devices/e1000e/lib-2.6.33-orig.c
branchredundancy
changeset 2324 eb87b65d995b
equal deleted inserted replaced
2323:3a4ea6393c7c 2324:eb87b65d995b
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 
       
    31 enum e1000_mng_mode {
       
    32 	e1000_mng_mode_none = 0,
       
    33 	e1000_mng_mode_asf,
       
    34 	e1000_mng_mode_pt,
       
    35 	e1000_mng_mode_ipmi,
       
    36 	e1000_mng_mode_host_if_only
       
    37 };
       
    38 
       
    39 #define E1000_FACTPS_MNGCG		0x20000000
       
    40 
       
    41 /* Intel(R) Active Management Technology signature */
       
    42 #define E1000_IAMT_SIGNATURE		0x544D4149
       
    43 
       
    44 /**
       
    45  *  e1000e_get_bus_info_pcie - Get PCIe bus information
       
    46  *  @hw: pointer to the HW structure
       
    47  *
       
    48  *  Determines and stores the system bus information for a particular
       
    49  *  network interface.  The following bus information is determined and stored:
       
    50  *  bus speed, bus width, type (PCIe), and PCIe function.
       
    51  **/
       
    52 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
       
    53 {
       
    54 	struct e1000_bus_info *bus = &hw->bus;
       
    55 	struct e1000_adapter *adapter = hw->adapter;
       
    56 	u32 status;
       
    57 	u16 pcie_link_status, pci_header_type, cap_offset;
       
    58 
       
    59 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
    60 	if (!cap_offset) {
       
    61 		bus->width = e1000_bus_width_unknown;
       
    62 	} else {
       
    63 		pci_read_config_word(adapter->pdev,
       
    64 				     cap_offset + PCIE_LINK_STATUS,
       
    65 				     &pcie_link_status);
       
    66 		bus->width = (enum e1000_bus_width)((pcie_link_status &
       
    67 						     PCIE_LINK_WIDTH_MASK) >>
       
    68 						    PCIE_LINK_WIDTH_SHIFT);
       
    69 	}
       
    70 
       
    71 	pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
       
    72 			     &pci_header_type);
       
    73 	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
       
    74 		status = er32(STATUS);
       
    75 		bus->func = (status & E1000_STATUS_FUNC_MASK)
       
    76 			    >> E1000_STATUS_FUNC_SHIFT;
       
    77 	} else {
       
    78 		bus->func = 0;
       
    79 	}
       
    80 
       
    81 	return 0;
       
    82 }
       
    83 
       
    84 /**
       
    85  *  e1000_clear_vfta_generic - Clear VLAN filter table
       
    86  *  @hw: pointer to the HW structure
       
    87  *
       
    88  *  Clears the register array which contains the VLAN filter table by
       
    89  *  setting all the values to 0.
       
    90  **/
       
    91 void e1000_clear_vfta_generic(struct e1000_hw *hw)
       
    92 {
       
    93 	u32 offset;
       
    94 
       
    95 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
    96 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
       
    97 		e1e_flush();
       
    98 	}
       
    99 }
       
   100 
       
   101 /**
       
   102  *  e1000_write_vfta_generic - Write value to VLAN filter table
       
   103  *  @hw: pointer to the HW structure
       
   104  *  @offset: register offset in VLAN filter table
       
   105  *  @value: register value written to VLAN filter table
       
   106  *
       
   107  *  Writes value at the given offset in the register array which stores
       
   108  *  the VLAN filter table.
       
   109  **/
       
   110 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
       
   111 {
       
   112 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
       
   113 	e1e_flush();
       
   114 }
       
   115 
       
   116 /**
       
   117  *  e1000e_init_rx_addrs - Initialize receive address's
       
   118  *  @hw: pointer to the HW structure
       
   119  *  @rar_count: receive address registers
       
   120  *
       
   121  *  Setups the receive address registers by setting the base receive address
       
   122  *  register to the devices MAC address and clearing all the other receive
       
   123  *  address registers to 0.
       
   124  **/
       
   125 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
       
   126 {
       
   127 	u32 i;
       
   128 	u8 mac_addr[ETH_ALEN] = {0};
       
   129 
       
   130 	/* Setup the receive address */
       
   131 	e_dbg("Programming MAC Address into RAR[0]\n");
       
   132 
       
   133 	e1000e_rar_set(hw, hw->mac.addr, 0);
       
   134 
       
   135 	/* Zero out the other (rar_entry_count - 1) receive addresses */
       
   136 	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
       
   137 	for (i = 1; i < rar_count; i++)
       
   138 		e1000e_rar_set(hw, mac_addr, i);
       
   139 }
       
   140 
       
   141 /**
       
   142  *  e1000e_rar_set - Set receive address register
       
   143  *  @hw: pointer to the HW structure
       
   144  *  @addr: pointer to the receive address
       
   145  *  @index: receive address array register
       
   146  *
       
   147  *  Sets the receive address array register at index to the address passed
       
   148  *  in by addr.
       
   149  **/
       
   150 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
       
   151 {
       
   152 	u32 rar_low, rar_high;
       
   153 
       
   154 	/*
       
   155 	 * HW expects these in little endian so we reverse the byte order
       
   156 	 * from network order (big endian) to little endian
       
   157 	 */
       
   158 	rar_low = ((u32) addr[0] |
       
   159 		   ((u32) addr[1] << 8) |
       
   160 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
   161 
       
   162 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
   163 
       
   164 	/* If MAC address zero, no need to set the AV bit */
       
   165 	if (rar_low || rar_high)
       
   166 		rar_high |= E1000_RAH_AV;
       
   167 
       
   168 	/*
       
   169 	 * Some bridges will combine consecutive 32-bit writes into
       
   170 	 * a single burst write, which will malfunction on some parts.
       
   171 	 * The flushes avoid this.
       
   172 	 */
       
   173 	ew32(RAL(index), rar_low);
       
   174 	e1e_flush();
       
   175 	ew32(RAH(index), rar_high);
       
   176 	e1e_flush();
       
   177 }
       
   178 
       
   179 /**
       
   180  *  e1000_hash_mc_addr - Generate a multicast hash value
       
   181  *  @hw: pointer to the HW structure
       
   182  *  @mc_addr: pointer to a multicast address
       
   183  *
       
   184  *  Generates a multicast address hash value which is used to determine
       
   185  *  the multicast filter table array address and new table value.  See
       
   186  *  e1000_mta_set_generic()
       
   187  **/
       
   188 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
   189 {
       
   190 	u32 hash_value, hash_mask;
       
   191 	u8 bit_shift = 0;
       
   192 
       
   193 	/* Register count multiplied by bits per register */
       
   194 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
       
   195 
       
   196 	/*
       
   197 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
       
   198 	 * where 0xFF would still fall within the hash mask.
       
   199 	 */
       
   200 	while (hash_mask >> bit_shift != 0xFF)
       
   201 		bit_shift++;
       
   202 
       
   203 	/*
       
   204 	 * The portion of the address that is used for the hash table
       
   205 	 * is determined by the mc_filter_type setting.
       
   206 	 * The algorithm is such that there is a total of 8 bits of shifting.
       
   207 	 * The bit_shift for a mc_filter_type of 0 represents the number of
       
   208 	 * left-shifts where the MSB of mc_addr[5] would still fall within
       
   209 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
       
   210 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
       
   211 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
       
   212 	 * cases are a variation of this algorithm...essentially raising the
       
   213 	 * number of bits to shift mc_addr[5] left, while still keeping the
       
   214 	 * 8-bit shifting total.
       
   215 	 *
       
   216 	 * For example, given the following Destination MAC Address and an
       
   217 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
       
   218 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
       
   219 	 * values resulting from each mc_filter_type...
       
   220 	 * [0] [1] [2] [3] [4] [5]
       
   221 	 * 01  AA  00  12  34  56
       
   222 	 * LSB		 MSB
       
   223 	 *
       
   224 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
       
   225 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
       
   226 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
       
   227 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
       
   228 	 */
       
   229 	switch (hw->mac.mc_filter_type) {
       
   230 	default:
       
   231 	case 0:
       
   232 		break;
       
   233 	case 1:
       
   234 		bit_shift += 1;
       
   235 		break;
       
   236 	case 2:
       
   237 		bit_shift += 2;
       
   238 		break;
       
   239 	case 3:
       
   240 		bit_shift += 4;
       
   241 		break;
       
   242 	}
       
   243 
       
   244 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
       
   245 				  (((u16) mc_addr[5]) << bit_shift)));
       
   246 
       
   247 	return hash_value;
       
   248 }
       
   249 
       
   250 /**
       
   251  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
       
   252  *  @hw: pointer to the HW structure
       
   253  *  @mc_addr_list: array of multicast addresses to program
       
   254  *  @mc_addr_count: number of multicast addresses to program
       
   255  *  @rar_used_count: the first RAR register free to program
       
   256  *  @rar_count: total number of supported Receive Address Registers
       
   257  *
       
   258  *  Updates the Receive Address Registers and Multicast Table Array.
       
   259  *  The caller must have a packed mc_addr_list of multicast addresses.
       
   260  *  The parameter rar_count will usually be hw->mac.rar_entry_count
       
   261  *  unless there are workarounds that change this.
       
   262  **/
       
   263 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
       
   264 					u8 *mc_addr_list, u32 mc_addr_count,
       
   265 					u32 rar_used_count, u32 rar_count)
       
   266 {
       
   267 	u32 i;
       
   268 	u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC);
       
   269 
       
   270 	if (!mcarray) {
       
   271 		printk(KERN_ERR "multicast array memory allocation failed\n");
       
   272 		return;
       
   273 	}
       
   274 
       
   275 	/*
       
   276 	 * Load the first set of multicast addresses into the exact
       
   277 	 * filters (RAR).  If there are not enough to fill the RAR
       
   278 	 * array, clear the filters.
       
   279 	 */
       
   280 	for (i = rar_used_count; i < rar_count; i++) {
       
   281 		if (mc_addr_count) {
       
   282 			e1000e_rar_set(hw, mc_addr_list, i);
       
   283 			mc_addr_count--;
       
   284 			mc_addr_list += ETH_ALEN;
       
   285 		} else {
       
   286 			E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
       
   287 			e1e_flush();
       
   288 			E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
       
   289 			e1e_flush();
       
   290 		}
       
   291 	}
       
   292 
       
   293 	/* Load any remaining multicast addresses into the hash table. */
       
   294 	for (; mc_addr_count > 0; mc_addr_count--) {
       
   295 		u32 hash_value, hash_reg, hash_bit, mta;
       
   296 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
       
   297 		e_dbg("Hash value = 0x%03X\n", hash_value);
       
   298 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   299 		hash_bit = hash_value & 0x1F;
       
   300 		mta = (1 << hash_bit);
       
   301 		mcarray[hash_reg] |= mta;
       
   302 		mc_addr_list += ETH_ALEN;
       
   303 	}
       
   304 
       
   305 	/* write the hash table completely */
       
   306 	for (i = 0; i < hw->mac.mta_reg_count; i++)
       
   307 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]);
       
   308 
       
   309 	e1e_flush();
       
   310 	kfree(mcarray);
       
   311 }
       
   312 
       
   313 /**
       
   314  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
       
   315  *  @hw: pointer to the HW structure
       
   316  *
       
   317  *  Clears the base hardware counters by reading the counter registers.
       
   318  **/
       
   319 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
       
   320 {
       
   321 	er32(CRCERRS);
       
   322 	er32(SYMERRS);
       
   323 	er32(MPC);
       
   324 	er32(SCC);
       
   325 	er32(ECOL);
       
   326 	er32(MCC);
       
   327 	er32(LATECOL);
       
   328 	er32(COLC);
       
   329 	er32(DC);
       
   330 	er32(SEC);
       
   331 	er32(RLEC);
       
   332 	er32(XONRXC);
       
   333 	er32(XONTXC);
       
   334 	er32(XOFFRXC);
       
   335 	er32(XOFFTXC);
       
   336 	er32(FCRUC);
       
   337 	er32(GPRC);
       
   338 	er32(BPRC);
       
   339 	er32(MPRC);
       
   340 	er32(GPTC);
       
   341 	er32(GORCL);
       
   342 	er32(GORCH);
       
   343 	er32(GOTCL);
       
   344 	er32(GOTCH);
       
   345 	er32(RNBC);
       
   346 	er32(RUC);
       
   347 	er32(RFC);
       
   348 	er32(ROC);
       
   349 	er32(RJC);
       
   350 	er32(TORL);
       
   351 	er32(TORH);
       
   352 	er32(TOTL);
       
   353 	er32(TOTH);
       
   354 	er32(TPR);
       
   355 	er32(TPT);
       
   356 	er32(MPTC);
       
   357 	er32(BPTC);
       
   358 }
       
   359 
       
   360 /**
       
   361  *  e1000e_check_for_copper_link - Check for link (Copper)
       
   362  *  @hw: pointer to the HW structure
       
   363  *
       
   364  *  Checks to see of the link status of the hardware has changed.  If a
       
   365  *  change in link status has been detected, then we read the PHY registers
       
   366  *  to get the current speed/duplex if link exists.
       
   367  **/
       
   368 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
       
   369 {
       
   370 	struct e1000_mac_info *mac = &hw->mac;
       
   371 	s32 ret_val;
       
   372 	bool link;
       
   373 
       
   374 	/*
       
   375 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   376 	 * has completed and/or if our link status has changed.  The
       
   377 	 * get_link_status flag is set upon receiving a Link Status
       
   378 	 * Change or Rx Sequence Error interrupt.
       
   379 	 */
       
   380 	if (!mac->get_link_status)
       
   381 		return 0;
       
   382 
       
   383 	/*
       
   384 	 * First we want to see if the MII Status Register reports
       
   385 	 * link.  If so, then we want to get the current speed/duplex
       
   386 	 * of the PHY.
       
   387 	 */
       
   388 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   389 	if (ret_val)
       
   390 		return ret_val;
       
   391 
       
   392 	if (!link)
       
   393 		return ret_val; /* No link detected */
       
   394 
       
   395 	mac->get_link_status = false;
       
   396 
       
   397 	/*
       
   398 	 * Check if there was DownShift, must be checked
       
   399 	 * immediately after link-up
       
   400 	 */
       
   401 	e1000e_check_downshift(hw);
       
   402 
       
   403 	/*
       
   404 	 * If we are forcing speed/duplex, then we simply return since
       
   405 	 * we have already determined whether we have link or not.
       
   406 	 */
       
   407 	if (!mac->autoneg) {
       
   408 		ret_val = -E1000_ERR_CONFIG;
       
   409 		return ret_val;
       
   410 	}
       
   411 
       
   412 	/*
       
   413 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   414 	 * of MAC speed/duplex configuration.  So we only need to
       
   415 	 * configure Collision Distance in the MAC.
       
   416 	 */
       
   417 	e1000e_config_collision_dist(hw);
       
   418 
       
   419 	/*
       
   420 	 * Configure Flow Control now that Auto-Neg has completed.
       
   421 	 * First, we need to restore the desired flow control
       
   422 	 * settings because we may have had to re-autoneg with a
       
   423 	 * different link partner.
       
   424 	 */
       
   425 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   426 	if (ret_val) {
       
   427 		e_dbg("Error configuring flow control\n");
       
   428 	}
       
   429 
       
   430 	return ret_val;
       
   431 }
       
   432 
       
   433 /**
       
   434  *  e1000e_check_for_fiber_link - Check for link (Fiber)
       
   435  *  @hw: pointer to the HW structure
       
   436  *
       
   437  *  Checks for link up on the hardware.  If link is not up and we have
       
   438  *  a signal, then we need to force link up.
       
   439  **/
       
   440 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
       
   441 {
       
   442 	struct e1000_mac_info *mac = &hw->mac;
       
   443 	u32 rxcw;
       
   444 	u32 ctrl;
       
   445 	u32 status;
       
   446 	s32 ret_val;
       
   447 
       
   448 	ctrl = er32(CTRL);
       
   449 	status = er32(STATUS);
       
   450 	rxcw = er32(RXCW);
       
   451 
       
   452 	/*
       
   453 	 * If we don't have link (auto-negotiation failed or link partner
       
   454 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
       
   455 	 * and our link partner is not trying to auto-negotiate with us (we
       
   456 	 * are receiving idles or data), we need to force link up. We also
       
   457 	 * need to give auto-negotiation time to complete, in case the cable
       
   458 	 * was just plugged in. The autoneg_failed flag does this.
       
   459 	 */
       
   460 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   461 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
       
   462 	    (!(rxcw & E1000_RXCW_C))) {
       
   463 		if (mac->autoneg_failed == 0) {
       
   464 			mac->autoneg_failed = 1;
       
   465 			return 0;
       
   466 		}
       
   467 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
       
   468 
       
   469 		/* Disable auto-negotiation in the TXCW register */
       
   470 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   471 
       
   472 		/* Force link-up and also force full-duplex. */
       
   473 		ctrl = er32(CTRL);
       
   474 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   475 		ew32(CTRL, ctrl);
       
   476 
       
   477 		/* Configure Flow Control after forcing link up. */
       
   478 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   479 		if (ret_val) {
       
   480 			e_dbg("Error configuring flow control\n");
       
   481 			return ret_val;
       
   482 		}
       
   483 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   484 		/*
       
   485 		 * If we are forcing link and we are receiving /C/ ordered
       
   486 		 * sets, re-enable auto-negotiation in the TXCW register
       
   487 		 * and disable forced link in the Device Control register
       
   488 		 * in an attempt to auto-negotiate with our link partner.
       
   489 		 */
       
   490 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   491 		ew32(TXCW, mac->txcw);
       
   492 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   493 
       
   494 		mac->serdes_has_link = true;
       
   495 	}
       
   496 
       
   497 	return 0;
       
   498 }
       
   499 
       
   500 /**
       
   501  *  e1000e_check_for_serdes_link - Check for link (Serdes)
       
   502  *  @hw: pointer to the HW structure
       
   503  *
       
   504  *  Checks for link up on the hardware.  If link is not up and we have
       
   505  *  a signal, then we need to force link up.
       
   506  **/
       
   507 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
       
   508 {
       
   509 	struct e1000_mac_info *mac = &hw->mac;
       
   510 	u32 rxcw;
       
   511 	u32 ctrl;
       
   512 	u32 status;
       
   513 	s32 ret_val;
       
   514 
       
   515 	ctrl = er32(CTRL);
       
   516 	status = er32(STATUS);
       
   517 	rxcw = er32(RXCW);
       
   518 
       
   519 	/*
       
   520 	 * If we don't have link (auto-negotiation failed or link partner
       
   521 	 * cannot auto-negotiate), and our link partner is not trying to
       
   522 	 * auto-negotiate with us (we are receiving idles or data),
       
   523 	 * we need to force link up. We also need to give auto-negotiation
       
   524 	 * time to complete.
       
   525 	 */
       
   526 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   527 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
       
   528 		if (mac->autoneg_failed == 0) {
       
   529 			mac->autoneg_failed = 1;
       
   530 			return 0;
       
   531 		}
       
   532 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
       
   533 
       
   534 		/* Disable auto-negotiation in the TXCW register */
       
   535 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   536 
       
   537 		/* Force link-up and also force full-duplex. */
       
   538 		ctrl = er32(CTRL);
       
   539 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   540 		ew32(CTRL, ctrl);
       
   541 
       
   542 		/* Configure Flow Control after forcing link up. */
       
   543 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   544 		if (ret_val) {
       
   545 			e_dbg("Error configuring flow control\n");
       
   546 			return ret_val;
       
   547 		}
       
   548 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   549 		/*
       
   550 		 * If we are forcing link and we are receiving /C/ ordered
       
   551 		 * sets, re-enable auto-negotiation in the TXCW register
       
   552 		 * and disable forced link in the Device Control register
       
   553 		 * in an attempt to auto-negotiate with our link partner.
       
   554 		 */
       
   555 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   556 		ew32(TXCW, mac->txcw);
       
   557 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   558 
       
   559 		mac->serdes_has_link = true;
       
   560 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
       
   561 		/*
       
   562 		 * If we force link for non-auto-negotiation switch, check
       
   563 		 * link status based on MAC synchronization for internal
       
   564 		 * serdes media type.
       
   565 		 */
       
   566 		/* SYNCH bit and IV bit are sticky. */
       
   567 		udelay(10);
       
   568 		rxcw = er32(RXCW);
       
   569 		if (rxcw & E1000_RXCW_SYNCH) {
       
   570 			if (!(rxcw & E1000_RXCW_IV)) {
       
   571 				mac->serdes_has_link = true;
       
   572 				e_dbg("SERDES: Link up - forced.\n");
       
   573 			}
       
   574 		} else {
       
   575 			mac->serdes_has_link = false;
       
   576 			e_dbg("SERDES: Link down - force failed.\n");
       
   577 		}
       
   578 	}
       
   579 
       
   580 	if (E1000_TXCW_ANE & er32(TXCW)) {
       
   581 		status = er32(STATUS);
       
   582 		if (status & E1000_STATUS_LU) {
       
   583 			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
       
   584 			udelay(10);
       
   585 			rxcw = er32(RXCW);
       
   586 			if (rxcw & E1000_RXCW_SYNCH) {
       
   587 				if (!(rxcw & E1000_RXCW_IV)) {
       
   588 					mac->serdes_has_link = true;
       
   589 					e_dbg("SERDES: Link up - autoneg "
       
   590 					   "completed sucessfully.\n");
       
   591 				} else {
       
   592 					mac->serdes_has_link = false;
       
   593 					e_dbg("SERDES: Link down - invalid"
       
   594 					   "codewords detected in autoneg.\n");
       
   595 				}
       
   596 			} else {
       
   597 				mac->serdes_has_link = false;
       
   598 				e_dbg("SERDES: Link down - no sync.\n");
       
   599 			}
       
   600 		} else {
       
   601 			mac->serdes_has_link = false;
       
   602 			e_dbg("SERDES: Link down - autoneg failed\n");
       
   603 		}
       
   604 	}
       
   605 
       
   606 	return 0;
       
   607 }
       
   608 
       
   609 /**
       
   610  *  e1000_set_default_fc_generic - Set flow control default values
       
   611  *  @hw: pointer to the HW structure
       
   612  *
       
   613  *  Read the EEPROM for the default values for flow control and store the
       
   614  *  values.
       
   615  **/
       
   616 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
       
   617 {
       
   618 	s32 ret_val;
       
   619 	u16 nvm_data;
       
   620 
       
   621 	/*
       
   622 	 * Read and store word 0x0F of the EEPROM. This word contains bits
       
   623 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   624 	 * a bit that determines whether the HW defaults to enabling or
       
   625 	 * disabling auto-negotiation, and the direction of the
       
   626 	 * SW defined pins. If there is no SW over-ride of the flow
       
   627 	 * control setting, then the variable hw->fc will
       
   628 	 * be initialized based on a value in the EEPROM.
       
   629 	 */
       
   630 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
       
   631 
       
   632 	if (ret_val) {
       
   633 		e_dbg("NVM Read Error\n");
       
   634 		return ret_val;
       
   635 	}
       
   636 
       
   637 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
       
   638 		hw->fc.requested_mode = e1000_fc_none;
       
   639 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
       
   640 		 NVM_WORD0F_ASM_DIR)
       
   641 		hw->fc.requested_mode = e1000_fc_tx_pause;
       
   642 	else
       
   643 		hw->fc.requested_mode = e1000_fc_full;
       
   644 
       
   645 	return 0;
       
   646 }
       
   647 
       
   648 /**
       
   649  *  e1000e_setup_link - Setup flow control and link settings
       
   650  *  @hw: pointer to the HW structure
       
   651  *
       
   652  *  Determines which flow control settings to use, then configures flow
       
   653  *  control.  Calls the appropriate media-specific link configuration
       
   654  *  function.  Assuming the adapter has a valid link partner, a valid link
       
   655  *  should be established.  Assumes the hardware has previously been reset
       
   656  *  and the transmitter and receiver are not enabled.
       
   657  **/
       
   658 s32 e1000e_setup_link(struct e1000_hw *hw)
       
   659 {
       
   660 	struct e1000_mac_info *mac = &hw->mac;
       
   661 	s32 ret_val;
       
   662 
       
   663 	/*
       
   664 	 * In the case of the phy reset being blocked, we already have a link.
       
   665 	 * We do not need to set it up again.
       
   666 	 */
       
   667 	if (e1000_check_reset_block(hw))
       
   668 		return 0;
       
   669 
       
   670 	/*
       
   671 	 * If requested flow control is set to default, set flow control
       
   672 	 * based on the EEPROM flow control settings.
       
   673 	 */
       
   674 	if (hw->fc.requested_mode == e1000_fc_default) {
       
   675 		ret_val = e1000_set_default_fc_generic(hw);
       
   676 		if (ret_val)
       
   677 			return ret_val;
       
   678 	}
       
   679 
       
   680 	/*
       
   681 	 * Save off the requested flow control mode for use later.  Depending
       
   682 	 * on the link partner's capabilities, we may or may not use this mode.
       
   683 	 */
       
   684 	hw->fc.current_mode = hw->fc.requested_mode;
       
   685 
       
   686 	e_dbg("After fix-ups FlowControl is now = %x\n",
       
   687 		hw->fc.current_mode);
       
   688 
       
   689 	/* Call the necessary media_type subroutine to configure the link. */
       
   690 	ret_val = mac->ops.setup_physical_interface(hw);
       
   691 	if (ret_val)
       
   692 		return ret_val;
       
   693 
       
   694 	/*
       
   695 	 * Initialize the flow control address, type, and PAUSE timer
       
   696 	 * registers to their default values.  This is done even if flow
       
   697 	 * control is disabled, because it does not hurt anything to
       
   698 	 * initialize these registers.
       
   699 	 */
       
   700 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
       
   701 	ew32(FCT, FLOW_CONTROL_TYPE);
       
   702 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   703 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   704 
       
   705 	ew32(FCTTV, hw->fc.pause_time);
       
   706 
       
   707 	return e1000e_set_fc_watermarks(hw);
       
   708 }
       
   709 
       
   710 /**
       
   711  *  e1000_commit_fc_settings_generic - Configure flow control
       
   712  *  @hw: pointer to the HW structure
       
   713  *
       
   714  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
       
   715  *  base on the flow control settings in e1000_mac_info.
       
   716  **/
       
   717 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
       
   718 {
       
   719 	struct e1000_mac_info *mac = &hw->mac;
       
   720 	u32 txcw;
       
   721 
       
   722 	/*
       
   723 	 * Check for a software override of the flow control settings, and
       
   724 	 * setup the device accordingly.  If auto-negotiation is enabled, then
       
   725 	 * software will have to set the "PAUSE" bits to the correct value in
       
   726 	 * the Transmit Config Word Register (TXCW) and re-start auto-
       
   727 	 * negotiation.  However, if auto-negotiation is disabled, then
       
   728 	 * software will have to manually configure the two flow control enable
       
   729 	 * bits in the CTRL register.
       
   730 	 *
       
   731 	 * The possible values of the "fc" parameter are:
       
   732 	 *      0:  Flow control is completely disabled
       
   733 	 *      1:  Rx flow control is enabled (we can receive pause frames,
       
   734 	 *	  but not send pause frames).
       
   735 	 *      2:  Tx flow control is enabled (we can send pause frames but we
       
   736 	 *	  do not support receiving pause frames).
       
   737 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
   738 	 */
       
   739 	switch (hw->fc.current_mode) {
       
   740 	case e1000_fc_none:
       
   741 		/* Flow control completely disabled by a software over-ride. */
       
   742 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
   743 		break;
       
   744 	case e1000_fc_rx_pause:
       
   745 		/*
       
   746 		 * Rx Flow control is enabled and Tx Flow control is disabled
       
   747 		 * by a software over-ride. Since there really isn't a way to
       
   748 		 * advertise that we are capable of Rx Pause ONLY, we will
       
   749 		 * advertise that we support both symmetric and asymmetric Rx
       
   750 		 * PAUSE.  Later, we will disable the adapter's ability to send
       
   751 		 * PAUSE frames.
       
   752 		 */
       
   753 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   754 		break;
       
   755 	case e1000_fc_tx_pause:
       
   756 		/*
       
   757 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
       
   758 		 * by a software over-ride.
       
   759 		 */
       
   760 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
   761 		break;
       
   762 	case e1000_fc_full:
       
   763 		/*
       
   764 		 * Flow control (both Rx and Tx) is enabled by a software
       
   765 		 * over-ride.
       
   766 		 */
       
   767 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   768 		break;
       
   769 	default:
       
   770 		e_dbg("Flow control param set incorrectly\n");
       
   771 		return -E1000_ERR_CONFIG;
       
   772 		break;
       
   773 	}
       
   774 
       
   775 	ew32(TXCW, txcw);
       
   776 	mac->txcw = txcw;
       
   777 
       
   778 	return 0;
       
   779 }
       
   780 
       
   781 /**
       
   782  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
       
   783  *  @hw: pointer to the HW structure
       
   784  *
       
   785  *  Polls for link up by reading the status register, if link fails to come
       
   786  *  up with auto-negotiation, then the link is forced if a signal is detected.
       
   787  **/
       
   788 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
       
   789 {
       
   790 	struct e1000_mac_info *mac = &hw->mac;
       
   791 	u32 i, status;
       
   792 	s32 ret_val;
       
   793 
       
   794 	/*
       
   795 	 * If we have a signal (the cable is plugged in, or assumed true for
       
   796 	 * serdes media) then poll for a "Link-Up" indication in the Device
       
   797 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
       
   798 	 * seconds (Auto-negotiation should complete in less than 500
       
   799 	 * milliseconds even if the other end is doing it in SW).
       
   800 	 */
       
   801 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
       
   802 		msleep(10);
       
   803 		status = er32(STATUS);
       
   804 		if (status & E1000_STATUS_LU)
       
   805 			break;
       
   806 	}
       
   807 	if (i == FIBER_LINK_UP_LIMIT) {
       
   808 		e_dbg("Never got a valid link from auto-neg!!!\n");
       
   809 		mac->autoneg_failed = 1;
       
   810 		/*
       
   811 		 * AutoNeg failed to achieve a link, so we'll call
       
   812 		 * mac->check_for_link. This routine will force the
       
   813 		 * link up if we detect a signal. This will allow us to
       
   814 		 * communicate with non-autonegotiating link partners.
       
   815 		 */
       
   816 		ret_val = mac->ops.check_for_link(hw);
       
   817 		if (ret_val) {
       
   818 			e_dbg("Error while checking for link\n");
       
   819 			return ret_val;
       
   820 		}
       
   821 		mac->autoneg_failed = 0;
       
   822 	} else {
       
   823 		mac->autoneg_failed = 0;
       
   824 		e_dbg("Valid Link Found\n");
       
   825 	}
       
   826 
       
   827 	return 0;
       
   828 }
       
   829 
       
   830 /**
       
   831  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
       
   832  *  @hw: pointer to the HW structure
       
   833  *
       
   834  *  Configures collision distance and flow control for fiber and serdes
       
   835  *  links.  Upon successful setup, poll for link.
       
   836  **/
       
   837 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
       
   838 {
       
   839 	u32 ctrl;
       
   840 	s32 ret_val;
       
   841 
       
   842 	ctrl = er32(CTRL);
       
   843 
       
   844 	/* Take the link out of reset */
       
   845 	ctrl &= ~E1000_CTRL_LRST;
       
   846 
       
   847 	e1000e_config_collision_dist(hw);
       
   848 
       
   849 	ret_val = e1000_commit_fc_settings_generic(hw);
       
   850 	if (ret_val)
       
   851 		return ret_val;
       
   852 
       
   853 	/*
       
   854 	 * Since auto-negotiation is enabled, take the link out of reset (the
       
   855 	 * link will be in reset, because we previously reset the chip). This
       
   856 	 * will restart auto-negotiation.  If auto-negotiation is successful
       
   857 	 * then the link-up status bit will be set and the flow control enable
       
   858 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
       
   859 	 */
       
   860 	e_dbg("Auto-negotiation enabled\n");
       
   861 
       
   862 	ew32(CTRL, ctrl);
       
   863 	e1e_flush();
       
   864 	msleep(1);
       
   865 
       
   866 	/*
       
   867 	 * For these adapters, the SW definable pin 1 is set when the optics
       
   868 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
       
   869 	 * indication.
       
   870 	 */
       
   871 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
       
   872 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
       
   873 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
       
   874 	} else {
       
   875 		e_dbg("No signal detected\n");
       
   876 	}
       
   877 
       
   878 	return 0;
       
   879 }
       
   880 
       
   881 /**
       
   882  *  e1000e_config_collision_dist - Configure collision distance
       
   883  *  @hw: pointer to the HW structure
       
   884  *
       
   885  *  Configures the collision distance to the default value and is used
       
   886  *  during link setup. Currently no func pointer exists and all
       
   887  *  implementations are handled in the generic version of this function.
       
   888  **/
       
   889 void e1000e_config_collision_dist(struct e1000_hw *hw)
       
   890 {
       
   891 	u32 tctl;
       
   892 
       
   893 	tctl = er32(TCTL);
       
   894 
       
   895 	tctl &= ~E1000_TCTL_COLD;
       
   896 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
       
   897 
       
   898 	ew32(TCTL, tctl);
       
   899 	e1e_flush();
       
   900 }
       
   901 
       
   902 /**
       
   903  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
       
   904  *  @hw: pointer to the HW structure
       
   905  *
       
   906  *  Sets the flow control high/low threshold (watermark) registers.  If
       
   907  *  flow control XON frame transmission is enabled, then set XON frame
       
   908  *  transmission as well.
       
   909  **/
       
   910 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
       
   911 {
       
   912 	u32 fcrtl = 0, fcrth = 0;
       
   913 
       
   914 	/*
       
   915 	 * Set the flow control receive threshold registers.  Normally,
       
   916 	 * these registers will be set to a default threshold that may be
       
   917 	 * adjusted later by the driver's runtime code.  However, if the
       
   918 	 * ability to transmit pause frames is not enabled, then these
       
   919 	 * registers will be set to 0.
       
   920 	 */
       
   921 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
       
   922 		/*
       
   923 		 * We need to set up the Receive Threshold high and low water
       
   924 		 * marks as well as (optionally) enabling the transmission of
       
   925 		 * XON frames.
       
   926 		 */
       
   927 		fcrtl = hw->fc.low_water;
       
   928 		fcrtl |= E1000_FCRTL_XONE;
       
   929 		fcrth = hw->fc.high_water;
       
   930 	}
       
   931 	ew32(FCRTL, fcrtl);
       
   932 	ew32(FCRTH, fcrth);
       
   933 
       
   934 	return 0;
       
   935 }
       
   936 
       
   937 /**
       
   938  *  e1000e_force_mac_fc - Force the MAC's flow control settings
       
   939  *  @hw: pointer to the HW structure
       
   940  *
       
   941  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
       
   942  *  device control register to reflect the adapter settings.  TFCE and RFCE
       
   943  *  need to be explicitly set by software when a copper PHY is used because
       
   944  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
       
   945  *  also configure these bits when link is forced on a fiber connection.
       
   946  **/
       
   947 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
       
   948 {
       
   949 	u32 ctrl;
       
   950 
       
   951 	ctrl = er32(CTRL);
       
   952 
       
   953 	/*
       
   954 	 * Because we didn't get link via the internal auto-negotiation
       
   955 	 * mechanism (we either forced link or we got link via PHY
       
   956 	 * auto-neg), we have to manually enable/disable transmit an
       
   957 	 * receive flow control.
       
   958 	 *
       
   959 	 * The "Case" statement below enables/disable flow control
       
   960 	 * according to the "hw->fc.current_mode" parameter.
       
   961 	 *
       
   962 	 * The possible values of the "fc" parameter are:
       
   963 	 *      0:  Flow control is completely disabled
       
   964 	 *      1:  Rx flow control is enabled (we can receive pause
       
   965 	 *	  frames but not send pause frames).
       
   966 	 *      2:  Tx flow control is enabled (we can send pause frames
       
   967 	 *	  frames but we do not receive pause frames).
       
   968 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
       
   969 	 *  other:  No other values should be possible at this point.
       
   970 	 */
       
   971 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
       
   972 
       
   973 	switch (hw->fc.current_mode) {
       
   974 	case e1000_fc_none:
       
   975 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
   976 		break;
       
   977 	case e1000_fc_rx_pause:
       
   978 		ctrl &= (~E1000_CTRL_TFCE);
       
   979 		ctrl |= E1000_CTRL_RFCE;
       
   980 		break;
       
   981 	case e1000_fc_tx_pause:
       
   982 		ctrl &= (~E1000_CTRL_RFCE);
       
   983 		ctrl |= E1000_CTRL_TFCE;
       
   984 		break;
       
   985 	case e1000_fc_full:
       
   986 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
   987 		break;
       
   988 	default:
       
   989 		e_dbg("Flow control param set incorrectly\n");
       
   990 		return -E1000_ERR_CONFIG;
       
   991 	}
       
   992 
       
   993 	ew32(CTRL, ctrl);
       
   994 
       
   995 	return 0;
       
   996 }
       
   997 
       
   998 /**
       
   999  *  e1000e_config_fc_after_link_up - Configures flow control after link
       
  1000  *  @hw: pointer to the HW structure
       
  1001  *
       
  1002  *  Checks the status of auto-negotiation after link up to ensure that the
       
  1003  *  speed and duplex were not forced.  If the link needed to be forced, then
       
  1004  *  flow control needs to be forced also.  If auto-negotiation is enabled
       
  1005  *  and did not fail, then we configure flow control based on our link
       
  1006  *  partner.
       
  1007  **/
       
  1008 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
       
  1009 {
       
  1010 	struct e1000_mac_info *mac = &hw->mac;
       
  1011 	s32 ret_val = 0;
       
  1012 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
       
  1013 	u16 speed, duplex;
       
  1014 
       
  1015 	/*
       
  1016 	 * Check for the case where we have fiber media and auto-neg failed
       
  1017 	 * so we had to force link.  In this case, we need to force the
       
  1018 	 * configuration of the MAC to match the "fc" parameter.
       
  1019 	 */
       
  1020 	if (mac->autoneg_failed) {
       
  1021 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1022 		    hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1023 			ret_val = e1000e_force_mac_fc(hw);
       
  1024 	} else {
       
  1025 		if (hw->phy.media_type == e1000_media_type_copper)
       
  1026 			ret_val = e1000e_force_mac_fc(hw);
       
  1027 	}
       
  1028 
       
  1029 	if (ret_val) {
       
  1030 		e_dbg("Error forcing flow control settings\n");
       
  1031 		return ret_val;
       
  1032 	}
       
  1033 
       
  1034 	/*
       
  1035 	 * Check for the case where we have copper media and auto-neg is
       
  1036 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1037 	 * has completed, and if so, how the PHY and link partner has
       
  1038 	 * flow control configured.
       
  1039 	 */
       
  1040 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
       
  1041 		/*
       
  1042 		 * Read the MII Status Register and check to see if AutoNeg
       
  1043 		 * has completed.  We read this twice because this reg has
       
  1044 		 * some "sticky" (latched) bits.
       
  1045 		 */
       
  1046 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1047 		if (ret_val)
       
  1048 			return ret_val;
       
  1049 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1050 		if (ret_val)
       
  1051 			return ret_val;
       
  1052 
       
  1053 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
       
  1054 			e_dbg("Copper PHY and Auto Neg "
       
  1055 				 "has not completed.\n");
       
  1056 			return ret_val;
       
  1057 		}
       
  1058 
       
  1059 		/*
       
  1060 		 * The AutoNeg process has completed, so we now need to
       
  1061 		 * read both the Auto Negotiation Advertisement
       
  1062 		 * Register (Address 4) and the Auto_Negotiation Base
       
  1063 		 * Page Ability Register (Address 5) to determine how
       
  1064 		 * flow control was negotiated.
       
  1065 		 */
       
  1066 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
       
  1067 		if (ret_val)
       
  1068 			return ret_val;
       
  1069 		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
       
  1070 		if (ret_val)
       
  1071 			return ret_val;
       
  1072 
       
  1073 		/*
       
  1074 		 * Two bits in the Auto Negotiation Advertisement Register
       
  1075 		 * (Address 4) and two bits in the Auto Negotiation Base
       
  1076 		 * Page Ability Register (Address 5) determine flow control
       
  1077 		 * for both the PHY and the link partner.  The following
       
  1078 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1079 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1080 		 * control is determined based upon these settings.
       
  1081 		 * NOTE:  DC = Don't Care
       
  1082 		 *
       
  1083 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1084 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1085 		 *-------|---------|-------|---------|--------------------
       
  1086 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1087 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1088 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1089 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1090 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1091 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1092 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1093 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1094 		 *
       
  1095 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1096 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1097 		 * ASM_DIR bits are irrelevant per the spec.
       
  1098 		 *
       
  1099 		 * For Symmetric Flow Control:
       
  1100 		 *
       
  1101 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1102 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1103 		 *-------|---------|-------|---------|--------------------
       
  1104 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
       
  1105 		 *
       
  1106 		 */
       
  1107 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1108 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
  1109 			/*
       
  1110 			 * Now we need to check if the user selected Rx ONLY
       
  1111 			 * of pause frames.  In this case, we had to advertise
       
  1112 			 * FULL flow control because we could not advertise Rx
       
  1113 			 * ONLY. Hence, we must now check to see if we need to
       
  1114 			 * turn OFF  the TRANSMISSION of PAUSE frames.
       
  1115 			 */
       
  1116 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1117 				hw->fc.current_mode = e1000_fc_full;
       
  1118 				e_dbg("Flow Control = FULL.\r\n");
       
  1119 			} else {
       
  1120 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1121 				e_dbg("Flow Control = "
       
  1122 					 "RX PAUSE frames only.\r\n");
       
  1123 			}
       
  1124 		}
       
  1125 		/*
       
  1126 		 * For receiving PAUSE frames ONLY.
       
  1127 		 *
       
  1128 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1129 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1130 		 *-------|---------|-------|---------|--------------------
       
  1131 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1132 		 */
       
  1133 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1134 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1135 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1136 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1137 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1138 			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
       
  1139 		}
       
  1140 		/*
       
  1141 		 * For transmitting PAUSE frames ONLY.
       
  1142 		 *
       
  1143 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1144 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1145 		 *-------|---------|-------|---------|--------------------
       
  1146 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1147 		 */
       
  1148 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1149 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1150 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1151 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1152 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1153 			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
       
  1154 		} else {
       
  1155 			/*
       
  1156 			 * Per the IEEE spec, at this point flow control
       
  1157 			 * should be disabled.
       
  1158 			 */
       
  1159 			hw->fc.current_mode = e1000_fc_none;
       
  1160 			e_dbg("Flow Control = NONE.\r\n");
       
  1161 		}
       
  1162 
       
  1163 		/*
       
  1164 		 * Now we need to do one last check...  If we auto-
       
  1165 		 * negotiated to HALF DUPLEX, flow control should not be
       
  1166 		 * enabled per IEEE 802.3 spec.
       
  1167 		 */
       
  1168 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
       
  1169 		if (ret_val) {
       
  1170 			e_dbg("Error getting link speed and duplex\n");
       
  1171 			return ret_val;
       
  1172 		}
       
  1173 
       
  1174 		if (duplex == HALF_DUPLEX)
       
  1175 			hw->fc.current_mode = e1000_fc_none;
       
  1176 
       
  1177 		/*
       
  1178 		 * Now we call a subroutine to actually force the MAC
       
  1179 		 * controller to use the correct flow control settings.
       
  1180 		 */
       
  1181 		ret_val = e1000e_force_mac_fc(hw);
       
  1182 		if (ret_val) {
       
  1183 			e_dbg("Error forcing flow control settings\n");
       
  1184 			return ret_val;
       
  1185 		}
       
  1186 	}
       
  1187 
       
  1188 	return 0;
       
  1189 }
       
  1190 
       
  1191 /**
       
  1192  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
       
  1193  *  @hw: pointer to the HW structure
       
  1194  *  @speed: stores the current speed
       
  1195  *  @duplex: stores the current duplex
       
  1196  *
       
  1197  *  Read the status register for the current speed/duplex and store the current
       
  1198  *  speed and duplex for copper connections.
       
  1199  **/
       
  1200 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1201 {
       
  1202 	u32 status;
       
  1203 
       
  1204 	status = er32(STATUS);
       
  1205 	if (status & E1000_STATUS_SPEED_1000) {
       
  1206 		*speed = SPEED_1000;
       
  1207 		e_dbg("1000 Mbs, ");
       
  1208 	} else if (status & E1000_STATUS_SPEED_100) {
       
  1209 		*speed = SPEED_100;
       
  1210 		e_dbg("100 Mbs, ");
       
  1211 	} else {
       
  1212 		*speed = SPEED_10;
       
  1213 		e_dbg("10 Mbs, ");
       
  1214 	}
       
  1215 
       
  1216 	if (status & E1000_STATUS_FD) {
       
  1217 		*duplex = FULL_DUPLEX;
       
  1218 		e_dbg("Full Duplex\n");
       
  1219 	} else {
       
  1220 		*duplex = HALF_DUPLEX;
       
  1221 		e_dbg("Half Duplex\n");
       
  1222 	}
       
  1223 
       
  1224 	return 0;
       
  1225 }
       
  1226 
       
  1227 /**
       
  1228  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
       
  1229  *  @hw: pointer to the HW structure
       
  1230  *  @speed: stores the current speed
       
  1231  *  @duplex: stores the current duplex
       
  1232  *
       
  1233  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
       
  1234  *  for fiber/serdes links.
       
  1235  **/
       
  1236 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1237 {
       
  1238 	*speed = SPEED_1000;
       
  1239 	*duplex = FULL_DUPLEX;
       
  1240 
       
  1241 	return 0;
       
  1242 }
       
  1243 
       
  1244 /**
       
  1245  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
       
  1246  *  @hw: pointer to the HW structure
       
  1247  *
       
  1248  *  Acquire the HW semaphore to access the PHY or NVM
       
  1249  **/
       
  1250 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
       
  1251 {
       
  1252 	u32 swsm;
       
  1253 	s32 timeout = hw->nvm.word_size + 1;
       
  1254 	s32 i = 0;
       
  1255 
       
  1256 	/* Get the SW semaphore */
       
  1257 	while (i < timeout) {
       
  1258 		swsm = er32(SWSM);
       
  1259 		if (!(swsm & E1000_SWSM_SMBI))
       
  1260 			break;
       
  1261 
       
  1262 		udelay(50);
       
  1263 		i++;
       
  1264 	}
       
  1265 
       
  1266 	if (i == timeout) {
       
  1267 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
  1268 		return -E1000_ERR_NVM;
       
  1269 	}
       
  1270 
       
  1271 	/* Get the FW semaphore. */
       
  1272 	for (i = 0; i < timeout; i++) {
       
  1273 		swsm = er32(SWSM);
       
  1274 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
  1275 
       
  1276 		/* Semaphore acquired if bit latched */
       
  1277 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
  1278 			break;
       
  1279 
       
  1280 		udelay(50);
       
  1281 	}
       
  1282 
       
  1283 	if (i == timeout) {
       
  1284 		/* Release semaphores */
       
  1285 		e1000e_put_hw_semaphore(hw);
       
  1286 		e_dbg("Driver can't access the NVM\n");
       
  1287 		return -E1000_ERR_NVM;
       
  1288 	}
       
  1289 
       
  1290 	return 0;
       
  1291 }
       
  1292 
       
  1293 /**
       
  1294  *  e1000e_put_hw_semaphore - Release hardware semaphore
       
  1295  *  @hw: pointer to the HW structure
       
  1296  *
       
  1297  *  Release hardware semaphore used to access the PHY or NVM
       
  1298  **/
       
  1299 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
       
  1300 {
       
  1301 	u32 swsm;
       
  1302 
       
  1303 	swsm = er32(SWSM);
       
  1304 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  1305 	ew32(SWSM, swsm);
       
  1306 }
       
  1307 
       
  1308 /**
       
  1309  *  e1000e_get_auto_rd_done - Check for auto read completion
       
  1310  *  @hw: pointer to the HW structure
       
  1311  *
       
  1312  *  Check EEPROM for Auto Read done bit.
       
  1313  **/
       
  1314 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
       
  1315 {
       
  1316 	s32 i = 0;
       
  1317 
       
  1318 	while (i < AUTO_READ_DONE_TIMEOUT) {
       
  1319 		if (er32(EECD) & E1000_EECD_AUTO_RD)
       
  1320 			break;
       
  1321 		msleep(1);
       
  1322 		i++;
       
  1323 	}
       
  1324 
       
  1325 	if (i == AUTO_READ_DONE_TIMEOUT) {
       
  1326 		e_dbg("Auto read by HW from NVM has not completed.\n");
       
  1327 		return -E1000_ERR_RESET;
       
  1328 	}
       
  1329 
       
  1330 	return 0;
       
  1331 }
       
  1332 
       
  1333 /**
       
  1334  *  e1000e_valid_led_default - Verify a valid default LED config
       
  1335  *  @hw: pointer to the HW structure
       
  1336  *  @data: pointer to the NVM (EEPROM)
       
  1337  *
       
  1338  *  Read the EEPROM for the current default LED configuration.  If the
       
  1339  *  LED configuration is not valid, set to a valid LED configuration.
       
  1340  **/
       
  1341 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
       
  1342 {
       
  1343 	s32 ret_val;
       
  1344 
       
  1345 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1346 	if (ret_val) {
       
  1347 		e_dbg("NVM Read Error\n");
       
  1348 		return ret_val;
       
  1349 	}
       
  1350 
       
  1351 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
       
  1352 		*data = ID_LED_DEFAULT;
       
  1353 
       
  1354 	return 0;
       
  1355 }
       
  1356 
       
  1357 /**
       
  1358  *  e1000e_id_led_init -
       
  1359  *  @hw: pointer to the HW structure
       
  1360  *
       
  1361  **/
       
  1362 s32 e1000e_id_led_init(struct e1000_hw *hw)
       
  1363 {
       
  1364 	struct e1000_mac_info *mac = &hw->mac;
       
  1365 	s32 ret_val;
       
  1366 	const u32 ledctl_mask = 0x000000FF;
       
  1367 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  1368 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  1369 	u16 data, i, temp;
       
  1370 	const u16 led_mask = 0x0F;
       
  1371 
       
  1372 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  1373 	if (ret_val)
       
  1374 		return ret_val;
       
  1375 
       
  1376 	mac->ledctl_default = er32(LEDCTL);
       
  1377 	mac->ledctl_mode1 = mac->ledctl_default;
       
  1378 	mac->ledctl_mode2 = mac->ledctl_default;
       
  1379 
       
  1380 	for (i = 0; i < 4; i++) {
       
  1381 		temp = (data >> (i << 2)) & led_mask;
       
  1382 		switch (temp) {
       
  1383 		case ID_LED_ON1_DEF2:
       
  1384 		case ID_LED_ON1_ON2:
       
  1385 		case ID_LED_ON1_OFF2:
       
  1386 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1387 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
       
  1388 			break;
       
  1389 		case ID_LED_OFF1_DEF2:
       
  1390 		case ID_LED_OFF1_ON2:
       
  1391 		case ID_LED_OFF1_OFF2:
       
  1392 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1393 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
       
  1394 			break;
       
  1395 		default:
       
  1396 			/* Do nothing */
       
  1397 			break;
       
  1398 		}
       
  1399 		switch (temp) {
       
  1400 		case ID_LED_DEF1_ON2:
       
  1401 		case ID_LED_ON1_ON2:
       
  1402 		case ID_LED_OFF1_ON2:
       
  1403 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1404 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
       
  1405 			break;
       
  1406 		case ID_LED_DEF1_OFF2:
       
  1407 		case ID_LED_ON1_OFF2:
       
  1408 		case ID_LED_OFF1_OFF2:
       
  1409 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1410 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
       
  1411 			break;
       
  1412 		default:
       
  1413 			/* Do nothing */
       
  1414 			break;
       
  1415 		}
       
  1416 	}
       
  1417 
       
  1418 	return 0;
       
  1419 }
       
  1420 
       
  1421 /**
       
  1422  *  e1000e_setup_led_generic - Configures SW controllable LED
       
  1423  *  @hw: pointer to the HW structure
       
  1424  *
       
  1425  *  This prepares the SW controllable LED for use and saves the current state
       
  1426  *  of the LED so it can be later restored.
       
  1427  **/
       
  1428 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
       
  1429 {
       
  1430 	u32 ledctl;
       
  1431 
       
  1432 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
       
  1433 		return -E1000_ERR_CONFIG;
       
  1434 	}
       
  1435 
       
  1436 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1437 		ledctl = er32(LEDCTL);
       
  1438 		hw->mac.ledctl_default = ledctl;
       
  1439 		/* Turn off LED0 */
       
  1440 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
       
  1441 		            E1000_LEDCTL_LED0_BLINK |
       
  1442 		            E1000_LEDCTL_LED0_MODE_MASK);
       
  1443 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  1444 		           E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1445 		ew32(LEDCTL, ledctl);
       
  1446 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1447 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1448 	}
       
  1449 
       
  1450 	return 0;
       
  1451 }
       
  1452 
       
  1453 /**
       
  1454  *  e1000e_cleanup_led_generic - Set LED config to default operation
       
  1455  *  @hw: pointer to the HW structure
       
  1456  *
       
  1457  *  Remove the current LED configuration and set the LED configuration
       
  1458  *  to the default value, saved from the EEPROM.
       
  1459  **/
       
  1460 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
       
  1461 {
       
  1462 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  1463 	return 0;
       
  1464 }
       
  1465 
       
  1466 /**
       
  1467  *  e1000e_blink_led - Blink LED
       
  1468  *  @hw: pointer to the HW structure
       
  1469  *
       
  1470  *  Blink the LEDs which are set to be on.
       
  1471  **/
       
  1472 s32 e1000e_blink_led(struct e1000_hw *hw)
       
  1473 {
       
  1474 	u32 ledctl_blink = 0;
       
  1475 	u32 i;
       
  1476 
       
  1477 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1478 		/* always blink LED0 for PCI-E fiber */
       
  1479 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  1480 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1481 	} else {
       
  1482 		/*
       
  1483 		 * set the blink bit for each LED that's "on" (0x0E)
       
  1484 		 * in ledctl_mode2
       
  1485 		 */
       
  1486 		ledctl_blink = hw->mac.ledctl_mode2;
       
  1487 		for (i = 0; i < 4; i++)
       
  1488 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1489 			    E1000_LEDCTL_MODE_LED_ON)
       
  1490 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
       
  1491 						 (i * 8));
       
  1492 	}
       
  1493 
       
  1494 	ew32(LEDCTL, ledctl_blink);
       
  1495 
       
  1496 	return 0;
       
  1497 }
       
  1498 
       
  1499 /**
       
  1500  *  e1000e_led_on_generic - Turn LED on
       
  1501  *  @hw: pointer to the HW structure
       
  1502  *
       
  1503  *  Turn LED on.
       
  1504  **/
       
  1505 s32 e1000e_led_on_generic(struct e1000_hw *hw)
       
  1506 {
       
  1507 	u32 ctrl;
       
  1508 
       
  1509 	switch (hw->phy.media_type) {
       
  1510 	case e1000_media_type_fiber:
       
  1511 		ctrl = er32(CTRL);
       
  1512 		ctrl &= ~E1000_CTRL_SWDPIN0;
       
  1513 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1514 		ew32(CTRL, ctrl);
       
  1515 		break;
       
  1516 	case e1000_media_type_copper:
       
  1517 		ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  1518 		break;
       
  1519 	default:
       
  1520 		break;
       
  1521 	}
       
  1522 
       
  1523 	return 0;
       
  1524 }
       
  1525 
       
  1526 /**
       
  1527  *  e1000e_led_off_generic - Turn LED off
       
  1528  *  @hw: pointer to the HW structure
       
  1529  *
       
  1530  *  Turn LED off.
       
  1531  **/
       
  1532 s32 e1000e_led_off_generic(struct e1000_hw *hw)
       
  1533 {
       
  1534 	u32 ctrl;
       
  1535 
       
  1536 	switch (hw->phy.media_type) {
       
  1537 	case e1000_media_type_fiber:
       
  1538 		ctrl = er32(CTRL);
       
  1539 		ctrl |= E1000_CTRL_SWDPIN0;
       
  1540 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1541 		ew32(CTRL, ctrl);
       
  1542 		break;
       
  1543 	case e1000_media_type_copper:
       
  1544 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1545 		break;
       
  1546 	default:
       
  1547 		break;
       
  1548 	}
       
  1549 
       
  1550 	return 0;
       
  1551 }
       
  1552 
       
  1553 /**
       
  1554  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
       
  1555  *  @hw: pointer to the HW structure
       
  1556  *  @no_snoop: bitmap of snoop events
       
  1557  *
       
  1558  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
       
  1559  **/
       
  1560 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
       
  1561 {
       
  1562 	u32 gcr;
       
  1563 
       
  1564 	if (no_snoop) {
       
  1565 		gcr = er32(GCR);
       
  1566 		gcr &= ~(PCIE_NO_SNOOP_ALL);
       
  1567 		gcr |= no_snoop;
       
  1568 		ew32(GCR, gcr);
       
  1569 	}
       
  1570 }
       
  1571 
       
  1572 /**
       
  1573  *  e1000e_disable_pcie_master - Disables PCI-express master access
       
  1574  *  @hw: pointer to the HW structure
       
  1575  *
       
  1576  *  Returns 0 if successful, else returns -10
       
  1577  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
       
  1578  *  the master requests to be disabled.
       
  1579  *
       
  1580  *  Disables PCI-Express master access and verifies there are no pending
       
  1581  *  requests.
       
  1582  **/
       
  1583 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
       
  1584 {
       
  1585 	u32 ctrl;
       
  1586 	s32 timeout = MASTER_DISABLE_TIMEOUT;
       
  1587 
       
  1588 	ctrl = er32(CTRL);
       
  1589 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  1590 	ew32(CTRL, ctrl);
       
  1591 
       
  1592 	while (timeout) {
       
  1593 		if (!(er32(STATUS) &
       
  1594 		      E1000_STATUS_GIO_MASTER_ENABLE))
       
  1595 			break;
       
  1596 		udelay(100);
       
  1597 		timeout--;
       
  1598 	}
       
  1599 
       
  1600 	if (!timeout) {
       
  1601 		e_dbg("Master requests are pending.\n");
       
  1602 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  1603 	}
       
  1604 
       
  1605 	return 0;
       
  1606 }
       
  1607 
       
  1608 /**
       
  1609  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
       
  1610  *  @hw: pointer to the HW structure
       
  1611  *
       
  1612  *  Reset the Adaptive Interframe Spacing throttle to default values.
       
  1613  **/
       
  1614 void e1000e_reset_adaptive(struct e1000_hw *hw)
       
  1615 {
       
  1616 	struct e1000_mac_info *mac = &hw->mac;
       
  1617 
       
  1618 	if (!mac->adaptive_ifs) {
       
  1619 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1620 		goto out;
       
  1621 	}
       
  1622 
       
  1623 	mac->current_ifs_val = 0;
       
  1624 	mac->ifs_min_val = IFS_MIN;
       
  1625 	mac->ifs_max_val = IFS_MAX;
       
  1626 	mac->ifs_step_size = IFS_STEP;
       
  1627 	mac->ifs_ratio = IFS_RATIO;
       
  1628 
       
  1629 	mac->in_ifs_mode = false;
       
  1630 	ew32(AIT, 0);
       
  1631 out:
       
  1632 	return;
       
  1633 }
       
  1634 
       
  1635 /**
       
  1636  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
       
  1637  *  @hw: pointer to the HW structure
       
  1638  *
       
  1639  *  Update the Adaptive Interframe Spacing Throttle value based on the
       
  1640  *  time between transmitted packets and time between collisions.
       
  1641  **/
       
  1642 void e1000e_update_adaptive(struct e1000_hw *hw)
       
  1643 {
       
  1644 	struct e1000_mac_info *mac = &hw->mac;
       
  1645 
       
  1646 	if (!mac->adaptive_ifs) {
       
  1647 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1648 		goto out;
       
  1649 	}
       
  1650 
       
  1651 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
       
  1652 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
       
  1653 			mac->in_ifs_mode = true;
       
  1654 			if (mac->current_ifs_val < mac->ifs_max_val) {
       
  1655 				if (!mac->current_ifs_val)
       
  1656 					mac->current_ifs_val = mac->ifs_min_val;
       
  1657 				else
       
  1658 					mac->current_ifs_val +=
       
  1659 						mac->ifs_step_size;
       
  1660 				ew32(AIT, mac->current_ifs_val);
       
  1661 			}
       
  1662 		}
       
  1663 	} else {
       
  1664 		if (mac->in_ifs_mode &&
       
  1665 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  1666 			mac->current_ifs_val = 0;
       
  1667 			mac->in_ifs_mode = false;
       
  1668 			ew32(AIT, 0);
       
  1669 		}
       
  1670 	}
       
  1671 out:
       
  1672 	return;
       
  1673 }
       
  1674 
       
  1675 /**
       
  1676  *  e1000_raise_eec_clk - Raise EEPROM clock
       
  1677  *  @hw: pointer to the HW structure
       
  1678  *  @eecd: pointer to the EEPROM
       
  1679  *
       
  1680  *  Enable/Raise the EEPROM clock bit.
       
  1681  **/
       
  1682 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1683 {
       
  1684 	*eecd = *eecd | E1000_EECD_SK;
       
  1685 	ew32(EECD, *eecd);
       
  1686 	e1e_flush();
       
  1687 	udelay(hw->nvm.delay_usec);
       
  1688 }
       
  1689 
       
  1690 /**
       
  1691  *  e1000_lower_eec_clk - Lower EEPROM clock
       
  1692  *  @hw: pointer to the HW structure
       
  1693  *  @eecd: pointer to the EEPROM
       
  1694  *
       
  1695  *  Clear/Lower the EEPROM clock bit.
       
  1696  **/
       
  1697 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1698 {
       
  1699 	*eecd = *eecd & ~E1000_EECD_SK;
       
  1700 	ew32(EECD, *eecd);
       
  1701 	e1e_flush();
       
  1702 	udelay(hw->nvm.delay_usec);
       
  1703 }
       
  1704 
       
  1705 /**
       
  1706  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
       
  1707  *  @hw: pointer to the HW structure
       
  1708  *  @data: data to send to the EEPROM
       
  1709  *  @count: number of bits to shift out
       
  1710  *
       
  1711  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
       
  1712  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
       
  1713  *  In order to do this, "data" must be broken down into bits.
       
  1714  **/
       
  1715 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
       
  1716 {
       
  1717 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1718 	u32 eecd = er32(EECD);
       
  1719 	u32 mask;
       
  1720 
       
  1721 	mask = 0x01 << (count - 1);
       
  1722 	if (nvm->type == e1000_nvm_eeprom_spi)
       
  1723 		eecd |= E1000_EECD_DO;
       
  1724 
       
  1725 	do {
       
  1726 		eecd &= ~E1000_EECD_DI;
       
  1727 
       
  1728 		if (data & mask)
       
  1729 			eecd |= E1000_EECD_DI;
       
  1730 
       
  1731 		ew32(EECD, eecd);
       
  1732 		e1e_flush();
       
  1733 
       
  1734 		udelay(nvm->delay_usec);
       
  1735 
       
  1736 		e1000_raise_eec_clk(hw, &eecd);
       
  1737 		e1000_lower_eec_clk(hw, &eecd);
       
  1738 
       
  1739 		mask >>= 1;
       
  1740 	} while (mask);
       
  1741 
       
  1742 	eecd &= ~E1000_EECD_DI;
       
  1743 	ew32(EECD, eecd);
       
  1744 }
       
  1745 
       
  1746 /**
       
  1747  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
       
  1748  *  @hw: pointer to the HW structure
       
  1749  *  @count: number of bits to shift in
       
  1750  *
       
  1751  *  In order to read a register from the EEPROM, we need to shift 'count' bits
       
  1752  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
       
  1753  *  the EEPROM (setting the SK bit), and then reading the value of the data out
       
  1754  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
       
  1755  *  always be clear.
       
  1756  **/
       
  1757 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
       
  1758 {
       
  1759 	u32 eecd;
       
  1760 	u32 i;
       
  1761 	u16 data;
       
  1762 
       
  1763 	eecd = er32(EECD);
       
  1764 
       
  1765 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
       
  1766 	data = 0;
       
  1767 
       
  1768 	for (i = 0; i < count; i++) {
       
  1769 		data <<= 1;
       
  1770 		e1000_raise_eec_clk(hw, &eecd);
       
  1771 
       
  1772 		eecd = er32(EECD);
       
  1773 
       
  1774 		eecd &= ~E1000_EECD_DI;
       
  1775 		if (eecd & E1000_EECD_DO)
       
  1776 			data |= 1;
       
  1777 
       
  1778 		e1000_lower_eec_clk(hw, &eecd);
       
  1779 	}
       
  1780 
       
  1781 	return data;
       
  1782 }
       
  1783 
       
  1784 /**
       
  1785  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
       
  1786  *  @hw: pointer to the HW structure
       
  1787  *  @ee_reg: EEPROM flag for polling
       
  1788  *
       
  1789  *  Polls the EEPROM status bit for either read or write completion based
       
  1790  *  upon the value of 'ee_reg'.
       
  1791  **/
       
  1792 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
       
  1793 {
       
  1794 	u32 attempts = 100000;
       
  1795 	u32 i, reg = 0;
       
  1796 
       
  1797 	for (i = 0; i < attempts; i++) {
       
  1798 		if (ee_reg == E1000_NVM_POLL_READ)
       
  1799 			reg = er32(EERD);
       
  1800 		else
       
  1801 			reg = er32(EEWR);
       
  1802 
       
  1803 		if (reg & E1000_NVM_RW_REG_DONE)
       
  1804 			return 0;
       
  1805 
       
  1806 		udelay(5);
       
  1807 	}
       
  1808 
       
  1809 	return -E1000_ERR_NVM;
       
  1810 }
       
  1811 
       
  1812 /**
       
  1813  *  e1000e_acquire_nvm - Generic request for access to EEPROM
       
  1814  *  @hw: pointer to the HW structure
       
  1815  *
       
  1816  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
       
  1817  *  Return successful if access grant bit set, else clear the request for
       
  1818  *  EEPROM access and return -E1000_ERR_NVM (-1).
       
  1819  **/
       
  1820 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
       
  1821 {
       
  1822 	u32 eecd = er32(EECD);
       
  1823 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
       
  1824 
       
  1825 	ew32(EECD, eecd | E1000_EECD_REQ);
       
  1826 	eecd = er32(EECD);
       
  1827 
       
  1828 	while (timeout) {
       
  1829 		if (eecd & E1000_EECD_GNT)
       
  1830 			break;
       
  1831 		udelay(5);
       
  1832 		eecd = er32(EECD);
       
  1833 		timeout--;
       
  1834 	}
       
  1835 
       
  1836 	if (!timeout) {
       
  1837 		eecd &= ~E1000_EECD_REQ;
       
  1838 		ew32(EECD, eecd);
       
  1839 		e_dbg("Could not acquire NVM grant\n");
       
  1840 		return -E1000_ERR_NVM;
       
  1841 	}
       
  1842 
       
  1843 	return 0;
       
  1844 }
       
  1845 
       
  1846 /**
       
  1847  *  e1000_standby_nvm - Return EEPROM to standby state
       
  1848  *  @hw: pointer to the HW structure
       
  1849  *
       
  1850  *  Return the EEPROM to a standby state.
       
  1851  **/
       
  1852 static void e1000_standby_nvm(struct e1000_hw *hw)
       
  1853 {
       
  1854 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1855 	u32 eecd = er32(EECD);
       
  1856 
       
  1857 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1858 		/* Toggle CS to flush commands */
       
  1859 		eecd |= E1000_EECD_CS;
       
  1860 		ew32(EECD, eecd);
       
  1861 		e1e_flush();
       
  1862 		udelay(nvm->delay_usec);
       
  1863 		eecd &= ~E1000_EECD_CS;
       
  1864 		ew32(EECD, eecd);
       
  1865 		e1e_flush();
       
  1866 		udelay(nvm->delay_usec);
       
  1867 	}
       
  1868 }
       
  1869 
       
  1870 /**
       
  1871  *  e1000_stop_nvm - Terminate EEPROM command
       
  1872  *  @hw: pointer to the HW structure
       
  1873  *
       
  1874  *  Terminates the current command by inverting the EEPROM's chip select pin.
       
  1875  **/
       
  1876 static void e1000_stop_nvm(struct e1000_hw *hw)
       
  1877 {
       
  1878 	u32 eecd;
       
  1879 
       
  1880 	eecd = er32(EECD);
       
  1881 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
  1882 		/* Pull CS high */
       
  1883 		eecd |= E1000_EECD_CS;
       
  1884 		e1000_lower_eec_clk(hw, &eecd);
       
  1885 	}
       
  1886 }
       
  1887 
       
  1888 /**
       
  1889  *  e1000e_release_nvm - Release exclusive access to EEPROM
       
  1890  *  @hw: pointer to the HW structure
       
  1891  *
       
  1892  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
  1893  **/
       
  1894 void e1000e_release_nvm(struct e1000_hw *hw)
       
  1895 {
       
  1896 	u32 eecd;
       
  1897 
       
  1898 	e1000_stop_nvm(hw);
       
  1899 
       
  1900 	eecd = er32(EECD);
       
  1901 	eecd &= ~E1000_EECD_REQ;
       
  1902 	ew32(EECD, eecd);
       
  1903 }
       
  1904 
       
  1905 /**
       
  1906  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
       
  1907  *  @hw: pointer to the HW structure
       
  1908  *
       
  1909  *  Setups the EEPROM for reading and writing.
       
  1910  **/
       
  1911 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
       
  1912 {
       
  1913 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1914 	u32 eecd = er32(EECD);
       
  1915 	u16 timeout = 0;
       
  1916 	u8 spi_stat_reg;
       
  1917 
       
  1918 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1919 		/* Clear SK and CS */
       
  1920 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  1921 		ew32(EECD, eecd);
       
  1922 		udelay(1);
       
  1923 		timeout = NVM_MAX_RETRY_SPI;
       
  1924 
       
  1925 		/*
       
  1926 		 * Read "Status Register" repeatedly until the LSB is cleared.
       
  1927 		 * The EEPROM will signal that the command has been completed
       
  1928 		 * by clearing bit 0 of the internal status register.  If it's
       
  1929 		 * not cleared within 'timeout', then error out.
       
  1930 		 */
       
  1931 		while (timeout) {
       
  1932 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
       
  1933 						 hw->nvm.opcode_bits);
       
  1934 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
       
  1935 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
       
  1936 				break;
       
  1937 
       
  1938 			udelay(5);
       
  1939 			e1000_standby_nvm(hw);
       
  1940 			timeout--;
       
  1941 		}
       
  1942 
       
  1943 		if (!timeout) {
       
  1944 			e_dbg("SPI NVM Status error\n");
       
  1945 			return -E1000_ERR_NVM;
       
  1946 		}
       
  1947 	}
       
  1948 
       
  1949 	return 0;
       
  1950 }
       
  1951 
       
  1952 /**
       
  1953  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
       
  1954  *  @hw: pointer to the HW structure
       
  1955  *  @offset: offset of word in the EEPROM to read
       
  1956  *  @words: number of words to read
       
  1957  *  @data: word read from the EEPROM
       
  1958  *
       
  1959  *  Reads a 16 bit word from the EEPROM using the EERD register.
       
  1960  **/
       
  1961 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  1962 {
       
  1963 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1964 	u32 i, eerd = 0;
       
  1965 	s32 ret_val = 0;
       
  1966 
       
  1967 	/*
       
  1968 	 * A check for invalid values:  offset too large, too many words,
       
  1969 	 * too many words for the offset, and not enough words.
       
  1970 	 */
       
  1971 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  1972 	    (words == 0)) {
       
  1973 		e_dbg("nvm parameter(s) out of bounds\n");
       
  1974 		return -E1000_ERR_NVM;
       
  1975 	}
       
  1976 
       
  1977 	for (i = 0; i < words; i++) {
       
  1978 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
       
  1979 		       E1000_NVM_RW_REG_START;
       
  1980 
       
  1981 		ew32(EERD, eerd);
       
  1982 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
       
  1983 		if (ret_val)
       
  1984 			break;
       
  1985 
       
  1986 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
       
  1987 	}
       
  1988 
       
  1989 	return ret_val;
       
  1990 }
       
  1991 
       
  1992 /**
       
  1993  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
       
  1994  *  @hw: pointer to the HW structure
       
  1995  *  @offset: offset within the EEPROM to be written to
       
  1996  *  @words: number of words to write
       
  1997  *  @data: 16 bit word(s) to be written to the EEPROM
       
  1998  *
       
  1999  *  Writes data to EEPROM at offset using SPI interface.
       
  2000  *
       
  2001  *  If e1000e_update_nvm_checksum is not called after this function , the
       
  2002  *  EEPROM will most likely contain an invalid checksum.
       
  2003  **/
       
  2004 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  2005 {
       
  2006 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2007 	s32 ret_val;
       
  2008 	u16 widx = 0;
       
  2009 
       
  2010 	/*
       
  2011 	 * A check for invalid values:  offset too large, too many words,
       
  2012 	 * and not enough words.
       
  2013 	 */
       
  2014 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  2015 	    (words == 0)) {
       
  2016 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2017 		return -E1000_ERR_NVM;
       
  2018 	}
       
  2019 
       
  2020 	ret_val = nvm->ops.acquire(hw);
       
  2021 	if (ret_val)
       
  2022 		return ret_val;
       
  2023 
       
  2024 	msleep(10);
       
  2025 
       
  2026 	while (widx < words) {
       
  2027 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
       
  2028 
       
  2029 		ret_val = e1000_ready_nvm_eeprom(hw);
       
  2030 		if (ret_val) {
       
  2031 			nvm->ops.release(hw);
       
  2032 			return ret_val;
       
  2033 		}
       
  2034 
       
  2035 		e1000_standby_nvm(hw);
       
  2036 
       
  2037 		/* Send the WRITE ENABLE command (8 bit opcode) */
       
  2038 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
       
  2039 					 nvm->opcode_bits);
       
  2040 
       
  2041 		e1000_standby_nvm(hw);
       
  2042 
       
  2043 		/*
       
  2044 		 * Some SPI eeproms use the 8th address bit embedded in the
       
  2045 		 * opcode
       
  2046 		 */
       
  2047 		if ((nvm->address_bits == 8) && (offset >= 128))
       
  2048 			write_opcode |= NVM_A8_OPCODE_SPI;
       
  2049 
       
  2050 		/* Send the Write command (8-bit opcode + addr) */
       
  2051 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
       
  2052 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
       
  2053 					 nvm->address_bits);
       
  2054 
       
  2055 		/* Loop to allow for up to whole page write of eeprom */
       
  2056 		while (widx < words) {
       
  2057 			u16 word_out = data[widx];
       
  2058 			word_out = (word_out >> 8) | (word_out << 8);
       
  2059 			e1000_shift_out_eec_bits(hw, word_out, 16);
       
  2060 			widx++;
       
  2061 
       
  2062 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
       
  2063 				e1000_standby_nvm(hw);
       
  2064 				break;
       
  2065 			}
       
  2066 		}
       
  2067 	}
       
  2068 
       
  2069 	msleep(10);
       
  2070 	nvm->ops.release(hw);
       
  2071 	return 0;
       
  2072 }
       
  2073 
       
  2074 /**
       
  2075  *  e1000e_read_mac_addr - Read device MAC address
       
  2076  *  @hw: pointer to the HW structure
       
  2077  *
       
  2078  *  Reads the device MAC address from the EEPROM and stores the value.
       
  2079  *  Since devices with two ports use the same EEPROM, we increment the
       
  2080  *  last bit in the MAC address for the second port.
       
  2081  **/
       
  2082 s32 e1000e_read_mac_addr(struct e1000_hw *hw)
       
  2083 {
       
  2084 	s32 ret_val;
       
  2085 	u16 offset, nvm_data, i;
       
  2086 	u16 mac_addr_offset = 0;
       
  2087 
       
  2088 	if (hw->mac.type == e1000_82571) {
       
  2089 		/* Check for an alternate MAC address.  An alternate MAC
       
  2090 		 * address can be setup by pre-boot software and must be
       
  2091 		 * treated like a permanent address and must override the
       
  2092 		 * actual permanent MAC address.*/
       
  2093 		ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
       
  2094 					 &mac_addr_offset);
       
  2095 		if (ret_val) {
       
  2096 			e_dbg("NVM Read Error\n");
       
  2097 			return ret_val;
       
  2098 		}
       
  2099 		if (mac_addr_offset == 0xFFFF)
       
  2100 			mac_addr_offset = 0;
       
  2101 
       
  2102 		if (mac_addr_offset) {
       
  2103 			if (hw->bus.func == E1000_FUNC_1)
       
  2104 				mac_addr_offset += ETH_ALEN/sizeof(u16);
       
  2105 
       
  2106 			/* make sure we have a valid mac address here
       
  2107 			* before using it */
       
  2108 			ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
       
  2109 						 &nvm_data);
       
  2110 			if (ret_val) {
       
  2111 				e_dbg("NVM Read Error\n");
       
  2112 				return ret_val;
       
  2113 			}
       
  2114 			if (nvm_data & 0x0001)
       
  2115 				mac_addr_offset = 0;
       
  2116 		}
       
  2117 
       
  2118 		if (mac_addr_offset)
       
  2119 		hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
       
  2120 	}
       
  2121 
       
  2122 	for (i = 0; i < ETH_ALEN; i += 2) {
       
  2123 		offset = mac_addr_offset + (i >> 1);
       
  2124 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
       
  2125 		if (ret_val) {
       
  2126 			e_dbg("NVM Read Error\n");
       
  2127 			return ret_val;
       
  2128 		}
       
  2129 		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
       
  2130 		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
       
  2131 	}
       
  2132 
       
  2133 	/* Flip last bit of mac address if we're on second port */
       
  2134 	if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
       
  2135 		hw->mac.perm_addr[5] ^= 1;
       
  2136 
       
  2137 	for (i = 0; i < ETH_ALEN; i++)
       
  2138 		hw->mac.addr[i] = hw->mac.perm_addr[i];
       
  2139 
       
  2140 	return 0;
       
  2141 }
       
  2142 
       
  2143 /**
       
  2144  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
       
  2145  *  @hw: pointer to the HW structure
       
  2146  *
       
  2147  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2148  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
  2149  **/
       
  2150 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
       
  2151 {
       
  2152 	s32 ret_val;
       
  2153 	u16 checksum = 0;
       
  2154 	u16 i, nvm_data;
       
  2155 
       
  2156 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
  2157 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2158 		if (ret_val) {
       
  2159 			e_dbg("NVM Read Error\n");
       
  2160 			return ret_val;
       
  2161 		}
       
  2162 		checksum += nvm_data;
       
  2163 	}
       
  2164 
       
  2165 	if (checksum != (u16) NVM_SUM) {
       
  2166 		e_dbg("NVM Checksum Invalid\n");
       
  2167 		return -E1000_ERR_NVM;
       
  2168 	}
       
  2169 
       
  2170 	return 0;
       
  2171 }
       
  2172 
       
  2173 /**
       
  2174  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
       
  2175  *  @hw: pointer to the HW structure
       
  2176  *
       
  2177  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2178  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
  2179  *  value to the EEPROM.
       
  2180  **/
       
  2181 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
       
  2182 {
       
  2183 	s32 ret_val;
       
  2184 	u16 checksum = 0;
       
  2185 	u16 i, nvm_data;
       
  2186 
       
  2187 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
       
  2188 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2189 		if (ret_val) {
       
  2190 			e_dbg("NVM Read Error while updating checksum.\n");
       
  2191 			return ret_val;
       
  2192 		}
       
  2193 		checksum += nvm_data;
       
  2194 	}
       
  2195 	checksum = (u16) NVM_SUM - checksum;
       
  2196 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
       
  2197 	if (ret_val)
       
  2198 		e_dbg("NVM Write Error while updating checksum.\n");
       
  2199 
       
  2200 	return ret_val;
       
  2201 }
       
  2202 
       
  2203 /**
       
  2204  *  e1000e_reload_nvm - Reloads EEPROM
       
  2205  *  @hw: pointer to the HW structure
       
  2206  *
       
  2207  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
       
  2208  *  extended control register.
       
  2209  **/
       
  2210 void e1000e_reload_nvm(struct e1000_hw *hw)
       
  2211 {
       
  2212 	u32 ctrl_ext;
       
  2213 
       
  2214 	udelay(10);
       
  2215 	ctrl_ext = er32(CTRL_EXT);
       
  2216 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
  2217 	ew32(CTRL_EXT, ctrl_ext);
       
  2218 	e1e_flush();
       
  2219 }
       
  2220 
       
  2221 /**
       
  2222  *  e1000_calculate_checksum - Calculate checksum for buffer
       
  2223  *  @buffer: pointer to EEPROM
       
  2224  *  @length: size of EEPROM to calculate a checksum for
       
  2225  *
       
  2226  *  Calculates the checksum for some buffer on a specified length.  The
       
  2227  *  checksum calculated is returned.
       
  2228  **/
       
  2229 static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
       
  2230 {
       
  2231 	u32 i;
       
  2232 	u8  sum = 0;
       
  2233 
       
  2234 	if (!buffer)
       
  2235 		return 0;
       
  2236 
       
  2237 	for (i = 0; i < length; i++)
       
  2238 		sum += buffer[i];
       
  2239 
       
  2240 	return (u8) (0 - sum);
       
  2241 }
       
  2242 
       
  2243 /**
       
  2244  *  e1000_mng_enable_host_if - Checks host interface is enabled
       
  2245  *  @hw: pointer to the HW structure
       
  2246  *
       
  2247  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
       
  2248  *
       
  2249  *  This function checks whether the HOST IF is enabled for command operation
       
  2250  *  and also checks whether the previous command is completed.  It busy waits
       
  2251  *  in case of previous command is not completed.
       
  2252  **/
       
  2253 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
       
  2254 {
       
  2255 	u32 hicr;
       
  2256 	u8 i;
       
  2257 
       
  2258 	/* Check that the host interface is enabled. */
       
  2259 	hicr = er32(HICR);
       
  2260 	if ((hicr & E1000_HICR_EN) == 0) {
       
  2261 		e_dbg("E1000_HOST_EN bit disabled.\n");
       
  2262 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2263 	}
       
  2264 	/* check the previous command is completed */
       
  2265 	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
       
  2266 		hicr = er32(HICR);
       
  2267 		if (!(hicr & E1000_HICR_C))
       
  2268 			break;
       
  2269 		mdelay(1);
       
  2270 	}
       
  2271 
       
  2272 	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
       
  2273 		e_dbg("Previous command timeout failed .\n");
       
  2274 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2275 	}
       
  2276 
       
  2277 	return 0;
       
  2278 }
       
  2279 
       
  2280 /**
       
  2281  *  e1000e_check_mng_mode_generic - check management mode
       
  2282  *  @hw: pointer to the HW structure
       
  2283  *
       
  2284  *  Reads the firmware semaphore register and returns true (>0) if
       
  2285  *  manageability is enabled, else false (0).
       
  2286  **/
       
  2287 bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
       
  2288 {
       
  2289 	u32 fwsm = er32(FWSM);
       
  2290 
       
  2291 	return (fwsm & E1000_FWSM_MODE_MASK) ==
       
  2292 		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
       
  2293 }
       
  2294 
       
  2295 /**
       
  2296  *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
       
  2297  *  @hw: pointer to the HW structure
       
  2298  *
       
  2299  *  Enables packet filtering on transmit packets if manageability is enabled
       
  2300  *  and host interface is enabled.
       
  2301  **/
       
  2302 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
       
  2303 {
       
  2304 	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
       
  2305 	u32 *buffer = (u32 *)&hw->mng_cookie;
       
  2306 	u32 offset;
       
  2307 	s32 ret_val, hdr_csum, csum;
       
  2308 	u8 i, len;
       
  2309 
       
  2310 	hw->mac.tx_pkt_filtering = true;
       
  2311 
       
  2312 	/* No manageability, no filtering */
       
  2313 	if (!e1000e_check_mng_mode(hw)) {
       
  2314 		hw->mac.tx_pkt_filtering = false;
       
  2315 		goto out;
       
  2316 	}
       
  2317 
       
  2318 	/*
       
  2319 	 * If we can't read from the host interface for whatever
       
  2320 	 * reason, disable filtering.
       
  2321 	 */
       
  2322 	ret_val = e1000_mng_enable_host_if(hw);
       
  2323 	if (ret_val) {
       
  2324 		hw->mac.tx_pkt_filtering = false;
       
  2325 		goto out;
       
  2326 	}
       
  2327 
       
  2328 	/* Read in the header.  Length and offset are in dwords. */
       
  2329 	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
       
  2330 	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
       
  2331 	for (i = 0; i < len; i++)
       
  2332 		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
       
  2333 	hdr_csum = hdr->checksum;
       
  2334 	hdr->checksum = 0;
       
  2335 	csum = e1000_calculate_checksum((u8 *)hdr,
       
  2336 					E1000_MNG_DHCP_COOKIE_LENGTH);
       
  2337 	/*
       
  2338 	 * If either the checksums or signature don't match, then
       
  2339 	 * the cookie area isn't considered valid, in which case we
       
  2340 	 * take the safe route of assuming Tx filtering is enabled.
       
  2341 	 */
       
  2342 	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
       
  2343 		hw->mac.tx_pkt_filtering = true;
       
  2344 		goto out;
       
  2345 	}
       
  2346 
       
  2347 	/* Cookie area is valid, make the final check for filtering. */
       
  2348 	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
       
  2349 		hw->mac.tx_pkt_filtering = false;
       
  2350 		goto out;
       
  2351 	}
       
  2352 
       
  2353 out:
       
  2354 	return hw->mac.tx_pkt_filtering;
       
  2355 }
       
  2356 
       
  2357 /**
       
  2358  *  e1000_mng_write_cmd_header - Writes manageability command header
       
  2359  *  @hw: pointer to the HW structure
       
  2360  *  @hdr: pointer to the host interface command header
       
  2361  *
       
  2362  *  Writes the command header after does the checksum calculation.
       
  2363  **/
       
  2364 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
       
  2365 				  struct e1000_host_mng_command_header *hdr)
       
  2366 {
       
  2367 	u16 i, length = sizeof(struct e1000_host_mng_command_header);
       
  2368 
       
  2369 	/* Write the whole command header structure with new checksum. */
       
  2370 
       
  2371 	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
       
  2372 
       
  2373 	length >>= 2;
       
  2374 	/* Write the relevant command block into the ram area. */
       
  2375 	for (i = 0; i < length; i++) {
       
  2376 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
       
  2377 					    *((u32 *) hdr + i));
       
  2378 		e1e_flush();
       
  2379 	}
       
  2380 
       
  2381 	return 0;
       
  2382 }
       
  2383 
       
  2384 /**
       
  2385  *  e1000_mng_host_if_write - Write to the manageability host interface
       
  2386  *  @hw: pointer to the HW structure
       
  2387  *  @buffer: pointer to the host interface buffer
       
  2388  *  @length: size of the buffer
       
  2389  *  @offset: location in the buffer to write to
       
  2390  *  @sum: sum of the data (not checksum)
       
  2391  *
       
  2392  *  This function writes the buffer content at the offset given on the host if.
       
  2393  *  It also does alignment considerations to do the writes in most efficient
       
  2394  *  way.  Also fills up the sum of the buffer in *buffer parameter.
       
  2395  **/
       
  2396 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
       
  2397 				   u16 length, u16 offset, u8 *sum)
       
  2398 {
       
  2399 	u8 *tmp;
       
  2400 	u8 *bufptr = buffer;
       
  2401 	u32 data = 0;
       
  2402 	u16 remaining, i, j, prev_bytes;
       
  2403 
       
  2404 	/* sum = only sum of the data and it is not checksum */
       
  2405 
       
  2406 	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
       
  2407 		return -E1000_ERR_PARAM;
       
  2408 
       
  2409 	tmp = (u8 *)&data;
       
  2410 	prev_bytes = offset & 0x3;
       
  2411 	offset >>= 2;
       
  2412 
       
  2413 	if (prev_bytes) {
       
  2414 		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
       
  2415 		for (j = prev_bytes; j < sizeof(u32); j++) {
       
  2416 			*(tmp + j) = *bufptr++;
       
  2417 			*sum += *(tmp + j);
       
  2418 		}
       
  2419 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
       
  2420 		length -= j - prev_bytes;
       
  2421 		offset++;
       
  2422 	}
       
  2423 
       
  2424 	remaining = length & 0x3;
       
  2425 	length -= remaining;
       
  2426 
       
  2427 	/* Calculate length in DWORDs */
       
  2428 	length >>= 2;
       
  2429 
       
  2430 	/*
       
  2431 	 * The device driver writes the relevant command block into the
       
  2432 	 * ram area.
       
  2433 	 */
       
  2434 	for (i = 0; i < length; i++) {
       
  2435 		for (j = 0; j < sizeof(u32); j++) {
       
  2436 			*(tmp + j) = *bufptr++;
       
  2437 			*sum += *(tmp + j);
       
  2438 		}
       
  2439 
       
  2440 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2441 	}
       
  2442 	if (remaining) {
       
  2443 		for (j = 0; j < sizeof(u32); j++) {
       
  2444 			if (j < remaining)
       
  2445 				*(tmp + j) = *bufptr++;
       
  2446 			else
       
  2447 				*(tmp + j) = 0;
       
  2448 
       
  2449 			*sum += *(tmp + j);
       
  2450 		}
       
  2451 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2452 	}
       
  2453 
       
  2454 	return 0;
       
  2455 }
       
  2456 
       
  2457 /**
       
  2458  *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
       
  2459  *  @hw: pointer to the HW structure
       
  2460  *  @buffer: pointer to the host interface
       
  2461  *  @length: size of the buffer
       
  2462  *
       
  2463  *  Writes the DHCP information to the host interface.
       
  2464  **/
       
  2465 s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
       
  2466 {
       
  2467 	struct e1000_host_mng_command_header hdr;
       
  2468 	s32 ret_val;
       
  2469 	u32 hicr;
       
  2470 
       
  2471 	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
       
  2472 	hdr.command_length = length;
       
  2473 	hdr.reserved1 = 0;
       
  2474 	hdr.reserved2 = 0;
       
  2475 	hdr.checksum = 0;
       
  2476 
       
  2477 	/* Enable the host interface */
       
  2478 	ret_val = e1000_mng_enable_host_if(hw);
       
  2479 	if (ret_val)
       
  2480 		return ret_val;
       
  2481 
       
  2482 	/* Populate the host interface with the contents of "buffer". */
       
  2483 	ret_val = e1000_mng_host_if_write(hw, buffer, length,
       
  2484 					  sizeof(hdr), &(hdr.checksum));
       
  2485 	if (ret_val)
       
  2486 		return ret_val;
       
  2487 
       
  2488 	/* Write the manageability command header */
       
  2489 	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
       
  2490 	if (ret_val)
       
  2491 		return ret_val;
       
  2492 
       
  2493 	/* Tell the ARC a new command is pending. */
       
  2494 	hicr = er32(HICR);
       
  2495 	ew32(HICR, hicr | E1000_HICR_C);
       
  2496 
       
  2497 	return 0;
       
  2498 }
       
  2499 
       
  2500 /**
       
  2501  *  e1000e_enable_mng_pass_thru - Enable processing of ARP's
       
  2502  *  @hw: pointer to the HW structure
       
  2503  *
       
  2504  *  Verifies the hardware needs to allow ARPs to be processed by the host.
       
  2505  **/
       
  2506 bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
       
  2507 {
       
  2508 	u32 manc;
       
  2509 	u32 fwsm, factps;
       
  2510 	bool ret_val = false;
       
  2511 
       
  2512 	manc = er32(MANC);
       
  2513 
       
  2514 	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
       
  2515 	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
       
  2516 		return ret_val;
       
  2517 
       
  2518 	if (hw->mac.arc_subsystem_valid) {
       
  2519 		fwsm = er32(FWSM);
       
  2520 		factps = er32(FACTPS);
       
  2521 
       
  2522 		if (!(factps & E1000_FACTPS_MNGCG) &&
       
  2523 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  2524 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
       
  2525 			ret_val = true;
       
  2526 			return ret_val;
       
  2527 		}
       
  2528 	} else {
       
  2529 		if ((manc & E1000_MANC_SMBUS_EN) &&
       
  2530 		    !(manc & E1000_MANC_ASF_EN)) {
       
  2531 			ret_val = true;
       
  2532 			return ret_val;
       
  2533 		}
       
  2534 	}
       
  2535 
       
  2536 	return ret_val;
       
  2537 }
       
  2538 
       
  2539 s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
       
  2540 {
       
  2541 	s32 ret_val;
       
  2542 	u16 nvm_data;
       
  2543 
       
  2544 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
       
  2545 	if (ret_val) {
       
  2546 		e_dbg("NVM Read Error\n");
       
  2547 		return ret_val;
       
  2548 	}
       
  2549 	*pba_num = (u32)(nvm_data << 16);
       
  2550 
       
  2551 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
       
  2552 	if (ret_val) {
       
  2553 		e_dbg("NVM Read Error\n");
       
  2554 		return ret_val;
       
  2555 	}
       
  2556 	*pba_num |= nvm_data;
       
  2557 
       
  2558 	return 0;
       
  2559 }