_TXD_CMD_VLE;
       
  4098 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  4099 	}
       
  4100 
       
  4101 	i = tx_ring->next_to_use;
       
  4102 
       
  4103 	while (count--) {
       
  4104 		buffer_info = &tx_ring->buffer_info[i];
       
  4105 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  4106 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4107 		tx_desc->lower.data =
       
  4108 			cpu_to_le32(txd_lower | buffer_info->length);
       
  4109 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  4110 
       
  4111 		i++;
       
  4112 		if (i == tx_ring->count)
       
  4113 			i = 0;
       
  4114 	}
       
  4115 
       
  4116 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  4117 
       
  4118 	/*
       
  4119 	 * Force memory writes to complete before letting h/w
       
  4120 	 * know there are new descriptors to fetch.  (Only
       
  4121 	 * applicable for weak-ordered memory model archs,
       
  4122 	 * such as IA-64).
       
  4123 	 */
       
  4124 	wmb();
       
  4125 
       
  4126 	tx_ring->next_to_use = i;
       
  4127 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
       
  4128 	/*
       
  4129 	 * we need this if more than one processor can write to our tail
       
  4130 	 * at a time, it synchronizes IO on IA64/Altix systems
       
  4131 	 */
       
  4132 	mmiowb();
       
  4133 }
       
  4134 
       
  4135 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  4136 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
       
  4137 				    struct sk_buff *skb)
       
  4138 {
       
  4139 	struct e1000_hw *hw =  &adapter->hw;
       
  4140 	u16 length, offset;
       
  4141 
       
  4142 	if (vlan_tx_tag_present(skb)) {
       
  4143 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  4144 		    (adapter->hw.mng_cookie.status &
       
  4145 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
       
  4146 			return 0;
       
  4147 	}
       
  4148 
       
  4149 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
       
  4150 		return 0;
       
  4151 
       
  4152 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
       
  4153 		return 0;
       
  4154 
       
  4155 	{
       
  4156 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
       
  4157 		struct udphdr *udp;
       
  4158 
       
  4159 		if (ip->protocol != IPPROTO_UDP)
       
  4160 			return 0;
       
  4161 
       
  4162 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
       
  4163 		if (ntohs(udp->dest) != 67)
       
  4164 			return 0;
       
  4165 
       
  4166 		offset = (u8 *)udp + 8 - skb->data;
       
  4167 		length = skb->len - offset;
       
  4168 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
       
  4169 	}
       
  4170 
       
  4171 	return 0;
       
  4172 }
       
  4173 
       
  4174 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  4175 {
       
  4176 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4177 
       
  4178 	netif_stop_queue(netdev);
       
  4179 	/*
       
  4180 	 * Herbert's original patch had:
       
  4181 	 *  smp_mb__after_netif_stop_queue();
       
  4182 	 * but since that doesn't exist yet, just open code it.
       
  4183 	 */
       
  4184 	smp_mb();
       
  4185 
       
  4186 	/*
       
  4187 	 * We need to check again in a case another CPU has just
       
  4188 	 * made room available.
       
  4189 	 */
       
  4190 	if (e1000_desc_unused(adapter->tx_ring) < size)
       
  4191 		return -EBUSY;
       
  4192 
       
  4193 	/* A reprieve! */
       
  4194 	netif_start_queue(netdev);
       
  4195 	++adapter->restart_queue;
       
  4196 	return 0;
       
  4197 }
       
  4198 
       
  4199 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  4200 {
       
  4201 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4202 
       
  4203 	if (e1000_desc_unused(adapter->tx_ring) >= size)
       
  4204 		return 0;
       
  4205 	return __e1000_maybe_stop_tx(netdev, size);
       
  4206 }
       
  4207 
       
  4208 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  4209 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
  4210 				    struct net_device *netdev)
       
  4211 {
       
  4212 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4213 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4214 	unsigned int first;
       
  4215 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
       
  4216 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  4217 	unsigned int tx_flags = 0;
       
  4218 	unsigned int len = skb->len - skb->data_len;
       
  4219 	unsigned int nr_frags;
       
  4220 	unsigned int mss;
       
  4221 	int count = 0;
       
  4222 	int tso;
       
  4223 	unsigned int f;
       
  4224 
       
  4225 	if (test_bit(__E1000_DOWN, &adapter->state)) {
       
  4226 		if (!adapter->ecdev)
       
  4227 			dev_kfree_skb_any(skb);
       
  4228 		return NETDEV_TX_OK;
       
  4229 	}
       
  4230 
       
  4231 	if (skb->len <= 0) {
       
  4232 		if (!adapter->ecdev)
       
  4233 			dev_kfree_skb_any(skb);
       
  4234 		return NETDEV_TX_OK;
       
  4235 	}
       
  4236 
       
  4237 	mss = skb_shinfo(skb)->gso_size;
       
  4238 	/*
       
  4239 	 * The controller does a simple calculation to
       
  4240 	 * make sure there is enough room in the FIFO before
       
  4241 	 * initiating the DMA for each buffer.  The calc is:
       
  4242 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  4243 	 * overrun the FIFO, adjust the max buffer len if mss
       
  4244 	 * drops.
       
  4245 	 */
       
  4246 	if (mss) {
       
  4247 		u8 hdr_len;
       
  4248 		max_per_txd = min(mss << 2, max_per_txd);
       
  4249 		max_txd_pwr = fls(max_per_txd) - 1;
       
  4250 
       
  4251 		/*
       
  4252 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  4253 		 * points to just header, pull a few bytes of payload from
       
  4254 		 * frags into skb->data
       
  4255 		 */
       
  4256 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  4257 		/*
       
  4258 		 * we do this workaround for ES2LAN, but it is un-necessary,
       
  4259 		 * avoiding it could save a lot of cycles
       
  4260 		 */
       
  4261 		if (skb->data_len && (hdr_len == len)) {
       
  4262 			unsigned int pull_size;
       
  4263 
       
  4264 			pull_size = min((unsigned int)4, skb->data_len);
       
  4265 			if (!__pskb_pull_tail(skb, pull_size)) {
       
  4266 				e_err("__pskb_pull_tail failed.\n");
       
  4267 				if (!adapter->ecdev)
       
  4268 					dev_kfree_skb_any(skb);
       
  4269 				return NETDEV_TX_OK;
       
  4270 			}
       
  4271 			len = skb->len - skb->data_len;
       
  4272 		}
       
  4273 	}
       
  4274 
       
  4275 	/* reserve a descriptor for the offload context */
       
  4276 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  4277 		count++;
       
  4278 	count++;
       
  4279 
       
  4280 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  4281 
       
  4282 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  4283 	for (f = 0; f < nr_frags; f++)
       
  4284 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  4285 				       max_txd_pwr);
       
  4286 
       
  4287 	if (adapter->hw.mac.tx_pkt_filtering)
       
  4288 		e1000_transfer_dhcp_info(adapter, skb);
       
  4289 
       
  4290 	/*
       
  4291 	 * need: count + 2 desc gap to keep tail from touching
       
  4292 	 * head, otherwise try next time
       
  4293 	 */
       
  4294 	if (!adapter->ecdev && e1000_maybe_stop_tx(netdev, count + 2))
       
  4295 		return NETDEV_TX_BUSY;
       
  4296 
       
  4297 	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
       
  4298 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  4299 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  4300 	}
       
  4301 
       
  4302 	first = tx_ring->next_to_use;
       
  4303 
       
  4304 	tso = e1000_tso(adapter, skb);
       
  4305 	if (tso < 0) {
       
  4306 		if (!adapter->ecdev)
       
  4307 			dev_kfree_skb_any(skb);
       
  4308 		return NETDEV_TX_OK;
       
  4309 	}
       
  4310 
       
  4311 	if (tso)
       
  4312 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  4313 	else if (e1000_tx_csum(adapter, skb))
       
  4314 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  4315 
       
  4316 	/*
       
  4317 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
       
  4318 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  4319 	 * no longer assume, we must.
       
  4320 	 */
       
  4321 	if (skb->protocol == htons(ETH_P_IP))
       
  4322 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  4323 
       
  4324 	/* if count is 0 then mapping error has occured */
       
  4325 	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
       
  4326 	if (count) {
       
  4327 		e1000_tx_queue(adapter, tx_flags, count);
       
  4328 		/* Make sure there is space in the ring for the next send. */
       
  4329 		if (!adapter->ecdev)
       
  4330 			e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
       
  4331 
       
  4332 	} else {
       
  4333 		if (!adapter->ecdev)
       
  4334 			dev_kfree_skb_any(skb);
       
  4335 		tx_ring->buffer_info[first].time_stamp = 0;
       
  4336 		tx_ring->next_to_use = first;
       
  4337 	}
       
  4338 
       
  4339 	return NETDEV_TX_OK;
       
  4340 }
       
  4341 
       
  4342 /**
       
  4343  * e1000_tx_timeout - Respond to a Tx Hang
       
  4344  * @netdev: network interface device structure
       
  4345  **/
       
  4346 static void e1000_tx_timeout(struct net_device *netdev)
       
  4347 {
       
  4348 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4349 
       
  4350 	/* Do the reset outside of interrupt context */
       
  4351 	adapter->tx_timeout_count++;
       
  4352 	schedule_work(&adapter->reset_task);
       
  4353 }
       
  4354 
       
  4355 static void e1000_reset_task(struct work_struct *work)
       
  4356 {
       
  4357 	struct e1000_adapter *adapter;
       
  4358 	adapter = container_of(work, struct e1000_adapter, reset_task);
       
  4359 
       
  4360 	e1000e_reinit_locked(adapter);
       
  4361 }
       
  4362 
       
  4363 /**
       
  4364  * e1000_get_stats - Get System Network Statistics
       
  4365  * @netdev: network interface device structure
       
  4366  *
       
  4367  * Returns the address of the device statistics structure.
       
  4368  * The statistics are actually updated from the timer callback.
       
  4369  **/
       
  4370 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
       
  4371 {
       
  4372 	/* only return the current stats */
       
  4373 	return &netdev->stats;
       
  4374 }
       
  4375 
       
  4376 /**
       
  4377  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  4378  * @netdev: network interface device structure
       
  4379  * @new_mtu: new value for maximum frame size
       
  4380  *
       
  4381  * Returns 0 on success, negative on failure
       
  4382  **/
       
  4383 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  4384 {
       
  4385 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4386 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
       
  4387 
       
  4388 	if (adapter->ecdev)
       
  4389 		return -EBUSY;
       
  4390 
       
  4391 	/* Jumbo frame support */
       
  4392 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
       
  4393 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
       
  4394 		e_err("Jumbo Frames not supported.\n");
       
  4395 		return -EINVAL;
       
  4396 	}
       
  4397 
       
  4398 	/* Supported frame sizes */
       
  4399 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
       
  4400 	    (max_frame > adapter->max_hw_frame_size)) {
       
  4401 		e_err("Unsupported MTU setting\n");
       
  4402 		return -EINVAL;
       
  4403 	}
       
  4404 
       
  4405 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  4406 		msleep(1);
       
  4407 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
       
  4408 	adapter->max_frame_size = max_frame;
       
  4409 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
       
  4410 	netdev->mtu = new_mtu;
       
  4411 	if (netif_running(netdev))
       
  4412 		e1000e_down(adapter);
       
  4413 
       
  4414 	/*
       
  4415 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  4416 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  4417 	 * larger slab size.
       
  4418 	 * i.e. RXBUFFER_2048 --> size-4096 slab
       
  4419 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
       
  4420 	 * fragmented skbs
       
  4421 	 */
       
  4422 
       
  4423 	if (max_frame <= 2048)
       
  4424 		adapter->rx_buffer_len = 2048;
       
  4425 	else
       
  4426 		adapter->rx_buffer_len = 4096;
       
  4427 
       
  4428 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  4429 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
       
  4430 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
       
  4431 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
       
  4432 					 + ETH_FCS_LEN;
       
  4433 
       
  4434 	if (netif_running(netdev))
       
  4435 		e1000e_up(adapter);
       
  4436 	else
       
  4437 		e1000e_reset(adapter);
       
  4438 
       
  4439 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  4440 
       
  4441 	return 0;
       
  4442 }
       
  4443 
       
  4444 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  4445 			   int cmd)
       
  4446 {
       
  4447 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4448 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4449 
       
  4450 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
       
  4451 		return -EOPNOTSUPP;
       
  4452 
       
  4453 	switch (cmd) {
       
  4454 	case SIOCGMIIPHY:
       
  4455 		data->phy_id = adapter->hw.phy.addr;
       
  4456 		break;
       
  4457 	case SIOCGMIIREG:
       
  4458 		e1000_phy_read_status(adapter);
       
  4459 
       
  4460 		switch (data->reg_num & 0x1F) {
       
  4461 		case MII_BMCR:
       
  4462 			data->val_out = adapter->phy_regs.bmcr;
       
  4463 			break;
       
  4464 		case MII_BMSR:
       
  4465 			data->val_out = adapter->phy_regs.bmsr;
       
  4466 			break;
       
  4467 		case MII_PHYSID1:
       
  4468 			data->val_out = (adapter->hw.phy.id >> 16);
       
  4469 			break;
       
  4470 		case MII_PHYSID2:
       
  4471 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
       
  4472 			break;
       
  4473 		case MII_ADVERTISE:
       
  4474 			data->val_out = adapter->phy_regs.advertise;
       
  4475 			break;
       
  4476 		case MII_LPA:
       
  4477 			data->val_out = adapter->phy_regs.lpa;
       
  4478 			break;
       
  4479 		case MII_EXPANSION:
       
  4480 			data->val_out = adapter->phy_regs.expansion;
       
  4481 			break;
       
  4482 		case MII_CTRL1000:
       
  4483 			data->val_out = adapter->phy_regs.ctrl1000;
       
  4484 			break;
       
  4485 		case MII_STAT1000:
       
  4486 			data->val_out = adapter->phy_regs.stat1000;
       
  4487 			break;
       
  4488 		case MII_ESTATUS:
       
  4489 			data->val_out = adapter->phy_regs.estatus;
       
  4490 			break;
       
  4491 		default:
       
  4492 			return -EIO;
       
  4493 		}
       
  4494 		break;
       
  4495 	case SIOCSMIIREG:
       
  4496 	default:
       
  4497 		return -EOPNOTSUPP;
       
  4498 	}
       
  4499 	return 0;
       
  4500 }
       
  4501 
       
  4502 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4503 {
       
  4504 	switch (cmd) {
       
  4505 	case SIOCGMIIPHY:
       
  4506 	case SIOCGMIIREG:
       
  4507 	case SIOCSMIIREG:
       
  4508 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4509 	default:
       
  4510 		return -EOPNOTSUPP;
       
  4511 	}
       
  4512 }
       
  4513 
       
  4514 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
       
  4515 {
       
  4516 	struct e1000_hw *hw = &adapter->hw;
       
  4517 	u32 i, mac_reg;
       
  4518 	u16 phy_reg;
       
  4519 	int retval = 0;
       
  4520 
       
  4521 	/* copy MAC RARs to PHY RARs */
       
  4522 	for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
       
  4523 		mac_reg = er32(RAL(i));
       
  4524 		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
       
  4525 		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
       
  4526 		mac_reg = er32(RAH(i));
       
  4527 		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
       
  4528 		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
       
  4529 	}
       
  4530 
       
  4531 	/* copy MAC MTA to PHY MTA */
       
  4532 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
       
  4533 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
       
  4534 		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
       
  4535 		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
       
  4536 	}
       
  4537 
       
  4538 	/* configure PHY Rx Control register */
       
  4539 	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
       
  4540 	mac_reg = er32(RCTL);
       
  4541 	if (mac_reg & E1000_RCTL_UPE)
       
  4542 		phy_reg |= BM_RCTL_UPE;
       
  4543 	if (mac_reg & E1000_RCTL_MPE)
       
  4544 		phy_reg |= BM_RCTL_MPE;
       
  4545 	phy_reg &= ~(BM_RCTL_MO_MASK);
       
  4546 	if (mac_reg & E1000_RCTL_MO_3)
       
  4547 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
       
  4548 				<< BM_RCTL_MO_SHIFT);
       
  4549 	if (mac_reg & E1000_RCTL_BAM)
       
  4550 		phy_reg |= BM_RCTL_BAM;
       
  4551 	if (mac_reg & E1000_RCTL_PMCF)
       
  4552 		phy_reg |= BM_RCTL_PMCF;
       
  4553 	mac_reg = er32(CTRL);
       
  4554 	if (mac_reg & E1000_CTRL_RFCE)
       
  4555 		phy_reg |= BM_RCTL_RFCE;
       
  4556 	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
       
  4557 
       
  4558 	/* enable PHY wakeup in MAC register */
       
  4559 	ew32(WUFC, wufc);
       
  4560 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
       
  4561 
       
  4562 	/* configure and enable PHY wakeup in PHY registers */
       
  4563 	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
       
  4564 	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
       
  4565 
       
  4566 	/* activate PHY wakeup */
       
  4567 	retval = hw->phy.ops.acquire(hw);
       
  4568 	if (retval) {
       
  4569 		e_err("Could not acquire PHY\n");
       
  4570 		return retval;
       
  4571 	}
       
  4572 	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  4573 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
       
  4574 	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
       
  4575 	if (retval) {
       
  4576 		e_err("Could not read PHY page 769\n");
       
  4577 		goto out;
       
  4578 	}
       
  4579 	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
       
  4580 	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  4581 	if (retval)
       
  4582 		e_err("Could not set PHY Host Wakeup bit\n");
       
  4583 out:
       
  4584 	hw->phy.ops.release(hw);
       
  4585 
       
  4586 	return retval;
       
  4587 }
       
  4588 
       
  4589 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
       
  4590 {
       
  4591 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4592 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4593 	struct e1000_hw *hw = &adapter->hw;
       
  4594 	u32 ctrl, ctrl_ext, rctl, status;
       
  4595 	u32 wufc = adapter->wol;
       
  4596 	int retval = 0;
       
  4597 
       
  4598 	netif_device_detach(netdev);
       
  4599 
       
  4600 	if (netif_running(netdev)) {
       
  4601 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  4602 		e1000e_down(adapter);
       
  4603 		e1000_free_irq(adapter);
       
  4604 	}
       
  4605 	e1000e_reset_interrupt_capability(adapter);
       
  4606 
       
  4607 	retval = pci_save_state(pdev);
       
  4608 	if (retval)
       
  4609 		return retval;
       
  4610 
       
  4611 	status = er32(STATUS);
       
  4612 	if (status & E1000_STATUS_LU)
       
  4613 		wufc &= ~E1000_WUFC_LNKC;
       
  4614 
       
  4615 	if (wufc) {
       
  4616 		e1000_setup_rctl(adapter);
       
  4617 		e1000_set_multi(netdev);
       
  4618 
       
  4619 		/* turn on all-multi mode if wake on multicast is enabled */
       
  4620 		if (wufc & E1000_WUFC_MC) {
       
  4621 			rctl = er32(RCTL);
       
  4622 			rctl |= E1000_RCTL_MPE;
       
  4623 			ew32(RCTL, rctl);
       
  4624 		}
       
  4625 
       
  4626 		ctrl = er32(CTRL);
       
  4627 		/* advertise wake from D3Cold */
       
  4628 		#define E1000_CTRL_ADVD3WUC 0x00100000
       
  4629 		/* phy power management enable */
       
  4630 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  4631 		ctrl |= E1000_CTRL_ADVD3WUC;
       
  4632 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
       
  4633 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
       
  4634 		ew32(CTRL, ctrl);
       
  4635 
       
  4636 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
       
  4637 		    adapter->hw.phy.media_type ==
       
  4638 		    e1000_media_type_internal_serdes) {
       
  4639 			/* keep the laser running in D3 */
       
  4640 			ctrl_ext = er32(CTRL_EXT);
       
  4641 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
       
  4642 			ew32(CTRL_EXT, ctrl_ext);
       
  4643 		}
       
  4644 
       
  4645 		if (adapter->flags & FLAG_IS_ICH)
       
  4646 			e1000e_disable_gig_wol_ich8lan(&adapter->hw);
       
  4647 
       
  4648 		/* Allow time for pending master requests to run */
       
  4649 		e1000e_disable_pcie_master(&adapter->hw);
       
  4650 
       
  4651 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  4652 			/* enable wakeup by the PHY */
       
  4653 			retval = e1000_init_phy_wakeup(adapter, wufc);
       
  4654 			if (retval)
       
  4655 				return retval;
       
  4656 		} else {
       
  4657 			/* enable wakeup by the MAC */
       
  4658 			ew32(WUFC, wufc);
       
  4659 			ew32(WUC, E1000_WUC_PME_EN);
       
  4660 		}
       
  4661 	} else {
       
  4662 		ew32(WUC, 0);
       
  4663 		ew32(WUFC, 0);
       
  4664 	}
       
  4665 
       
  4666 	*enable_wake = !!wufc;
       
  4667 
       
  4668 	/* make sure adapter isn't asleep if manageability is enabled */
       
  4669 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
       
  4670 	    (hw->mac.ops.check_mng_mode(hw)))
       
  4671 		*enable_wake = true;
       
  4672 
       
  4673 	if (adapter->hw.phy.type == e1000_phy_igp_3)
       
  4674 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
       
  4675 
       
  4676 	/*
       
  4677 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  4678 	 * would have already happened in close and is redundant.
       
  4679 	 */
       
  4680 	e1000_release_hw_control(adapter);
       
  4681 
       
  4682 	pci_disable_device(pdev);
       
  4683 
       
  4684 	return 0;
       
  4685 }
       
  4686 
       
  4687 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
       
  4688 {
       
  4689 	if (sleep && wake) {
       
  4690 		pci_prepare_to_sleep(pdev);
       
  4691 		return;
       
  4692 	}
       
  4693 
       
  4694 	pci_wake_from_d3(pdev, wake);
       
  4695 	pci_set_power_state(pdev, PCI_D3hot);
       
  4696 }
       
  4697 
       
  4698 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
       
  4699                                     bool wake)
       
  4700 {
       
  4701 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4702 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4703 
       
  4704 	/*
       
  4705 	 * The pci-e switch on some quad port adapters will report a
       
  4706 	 * correctable error when the MAC transitions from D0 to D3.  To
       
  4707 	 * prevent this we need to mask off the correctable errors on the
       
  4708 	 * downstream port of the pci-e switch.
       
  4709 	 */
       
  4710 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
       
  4711 		struct pci_dev *us_dev = pdev->bus->self;
       
  4712 		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
       
  4713 		u16 devctl;
       
  4714 
       
  4715 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
       
  4716 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
       
  4717 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
       
  4718 
       
  4719 		e1000_power_off(pdev, sleep, wake);
       
  4720 
       
  4721 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
       
  4722 	} else {
       
  4723 		e1000_power_off(pdev, sleep, wake);
       
  4724 	}
       
  4725 }
       
  4726 
       
  4727 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
       
  4728 {
       
  4729 	int pos;
       
  4730 	u16 val;
       
  4731 
       
  4732 	/*
       
  4733 	 * 82573 workaround - disable L1 ASPM on mobile chipsets
       
  4734 	 *
       
  4735 	 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
       
  4736 	 * resulting in lost data or garbage information on the pci-e link
       
  4737 	 * level. This could result in (false) bad EEPROM checksum errors,
       
  4738 	 * long ping times (up to 2s) or even a system freeze/hang.
       
  4739 	 *
       
  4740 	 * Unfortunately this feature saves about 1W power consumption when
       
  4741 	 * active.
       
  4742 	 */
       
  4743 	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
       
  4744 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
       
  4745 	if (val & 0x2) {
       
  4746 		dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
       
  4747 		val &= ~0x2;
       
  4748 		pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
       
  4749 	}
       
  4750 }
       
  4751 
       
  4752 #ifdef CONFIG_PM
       
  4753 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  4754 {
       
  4755 	int retval;
       
  4756 	bool wake;
       
  4757 
       
  4758 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4759 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4760 
       
  4761 	if (adapter->ecdev)
       
  4762 		return -EBUSY;
       
  4763 
       
  4764 	retval = __e1000_shutdown(pdev, &wake);
       
  4765 	if (!retval)
       
  4766 		e1000_complete_shutdown(pdev, true, wake);
       
  4767 
       
  4768 	return retval;
       
  4769 }
       
  4770 
       
  4771 static int e1000_resume(struct pci_dev *pdev)
       
  4772 {
       
  4773 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4774 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4775 	struct e1000_hw *hw = &adapter->hw;
       
  4776 	u32 err;
       
  4777 
       
  4778 	if (adapter->ecdev)
       
  4779 		return -EBUSY;
       
  4780 
       
  4781 	pci_set_power_state(pdev, PCI_D0);
       
  4782 	pci_restore_state(pdev);
       
  4783 	pci_save_state(pdev);
       
  4784 	e1000e_disable_l1aspm(pdev);
       
  4785 
       
  4786 	err = pci_enable_device_mem(pdev);
       
  4787 	if (err) {
       
  4788 		dev_err(&pdev->dev,
       
  4789 			"Cannot enable PCI device from suspend\n");
       
  4790 		return err;
       
  4791 	}
       
  4792 
       
  4793 	pci_set_master(pdev);
       
  4794 
       
  4795 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4796 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4797 
       
  4798 	e1000e_set_interrupt_capability(adapter);
       
  4799 	if (netif_running(netdev)) {
       
  4800 		err = e1000_request_irq(adapter);
       
  4801 		if (err)
       
  4802 			return err;
       
  4803 	}
       
  4804 
       
  4805 	e1000e_power_up_phy(adapter);
       
  4806 
       
  4807 	/* report the system wakeup cause from S3/S4 */
       
  4808 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  4809 		u16 phy_data;
       
  4810 
       
  4811 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
       
  4812 		if (phy_data) {
       
  4813 			e_info("PHY Wakeup cause - %s\n",
       
  4814 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
       
  4815 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
       
  4816 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
       
  4817 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
       
  4818 				phy_data & E1000_WUS_LNKC ? "Link Status "
       
  4819 				" Change" : "other");
       
  4820 		}
       
  4821 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
       
  4822 	} else {
       
  4823 		u32 wus = er32(WUS);
       
  4824 		if (wus) {
       
  4825 			e_info("MAC Wakeup cause - %s\n",
       
  4826 				wus & E1000_WUS_EX ? "Unicast Packet" :
       
  4827 				wus & E1000_WUS_MC ? "Multicast Packet" :
       
  4828 				wus & E1000_WUS_BC ? "Broadcast Packet" :
       
  4829 				wus & E1000_WUS_MAG ? "Magic Packet" :
       
  4830 				wus & E1000_WUS_LNKC ? "Link Status Change" :
       
  4831 				"other");
       
  4832 		}
       
  4833 		ew32(WUS, ~0);
       
  4834 	}
       
  4835 
       
  4836 	e1000e_reset(adapter);
       
  4837 
       
  4838 	e1000_init_manageability(adapter);
       
  4839 
       
  4840 	if (netif_running(netdev))
       
  4841 		e1000e_up(adapter);
       
  4842 
       
  4843 	netif_device_attach(netdev);
       
  4844 
       
  4845 	/*
       
  4846 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  4847 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  4848 	 * under the control of the driver.
       
  4849 	 */
       
  4850 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  4851 		e1000_get_hw_control(adapter);
       
  4852 
       
  4853 	return 0;
       
  4854 }
       
  4855 #endif
       
  4856 
       
  4857 static void e1000_shutdown(struct pci_dev *pdev)
       
  4858 {
       
  4859 	bool wake = false;
       
  4860 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4861 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4862 	
       
  4863 	if (adapter->ecdev)
       
  4864 		return;
       
  4865 
       
  4866 	__e1000_shutdown(pdev, &wake);
       
  4867 
       
  4868 	if (system_state == SYSTEM_POWER_OFF)
       
  4869 		e1000_complete_shutdown(pdev, false, wake);
       
  4870 }
       
  4871 
       
  4872 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  4873 /*
       
  4874  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  4875  * without having to re-enable interrupts. It's not called while
       
  4876  * the interrupt routine is executing.
       
  4877  */
       
  4878 static void e1000_netpoll(struct net_device *netdev)
       
  4879 {
       
  4880 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4881 
       
  4882 	disable_irq(adapter->pdev->irq);
       
  4883 	e1000_intr(adapter->pdev->irq, netdev);
       
  4884 
       
  4885 	enable_irq(adapter->pdev->irq);
       
  4886 }
       
  4887 #endif
       
  4888 
       
  4889 /**
       
  4890  * e1000_io_error_detected - called when PCI error is detected
       
  4891  * @pdev: Pointer to PCI device
       
  4892  * @state: The current pci connection state
       
  4893  *
       
  4894  * This function is called after a PCI bus error affecting
       
  4895  * this device has been detected.
       
  4896  */
       
  4897 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  4898 						pci_channel_state_t state)
       
  4899 {
       
  4900 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4901 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4902 
       
  4903 	netif_device_detach(netdev);
       
  4904 
       
  4905 	if (state == pci_channel_io_perm_failure)
       
  4906 		return PCI_ERS_RESULT_DISCONNECT;
       
  4907 
       
  4908 	if (netif_running(netdev))
       
  4909 		e1000e_down(adapter);
       
  4910 	pci_disable_device(pdev);
       
  4911 
       
  4912 	/* Request a slot slot reset. */
       
  4913 	return PCI_ERS_RESULT_NEED_RESET;
       
  4914 }
       
  4915 
       
  4916 /**
       
  4917  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  4918  * @pdev: Pointer to PCI device
       
  4919  *
       
  4920  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  4921  * resembles the first-half of the e1000_resume routine.
       
  4922  */
       
  4923 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  4924 {
       
  4925 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4926 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4927 	struct e1000_hw *hw = &adapter->hw;
       
  4928 	int err;
       
  4929 	pci_ers_result_t result;
       
  4930 
       
  4931 	e1000e_disable_l1aspm(pdev);
       
  4932 	err = pci_enable_device_mem(pdev);
       
  4933 	if (err) {
       
  4934 		dev_err(&pdev->dev,
       
  4935 			"Cannot re-enable PCI device after reset.\n");
       
  4936 		result = PCI_ERS_RESULT_DISCONNECT;
       
  4937 	} else {
       
  4938 		pci_set_master(pdev);
       
  4939 		pci_restore_state(pdev);
       
  4940 		pci_save_state(pdev);
       
  4941 
       
  4942 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4943 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4944 
       
  4945 		e1000e_reset(adapter);
       
  4946 		ew32(WUS, ~0);
       
  4947 		result = PCI_ERS_RESULT_RECOVERED;
       
  4948 	}
       
  4949 
       
  4950 	pci_cleanup_aer_uncorrect_error_status(pdev);
       
  4951 
       
  4952 	return result;
       
  4953 }
       
  4954 
       
  4955 /**
       
  4956  * e1000_io_resume - called when traffic can start flowing again.
       
  4957  * @pdev: Pointer to PCI device
       
  4958  *
       
  4959  * This callback is called when the error recovery driver tells us that
       
  4960  * its OK to resume normal operation. Implementation resembles the
       
  4961  * second-half of the e1000_resume routine.
       
  4962  */
       
  4963 static void e1000_io_resume(struct pci_dev *pdev)
       
  4964 {
       
  4965 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4966 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4967 
       
  4968 	e1000_init_manageability(adapter);
       
  4969 
       
  4970 	if (netif_running(netdev)) {
       
  4971 		if (e1000e_up(adapter)) {
       
  4972 			dev_err(&pdev->dev,
       
  4973 				"can't bring device back up after reset\n");
       
  4974 			return;
       
  4975 		}
       
  4976 	}
       
  4977 
       
  4978 	netif_device_attach(netdev);
       
  4979 
       
  4980 	/*
       
  4981 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  4982 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  4983 	 * under the control of the driver.
       
  4984 	 */
       
  4985 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  4986 		e1000_get_hw_control(adapter);
       
  4987 
       
  4988 }
       
  4989 
       
  4990 static void e1000_print_device_info(struct e1000_adapter *adapter)
       
  4991 {
       
  4992 	struct e1000_hw *hw = &adapter->hw;
       
  4993 	struct net_device *netdev = adapter->netdev;
       
  4994 	u32 pba_num;
       
  4995 
       
  4996 	/* print bus type/speed/width info */
       
  4997 	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
       
  4998 	       /* bus width */
       
  4999 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
       
  5000 	        "Width x1"),
       
  5001 	       /* MAC address */
       
  5002 	       netdev->dev_addr);
       
  5003 	e_info("Intel(R) PRO/%s Network Connection\n",
       
  5004 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
       
  5005 	e1000e_read_pba_num(hw, &pba_num);
       
  5006 	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
       
  5007 	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
       
  5008 }
       
  5009 
       
  5010 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
       
  5011 {
       
  5012 	struct e1000_hw *hw = &adapter->hw;
       
  5013 	int ret_val;
       
  5014 	u16 buf = 0;
       
  5015 
       
  5016 	if (hw->mac.type != e1000_82573)
       
  5017 		return;
       
  5018 
       
  5019 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
       
  5020 	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
       
  5021 		/* Deep Smart Power Down (DSPD) */
       
  5022 		dev_warn(&adapter->pdev->dev,
       
  5023 			 "Warning: detected DSPD enabled in EEPROM\n");
       
  5024 	}
       
  5025 
       
  5026 	ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
       
  5027 	if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
       
  5028 		/* ASPM enable */
       
  5029 		dev_warn(&adapter->pdev->dev,
       
  5030 			 "Warning: detected ASPM enabled in EEPROM\n");
       
  5031 	}
       
  5032 }
       
  5033 
       
  5034 static const struct net_device_ops e1000e_netdev_ops = {
       
  5035 	.ndo_open		= e1000_open,
       
  5036 	.ndo_stop		= e1000_close,
       
  5037 	.ndo_start_xmit		= e1000_xmit_frame,
       
  5038 	.ndo_get_stats		= e1000_get_stats,
       
  5039 	.ndo_set_multicast_list	= e1000_set_multi,
       
  5040 	.ndo_set_mac_address	= e1000_set_mac,
       
  5041 	.ndo_change_mtu		= e1000_change_mtu,
       
  5042 	.ndo_do_ioctl		= e1000_ioctl,
       
  5043 	.ndo_tx_timeout		= e1000_tx_timeout,
       
  5044 	.ndo_validate_addr	= eth_validate_addr,
       
  5045 
       
  5046 	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
       
  5047 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
       
  5048 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
       
  5049 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5050 	.ndo_poll_controller	= e1000_netpoll,
       
  5051 #endif
       
  5052 };
       
  5053 
       
  5054 /**
       
  5055  * ec_poll - Ethercat poll Routine
       
  5056  * @netdev: net device structure
       
  5057  *
       
  5058  * This function can never fail.
       
  5059  *
       
  5060  **/
       
  5061 void ec_poll(struct net_device *netdev)
       
  5062 {
       
  5063 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5064 
       
  5065 	if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
       
  5066 		e1000_watchdog((unsigned long) adapter);
       
  5067 		adapter->ec_watchdog_jiffies = jiffies;
       
  5068 	}
       
  5069 
       
  5070 #ifdef CONFIG_PCI_MSI
       
  5071 	e1000_intr_msi(0,netdev);
       
  5072 #else
       
  5073 	e1000_intr(0,netdev);
       
  5074 #endif
       
  5075 }
       
  5076 
       
  5077 /**
       
  5078  * e1000_probe - Device Initialization Routine
       
  5079  * @pdev: PCI device information struct
       
  5080  * @ent: entry in e1000_pci_tbl
       
  5081  *
       
  5082  * Returns 0 on success, negative on failure
       
  5083  *
       
  5084  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
  5085  * The OS initialization, configuring of the adapter private structure,
       
  5086  * and a hardware reset occur.
       
  5087  **/
       
  5088 static int __devinit e1000_probe(struct pci_dev *pdev,
       
  5089 				 const struct pci_device_id *ent)
       
  5090 {
       
  5091 	struct net_device *netdev;
       
  5092 	struct e1000_adapter *adapter;
       
  5093 	struct e1000_hw *hw;
       
  5094 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
       
  5095 	resource_size_t mmio_start, mmio_len;
       
  5096 	resource_size_t flash_start, flash_len;
       
  5097 
       
  5098 	static int cards_found;
       
  5099 	int i, err, pci_using_dac;
       
  5100 	u16 eeprom_data = 0;
       
  5101 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
  5102 
       
  5103 	e1000e_disable_l1aspm(pdev);
       
  5104 
       
  5105 	err = pci_enable_device_mem(pdev);
       
  5106 	if (err)
       
  5107 		return err;
       
  5108 
       
  5109 	pci_using_dac = 0;
       
  5110 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
       
  5111 	if (!err) {
       
  5112 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
       
  5113 		if (!err)
       
  5114 			pci_using_dac = 1;
       
  5115 	} else {
       
  5116 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
       
  5117 		if (err) {
       
  5118 			err = pci_set_consistent_dma_mask(pdev,
       
  5119 							  DMA_BIT_MASK(32));
       
  5120 			if (err) {
       
  5121 				dev_err(&pdev->dev, "No usable DMA "
       
  5122 					"configuration, aborting\n");
       
  5123 				goto err_dma;
       
  5124 			}
       
  5125 		}
       
  5126 	}
       
  5127 
       
  5128 	err = pci_request_selected_regions_exclusive(pdev,
       
  5129 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
       
  5130 	                                  e1000e_driver_name);
       
  5131 	if (err)
       
  5132 		goto err_pci_reg;
       
  5133 
       
  5134 	/* AER (Advanced Error Reporting) hooks */
       
  5135 	pci_enable_pcie_error_reporting(pdev);
       
  5136 
       
  5137 	pci_set_master(pdev);
       
  5138 	/* PCI config space info */
       
  5139 	err = pci_save_state(pdev);
       
  5140 	if (err)
       
  5141 		goto err_alloc_etherdev;
       
  5142 
       
  5143 	err = -ENOMEM;
       
  5144 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
  5145 	if (!netdev)
       
  5146 		goto err_alloc_etherdev;
       
  5147 
       
  5148 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
  5149 
       
  5150 	pci_set_drvdata(pdev, netdev);
       
  5151 	adapter = netdev_priv(netdev);
       
  5152 	hw = &adapter->hw;
       
  5153 	adapter->netdev = netdev;
       
  5154 	adapter->pdev = pdev;
       
  5155 	adapter->ei = ei;
       
  5156 	adapter->pba = ei->pba;
       
  5157 	adapter->flags = ei->flags;
       
  5158 	adapter->flags2 = ei->flags2;
       
  5159 	adapter->hw.adapter = adapter;
       
  5160 	adapter->hw.mac.type = ei->mac;
       
  5161 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
       
  5162 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
       
  5163 
       
  5164 	mmio_start = pci_resource_start(pdev, 0);
       
  5165 	mmio_len = pci_resource_len(pdev, 0);
       
  5166 
       
  5167 	err = -EIO;
       
  5168 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
  5169 	if (!adapter->hw.hw_addr)
       
  5170 		goto err_ioremap;
       
  5171 
       
  5172 	if ((adapter->flags & FLAG_HAS_FLASH) &&
       
  5173 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
  5174 		flash_start = pci_resource_start(pdev, 1);
       
  5175 		flash_len = pci_resource_len(pdev, 1);
       
  5176 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
       
  5177 		if (!adapter->hw.flash_address)
       
  5178 			goto err_flashmap;
       
  5179 	}
       
  5180 
       
  5181 	/* construct the net_device struct */
       
  5182 	netdev->netdev_ops		= &e1000e_netdev_ops;
       
  5183 	e1000e_set_ethtool_ops(netdev);
       
  5184 	netdev->watchdog_timeo		= 5 * HZ;
       
  5185 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
  5186 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  5187 
       
  5188 	netdev->mem_start = mmio_start;
       
  5189 	netdev->mem_end = mmio_start + mmio_len;
       
  5190 
       
  5191 	adapter->bd_number = cards_found++;
       
  5192 
       
  5193 	e1000e_check_options(adapter);
       
  5194 
       
  5195 	/* setup adapter struct */
       
  5196 	err = e1000_sw_init(adapter);
       
  5197 	if (err)
       
  5198 		goto err_sw_init;
       
  5199 
       
  5200 	err = -EIO;
       
  5201 
       
  5202 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
       
  5203 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
       
  5204 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
       
  5205 
       
  5206 	err = ei->get_variants(adapter);
       
  5207 	if (err)
       
  5208 		goto err_hw_init;
       
  5209 
       
  5210 	if ((adapter->flags & FLAG_IS_ICH) &&
       
  5211 	    (adapter->flags & FLAG_READ_ONLY_NVM))
       
  5212 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
       
  5213 
       
  5214 	hw->mac.ops.get_bus_info(&adapter->hw);
       
  5215 
       
  5216 	adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  5217 
       
  5218 	/* Copper options */
       
  5219 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
       
  5220 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
       
  5221 		adapter->hw.phy.disable_polarity_correction = 0;
       
  5222 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
       
  5223 	}
       
  5224 
       
  5225 	if (e1000_check_reset_block(&adapter->hw))
       
  5226 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
       
  5227 
       
  5228 	netdev->features = NETIF_F_SG |
       
  5229 			   NETIF_F_HW_CSUM |
       
  5230 			   NETIF_F_HW_VLAN_TX |
       
  5231 			   NETIF_F_HW_VLAN_RX;
       
  5232 
       
  5233 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
       
  5234 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
       
  5235 
       
  5236 	netdev->features |= NETIF_F_TSO;
       
  5237 	netdev->features |= NETIF_F_TSO6;
       
  5238 
       
  5239 	netdev->vlan_features |= NETIF_F_TSO;
       
  5240 	netdev->vlan_features |= NETIF_F_TSO6;
       
  5241 	netdev->vlan_features |= NETIF_F_HW_CSUM;
       
  5242 	netdev->vlan_features |= NETIF_F_SG;
       
  5243 
       
  5244 	if (pci_using_dac)
       
  5245 		netdev->features |= NETIF_F_HIGHDMA;
       
  5246 
       
  5247 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
       
  5248 		adapter->flags |= FLAG_MNG_PT_ENABLED;
       
  5249 
       
  5250 	/*
       
  5251 	 * before reading the NVM, reset the controller to
       
  5252 	 * put the device in a known good starting state
       
  5253 	 */
       
  5254 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
       
  5255 
       
  5256 	/*
       
  5257 	 * systems with ASPM and others may see the checksum fail on the first
       
  5258 	 * attempt. Let's give it a few tries
       
  5259 	 */
       
  5260 	for (i = 0;; i++) {
       
  5261 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
       
  5262 			break;
       
  5263 		if (i == 2) {
       
  5264 			e_err("The NVM Checksum Is Not Valid\n");
       
  5265 			err = -EIO;
       
  5266 			goto err_eeprom;
       
  5267 		}
       
  5268 	}
       
  5269 
       
  5270 	e1000_eeprom_checks(adapter);
       
  5271 
       
  5272 	/* copy the MAC address out of the NVM */
       
  5273 	if (e1000e_read_mac_addr(&adapter->hw))
       
  5274 		e_err("NVM Read Error while reading MAC address\n");
       
  5275 
       
  5276 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  5277 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  5278 
       
  5279 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
  5280 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
       
  5281 		err = -EIO;
       
  5282 		goto err_eeprom;
       
  5283 	}
       
  5284 
       
  5285 	init_timer(&adapter->watchdog_timer);
       
  5286 	adapter->watchdog_timer.function = &e1000_watchdog;
       
  5287 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  5288 
       
  5289 	init_timer(&adapter->phy_info_timer);
       
  5290 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
  5291 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
  5292 
       
  5293 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  5294 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
       
  5295 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
       
  5296 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
       
  5297 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
       
  5298 
       
  5299 	/* Initialize link parameters. User can change them with ethtool */
       
  5300 	adapter->hw.mac.autoneg = 1;
       
  5301 	adapter->fc_autoneg = 1;
       
  5302 	adapter->hw.fc.requested_mode = e1000_fc_default;
       
  5303 	adapter->hw.fc.current_mode = e1000_fc_default;
       
  5304 	adapter->hw.phy.autoneg_advertised = 0x2f;
       
  5305 
       
  5306 	/* ring size defaults */
       
  5307 	adapter->rx_ring->count = 256;
       
  5308 	adapter->tx_ring->count = 256;
       
  5309 
       
  5310 	/*
       
  5311 	 * Initial Wake on LAN setting - If APM wake is enabled in
       
  5312 	 * the EEPROM, enable the ACPI Magic Packet filter
       
  5313 	 */
       
  5314 	if (adapter->flags & FLAG_APME_IN_WUC) {
       
  5315 		/* APME bit in EEPROM is mapped to WUC.APME */
       
  5316 		eeprom_data = er32(WUC);
       
  5317 		eeprom_apme_mask = E1000_WUC_APME;
       
  5318 		if (eeprom_data & E1000_WUC_PHY_WAKE)
       
  5319 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
       
  5320 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
       
  5321 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
       
  5322 		    (adapter->hw.bus.func == 1))
       
  5323 			e1000_read_nvm(&adapter->hw,
       
  5324 				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  5325 		else
       
  5326 			e1000_read_nvm(&adapter->hw,
       
  5327 				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  5328 	}
       
  5329 
       
  5330 	/* fetch WoL from EEPROM */
       
  5331 	if (eeprom_data & eeprom_apme_mask)
       
  5332 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  5333 
       
  5334 	/*
       
  5335 	 * now that we have the eeprom settings, apply the special cases
       
  5336 	 * where the eeprom may be wrong or the board simply won't support
       
  5337 	 * wake on lan on a particular port
       
  5338 	 */
       
  5339 	if (!(adapter->flags & FLAG_HAS_WOL))
       
  5340 		adapter->eeprom_wol = 0;
       
  5341 
       
  5342 	/* initialize the wol settings based on the eeprom settings */
       
  5343 	adapter->wol = adapter->eeprom_wol;
       
  5344 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  5345 
       
  5346 	/* save off EEPROM version number */
       
  5347 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
       
  5348 
       
  5349 	/* reset the hardware with the new settings */
       
  5350 	e1000e_reset(adapter);
       
  5351 
       
  5352 	/*
       
  5353 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  5354 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  5355 	 * under the control of the driver.
       
  5356 	 */
       
  5357 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5358 		e1000_get_hw_control(adapter);
       
  5359 
       
  5360 	adapter->ecdev = ecdev_offer(netdev,ec_poll,THIS_MODULE);
       
  5361 	if (adapter->ecdev) {
       
  5362 		if (ecdev_open(adapter->ecdev)) {
       
  5363 			ecdev_withdraw(adapter->ecdev);
       
  5364 			goto err_register;
       
  5365 		}
       
  5366 	} else {
       
  5367 		strcpy(netdev->name, "eth%d");
       
  5368 		err = register_netdev(netdev);
       
  5369 		if (err)
       
  5370 			goto err_register;
       
  5371 
       
  5372 		/* carrier off reporting is important to ethtool even BEFORE open */
       
  5373 		netif_carrier_off(netdev);
       
  5374 	}
       
  5375 
       
  5376 	e1000_print_device_info(adapter);
       
  5377 
       
  5378 	return 0;
       
  5379 
       
  5380 err_register:
       
  5381 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5382 		e1000_release_hw_control(adapter);
       
  5383 err_eeprom:
       
  5384 	if (!e1000_check_reset_block(&adapter->hw))
       
  5385 		e1000_phy_hw_reset(&adapter->hw);
       
  5386 err_hw_init:
       
  5387 
       
  5388 	kfree(adapter->tx_ring);
       
  5389 	kfree(adapter->rx_ring);
       
  5390 err_sw_init:
       
  5391 	if (adapter->hw.flash_address)
       
  5392 		iounmap(adapter->hw.flash_address);
       
  5393 	e1000e_reset_interrupt_capability(adapter);
       
  5394 err_flashmap:
       
  5395 	iounmap(adapter->hw.hw_addr);
       
  5396 err_ioremap:
       
  5397 	free_netdev(netdev);
       
  5398 err_alloc_etherdev:
       
  5399 	pci_release_selected_regions(pdev,
       
  5400 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  5401 err_pci_reg:
       
  5402 err_dma:
       
  5403 	pci_disable_device(pdev);
       
  5404 	return err;
       
  5405 }
       
  5406 
       
  5407 /**
       
  5408  * e1000_remove - Device Removal Routine
       
  5409  * @pdev: PCI device information struct
       
  5410  *
       
  5411  * e1000_remove is called by the PCI subsystem to alert the driver
       
  5412  * that it should release a PCI device.  The could be caused by a
       
  5413  * Hot-Plug event, or because the driver is going to be removed from
       
  5414  * memory.
       
  5415  **/
       
  5416 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  5417 {
       
  5418 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5419 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5420 
       
  5421 	/*
       
  5422 	 * flush_scheduled work may reschedule our watchdog task, so
       
  5423 	 * explicitly disable watchdog tasks from being rescheduled
       
  5424 	 */
       
  5425 	set_bit(__E1000_DOWN, &adapter->state);
       
  5426 	del_timer_sync(&adapter->watchdog_timer);
       
  5427 	del_timer_sync(&adapter->phy_info_timer);
       
  5428 
       
  5429 	cancel_work_sync(&adapter->reset_task);
       
  5430 	cancel_work_sync(&adapter->watchdog_task);
       
  5431 	cancel_work_sync(&adapter->downshift_task);
       
  5432 	cancel_work_sync(&adapter->update_phy_task);
       
  5433 	cancel_work_sync(&adapter->print_hang_task);
       
  5434 	flush_scheduled_work();
       
  5435 
       
  5436 	if (!(netdev->flags & IFF_UP))
       
  5437 		e1000_power_down_phy(adapter);
       
  5438 
       
  5439 	if (adapter->ecdev) {
       
  5440 		ecdev_close(adapter->ecdev);
       
  5441 		ecdev_withdraw(adapter->ecdev);
       
  5442 	} else {
       
  5443 		unregister_netdev(netdev);
       
  5444 	}
       
  5445 
       
  5446 	/*
       
  5447 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  5448 	 * would have already happened in close and is redundant.
       
  5449 	 */
       
  5450 	e1000_release_hw_control(adapter);
       
  5451 
       
  5452 	e1000e_reset_interrupt_capability(adapter);
       
  5453 	kfree(adapter->tx_ring);
       
  5454 	kfree(adapter->rx_ring);
       
  5455 
       
  5456 	iounmap(adapter->hw.hw_addr);
       
  5457 	if (adapter->hw.flash_address)
       
  5458 		iounmap(adapter->hw.flash_address);
       
  5459 	pci_release_selected_regions(pdev,
       
  5460 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  5461 
       
  5462 	free_netdev(netdev);
       
  5463 
       
  5464 	/* AER disable */
       
  5465 	pci_disable_pcie_error_reporting(pdev);
       
  5466 
       
  5467 	pci_disable_device(pdev);
       
  5468 }
       
  5469 
       
  5470 /* PCI Error Recovery (ERS) */
       
  5471 static struct pci_error_handlers e1000_err_handler = {
       
  5472 	.error_detected = e1000_io_error_detected,
       
  5473 	.slot_reset = e1000_io_slot_reset,
       
  5474 	.resume = e1000_io_resume,
       
  5475 };
       
  5476 
       
  5477 static struct pci_device_id e1000_pci_tbl[] = {
       
  5478 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
       
  5479 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
       
  5480 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
       
  5481 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
       
  5482 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
       
  5483 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
       
  5484 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
       
  5485 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
       
  5486 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
       
  5487 
       
  5488 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
       
  5489 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
       
  5490 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
       
  5491 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
       
  5492 
       
  5493 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
       
  5494 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
       
  5495 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
       
  5496 
       
  5497 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
       
  5498 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
       
  5499 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
       
  5500 
       
  5501 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
       
  5502 	  board_80003es2lan },
       
  5503 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
       
  5504 	  board_80003es2lan },
       
  5505 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
       
  5506 	  board_80003es2lan },
       
  5507 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
       
  5508 	  board_80003es2lan },
       
  5509 
       
  5510 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
       
  5511 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
       
  5512 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
       
  5513 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
       
  5514 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
       
  5515 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
       
  5516 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
       
  5517 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
       
  5518 
       
  5519 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
       
  5520 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
       
  5521 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
       
  5522 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
       
  5523 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
       
  5524 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
       
  5525 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
       
  5526 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
       
  5527 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
       
  5528 
       
  5529 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
       
  5530 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
       
  5531 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
       
  5532 
       
  5533 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
       
  5534 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
       
  5535 
       
  5536 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
       
  5537 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
       
  5538 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
       
  5539 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
       
  5540 
       
  5541 	{ }	/* terminate list */
       
  5542 };
       
  5543 //MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
  5544 
       
  5545 /* PCI Device API Driver */
       
  5546 static struct pci_driver e1000_driver = {
       
  5547 	.name     = e1000e_driver_name,
       
  5548 	.id_table = e1000_pci_tbl,
       
  5549 	.probe    = e1000_probe,
       
  5550 	.remove   = __devexit_p(e1000_remove),
       
  5551 #ifdef CONFIG_PM
       
  5552 	/* Power Management Hooks */
       
  5553 	.suspend  = e1000_suspend,
       
  5554 	.resume   = e1000_resume,
       
  5555 #endif
       
  5556 	.shutdown = e1000_shutdown,
       
  5557 	.err_handler = &e1000_err_handler
       
  5558 };
       
  5559 
       
  5560 /**
       
  5561  * e1000_init_module - Driver Registration Routine
       
  5562  *
       
  5563  * e1000_init_module is the first routine called when the driver is
       
  5564  * loaded. All it does is register with the PCI subsystem.
       
  5565  **/
       
  5566 static int __init e1000_init_module(void)
       
  5567 {
       
  5568 	int ret;
       
  5569 	printk(KERN_INFO "%s: Ethercat-capable Intel(R) PRO/1000 Network Driver - %s\n",
       
  5570 	       e1000e_driver_name, e1000e_driver_version);
       
  5571 	printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
       
  5572 	       e1000e_driver_name);
       
  5573 	ret = pci_register_driver(&e1000_driver);
       
  5574 
       
  5575 	return ret;
       
  5576 }
       
  5577 module_init(e1000_init_module);
       
  5578 
       
  5579 /**
       
  5580  * e1000_exit_module - Driver Exit Cleanup Routine
       
  5581  *
       
  5582  * e1000_exit_module is called just before the driver is removed
       
  5583  * from memory.
       
  5584  **/
       
  5585 static void __exit e1000_exit_module(void)
       
  5586 {
       
  5587 	pci_unregister_driver(&e1000_driver);
       
  5588 }
       
  5589 module_exit(e1000_exit_module);
       
  5590 
       
  5591 
       
  5592 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
  5593 MODULE_DESCRIPTION("Ethercat-capable Intel(R) PRO/1000 Network Driver");
       
  5594 MODULE_LICENSE("GPL");
       
  5595 MODULE_VERSION(DRV_VERSION);
       
  5596 
       
  5597 /* e1000_main.c */